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ABSTRACT 

Electromyography (EMG) serves as a vital diagnostic tool in medical and clinical research, 

enabling the monitoring and analysis of muscle electrical activity. In medical diagnostics, 

EMG aids in identifying and assessing neuromuscular syndromes, i.e. amyotrophic lateral 

sclerosis (ALS). However, EMG signals are prone to various forms of noise and 

interference, posing challenges to accurate data interpretation. Thus, the development of 

robust denoising techniques is crucial for enhancing EMG signal quality and addressing 

practical challenges in clinical diagnostics, rehabilitation, and neuromuscular research. 

This research introduces an innovative methodology integrating Variational Mode 

Decomposition (VMD) and Graph Signal Processing (GSP) to improve EMG signal 

quality. Unlike conventional approaches like Continuous Wavelet Transform (CWT), this 

study explores the untapped potential of VMD with Intrinsic Mode Functions (IMFs) 16 

and GSP in EMG signal analysis. sEMG data collected from 10 subjects using the EMG-

USB (OT Bioelettronica) underwent denoising techniques, specifically CWT, VMD, and 

GSP. Evaluation of noise reduction performance reveals compelling results, with GSP 

demonstrating superior noise reduction capabilities compared to VMD and CWT. 

Specifically, GSP increases the SNR by 259.15 meanwhile decreases the RMSE by 0.07. 

In comparison, VMD upturns SNR with 111.56 and declines RMSE of 0.15. While both 

VMD and GSP outperform CWT, which exhibits SNR enhancements of 90.46 and RMSE 

reductions by 0.15. Statistical analysis validates the significant improvements (p < 0.05) 

provided by VMD and GSP over CWT across varying noise levels. Notably, VMD and 

GSP collectively exhibit substantial enhancements in both SNR and RMSE metrics, 

underscoring their efficacy in preserving signal fidelity while minimizing noise and 

artifacts. 

Keywords: EMG, Variational Mode Decomposition, Graph Signal Processing, 

Continuous Wavelet Transform, SNR, RMSE, Denoising Techniques. 
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CHAPTER 1: INTRODUCTION 

1.1 Background and Significance 

Human body is a complex network of muscles, nerves, and intricate neuromuscular 

connections that allow for a wide range of motor functions. Electromyography (EMG) 

serves as a fundamental tool in exploring this complexity by capturing and interpreting the 

electrical activity generated by muscle contractions. 

In the realm of medical diagnostics, EMG aids in the identification and valuation of 

disorders like of neuromuscular, i.e. amyotrophic lateral sclerosis (ALS), and peripheral 

neuropathy etc. It provides essential information for physicians to make accurate 

diagnoses, assess disease progression, and devise appropriate treatment plans. Moreover, 

EMG is instrumental in monitoring the effectiveness of treatments and interventions aimed 

at improving the neuromuscular system's health and function. Electromyography (EMG) 

is a valuable diagnostic tool widely used in medical and clinical research to monitor and 

analyze the electrical activity of muscles. EMG signals provide essential understandings 

hooked on the working of the neuromuscular arrangement that helps in the identification 

and handling of various neuromuscular disorders and enhancing the understanding of 

motor control mechanisms. However, EMG signals are inherently susceptible to various 

forms of noise and interference, which can hinder the accurate interpretation of the 

information. Therefore, the development of robust denoising techniques is essential to 

enrich the quality of EMG signals and improve their diagnostic and analytical capabilities. 

Beyond diagnostics, EMG plays a pivotal role in clinical research. Researchers use 

EMG data to delve into the intricacies of muscle activity, investigate motor control 

mechanisms, and gain a deeper understanding of the neuromuscular system's functionality. 

In fields like rehabilitation and biomechanics, EMG signals are harnessed to design and 

evaluate prosthetic devices, assess the effectiveness of physical therapy, and optimize 

ergonomic design for various applications, including sports and ergonomics that 

necessitate the quality improvement of these muscle signals. While EMG signals offer a 

wealth of information, they are not without their challenges. EMG recordings often feature 
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noise and interference originating from various sources. Electrical artifacts, such as 50/60 

Hz power line interference and equipment-related noise, can corrupt the signals. 

Additionally, EMG data may be affected by movement artifacts resulting from the 

repositioning of electrodes or the patient's movements during data acquisition. Biological 

factors like sweating and skin impedance variations can introduce further distortions. The 

presence of noise and interference in EMG signals poses significant obstacles. It 

complicates the analysis of these signals, making it challenging to extract accurate 

information about muscle activity and motor control. Misinterpretation of EMG data can 

lead to incorrect diagnoses and hinder the progress of clinical research and treatment 

strategies. 

Recognizing the crucial role of EMG in medical diagnostics, clinical research, and 

various interdisciplinary domains, it is imperative to develop effective denoising 

techniques that can enhance the quality of EMG signals. The aim is to abstract the 

underlying physiological information from the signals though minimizing the impact of 

noise and interference. By improving the fidelity of EMG data, clinicians, researchers, and 

engineers can make more accurate assessments, diagnoses, and decisions. 

This thesis embarks on a journey to address the challenge of denoising EMG signals 

by exploring the integration of two promising denoising techniques: Variational Mode 

Decomposition (VMD) and Graph Signal Processing (GSP) and compared the results with 

well-known denoising method Continuous Wavelet Transformation (CWT).  

1.2 Problem Statement 

The persistent challenge of noise and interference within electromyography (EMG) 

signals presents a formidable barrier, hindering the precise analysis essential for extracting 

crucial information regarding muscle activity and motor control. The intricate evaluation 

of these signals not only compromises diagnostic accuracy but also impedes advancements 

in clinical research and the formulation of effective treatment strategies for neuromuscular 

disorders. This pervasive issue underscores an urgent need for innovative denoising 

techniques within EMG signal processing. By addressing the complexities posed by noise 
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and interference, these techniques aim to enhance the reliability and utility of EMG data, 

facilitating more accurate interpretation and enabling significant progress in understanding 

and managing neuromuscular conditions. Thus, the proposed study seeks to contribute 

novel methodologies capable of mitigating noise effects and optimizing the usability of 

EMG signals for clinical and research applications. 

1.3 Motivation 

This master's thesis is motivated by the pressing need to enhance the quality of EMG 

signals and augment the accuracy of their analysis by addressing the pervasive issue of 

noise and interference. The essential objective of this study is to assess the performance of 

a novel denoising methodology that compares two powerful signal noise reduction 

techniques that are “Variational Mode Decomposition (VMD)” and “Graph Signal 

Processing (GSP)”. The integration of GSP, which takes into account spatial dependencies 

in the data, and VMD, known for its effectiveness in noise reduction while preserving 

essential signal features, opens a promising avenue for mitigating noise in EMG signals. 

1.4 Objectives 

The aims of this research encompass a multifaceted exploration of EMG signal 

filtration. First and foremost, this study aims to assess the effectiveness of “Variational 

Mode Decomposition (VMD)” and “Graph Signal Processing (GSP)” in the setting of 

EMG signal handling. The goal is to leverage these techniques to reduce noise and 

interference, thereby improving the overall quality of EMG signals. 

Moreover, a key aspect of this research involves conducting a complete comparative 

analysis. Specifically, intended to evaluate the performance of the projected techniques of 

“Variational Mode Decomposition (VMD)” and “Graph Signal Processing (GSP)” 

methodology in comparison toward the well-known denoising method of “Continuous 

Wavelet Transformation (CWT)”. This evaluation primarily revolve around the 

quantification of performance using essential performance metrics of “Signal to Noise 

Ratio” and “Root Mean Square Error”. Beyond methodological investigation and 

comparative analysis, this research aspires to contribute to the broader ground of EMG 
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signal processing. The ultimate goal is to increase the state of the art in this domain, by a 

particular focus on enhancing the accuracy of clinical diagnoses, facilitating more precise 

biomedical research, and expanding the horizons of applications that rely on the fidelity of 

EMG data. In doing so, the aim is to bridge the gap between current denoising techniques 

and the specific requirements of EMG signal processing, thereby paving the way for more 

reliable and insightful analysis of muscle activity and neuromuscular functions. 

1.5 Overview of the Thesis 

To achieve these research objectives, this thesis is organized into several chapters, 

each dedicated to addressing specific aspects of the proposed approach. The pipeline of 

this research study is outlined by means of the chapter 1 that enlightens the background 

and significance, motivation for the study of this thesis, research objectives and structure 

of thesis. Chapter 2 deliberates literature work as of thorough review of the existing 

literature on EMG signal processing techniques, including Continuous Wavelet 

Transformation, Variational Mode Decomposition and Graph Signal Processing. The 

chapter address the limitations and challenges associated with current methods for EMG 

signal denoising. Chapter 3 elucidate the proposed methodology that integrates Variational 

Mode Decomposition and Graph Signal Processing in comparison with Continuous 

Wavelet Transformation to improve EMG signal quality. The chapter provide insights into 

filtration, processing, segmentation, performance evaluation and classification. In chapter 

4, the results of the denoising techniques are presented, along with a comparative analysis 

of the Variational Mode Decomposition and Graph Signal Processing with Continuous 

Wavelet Transformation. The findings are discussed comprehensively, shedding light on 

their implications for EMG signal processing and their potential impact on biomedical 

applications. The final chapter 5 of conclusion and discussion provide a summary of the 

research findings and their significance that outlines the potential directions for further 

development of EMG signal denoising techniques and their submission in the broader field 

of biomedical engineering and healthcare. 
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CHAPTER 2: LITERATURE REVIEW 

This chapter contains significant sum of work that has already been done on EMG 

Signal Evaluation using different techniques i.e. “continuous wavelet transformation 

(CWT)”, “variational mode decomposition (VMD)” and “graph signal processing (GSP)”. 

The majority of previous research on “Graph Signal Processing” has primarily focused on 

EEG signals, with limited attention given to EMG signals. There is a noticeable scarcity of 

literature applying this technique to EMG signals, however, “variational mode 

decomposition” focused on EMG signals but there is a notable lack of attention given to 

EMG signals when employing VMD with IMFs above 12. To have a better understanding 

of this study, most of the preexisting work has been studied and reviewed to acquire a 

survey on preexisting procedures and their accuracies to get better results. 

EMG signals play an essential part in medical analysis and biomedical performances. 

As for the complexity of EMG signals, influenced by anatomical and physiological muscle 

properties, necessitates progressive methods for recognition, decomposition, processing, 

and classification. In 2011, the study elucidate that the Wavelet Transform emphasizes the 

necessity for sophisticated signal processing methods and draws attention to the 

shortcomings of the nonlinearities that are currently present in surface electromyography 

(EMG) signals [1]. Wavelet analysis is introduced as a more efficient alternative to Fourier 

analysis. The study explores the application of Wavelet Transform (WT) for denoising 

Electromyography (EMG) signals, specifically those acquired from forearm muscles. The 

historical background of EMG development is discussed, emphasizing its clinical 

significance and applications in studying neuromuscular disorders. The study illustrates 

how denoising can retain signal energy while removing noise by contrasting manual 

thresholding with compression techniques for threshold selection. The study concludes 

that, for the analysis of EMG signals, wavelet denoising can be a potent addition to 

conventional filtering methods [1]. In 2015, the study introduced a novel approach to 

denoise surface electromyography (sEMG) signals contaminated by powerline interfering 

noise, baseline wandering, and white Gaussian noise [2]. Unlike existing filters that target 

individual noise types, the proposed method uses “Variational mode decomposition 
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(VMD)” to break the signal into band-limited modes. Each noise category is identified 

within specific modes and removed separately. WGN is suppressed through a threshold 

that adapts to the noise level. The efficacy of this filter is assessed using simulations and 

real world signals, comparing it to traditional filters corresponding infinite impulse 

response, empirical mode decomposition, and ensemble empirical mode decomposition 

etc. The results indicate that the VMD-based filter excels in removing BW and WGN, and 

is effective in reducing PLI noise, particularly at low signal to noise ratios. The denoising 

performance is assessed using such metrics of root mean square error by decrease, 

improvement in signal to noise ratio, and measurement decline in the association 

coefficient (η). The proposed method outperforms other filters, achieving an 18.6 dB, 19.2 

dB, and 8.0 dB improvement in SNR for PLI, BW, and WGN, respectively, at -6 dB SNR 

[2]. Investigational results demonstrate complete noise removal from relaxing conditions, 

with noticeable spikes illustrious in moving conditions. The study discovers the unique 

physiognomies of VMD and establishes the possibility by means of it for EMG signal 

denoising. The proposed filter's efficiency in removing three categories of noise makes it 

suitable for various applications requiring cleaning of EMG signals in preprocessing 

stages, likewise for recognition of different gestures as well as for decomposition of EMG 

signals. The study contributes to advancing the field of EMG signal processing and opens 

avenues for further research and applications. Furthermore, in 2020, the study proposed a 

method of graph signal processing. EEG signals have been the main focus of earlier work 

on “Graph Signal Processing”. The method of graph signal processing employed a step of 

Graph Discrete Fourier Transform by projecting EEG signals data onto the Eigen space of 

the matrix of Laplace for a weighted visibility graph [3]. The weights determined using a 

Gaussian kernel function, enhancing the representation of sudden fluctuations during 

seizures. The methodology involved by mapping time series EEG signals into a Gaussian 

kernel weighted visibility graph, applying GDFT to obtain feature vectors, and using Power 

Spectral Density (PSD) for classification. The classifier based on crisp rule with a 

predefined threshold distinguished between healthy and ictal (epileptic) classes. Simulation 

results on an EEG database demonstrated a remarkable 100% accuracy in detecting 

epileptic seizures [3]. The study emphasized the significance of Graph Signal Processing 

in analyzing irregularly sampled signals, particularly in the context of brain signals that 
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highlighted the superiority of GDFT-based features over traditional entropy-based methods 

for epilepsy detection. The proposed Gaussian weighted visibility graph approach 

outperformed existing methods, showcasing its potential for accurate and efficient seizure 

detection. The study concluded by discussing future avenues, including the extension of 

the proposed method to detect further brain syndromes and its application of brain signals 

as for diffusion modeling. Overall, the studies pointed to improved performance when 

compared to wavelet approaches, highlighting the technique's potential to raise the caliber 

of signal analysis in medical applications. 
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CHAPTER 3: METHODOLOGY 

3.1 Introduction 

To improve the quality of EMG signals, this research employs a distinctive approach 

that integrates Variational Mode Decomposition (VMD) and Graph Signal Processing, 

drawing comparisons with Continuous Wavelet Transformation. The foremost 

consideration of this research study is the introduction of a novel methodology involving 

VMD with Intrinsic Mode Functions (IMFs) 16 and Graph Signal Processing, a 

groundbreaking integration up till now unexplored in the setting of EMG signal analysis. 

The utilization of VMD with IMFs 16 and the Graph Signal Processing, represents an 

innovative paradigm shift in the exploration of time-frequency characteristics inherent in 

EMG signals. This integration serves as a crucial framework for gaining profound insights 

into the quality of the signal.  

 

Figure 3.1: Methodology 

A comprehensive elucidation of the research methodology unfolds in Figure 3.1 by 

encapsulating a systematic series of steps meticulously designed to address the overarching 

objective of improving EMG signal quality by removing noise and interference. 
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3.2 Data Collection 

3.2.1 Subjects 

The dataset comprised a set of 10 subjects aged between 18 and 50, all of whom were 

healthy individuals with no history of neuromuscular disorders or related conditions. None 

of the subjects had undergone any form of surgery. Ethical approval was obtained prior to 

data collection, and all participants were thoroughly informed about the entire procedure. 

Subsequently, each individual willingly agreed and formally provided consent by signing 

a consent form, thereby granting permission for the data collection procedure. 

3.2.2 Data Acquisition Procedure 

Subjects were comfortably seated in a controlled environment to minimize external 

interference. Prior to the experimental session, the skin over the electrode placement sites 

was cleaned to reduce impedance. EMG-USB (OT Bioelettronica) system was employed 

for real-time data acquisition, ensuring precise synchronization with the subjects' 

movements. Subjects were given verbal cues to execute the prescribed movements 

accurately. 

The acquired dataset, characterized by its high sampling rate and comprehensive 

electrode placement, forms the foundation for subsequent analyses aimed at extracting 

meaningful insights into muscle activity patterns during the specified movements. The 

rigorous experimental setup ensures the reliability and validity of the obtained data, 

contributing to the robustness of the study's findings. 

3.2.3 Experimental Setup  

Electromyographic (EMG) data was acquired using EMG-USB (OT Bioelettronica), 

employing a high sampling rate of 2048 Hz and 11 pairs of differential electrodes, with 8 

pairs strategically located at an equal space below the radiohumeral joint. Among these, 1 

pair was positioned at the “biceps brachii muscle”, whereas 2 pairs were situated on the 

“flexor digitorum” and “extensor digitorum muscles”. The selection of electrode placement 
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aimed to capture comprehensive muscle activity associated with the performed 

movements. Subjects were instructed to perform six distinct movements, each designed to 

elicit specific muscle activations. All the six movements included, “Abduction of all 

fingers (AF)”, “Flexion of all fingers (FF)”, “Wrist extension (WE)”, “Wrist radial 

deviation (WRD)”, “Wrist ulnar deviation (WUD)” and “Wrist extension with a closed 

hand (WE)”. Each movement was repeated four times, and each repetition lasted for a 

standardized duration of five seconds. A three-second rest period separated consecutive 

repetitions. This design was implemented to ensure sufficient data points for analysis while 

allowing for patient recovery and minimizing fatigue effects. 

 

Figure 3.2: EMG-USB (OT Bioelettronica) 

3.3 Filtration 

Filtering of raw EMG signals are imperative for multiple reasons, encompassing 

signal quality, interpretation, and analysis. The genesis of EMG signals lies in the electrical 

activity of muscles, a process susceptible to diverse physiological and environmental 

factors. The application of filtering is instrumental in augmenting the accuracy and 

dependability of these signals, preparing them for subsequent analysis and interpretation. 
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Figure 3.3: Filtration Process 

EMG signals are inherently vulnerable to various sources of interference, including 

electrical disturbances, movement artifacts, and ambient electromagnetic signals. Filtering 

plays a crucial role in mitigating these unwanted components, thereby enhancing the SNR 

ratio. This improvement facilitates the identification and analysis of authentic muscle 

activity. Given that EMG signals encompass a broad spectrum of frequencies, including 

those from muscle contractions and noise, tailored filtering becomes essential. Depending 

on the specific context, isolating frequency bands relevant to muscle action becomes 

necessary. Filtering enables the concentration on the pertinent frequency range, thereby 

refining the accuracy of interpretation and feature extraction. During muscle contractions, 

sudden movements or changes in electrode placement can induce abrupt changes in the 

signal, leading to artifacts that obscure the underlying EMG activity. Filtering serves as a 

valuable tool in eliminating these artifacts, rendering the signal more consistent and 

interpretable. EMG signals typically contain frequency components ranging from a few 

hertz to several hundred hertz, due to which filtering of specific frequencies required. 
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Figure 3.4: Raw EMG Signal 

EMG signals encompass undesirable physiological elements, including cardiac 

activity and artifacts associated with movement. The application of filtering is instrumental 

in eliminating these components, thereby isolating muscle-specific activity. Through the 

reduction of noise and isolation of pertinent frequency components, filtered EMG signals 

become more accessible for interpretation and analysis. This assumes particular 

significance in clinical contexts where precise diagnosis and treatment decisions hinge on 

the quality of EMG data. Here Fig. 3.4 illustrates the unprocessed electromyography 

(EMG) signal in its raw form. EMG signals typically contain frequency components 

ranging from a few hertz to several hundred hertz. Bandpass filtering is used to separate 

the concerned frequency bands, which parallels to the distinctive frequency assortment of 

muscle activity. The bandpass filter attenuates frequencies outside this range, including 

movement artifacts by low frequency and electrical noise by high-frequency. In addition 

to the muscle activity frequency array, EMG signals can also be contaminated by 

interference from powerline noise with 50 Hz and its harmonics. Notch filtering is 

employed to selectively remove these specific frequency components, reducing powerline 

interference and improving the signal quality. 
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Figure 3.5: Notch Filtered Signal 

 

Figure 3.6: Butterworth Bandpass Filtered Signal 

The EMG signals underwent a filtration process, commencing with the application 

of a 50Hz Notch filter to eliminate powerline interference from the raw EMG data, as 

depicted in Fig.3.5. 
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Figure 3.7: Magnitude response of Notch Filter 

 

Figure 3.8: Magnitude response of Butterworth Bandpass Filter 

Afterwards, a Butterworth filter within the 10 Hz of cutoff frequency as of high pass 

and of 500 Hz applied as of for low pass within the filter, displayed in Fig.3.6. The 

magnitude response for notch filter is shown in Fig.3.7. Subsequently, a Butterworth filter, 

characterized by a linear phase response in the passband, was employed to eliminate 
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undesirable low and high frequencies. The resulting signal exhibited a smooth roll-off, 

representing a good compromise between steepness and smoothness. Specifically, a 4th 

order Butterworth filter was utilized, featuring a high pass and a low pass as illustrated its 

magnitude response in Fig.3.8.  

EMG signals encompass undesirable physiological elements, including cardiac 

activity and artifacts associated with movement. The application of filtering is instrumental 

in eliminating these components, thereby isolating muscle-specific activity. Through the 

reduction of noise and isolation of pertinent frequency components, filtered EMG signals 

become more accessible for interpretation and analysis. This assumes particular 

significance in clinical contexts where precise diagnosis and treatment decisions hinge on 

the quality of EMG data.  

 

Figure 3.9: Original Raw EMG Signal and Filtered Signals 

Fig. 3.9 presents a visual representation of the raw signal alongside the filtered signal 

subsequent to the presentation of the Notch filter and Butterworth filter. This comparative 
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display serves to elucidate the efficacy of the filtration process in attenuating unwanted 

frequencies and enhancing the overall quality of the EMG signal. 

Numerous analyses and applications necessitate the drawing out of specific features 

from EMG signals as of amplitude, frequency, and duration of muscle contractions. 

Filtering contributes to refining the accuracy of feature extraction algorithms by providing 

input data that is cleaner and more dependable. Consequently, the removal of artifacts and 

noise from EMG data is imperative for precise quantitative signal processing, given the 

widespread use of EMG signals in diverse fields, including biomechanics, sports science, 

rehabilitation, and neurology. In these applications, the indispensability of accurate and 

filtered EMG signals is underscored, as they serve as foundational elements for making 

well-informed decisions and drawing valid conclusions. 

3.4 Denoising Techniques 

The goal of the study is to integrate “Variational Mode Decomposition (VMD)” and 

“Graph Signal Processing (GSP)”, drawing comparisons with “Continuous Wavelet 

Transformation”, to augment the overall quality of EMG signals by decreasing noise and 

interference. The primary focus lies in quantifying the efficacy of these approaches by 

evaluating of as “Signal-to-Noise Ratio” and “Root Mean Square Error”. Improving the 

quality of EMG signals is pertinent to addressing practical challenges and devising 

effective solutions, with potential implications in clinical diagnostics, rehabilitation, and 

neuromuscular research endeavors. 

3.4.1 Variational Mode Decomposition (VMD) 

The Variational Mode Decomposition (VMD) method implemented for efficient 

signal denoising. Illustrated in the accompanying Fig.3.10 are the procedural steps 

involved in the proposed VMD-based filtering approach. Initially, employing VMD, the 

raw EMG signal, denoted as f(t), undergoes decomposition into K individual Intrinsic 

Mode Functions (IMFs), represented as uk(t). The determination of the appropriate quantity 

of IMFs is contingent upon the complexity of the signal, with a reduction in the number of 

IMFs potentially leading to a decrease in the signal's dimensionality. However, an 
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excessive allocation of IMFs may result in overfitting of noise and artifacts, thereby 

yielding inaccurate decomposition outcomes. Each IMF is characterized by a bandwidth 

constrained by its respective center frequency, denoted as ωk.  Subsequently, specific types 

of noise are identified within distinct IMFs. The number of IMFs selected can be influenced 

by the signal's SNR. A higher SNR may necessitate a smaller number of IMFs, whereas a 

lower SNR may require a greater number of IMFs to ensure a detailed representation. This 

decomposition process, which focuses on center frequencies, renders VMD an effective 

technique for noise reduction and feature extraction in various applications such as motion 

classification, fatigue evaluation, and other EMG signal processing tasks. 

 

Figure 3.10: Steps of Variational Mode Decomposition (VMD) process 

Variational Mode Decomposition (VMD) method proves to be highly efficient in 

segregating harmonic signals within a close frequency range. Unlike alternative 

techniques, it remains unaffected by the sampling frequency, thereby mitigating the 

occurrence of mode mixing. VMD serves as a comprehensive version of the Wiener filter, 

partitioning the signal into numerous adaptive bands. The operational procedure of VMD 

is delineated in Figure 3.10. Through regular updates, the model estimate, coupled with its 

corresponding center frequency, undergoes refinement, resulting in a dynamic model 

estimation [4]. Subsequent to each approximation, the model is transformed back keen on 



18 

 

to the time domain by using the inverse Fourier transform. VMD operates as a non-

recursive signal decomposition method, breaking down an input signal into a collection of 

modes, distinct sub-signals commonly stated as Intrinsic Mode Functions (IMFs), as 

expressed by the following equation [4]: 

                                                                  ∑ μ𝐾
𝑘=1

k   = f                                                   (3.1) 

"f " represents the original signal, comprising sub-signals denoted as "μk ", where "k" 

indicates the total number of modes. The expression ∑ μ𝐾
𝑘=1

k signifies the summation over 

all modes. Intrinsic Mode Functions are characterized as amplitude-modulated-frequency-

modulated (AM-FM) signals, expressed as follows [5]:   

                                                    μk (t) = ak (t) • cos (φk (t))                                           (3.2)  

Where “ak(t)" represents the instantaneous amplitude, while "φk(t)"  denotes the 

instantaneous phase. It is notable that both “ak(t)” and the instantaneous frequency “wk(t ) 

= φk′ (t)” (expressed as the derivative of φk(t)) exhibit considerably slower variations 

compared to the phase φk(t)".  

The resolution of VMD is to decompose an input signal into a predefined number of 

sub modes, denoted as μk, possessing distinct sparsity characteristics while accurately 

replicating the input signal. In this context, the sparsity attribute of each sub mode is 

determined by its frequency domain bandwidth. Essentially, it is hypothesized that each 

mode "k" is primarily focused around a central pulsation "wk ", a charateristic determined 

alongside with the breakdown process. 

The proposed approach involves generating the associated analytic signal for each 

mode uk, to consider the bandwidth of a mode, using the Hilbert transform to get a unilateral 

frequency spectrum. Subsequently, the frequency spectrum of each mode is shifted to the 

baseband by adjusting it with an exponential tuned to the projected center frequency. The 

expected bandwidth is then determined through the Gaussian smoothness of the 

demodulated signal, quantified by the squared L2-norm of the gradient. The resultant 

controlled Variational problem is outlined as follows [10]: Where { μk}:= { μ1, . . . . , μK} and 
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{ωk} := { ω1, . . . . , ωK} serve as concise representations for all modes set and their respective 

center frequencies. The symbol ∂t denotes the gradient function, while δ(t) represents the 

Dirac distribution. 

         min {μk},{ ωk} { ∑ .𝑘  ‖
𝑚
𝑚
𝑚

 ∂t [( δ(t) +
𝑗

 𝜋𝑡
) * μk(t) ] 𝑒−𝑗𝜔k𝑡 ‖

2

2
  }    (3.3) 

                                                                                                s.t.        ∑ μ𝐾
𝑘=1 k

   = f 

However, the expression “(δ(t) + j/(πt)) * uk(t)” is recognized as the impulse response 

of the Hilbert transform, which is applicable to the mode u(t) and the original signal f(t). 

The Hilbert transform facilitates the conversion of the signal into the frequency domain, 

but to retain it in the time domain, it is convolved with the signal (it is noted that 

multiplication in the frequency domain match up to convolution in the time domain) [4]. 

This transformation is aimed at yielding a frequency spectrum containing solely positive 

frequencies. The re-establishment restraint problem incorporates a quadratic penalty 

function and the Lagrange multiplier operator. The quadratic penalty function serves to 

convert the constrained optimization problem into an unconstrained optimization problem, 

ensuring precise reconstruction. Meanwhile, through the application of the Lagrange 

multiplier, the inhibited variational problem transitions into an unrestricted one. This 

process is encapsulated by the augmented Lagrangian method, as described below [6]. 

As "α" signifies the balancing parameter, while "λ" indicates the Lagrangian 

multiplier. The optimization problem in its entirety is addressed utilizing the alternate 

direction method of multipliers (ADMM) [4]. This approach involves iteratively solving a 

series of sub-optimization problems. Leveraging the Parseval/Plancherel Fourier isometry 

within the L2 norm, this problem can be resolved in the frequency domain by transitioning 

from the time domain [10]. The update process for each estimated mode "uk" and its 

corresponding center frequency "ωk" proceeds as follows: 

(3.4) 



20 

 

                                           ûk 
n+1 (ω) = 

𝑓̂̂   (ω)− ∑ 𝑢𝑖(ω)𝑖≠𝑘  +
𝜆̂(ω)

2
  

1 + 2𝛼(ω− ω𝑘)2
                                         (3.5) 

                                                ωk 
n+1 =     

∫ ω|
𝑎 𝑢𝑘(ω)  

𝑖

∞
0

|
2
𝑛
dω 

∫ |
𝑎 𝑢𝑘(ω)  

𝑖
|
2
4

∞
0 dω

                                           (3.6) 

In this context, "n" represents the iterative numbers, and the Lagrange algorithm's 

operator is λ. Based on the mode iteration "uk" and center frequency "ωk," the ADMM 

algorithm is employed to directly optimize in the frequency domain following Fourier 

transform [11]. To conclude the iterations, it becomes imperative to establish a specific 

criterion. This criterion is deemed fulfilled when the following equation attains a 

predetermined level of discrimination accuracy. Upon satisfying this condition, we can 

obtain K narrow-band Intrinsic Mode Function (IMF) components. 

                                              
∑  ‖

𝑖
𝑢 
𝑛+1
𝑘   

  −  𝑢 
𝑛
𝑘   

‖
2
𝑚𝑘 

 𝑢 
𝑛
  𝑘
‖
2
2

  < ε                                  (3.7) 

To create a revised approximation of a noisy signal, the coefficients of the initial 

Intrinsic Mode Functions (IMFs) undergo random reformation in each subsequent 

approximation. The resultant reorganized IMFs generated are then integrated with the 

decomposed IMFs that remain unchanged to form the refined approximation. This iterative 

procedure continues until the desired number of approximations are achieved. 

Each mode represents a distinct component or pattern within the Electromyography 

(EMG) signal. These patterns, as illustrated in the Figure 3.11, can convey relevant 

information pertaining to muscle activity or irrelevant information such as noise or 

artifacts. These modes undergo iterative refinement by updating their parameters in each 

iteration [12]. This refinement process comprises two steps: initially, in the frequency 

domain, the modes are adjusted by modifying their central frequencies based on the signal's 

spectral characteristics. Subsequently, in the time domain, the modes are further refined to 

minimize interference between them. This refinement process is instrumental in analyzing 

and comprehending the signal's underlying frequency content and dynamics, which is 
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valuable for various applications including signal processing, feature extraction, and 

pattern recognition [22]. 

 

Figure 3.11: Decomposition of EMG signal using VMD 

Moreover, IMF components are extracted with narrow bands based on the signal's 

frequency domain characteristics. An efficient and adaptable segmentation of the 

frequency band is executed to effectively prevent mode aliasing. Each IMF is updated with 

every iteration, thereby iteratively minimizing noise, as these modes endure iterative 

refinement by updating their parameters in each iteration. This study aims to highlight the 

distinct advantages of VMD, particularly its utilization of iterative processes within the 

intrinsic mode functions (IMFs), leading to more effective noise reduction compared to the 

conventional method of Continuous Wavelet Transform (CWT). Unlike the traditional 

process of this CWT, VMD possesses this intrinsic property of iterative refinement of 

IMFs. 
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3.4.2 Graph Signal Processing (GSP) 

A developing focus that expands on conventional signal processing methods is called 

graph signal processing. Graph Signal Processing (GSP) examines signals with irregular 

domains that are present on graph nodes rather than regular intervals like grids [3]. 

In various practical scenarios, the domain of signals does not conform to equidistant 

time intervals or regular spatial grids. Instead, the sensing domain of data may be irregular 

and, in certain instances, unrelated to time or space. In order to efficiently encode the 

structural information within such data, novel tools are under development within the field 

of Graph Signal Processing (GSP). GSP focuses on analyzing signals whose domains are 

irregular and are situated on the nodes of a graph, as opposed to being distributed along 

regular intervals like grids. In these belongings, the data field is defined by a graph, 

comprising vertices (nodes) where there are defined data values, and edges that connects 

them, are their relationships [3]. Graphs are leveraged to exploit the inherent relationships 

amongst the data centered on its pertinent properties. The handling of signals whose 

domains are determined by graphs has directed to the appearance of graph data processing 

as a significant field within big data signal dealing out nowadays. 

Graph Signal Processing (GSP) entails the application of signal treating techniques 

on graphs. Unlike other classical signal processing, which operates on signals arranged 

along a defined axis, graph signals lack such ordering. While data often exhibit structure, 

it is imperative to consider the underlying structure when processing graph signals. Graphs 

serve as effective tools for this purpose, enabling the representation of structured data 

through graph signals. This representation encapsulates both the structural aspects (edges) 

and the data values at vertices, offering a concise format for encoding structural 

information within the data [23]. 

The extension of classical signal processing methodologies to accommodate graph 

signals can greatly enhance the analysis of such data. The applications of graph signal 

processing span various domains including biomedical research, social network analysis, 

and transportation, among others. 
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Graph Signal Processing (GSP) constitutes a computational framework employed to 

analyze signals that are defined on graphs. Within the realm of biomedical signal 

processing, GSP presents a promising approach for addressing issues associated with noise 

reduction in electromyography (EMG) signals. EMG signals are depicted as graphs, where 

electrodes are mapped to nodes, and connections between electrodes signify signal 

correlations [24]. The process of filtering facilitates the transformation of raw EMG data 

into graph representations. 

Fundamental Concept of Graph Signal 

A graph G can be represented as a set comprising vertices v and edges E, linking these 

vertices, that is signified as, 

                                                       G = {v, E}                                                      (3.8) 

In this representation, vertices are depicted as points (nodes), whereas boundaries as 

of edges are depicted as lines (connections) between these nodes. An edge (v) among 

vertices i and j implies that (i, j) ∈ v. Consider each node i to have a signal, g(i), which yields 

a real number as output. 

                                                     g (i) : v → ℝ                                                      (3.9) 

In the meantime there are N vertices, there exist N distinct values for i within g (i). 

The graph signal can be defined as the collection of the these N distinct signals as follows. 

                                             G = [g(1), g(2),.….,g(N)]T                                       (3.10) 

Graphs can exist in two forms: undirected and directed [23]. In an undirected graphs, 

it is assumed that an edge connecting vertex i to vertex j also connects vertex i to vertex j. 

Thus, if (i, j) ∈ v, then (j, i) ∈ v. However, this bidirectional belongings does not generally 

hold for directed graphs. Undirected graphs can be regarded as a distinct case of directed 

graphs. 

Given a set of vertices and edges, a graph can be signified by an adjacency matrix, 

denoted as A. This matrix describes the connectivity between vertices, with A being an N 
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× N matrix for N vertices. Elements Aij of the adjacency matrix assume values in {0, 1} i.e. 

Aij ∈ {0, 1}, where Aij = 0 signifies no connection between vertices i and j, and Aij = 1 

indicates a connection. 

                                               Aij = {
1     𝑖𝑓 (𝑖, 𝑗)  ∈   𝑣 

0     𝑖𝑓 (𝑖, 𝑗)  ∉   𝑣
                                      (3.11) 

As for an undirected graphs, the adjacency matrix is symmetric, i.e. A = AT. 

A graph is uniquely characterized by its adjacency matrix for the given set of nodes. 

Altering the numbering of vertices leads to corresponding adjustments in the adjacency 

matrix. Though, such renumbering does not alter the graph itself, as these graphs are said 

to be isomorphic. The relationship between the adjacency matrices of the original and 

renumbered graphs is expressed using a permutation matrix P as A2 = P A1P
T. 

Edges in graphs can possess weights. When weights are assigned to edges, a 

weighted graph is formed. The set of weights, denoted as W, corresponds to the set of edges 

v. A weighted graph encompasses a broader spectrum than an unweighted graph. Typically, 

edge weights are assumed to be nonnegative real numbers. By associating weight 0 with 

non-existent edges, the graph can be characterized using a weight matrix W similar to the 

adjacency matrix A. A nonzero element Wij describes an edge between vertices i and j 

along with the associated weight, whereas Wij = 0 indicates the absence of an edge between 

vertices i and j [23]. 

On behalf of undirected graphs, the weighting matrix is symmetric, i.e. W = WT. On 

the other hand, for directed graphs, this symmetry does not necessarily hold. 

Graph Laplacian 

The graph Laplacian plays a pivotal role in graph signal processing as it provides the 

foundation for frequency domain analysis of graph signals through its eigenvectors and 

eigenvalues [3]. The graph Laplacian matrix, denoted as L, is given by: 

                                                          L = D – W                                                 (3.12)  
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Where, W represents the weight matrix and D signifies the degree matrix of the graph 

The weight matrix stores the different weights associated with edges, allowing for 

varying edge weights within the graph. 

The degree matrix (D) is a matrix where each diagonal element signifies the total 

edge weights connected to a particular node [12]. Specifically, the ith diagonal element, 

denoted as di, weight sums of all edges connected to the ith vertex. A degree matrix of an 

undirected graph, denoted by D, is a diagonal matrix where the diagonal elements Dij are 

equal to the sum of weights of all edges connected with the vertex j. 

                                                               Dij = ∑ 𝑊𝑁
𝑗=1 ij                                                                        (3.13) 

Meanwhile for an unweighted and undirected graph, the value of Dij is equals the 

number of edges connected to the jth vertex.  

For undirected graphs, the Laplacian matrix is symmetric i.e. L = LT, with non-

positive off-diagonal entries and rows summing up to zero.  

The normalized Laplacian, denoted as Lnorm , is well-defined as:  

                                                       Lnorm = D-1/2 (D - W) D-1/2                                                         (3.14) 

Eigenvectors and Eigenvalues of Graph Laplacian 

Furthermore, the eigenvectors and eigenvalues of the Graph Laplacian can be 

obtained by the following equation: 

                                                              ( A – λI ) v = 0                                                (3.15) 

Here, A represents the matrix of interest, λ denotes the eigenvalue, I stands as the 

identity matrix, and v remains the zero vector. The solutions for λ yield the eigenvalues 

(λk), while solutions for v correspond to the eigenvectors (uk, where coefficient of the 

eigenvectors are k = 0, 1. . . N − 1). The Graph Laplacian, L, possesses a complete set of 
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orthonormal eigenvectors, with eigenvalues typically sorted in increasing order that offers 

the foundation for frequency domain analysis of signals in the weighted graphs. 

Eigen values: 

                                                        λk = λ0 < λ1 ≤ . . . ≤ λN-1                                                              (3.16) 

Eigen vectors: 

                                                          uk = u0, u1, . . .  ,uN-1                                                                    (3.17) 

Eigenvectors associated with smaller eigenvalues exhibit less rapid variation along 

the edges. 

Graph Wavelet Transform 

Graph signals can be represented spectrally using either the adjacency matrix or 

Laplacian frequency decomposition. By leveraging the eigenvalues and eigenvectors of the 

graph Laplacian in conjunction with the graph signal g, the graph wavelet transform can 

be formulated as follows [23]: 

                                                               X = U -1 g                                                       (3.18) 

Wherever U is a matrix containing the eigenvectors of the adjacency matrix in its 

columns. The elements of vector X are denoted as X(k) for k = 0 , 1 , . . . , N−1. When U -1 

= U, the element X(k) serves as a estimate of the analyzed signal onto the kth eigenvector, 

acting as a basis function for decomposing graph signals, can be defined as: 

                                                     X(k) = ∑ 𝑔(𝑖)𝑢𝑁−1
𝑖=0 k(n)                                            (3.19) 

Thus, the graph wavelet transform can be interpreted as a decomposition of the signal 

onto the set of eigenvectors serving as orthonormal basis functions. The inverse graph 

wavelet transform is given by: 
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                                                                 g = U X                                                        (3.20) 

this can be expressed as: 

                                                     g(i) = ∑ 𝑋(𝑘)𝑢𝑁−1
𝑘=𝑜 k(n)                                            (3.21) 

This inverse wavelet signifies a development of the original graph signal g in terms 

of eigenvectors and eigenvalues. 

Visibility Graph (VG) 

An algorithm known as the visibility algorithm is employed to convert time series 

data into graphs. This method establishes connections between data points based on their 

visibility, generating a graph that retains characteristics of the original series. Regular 

series yield regular graphs whereas random series produces random graphs, in addition 

fractal series yield scale-free networks [3]. 

EMG time series data is transformed into a visibility graph, where a graph comprised 

by a set of nodes interconnected by edges. Each data point in the EMG time series is treated 

as an vertex, and edges between nodes are determined using the visibility graph 

methodology. 

In the visibility graph (VG), each data point parallels to a node in the graph. An edge 

exists between nodes xi and xj if there are no other nodes between them in terms of 

visibility. Specifically, an edge can be present between time instants ti and tj with data 

points xi and xj, based on the following criterion for the intermediate node xk at tk: 

                                    X(tk) < X(ti) + (X(tj) - X(ti)) 
𝑡𝑘−𝑡𝑖

𝑡𝑗−𝑡𝑘
 ; i< k<j                                (3.22) 

This proposed technique is implemented using MATLAB. The Figure 3.12 signifies 

the result of the visibility graph of the EMG signal of data points from the dataset. The 

visibility graph is calculated based on the first 20 elements of the segmented signal and 

their corresponding time indices. The Visibility Graph (VG) illustrates connections among 
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nodes (data points) within the signal. Each node typically corresponds to a specific data 

point in temporal instance. The x-axis signifies the position of data points along the time 

series. The y-axis signifies the values of the time series. 

 

Figure 3.12: Visibility Graph of EMG Signal 

The visibility graph in the Fig. 3.12 that is extracted from a time series EMG dataset 

exhibits the following characteristics[23]: 

- Connected: Each node perceives at least its nearest neighbors (to the left and right). 

- Undirected: The algorithm is structured in a way that does not define directionality 

in the links. 

- Unweighted: Weighting is necessary when the signal is attenuated, as is the case 

with EMG signal filtering, it is not attenuated so not required here. 

- Additionally, the EMG signal is non-periodic where Boundary periodicity=0, 

further obviating the need for weights. 
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This analysis reveal patterns of connectivity and interactions within the EMG signal 

by representing graph from the time series signal. 

3.4.3 Continuous Wavelet Transformation (CWT) 

In comparison with VMD and GSP the study delve into the methodology of applying 

Continuous Wavelet Transformation (CWT) on electromyography (EMG) signals. CWT 

is a powerful tool for time-frequency analysis, allowing the investigation of signal 

characteristics across for together in time and frequency domains simultaneously. The 

application of CWT on EMG signals provides insights into the temporal and spectral 

features of muscle activity, offering valuable information for various applications 

including gesture recognition, prosthetic control, and neuromuscular disorder diagnosis. 

Continuous Wavelet Transformation (CWT) is a mathematical tool used for 

analyzing non-stationary signals. Unlike Fourier Transform, which represents signals 

solely in the frequency domain, CWT decomposes signals into time-frequency 

representations, enabling the analysis of signal dynamics over time and across different 

frequency components simultaneously. The CWT of a signal is obtained by convolving the 

signal with a scaled and translated version of a mother wavelet function [1]. 

Choosing an appropriate mother wavelet is crucial for CWT analysis as it determines 

the resolution and sensitivity of the time-frequency representation. In the context of EMG 

signal analysis, commonly used mother wavelets include Morlet, Daubechies, and Symlets. 

The choice of the mother wavelet depends on the specific characteristics of the EMG signal 

under investigation, such as its frequency content, temporal dynamics, and noise 

characteristics [28]. 

Before applying CWT, preprocessing steps are often employed to enhance the quality 

of EMG signals and mitigate potential artifacts. Preprocessing techniques include baseline 

removal, filtering (e.g., bandpass filtering to remove noise and motion artifacts), and 

normalization to account for variations in signal amplitude across different trials or 

subjects. Proper preprocessing ensures that the EMG signals are appropriately prepared for 

CWT analysis, facilitating accurate interpretation of the results. 
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Though, careful deliberation of signal preprocessing, wavelet selection, and result 

interpretation is essential to ensure the reliability and validity of CWT EMG analyses. 

Continuous 1-D Wavelet Transform: 

The implementation of CWT involves convolving the preprocessed EMG signals 

with the chosen mother wavelet at multiple scales and time points. This results in a time-

frequency representation of the EMG signals, with each point in the CWT matrix 

corresponding to the energy or power of the signal at a specific time and frequency. The 

CWT coefficients can be visualized using spectrograms or contour plots, providing insights 

into the frequency content and temporal dynamics of muscle activity. 

 

Figure 3.13: Magnitude Scalogram 

The application of Continuous Wavelet Transformation (CWT) on 

electromyography (EMG) signals, utilizing MATLAB as the primary tool for analysis. The 

process involves signal preprocessing, CWT computation, denoising using soft 

thresholding, segment extraction, and evaluation of the denoised signal's quality. 

The EMG signals loaded first from the obtained EMG dataset. The signal then 

extracted and plotted to visualize its temporal dynamics and amplitude variations over time. 



31 

 

The Continuous 1-D Wavelet Transform (CWT) computed on the EMG signal using inbuilt 

cwt function. This transformation generated a time-frequency representation of the signal, 

highlighting its frequency content and temporal evolution. The resulting scalogram in 

Fig.3.13 provides insights into how signal energy is distributed across different frequency 

bands at various time points. 

Denoising using Soft Thresholding: 

Soft thresholding is a method commonly used in signal processing and particularly 

in denoising applications. It is a form of shrinkage operation applied to the coefficients 

obtained from a signal's transformation, such as the wavelet transform. The goal of soft 

thresholding is to suppress small coefficients while preserving the significant ones, 

effectively reducing noise in the signal. The process of soft thresholding involves two main 

steps: the first is thresholding in which each coefficient obtained from the signal 

transformation is compared against a predetermined threshold value. And the other one is 

Shrinkage where coefficients with magnitudes smaller than the threshold are set to zero, 

while those larger than the threshold are adjusted by subtracting or adding the threshold 

value, depending on their sign. 

To diminish noise and enhance the signal-to-noise ratio (SNR), the soft thresholding 

applied to the wavelet coefficients obtained from the CWT. A threshold value is 

determined based on a fraction of the maximum coefficient magnitude, and coefficients 

below this threshold are suppressed. The denoised signal is then reconstructed using the 

inverse CWT (icwt) function. Soft thresholding is effective in denoising signals because it 

exploits the assumption that the noise in the signal typically consists of small amplitude 

fluctuations, while the signal contains larger amplitude components itself. By selectively 

removing small coefficients, soft thresholding can effectively suppress noise while 

preserving the essential features of the signal. However, choosing an appropriate threshold 

value is important, as it directly influences the balance between noise reduction and signal 

distortion. Common methods for selecting the threshold include using a fixed fraction of 

the maximum coefficient magnitude or employing statistical techniques. 
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Mathematically, the soft thresholding operation for a coefficient x with threshold λ 

is given by: 

                            (3.22) 

Here, λ signifies the threshold value, and ∣x∣ means the absolute value of the 

coefficient. 

At that point, soft thresholding applied to the wavelet coefficients wt. The threshold 

value calculated as 10% of the maximum absolute value of all wavelet coefficients. Then, 

soft thresholding is performed element-wise on the wavelet coefficients using the following 

formula: 

                     soft_thresh(x,λ)=sign(x)⋅max(∣x∣−λ,0)                                          (3.23) 

Wherever x represents each wavelet coefficient, λ is the threshold value, and sign(x) 

returns the sign of x. lastly, the denoised signal is reconstructed from the denoised wavelet 

coefficients “wt_denoised” using MATLAB's icwt function. This reconstructed signal, 

stored in the variable signal_denoised, represents the original EMG signal with noise 

reduced through soft thresholding of the wavelet coefficients. 

In short, soft thresholding in this technique here involves calculating a threshold 

based on a fraction of the maximum absolute wavelet coefficient magnitude and then 

applying soft thresholding to suppress small coefficients while preserving significant ones. 

The denoised signal is reconstructed from the modified wavelet coefficients for further 

analysis. 

Afterwards a 20-second segment of the EMG signal is used for further analysis. This 

segment is visualized along with the corresponding denoised signal to observe the effects. 

The EMG signal segment envisioned the corresponding denoised signal to observe the 

effects of noise reduction and signal fidelity preservation. 
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3.5 Performance Evaluation 

To assess the effectiveness of the implemented techniques, two widely used metrics: 

“signal to noise ratio” and “root mean square error” were utilized. These metrics are 

extensively employed in evaluating the effectiveness of signal filtering techniques. 

3.5.1 Signal-to-noise Ratio (SNR) 

The “Signal-to-Noise Ratio” plays a vital role in assessing the effectiveness of the 

projected method by quantifying the quality of a signal comparative to the background 

noise existing in the signal. A higher SNR indicates a stronger, clearer signal comparative 

to the noise, thereby facilitating more accurate and reliable signal detection and 

interpretation. SNR holds significance across various domains including signal processing, 

sensor networks and telecommunications by achieving a high SNR that is fundamental for 

ensuring the robustness and efficacy of the system. Mathematically, the SNR represents 

the proportion of the influence of the signal of interest to the influence of the background 

noise. 

                                                         SNR=  
𝑃𝑜𝑤𝑒𝑟 𝑜𝑓̂̂ 𝑆𝑖𝑔𝑛𝑎𝑙

𝑃𝑜𝑤𝑒𝑟 𝑜𝑓̂̂ 𝑁𝑜𝑖𝑠𝑒
                                           (3.24) 

SNR is often expressed in decibels (dB) and computed using the formula: 

                                                          SNR dB =10• log 10 (SNR)                                    (3.25)  

To ensure an equitable comparison for this study, the signal-to-noise ratio was 

computed for the original raw signal and filtered denoised signal as follows: 

                                                  SNR = 10 •  log10
∑(𝑓̂̂ (𝑡) )2

∑  (𝑓̂̂̂ (𝑡) − 𝑓̂̂ (𝑡) )
2
 
                              (3.26) 

Here f (t) denotes the original signal and 𝑓(𝑡) represent the denoised signal. 

In practical terms, attaining a high SNR is preferable, as it facilitates improved signal 

quality and simplifies the detection of patterns or features within the signal. A greater SNR 
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value signifies a stronger signal compared to the noise, resulting in a clearer and more 

dependable portrayal of the underlying information within the signal. Conversely, a lower 

SNR value implies a greater dominance of noise, creating it challenging to precisely extract 

significant information from the signal.  

3.5.2 Root Mean Square Error (RMSE) 

Root Mean Square Error utilized as a performance evaluation metric to measure the 

accuracy of processing technique. This metric holds significant importance in measuring 

the average magnitude of differences between observed values (original signal) and 

predicted values (denoised signal) within a dataset. Its computation involves deriving the 

mean square root of the squared discrepancies between estimates and observations. 

Generally, lower RMSE values are indicative of better model performance, while higher 

values suggest a greater degree of prediction error. Within signal processing, RMSE 

assumes a pivotal role in assessing the efficacy of signal reconstruction, noise mitigation, 

and predictive modeling endeavors. Consequently, it aids in directing the refinement of 

algorithms and techniques to attain precise and dependable outcomes. A lower RMSE 

signifies improved noise reduction while preserving essential signal attributes. 

Mathematically, “Root Mean Squared Error (RMSE)” was computed for both the 

original raw signal and filtered denoised signal as follows: 

                                              RMSE=  √
1

𝐿
Σ(𝑓 (𝑡) − 𝑓 (𝑡) )

2
 )                                   (3.27) 

Where f(t) signifies the original signal and 𝑓(𝑡) represents the denoised signal and L 

denotes the length of the signal.   

A smaller RMSE value signifies closer agreement between observed and predicted 

values, indicating superior model performance. The RMSE facilitates the assessment of the 

discrepancy amongst the denoised signal and the original noisy signal. It offers a single 

numerical measure that captures the average magnitude of disparities amongst processed 

and actual values, thus serving as a succinct and informative indicator of processing 
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technique performance. Accuracy holds paramount importance in signal processing, and 

RMSE shows a vital part in evaluating the alignment between the processed and true 

signals. It offers insights into the extent to which the processing algorithm accurately 

captures the inherent features of the signal, encompassing parameters such as amplitude, 

frequency, and timing. RMSE aids in quantifying the efficiency of the processing method 

in attenuating the noise and artifacts.  
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CHAPTER 4: EXPERIMENTAL OUTPUTS 

4.1 Denoising Results 

The sEMG data collected from 10 subjects using the EMG-USB (OT Bioelettronica) 

underwent initial notch filtering at 50Hz, followed by bandpass filtering using butterworth 

filter with cutoff frequencies of 10Hz and 500Hz, as Fig.4.1 displays the frequency 

spectrum of original and butterworth bandpass filter. Subsequently denoising techniques 

were applied, specifically “Continuous Wavelet Transform (CWT)”, “Variational Mode 

Decomposition (VMD)”, and “Graph Signal Processing (GSP)”. The application of these 

techniques resulted in significant reduction of noise and artifact minimization while 

preserving the innovative characteristics of the signal. 

 

Figure 4.1: Frequency Spectrum of Original and Butterworth Bandpass Filter 

In Fig. 4.2, an evaluation amid the real EMG signal and the denoised signal using the 

CWT technique is presented. Similarly, Fig. 4.3 displays the assessment among the original 

signal and the denoised signal obtained through the VMD technique, while Figure 4.4 

depicts the comparison for the GSP technique. The application of these denoising methods 

yielded reliable results. 
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Figure 4.2: Reconstructed Signal for CWT 

 

Figure 4.3: Reconstructed Signal for VMD 

From these figures, it is evident that the denoised signals closely resemble the 

original EMG signals, indicating successful noise reduction without significant distortion 

by preserving original characteristics that is significant for accurate analysis. 
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Figure 4.4: Reconstructed Signal for GSP 

By visually predicting these figures for all cases, it is obvious that these methods 

worked well by demonstrating effective denoised reduction. This preservation of original 

characteristics is significant for accurate analysis and interpretation of the underlying 

physiological processes. 

4.2 Comparison 

Two denoising techniques, called “Variational Mode Decomposition (VMD)” and 

“Graph Signal Processing (GSP)” were tested to assess the performance by using “Signal 

to Noise Ratio” and “Root Mean Square Error”. The signal has retained its original 

characteristics while minimizing the noise and artifacts. The outcomes, demonstrated in 

Fig. 4.5 and Fig. 4.6, exhibit a notable enhancement of SNR and a significant reduction in 

RMSE after applying VMD. Similarly, the results, shown in Fig. 4.7 and Fig. 4.8, exhibit 

a notable enhancement of SNR and a significant reduction in RMSE after applying GSP. 

Likewise, Fig. 4.9 and Fig. 4.10, shows the results of SNR and RMSE after applying CWT. 

A higher SNR and lower RMSE indicate better noise reduction while preserving important 

signal features. 
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Figure 4.5: SNR of EMG before and after applying VMD 

 

Figure 4.6: RMSE of EMG before and after applying VMD 

By foreseeing the results, in Fig. 4.5 and Fig. 4.6, reveal a notable enhancement of 

SNR and a significant reduction in RMSE after applying VMD, respectively. 
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Figure 4.7: SNR of EMG before and after applying GSP 

 

Figure 4.8: RMSE of EMG before and after applying GSP 

The outcomes, validated in Fig. 4.7 and Fig. 4.8, exhibit a notable enhancement of 

SNR and a significant reduction in RMSE after applying GSP, respectively. 
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Figure 4.9: SNR of EMG before and after applying CWT 

 

Figure 4.10: RMSE of EMG before and after applying CWT 

Likewise, the outcomes after applying CWT are portrayed in Fig. 4.9 and Fig. 4.10 

as of SNR and RMSE, respectively. As it is indicated that higher SNR and lower RMSE 

point toward better noise reduction while preserving important signal features. 
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Figure 4.11: Comparison of VMD, GSP and CWT in terms of SNR 

 

Figure 4.12: Comparison of VMD, GSP and CWT in terms of RMSE 

After obtaining promising outcomes through the implication of the “Variational 

Mode Decomposition (VMD)” and “Graph Signal Processing (GSP)”, a comparative 
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assessment was conducted with the “Continuous Wavelet Transform (CWT)” technique to 

discern their relative effectiveness. The comparison was made, where SNR results 

displayed in Fig.4.10, and RMSE results in Fig.4.11 showed a noticeable difference 

between VMD, GSP and CWT in terms of their noise reduction capabilities. 

4.3 Statistical Analysis: 

The obtained results were validated by comparing the SNR and RMSE of all four 

groups (raw data, CWT-processed data, VMD-processed data and GSP-processed data) 

collectively by means of the One-Way ANOVA test. 

 

Figure 4.13: SNR Results ‘∗’ specifies significant differences with a level of p < 0.05 and ‘∗∗’ 

indicates significant differences with a level of p < 0.01 

A significant difference p < 0.05 and p < 0.01 was determined through the One-Way 

ANOVA testing. As Figure 4.13 shows Statistical Analysis of SNR where‘∗’ specifies 

significant differences with a level of  p < 0.05 and ‘∗∗’ shows significant differences with 

a level of p < 0.01, however Figure 4.14 shows Statistical Analysis of RMSE where‘∗’ 
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designates significant differences with a level of p < 0.05 and ‘∗∗’ directs significant 

differences with a level of p < 0.01.  

 

Figure 4.14: RMSE Results ‘∗’ shows significant differences with a level of p < 0.05 and ‘∗∗’ 

indicates significant differences with a level of p < 0.01 

Remarkably, “Variational Mode Decomposition” and “Graph Signal Processing” 

yielded better results than “Continuous Wavelet Transform” in removing noise from EMG 

signals, regardless of the noise level. 
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CHAPTER 5: DISCUSSION AND CONCLUSION 

The study aimed to address the existing gap in literature, particularly focusing on the 

underexplored areas of EMG signal processing. While prior research predominantly 

concentrated on various signals using “Continuous Wavelet Transformation (CWT)” and 

“Variational Mode Decomposition (VMD)”, there was a noticeable lack of attention given 

to EMG signals when employing VMD with IMFs above 12. Additionally, although 

“Graph Signal Processing (GSP)” had been previously explored in signals such as EEG, 

its application to EMG signals remained notably understudied. To fill this void, we utilized 

VMD with 16 IMFs and applied GSP on EMG signals, resulting in improved outcomes. 

A comprehensive comparative analysis was showed to assess the performance of the 

offered VMD and GSP algorithms in comparison to the established denoising method, 

CWT. This evaluation was centered on essential performance metrics of as “Signal to 

Noise Ratio” and “Root Mean Square Error”. The obtained results were validated by 

comparing the Signal to Noise Ratio and Root Mean Square Error of all four groups (raw 

data, CWT-processed data, VMD-processed data, and GSP-processed data) collectively 

using the One-Way ANOVA test. Remarkably, “Variational Mode Decomposition” and 

“Graph Signal Processing” consistently outperformed “Continuous Wavelet Transform” in 

removing noise from EMG signals across all noise levels. 

Beyond methodological investigation and comparative analysis, the research aimed 

to contribute to the broader field of EMG signal processing. By enhancing the accuracy of 

clinical diagnoses, facilitating more precise biomedical research, and broadening the 

applications relying on the fidelity of EMG data, we aimed to progress the state of the art 

in this area.  

All the results demonstrated that denoising has been done effectively as the recreated 

signal maintains the attributes of the raw signal. The reliability of the projected method by 

comparison all the techniques is proved by an increase in SNR as depicted in Figure 4.11 

and a decrease in RMSE as shown in Figure 4.12. 



46 

 

However, the statistical testing determined the significant differences. As Figure 4.13 

illustrates the results of the SNR, revealing significant differences of p < 0.05 among the 

raw data and CWT data, between CWT data and VMD data, and amongst VMD data and 

GSP data. Additionally, there are significant differences of p < 0.01 observed among all 

four groups, including raw data, CWT data, VMD data, and GSP data, collectively. 

Similarly, the results for RMSE, as depicted in Figure 4.14, shows significant 

differences of p < 0.5 between the raw data and CWT-processed data, between CWT data 

and VMD data, and between VMD data and GSP data. Furthermore, there are significant 

differences of p < 0.01 among all four groups, including raw data, CWT-processed data, 

VMD-processed data, and GSP-processed data, collectively. 

Through a multifaceted exploration, this study demonstrated the efficiency of 

“Variational Mode Decomposition” and “Graph Signal Processing” in improving EMG 

signal quality. By addressing the identified literature gap, conducting a comprehensive 

comparative analysis, and advancing EMG signal processing techniques, the research has 

laid a foundation for more reliable and insightful analysis of muscle activity and 

neuromuscular functions. 
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