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Abstract

The dissertation is based upon the theoretical study. The Standard Model is the most

compact theory in Particle Physics to explain the interaction of particles at fundamental

level. The Standard Model is a well testified theory via different experimentation, but still

there are some open issues in the theory. To address such issues, researchers explore the

theory beyond Standard Model. We study various channels of Higgs decay and computed

their decay rate such as H → ff̄, AA, gg and γγ. Further we study the radiative rare

B decay b → sγ within Standard Model and the calculation of Wilson coefficient C7γ is

performed explicitly. The new Physics usually appears in loop level. The literature explains

various types of extensions to Standard Model. In this thesis "Adding Vector-like particles"

one of the extensions generally R ⊕ R̄ to the Standard Model is used. These Vector-like

particles have no contribution in Higgs decays at loop level, Higgs H is substituted by gauge

singlet S in the di-photon resonance, by grasping the idea of di-photon resonance we apply it

to C7γ Wilson coefficient in b→ sγ to calculate penguin diagrams, in which Standard Model

particles is substituted by Vector-like particles and gauge singlet S to probe new Physics.
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Chapter1
Introduction

Since the beginning of mankind, man has always being curios to understand the basic na-

ture of matter and everything that encompasses the universe. With the passage of time our

understanding continuously developed. According to Greek philosopher earth, water, wind

and fire were considered to be the four basic elements. In nineteenth century the major

concept came into being by Dimitri Mendeleev who constructed periodic table of elements.

Mendeleev’s periodic table arguably gave birth to Particle Physics, as many scientists at-

tempted to have a profound understanding of it. Atom was considered as the fundamental

and smallest unit of matter, however with the discovery of electrons(1897), proton and neu-

tron(1932) by J.J Thomson, Earnest Rutherford and James Chadwick debunked this idea.

Therefore proton, neutron and electron were accounted as fundamental particles. Further-

more positron, muons, pions, kaons and neutrinos were discovered in the same year neutron

were discovered. Later on quarks(fundamental particles) were found to be the constituents

of protons and neutrons. In twentieth century experimental results of Particle Physics in-

spired the physicists to explore the nature of these particles and build a model that explained

the interactions between them. They constructed a model known as Standard Model (SM)

of Particle Physics. Quantum field theory is a theoretical frame work to explain the SM.
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The SM particle contents are categorized into four genre; quarks, leptons, gauge bosons

and scalar Higgs. The matter content within SM consists of fermions, these fermions are

further categorized into three families of quarks and leptons. Leptons behave differently

from quarks because they do not contribute to strong interactions. The force mediated

particle are gauge bosons within the SM. Bosons are mediated particles in the interactions

between fermions. Bosons, associated with three fundamental forces i-e electromagnetic,

strong and weak boson(W±, Z0). The scalar particle discovered in 2013 at Large Hadron

Collider (LHC) known as Higgs, which satisfied all the characteristics of SM Higgs. The

Higgs within SM is responsible to give mass to SM particle content and those gauge bosons,

who obey electro-weak (EW) symmetry breaking. The SM is based upon the gauge group

SU(3)c ⊗ SU(2)L ⊗ U(1)Y . One of its properties is chirality, that quarks and leptons are

divided into left and right handed fields. As theoretical approach the SM is a renormalizable

and anomaly free theory.

In this dissertation we will come across two parts.

1. Calculating Higgs decays

2. Radiative B decays

In first part we analyzed and calculated Higgs decay channel i.e. Higgs decay to fermion

anti-fermion and bosons at tree level Feynman diagram and to gluons and photons at loop

level Feynman diagram. While calculating loop level Feynman diagrams we come across

divergences and by implying certain constructed rules to remove these divergences such as

Feynman Parametrization technique is used. In Feynman parametrization, it is calculated

orderly to use variable shift, Wick’s rotation and Regularization method. Furthermore the

plot of Higgs branching ratio for various decay mode as a function of its mass has been

analyzed. The coupling between Higgs boson and fundamental particles are defined by their

masses. These types of interaction couplings are weak for particle such as up and down

quarks and electrons and stronger for heavy particles such as W and Z bosons and top
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quark. Moreover, the coupling between SM Higgs and fermions are linearly proportional to

the mass of fermion, while coupling between SM Higgs and bosons are proportional to the

square of the mass of bosons. The coupling of Higgs boson to gluons is at leading order

having one-loop Feynman diagram, in which Higgs boson couple to a virtual top quark tt̄

pair. In case of photons, the one-loop Feynman diagram is due to virtual tt̄ pair and also

W+W− pair.

In second part of this dissertation Radiative B decays are used as a tool to test models

of New Physics. In particular we are focused on the rare decay b → sγ. These decay

processes contribute at loop level electroweak penguin diagrams, in which the dominant

particle is the top quark. Effective field theory(EFT) is used as a framework for radiative

rare decays. We reproduce calculation of C7γ Wilson coefficient within SM. Wilson coefficient

is solved by choosing an appropriate operator O7 i.e. electromagnetic dipole operator. The

Wilson coefficient C7γ is calculated explicitly by the matching condition of full and effective

field theory, which then will be implemented to physics Beyond Standard Model (BSM). In

theories BSM, there are various types of extensions to SM. We are specifically focused on

adding Vector-Like particle to the SM. The motivation behind this theory is the anomaly

cancellation by itself. These Vector-like particle are called Standard Vector-Like particle

because they transform like SM fermions. Furthermore these Standard Vector-Like particle

and Gauge singlet can replace the SM particle to calculate C7γ Wilson coefficient in b→ sγ

can probe new physics beyond SM.
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Chapter2
Standard Model

The SM [2] consists of electroweak and strong interactions. It is a successful model since

the rise of 1960’s and 1970’s. One of the famous characteristics of the SM is the interaction

of weak neutral current discovered in the "Gargamelle Neutrino experiment" in 1973 that is

considered to be the first big achievement of the theory. The processes used in the experiment

was νµ/νµ−+N → νµ/νµ−+hadrons (neutral current) and νµ/νµ−+N → µ−/µ+ +hadrons

(charged current). In concert with the data collected from these low energy experiments

and similar processes in the 1970’s, the SM was capable to predict the Vector-boson W±

and Z masses. The first experiment in 1983 at CERN [3] directly produced the W and Z

bosons. The measured mass was analyzed and it was in agreement with the SM predictions.

A few years latter LEP measured the Z mass much more accurately. These experiments also

probed the theory at loop level. One success story is of the top quark of SM, this quark was

compulsory as the weak isospin partner of bottom quark. In 1995 the collider detector at

Fermilab (CDF) was directly observed.

Despite the Successful theory of SM, it has some problems and deficiencies:

• Gravity is missing from SM.
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• Hierarchy problem: why electroweak scale is so small?

• The problem of strong CP violation.

• There is lack of explanation for the quark masses according to their ranges i.e. few

MeV to 100 GeV and lepton masses i.e. 0.5 MeV to 1.8 GeV.

• The SM shows the neutrinos are massless, in fact experiment shows that neutrinos

have mass.

2.1 Gauge Theory

SM corresponds to a non-abelian gauge principle [4], it is a quantum field theory based

upon local gauge invariance. Gauge principle provides a tool to transform Lagrangian that

is invariant w.r.t global symmetry transformation of non-abelian symmetric SU(N) group

into a Lagrangian that consists of a local symmetry invariance. Suppose L(ψ(x), ∂µψ(x)) is

a Lagrangian, invariant under SU(N) global transformation

ψ(x)→ Uψ(x), U−1 = U †. (2.1)

But our desire to develop a theory i.e. invariant with respect to local SU(N) transformation

ψ(x)→ U(x)ψ(x), U = eiα
a(x)Ta (2.2)

The Lagrangian is now no more invariant under this local transformation. To preserve the

local invariance, we introduce the covariant derivative Dµ

Dµ = ∂µ − igAaµT a (2.3)
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transform as

Dµψ(x)→ (Dµψ(x))′ = U(x)(Dµψ(x))

Where g is the arbitrary constant defined as coupling constant, Aaµ defined as a vector

fields/gauge fields and T a are the corresponding generators that follow the commutation

algebra

[T a, T b] = ifabcT c

fabc define as the structure constant. To restore gauge invariance, Aµ vector field transforms

as

Aaµ → Aa
′

µ = U(x)(Aaµ +
i

g
∂µ)U †(x).

Finally, by adding the kinetic term for gauge field and introducing locally invariant term

that depends on Aµ and its derivative, the field strength tensor F µν looks like

F µν,a = ∂µAν,a − ∂νAµ,a + gfabcAµ,bAν,c.

The product of F µν,aF a
νµ satisfies the structure of gauge theory and appears into the La-

grangian.

The new locally invariant Lagrangian takes the following form

L = L(ψ(x), Dµψ(x))− 1

4
F µνFνµ. (2.4)

The Gauge theory principle extended a global to local symmetry and it gives an information

about gauge field interaction with itself via kinetic term and with matter fields via covariant

derivative. As a conclusion it not only determines the symmetry but also gives an information
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about dynamics.

2.2 Renormalizability

The SM is a renormalizable QFT. Renormalizable QFT are theories in which divergences

appearing from loop calculations can be discarded by hiding them into redefinition or a

renormalization into physical parameters. The renormalized theory has some limitations to

the Lagrangian of the theory. Roughly saying, the renormalizable theory can be determined

by physical parameter known as mass dimension of the Lagrangian. If it is renormalizable,

the constant c defined as coupling constant in the lagrangian

L ∝ cO

c posses a positive mass dimension, where O is an operator.

The mass dimension of Lagrangian is defined by space time dimension d i.e. four, so only

the possible operator products will remain having dimension d ≤ 4 in the Lagrangian.

Operators consisting of higher mass dimension are equal to the coupling constant with −ve

mass dimension, in such condition the theory is non-renormalizable. For a long time it was

considered that only renormalizable theory can explain nature due to their high predictive

analysis. Effective field theory (EFT) give rise to new understanding to renormalization. In

EFT the non-renormalizability is not discarded, operator with mass > 4 has contribution.

Simply their effect are suppressed by powers of the theory at fundamental scale, which are

larger then the energies i.e. experimentally achievable. We can respect a renormalizability

of the theory such as SM theory, as an EFT that discards all the non-renormalizable terms.
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2.3 The Standard Model Lagrangian

The SM Lagrangian [5] consists of the following main pieces

L = Lgauge + Lfermions + Lhiggs + Lyukawa (2.5)

Lgauge,Lfermions,Lhiggs and Lyukawa terms correspond to the gauge group SU(3)c ⊗ SU(2)L ⊗

U(1)Y , the matter contents of fermions, the Higgs sector and the coupling of Higgs with

fermion of SM respectively.

2.3.1 Gauge Symmetry Group

The SM Lagrangian [6,7] is based on gauge symmetry group SU(3)c⊗SU(2)L⊗U(1)Y . The

SU(3)c color symmetry group explains the strong interaction between quarks corresponding

to quantum chromodynamic (QCD) part. The SU(2)L ⊗ U(1)Y gauge group explains the

Glashow-Weinberg-Salam electroweak interaction theory. The gauge terms Lagrangian is as

follows

Lgauge = −1

4
BµνB

µν − 1

4
W i
µνW

i,µν − 1

4
Ga
µνG

a,µν (2.6)

The field strength tensor defined as

Bµν = ∂µBν − ∂νBµ

W i
µν = ∂µW

i
ν − ∂νW i

µ + g2ε
ijkW j

µW
k
ν

Ga
µν = ∂µG

a
ν − ∂νGa

µ + g3f
abcGb

µG
c
ν

13



Where W i
µ(i = 1, 2, 3) and Ga

µ(a = 1, ..., 8), and the corresponding covariant derivatives are

Dµ = ∂µ − ig1(Y )Bµ;

Dµ = ∂µ − ig2(
τ i

2
W i
µ);

Dµ = ∂µ − ig3(
λa

2
Ga
µ);

Table 2.1: Boson of the standard model
Boson Tensor Coupling constant Physical sate SU(3)c ⊗ SU(2)L ⊗ U(1)Y

Bµ Bµν g1 = e photon, Z (1,1,0)
W i
µ W i

µν g2 W+,W−, photon (1,3,0)
Ga
µ Ga

µν g3 gluons (8,1,0)

2.3.2 Fermionic Field in SM

Fermions are categorized in three generations. A charged lepton, neutrino and up and

down type quarks belong to each generation. Furthermore, they are split into left and right

handed fermions. Left handed fermions are doublet under SU(2)L while right handed are

singlet under SU(2)L as shown in Table 2.2.

The fermionic field of SM explained by Dirac Lagrangian

L = Ψ̄iγµ∂
µΨ−mΨ̄Ψ

as

Ψ =

 ΨL

ΨR

 ,
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where as ψL and ψR are left and right handed Spinors respectively.

The Gell-Mann-Nishijima formula is defined as

Q = I3 +
Y

2

The Q, I3 and Y denotes the charge, isospin and hypercharge respectively

The fermionic field Lagrangian is written as

Lfermion = il̄L /DLlL + iq̄L /DQqL + iēR /DeeR + iūR /DuuR + id̄R /DddR (2.7)

Where /D = γµDµ

Dµ
l = ∂µ − ig1YlB

µ − ig2σ
iW i,µ

Dµ
qL

= ∂µ − ig1YqLB
µ − ig2σ

iW i,µ − ig3t
aGa,µ

Dµ
e = ∂µ − ig1YeB

µ

Dµ
qR

= ∂µ − ig1YqB
µ − ig3t

aGa,µ qR = uR, dR

Here σi = τ i

2
belongs to Pauli matrices are generator of SU(2), ta = λa

2
belongs to Gell-Mann

matrices are generator of SU(3).

So

Lfermion = il̄Lγ
µ
(
∂µ + ig1Bµ(−1

2
) + ig2W

i
µ

τ i

2

)
lL

+iq̄Lγ
µ
(
∂µ + ig1Bµ(

1

6
) + ig2W

i
µ

τ i

2
+ ig3G

a
µ

λa

2

)
qL

+iēRγ
µ
(
∂µ + ig1Bµ(−2

2
)
)
eR

+iūRγ
µ
(
∂µ + ig1Bµ(

2

3
) + ig3G

a
µ

λa

2

)
uR

+id̄Rγ
µ
(
∂µ + ig1Bµ(−1

3
) + ig3G

a
µ

λa

2

)
dR

15



Table 2.2: Fermion of the standard model
Notation I3 Y Q Contents SU(3)c ⊗ SU(2)L ⊗ U(1)Y

lL
(

1/2
−1/2

)
−1

(
0
−1

) (
νeL
eL

)(
νµL
µL

)(
ντL
τL

)
(1, 2, −1

2
)

qL
(

1/2
−1/2

)
1
3

(
2/3
−1/3

) (
uL
dL

)(
cL
sL

)(
tL
bL

)
(3, 2, 1

6
)

eR 0 −2 −1 eR µR τR (1, 1, 1)
uR 0 4

3
2
3

uR cR tR (3̄, 1, −2
3

)
dR 0 −2

3
−1
3

dR sR bR (3̄, 1, 1
3
)

Charged Current

According to weak interaction theory, the weak interactions only exist on left quark’s and

lepton’s doublet.

Lfermions = i(ūL, d̄L)γµ(∂µ − 1

2
igW µ

i τi)

(
uL
dL

)
= iūLγµ∂

µuL + id̄Lγµ∂
µdL −

1

2
gūLγµW

−µdL −
1

2
gd̄LγµW

+µuL

The pauli matrices (i = 1, 2) are used. W± gauge boson are responsible for flavor changing

from up to down and down to up as well. These kind of interactions are called charge

current [8].

LCC = −1

2
gūLγµW

−µdL −
1

2
gd̄LγµW

+µuL (2.8)

Figure(2.1) shows an example of Feynman diagram of muon decay mediated by theW boson.

Figure 2.1: Muon decay
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2.3.3 Higgs Lagrangian

The Higgs sector be explained in more detail in sec. 2.4 by introducing a new complex scalar

doublet φ.

φ =

 φ+

φ0


it transform as  SU(3)c SU(2)L U(1)Y

1 2 1
2


The scalar doublet embedded in the Lagrangian as

LHiggs = |
(
∂µ + ig1Bµ(

1

2
) + ig2W

i
µ

τ i

2

)
φ|2 − m2

2
|φ|2 − λ

4
|φ|4 (2.9)

2.3.4 Higgs and Yukawa Terms

The dynamic of a spin-0 scalar field can be explained through Higgs part.

Lhiggs = (Dµφ)†Dµφ− V (φ)

The potential is

V (φ) = m2φ†φ+ λ(φ†φ)2
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Where φ is a field defined as an isospin doublet

φ =

(
φ+

φ0

)
(2.10)

This field φ couples the Higgs boson with the fermion fields using Yukawa coupling. We can

further expand the lagrangian by the coupling between the fermion doublets and field φ to

introduce mass terms for the fermions. This gives rise to the new terms, known as Yukawa

interactions, preserved by symmetries. The Yukawa terms Lagrangian is given as

Lyukawa = ψ̄LY φψR + h.c

Lyukawa = Yuq̄LφuR + Ydq̄Lφ̃dR + YLl̄Lφ̃eR + h.c (2.11)

QL and LL are defined as left handed quarks and leptons respectively.

lL = PL

(
νe
e

)
, qL = PL

(
u

d

)

uR, dR and eR are right handed up-type, down-type quarks and lepton respectively.

uR = PRu, dR = PRd, eR = PRe

where

PL =
(1− γ5)

2
, PR =

(1 + γ5)

2

Yu, Yd,and YL are Yukawa couplings for up-type, down-type quarks and lepton respectively.

The Yukawa coupling Yq where(q = u, d, l) are 3× 3 matrices. Local symmetry breaking can

be achieved by substituting various value for φ field in Eq(2.10).

φ =

(
φ+

φ0

)
−→ 1√

2

(
0

V + h(x)

)
(2.12)
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The vacuum expectation value (VEV) will be explain in more detail in sec. 2.4 is not zero

and expected at V√
2
, where h(x) is a perturbation around new VEV represented as the Higgs

boson. The Yukawa terms in L(2.11) will be

Lyukawa =
V√

2
ūLYuuR +

V√
2
d̄LYddR +

V√
2
ēLYLeR + h.c (2.13)

2.4 Spontaneous Symmetry Breaking

2.4.1 The φ4 Theory

Symmetries play an important role in Physics, Noether theorem states that differential sym-

metry conforms to a conserved quantity. When a symmetric system having a symmetry

group goes into vacuum state and if it does not remain symmetric and the vacuum expecta-

tion value is not zero any more than the symmetry is spontaneously broken.

The φ4 theory is the wide-eyed example of SSB [9,10]. The Lagrangian looks like

L =
1

2
(∂µφ)2 − 1

2
m2φ2 − 1

4
λφ4 (2.14)

The potential V (φ) = 1
2
m2φ2 + 1

4
λφ4, where φ is a real scalar field. taking minima of the

potential

0 =
dV (φ)

dφ
=⇒ φ(m2 + λφ2) = 0

Two conditions for the Vacuum expectation value(VEV) arise

< φ >0= 0 for m2 > 0 which is trivial and < φ >0= ±
√
−m2

λ
= ±V . For m2 < 0, we have

two minima for this case as shown in figure(2.2). Redefining the field having fluctuation
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described by φ(x). η(x) = V + η(x). The new Lagrangian looks like

L =
1

2
[∂µ(η + V )]2 − 1

2
(−λV 2)(η + V )2 − 1

4
λ(η + V )4

∂µV = 0 −→ L = [
1

2
(∂µη)2 − 1

2
(−2m2)η2 − 1

4
λη4]− λV η3 +

1

4
λη4 (2.15)

The first term looks same as the original Lagrangian with a new mass m =
√
−2m2. The last

term is constant which is not relevant and the second last term that contains η3 is the strong

candidate for SSB since V (η) is not symmetric any more for a transformation η → −η.

Figure 2.2: Potential of φ4

theory when m2 > 0 and m2 < 0.

2.4.2 Goldstone’s Boson(Theorem)

According to SSB, one observes the phenomena of massless scalar bosons known as Gold-

stone’s boson theorem. To analyse this phenomena we take two fields σ and π within

Lagrangian(2.14)

L =
1

2
[(∂µσ)2 + (∂µπ)2 −m2(σ2 + π2)]− 1

4
λ(σ2 + π2)2 (2.16)

The potential is V (σ, π) = 1
2
m2(σ2 + π2) + 1

4
λ(σ2 + π2)2. Now the Lagrangian has dis-
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Figure 2.3: Potential of σ, π
field when m2 > 0 and m2 < 0 [11].

crete symmetry (σ, π) −→ (−σ, π) and continuous symmetry (σ, π) −→ R(−σ, π) as R = cos γ − sin γ

sin γ cos γ

 ∈ SO(2) Now let’s check dV
dπ

= 0 and dV
dσ

= 0 as a result

π[m2 + λ(σ2 + π2)] = 0 and σ[m2 + λ(σ2 + π2)] = 0

as shown in Fig. 2.3 there are two solutions m2 > 0 and m2 < 0 for m2 > 0 is trivial

< σ >0= 0 and < π >0= 0 for m2 < 0 is non trivial< σ2 + π2 >0= (−m
2

λ
)

1
2 . The transfor-

mation is π −→ π and σ −→ η − V the new Lagrangian looks like.

L =
1

2
(∂µη)2 +

1

2
(∂µπ)2 − 1

2
m2η2 − λ[

1

4
(η2 + π2) + V ηπ2 + V η3] +

1

4
λV 4 (2.17)

This looks like φ4 theory in which η field gets mass mη =
√
−2m2. π field has no mass

term. In this model the continous symmetry is broken spontaneosly. The most important

consequence is π field gives a massless scalar boson known as Goldstone-boson.

2.4.3 Higgs Mechanism

Higgs mechanism [12] is an interesting phenomena that explains how to give masses to gauge

bosons and fermions in the Standard Model(SM). Higgs mechanism is utilized to get rid of

the Goldstone theorem. The condition holds that the Lagrangian will be invariant under
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local transformation.

φ(x) −→ φ′(x) = eigα(x)φ(x), φ ∗ (x) −→ φ′ ∗ (x) = e−igα(x)φ(x)

The Lagrangian is

L = (Dµφ)†(Dµφ) +m2φ†φ− λ(φ†φ)2 − 1

4
FµνF

µν (2.18)

where Fµν = ∂µAν − ∂νAµ, φ is a complex scalar field and Aµ is defined as massless gauge

boson field, m and λ > 0 are real parameters obtained using the same method of L(2.14)

which is already discussed in detailed. Replacing ∂µ by Covariant derivative

∂µφ −→ Dµφ, ∂µφ
† −→ (Dµφ)†

where,

Dµ = ∂µ + igAµ

and

Aµ −→ Aµ − ∂µα.

Considering α(x) = η(x)
V

, the gauge transform as

φ −→ φ′ = eig
η
V φ

Aµ −→ Aµ − ∂µη
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Appling these transformation the Lagrangian (2.18) is invariant. By substituting φ(x) =

V+h(x)√
2

in Eq(2.18), we obtain

L =
1

2
[(∂µ − igAµ)(V + h)(∂µ + igAµ)(V + h)] +

1

2
m2(V + h)2 − 1

4
λ(V + h)4

−1

4
FµνF

µν (2.19)

The interaction terms in the Lagrangian(2.19) are h3, h4, hAA and h2AA. The quadratic

terms in the Lagrangian correspond to the mass terms i-e (g
2V 2

2
AµA

µ) and (−λV h2) that

refer to the gauge boson and scalar boson mass respectively. The gauge boson Aµ eats up

the Goldstone boson and gives it a mass. The complex scalar field φ and massless gauge

boson is converted to a real scalar field and massive gauge boson respectively. The massive

gauge boson(physical boson) is called a Higgs boson and the phenomena through which it

gives mass to the gauge boson is known as Higgs mechanism.

2.5 CKM matrix and Fermion masses

The masses of gauge boson W± and Z gets through the SSB of the gauge group SU(2)L ⊗

U(1)Y . How can one generate the missing masses of fermions? we desperately required

a term that couple the fermions with Higgs doublet. They must be gauge invariant and

renormalizable. These terms are called Yukawa terms in the Lagrangian. The Lagrangian

for the charge lepton corresponding to first generation is

LLeptonsY ukawa,1 = −Yeē′φ†

 e

νe


′

L

+ h.c. (2.20)
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For the three generations, the Lagrangian is written in the generalized form as

LLeptonsY ukawa = −(ē′R µ̄′R τ̄)Yl



φ†

 e

νe


′

L

φ†

 µ

νµ


′

L

φ†

 τ

ντ


′

L


+ h.c. (2.21)

According to Eq.(2.12) after giving VEV the LLeptonsY ukawa splits into two parts. One part explains

the interaction of leptons with physical Higgs and other part is explained by

LLeptonsMass = −(ē′R µ̄′R τ̄)Ml


e

µ

τ


′

L

(2.22)

where,

Ml =
V√

2
Yl

In principle Ml is an arbitrary 3 complex matrix and cannot be named as mass matrix.

However the charge lepton fields are possible to transform in such fashion that Ml is defined

as diagonal matrix with positive real or zero number elements. The Lagrangian derived by

applying this type of transformation to all of its term will latter be expressed as the mass

eigenstate of the leptons. The new Lagrangian of charge current carries flavor mixing term.

All lepton fields now taking place are mass eigenstate, for distiction we use without prime

notation.

To analyze the quarks masses d, s and b are the down-type quark masses, the Yukawa
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Lagrangian is same as the one in Eq.(2.21) with Y d
q Yukawa matrix. The up-type quark is a

bit different, we replace φ with iσ2φ
∗ as the SU(2)L doublet. Where σ2 is the pauli matrix

LU−quarksY ukawa = −(ū′R c̄′R t̄′R)Y u
q



iσ2φ
∗

 u

d


′

L

iσ2φ
∗

 c

s


′

L

iσ2φ
∗

 t

b


′

L


+ h.c. (2.23)

The Yukawa matrices are diagonalized by using the unitary transformation of the quark

fields explicity it is given as below


u

c

t


′

L

= Vu


u

c

t


L

,


u

c

t


′

R

= Uu


u

c

t


R

d

s

b


′

L

= Vd


d

s

b


L

,


d

s

b


′

R

= Ud


d

s

b


R

. (2.24)

Where Vu, Uu, Vd, Ud belong to U(3). In the lepton sector only one set exists like these ma-

trices, which diagonalizes the yukawa matrices and that is the reason behind the Lagrangian

having different mass eigenstates from the weak eigenstate. The quarks generation mix with

each other defined by the CKM matrix known as Cabibbo-Kobayashi-Maskawa matrix.

VCKM = V †uVd.
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We can introduce these quarks coupling terms with W± bosons

LQuarksCC = − e

2 sin θW
(W+

µ J
µ,− +W−

µ J
µ,+) (2.25)

where,

Jµ,− = (ū c̄ t̄)LVCKM


d

s

b


L

(2.26)

In L(2.8) for the Charge current will become

LCC = −1

2
gūLγµW

−µdL −
1

2
gd̄LγµW

+µuL

= −1

2
gūLV

u†
L V d

LγµW
−µdL −

1

2
gd̄LV

d†
L V u

L γµW
+µuL (2.27)

The V u†
L V d

L mattrix product consisting of off-diagonal terms causes the transition of coupling

of quarks from one doublet to the other doublets involving weak transition and charged

current. This phenomena is called quark mixing and d′L defined for down type quarks consists

of mixed quark mass states.

d′L =


d′

s′

b′

 = V u†
L V d

LdL =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb




d

s

b

 (2.28)

For instance the first element d′ is the superposition mass state of d, s and b that depends on

Vud, Vus and Vub. The V u†
L V d

L matrix product is called Cabibbo-Kobayashi-Maskawa (CKM)
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matrix [13]. The components are calculated by experimental analysis [14].


|Vud| ≈ 0.974 |Vus| ≈ 0.25 |Vub| ≈ 0.003

|Vcd| ≈ 0.225 |Vcs| ≈ 0.973 |Vcb| ≈ 0.04

|Vtd| ≈ 0.009 |Vts| ≈ 0.040 |Vtb| ≈ 0.999

 (2.29)

2.5.1 Standard Parametrization

The CKM matrix describe in the standard parametrization [14]

VCKM =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 (2.30)

=


c12c13 s12s13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12s23 − s12s23s13e

iδ s23c13

s12c23 − c12s23s13e
iδ −s23c12 − s12c23s13e

iδ c23c13

 (2.31)

Where clm = cosθlm, slm = sinθlm (l,m = 1, 2, 3) and δ is the phase with the range 0 ≤ δ ≤

2π. The four independent parameter are s12 = |Vus|, s13 = |Vub|, s23 = |Vcb| and δ. s12, s13

and s23 are obtained by tree level decays mediated through transitions s −→ u, b −→ u and

b −→ c respectively. The phase is obtained from loop level sensitive to |Vtd| through CP

violating transition. The standard parametrization is suitable for numerical calculations.
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Chapter3
Higgs Decay Modes

To analyze the Higgs decay, first of all we have to know the complete information about

its coupling at tree level with the massive particles of SM. In this chapter Higgs decay at

tree level has been calculated that means to calculate fermion anti-fermion and weak boson

channels and at loop level massless final state arises bosons such as gluons and photons [1].

3.1 Coupling of Higgs Boson

The coupling of Higgs is associated with the masses of fermions and bosons. The Higgs

boson will preferably decay into heaviest particle allowed by phase space. The Higgs boson

couples with gauge boson are A = W,Z and the heavy fermions are f = τ, µ, t, c, b. Their

masses [1] values are

mW = 80.42GeV, mZ = 91.18GeV, mτ = 1.777GeV,

mµ = 0.106GeV, mt = 178± 4.3GeV, (3.1)

mb = 4.88± 0.07GeV, mc = 1.64± 0.07GeV.
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The Higgs boson interaction with gauge boson HAA calculated from Lagrangian(2.19) by

considering quadratic term

gHAA = δv
m2
v

v
(3.2)

where δv = 2 for W and δv = 1 for Z boson

The Higgs boson couple to fermion is given by [15]

gHff̄ =

√
2mf

v
(3.3)

where v = (
√

2GF )
−1
2 ' 246 GeV

3.2 Higgs Decay to fermion antifermion

Figure 3.1: Higgs decay to fermion and anti-fermion

Higgs H particle coupling is directly proportional to particle of fermion mass and also the

branching ratio is directly proportional to m2
f . The partial decay width for H → ff̄ at tree

level computation is as below

H(p1)→ f(p2)f ¯(p3)

The Transition Amplitude is
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−iMH→ff̄ =
imf

v
Ūr2Vr3

iM†
H→ff̄ =

(−i)mf

v
V̄r3Ur2∑

r2,r3

|M2
H→ff̄ | =

∑
r2,r3

MM† =
(mf )

2

v2

∑
r2,r3

V̄r3Ur2Ūr2Vr3 (3.4)

After some algebraic steps we come across to the result

∑
r2,r3

|M2
H→ff̄ | =

4m2
f

v2

M2
H

2
(1− 4

m2
f

M2
H

)

=
2m2

f

v2
M2

H(1− 4
m2
f

M2
H

) (3.5)

The decay width is defined by the formula

Γ(H → ff̄) =
∑
|MH→ff̄ |2

1

8πM2
H

|~p| (3.6)

p is computed and plugged in(3.6) gives the final form

Γ(H → ff̄) =
2m2

f

v2
M2

H(1− 4
m2
f

M2
H

)
1

8πM2
H

MH

2
(1−

4m2
f

M2
H

)
1
2

=
MH

8π

m2
f

V 2
(1−

4m2
f

M2
H

)
3
2 (3.7)

Defining the velocity of the final fermions

Bf = (1−
4m2

f

M2
H

)
1
2

Γ(H → ff̄) =
MH

8π

m2
f

V 2
B3
f (3.8)
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3.3 Higgs decay to Weak Boson

Figure 3.2: Higgs decay to vector bosons A

The Higgs decay to weak boson is defined in a general notation A, where A = W,Z. After

calculation we plug in A with W and Z, where ZZ decay width has extra 1
2
factor due to

identical particles

The transition amplitude looks like

−iM = εµ(~p2, ~r2)(
2M2

A

V
)gµνεν(~p3, ~r3)

iM† = ε∗µ′(~p2, ~r2)(
2M2

A

V
)gµ

′ν′ε∗ν′(~p3, ~r3)∑
ri

|MH→AA|2 =
4M4

A

V 2
gµνgµ

′ν′
∑
pol

εµ(~p2, ~r2)ε∗µ′(~p2, ~r2)
∑
pol

εν(~p3, ~r3)ε∗ν′(~p3, ~r3) (3.9)

After few steps we get

∑
ri

|MH→AA|2 = ��
�4M4
A

V 2

(
M2

H

��
�4M4
A

)(
1− 4M2

A

M2
H

+
12M4

A

M4
H

)
(3.10)

For Decay as we know that

Γ(H → AA) =
∑
|MH→AA|2

|~p|
8πM2

H

, (3.11)
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Where p is computed from relativistic relation E2
A = p2 +M2

A

~p =

(
M4

H

4
−M2

A

) 1
2

|~p| =
MH

2

(
1− 4M2

A

M2
H

) 1
2

(3.12)

Putting (3.10) and (3.12)into (3.11) as a Consequence

Γ(H → AA) =
M4

H

V 2

(
1− 4M2

A

M2
H

+
12M4

A

M4
H

)
1

8πM�2H

(
��MH

2
(1− 4M2

A

M2
H

)
1
2

)

=
M3

H

16πV 2

(
1− 4M2

A

M2
H

) 1
2
(

1− 4M2
A

M2
H

+
12M4

A

M4
H

)

x ≡ M2
A

M2
H

Γ(H → AA) =
M3

H

16πV 2
(
√

1− 4x)(1− 4x+ 12x2) (3.13)

3.4 Higgs Decay to Gluons

Figure 3.3: Higgs decay to gluons First diagram

H(p1)→ g(p2)g(p3)

Higgs decay to gluons is a loop process. The decay rate is considered to be low as compared

to tree level but it is not true exactly because due to heavy top quark mass this process

generates high decay rate, therefore it must be taken into account.
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The transition amplitude is

iM =
imf

v

∫
d4k

(2π)4
Tr[

i((/k + /p2) +m)

(k + p2)2 −m2
(igγµta)

i(/k +m)

k2 −m2
(igγνtb)

i(/k − /p3 +m)

(k − p3)2 −m2
]

×εaµ,r2ε
b
ν,r3

(3.14)

Trace calculation

Tr[((/k + /p2) +m)γµ(/k +m)γν(/k − /p3 +m)] (3.15)

using property of trace

Tr[γµγνγργσ] = 4(gµνgρσ − gµρgνσ + gµσgνρ)

Tr[γµγν ] = 4gµν

Tr[oddγ] = 0

Result of Trace

= 4m[4kµkν + 2pµ2k
ν − 2pν3k

µ + pν2p
µ
3 − p

µ
2p

ν
3 + gµν(m2 − p2 · p3 − k2)]

Tr[tatb] =
1

2
δab

Calculating the Denominator by using Feynman parameterization

1

A1A2....An
=

∫ 1

0

dx1dx2....dxn
δ(
∑
xi − 1)(n− 1)!

[x1A1 + .....+ xnAn]n
(3.16)

1

ABC
=

∫ 1

0

dxdydz
δ(x+ y + z − 1)2!

[xA+ yB + zC]3
(3.17)

Denominator = [((k + p2)2 −m2)(k2 −m2)((k − p3)2 −m2)]
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Defining

A = (k + p2)2 −m2

B = (k − p3)2 −m2

C = k2 −m2

by pluging these value in (3.17) as a result

= xp2
2 + 2kp2x+ yp2

3 − 2kp3y + k2 −m2 (3.18)

To get rid of these linear terms we shift momentum variables.

` = k + p2x− p3y ⇒ k = `− p2x+ p3y

Replacing k as a result (3.18)

D = `2 + 2p2p3xy −m2 = `2 −∆

where

∆ = −2p2p3xy +m2

The Equation (3.14) looks like

M =
−imfg

2

v

∫
d4`

(2π)4

∫ 1

0

dx

∫ 1−x

0

dy
4m · 2Nµν

[`2 −∆]3
εaµ,r2ε

b
ν,r3

(3.19)

Evaluating the Nµν by applying the shift of momentum variables

` = k + p2x− p3y ⇒ k = `− p2x+ p3y
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The new Nµν looks like

Nµν = 4`µ`ν − gµν`2 + pµ2p
ν
2(−2x+ 4x2) + pµ3p

ν
3(−2y + 4y2) + pµ2p

ν
3(−4xy + 2y − 1 + 2x)

+pν2p
µ
3(1− 4yx) + gµν(m2 − p2p3 + 2p2p3xy) (3.20)

The condition for "onshell gluons " is εµpµ = 0

Applying εaµ,r2ε
b
ν,r3

to (3.20)

εaµ,r2ε
b
ν,r3
Nµν = 4εaµ,r2ε

b
ν,r3
`µ`ν − εaµ,r2ε

b
ν,r3
gµν`2 +

(((
((((

(((
(((

εaµ,r2ε
b
ν,r3
pµ2p

ν
2(−2x+ 4x2) +

((((
((((

(((
((

εaµ,r2ε
b
ν,r3
pµ3p

ν
3(−2y + 4y2)

+εaµ,r2ε
b
ν,r3((((

((((
((((

((

pµ2p
ν
3(−4xy + 2y − 1 + 2x) + εaµ,r2ε

b
ν,r3
pν2p

µ
3(1− 4yx)

+εaµ,r2ε
b
ν,r3
gµν(m2 − p2p3 + 2p2p3xy)

Plugging in (3.19)

M =
−imfg

2

v

∫
d4`

(2π)4

∫ 1

0

dx

∫ 1−x

0

dy
4m · 2Nµν

[`2 −∆]3
εaµ,r2ε

b
ν,r3

(3.21)

Now

I ≡
∫

d4`

(2π)4

∫ 1

0

dx

∫ 1−x

0

dy
Nµν

[`2 −∆]3

Integral solving into two parts

I =

∫ 1

0

dx

∫ 1−x

0

dy(I1 + I2) (3.22)

I1 ≡
∫

d4`

(2π)4

4`µ`ν − gµν`2

[`2 −∆]3
(3.23)

put C = pν2p
µ
3(1− 4yx) + gµν(m2 − p2p3 + 2p2p3xy)

I2 ≡
∫

d4`

(2π)4

C

[`2 −∆]3
(3.24)
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I1 =

∫
d4`

(2π)4

4`µ`ν − gµν`2

[`2 −∆]3
(3.25)

`µ`ν → 1

d
`2gµν

=

∫
d4`

(2π)4

4`2hµν

d
− gµν`2

=

∫
d4`

(2π)4
(
4

d
− 1)`2gµν

In numerator we have two terms 4`µ`ν − gµν`2 having divergence. these terms can be sim-

plified by dimensional regularization methods.

∫
dd` `2

(2π)d(`2 −∆)n
=

(−1)n−1i

(4π)
d
2

d

2

Γ((n− d
2
)− 1)

Γ(n)
(

1

∆
)n−

d
2
−1

∫
dd`

(2π)d
(
4

d
− 1)

1

(`2 −∆)n
`2gµν =

(−1)n−1i

(4π)
d
2

(
4

d
− 1)

d

2

Γ((n− d
2
)− 1)

Γ(n)
(

1

∆
)n−

d
2
−1

for d = 4− 2ε, and n = 3

=
iε

(4π)2
gµν

Γ(ε)

Γ(3)

(4π

∆

)ε (3.26)

As we know that Γ(n) = (n− 1)!

Γ(3) = 2

Γ(x) = 1
x
− γ +O(x)

Γ(ε) = 1
ε
− γ +O(ε)
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plugging in (3.26)

I1 =
iε

(4π)2
gµν
(4π

∆

)ε1
2

(
1

ε
− γ +O(ε))

=
i

(4π)2
gµν
(4π

∆

)ε1
2
�ε

�ε
− γεigµν

(4π)2

(4π

∆

)ε
+O(ε)

ε −→ 0

=
i

16π2

gµν

2
− 0

=
igµν

32π2

Now let’s compute I2

I2 =

∫
d4`

(2π)4

C

[`2 −∆]3

From Peskin Appendix [10]

∫
dd`

(2π)d(`2 −∆)n
=

(−1)ni

(4π)
d
2

Γ(n− d
2
)

Γ(n)
(

1

∆
)n−

d
2

As d = 4 ,n = 3

I2 =
−iC

32π2∆

I1 + I2 =
igµν

32π2
− iC

32π2∆

=
igµν∆− iC

32π2∆

(3.27)

put C = pν2p
µ
3(1− 4yx) + gµν(m2 − p2p3 + 2p2p3xy)

and ∆ = −2p2p3xy +m2

I1 + I2 =
i

32π2

((pν2p
µ
3 − gµνp2p3)(1− 4xy)

−∆

)
(3.28)
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So equation (3.22)⇒

I =
i

32π2

∫ 1

0

dx

∫ 1−x

0

dy
((pν2p

µ
3 − gµνp2p3)(1− 4xy)

−∆

)
Now H =

∫ 1

0
dx
∫ 1−x

0
dy (1−4xy)

−∆

Iνµ =
i

32π2
H(pν2p

µ
3 − gµνp2p3) (3.29)

Equation (3.19)⇒ for first diagram

M = (−i)m
v
g2(4m)(

1

2
δab)2ε

a
µ,r2

εbν,r3I
νµ (3.30)

Second Diagram:

Figure 3.4: Higgs decay to gluons second diagram contribution

M =
(−i)g2m

v
εaµ,r2ε

b
ν,r3

(
1

2
δab)

∫
d4k

(2π)4

Tr[((/k − /p2
) +m)γµ(/k +m)γν((/k + /p3

) +m)]

[(k − p2)2 −m2][k2 −m2][(k + p3)2 −m2]
(3.31)

The final result for the trace is

= 4m[4kµkν + 2pµ2k
ν − 2kµpν3 + gµν(m2 − p2p3 − k2) + pν2p

µ
3 − p

µ
2p

ν
3] (3.32)

As calculated separately the second diagram by using the Feynman parametrization giving

the same result as for the first diagram for Iµν

Iµν =
∫

d4`
(2π)4

∫ 1

0
dx
∫ 1−x

0
dy Nµν

[`2−∆]3
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So it means that the amplitude for both the diagrams are equivalent

M(first diagram)=M(second diagram)

The total Amplitude is

M=M(first diagram)+M(second diagram)

M=M1+M2

⇒M1=M2

M=2M1

|M|2 = 4M1M†
1

M = (−i)g2(4m)(
1

2
δab)ε

a
µ,r2

εbν,r3I
νµ · 2

M† = i
m

v
g2(4m)(

1

2
δab)ε

a∗
µ,r2

εb∗ν,r3I
νµ∗ · 2∑

r2,r3

|MH→gg|2 = 4
∑

r2,r3,a,b

(
m

v
)2(2g2m)2δabδabε

a
µ,r2

εa∗τ,r2ε
b
ν,r3
εb∗ρ,r3I

νµIτρ∗ (3.33)

The sum over spins and colors are

∑
a,b

δabδab = 8∑
r2,r3

εa∗τ,r2ε
a
µ,r2

εb∗ρ,r3ε
b
ν,r3

= gτµgρν

gτµgρνI
νµIτρ∗ = IνµI∗νµ

∑
r2,r3

|MH→gg|2 = 4 · 4g4(
m2

v2
)m28 · 4IνµI∗νµ (3.34)

Now computing,

IνµI∗νµ = (
i

32π2
)H(pν2p

µ
3 − gµνp2p3)× (

−i
32π2

)H(p2νp3µ − gµνp2p3)

=
1

512π4
H2(p2 · p3)2 (3.35)
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Plugging (3.34) into (3.35)

∑
|MH→gg|2 =

��512

��512
g4 m

4

v2π4
H2(p2 · p3)2

=
g4m4H2(p2 · p3)2

v2π4
(3.36)

Now computing the integral H

H =

∫ 1

0

dx

∫ 1−x

0

dy
(1− 4xy)

−∆

=
1

2p2p3

∫ 1

0

dx

∫ 1−x

0

dy
(1− 4xy)

xy − m2

2p2p3

=
1

2p2p3

B(n) (3.37)

B(n) ≡
∫ 1

0
dx
∫ 1−x

0
dy (1−4xy)

xy− m2

2p2p3

, n ≡ m2

2p2p3

H =
n

m2
B(n)

H2 =
n2

m4
B2(n) (3.38)

Plugging into (3.36)

∑
|MH→gg|2 =

g4m4(p2 · p3)2

v2π4

n2

m4
|B(n)|2 (3.39)

Defining Kinematics (Center of mass frame).

pµ1 = (MH , 0), pµ2 = (p, ~p), pµ3 = (p,−~p)

As a result

p2 · p3 =
1

2
M2

H (3.40)
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plugging into (3.39)

∑
|MH→gg|2 =

g4
�
�m4(1

2
M2

H)2

v2π4

n2

�
�m4
|B(n)|2

=
g4

4v2π4
M2

Hn
2|B(n)|2

α =
g2

4π
=⇒ α2 =

g4

16π2

=
4α2

π2v2
M4

Hn
2|B(n)|2 (3.41)

The formula for decay rate is

Γ(H → gg) =
∑
|MH→gg|2

1

8πM2
H

|~p| (3.42)

|~p| = 1
2
MH

Γ(H → gg) =
4α2

π2v2
M4

Hn
2|B(n)|2 1

8πM2
H

(
1

2
MH)

=
2α2

π2v2

M3
H

8π
n2|B(n)|2 (3.43)

For identical particle decay we multiply by symmetry factor 1
2

Γ(H → gg) =
α2
s

π2v2

M3
H

8π
n2|B(n)|2 (3.44)

I2 = n2|B(n)|2

1
9
|I( 1

n
)|2 =

(
1
3
B( m

2

M2
H

)
)2 , v = 2mw

g
, g = e

sinθw

v = 2mwsinθw
e

=⇒ v2 = 4m2
wsin

2θw
e2
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Putting these value in equation (3.44).

Γ(H → gg) =
( αMH

8sin2θw

)M2
H

m2
w

α2
s

9π2
|
∑

I(
M2

H

m2
)|2 (3.45)

3.5 Higgs decay to Di-Photon

Figure 3.5: Higgs decay to photons

One of the Golden Channels for Higgs decay is "Higgs decay to Di-photon" as shown in

Fig. 3.5 searched at CERN(LHC). This process has been examined many year ago [16]. As

we know that photons are massless, therefore Higgs decay can not be calculated directly at

tree level, the reason Higgs decay to di-photon is calculated at loop level. In the loop the

top quark and W boson can contribute. The amplitude is calculated with the top quark

loop. All of the calculation for the amplitude is same as done for gluons in sec. 3.4. Gluons

are color charge so this factor is excluded. Only include a factor of electric charge Qf with

factor Nc(f), substituting e with gs in α term and sum over all charged fermions.

The final expression of decay looks like

Γ(H→γγ) =

(
αMH

8sin2θw

)
M2

H

mw

α2
s

18π2
|
∑
f

Q2
fNc(f)|2

3.6 Branching Ratio and Total Decay Width

Partial decay widths of quarks and leptons are compared. From Eq(3.8) Γ(H → ff̄) decay

width depends upon mass term m2
f and Γ(H → AĀ) in Eq(3.13) depends upon mass term
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m3
A. As a consequence, the decay width of vector boson pairs is seen larger than fermion

anti-fermion as shown in Fig(3.6), giving a general summary of all branching ratios.

The Fig(3.6) shows the branching ratio for Higgs boson relies on MH(Higgs mass). The

Figure 3.6: Higgs Boson Branching Ratio [1]

Higgs mass is divided into three parts as observed: a low mass, an intermediate mass and a

high mass which have rangeMH < 130GeV , 130GeV < MH < 200GeV andMH > 200GeV

respectively. The decay process bb̄ pair is the most significant process for light Higgs boson

having branching ratio of 75%. Subsequently H → τ+τ− and H → cc̄ with branching ratio

∼ 6% and 2 − 3% respectively. For a mass MH ∼ 120GeV the H → gg is significant with

BR∼ 7%. The H → γγ with branching ratio is only a few per mille but this channel has a

significant contribution towards the Higgs search. The di-photon decay shows a clear signal

in detector. H → Zγγ, µµ and ss̄ are less than few per mille, which are somewhat relevent.

In the low mass range the decay H → WW , ZZ increases but both processes consist of

at least one virtual vector boson, therefore the energy is below threshold and maximum

energy of these decay is not attainable. The Higgs decay H → WW dominates when the

energy is approaching to the threshold energy while the WW both becomes real. Specially
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in the mass range of 160GeV < MH < 180GeV the WW real bosons are produced at

this threshold energy with 100% approximate branching ratio. In the above mass range the

H → bb̄ is the only non negligible decay process having a less contribution with BR ∼ 50%

at the starting of this mass range and drop to few percent at the end. In high mass range,

MH > 200GeV the decay process are almost the Higgs decay into massive gauge bosons.

The H → WW with BR∼ 60% and H → ZZ with BR∼ 30%. The H → tt̄ channel opens at

the MH ∼ 300MeV but it is not significant before the threshold MH ∼ 350Gev(top quark

threshold) with BR∼ 10% and it goes on decreasing for higher Higgs mass. Generally the

Higgs have intensions to couple with heavier particles, so it is observable that below theWW

threshold MH < 160GeV , the bb̄ is more attractive decay and for above MH > 160GeV ,

the decay process of WW and ZZ are best-liked.

The total decay width ΓH is shown in Fig(3.7). When the Higgs mass increases the total

Figure 3.7: Higgs Boson Total decay width [1]

decay width also increases. It is narrow in low mass range, the ΓH < 1MeV and wide in

intermediate mass range for MH ≥ 500GeV , ΓH is almost equal to its mass, that is very

uncommon. As in the case of W or Z boson in the detector we have a clear signal for Higgs
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mass particle, which is much higher than the decay width [17].
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Chapter4
Rare Radiative decay in the Standard

Model (b→ sγ)

4.1 Theoretical frame work of B decay

In this chapter we will further explain the concept of Wilson coefficient. We will describe

the effective field theory and basics of weak decays formalism [18]. and more about the

calculation of C7γ Wilson coefficient.

4.1.1 Effective Field Theory

Effective Field Theory (EFT) [19,20] is derived from Quantum Field Theory (QFT), which is

a technique to deal with multi-scale problems. Consider that QFT consists of characteristic

energy scale K and lets assume that we are interested at some lower scale physics where

E � K. To setup an EFT we take a cutoff µ below K scale and integrate out the heavy

degree of freedom which means that to remove the heavier particles w.r.t the cutoff scale.

The EFT contains light degree of freedom only and consider as limited case (low energy) of
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full theory. The effective Lagrangian is

Leff =
∑
n≥0

Cn(µ)On (4.1)

The Lagrangian is an infinite sum over the operators On, where Cn(µ) is coupling constant

known as Wilson coefficients. So one can ask about the predictability of this theory. The

answer to above question is by substituting the coupling constant Cn(µ) with dimensionless

constant cin . So the new form of Lagrangian is

Leff = L0 +
∑
n>0

∑
cin

cin
Kn

Oin (4.2)

The higher dimension of operator are suppressed with the increasing power of K. The lowest

dimensional operators is more important due to which one can truncate the series and only

the finite couplings and number of operators will remain.

4.1.2 Operator Product Expansion

We can illustrate the phenomena of operator product expansion (OPE) by simple example

of weak decay of c −→ sud̄ shown in Fig(4.1) The amplitude of the decay is

Figure 4.1: Left shows full theory and at Right the effective theory in c −→ sud̄
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MFull =
g2

2

8
V ∗csVud[ūs(ps)γµ(1− γ5)uc(pc)]

gµν

k2 −m2
w

[ūu(pu)γν(1− γ5)ud(pd)]

MFull =
GF√

2
V ∗csVud[ūs(ps)γµ(1− γ5)uc(pc)]

m2
w

k2 −m2
w

[ūu(pu)γ
µ(1− γ5)ud(pd)] (4.3)

GF is Fermi constant

GF√
2

=
g2

2

8m2
w

(4.4)

Expanding the amplitude to O( k2

m2
w

)

MFull = −GF√
2
V ∗csVud[ūs(ps)γµ(1− γ5)uc(pc)][ūu(pu)γ

µ(1− γ5)ud(pd)] +O(
k2

m2
w

) (4.5)

Where k is the momentum transferred due toW propagator and its value is small as compared

to mw. We can neglect the terms O( k2

m2
w

) without any hesitation from Eq(4.5). Now the full

amplitude will be approximately equal to

MFull ≈ −
GF√

2
V ∗csVud[ūs(ps)γµ(1− γ5)uc(pc)][ūu(pu)γ

µ(1− γ5)ud(pd)] (4.6)

The same result is obtained by the effective Hamiltonian

Heff =
GF√

2
V ∗csVud[s̄γµ(1− γ5)c][ūγµ(1− γ5)d] + higher Dim operator (4.7)

This corresponds to the low energy scale, where the heavier particles momenta is integrated

out and the higher dimension operator represented by the terms of order O( k2

m2
w

). The OPE

idea is grasped through above example.
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4.1.3 Effective Hamiltonian

The Effective Hamiltonian is the basic ingredient to discuss the weak decays

Heff =
GF√

2

∑
i

V i
CKMCi(µ)Oi(µ) (4.8)

Where Oi is a complete set of six dimensional local operators. The VCKM matrix elements

and Ci Wilson coefficient explain the strength of the operators. Both the Wilson coefficients

and local operator are dependent on the cutoff scale µ. Above the cutoff scale µ we have

high energy effects while at below cutoff scale µ we have low energy effect. All of the high

energy scale effects are absorbed into the Wilson coefficients and the low energy effects are

absorbed into local operators. Now the physics is separated into two regime i-e the low and

high energy regime. This is the significant property of the operator product expansion.

4.1.4 Wilson Coefficients

Wilson coefficient can be solved by choosing an appropriate operator basis that corresponds

to a set of operators. In this way the effective Hamiltonian is defined as the linear combination

of these operators. From the matching conditionMfull =Meff amplitude we get the Wilson

coefficient Ci(µ)

Mfull =Meff =
GF√

2

∑
i

V i
CKMCi(µ) < Oi(µ) > (4.9)

< Oi(µ) > bracket denoted matrix element to the relevant operator Oi(µ). This is called the

matching condition of the full theory with effective theory. The full theory deals with the

particles having dynamical degree of freedom while in effective theory we integrate out the

heavy degree of freedom. For larger µ scale we can use perturbation theory for matching and

Wilson coefficient depend upon the mass of the integrated out particles. From our previous
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example the effective theory matching condition is

Mfull =Meff =
GF√

2

∑
i

V i
CKMCi(µ) < Oi(µ) >

where

O = [s̄γµ(1− γ5)c][ūγµ(1− γ5)d]

We observe the Wilson coefficient Ci(µ) = 1 in the example. We did not take Quantum

Chromodynamic (QCD) effects in considerations because of the complication arising due to

a second operator, which has a complicated color structure. Therefore we would not include

QCD effect in thesis.

4.2 Flavor Changing Neutral Currents

Flavor changing neutral currents (FCNCs) are prohibited at tree level in the SM. For ex-

ample the b quarks has no direct coupling with s and d quarks. From Eq(2.27) we see for

electromagnetic current the flavor changing charged currents in the SM. FCNCs at loop level

can be mediated through W bosons. Fig(4.2) shows box and penguin diagrams which permit

flavor changing neutral transitions. We will focus our discussion on the penguin diagrams

throughout thesis. One of the most important characteristics of flavor physics is FCNCs.

They allow the measurement of CKM matrix and are very sensitive to Physics beyond stan-

dard model. In the SM FCNCs are suppressed. GIM mechanism is a tool to ensure the

rationale of the above discussions.
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Figure 4.2: Left shows Box and at Right Penguin is located

4.3 GIM Mechanism

S.L Glashow, J.Iliopolous, L.Maiani introduced the GIM mechanism [21] in 1970. Due to

this discovery they introduced fourth quark and the charm quark, which were not known at

that time. The GIM mechanism can be studied through the diagrams in Fig(4.2), where in

b −→ sγ the whole amplitude is the sum of the diagram consisting of u, c and t in the loop.

M =M(m2
u)VubV

∗
us +M(m2

c)VcbV
∗
cs +M(m2

t )VtbV
∗
ts (4.10)

The unitarity condition of CKM matrix is

VubV
∗
us + VcbV

∗
cs + VtbV

∗
ts = 0 (4.11)

If the masses of the quarks are mu = mc = mt then the amplitude have to be zero and still at

loop level FCNCs will be forbidden. But the quarks have different masses and particularly

mt � mu,mc. Therefore the amplitude will be proportional to ln(
m2
t

m2
w

). The top quark is

extremely massive, therefore the loop diagram is not strongly suppressed. Hence it is used

to test the SM or in search of new physics beyond SM.
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4.4 B decays Formalism

Rare B decays formalism is described in the low energy regime of effective field theory, where

the particles with heavy degree of freedom are integrated out. In this scenario we have W±

boson and the top quark t. We only deal with the dimension six operators and s quark mass

has been neglected due to the strong suppression by higher dimensional operators.

The effective Hamiltonian can be written at the scale µ = O(mb) for the decay b −→ sγ [22].

Heff = −GF√
2
V ∗tsVtb[

6∑
i=1

Ci(µb)Oi + C7γ(µb)O7γ + C8γ(µb)O8γ] (4.12)

Oi denotes the relevant local operators. Ci(µb) is defined as the Wilson coefficient, which

absorb the W and top quark mass completely. From Eq(4.11), the unitarity condition as we

know that

VcbV
∗
cs = −VubV ∗us − VtbV ∗ts

= −VtbV ∗ts(
VubV

∗
us

VtbV ∗ts
+ 1)

= −VtbV ∗ts +O(µ2)

In the loop u, c and t quarks appear but due to the condition µ2, VcbV ∗cs and VubV ∗us is sup-

pressed relative to VtbV ∗ts, therefore u and c are neglected.

The operators are defined as:
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Current-Current Operator

O1 = (s̄βcβ)V−A(c̄αbα)V−A

O2 = (s̄βcα)V−A(c̄αbβ)V−A

QCD Penguin Operator

O3 = (s̄βbβ)V−A
∑
q

(q̄αqα)V−A

O4 = (s̄βbα)V−A
∑
q

(q̄αqβ)V−A

O5 = (s̄βbβ)V−A
∑
q

(q̄αqα)V+A

O6 = (s̄βbα)V−A
∑
q

(q̄αqβ)V+A

where q = u, d, s, c, b

Magnetic Dipole Operator

O7γ = −emb

8π2
s̄ασµν(1 + γ5)bαF

µν

O8γ = −g3mb

8π2
s̄ασµν(1 + γ5)TααβbαG

a,µν

Where α, β = Color indices, e and g3 define as electromagnetic and strong coupling. F µν

and Ga,µν denote field strength tensor. (q̄αqβ)V±A = q̄αγ
µ(1 + γ5)qβ used as a short hand

notation.

Fig(4.3) shows the penguin diagrams that follow the Feynman rule, in which the magnetic

dipole operators come into being by insertion of mass on the external line which indicate
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b quark line for QED and QCD. Where ms << mb, therefore we neglect the s quark mass

Figure 4.3: (a)Photon.(b)Gluon

insertion and s quark has no contribution.

4.5 Electromagnetic Dipole Operator

O7γ is the electromagnetic dipole operator. Without QCD correction O7γ operator is respon-

sible for the b −→ sγ decay. The relevant wilson coefficient for O7γ operator is C7γ. When

we match the amplitude of full theory with the effective theory at the scale µW = O(mw),

then we are able to calculate C7γ. The diagram contributing at order of one loop is shown

in Fig(4.4). We get the Wilson coefficient C7γ when we solve the diagram having photon

contribution. Feynman Gauge is used, where it requires the contribution of diagrams in-

volving exchange of Goldstone bosons as shown in Fig(4.5) In calculation we define masses

of the light particles as zero. Only b quark mass is included till linear order. The term

m2
b = p2

b = 0. The detailed calculation of the diagrams are discussed in sec. 4.6. The Wilson

coefficient C7γ is obtained by the matching condition.

MFull =Meff =
GF√

2
V ∗tsVtbC7γ < O7γ > (4.13)

54



Figure 4.4: b −→ sγ decay at one loop

Figure 4.5: b −→ sγ decay at one loop contributing Goldstone bosons

At last we get the result for C7γ in agreement with [23]

C7γ(µW ) = −X
2

[
3
2
X2 + 5

12
X − 7

12

(X − 1)3
−

(3
2
X2 −X)lnX

(X − 1)4
] (4.14)

4.6 Calculation of C7γ in the Standard Model

For on-shell i.e. q2 = 0, p2
s = m2

s, p2
b = m2

b since ms << mb, so s quark mass=0, b quark

mass considered only to linear order i-e m2
b = 0.

55



Figure 4.6: Calculation of C7γ for b→ sγ in SM

Defined us(ps) ≡ s, ub(pb) ≡ b.

iM = e

∫
dkV ∗ts

gw√
2
s̄
γµ(1− γ5)

2

/k − /q +mt

[(k − q)2 −m2
t ]
γβ

/k +mt

k2 −m2
t

Vtb
gw√

2

γµ(1− γ5)

2
b

1

[(k − pb)2 −m2
w]
· ε(q)

iM = e
g2
w

8
V ∗tsVtb

∫
dk

[s̄γµ(1− γ5)(/k − /q +mt)γ
β(/k +mt)γµ(1− γ5)b]

[(k − q)2 −m2
t ][k

2 −m2
t ][(k − pb)2 −m2

w]
· ε(q) (4.15)

Denominator

For denominator we use Feynman parametrization technique.

1

[(k − q)2 −m2
t ][k

2 −m2
t ][(k − pb)2 −m2

w]

The general form up to 3 propagator are

1

ABC
=

∫ 1

0

dxdydzδ(x+ y + z − 1)2!

[xA+ yB + zC]3
(4.16)

Where,

A ≡ (k − q)2 −m2
t , B ≡ k2 −m2

t , C ≡ (k − pb)2 −m2
w

x = xy, y = 1− x, z = x(1− y).

xA+ yB + zC = xy[(k − q)2 −m2
t ] + (1− x)(k2 −m2

t ) + x(1− y)[(k − pb)2 −m2
w]
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After some algebraic calculation and Feynman parametrization procedure we get

∫ 1

0

dxdy

xy[(k − q)2 −m2
t ] + (1− x)(k2 −m2

t ) + x(1− y)[(k − pb)2 −m2
w]

=

∫
dxdy

[`2 −∆]3

Where k = `+ qxy + xpb − xypb and ∆ = m2
t (1− x+ xy) + x(1− y)m2

w.

So,

iM = 2

∫ 1

0

dy

∫ 1

0

xdx

∫
d`

Num

[`2 −∆]3
(4.17)

Now calculating Num.

Num = γµ(1− γ5)(/k − /q +mt)γ
β(/k +mt)γµ(1− γ5)

= 2γµ(/k − /q)γβ/kγµ(1− γ5)

= 2γµ(/qxy + x/pb − /q)γ
β(/qxy + x/pb − xy/pb)γµ(1− γ5)

= 2γµ[−(1− xy)/q + x(1− y)/pb]γ
β[xy/q + x(1− y)/pb]γµ(1− γ5) (4.18)

From eqution (4.18) we get four different terms to calculate.

γµ/qγ
β
/qγµ(1− γ5) = −4/qq

β(1− γ5)

γµ/qγ
β
/pbγµ(1− γ5) = −4/qp

β
b (1− γ5) + 2/qmbγ

β(1 + γ5)

γµ/pbγ
β
/qγµ(1− γ5) = −4mbq

β(1 + γ5) + 2mb/qγ
β(1 + γ5)

γ/pbγ
β
/pbγµ(1− γ5) = −4mbp

β
b (1 + γ5)

In several steps we obtain a numerator by using Dirac equation /pb(1 − γ
5)b = mb(1 + γ5)b

and ε(q).qβ = 0, ε(q) is a photon polarization , hence we can neglect the terms proportional
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to qβ.

Num = 8x(1− xy)(1− y)/qp
β
b (1− γ5)− 4mbx(1− xy)(1− y)/qγ

β(1 + γ5)

+4x2y(1− y)mbγ
β
/q(1 + γ5)− 8x2(1− y)2mbp

β
b (1 + γ5). (4.19)

Applying the Gordon identity

s̄
(pµb + pµs

2

)
(1− γ5)b =

1

2
mbs̄γ

µ(1 + γ5)b+
i

2
s̄σµνqν(1− γ5)b,

and below relations in (4.19)

/qγ
β =

1

2
({γβ, /q} − [γβ, /q]) ' −

1

2
[γβ, /q],

γβ/q =
1

2
([γβ, /q] + {γβ, /q}) '

1

2
[γβ, /q].

The simplified form of numerator is

Num = [2x2y(1− y) + 2x2(1− y)2]mb[γ
β, /q](1 + γ5). (4.20)

The Amplitude looks like

M = −iV ∗tsVtb
g2
w

8
Qe2

∫ 1

0

dy

∫ 1

0

xdx

∫
dl

Num

[`2 −∆]3
(4.21)

performing integration, the momentum integration
∫

1
[`2−∆]3

dl = − i
(4π)22∆

M = −iV ∗tsVtb
g2
w

8
Qe�2

∫ 1

0

dy

∫ 1

0

xdx
(−iNum

(4π)2�2∆

)
= − 1

(4π)2
V ∗tsVtb

g2
w

8
Qemb[γ

β, /q](1 + γ5)

∫ 1

0

dy

∫ 1

0

xdx
( [2x2y(1− y) + 2x2(1− y)2]

∆

)
︸ ︷︷ ︸

I

(4.22)
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Calculating I

I =

∫ 1

0

dy

∫ 1

0

dxx
[2x2y(1− y) + 2x2(1− y)2]

∆

=

∫ 1

0

dy

∫ 1

0

dxx
[2x2y(1− y)(�y + 1−�y)]

∆

Where ∆ = m2
t (1− x+ xy) + x(1− y)m2

w.

I =

∫ 1

0

dy

∫ 1

0

dx
2x3(1− y)

∆

Using mathematica for solving I we get

I =
5X3 − 9X + 6Xln(X)(1− 2X) + 4

6m2
w(X − 1)4

(4.23)

Where, X =
m2
t

m2
w

Plugging I in (4.22)

MFull = − 1

(4π)2
V ∗tsVtb

g2
w

8
Qe
(5X3 − 9X + 6Xln(X)(1− 2X) + 4

6m2
w(X − 1)4

)
mb[γ

β, /q](1 + γ5)

(4.24)

From effective theory

Meff =
GF√

2
V ∗tsVtbC7γ < O7γ > (4.25)

O7γ = −emb

8π2
s̄σµν(1 + γ5)bFµν

σµνFµν −→ −2iσµνqν = −�2
i2

�2
[γµ, γν ]qν

= [γµ, /q]

O7γ = −emb

8π2
s̄[γµ, /q](1 + γ5)b.
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Meff =
GF√

2

(−emb

8π2

)
V ∗tsVtbC7γ s̄[γ

µ, /q](1 + γ5)b

GF√
2

=
g2
w

8m2
w

Meff = − g2
w

8m2
w

emb

8π2
V ∗tsVtbC7γ s̄[γ

µ, /q](1 + γ5)b (4.26)

As comparison ofMFull =Meff demands

C7γ =
5X3 − 9X + 6Xln(X)(1− 2X) + 4

12(X − 1)4
(4.27)

The other diagrams are similarly calculated by applying these steps , Eq(4.14) is the sum of

these calculated individual diagrams shown in Fig(4.4) and (4.5).
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Chapter5
Beyond Standard Model

5.1 Chiral Anomaly

Anomaly cancellation is a key characteristic of SM. It breaks the symmetry by including

quantum effects, anomaly cancellation is important for quantum consistency that is required

for any gauge theory. SM,that is based on gauge group SU(3)c⊗SU(2)L⊗U(1)Y ,is anomaly

free. To renormalize the theory , the conservation law must hold for vector and axial vector

currents. The chiral transformation ψ → eiα(x)γ5
ψ holds for Dirac lagrangian

L = iψ̄γµDµψ −mψ̄ψ. (5.1)

As a consequence

∂µ(ψ̄γµγ5ψ) = 2imψ̄γ5ψ (5.2)

ψ̄γµγ5ψ defined as Jµ5 axial current which is conserved for massless limit and fermions are

massless before electroweak (EW) symmetry breaking . In these massless limits the triangular

loop diagram, as shown in Fig. 5.1 , having one axial and two vector currents at vertices
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leads to anomaly.

∂µJ
µ
5 = (

g

4π
)2εµντκFµνFτκ. (5.3)

where g is coupling constant and Fµν is field strength tensor.For an EW theory renormaliz-

ability, it is essential to be anomaly free.

Lagrangian can be written for the gauge coupling bosons and fermions.

Figure 5.1: Triangular anomaly diagram consists of one axial vector and two vector currents,
individually located at each vertex

Lint = iψ̄Lγ
µ(∂µ + igTLa Wa,µ)ψL + iψ̄Rγ

µ(∂µ + igTRa Wa,µ)ψR. (5.4)

The lagrangian(5.4) gives the result for current jµ = ∂L
∂(∂µφ)

δφ as follows

jaµ = ψ̄γµ

(1− γ5

2

)
TLa ψ + ψ̄γµ

(1 + γ5

2

)
TRa ψ (5.5)

TLa and TRb are the hermitian matrices that obey the lie algebraic rules.

[TLa , T
L
b ] = ifabcT

L
c , [TRa , T

R
b ] = ifabcT

R
c

We define unitary transformation such that

ψ → Uψ Where as U = eiθTR .

ψ∗ → U∗ψ Where as U∗ = eiθ(−TR) = eiθTR̄ .
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Where as from above condition

TR̄ = −T ∗R (5.6)

Where TR̄ = U−1T aRU if U = I → real representation, U 6= I → pseudoreal real representa-

tion.

[T aR, T
b
R] = ifabcTCR

[−T a∗R ,−T b∗R ] = ifabc(−T c∗R )

[T aR̄, T
b
R̄] = ifabc(T cR̄)

A(R)dabc =
1

2
Tr[T aR{T bR, T cR}] (5.7)

A(R̄)dabc =
1

2
Tr[T aR̄{T

b
R̄, T

c
R̄}] (5.8)

Now taking complex conjugate of Eq(5.7)

−A(R)dabc =
1

2
Tr[−T a∗R {−T b∗R ,−T c∗R }] (5.9)

A(R̄)dabc =
1

2
Tr[T aR̄{T

b
R̄, T

c
R̄}] (5.10)

From Eq(5.9) and (5.10) we conclude that

A(R̄) = −A(R) (5.11)

To check the SM anomaly, we simply consider the one generation and other two generations

are considered in the similar way. The possible anomalies of SM structure by using Table(2.2)

contents are
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• SU(3)c ⊗ SU(3)c ⊗ SU(3)c:

2A(3) + A(3̄) + A(3̄)

= 2A(3) + 2A(3̄) = 2[A(3)− A(3)]

= 0

• SU(2)L ⊗ SU(2)L ⊗ SU(2)L:

3A(2) + A(2) = 4A(2)

due to real representation A(2) = 0

• U(1)Y ⊗ U(1)Y ⊗ U(1)Y :

The U(1) generators are just numbers, we just add the cube of hypercharge of particles

3× 2(
1

6
)3 + 3(

−2

3
)3 + 3(

1

3
)3 + 2(

−1

2
)3 + 1(1)3

=
−3

4
+

3

4
= 0

• SU(3)c ⊗ SU(3)c ⊗ SU(2)L:

These are canceled out because of traceless property

1

2
Tr(τa[λa, λb]) =

1

2
Tr[λa, λb]Tr[τa] = 0 ∵ Tr[τa] = 0

similarly SU(2)L ⊗ SU(2)L ⊗ SU(3)c also discarded.

• SU(3)c ⊗ U(1)Y ⊗ U(1)Y and SU(2)L ⊗ U(1)Y ⊗ U(1)Y :

They also follow the above same condition and get cancelled i.e. Tr[λa] = 0.

• SU(3)c ⊗ SU(3)c ⊗ U(1)Y :

The contribution of particles to this anomaly SU(3) and U(1) have to obey the following
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condition

Tr[{T a, T b}T c] =
1

2
δabT c =

1

2

∑
Yi

=
1

2
[(

1

6
)(2) + (1)(

−2

3
) + (1)(

1

3
)]

=
1

2
[
1

3
− 2

3
+

1

3
] = 0

It is observed from the above conditions that the anomaly gets cancelled out in the SM

accidently, hence we come to the conclusion that SM is anomaly free.

5.2 Extension to SM

The literature explains various types of Extensions to SM. For example Super Symmetry

that explain the symmetry between fermions and bosons, Minimal Super Symmetric Model

(MSSM),Grand Unified Theory (GUT), Extra dimensions, String theory etc. Although there

is no experimental verification for such type of theories, yet there are possibilities to build

new model by theorist. Adding Vector-like particle [24] generally R ⊕ R̄ to the SM is also

one of the Extensions to SM. The motivation behind this theory is the anomaly cancellation

by itself followed by the following condition.

A(R̄) = −A(R)

A(R⊕ R̄) = A(R)⊕ A(R̄)

= A(R)− A(R) = 0

These particles can be called more specifically as Standard Vector-like Particles. We call

it standard because these Vector-like Particles transform in the same way as SM fermions.

Standard Vector-like Particles and their contents are described in Table(5.1)
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Table 5.1: Standard Vector-like Particles
Notation SU(3)c ⊗ SU(2)L ⊗ U(1)Y

Q⊕ Q̄ (3, 2, 1
6
)⊕ (3̄, 2, −1

6
)

U ⊕ Ū (3, 1, 2
3
)⊕ (3̄, 1, −2

3
)

D ⊕ D̄ (3, 1, −1
3

)⊕ (3̄, 1, 1
3
)

L⊕ L̄ (1, 2, 1
2
)⊕ (1, 2, −1

2
)

E ⊕ Ē (1, 1, 1)⊕ (1, 1,−1)
G (8, 1, 0)
W (1, 3, 0)

Adjoint representation condition

(TAa )bc ≡ −ifabc

(T Āa )bc = (TAa )∗bc = −ifabc = (TAa )bc

Those particles having adjoint representation are not the Vector-like particles due to the

reason they have no contribution to the anomalies. Hence in the Table(5.1) shows that G

and W do not demand to be Vector-like particle because they are associated to SU(3) and

SU(2) adjoint representations respectively.

We have already calculated the various Higgs decay in chap. 3, by implying the grasped idea

to di-photon resonance as shown in Fig. 5.2. The direct coupling of gauge singlet S with

Figure 5.2: Production and di-photon decay at loop level containg gauge singlet S

SM quarks is not possible to produce S from gluon fusion. After that S can be decayed

into gg(gluons) and γγ(photons) through loop diagrams as shown in Fig. 5.2 via standard

Vector-like particles. When LHC announces the di-photon excesses, the gg → S → γγ signal
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has been investigated and analyzed. The S production dominated by gluon fusion, can be

delineated by decay widths: S → gg and S → γγ

σ(gg → S → γγ) =
Cgg

smSΓtotal
Γ(S → gg)Γ(S → γγ) (5.12)

Where Cgg is the integral that describes the parton distribution functions of gluons, which

is numerically defined as [25]: Cgg = 2137 at
√
s = 13TeV and Cgg = 174 at

√
s = 7TeV .

Where ms and Γtotal are defined as mass and total decay width of S respectively. The S

decay to gluons and photons are defined [26].

Γ(S → gg) =
α2
sm

3
S

128π3
|
NF∑
a=1

yaaF
ma
F

A 1
2
(τa) +

NF∑
b=1

ybbF
mb
F

A 1
2
(τb)|2 (5.13)

Γ(S → γγ) =
α2m3

S

256π3
|
NF∑
a=1

yaaF
ma
F

Nc(
2

3
)2A 1

2
(τa) +

NF∑
b=1

ybbF
mb
F

Nc(−
1

3
)2A 1

2
(τb)|2 (5.14)

τi defined as τi =
m2
S

4(miF )2 , where i = a, b. A 1
2
is a loop function and defined as

A 1
2
(τ) =

2[τ + (τ − 1)f(x)]

τ 2

Where f(x) function reads as

f(x) =


arcsin2√x, for x ≤ 0.

−1
4
[log

1+
√

1− 1
x

1−
√

1− 1
x

− iπ]2, for x > 1.

(5.15)

We replace the Higgs H with gauge singlet S. The reason is H, S and Vector-like particles

Q, Q̄ transform under SU(3)c ⊗ SU(2)L ⊗ U(1)Y as (1, 2, 1
2
), (1, 1, 0) and (3, 2, 1

6
), (3̄, 2, −1

6
)

respectively. Let’s check the consistency of the theory as shown below.
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HQ̄Q transform under SU(3)c ⊗ SU(2)L ⊗ U(1)Y

SU(3) : 1× 3̄× 3 = 1⊕ ...

SU(2) : 2× 2× 2 6= 1⊕ ...

U(1) :
1

2
− 1

6
+

1

6
6= 0

SQ̄Q transform under SU(3)c ⊗ SU(2)L ⊗ U(1)Y

SU(3) : 1× 3̄× 3 = 1⊕ ...

SU(2) : 1× 2× 2 = 1⊕ ...

U(1) : 0− 1

6
+

1

6
= 0

The following condition must hold to respect the theory to be consistent for all possibilities

of gauge singlet S, Higgs H, all Vector-like and SM particles. Whereas vector-like and SM

particles are denoted by ψ.

• Hψψ̄ transform under SU(3)c

1× 3× 3̄ X

1× 1× 1̄ X

1× 1× 3 ×

1× 1× 3̄ ×

68



• Sψψ̄ transform under SU(3)c

1× 3× 3̄ X

1× 1× 1̄ X

1× 1× 3 ×

1× 1× 3̄ ×

• Hψψ̄ transform under SU(2)L

2× 2× 2 ×

2× 1× 1 ×

2× 1× 2 X

• Sψψ̄ transform under SU(2)L

1× 2× 2 X

1× 1× 1 X

1× 1× 2 ×

• Hψψ̄ and Sψψ̄ transform under U(1)Y

∑
Yi = 0 X∑
Yi 6= 0 ×

As from the above discussion it is clear that H does not couple with Vector-like particles

through yukawa coupling therefore the gauge singlet S is replaced and it couples through

yukawa coupling. This may work for new physics beyond standard model.
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From Fig. 5.3 the lagrangian [27] can be written as

Figure 5.3: S couples to SM gauge bosons involving a Vector-like fermions in loop

LBSM = LSM + Y SFF̄ +
m2
s

2
|S|2 +

λ

4!
S4 +mF F̄F + kinetic term. (5.16)

As F ≡ Q,U,D,L,E Vector-like particles

The motivation given by Vector-like theory can be applied further on flavor physics sector.

The Wilson coefficient C7γ in the SM is calculated in sec. 4.6 that can be calculated by

applying Vector-like particle with gauge singlet instead of SM particles. Our future goal is

to calculate the diagram as shown in Fig. 5.4 by using the motivation of above discussion.

In these types of penguin diagrams as shown in Fig. 5.4 that are involved in calculation of

Figure 5.4: Loop diagrams consisting of gauge singlet S and Vector-like fermions F

C7γ, we replace W with S and instead of SM fermion we want to use Vector-like fermions.
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Conclusion

The construction of SM Lagrangian was analyzed by using the tool i.e. gauge theory and

renormalizability. SM structure has been reviewed briefly and put forward the concept of

Higgs mechanism to realize masses in gauge theory. Despite plentiful successes of the SM,

still Higgs boson was not discoverd. For the existence of Higgs boson it is mandatory to

analyze its production and decay modes. There are theoretical and experimental constrains

on the Higgs mass range. In this dissertation we explicitly calculated the decay rate at

tree level such as H → ff̄, AA where A = W±, Z and at loop level such as H → gg

and γγ and analyzed its branching ratio. The loop level calculation exhibits divergences

and to remove these divergences we have used the technique of dimensional regularization,

Feynman parametrization etc. Furthermore, we introduced the intuition towards effective

field theory, which is the precise tool in the description of weak decays described by effective

Hamiltonian that can be written as the summation of local operators with weight factor of

Wilson coefficients, which can be determined by using the matching condition of effective to

full theory. We also studied magnetic dipole operator which governs the decay b → sγ and

computed explicitly the corresponding Wilson coefficient C7γ. When LHC announced the di-

photon excesses, the gg → S → γγ signal was investigated and analyzed. The S production

dominated by gluon fusion, can be delineated by decay widths: S → gg and S → γγ. In

which the gauge singlet S replaced the Higgs H. We applied the above motivation to flavor
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Physics. As we know that SM is verified by experimental data, but there are still some

problems with SM, to solve these problems one goes beyond SM by using various types of

extensions. We used "adding Vector-like particles", that is one of the extensions to SM. Our

future perspective is to calculate C7γ Wilson coefficient penguin loop diagrams by replacing

the SM particles with Vector-like particles and gauge singlet.

72



Bibliography

[1] A. Djouadi, “The anatomy of electroweak symmetry breaking: Tome i: The higgs boson

in the standard model,” Physics reports, vol. 457, no. 1, pp. 1–216, 2008.

[2] M. K. Gaillard, P. D. Grannis, and F. J. Sciulli, “The standard model of particle physics,”

Reviews of Modern Physics, vol. 71, no. 2, p. S96, 1999.

[3] U. Collaboration, “G. arnison et al,” Phys. Lett. B, vol. 177, p. 244, 1986.

[4] C. Quigg, Gauge theories of the strong, weak, and electromagnetic interactions. Prince-

ton University Press, 2013.

[5] C. Delaere, Study of WW decay of a Higgs boson with the ALEPH and CMS detectors.

PhD thesis, Leuven U., 2005.

[6] S. Weinberg, “A Model of Leptons,” Phys. Rev. Lett., vol. 19, pp. 1264–1266, 1967.

[7] C. Burgess and G. Moore, The standard model: A primer. Cambridge University Press,

2006.

[8] A. Fayyazuddin and M. Riazuddin, A modern introduction to particle physics. World

Scientific, 1992.

[9] S. Weinberg, “A model of leptons,” Physical review letters, vol. 19, no. 21, p. 1264, 1967.

73



[10] M. E. Peskin, An introduction to quantum field theory. Westview press, 1995.

[11] V. Koch, “Introduction to chiral symmetry,” arXiv preprint nucl-th/9512029, 1995.

[12] J. Bernstein, “Spontaneous symmetry breaking, gauge theories, the higgs mechanism

and all that,” Reviews of modern physics, vol. 46, no. 1, p. 7, 1974.

[13] J. Charles, A. Höcker, H. Lacker, S. Laplace, F. Le Diberder, J. Malclès, J. Ocariz,

M. Pivk, and L. Roos, “Cp violation and the ckm matrix: Assessing the impact of the

asymmetric b factories,” The European Physical Journal C-Particles and Fields, vol. 41,

no. 1, pp. 1–131, 2005.

[14] K. Nakamura, P. D. Group, et al., “Review of particle physics,” Journal of Physics G:

Nuclear and Particle Physics, vol. 37, no. 7A, p. 075021, 2010.

[15] L. Resnick, M. Sundaresan, and P. Watson, “Is there a light scalar boson?,” Physical

Review D, vol. 8, no. 1, p. 172, 1973.

[16] A. Vainshtein, M. Voloshin, V. Zakharov, and M. Shifman, “Low-energy theorems

for higgs meson interaction with photons,” Sov. J. Nucl. Phys.(Engl. Transl.);(United

States), vol. 30, no. 5, 1979.

[17] A. E. Baas, “Theoretical and experimental aspects of the higgs mechanism in the stan-

dard model and beyond,” 2010.

[18] Y. Grossman, “Introduction to flavour physics,” in LHC Phenomenology, pp. 35–80,

Springer, 2015.

[19] M. Neubert, “Effective field theory and heavy quark physics,” arXiv preprint hep-

ph/0512222, 2005.

[20] I. Z. Rothstein, “Tasi lectures on effective field theories,” arXiv preprint hep-ph/0308266,

2003.

74



[21] S. L. Glashow, J. Iliopoulos, and L. Maiani, “Weak interactions with lepton-hadron

symmetry,” Physical review D, vol. 2, no. 7, p. 1285, 1970.

[22] A. J. Buras, “Weak hamiltonian, cp violation and rare decays,” arXiv preprint hep-

ph/9806471, 1998.

[23] B. Grinstein, R. Springer, and M. B. Wise, “Strong-interaction effects in weak radiative

b-meson decay,” Nuclear Physics B, vol. 339, no. 2, pp. 269–309, 1990.

[24] V. Barger, N. Deshpande, J. Jiang, P. Langacker, and T. Li, “Implications of canonical

gauge coupling unification in high-scale supersymmetry breaking,” Nuclear physics B,

vol. 793, no. 1, pp. 307–325, 2008.

[25] R. Franceschini, G. F. Giudice, J. F. Kamenik, M. McCullough, A. Pomarol, R. Rattazzi,

M. Redi, F. Riva, A. Strumia, and R. Torre, “What is the γγ resonance at 750 gev?,”

Journal of High Energy Physics, vol. 2016, no. 3, p. 144, 2016.

[26] J. Kawamura and Y. Omura, “Diphoton excess at 750 gev and lhc constraints in models

with vectorlike particles,” Physical Review D, vol. 93, no. 11, p. 115011, 2016.

[27] B. Dutta, Y. Gao, T. Ghosh, I. Gogoladze, and T. Li, “Interpretation of the diphoton

excess at cms and atlas,” Physical Review D, vol. 93, no. 5, p. 055032, 2016.

75


	Contents
	List of Figures
	Introduction
	Standard Model
	Gauge Theory
	Renormalizability
	The Standard Model Lagrangian
	Gauge Symmetry Group
	Fermionic Field in SM
	Higgs Lagrangian
	Higgs and Yukawa Terms 

	Spontaneous Symmetry Breaking 
	The 4 Theory
	Goldstone's Boson(Theorem)
	Higgs Mechanism

	CKM matrix and Fermion masses
	Standard Parametrization


	Higgs Decay Modes
	Coupling of Higgs Boson
	Higgs Decay to fermion antifermion
	Higgs decay to Weak Boson
	Higgs Decay to Gluons
	Higgs decay to Di-Photon
	Branching Ratio and Total Decay Width

	Rare Radiative decay in the Standard Model (bs)
	Theoretical frame work of B decay
	Effective Field Theory 
	Operator Product Expansion
	Effective Hamiltonian
	Wilson Coefficients

	Flavor Changing Neutral Currents
	GIM Mechanism
	B decays Formalism
	Electromagnetic Dipole Operator
	Calculation of  C7 in the Standard Model

	Beyond Standard Model
	Chiral Anomaly
	Extension to SM

	Bibliography
	Binder2.pdf
	Qazi Maaz TH-4
	Qazi Maaz Accept Cert


