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Abstract

In this dissertation two quantum information processes are studied, entanglement

swapping and quantum dense coding. Entanglement swapping is used as a funda-

mental building block in quantum relays and quantum repeaters for long distance

communication. Quantum dense coding is a process of communication by sending

two bits of classical information using only one qubit.

These processes are described here in realistic scenarios by taking into account

imperfect sources of entangled photon pairs and detectors. Moreover, detectors used

in quantum optical experiments occasionally produce dark counts and do not always

detect incoming photons. These imperfections need to be taken into account when

performing calculations involving detectors as in the cases of entanglement swapping

and dense coding.

The conditional probabilities of different imperfect detectors and the state gen-

erated by two parametric down-conversion (PDC) sources after entanglement swap-

ping are also discussed here. The four fold coincidence probability for entanglement

swapping process including all imperfections is discussed in this dissertation. Fur-

thermore, we modeled realistically the experimental dense coding process up to some

extent. In this case we calculated the quantum state produced by a single realistic

PDC source. We also calculated the probability to detect this state at the detectors

in the case of ideal detection. The effect of nonlinearity of PDC crystal on this

probability is also discussed here.
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Chapter 1

Introduction

Early in the twentieth century physicists start to understand the behaviour of mat-

ter below the atomic level. The first and the foremost task is always measurement

centred on the smallest quantity of matter that could be identified: the “quanta”-

hence “ quantum” physics and later “qubit” in “quantum” information. Informa-

tion science is the remarkable addition of that century. Quantum information and

computation is the study of information processing tasks that can be achieved using

quantum mechanical systems. Like many other simple and intense ideas, it was long

ago that somebody thought of doing quantum information processing. To see why

this is the case, we will have to go back in history to look at each of the fields which

has contributed fundamental ideas to quantum mechanics, quantum information,

quantum computation, computer science, information theory and cryptography. To

get some feel of these different but essential perspectives which have come together

in quantum information and computation, one should think oneself as the scientist

of each of the fields described above. It is now expected that quantum information

will play a revolutionary role in the next era of communication science. However, it

is still a great challenge to the physicists and engineers to develop the methods for

making large scale quantum information processing techniques.

Entanglement is a term used in quantum theory to describe the way that parti-

cles of energy/matter can become correlated to predictably interact with each other

regardless of how far apart they are. To understand quantum entanglement, differ-
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CHAPTER 1. INTRODUCTION 2

ent ideas and words must be explained, especially the idea of photons. The photon

is a key concept in physics, and entanglement has the similar importance in quan-

tum information processing that’s why there is need to understand their behavior

completely. When a photon (usually polarized laser light) passes through matter,

it will be absorbed by an electron. Eventually after emitting photon electron will

come back to its ground state . Certain crystal structures increase the probability

that the photon will split into two photons of longer wavelengths than the original

one. Moreover we know that longer wavelength means lower frequency and thus less

energy. When the incident photon splits into two photons, the resulting photon pair

is considered entangled.

The process of using crystals to split incoming photons into pairs of photons is

usually called parametric down-conversion.(see sec.2.4)

Normally one of the split photons is aligned in a horizontal polarized cone and

the other in a vertically polarized cone. By adjusting the experimental equipment

these two cones can be made to overlap. Even though the polarization of the original

incident photon is not known, quantum mechanics predicts they differ. In quantum

information the simplest possible example of entangled states are Bell states. These

are defined as a maximally entangled states of two qubits. An EPR pair is a pair of

qubits which jointly are in Bell states, that is, entangled with each other. The four

maximally entangled Bell states of a polarization entangled qubits can be written

as,

|φ±〉 =
|H〉A ⊗ |H〉B ± |V 〉A ⊗ |V 〉B√

2
, (1.0.1)

|ψ±〉 =
|H〉A ⊗ |V 〉B ± |V 〉A ⊗ |H〉B√

2
. (1.0.2)

Equation (1.0.1) illustrates that if the first party, let us say A, measures the qubit

the outcome will be perfectly random either |HA〉 or |VA〉; either possibility having

probability 1/2 where H and V represents the horizontal and vertical polarizations,

respectively, of the photons while the subscripts A and B represents two parties.

But if the second party, let us say B, measures the qubit, the outcome will be the

same. Although the outcomes seem random, they are correlated. So far there is
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nothing special: perhaps the two particles agreed in advance. To illustrate the state

in Eq.(1.0.2), if an entangled photon strikes at a vertically polarized filter it may

or may not pass through it. If it does, then its entangled partner will not, because

the instant when the polarization of first photon is known, the second photon’s

polarization will known to be exactly opposite. It is the instant communication

between the entangled photons to indicate each other’s polarization that lies at the

heart of quantum entanglement.

Entanglement is the most counter intuitive-feature of the quantum mechanics.

It is at the heart of EPR paradox, of Bell’s inequalities, and of the discussions of

the nonlocality of quantum mechanics. Quantum theory is nonlocal in the sense

that it predicts the correlations between the measurement outcomes that cannot be

explained by the theories based completely on local variables. This prediction is

confirmed by many experiments using pairs of entangled photons generated by a

common source [1] or by having two particles interact with each other [2]. Also in

1993 Zukowski and colleagues [3] noticed that a common source is not necessary:

nonlocality can exhibit itself also when the measurements are carried out on par-

ticles that have no common past ever, but have been entangled via the process of

entanglement swapping. This alternative method to obtain entanglement is to make

use of a projection of the state of the two particles onto an entangled state. A direct

interaction between the particles is not necessary for this projection measurement.

Entanglement swapping processes given in Fig.(1.1) and Fig.(1.2) consist of two

independent sources each generating a pair of particles and subject one particle from

each pair B and C to an appropriate measurement, called Bell measurement which

will be discussed in subsequent chapters in detail. This measurement projects the

remaining two particles A and D which are totally independent of each other, onto

an entangled state that may exhibit nonlocal correlations. This striking application

of the projection postulate is referred to as entanglement swapping.

Entanglement swapping plays an important role in the context of quantum infor-

mation science. For instance, it is the building block of protocols like quantum re-

peaters or quantum relays [3] proposed to increase the maximal distance in quantum

communication. The first experimental demonstration of entanglement swapping
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Figure 1.1: Scheme of principle of entanglement swapping.

Figure 1.2: Principle of entanglement swapping. Two EPR sources produce two pairs of entangled photons, pair

A-B and pair C-D. One photon from each pair (photons B and C) is subjected to a Bell-state measurement. This

results in projecting the other two outgoing photons A and D onto an entangled state. Change of the shading of the

lines indicates the change in the set of possible predictions that can be made.

was reported in 1998, using two pairs of a polarization qubits encoded in photons

around 800 nm created by two different parametric down-conversion (PDC) events

in the same nonlinear crystal [4]. More recently (2002), an experiment with en-

tangled qubits in Fock basis has been performed [5]. It involves only two photons

instead of four. All the experiments conducted so far have demonstrated the entan-

glement swapping effect over short distances (of the order of meters). However, most

processes in quantum information require this swapping effect to occur over large

distances.

Two other forms of quantum information transmissions that have no classical
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counterpart however, closely related to each other, are quantum teleportation [6]

and quantum dense coding [7]. The first stage in these processes is that in which

an entangled state (often called an Einstein-Podolsky-Rosen or EPR pair) is shared

between two parties followed by a second stage in which this shared entangled state

is used to achieve, transmission of a qubit via two classical bits and transmission

of information of two classical bits by sending only one qubit, respectively. Thus

quantum dense coding provides a method by which the classical information of two

bits can be transmitted by communicating only one qubit of quantum information.

Entanglement by itself cannot be used to transmit a classical data, however it can

reduce the amount of classical communication required to perform a distributed

computation [3]. The latter refers to the amount of communication required to

evaluate a function of several inputs in remote locations. For example, if both Alice

and Bob have separate appointment calenders with n-time slots, then O(n) bits of

information are required to determine if there is a time when both are free. However,

if they are allowed to share prior entanglement, or if they are allowed to communicate

using quantum bits (qubits) rather than the bits, the communication complexity is

reduced to O(
√
n log n) [8].

The dense coding protocol is based on a counter-intuitive idea of instant com-

munication or transmission of information through quantum correlations between

entangled states. The theoretical model of quantum dense coding is given in sec.4.2.

The concept of dense coding was noted by EPR in 1935, but was ignored in practice

until the development of the theory of quantum computing and quantum information

in the early 90′s; when many researchers all around the world got into experimentally

showing the validity of the phenomena predicted by the theory of EPR pairs. Now

when entanglement entered in to quantum theory, the EPR article became a hin-

drance for quantum theoreticians. But through Bell’s inequalities it has been shown

that randomness is inherent in the quantum description of reality [9]. This effect has

been shown even further with experimental breakthroughs in quantum computing

protocols, including the dense coding protocol.

The proposal of the dense coding protocol making use of the properties of en-

tangled particles revived research in quantum information and quantum computing
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around the world. In their paper on quantum communication using EPR pairs Ben-

nett and Wiesner [6], have shown that the maximally entangled Bell states are ideal

for quantum communication methods, particularly in quantum dense coding. In that

article they described the dense coding process theoretically, and also proposed that

it would be extremely difficult to achieve this task through spin entangled states.

However, they also proposed experimental dense coding using a polarized entangled

photons and parametric down-conversion in crystals.

The earlier mentioned processes i.e superdense coding and teleportation have re-

ceived a lot of experimental attention recently. In this context the first experimental

realization of dense coding was achieved by Mattle et al [10]. They used degener-

ate noncollinear type-II down-conversion in nonlinear BBO (Beta-Barium-Borate)

crystals to generate polarization entangled photon pairs. The two parties, Alice and

Bob, share that entangled pair and Bob communicates with Alice by sending her

some information through polarization encoding. For this purpose, the necessary

transformation of Bob’s particle was attained by using a half-wave retardation plate

for changing the polarization (i.e from H → V or V → H) and quarter wave-plate to

generate the polarization phase shift 1. This encoded beam was then combined with

the other beam at Alice’s Bell-state-analyzer. Two channel polarizers are placed

in each of its out ports and proper coincidence analysis between four single-photon

detectors. Using such kind of configuration, one can distinguish the Bell states due

to different outcomes of the interference at the beam splitter. Thus, two bits of

information can be sent via Bob’s two state particle to Alice, who finally gets the

encoded information by determining the Bell state of the entangled two state particle

system.

The experimental realization of quantum processes has never been an easy task

for experimentalists. There occur different kinds of limitations to perform quantum

processes practically and to construct physical networks. We are going to discuss

the difficulties that occur in the field of quantum communication especially in entan-

1The component polarized along the axis of the quarter-wave plate is advanced only by π
2 relative

to the other. Reorienting the optical axis from vertical to horizontal causes a net phase change of

p between |H〉 and |V 〉.
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glement swapping and quantum dense coding. One of these problems was to have

a perfect source that can generate an ideal single-photon. A single-photon source

can be created by such a pair just by detecting one photon of the pair, and then

knowing that its partner was created at the same time. In 1991, Ekert proposed a

method of secure communication by considering a source that emits a pair of spin

half particles in a singlet state [11]. These two particles fly off to two distant parties

who need to communicate with each other, where they are detected by analyzers

aligned randomly in either of two orthogonal basis. In 1970, Burnham and Wein-

berg [12] demonstrated spontaneous parametric down-conversion (SPDC) to create

an entangled photon pair. In parametric down-conversion an entangled photon pair

is created by pumping a laser field into a nonlinear crystal [13]. Photons pass-

ing through the crystal can decay into a pair of identical or non-identical photons.

Multi-photon pair source was also considered when analyzing entanglement swap-

ping. When multi-photon events occur it is possible that one of the two photons

involved in the swap is actually from a different pair and the entanglement required

for a successful swap is absent altogether. However, this type of occurrence leads

to error in swapping process and limits the fidelity of an extended swapping oper-

ation. All methods currently available for generating photon pairs cannot create a

perfect single-photon but there occur multipair sources as well which cause the error

in perfect communication.

Quantum networking becomes much more difficult when we talk about long dis-

tance transmissions. For long distance quantum communication employing quantum

repeaters [14] or relays [3], it is particularly important to examine the effect of how

entangled states after entanglement swapping are affected by the experimental im-

perfections. Collins et al. [3] studied the impact of transmission losses and detectors

noise as well as dark counts (i.e detector clicks even if there is no photon) on the

performance of quantum relays. Brask and Sorensen have studied the effect of multi

excitation events in PDC in addition to imperfect detectors and transmission losses

on quantum repeater performance has been examined perturbatively [3]. Imper-

fect detectors are among the main hurdles in implementing quantum communication

networks. These imperfections include noise of the detectors and dark counts which



CHAPTER 1. INTRODUCTION 8

reduce the efficiency of receiving data. Modern technology has not been able to

make perfect detectors as yet. Photons can transfer information at the speed of light

through a free space or down a fibre optic cable, but they are easily absorbed during

collisions and lost along the way. This is what we call channel losses or transmission

losses, however this loss of photons during transmission can easily be accounted for

with a factor on the transmission success probability

t = 10
−lβ
10 , (1.0.3)

where t is the transmission coefficient or probability of successful transmission, l is

the distance traveled and β is the loss coefficient of transmission medium in units of

dB [3]. The probability of photon detection at some detector becomes smaller than

the probability of dark counts at that detector for distances larger than 100km. At

that point it is no longer possible to communicate, as signal to noise ratio becomes

too small. Thus, such limitations together with channel losses are the main factors of

insecure less efficient quantum communication in physical world over long distances.

Experimental realization of such quantum processes has gained importance be-

cause of their implementations in real world. Theoretical understanding of these

processes has become enormously important to design physical networks. The main

motivation behind this dissertation is to give a realistic scheme for entanglement

swapping and quantum dense coding discussing practical limitations which could be

useful to pre-analyze the efficiency of quantum communication over long distances.

These limitations include all kind of imperfections which reduce the efficiency of these

quantum processes. The reviewed work, is mostly based on entanglement swapping.

In chapter 2, imperfect devices are modeled where generation of single-photon pairs,

probability of imperfect detectors to detect these photons and transmission losses

are discussed in detail. In chapter 3, the state after entanglement swapping is ana-

lyzed by including such imperfections and then the probability with which the state

occurs is calculated. A theoretical model of quantum dense coding in experimental

communication including these practical limitations is discussed in chapetr 4 and to

my knowledge this is not attempted before. This theoretical model is based on the

experimental model of quantum dense coding presented by Mattle et al. in [10] in
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which entangled photon pair is generated by degenerate noncollinear type-II PDC in

antisymmetric state |ψ−〉. The fourfold coincidence probability to detect this state

at the detectors is also calculated by considering imperfections in this model.



Chapter 2

Modeling Imperfect Devices

2.1 Introduction

Application of quantum communication such as quantum cryptography, quantum

teleportation, quantum relays and linear optics quantum computing [3] use entangled

photon pair sources. In addition entangled photon pair sources are essential for

different application of modern information technology. Most applications require

very bright, efficient and well controlled sources of entanglement, which means they

should be well coupled into optical fibers and equally be well adapted to free space

optics. Experimental realization is very different from the theoretical realization

of quantum information processes due to imperfect entangled photon pair sources

and detectors. Here, first I will describe some experimental sources which are being

used to produce entangled photons and single-photon as well these days and then I

will explain the model of imperfect sources and detectors which are being used for

entanglement swapping and dense coding experiments. The model being used is the

same as that in entanglement swapping experiment in [3, 15].

2.2 Lasers

Lasers are the most practical and the most efficient light sources to produce entangled

photons which are used these days. For this reason the majority of the groups

working in the field of quantum optics use these sources. I will not go into the

10
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detailed discussion of these sources later and here present a brief review of them.

The light generated by laser in a given mode is described by a coherent state of the

field [16].

|√µeι̇θ〉 ≡ |α〉 = e−
µ
2

∞∑
n=0

αn√
n!
|n〉, (2.2.1)

where µ =| α2 | is the average photon number. The phase factor eι̇θ is only accessible

when reference for the phase is available if not, then the emitted state is rather

described by the mixture

ρ =

∫ 2π

0

dθ

2π
|α〉〈α| (2.2.2)

=
∞∑
n=0

Pr(n|µ)|n〉〈n|, (2.2.3)

with conditional probability

Pr(n | µ) = e−µ
µn

n!
. (2.2.4)

The randomization of phase generalizes to a multimode coherent states. Since any

two equivalent decompositions of the same density matrix are indistinguishable so

one can say that in the absence of a phase reference, the laser produces a Poissonian

mixture of number states.

2.3 Single-Photon Sources

A laser source randomly generates photons, so even using an attenuated laser has

at least some chance that there may be more than one photon between the source

and the detector. So the source of antibunched photons is required to get as close

as possible to having a single-photon between the source and the detector. Photon

exhibit generally refers to a light field with photons more equally spaced than a

coherent laser field [17] and a signal at detectors is anticorrelated. More specifically,

it can refer to sub-Poisson photon statistics, that is a photon number distribution for

which the variance is less than the mean. This requires a source consisting of very few

atoms, ideally a single atom. Such sources were developed only relatively recently

by Grangier et al [18]. This kind of sources consist of a beam of calcium irradiated
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by laser light to a higher energy S-state. This state then rapidly decays to a P-state

by emitting a photon of frequency ν1. Subsequently the atom rapidly undergoes

another decay to a ground S-state by emitting a second photon of frequency ν2 as

shown in figure(2.1).

Figure 2.1: Energy level diagram of a calcium atom irradiated by laser acting as single-photon source for the

experiments Grangier et al.

In the experiment described in [18], the first photon is detected by the detector

Dtrig, was used to alert the set of other photo-detectors placed at the output ports

of the 50 : 50 beam splitter on which the second photons falls as shown in Fig.(2.2).

Figure 2.2: Anti correlation experiment of Grangier et al.

This trigger tells the detectors to expect a photon to emerge from the beam
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splitter by “gating” the detection electronics for a brief time interval. This eliminates

the irrelevant counts due to the photons from irrelevant sources (e.g environment).

The experimental set up shown in Fig.(2.2) allows only a single-photon to fall on the

detectors. This photon would be either reflected into the detectorDref or transmitted

into the detector Dtran i.e it is “which path” experiment and no interference will

occur. The counts should be anti-correlated and no simultaneous counts of the

transmitted and reflected photons. As the beam splitter is 50 : 50, so the repetition

of the experiment should result in each of the two detectors firing approximately 50

percent. These expectations are confirmed by the investigators.

2.4 Spontaneous Parametric Down-Conversion

Entanglement between the photons cannot be created by coupling via an interac-

tion yet. However, there are several processes, such as atomic cascade decays or

parametric down-conversion, where, the properties of two emitted photons become

entangled. Historically, entanglement was first observed between spatially separated

quanta during the process of measurements of polarization correlation between γ+γ−

in positron annihilation [19]. Soon after Bohm’s proposal for observing EPR phenom-

ena in spin half systems and Bell’s discovery that contradictory predictions between

quantum theories can actually be observed, a series of experiments was performed,

mostly using a polarization entangled photons from a two photon cascade emission

from calcium [19]. From these experiments, it was found that the two photons were

in the visible region, and could be controlled by using standard optical techniques.

This is a great advantage in comparison to the positron annihilation source; however,

the two emitted photons are no longer in the opposite directions to conserve momen-

tum, since the emitted atom carries away some randomly determined momentum.

This reduces the brightness of the source and makes experimentally difficult to han-

dle. The process of parametric down-conversion(PDC) is more efficient to produce

entangled photon pair being used these days [19].

Spontaneous parametric down-conversion (SPDC) is an important process in

quantum optics to produce entangled photons. When photons strike the nonlinear
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Figure 2.3: Spontaneous parametric down-conversion.

crystal e.g BBO (Beta-Barium Borate) crystal [20], they split up into two photons of

lower energy and momentum. The conservation of energy gives rise to entanglement

in various degrees of freedom such as position and momentum, time and energy.

The state of the crystal is left unchanged and this leads to the phase matching in

nonlinear optics. In SPDC, the photon pairs are created at random times. However,

the detection of one of the pair (the signal) confirms the presence of its partner (the

idler). On the basis of output of this process, the SPDC is divided into two kinds.

2.4.1 Type-I Down-Conversion

In type-I down-conversion signal and idler share the same polarization direction. For

example, the pump has the extraordinary polarization but the idler and signal both

posses the ordinary polarization. Different colours are separated into cones centered

on the pump beam. The outcome of type-I down-conversion is squeezed vaccum that

contains even number photon terms.

2.4.2 Type-II Down-Conversion

In type-II down-conversion the out coming photons have perpendicular polarization.

In this process, the pump has the extra ordinary polarization. It means the division

of light into two components“ordinary and extra ordinary” found in material which

has two different indices of refraction in two different directions such as calcite. When

light enters, it splits into two beams which travel with different speeds in order to



CHAPTER 2. MODELING IMPERFECT DEVICES 15

fulfill the momentum conservation condition inside the crystal (phase matching).

The two down converted photons have different, for most orthogonal polarizations,

offering the possibility of a new source of polarization entanglement.

2.5 Modeling Imperfect Source

Now we will see how to model the imperfect source for quantum information pro-

cessing. We will use these models throughout in our discussion on different quantum

information processes and specifically on “realistic entanglement swapping and dense

coding”. The ideal photon pair source would create exactly one entangled photon

pair on demand. Such sources do not exist yet. Realistic or imperfect sources are

probabilistic in nature. They generate photon pairs at random instances within those

time intervals allowed by pump laser and sometimes emitting two or even more pho-

ton pairs. In PDC the rate of pair generation is proportional to the nonlinearity χ(2),

the strength of the pump field and, the interaction time.

Many active and passive (i.e photon number conservation) optical transformation

can be described by using basic SU(1, 1) and SU(2) Lie algebra respectively. The

parametric down-conversion are active transformations as they create or annihilate

photon pairs. The Lie algebra SU(1, 1) has been shown in [21, 22] to describe these

transformations. The set of operators {Mx,My,Mz} provides a basis for SU(1, 1)

algebra with the commutation relations,

[Mx,My] = −ι̇Mz, [My,Mz] = ι̇Mx, [Mz,Mx] = ι̇My. (2.5.1)

Appropriate SU(1, 1) realization for degenerate PDC (i.e two photons in pair are

identical) are one-boson realizations given by the generators

M (i)
x =

1

4
(ĉ†i ĉ

†
i + ĉiĉi),

M (i)
y =

1

4ι̇
(ĉ†i ĉ

†
i − ĉiĉi), (2.5.2)

M (i)
z =

1

4
(ĉ†i ĉi+ ĉiĉ

†
i ).

Here the annihilation operator ĉi refers to any of â+,â−,b̂+,b̂−.
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For nondegenerate PDC (i.e two nonidentical photons in pair), the appropriate

realizations of SU(1, 1) are two-boson realizations given by the generators

M (ij)
x =

1

2
(ĉ†i ĉ

†
j + ĉiĉj),

M (ij)
y =

1

2ι̇
(ĉ†i ĉ

†
j − ĉiĉj), (2.5.3)

M (ij)
z =

1

4
(ĉ†i ĉi − ĉj ĉ

†
j).

For type-I PDC, where photons are created in the same polarization, typically ĉi = â+

and ĉj = b̂+, whereas in type-II PDC with opposite polarizations of photons, ĉi = â+

and ĉj = b̂−. The generation of entangled photon pairs is possible using type-II

PDC, where the emission directions of a and b photons are made to overlap. A PDC

process can be described and represented mathematically by one parameter SU(1, 1)

transformation of the vacuum state [3],

Y (γ) | vac〉 = exp(ι̇γKx)|vac〉 γ ∈ R. (2.5.4)

Here, Kx is one of the generators of SU(1,1) group (Kx, Ky, Kz) and defined by these

commutation relations,

[Kx, Ky] = −ι̇Kz, [Ky, Kz] = ι̇Kx, [Kz, Kx] = ι̇Ky. (2.5.5)

Let us consider for example the type-I nondegenerate (non identical photons) PDC,

in which the photon pairs are created in the same polarization, the generator for this

case is given by the the following two-boson realization,

Kx =
1

2
(

ˆ
a†v

ˆ
b†v + âv b̂v), (2.5.6)

where, âv and b̂v are the creation and annihilation operators corresponding to the

vertical polarization of two different modes a and b.

Now in the case of realistic sources, the resultant generated quantum state is not

just a pair of photons but the superposition of photon number states. It also includes

the vacuum and pairs-of-pairs and even higher order terms. For small values of γ

the state given in Eq.(2.5.4) can be approximated as

Y (γ) | vac〉 = |vac〉+
ι̇γ

2
|0110〉, (2.5.7)
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Figure 2.4: Entanglement swapping of photon-polarization qubits based on two PDC sources and a Bell-state

measurement with four imperfect photon detectors. Four spatial modes are involved, labeled by a, b, c, and d. Two

modes, one from the first and one from the second source, b and c, respectively, are combined at a balanced beam

splitter (B). The exits of the latter, denoted by b’ and c’, respectively, are directed to polarizing beam splitters (PBSs)

and then detected at four detectors: one for the H and one for the V polarization of each of the c’ and b’ modes. The

four detectors are inefficient photon detectors subject to dark counts. Their readout is denoted by (qrst). Given this

readout we are interested in the entangled quantum state of the remaining a and d modes depending on experimental

parameters characterizing the deficiencies of the experiment.

where, the Fock notation |ijkl〉 of the state represents a state with i,j,k,l photons

in ah, av, bv, bh modes respectively. We have chosen the order HVVH. The strong

vacuum component in Eq.(2.5.7) implies that when pump laser beam is sent, it will

either lead to the down-conversion or not. That means there is a high probability

that PDC will not take place at all.

2.5.1 Model of Imperfect Source for Entanglement Swap-

ping

Two PDC sources are required for swapping experiment as shown in Fig.(2.4). Each

of the two sources emit two polarization entangled photon pairs which are labeled

as a, b and c, d. These photons have mutually exclusive polarizations which are

labeled as H and V corresponding to horizontal and vertical polarizations. Here we

are assuming a type-I nondegenerate PDC for both sources. The experimental setup

can be realized by using a pair of identical crystals stacked together such that their

axes are orthogonal to each other and the pump laser is diagonally polarized. Such a

combination of two crystals effectively creates a PDC producing two-mode squeezed

states of the form given in Eq.(2.5.4). The complete quantum state prepared by
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these two sources is then mathematically represented as

|χ〉 = exp[ι̇χ(
ˆ
a†H

ˆ
b†H + âH b̂H)]⊗ exp[ι̇χ(

ˆ
a†V

ˆ
b†V + âV b̂V )]⊗ exp[ι̇χ(

ˆ
c†H

ˆ
d†H + ĉH d̂H)]

⊗ exp[ι̇χ(
ˆ
c†V

ˆ
d†V + ĉV d̂V )]|vac〉. (2.5.8)

The generated quantum state is parameterized by χ = γ
2
∈ R. Here we will consider

χ as the efficiency of the source and also assume that both the sources have same

efficiency for entanglement swapping. It is convenient to express Eq.(2.5.8) in normal

ordered form [3], given two independent bosonic modes a and b, we are choosing a

different basis in Eq.(2.5.5) in order to obtain a two mode bosonic representation of

SU(1, 1) Lie algebra,

K̂+ = â†b̂†, K̂− = âb̂, K̂0 =
1

2
(â†â+ b̂†b̂+ 1). (2.5.9)

These new generators form the basis {K̂0, K̂−, K̂+} of SU(1,1) Lie algebra which

satisfies the following commutation relations:

[K̂−, K̂+] = 2K̂0, [K̂0, K̂±] = ±K̂±. (2.5.10)

The normal-ordered decomposition formula holds for the generators of SU(1,1) Lie

algebra is according to [3],

exp[α+K+ + α0K0 + α−K−] = exp[A+K+] exp[ln(A0)K0] exp[A−K−], (2.5.11)

where, A0,A± are given as

A± =
(α±) sinh θ

cosh θ − (α0

2θ
) sinh θ

, (2.5.12)

A0 = [cosh θ − (
α0

2θ
) sinh θ], (2.5.13)

θ = [(
α0

2
)2 − α+α−]1/2. (2.5.14)

Thus using these decomposition rule transformations the following special case is

derived which is required here:

exp[ι̇χ(â†b̂† + âb̂)] = exp[φ(χ)â†b̂†] exp[ω(χ)(â†â+ b̂†b̂+ 1)] exp[φ(χ)âb̂], (2.5.15)

where the following definition is introduced

φ(χ) := ι̇ tanhχ, (2.5.16)
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ω(χ) := − ln[coshχ], (2.5.17)

each of the factors in Eq.(2.5.8) can be decomposed in this way. By doing so and

using the fact that annihilation and creation operators corresponding to different

optical modes commute, we get this equation

|χ〉 = exp[4ω(χ)] exp[
ˆ
a†H

ˆ
b†H +

ˆ
a†V

ˆ
b†V +

ˆ
c†H

ˆ
d†H +

ˆ
c†V

ˆ
d†V ] (2.5.18)

× exp[ω(χ)(
ˆ
a†H âH +

ˆ
a†V âV +

ˆ
b†H b̂H +

ˆ
b†V b̂V +

ˆ
c†H ĉH +

ˆ
c†V ĉV +

ˆ
d†H d̂H +

ˆ
d†V d̂V )]

× exp[φ(χ)(âH b̂H + âV b̂V + ĉH d̂H + ĉV d̂V )]|vac〉.

The last two exponential factors leave the vacuum state unchanged and the final

form of above equation will be

|χ〉 = exp[4ω(χ)] exp[φ(χ)(
ˆ
a†H

ˆ
b†H +

ˆ
a†V

ˆ
b†V +

ˆ
c†H

ˆ
d†H +

ˆ
c†V

ˆ
d†V )]|vac〉. (2.5.19)

This is the required normal-ordered form of the quantum state generated by the two

PDC sources.

2.5.2 Model of Imperfect Source for Dense Coding

For dense coding the model is relatively simple as only one source is required for this

process. The state generated by degenerate type-II PDC can be calculated by using

SU(1, 1) Lie algebra for type-II PDC, where the generator for two-boson realization

is given by Eq.(2.5.4) taking ĉi = â+ and ĉj = b̂−. Therefore the generator for this

case will become of the form

Jx =
1

2
(â†hb̂

†
v + âhb̂v). (2.5.20)

Now using the above simple algebra given in section(2.5.1), the state generated by

degenerate type-II parametric down-conversion is

|χ〉 = exp[2ω(χ)] exp[φ(χ)(â†hb̂
†
v − â†v b̂

†
h)]|vac〉. (2.5.21)

2.6 Quantum Mechanics of Beam Splitters

A beam splitter is an interesting optical device that splits a beam of incoming light

in two. It is a very important part of most interferometers. For “classical” light
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Figure 2.5: Classical beam splitting. A classical field of amplitude E1 is split into two field of amplitude E2 and

E3.

beams, coherent and thermal beams, the quantum and classical treatments the beam

splitters agree [23] but the results go wrong and quite misleading in the case of a

single or few photons.

Let us see first how the classical reasoning goes wrong. Let us consider a lossless

beam splitter and a classical light field with a complex amplitude E1 incident on it

as shown in Fig.(2.5). The reflected and the transmitted beams have amplitudes E2,

E3 respectively. If r and t are the reflectance and transmittance of the beam splitter,

then it follows that

E2 = rE1 , E3 = tE1. (2.6.1)

The sum of intensities of the reflected and transmitted beams (output beams) should

be equal to the intensity of the incident beam as we have assumed a lossless beam

splitter.

|E1|2 = |E2|2 + |E3|2, (2.6.2)

which requires that

|r|2 + |t|2 = 1. (2.6.3)

Now for the quantum mechanical treatment of a lossless beam splitter, we try to

use the same reasoning by replacing complex field amplitudes Ei by annihilation

operators âi (i = 1, 2, 3) as shown in Fig.(2.6).

â2 = râ1 , â3 = tâ1. (2.6.4)

However, the operators corresponding to the field are supposed to satisfy the
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Figure 2.6: Incorrect quantum mechanical description of beam splitter.

commutation relations given below.

[âi, â
†
j] = δij [âi, âj] = 0 = [â†i , â

†
j] (i, j = 1, 2, 3). (2.6.5)

But it is easily seen that for the operators in Eq.(2.6.4) we obtain

[â2, â
†
2] = |r|2[â1, â

†
1] = |r|2,

[â3, â
†
3] = |t|2[â1, â

†
1] = |t|2,

[â2, â
†
3] = rt∗ 6= 0etc. (2.6.6)

Thus we obtain the transformation given in Eq.(2.6.4) which does not preserve the

commutation relations and therefore cannot give the correct quantum mechanical

description of a beam splitter. The reason behind this failure is that in the classical

picture there is an unused “port” of the beam splitter which, being empty of an input

field and has no effect on the output beams. But, in quantum mechanical picture,

this “unused” port still contains a quantized field mode albeit in the vacuum state

which has strong contribution in the state generated from a PDC source. For a

proper quantum mechanical description of the beam splitter, the required modes are

shown in the Fig.(2.7) , where â0 represents the vacant input mode of classical field

operator. There are two other sets representing the transmittance and reflectance of

the beam splitter. Now the beam splitter transformations of field operators can be

written as

â2 = râ1 + t′â0, â3 = tâ1 + r′â0, (2.6.7)
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Figure 2.7: Correct quantum mechanical description of beam splitter.

or collectively as  â2

â3

 =

 t′ r

r′ t

 â0

â1

 . (2.6.8)

It can be easily seen that the commutation relations given in Eq.(2.6.5) are satisfied

if the following relations hold,

|r′| = |r|, |t′| = |t|, |r|2 + |t|2 = 1, r∗t′ + r′t∗ = 0 and r∗t+ r′t′∗ = 0. (2.6.9)

When a light beam passes through the beam splitter it suffers a phase shift but this

phase shift depends on the construction of the beam splitter [24]. For example if

the beam splitter is constructed as a single dielectric layer, the reflected and the

transmitted beams will differ by a phase factor of exp(±ι̇π
2
) = ±ι̇. For a 50 : 50

beam splitter, let us assume that the reflected beam suffers a phase shift of π
2
, then

the input and output modes are related to each other through beam splitter as a2

a3

→ U

 a0

a1

 where,

U =
1√
2

 1 ι̇

ι̇ 1

 ,

â2 =
1√
2

(â0 + ι̇â1), â3 =
1√
2

(ι̇â0 + â1). (2.6.10)
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This transformation is a Heisenberg picture formulation of beam splitter. Since the

transformations between input and output modes should be unitary, so Eq.(2.6.8)

can be written as  â2

â3

 = Û †

 â0

â1

 Û , (2.6.11)

where for a specific transformation like Eq.(2.6.10), the unitary operator Û has the

following from,

Û = exp[ι̇
π

4
(â†0â1 + â0â

†
1)]. (2.6.12)

On the other hand, we can also adopt the Schrodinger picture formulation and

can find the output state for a given input state to the beam splitter [23]. As we

know that the photon number states, their superposition or any statistical mixture

of such states can be constructed by the action of creation operators on the vacuum

state.

If a single-photon is incident on any one of the input ports of the beam splitter,

while the other port containing only vacuum, will be either transmitted or reflected

with equal probability. Obviously the beam splitter is a passive device that means it

neither creates nor destroys photons. One important aspect of beam splitter action

is that it also creates the entanglement between the input states.

Now we return to the strictly quantum domain and consider the situation where

single photons are simultaneously incident on the two input ports of 50 : 50 beam

splitter, the incident state being |1〉0|1〉1 = â†0â
†
1|0〉|0〉. Again following the previous

procedure with transformations â†0 = (â†2 + ι̇â†3)/
√

2 and â†1 = (ι̇â†2 + â†3)/
√

2 we

have

|1〉0|1〉1
BS→ 1

2
(â†2 + ι̇â†3)(ι̇â†2 + â†3)|0〉2|0〉3

BS→ ι̇

2
(â†2â

†
2 + â†3â

†
3)|0〉2|0〉3 (2.6.13)

Apparently, the photon detectors placed at the output ports of the beam splitter

should not register simultaneous counts when two photons emerge together. Phys-

ically this does not mean that photons do not exhibit a particle nature. Rather, it

is caused due to interference between two possible ways of obtaining the (absent)

output state |1〉2|1〉3.
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2.7 Bell State Measurement

Bell state measurement projects the state of a two level system onto the complete set

of orthogonal maximally entangled Bell states. Bell states are key element of the most

of the quantum information processes. This provides a quantum correlation which

can be used in certain important processes such as teleportation [7], quantum dense

coding [6] and entanglement swapping [3] which allow the entanglement between the

two particles that were totally independent in the past. The problem of creating Bell

states has been resolved by using parametric down-conversion (PDC) in non linear

crystals.

The transformation of an entangled state to an unentangled state is the main in-

gredient of the Bell state analysis. The necessary coupling has not yet been achieved

for photons. But it turns out that interference of two entangled particles, and thus

the photon statistics behind the beam splitter depends on the entangled state that

the pair is in [19].

Let us first consider the generic case of two interfering particles. If there are two

otherwise indistinguishable particles in two different beams and these two beams

overlap at the beam splitter, we can ask the question, what will be the probability of

finding the two particles in different output ports of the beam splitter. Alternatively

we can ask, what is the probability that two detectors, one in each output beam,

detect one photon each.

With any beam splitter, at the best two of the four Bell-states can be identified

with certainty. To detect polarization entangled states, two photons a and b are

brought to interference at a 50 : 50 beam splitter as illustrated in figure above. As

said earlier, two Bell states are exactly identified by this scheme and the remaining

two only together, as demonstrated in [10]. The antisymmetric state |ψ−〉 is easily

identified, as only in this case the two photons are detected in separate output ports

of the beam splitter. However in the case of |ψ+〉 the photons will emerge from

the same output port of the beam splitter, but they will still have the orthogonal

polarizations in the H,V-Basis. For this case additional polarization beam splitters

(PBS) are introduced at the output ports of the BS and two interfering photons will
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Figure 2.8: Bell state measurement.

be found in the separate outputs of the polarizer respectively and emerge from the BS

via c and d modes. Only when two input photons are entangled in the antisymmetric

state, will take the separate output modes and consequently lead to a coincidence

detection in two detectors. More specifically, when a photon is detected in either

of the output ports of BS, and in the opposite outputs of PBS then |ψ−〉 state is

observed (either the detectors ch and dv fire, or cv and dh). On the other hand, if

two photons are detected in the same output port of BS and different output of the

PBS then |ψ+〉 will be observed (either ch and cv fire, or dh and dv). Here for state

|ψ−〉 by following the sequence of detections HVVH for a and d modes is

|ψ−〉 =
1√
2

[|0101〉 − |1010〉] , (2.7.1)

|ψ−〉 =
1√
2

[
â†v b̂
†
h|0000〉 − â†hb̂

†
v|0000〉

]
. (2.7.2)

Now applying the beam splitter transformation which has been described in the

previous section, the above equation will become

|ψ−〉 B
†
→ 1√

2

[
(â†v + ι̇b̂†v)(ι̇â

†
h + b̂†h)

2
|0000〉 − (â†h + ι̇b̂†h)(ι̇â

†
v + b̂†v)

2
|0000〉

]
,

=
1

2
√

2

[
(ι̇â†vâ

†
h + â†v b̂

†
h − b̂

†
vâ
†
h + ι̇b̂†v b̂

†
h)|0000〉 − (ι̇â†hâ

†
v + â†hb̂

†
v − b̂

†
hâ
†
v + ι̇b̂†hb̂

†
v)|0000〉

]
,
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|ψ−〉 =
1

2
√

2
[ι̇|1100〉+ |0101〉 − |1010〉+ ι̇|0011〉 − ι̇|1100〉 − |1010〉+ |0101〉 − ι̇|0011〉] ,

=
1√
2

[|0101〉 − |1010〉]. (2.7.3)

Hence this equation shows that the photons will emerge from different output ports

of the beam splitter.

Now to detect state |ψ+〉,

|ψ+〉 =
1√
2

[|0101〉+ |1010〉] , (2.7.4)

|ψ+〉 =
1√
2

[
â†v b̂
†
h|0000〉+ â†hb̂

†
v|0000〉

]
. (2.7.5)

In a similar way as we did for |ψ−〉 using the beam splitter transformation

|ψ+〉 B
†
→ 1√

2

[
(â†v + ι̇b̂†v)(ι̇â

†
h + b̂†h)

2
|0000〉 − (â†h + ι̇b̂†h)(ι̇â

†
v + b̂†v)

2
|0000〉

]
,

=
1

2
√

2

[
(ι̇â†vâ

†
h + â†v b̂

†
h − b̂

†
vâ
†
h + ι̇b̂†v b̂

†
h)|0000〉 − (ι̇â†hâ

†
v + â†hb̂

†
v − b̂

†
hâ
†
v + ι̇b̂†hb̂

†
v)|0000〉

]
,

=
1

2
√

2
[ι̇|1100〉+ |0101〉 − |1010〉+ ι̇|0011〉+ ι̇|1100〉+ |1010〉 − |0101〉+ ι̇|0011〉] ,

|ψ+〉 =
1√
2

[|1100〉+ |0011〉] . (2.7.6)

This resulting state is quiet different from the state |ψ−〉 because the photons emerge

from the same output port of the beam splitter. For the states |φ±〉 the photons will

strike the detector after emerging from the same output port of the beam splitter.

Thus the state detected at the detectors after passing through BS can be found as

|φ±〉 =
1√
2

[|1001〉 ± |0110〉], (2.7.7)

|φ±〉 =
1√
2

[â†hb̂
†
h|0000〉 ± â†v b̂†v|0000〉], (2.7.8)

|φ±〉 =
1

2
√

2
[(â†h + ι̇b̂†h)(ι̇â

†
h + b̂†h)|0000〉 ± (â†v + ι̇b̂†v)(ι̇â

†
v + b̂†v)|0000〉]. (2.7.9)

For state |φ+〉

|φ+〉 =
1

2
√

2
[(ι̇â†hâ

†
h + â†hb̂

†
h − b̂

†
hâ
†
h + ι̇b̂†hb̂

†
h)|0000〉

+(ι̇â†vâ
†
v + â†v b̂

†
v − b̂†vâ†v + ι̇b̂†v b̂

†
v)|0000〉)], (2.7.10)
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|φ+〉 =
1

2
√

2
[ι̇
√

2|2000〉+ |1001〉 − |1001〉+ ι̇
√

2|0002〉+

ι̇
√

2|0200〉+ |0110〉 − |0110〉+ ι̇
√

2|0020〉], (2.7.11)

|φ+〉 =
ι̇

2
[|2000〉+ |0002〉+ |0200〉+ |0020〉]. (2.7.12)

For state |φ−〉,

|φ−〉 =
1

2
√

2
[ι̇
√

2|2000〉+ |1001〉 − |1001〉+ ι̇
√

2|0002〉 −

ι̇
√

2|0200〉 − |0110〉+ |0110〉 − ι̇
√

2|0020〉], (2.7.13)

|φ−〉 =
ι̇

2
[|2000〉+ |0002〉 − |0200〉 − |0020〉]. (2.7.14)

Since, as described earlier, state |ψ−〉 has an antisymmetric spatial part, so only

this state will register coincidence clicks, while the other three Bell states follow the

bosonic statistics so they cannot be distinguished from each other. The photons for

the state |φ+〉 or in |φ−〉 will also leave the BS in the same output port, will have

the same polarization in H,V-Basis. Thus we can discriminate the states |ψ−〉 and

|φ±〉 only by a polarization analysis in H,V-Basis using PBS. The detection scheme

of these four Bell states is given in the table below,

Detector’s click Could have been triggered by

ch and dh |ψ−〉

cv and dv |ψ−〉

ch and cv |ψ+〉

dv and dh |ψ+〉

ch sees 2 photons |φ−〉 |φ+〉

cv sees 2 photons |φ−〉 |φ+〉

dh sees 2 photons |φ−〉 |φ+〉

dh sees 2 photons |φ−〉 |φ+〉

Table 2.1: Table showing the clicks at various detectors for various incident Bell states.
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2.8 Detector Model

Now we discuss the theory of imperfect detectors which are being used to detect

photons in different quantum information processing experiments. The theory of

imperfect detectors used for swapping and dense coding experiments will be dis-

cussed in detail. The InGaAs (Indium-Gallium-Arsenide) avalanche photodiodes

detectors (APD,s) [25] are semiconductor based photon detectors that are being

used in different experiments and can efficiently detect single photons at close to

room temperature. These detectors use strong electric fields to accelerate the elec-

trons flowing in the semiconductor. When a single-photon strikes the detector, an

avalanche of electrons is generated that readily triggers a click or no-click, indicating

the arrival of the photon. Ideal detectors are still a technological challenge. Detec-

tors also exhibit dark counts i.e click with no photon striking the detector. The

dark count probability of the detector is measured before incorporating it into the

experiment and the effect of these events is taken into account. Here we model

such an imperfect detector by placing a beam splitter in front of a perfect detector.

This beam splitter causes the interference of the coherent input signal state with a

thermal state, representing the dark counts and the random errors that occur. The

detection probabilities produced by these theoretical imperfect detector agree with

those derived from an experimental detectors while providing a useful generalization.

Now we are going to discuss the detectors in some detail.

2.8.1 Ideal Photon-number Discriminating Detectors

Ideal photon number discriminating detectors [26] are such that they never click

when there is a vacuum and always click when there are photons present in a certain

mode. The strength of the click provides information about the number of photons

present in that mode. They are mathematically represented by photon counting

projection valued measurement (PVMs)∏̂
n

= |n〉〈n|, n = 0, 1, 2, 3, ..... (2.8.1)

with respect to the Fock state basis {|n〉, n ∈ N0} of a certain mode.



CHAPTER 2. MODELING IMPERFECT DEVICES 29

Figure 2.9: A model for an imperfect detector with efficiency η and dark counts generated by a fictitious thermal

background source. The signal mode and the thermal mode represented by the quantum states ρsig and ρT , respec-

tively, meet at a beam splitter with transmittance η. One of its exits is directed to a perfect (ideal) detector (Did);

the photons of the second exit port are discarded. The perfect detector is assumed to be a unit-efficiency photon

detector with no dark counts. We will make a distinction of two cases. In the first instance we will assume the perfect

detector to be photon-number discriminating. Later we consider the case where the perfect detector is a unit-efficiency

threshold detector.

2.8.2 Inefficient Photon-number Discriminating Detectors

with no Dark Counts

Inefficient photon number discriminating detectors have nonunit efficiency η (0 <

η < 1), meaning that even if photons are incident into the detector it has a finite

probability not to trigger a click. The model of such imperfect detectors is given

in [26] by placing a beam splitter(BS) with transmittance η before an ideal detector

(with efficiency η = 1). Here η is used both for transmittance of beam splitter and

efficiency of detector. The model of such a detector is shown in Fig.(2.9). .

Now the probability of such a detector can be calculated as

Pη(q|ρsig) = Trtrans{
∏̂

q
Trref [ÛBS(η)(ρsig ⊗ |vac〉〈vac|) ˆ

U †BS(η)]
∏̂

q
}, (2.8.2)

where, ˆUBS(η) is the unitary evolution of the BS

ÛBS(η) =

 cos θ
2

ι̇sin θ
2

−ι̇sin θ
2

cos θ
2

 , (2.8.3)

and ρsig is the input signal mode and it is photon number Fock state ρsig = |i〉〈i|.

The conditional probability to detect q photons is Pη(q|i) = δqi with unit efficiency

detectors and with η-efficiency detectors(η 6= 1)

Pη(q|i) = Trtrans{
∏̂

q
Trref [ÛBS(η)(|i〉〈i| ⊗ |vac〉〈vac|)Û †BS(η)]

∏̂
q
}, (2.8.4)
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Figure 2.10: Model of imperfect detector with thermal background.

Pη(q|i) =


i
q

 ηq(1− η)i−q if i ≥ q

0 if i < q

(2.8.5)

It is clear from Eq.(2.8.5) that in order to detect q photons the number of incident

photons i must be greater than q as the dark counts are not included yet.

It should be noted that all the possible inefficiencies of the experiment are taken

into account the detector’s efficiency, η. Thus efficiency of this model is to be under-

stood as the effective efficiency comprising the proper intrinsic detector efficiencies

as well as all kinds of other losses.

2.8.3 Inefficient Photon-number Discriminating Detectors

with Dark Counts

In order to take into account the possibility of dark counts, we combine the signal

mode, which is to be measured, with a thermal state of the form given below, instead

of using vacuum states.

ρ̂T =
1

cosh2 r

∞∑
n=0

tanh2n r|n〉〈n|. (2.8.6)

The detector model is shown in the Fig.(2.10). Dark counts are the result of pho-

tons incident onto the detector from the environment i.e the thermal background, is

responsible for the dark counts, is entirely fictitious and does not have to correspond

to a real actually existing photonic field.
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Using this detector model we can find the conditional probability of photon-

number discriminating detector having efficiency η and dark count probability ρdc,

according to

Pη,r (q|i) = Trtrans{
∏̂

q
Trref [ÛBS(η)(|i〉〈i| ⊗ ρT )Û †BS(η)]

∏̂
q
}. (2.8.7)

The dark count probability of a non ideal threshold detectors amounts to

ρdc =
(1− η)tanh2r

1− ηtanh2r
=

(1− η) exp[− ~ω
KT

]

1− η exp[− ~ω
KT

]
. (2.8.8)

For the purpose of modeling realistic entanglement swapping it is sufficient to know

the conditional probability of a particular state i.e Fock state ρsig = |i〉〈i|. Thus, the

conditional probability to detect q photons given that i photons are incident on the

detector with efficiency η is written as Pη, ρdc(q|i). One important fact which needs

to be mentioned here is that in this case q may be greater than i due to the dark

counts.

Pη,r (q|ρsig) = Trtrans{
∏̂

q
Trref [ÛBS(η)(ρsig ⊗ ρT )Û †BS(η)]

∏̂
q
}. (2.8.9)

Here Pη,r(q|i) notation is being used to represent conditional probability. However

later it will clear how ρdc emerges in the final expression using Eq.(2.8.8).

Let ĉ, ĉ† and ê, ê† are the annihilation and creation operators of the signal and

thermal fictitious background modes respectively and the input signal state will be

represented as ρinsig,T . The unitary evolution of beam splitter ÛBS(η) acts on these

creation and annihilation operators as ĉ

ê

→ B†η

 ĉ

ê

  ĉ†

ê†

→ BT
η

 ĉ†

ê†

 ,

where beam splitter transformation matrix consisting of transmission T =
√
η and

reflection R =
√

1− η coefficients is

Bη =

 √
η

√
1− η

−
√

1− η √
η

 ,
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ρoutsig,T := ÛBS(η)ρinsig,T
ˆ

U †BS(η),

=
1

cosh2 r

∞∑
n=0

tanh2n r

i!n!
(
√
ηĉ† −

√
1− ηê†)i

(
√

1− ηĉ† +
√
ηê†)n|vac >< vac|

(
√

1− ηĉ+
√
ηê)n(

√
ηĉ−

√
1− ηê)i,

ρoutsig,T =
1

cosh2 r

∞∑
n=0

tanh2nr

i!n!

i∑
ν=o

i∑
ν′=o

n∑
µ=o

n∑
µ′=o

 i

ν

 i

ν ′

 n

µ

 n

µ′

 (−1)ν+ν′

(
√
η)2n+ν+ν′−µ−µ′(

√
1− η)2i−ν−ν′+µ+µ′

×(ĉ†)ν+µ(ê†)i+n−ν−µ|vac >< vac|(ê†)i+n−ν′−µ′(ĉ†)ν′+µ′ ,

ρoutsig,T =
1

cosh2 r

∞∑
n=0

tanh2nr

i!n!

i∑
ν=o

i∑
ν′=o

n∑
µ=o

n∑
µ′=o

 i

ν

 i

ν ′

 n

µ

 n

µ′

 (−1)ν+ν′

×(
√
η)2n+ν+ν′−µ−µ′(

√
1− η)2i−ν−ν′+µ+µ′

√
(ν + µ)!

×
√

(ν ′ + µ′)!
√

(i+ n− ν − µ)!
√

(i+ n− ν ′ − µ′)!

×|ν + µ, i+ n− ν − µ〉〈ν ′ + µ′, i+ n− ν ′ − µ′|.

Now according to Eq.(2.8.9), ignoring the reflected mode and taking the projec-

tion on Fock state |q〉 and finally taking the trace over transmission mode we get

this result

Pη,r(q|i) =
1

cosh2r
(

η

1− η
)q(i− η)i

∞∑
n=0

[η tanh2 r]n
q!(i+ n− q)!

i!n!
[Ω(η, i, q, n)]2,(2.8.10)

where

Ω(η, i, q, n) :=
n∑
µ=0

 i

q − µ

 n

µ

 (
η − 1

η
)µ. (2.8.11)

It is important to note that Ω(η, i, q, n) = 0 unless i > q − n. This is quite straight

forward result: the number of detected photons in Did cannot be greater than the

sum (i+n) of signal and thermal photons. Before we proceed, let us distinguish the

two cases: i > q and i < q.

For i > q, let

Ω(η, i, q, n) =
n∑
µ=0

 i

q − µ

 n

n+ 1

 (
η − 1

η
)µ. (2.8.12)
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The above expression of Ω(η, i, q, n) can be written as,

Ω(η, i, q, n) =
n∑
µ=0

i!

(q − µ)!(i− q − µ)!

n!

µ!(n− µ)!
(
η − 1

η
)µ (2.8.13)

Now we try to write this result in terms of Hypergeometric function F1(., .; .; .) just

to make it more compact where Hypergeometric function is defined as,

F1(α, β; γ; z) := 1 +
∞∑
n=1

(α)n(β)n
(γ)n

zn

n!
,

where (α)n := Γ(α+ n)/Γ(α) is the Pochhammer symbol; Γ is the gamma function.

The variable µ should go up to infinity to write the above expression into Hypergeo-

metric function terms but for µ > n all the terms will vanish as µ can go max. to n.

To get finite value of the series given in Eq.(2.8.13) we make q and n both negative

using the properties of gamma function,

q!

(q − µ)!
=

Γ(q + 1)

Γ(q − µ+ 1)
=

Γ(−q + µ)

Γ(−q)
(−1)µ.

Similarly
n!

(n− µ)!
=

Γ(n+ 1)

Γ(n− µ+ 1)
=

Γ(−n+ µ)

Γ(−n)
(−1)µ.

Now multiplying and dividing Eq.(2.8.13) by q!(q − i)!, we have

Ω(η, i, q, n) =
n∑
µ=0

i!q!

(q − i)!(q − µ)!(i− q − µ)!

n

(n− µ)!(q − i)!
(
η − 1

η
)µ.

Hence

Ω(η, i, q, n) =

 i

q


2F1(−n,−q; i− q + 1;

η − 1

η
). (2.8.14)

Now for q > i, we have

Ω(η, i, q, n) :=
n∑

µ=q−i

 i

q − µ

 n

µ

 (
η − 1

η
)µ, (2.8.15)

=
n∑

µ=q−i

i!

(q − µ)!(1− q + µ)!

n!

µ!(n− µ)!
(
η − 1

η
)µ.
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By introducing k = µ− q + i, we have

Ω(η, i, q, n) =

n−q+i∑
k=0

i!

k!(i− k)!

n!

(k + q − i)!(n− q − k + i)!
(
η − 1

η
)k+q−i. (2.8.16)

Mutiplying and dividing above equation by (q − i)!(n− q − i)!

Ω(η, i, q, n) =

n−q+i∑
k=0

i!(q − i)!
k!(i− k)!(n− q − i)!

n!(n− q − i)!
(k + q − i)!(n− q − k + i)!(q − i)!

(
η − 1

η
)k+q−i,

=

n−q+i∑
k=0

(
η − 1

η
)q−i

 n

q − i


2F1(−i, n− q + i; q − i+ 1;

η − 1

η
). (2.8.17)

Here k is a dummy index so changing k → µ, our final result will become

Ω(η, i, q, n) =

n−q+i∑
µ=0

(
η − 1

η
)q−i

 n

q − i


×2F1(−i, n− q + i; q − i+ 1;

η − 1

η
). (2.8.18)

Now inserting Eq.(2.8.14) into Eq.(2.8.10) and utilizing the notation b̃(η, r) :=

η tanh2 r, we get this result for i > q, Now in the similar way, for q > i

Pη,r(q|i) =
1

cosh2r
(
η − 1

η
)q−iηi

∞∑
n=q−i

 q

i

 n

q − i

 (2.8.19)

[b̃(η, r)]n[2F1(−i, n− q + i; q − i+ 1;
η − 1

η
)]2,

Pη,r(q|i) =
1

cosh2r
(
η − 1

η
)q−iηi[b̃(η, r)]q−i

∞∑
m=0

 q

i

 q − i+m

q − i

(2.8.20)

[b̃(η, r)]m[2F1(−i,−m; q − i+ 1;
η − 1

η
)]2,

Pη,r(q|i) =
1

cosh2r
(
η − 1

η
b∼(η, r))q−iηi

∞∑
n=0

 q

i

 q − i+ n

q − i

 (2.8.21)

[b̃(η, r)]n[2F1(−n,−i; q − i+ 1;
η − 1

η
)]2.
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In the last step, after renaming the indices from m → n, we used the permutation

symmetry property of hypergeometric functions

2F1(α, β; γ; z) = 2F1(β, α; γ; z),

to bring that expression into the desired form of probability. This permutation

property shows that there exists a partial symmetry between two results for two

different cases discussed above.

Replacing the dependence of probability on parameter r of the thermal source

by probability of dark count ρdc, using

b(η, ρdc) := b̃[η, r(η, ρdc)] = η tanh2 r = [1 +
1− η
ηρdc

]−1,

and Eq.(2.8.8), we get
1

cosh2 r
=

(1− η)(1− ρdc)
1− η(1− ρdc)

.

Finally by introducing these definitions into Eq.(2.8.10) and Eq.(2.8.22), we get the

desired form of the conditional probabilities depending on dark counts for photon

number discriminating detectors.

Pη,ρdc(q|i) =


(1−η)(1−ρdc)
1−η(1−ρdc)

( η
1−η )q(1− η)iΩ(i, q; η, ρdc) if i > q

(1−η)(1−ρdc)
1−η(1−ρdc)

[1−η
η
b(η, ρdc)]

q−iηiΩ(q, i; η, ρdc) if q > i
, (2.8.22)

where

Ω(i, q; η, ρdc) =
∞∑
n=0

 i

q

 i− q + n

i− q

 [b∼(η, r)]n (2.8.23)

[2F1(−n,−q; i− q + 1;
η − 1

η
)]2,

Ω(q, i; η, ρdc) =
∞∑
n=0

 q

i

 q − i+ n

q − i

 [b̃(η, r)]n (2.8.24)

[2F1(−n,−i; q − i+ 1;
η − 1

η
)]2.

2.8.4 Inefficient Threshold Detectors with Dark Counts

Threshold detectors are more easily available than the photon number discriminat-

ing detectors which are a technological challenge and their realization is still in its
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infancy. To provide a practically relevant entanglement swapping process we have

to consider threshold detectors [26]. In the ideal scenario these detectors effectively

measure wether there is no photon or at least one photon in a mode. Unit efficiency

threshold detectors with no dark counts are referred as ideal threshold detectors

(ITD), and mathematically these are represented as,∏̂
0

= |0〉〈0|,
∏̂⊥

0
= 1−

∏̂
0
. (2.8.25)

Inefficient threshold detectors can be realized using the same detector model as

above, but now replacing Did with ITD. The relevant conditional probabilities can be

calculated in the same manner as we did in the case of photon number discriminating

detectors, but now with q being either the event“no click” or “click” corresponding

to the PVM elements
∏̂

0 or
∏̂⊥

0 respectively. Again for the purpose of entanglement

swapping, we calculate the conditional probabilities for the input signal ρ̂sig = |i〉〈i|.

The conditional probabilities of recording “no click” can be calculated directly from

Eq.(2.8.22) by setting q = 0. And the probability for the event“click” will just be

one minus the latter probability

Pη,ρdc(no− click|i) = Pη,ρdc(q = 0|i)

= (1− ρdc)[1− η(1− ρdc)]i, (2.8.26)

Pη,ρdc(click|i) = 1− Pη,ρdc(no− click|i)

= (1− ρdc)[1− η(1− ρdc)]i. (2.8.27)

We will calculate the conditional probabilities under realistic conditions for swapping

process and then by just plugging those values here in above expressions we will get

required probabilities of photon detection under most practical conditions.



Chapter 3

Realistic Entanglement Swapping

3.1 Introduction

Entanglement has been realized either by having the two entangled particles emerge

from a single source [1,27], or by having two particles interact with each other [28,29].

But entanglement can also be obtained by making use of the projection of the state

of the two particles onto an entangled state. The main advantage of this projection

measurement is that it does not necessarily require a direct interaction between

the two particles. When each of the two particles is entangled with another partner

particle an appropriate measurement, for example a Bell measurement, of the partner

particles will automatically collapse the state of the remaining two particles into an

entangled state. This amazing application of the projection postulate is referred to

as entanglement swapping [3, 30].

The theoretical description of entanglement swapping generally requires the com-

ponents, used in experimental set up, ideal. But in the case of realistic entanglement

swapping, the sources, detectors and other components used in the experimental

setup are considered non ideal. In this chapter we will see how the realistic entangle-

ment swapping procedure can be modeled by taking into account all the inefficiencies.

We will also discuss Bell measurement process here.

37
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3.2 Theoretical Entanglement Swapping

Entanglement swapping is an interesting extension of teleportation. It can make two

particles entangled together that have neither interacted in past. This is possible

even if the particles are light years apart.

Consider two EPR pairs which are labeled as 1,2 and 3,4 where 1,2 are entangled

and 3,4 are entangled together. Let’s also consider that Alice has qubits 1 and 4 in

her possession and Bob has other two qubits in his possession. Qubits 1 and 2 are

in the following Bell state

|β00〉12 =
|00〉12 + |11〉12√

2
. (3.2.1)

Similarly the qubits 3 and 4 are in the state

|β00〉34 =
|00〉34 + |11〉34√

2
. (3.2.2)

These two states are maximally entangled Bell states. The product of these two

states would be

|β00〉12|β00〉34 =

(
|00〉12 + |11〉12√

2

)(
|00〉34 + |11〉34√

2

)
,

(|β00〉12)(|β00〉34) =
|00〉12|00〉34 + |00〉12|11〉34 + |11〉12|00〉34 + |11〉12|11〉34

2
. (3.2.3)

Now by doing some simple algebra and rearranging qubits by writing qubits 1

and 4 together and 2 and 3 together, we have

(|β00〉12)(|β00〉34) =
1

2
(|00〉14|00〉23 + |01〉14|01〉23 + |10〉14|10〉23 + |11〉12|11〉34). (3.2.4)

Notice that, the product of |β00〉14 with |β00〉23 is

(|β00〉14)(|β00〉23) =

(
|00〉14 + |11〉14√

2

)(
|00〉23 + |11〉23√

2

)
,

=
|00〉14|00〉23 + |00〉14|11〉23 + |11〉14|00〉23 + |11〉14|11〉23

2
.

The above equation shows that |β00〉12|β00〉34 is missing few terms in their product

but we can stick them in there by adding and subtracting these terms. Then again

after doing some simple calculations, the result will be

(|β00〉12)(|β00〉34) =
1

2
×(|β00〉14|β00〉23 + |β10〉14|β10〉23 + |β01〉14|β01〉23 + |β11〉14|β11〉23).
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Remember that Alice has particles 1 and 4 in her possession and Bob has particles

2 and 3 in his possession. Then Alice does a Bell measurement on the qubits in her

possession. Depending on the results of Alice’s measurement |β00〉14, |β01〉14, |β10〉14,

|β11〉14, Bob’s system collapses into one of the four Bell states which shows that

particle 2 and 3 are entangled as is clear from the above equation.

3.3 Realistic Entanglement Swapping

This theory is based on the work by Artur Scherer et al. [3] explaining realistic en-

tanglement swapping. The physical situation for a practical entanglement swapping

process is shown in Fig.(3.1). As we are going to discuss the entanglement swap-

ping process in realistic scenario therefore the parametric down-conversion sources

and detectors shown in the Fig.(3.1) are considered realistic. The PDC sources and

detectors have been discussed in detail in chapter 2 in this scenario. The two PDC

sources generate photons into spatial modes a, b, c and d, where a and b corresponds

to first source and c and d to the second source. Also the photons (a, b) and (c, d)

are entangled with each other. To perform entanglement swapping, a joint Bell state

measurement is performed on b and c modes at the beam splitter and the resulting

state projects a and d modes on to an entangled state. As a result the photons

in the a and d modes become entangled despite having no common past [3]. The

entanglement initially present in (a, b) and (c, d) modes is now swapped on a and d

modes. It is clear from Fig.(3.1), a joint Bell state measurement of the b and c modes

at 50 : 50 beam splitter and then directing the output modes of this beam splitter

to polarization beam splitters (PBS); there are four alternatives c′h, c
′
v, b

′
v and b′h

detections of photons at four detectors. The detection results of these detectors are

denoted by qrst. Polarization beam splitters (PBS) reflect the vertical modes and

transmit the horizontal modes. For photon number discriminating detectors qrst can

indicate n0 ∈ N {N are the natural numbers} and in case of threshold detectors they

indicate click, no-click. Now the resultant mixed quantum state of the remaining

modes a and d depending on the results of qrst detections after realistic Bell state

measurement will be calculated. The Bayesian inference approach will help us to
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Figure 3.1: Entanglement swapping of photon-polarization qubits based on two PDC sources and a Bell-state

measurement with four imperfect photon detectors. Four spatial modes are involved, labeled by a, b, c, and d. Two

modes, one from the first and one from the second source, b and c, respectively, are combined at a balanced beam

splitter (B). The exits of the latter, denoted by b′ and c′, respectively, are directed to polarizing beam splitters (PBSs)

and then detected at four detectors: one for the H and one for the V polarization of each of the c′ and b′ modes. The

four detectors are inefficient photon detectors subject to dark counts. Their readout is denoted by (qrst). Given this

readout we are interested in the entangled quantum state of the remaining a and d modes depending on experimental

parameters characterizing the deficiencies of the experiment.

calculate the probability P qrst
ijkl of this state, where P (ijkl) is the probability of the

hypothetical ideal Bell measurements corresponding to the resultant pure quantum

state |φijkl〉 of a and d modes. Thus the resultant quantum state of the remaining

modes a and d after recording the actual read outs qrst with inefficient detectors will

be

ρqrst =
∑
ijkl

P qrst
ijkl |φijkl〉〈φijkl|. (3.3.1)

Consider the quantum state generated by the two type-I PDC sources Eq.(2.5.19)

which has been calculated earlier.

|χ〉 = exp[4ω(χ)] exp[â†hb̂
†
h + â†v b̂

†
v + ĉ†hd̂

†
h + ĉ†vd̂

†
v]|vac〉. (3.3.2)

Suppose four detectors of the Bell measurement on b and c modes are perfect i.e

η = 1 and no dark counts. Now applying the balanced beam splitter transformation b̂h

ĉh

→ B†

 b̂′h

ĉ′h

,

 b̂†h

ĉ†h

→ BT

 b̂′
†
h

ĉ′
†
h

 ,

to get ideal read outs (ijkl) using rules [3] where

Û =
1

2

 1 1

−1 1

 , (3.3.3)
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and similarly for vertical polarization. Now using the projection operator to project

the resultant four mode quantum state on to the subspace corresponding to the

projection operator∏̂ijkl

c′h,c
′
v ,b
′
v ,b
′
h

:= (|i〉〈i|)c′h ⊗ (|j〉〈j|)c′v ⊗ (|k〉〈k|)b′v ⊗ (|l〉〈l|)b′h (3.3.4)

⊗Iah ⊗ Iav ⊗ Idv ⊗ Idh .

The modes c′h,c
′
v,b
′
v and b′h are the output modes of the beam splitter. (|i〉〈i|)c′h

represents the projection operator corresponding to the Fock state |i〉 of mode c′h

and similarly the others. The post measurement quantum state after applying the

projection operator in Eq.(3.3.5) and using state normalization is:∏̂ijkl

c′h
, c′v, b

′
v, b
′
hÛB|χ〉

‖
∏̂ijkl

c′h,c
′
v ,b
′
v ,b
′
h
ÛB|χ〉 ‖

= |ic′hjc′vkb′v lb′h〉 ⊗ |φijkl〉. (3.3.5)

where

|φijkl〉 ≡
1√

i!j!k!l!
(
d̂†h − â

†
h√

2
)i(
d̂†v − â†v√

2
)j(
â†v + d̂†v√

2
)k(

â†h + d̂†h√
2

)l|vac〉,

=
1

(
√

2)i+j+k+l
√
i!j!k!l!

i∑
µ=0

j∑
ν=0

k∑
κ=0

l∑
λ=0

(−1)µ+ν

×

 i

µ

 j

ν

 k

κ

 l

λ


×(â†h)

µ+λ(â†v)
ν+κ(d̂†h)

i+l−µ−λ(d̂†v)
j+k+ν+κ|vac〉. (3.3.6)

Now discarding the first factor in Eq.(3.3.5), as the Bell measurement is done

on the b and c modes, so the photons in these modes will be destroyed after the

measurement. The remaining factor |φijkl〉 is the resultant pure state of the outgoing

modes a and d. Hence the corresponding probability of the hypothetical ideal readout

(ijkl) then will be

P (ijkl) =‖
∏̂ijkl

c′h,c
′
v ,b
′
v ,b
′
h

ÛB|χ〉 ‖2=
[tanhχ]2(i+j+k+l)

cosh8 χ
. (3.3.7)

In an actual experiment, given an actual detector readout (qrst) of an imper-

fect Bell measurement with faulty photon number discriminating detectors having
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dark count probability ρdc, One can not find the corresponding resultant postmea-

surement quantum state for the modes a and d nor the probability of its occur-

rence. However using Bayesian theorem one can calculate the posterior probability

P qrst
ijkl := P (ijkl|qrst) of the hypothesis (ijkl) given that the event (qrst) has been

obtained:

P qrst
ijkl ≡ P (ijkl|qrst) =

P (qrst|ijkl)P (ijkl)

P (qrst)
, (3.3.8)

P (ijkl|qrst) =
P (qrst|ijkl)P (ijkl)∑∞

i′,j′,k′,l′=0 P (qrst|i′j′k′l′)P (i′j′k′l′)
, (3.3.9)

where, P (qrst|ijkl) is the conditional probability for obtaining the event (qrst) given

that that the hypothesis or ideal (ijkl) event would have happened if the detectors

used for Bell measurement had been ideal. Using this approach the required result

Eq.(3.3.1) can be obtained.

Since the four detectors are statistically independent from one another, so the

probabilities P (qrst|ijkl) factorize into four terms,

Pη,ρdc(qrst|ijkl) = Pη,ρdc(q|i)Pη,ρdc(r|j)Pη,ρdc(s|k)Pη,ρdc(t|l), (3.3.10)

where each of these probabilities has been calculated as in Eq.(2.8.22). Now combin-

ing these factors with Eq.(3.3.7) implies a factorization of the posterior probability

given in Eq.(3.3.1). So,

P qrst
ijkl (χ, η, ρdc) = f qi (χ, η, ρdc)f

r
j (χ, η, ρdc)× f sk(χ, η, ρdc)f

t
l (χ, η, ρdc). (3.3.11)

Now using Eq.(3.3.7) and the physical assumption considered in Eq.(3.3.11) into

Eq.(3.3.1), we get

f qi (χ, η, ρdc) ≡
Pη,ρdc(q|i) tanh2i(χ)∑∞

i′=0 Pη,ρdc(q|i′) tanh2i′(χ)
. (3.3.12)

Finally inserting the Eq.(2.8.22) into Eq.(3.3.12) we will get the following form of

f qi (χ, η, ρdc),

f qi (χ, η, ρdc) =

(1−η)(1−ρdc)
1−η(1−ρdc)

( η
1−η )qΩ(i, q; η, ρdc) tanh2i(χ)∑∞

i′=0 Pη,ρdc(q|i) tanh2i′(χ)
, (3.3.13)
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where

Pη,ρdc(q|i) tanh2i′(χ) =
∞∑
i′=q

Pη,ρdc(q|i) tanh2i′(χ) +
∞∑

i′=q+1

Pη,ρdc(q|i) tanh2i′(χ),

for i′ = 0→ q i 6 q or q 6 i

for i′ = q + 1→∞ i > q

∞∑
i′=0

Pη,ρdc(q|i) tanh2i′(χ) =
∞∑
i′=0

(1− η)(1− ρdc)
1− η(1− ρdc)

[
1− η
η

b(η, ρdc)]
q−iηi

′
G(q, i; η, ρdc)

+
∞∑
i′=0

(1− η)(1− ρdc)
1− η(1− ρdc)

(
η

1− η
)q(1− η)i

′

G(i, q; η, ρdc). (3.3.14)

After putting this expression back in Eq.(3.3.13) and doing some simple algebra,

final expression will be:

f qi (χ, η, ρdc) =


tanh2i χ(1−η)i−qΩ(i,q;η,ρdc)

g(q;χ,η,ρdc)
if i > q

tanh2i χη2(i−q)(1−η)q−i[b(η,ρdc)]
q−iΩ(q,i;η,ρdc)

g(q;χ,η,ρdc)
if q > i,

(3.3.15)

where

g(q;χ, η, ρdc) =

q∑
i′=0

tanh2i′(χ)η2(i′−q)(1− η)q−i
′
[b(η, ρdc)]

q−i′Ω(q, i′; η, ρdc)

+
∞∑

i′=q+1

tanh2i′(χ)(1− η)i
′−qΩ(i′, q; η, ρdc). (3.3.16)

Similarly the other expressions f rj (χ, η, ρdc), f
s
k(χ, η, ρdc), f

t
l (χ, η, ρdc) present in

Eq.(3.3.11) can be calculated. Thus Eq.(3.3.11), Eq.(3.3.15), Eq.(3.3.16) are used to

calculate the result for photon number discriminating detectors. The mixed quan-

tum state of the remaining modes a and d after an imperfect Bell measurement

result qrst can be easily calculated using photon number discriminating detectors

with efficiency η and dark count probability ρdc as we now know the probabilities

P qrst
ijkl for all possible hypothetical readouts ijkl.

As discussed earlier that photon number discriminating detectors are still a tech-

nological challenge, so for a more realistic and practical situation we consider thresh-

old detectors. In the case of threshold detectors the events qrst of the Bell measure-

ment consists of readouts q, r, s, t ∈ cilck, no− click. The conditional probabilities
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for these kind of detectors are given in Eq.(2.8.26) and Eq.(2.8.27) in the last chap-

ter. So the functions given in Eq.(3.3.11) can be easily calculated using Eq.(3.3.13),

the result will be

fno−clicki (χ, η, ρdc) = [h(χ, η, ρdc)]
i[1− h(χ, η, ρdc)], (3.3.17)

f clicki (χ, η, ρdc) =
tanh2i χ− (1− ρdc)[h(χ, η, ρdc)]

i

cosh2 χ− 1−ρdc
1−h(χ,η,ρdc)

, (3.3.18)

where h(χ, η, ρdc) is given as,

h(χ, η, ρdc) := [1− η(1− ρdc)] tanh2i χ. (3.3.19)

For threshold detectors, the posterior probabilities can be found by using Eq.(3.3.11)

together with Eq.(3.3.17) and Eq.(3.3.19).

Bayesian reasoning and the physical assumption that the four detectors of the

Bell measurement are statistically independent as given in Eq.(3.3.10) (are used to

derive the resultant quantum state Eq.(3.3.1) of the remaining modes a and d). It

was assumed earlier that all the four detectors have same efficiency η but we can

now generalize the results for different efficiencies as well as different dark count

probabilities for four detectors. The derivation is very simple and the result reads

P qrst
ijkl (χ, {ην}, {ρdcν}) = f qi (χ, η1, ρdc1)f rj (χ, η2, ρdc2)× f sk(χ, η3, ρdc3)f tl (χ, η4, ρdc4),

(3.3.20)

where ην and ρdcν , ν = 1, 2, 3, 4 are arbitrary and in general different efficiencies and

dark count probabilities of the four detectors.

3.4 Comparison with Experimental Swapping

In the last section the theory for experimental entanglement swapping is completely

explained. Now to test the validity of the theory it is tested against the results of

real entanglement experiments [3]. Entanglement verification in these experiments is

accomplished by measuring certain correlation coefficients for polarization related to

the CHSH (Clauser-Horne-Shimony-Holt) Bell inequality [32], obtained via variable



CHAPTER 3. REALISTIC ENTANGLEMENT SWAPPING 45

Figure 3.2: Scheme for entanglement verification in an entanglement swapping experiment. A Bell state mea-

surement with imperfect threshold detectors is performed on the c and b modes. A readout (q1r1s1t1) is recorded.

Polarization rotators (PRs) parameterized by angles α and δ are applied to the remaining a and d modes prior to

polarization measurements using polarizing beam splitters (PBSs) and non ideal threshold detectors. The readout of

the second measurement is denoted by (q2r2s2t2).

polarization directions of analyzers placed infront of the detectors used for a and d

modes as shown in Fig.(3.2).

Now to simulate a fourfold coincidence experiment as given is [3] we proceed

as follows. As described earlier, we will compare our theory with the experimental

situations given in [4, 31]. So we consider the fourfold coincidence events in which

the Bell measurement on b and c modes corresponds in the ideal case scenario to a

projection onto the Bell state

|ψ−〉cb =
1√
2

(ĉ†hb̂
†
v − ĉ†v b̂

†
h)|vac〉, (3.4.1)

So its clear that after applying projection postulate, the remaining modes a and d

are also left in the same Bell state i.e |ψ−〉ad.

Let us for a moment consider that our sources and detectors are ideal then, a

projection to Bell state is achieved whenever there are coincidence clicks of the two

detectors for ch and bv and vice versa. For this we can exploit the fact that the Bell

state |ψ−〉cb is antisymmetric under the exchange of labels c and b using fermionic

statistics, which means the two photons have to emerge from different output ports
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of the beam splitter as shown in Fig.(3.2). The remaining three Bell states |φ+〉, |ψ±〉

are symmetric under the exchange of labels c and b implying bosonic statistics, means

that photons will emerge from the same output port of the beam splitter. Hence,

for the assumption of ideal sources and detectors, observing coincidence clicks on

both sides of the beam splitter is an experimental evidence for a projection onto the

state |ψ−〉cb and thus also the existence of the state |ψ−〉ad for a and d modes. For

the assumption of antisymmetric state |ψ−〉cb to be satisfied, only the coincidence

clicks of “ch and bv” or “cv” and “bh” are possible, but not of the clicks of the same

polarization.

As in the real experimental scenario, the PDC sources and detectors are not

ideal. So, due to the presence of different inefficiencies, the actual quantum state

after suggested Bell state measurement will deviate from |ψ−〉ad. More specifically,

even if the detectors used for the Bell measurement were ideal (η = 1, ρdc = 0), they

would never indicate a projection onto |ψ−〉cb and thus also prepare the Bell state

|ψ−〉ad unless the photon pair sources were ideal. The reason behind this issue is the

multipair nature of the PDC sources which precludes a projection onto the Bell state

|ψ−〉cb independent of the quality of the detectors used. To illustrate this fact, let us

consider the case of ideal photon number discriminating detectors and the outcome

of the Bell measurement on b and c modes on these detectors is (1, 0, 1, 0). As it is

assumed that the detectors are ideal photon number discriminating detectors so by

taking η → 1, we have

lim
η→1

f qi (χ, η, ρdc = 0) = δqi,

where δqi is the kronecker delta function. This is exactly what one should expect

in the case of ideal detectors with no dark counts. Thus, in the situation described

above, we have P qrst
ijkl = δqiδrjδskδtl and the state in Eq.(3.3.1) reduces to a single

component, the pure state |φ1010〉 as,

|φijkl〉 =
1

(
√

2)i+j+k+l
√
i!j!k!l!

i∑
µ=0

j∑
ν=0

k∑
κ=0

l∑
λ=0

(−1)µ+ν

 i

µ

 j

ν

 k

κ

 l

λ


(â†h)

µ+λ(â†v)
ν+κ(d̂†h)

i+l−µ−λ(d̂†v)
j+k−ν−κ|0000〉,
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|φ1010〉 =
1

2

 1

0

 0

0

 1

0

 0

0

 (â†h)
0(â†v)

0(d̂†h)
1(d̂†v)

1|0000〉

+
1

2

 1

0

 0

0

 1

1

 0

0

 (â†h)
0(â†v)

1(d̂†h)
1(d̂†v)

0|0000〉

−1

2

 1

1

 0

0

 1

0

 0

0

 (â†h)
1(â†v)

0(d̂†h)
0(d̂†v)

1|0000〉

−1

2

 1

1

 0

0

 1

1

 0

0

 (â†h)
1(â†v)

1(d̂†h)
0(d̂†v)

0|0000〉

=
1

2
[d̂†hd̂

†
v|0000〉+ â†vd̂

†
h|0000〉 − â†hd̂

†
v|0000〉 − â†hâ

†
v|0000〉],

=
1

2
[|0011〉+ |0101〉 − |1010〉 − |1100〉],

|φ1010〉 =
1√
2

[
|0011〉 − |1100〉√

2
+
|0101〉 − |1010〉√

2
]. (3.4.2)

Thus apart from the expected Bell state |ψ〉cb, we get another term which is the

superposition of the two photons either in a mode and no photon in d mode or

vice versa. Hence the entanglement swapping performed with PDC sources cannot

produce a perfect projection onto the sate |ψ〉cb even if the detectors used for the

Bell measurement are perfectly ideal.

In case of imperfect threshold detectors which is being discussed here, a projection

onto the Bell state |ψ−〉cb is achieved whenever one of the following non-ideal Bell

measurement events q, r, s, t is obtained: (1, 0, 1, 0) or (0, 1, 0, 1) where q = 1 means

a click and q = 0 means detectors does not click.

The setup used for entanglement swapping via fourfold coincidence measurement

is very similar to the one described in [4]. It is illustrated in Fig.(3.2). To vary the

polarization of a and d modes, polarization rotators are introduced into their spatial

paths prior to polarization beam splitters. The polarizations of a and d can be varied

independently by varying angles α and δ. To avoid any confusion, let us get cleared

that α and δ stands for the rotation angles of polarization vectors in the real space

and not of the Bloch vectors on the Bloch sphere. Neither do they mean rotation

angles of λ/2 plates which are used in the actual experiment to cause polarization

rotations.
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Polarization rotators prior to PBS are used to separate horizontal and vertical

polarizations. The absolute angle of rotation in each modes determines the basis of

the polarization measurement. In the ideal case scenario, the polarization correla-

tions should depend on the relative angle only between two polarization rotators.

The choice of rotation of polarization is quite independent. For the purpose here

the polarization of mode a is chosen by a fixed angle α = π/4 and the probabilities

for coincidence clicks of the detectors click for measurement on a and d modes are

calculated numerically for different angles of polarization rotation of the d mode

i.e by varying δ. Here, as it has been explained earlier that the results of the Bell

measurement on b and c modes will be (1, 0, 1, 0) or (0, 1, 0, 1). The four detectors

for the measurement on a and d modes are denoted by D+
a , D−a and D+

d ,D−d cor-

responding to analyzing the a mode along the +45o and −45o axes and the d mode

along the variable polarization from −δ to +δ respectively. The four-tuple events

(q2, r2, s2, t2) of the measurements on a and d mods corresponds to the readouts of

the four detectors (D+
a , D

−
a , D

+
d , D

−
d ).

In what follows, the probability for fourfold coincidence using the scheme ex-

plained above for experimental entanglement swapping is calculated. The polariza-

tion rotators acting on a and d modes can be represented by the unitary operators

Û(α̃) = exp[ι̇α̃Ĵa], (3.4.3)

Û(δ̃) = exp[ι̇α̃Ĵd], (3.4.4)

with δ̃, α̃ ∈ R and α̃ = 2α, δ̃ = 2δ where α and δ are the are polarization vectors in

the real space. The generators of rotation

Ĵa :=
1

2
(â†vâ

†
h + â†vâ

†
h), (3.4.5)

Ĵd :=
1

2
(d̂†vd̂

†
h + d̂†vd̂

†
h). (3.4.6)

If the detectors had been ideal then the conditional probability that the polar-

ization measurement on a and d modes would have yielded the result (i2, j2, k2, l2) if

an imperfect Bell measurement on b and c modes had given an event (q1, r1, s1, t1),
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is given by

P (i2j2k2l2|q1r1s1t1) = Tr{(|iah2 j
av
2 kdv2 l

dh
2 〉〈|i

ah
2 j

av
2 kdv2 l

dh
2 |)

[Ûa(α̃)⊗ Ûd(δ̃)ρq1r1s1t1Û †a(α̃)⊗ Û †d(δ̃)]},

=
∑

i1j1k1l1

W i1j1k2l1
i2j2k2l2

(α̃, δ̃)P q1r1s1t1
i1j1k2l1

(χ, {η(1)
ν }, {ρ

(1)
dcν}), (3.4.7)

where Eq.(3.3.1) is used and the transition probabilities

W i1j1k1l1
i2j2k2l2

(α̃, δ̃) := |〈iah2 j
av
2 kdv2 l

dh
2 |Ûa(α̃)⊗ Ûd(δ̃)|φi1j1k1l1〉|2, (3.4.8)

are introduced.

For numerical simulations, this transition probability can be calculated as,

Ûa(α̃) =
ι̇α̃

2
[â†vâ

†
h + â†vâ

†
h], (3.4.9)

Ûd(α̃) =
ι̇δ̃

2
[d̂†vd̂

†
h + d̂†vd̂

†
h]. (3.4.10)

Using Baker-Campbell-Hausdorff formula one can find the explicit expression for

W i1j1k2l1
i2j2k2l2

(α̃, δ̃) easily. Let us define

Ŝ+ := â†vâh, Ŝ− := âvâ†h, Ŝz :=
1

2
(â†vâv − â

†
hâh). (3.4.11)

These operators are the bosonic representation of SU(2) Lie algebra. According

to [3], the following composition formulas are used to solve disentangle the exponen-

tial functions of the generators os the SU(2) Lie algebra.

exp[ι̇α̃(θ+Ŝ+ + θzŜz + θ−Ŝ−)] = exp[f+(α̃)Ŝ+] exp[fz(α̃)Ŝz] exp[f−(α̃)Ŝ−], (3.4.12)

where the functions f±(α̃), fz(α̃) are defined as

f±(α̃) :=
ι̇θ±
Γ1

sin(Γ1α̃)

cos(Γ1α̃)− ι̇θz sin(Γ1α̃)/(2Γ1)
,

fz(α̃) := −2 ln[cos(Γ1α̃)− ι̇ θz
2Γ1

sin(Γ1α̃)],

with

Γ2
1 := θ+θ− +

θ2
z

4
.
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Now using this decomposition formula to Eq.(3.4.9) and in present case θ+ =

θ− = 1/2, θz = 1/2, and

f±(α̃) = ι̇ tan
α̃

2
,

fz(α̃) = −2 ln(cos
α̃

2
).

Thus, Eq.(3.4.9) becomes

Ûa(α̃) = exp[ι̇ tan(
α̃

2
)â†vâh] exp[− ln(cos

α̃

2
)â†vâv]

× exp[ln(cos
α̃

2
)â†hâh] exp[ι̇ tan(

α̃

2
)âvâ

†
h] (3.4.13)

In the similar way one obtains a decomposed form of Ûd(δ̃) in Eq.(3.4.10) as

Ûd(δ̃) = exp[ι̇ tan(
δ̃

2
)d̂†vd̂h] exp[− ln(cos

δ̃

2
)d̂†vd̂v]

× exp[ln(cos
δ̃

2
)d̂†hd̂h] exp[ι̇ tan(

δ̃

2
)d̂vd̂

†
h] (3.4.14)

After using these expressions in Eq.(3.4.8) to derive the transition probabilities. The

result reads

W i1j1k1l1
i2j2k2l2

(α̃, δ̃) = |Ai1j1k2l1i2j2k2l2
(α̃, δ̃)|2 (3.4.15)

with

Ai1j1k2l1i2j2k2l2
(α̃, δ̃) := |〈iah2 j

av
2 kdv2 l

dh
2 |Ûa(α̃)⊗ Ûd(δ̃)|φi1j1k1l1〉| (3.4.16)

Ai1j1k2l1i2j2k2l2
(α̃, δ̃) =

1

(
√

2)i1+j1+k1+l1
√
i1!j1!k1!l1!

i1∑
µ=0

j1∑
ν=0

k1∑
κ=0

l1∑
λ=0

min{j2,ν+κ}∑
na=0

min{k2,j1+k1−ν+κ}∑
nd=0

(−1)µ+ν

×

 i1

µ

 j1

ν

 k1

κ

 l1

λ

 δµ+ν+κ+λ,i2+j2δi1+j1+k1+l1,i2+j2+k2+l2

×
√

(µ+ λ)!(ν + κ)!(i1 + l1 − µ− λ)!(j1 + k1 − ν − κ)![cos
α̃

2
]i2+j2−2na

×[cos
δ̃

2
]k2+l2−2nd{

[ι̇ tan α̃
2
]j2+ν+κ−2na [ι̇ tan α̃

2
]k2+j1+k1−ν−κ−2nd

(j2 − na)!(ν + κ− na)!(k2 − nd)!(j1 + k1)− ν − κ− nd
}

×
[
Πj2−na
m1=1 (na +m1)

]1/2 [
Πν+κ−na
m2=1 (na +m2)

]1/2 [
Πj2−na
m3=1 (i2 +m3)

]1/2
×
[
Πν+κ−na
m4=1 (i2 + j2 − ν − κ+m4)

]1/2 [
Πk2−nd
m5=1 (nd +m5)

]1/2

×
[
Πj1+k1−ν−κ−nd
m6=1 (nd +m6)

]1/2 [
Πk2−nd
m7=1 (l2 +m7)

]1/2

×
[
Πj1+k1−ν−κ−nd
m8=1 (k2 + l2 − j1 − k1 + ν + κ+m8)

]1/2

, (3.4.17)
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Given an event (q1r1s1t1) of a nonideal Bell measurement on modes b and c, the con-

ditional probability to observe the event (q2r2s2t2) with nonideal imperfect detectors

is denoted and calculated as

Qq1r1s2t1
q2r2s2t2(χ, {η

(1)
ν }, {η(2)

ν }, {ρ
(1)
dcν}, {ρ

(2)
dcν}, α̃, δ̃) := prob(q2r2s2t2|q1r1s1t1),

=
∑

i2j2k2l2

prob(q2r2s2t2|q1r1s1t1)prob(i2j2k2l2|q1r1s1t1),

=
∑

i2j2k2l2

P
η
(2)
1 ,ρ

(2)
dc1

(q2|i2)P
η
(2)
2 ,ρ

(2)
dc2

(r2|j2)

×P
η
(2)
3 ,ρ

(2)
dc3

(s2|k2)P
η
(2)
4 ,ρ

(2)
dc4

(t2|l2)

×

( ∑
i1j1K1l1

W i1j1k1l1
i2j2k2l2

(α̃, δ̃)P q1r1s1t1
i1j1k1l1

(χ, {η(1)
ν }, {ρ

(1)
dcν})

)
,

=
∞∑

i2j2k2l2=0

∞∑
i1j1K1l1=0

P
η
(2)
1 ,ρ

(2)
dc1

(q2|i2)P
η
(2)
2 ,ρ

(2)
dc2

(r2|j2)

×P
η
(2)
3 ,ρ

(2)
dc3

(s2|k2)P
η
(2)
4 ,ρ

(2)
dc4

(t2|l2)

×W i1j1k1l1
i2j2k2l2

(α̃, δ̃)P q1r1s1t1
i1j1k1l1

(χ, {η(1)
ν }, {ρ

(1)
dcν}). (3.4.18)

Now combining this result together with Eq.(3.3.11), Eq.(3.3.17) and Eq.(3.3.18),

the four fold coincidence probability can be calculated numerically. As it is ex-

plained earlier that one conditioned on obtaining the readout (1c′h , 0c′v , 1b′v , 1b′h) or

(0c′h , 1c′v , 0b′v , 1b′h) in the Bell measurement. Regardless which of the two events is

given, the conditional probabilities of recording the events (1, 0, 1, 0), (0, 1, 1, 0),

(0, 1, 0, 1) or (1, 0, 0, 1) can be calculated, using four imperfect threshold detectors

(D+
a , D

−
a , D

+
d , D

−
d ) in the polarization measurement on a and d modes, depending on

the varying angle of rotation of δ.



Chapter 4

Theoretical Model for

Experimental Dense Coding

4.1 Introduction

Quantum dense coding is a process or a technique used in quantum information to

send two classical bits of information using only one qubit, with the aid of entangle-

ment. In classical coding, a single-photon can convey only one of the two messages,

or one bit of information per photon. In dense coding, a single-photon can convey

one of the four messages, or two bits of information. Dense coding is possible be-

cause of the properties of photons (i.e polarization, spin, momentum) can be linked

together through a particular process called quantum entanglement. It is a process

that can link two photons even if they are located light years apart.

Suppose Alice would like to send classical information to Bob. She wants to

send information through qubits instead of classical bits. Alice would encode the

information in a qubit and send it to Bob. Bob recovers the information through

some measurement after receiving the qubit from Alice. Then the question arises:

how much classical information can be conveyed per qubit? Since nonorthogonal

states cannot be distinguished properly, one would guess that Alice can do no better

than one classical bit per qubit. Thus there is no advantage in using qubits instead

of classical bits. However, with the additional assumption that the qubits in Alice

52
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and Bob’s possession are entangled, two classical bits per qubit can be achieved. The

term quantum dense coding refers to this doubling of efficiency.

Dense coding is a method that increases the rate at which information may

be sent through a noiseless quantum channel utilizing quantum entanglement. By

sending a single qubit through a noiseless quantum channel between two parties

gives a maximum rate of communication of one bit per qubit. If the sender’s qubit is

maximally entangled with receiver’s qubit, then the process of dense coding increases

the maximum rate of two bits per qubit.

As has been explained earlier, through the process of parametric down-conversion

(PDC) in a pair of nonlinear crystals, a pair of photons gets entangled in polarization.

Then a message which is to be sent is encoded in the polarization state by applying

phase shifter with a pair of liquid crystal. Then the receiver will have to do some

measurement on that state to decode that information. In this chapter we will discuss

the theoretical model of experimental dense coding by taking into account all the

inefficiencies present in different components of experimental setup.

4.2 Quantum Dense Coding

In quantum information theory qubits can be used to store and transmit information.

Classical bit strings of the form 10010(say) can be sent using qubits prepared in the

state |10010〉. The receiver can extract the information by measuring each qubit

in the basis of |0〉, |1〉 (i.e these are the eigenstates of measured observable). This

measurement result yields the classical bit string with no ambiguity.

Figure 4.1: Theoretical Quantum Dense Coding.
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Suppose now that Alice and Bob share an entangled pair of qubits, in the state

|00〉+|11〉 (this is a normalized maximally entangled Bell state but the normalization

factor 1/
√

2 has been dropped to keep the notation simple). We assume a central

mechanical facility generating the entangled pairs and sending one qubit to each of

Alice and Bob, who have never communicated in the past. Using this entangled

qubit in her possession, Alice can communicate two classical bits by sending Bob

only one qubit. This idea due to Wiesner [6] is called “dense coding”, since only one

qubit travels from Alice to Bob in order to convey the information of two classical

bits. Here two qubits are actually involved but Alice can see only one of them in her

possession. This method relies on the fact that four mutually orthogonal Bell states

can be generated from each other by using operations on the single qubit. Suppose

Alice wants to send the classical bit string of 00, 11, 10, 01 then she will start from

the state |ψ〉 = |00〉 + |11〉. As mentioned earlier, Alice can generate any of the

Bell basis states by operating on her qubit with one of the operators (I,X, Y, Z).

So, if Alice wants to send the classical bit string of 00 then she will leave her qubit

unchanged. If Alice applies bit flip operation (X) on her qubit the state will be

(X ⊗ I)|ψ〉 = |10〉+ |01〉.

If she applies phase flip operation (Z) instead of (X) then

(Z ⊗ I)|ψ〉 = |00〉 − |11〉.

Finally if she does both bit flip and phase flip operation together (ι̇Y ) gate, the state

will become

(ι̇Y ⊗ I)|ψ〉 = |01〉 − |10〉.

Bob deduces which Bell basis state the qubits are in by operating on the pair with

the CNOT operation (i.e XOR gate) and measuring the target bit and thus distin-

guishing |00〉 ± |11〉 from |01〉 ± |10〉. He then operates the H-gate on the remaining

qubit and measures it to find the sign in the superposition (see Fig.(4.1)).

Dense coding is difficult to implement and so has no practical value as a standard

communication method. However, it can permit secure communication: the qubit

sent by someone will only yield the two classical information bits to some other in
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possession of the entangled partner qubit. A laboratory demonstration of the main

features is described by Mattle et al (1996) [10], Weinfurter (1994) and Braunstein

and Mann (1995) discussed some of the methods employed, based on a source of EPR

photon pairs from parametric down-conversion. In the next section we are going to

model theoretically the experimental setup of dense coding realistically, described in

Mattle et al. (1996) [10].

4.3 Theoretical Model of Quantum Dense Coding

Quantum mechanics also provides an opportunity to encode information in super-

position of the classical combinations, an appropriate basis is formed by maximally

entangled Bell states

|ψ+〉 = (|H〉|V 〉+ |V 〉|H〉)/
√

2,

|ψ−〉 = (|H〉|V 〉 − |V 〉|H〉)/
√

2, (4.3.1)

|φ+〉 = (|H〉|H〉+ |V 〉|V 〉)/
√

2,

|φ−〉 = (|H〉|H〉 − |V 〉|V 〉)/
√

2.

These orthogonal states still span the four dimensional Hilbert space, implying that

using the two particles we again can encode 2 bits of information, but now by just

manipulating just one of the two particles. This is achieved in the quantum dense

coding for transmitting 2 bits of information per two states. Let us say, initially,

Alice and Bob each gets one particle of an entangled pair in state |ψ+〉. To encode

information Bob performs any of the four unitary operations on a particle in his

possession. As in the case of entanglement swapping Mattle et al. considered the

polarization entangled pairs because of higher stability and more reliable methods

for manipulating polarized beams, as opposed to momentum entangled photons [3].

Thus, to encode information on polarization entangled photons such transformations

are (i) identity operation; (ii) polarization flip operation i.e (|V 〉 → |H〉) and |H〉 →

|V 〉); (iii) polarization dependent phase shift (iv) rotation and phase shift together.

Hence these four manipulations results in the four Bell states, four distinguishable

messages i.e 2 bits of information can be sent via Bob’s encoded particle of two
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Figure 4.2: Experimental model for quantum dense coding [10]. To detect |ψ+〉, both retardation plates are set

to vertical orientation so there will be no change in beam coming from Bob’s encoding station.

particle system to Alice, who can read this information by determining the Bell

state of two-particle system.

The realistic model of quantum dense coding experiment which is going to be

given here based on the experiment done by Mattle et al. in [10]. The polarization

entangled photons are generated by nonlinear type-II down-conversion and sent to

Bob who encode the information on them by some unitary transformation; then Alice

does some measurement to decode them. Following this order we have calculated

the state generated by a type-II PDC source used for quantum dense coding in

Eq.(2.5.21), given as

|χ〉 = exp[2ω(χ)] exp[φ(χ)(â†hb̂
†
v − â†v b̂

†
h)]|vac〉. (4.3.2)

As shown in the Fig.(4.2) after emitting from the source, one beam is directed

towards Bob’s encoding station and the other one is sent directly to Alice’s Bell

state analyzer. The two beams are made to overlap to equalize the path lengths

to well within the coherence length of down converted photons (lc = 100µm), in

order to observe interference of two photons at the beam splitter. Bob wants to

communicate with Alice so he encodes the information on that beam using half

wave plate for changing the polarization and quarter wave plate for changing the

polarization phase shift 1. The beam manipulated in this way is then combined

1
The component polarized along the axis of the quarterwave plate is advanced only by π

2 relative to the other. Reorienting the

optical axis from vertical to horizontal causes a net phase change of p between |H〉 and |V 〉.
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with the other beam at Alice’s Bell state analyzer which consisted of a beam splitter

followed by two polarization beam splitters (channel polarizers) at the two output

ports of beam splitter and then these beams are detected at four detectors to get

coincidence analysis.

Let us consider first the output state as ψ−. To get interference we introduced a

phase shifter operator exp (−ι̇θN̂), where the angle θ =M /λ represents the relative

phase shift between two paths, M is the path length detuning measured in microme-

ters [23] and N̂ simply understood as the number operator. The two beams are made

to overlap to equalize the path lengths to well within the coherence length of down

converted photons (lc = 100µm), in order to observe interference of two photons at

the beam splitter. The action of the beam splitter is given as

ÛB =
1√
2

 1 1

−1 1

 . (4.3.3)

After applying the beam splitter transformation ah

bh

 Û†B→

 a′h

b′h


, and  av

bv

 ÛTB→

 a′v

b′v

 .

For the beam splitter being used here

Û †B = ÛT
B =

1√
2

 1 1

−1 1

 , (4.3.4)

while the number operator here will be

N̂ = â†hâh + â†vâv, (4.3.5)

as is clear from the number operator form above, Bob is encoding information only

on the qubit in his possession. Now we apply the phase shifter operator exp (−ι̇M
λ
N),
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and the beam splitter on the state given in Eq.(4.3.2), we get

ÛB exp(
−ι̇N M
λ

)|χ〉 = ÛB exp[(
−ι̇ M
λ

)(â†hâh + â†vâv)]

exp[2ω(χ)] exp[φ(χ)(â†hb̂
†
v − â†v b̂

†
h)]× |vac〉 (4.3.6)

= exp[2ω(χ)] exp

[
(
−ι̇ M
λ

){
(â†h − b̂

†
h)(âh − b̂h)
2

+
(â†v − b̂†v)(âv − b̂v)

2
}

]
×

exp[φ{
(â†h − b̂

†
h)(â

†
v + b̂†v)

2
−

(â†v − b̂†v)(â
†
h + b̂†h)

2
}]× |vac〉 (4.3.7)

,

ÛB exp(
−ι̇N M
λ

)|χ〉 = exp

[
(
−ι̇ M
λ

)(
â†hâh − â

†
hb̂h − b̂

†
hâh + b̂†hb̂h

2
+
â†vâv − â†v b̂v − b̂†vâv + b̂†v b̂v

2
)

]

× exp

[
φ(
â†hâ

†
v + â†hb̂

†
v − b̂

†
hâ
†
v − b̂

†
hb̂
†
v

2
−
â†vâ

†
h + â†v b̂

†
h − b̂†vâ

†
h − b̂†v b̂

†
h

2
)

]
× exp[2ω(χ)]|vac〉. (4.3.8)

To decompose these exponential terms, it is convenient to use the Baker-Campbell-

Hausdorff formula

exp (X + Y ) := exp (X) exp (Y ) exp (−1

2
[X, Y ]). (4.3.9)

As we know, this formula holds under the condition that [X, Y ] = 0 and [X, [X, Y ]] =

0, so considering the first exponential term in Eq.(4.3.8) only we get

exp

[
(
−ι̇ M
λ

)(
â†hâh − â

†
hb̂h − b̂

†
hâh + b̂†hb̂h

2
+
â†vâv − â†v b̂v − b̂†vâv + b̂†v b̂v

2
)

]
= exp [(

−ι̇ M
λ

)(â†hâh)] exp [(
−ι̇ M
λ

)(b̂†hb̂h)]× exp [(
ι̇ M
λ

)(â†hb̂h + b̂†hâh)]

× exp [(
−ι̇ M
λ

)(â†vâv)] exp [(
−ι̇ M
λ

)(b̂†v b̂v)] exp [(
ι̇ M
λ

)(â†v b̂v + b̂†vâv)]. (4.3.10)

The 3rd exponential term in Eq.(4.3.10) cannot be decomposed using BCH formula

given in Eq.(4.3.9) as this does not satisfy the conditions required to hold that

formula. So for this we will use generalized Baker-Campbell-Hausdorff formula. Let

us define

Â+ := â†hb̂h, Â− := b̂†hâh, Âz :=
1

2
(b̂†hb̂h − â

†
hâh). (4.3.11)

These operators form a bosonic representation of the SU(2) Lie algebra, as they obey

the commutation relations of the generators of the latter. The following decomposi-



CHAPTER 4. THEORETICAL MODEL FOR EXP. DENSE CODING 59

tion formula holds for the exponential factors of SU(2) according to [3]:

exp ι̇α̃[θ+A+ + θzAz + θ−A−] = exp [g+(α̃)A+] exp [gz(α̃)Az] exp [g−(α̃)A−],

(4.3.12)

where the functions g±(α̃), gz(α̃) are defined as

g±(α̃) :=
ι̇θ±
Γ

sin (Γ1α̃)

Γ cos (Γα̃)− ι̇θz sin (Γα̃)/2Γ
, (4.3.13)

gz(α̃) := −2 ln[cos (Γα̃)− ι̇ θz
2Γ

sin (Γα̃)], (4.3.14)

with

Γ := θ+θ− +
θ2
z

4
. (4.3.15)

Thus using generalized BCH decomposition relation the Eq.(4.3.10) becomes

exp

[
(
−ι̇ M
2λ

)(
â†hâh − â

†
hb̂h − b̂

†
hâh + b̂†hb̂h

2
+
â†vâv − â†v b̂v − b̂†vâv + b̂†v b̂v

2
)

]
= exp [(

−ι̇ M
2λ

)â†hâh] exp [(
−ι̇ M
2λ

)b̂†hb̂h] exp [ι̇ tan(
M
2λ

)â†hb̂h]

× exp [− ln cos(
M
2λ

)b̂†hb̂h] exp [ln cos(
M
2λ

)â†hâh] exp [ι̇ tan(
M
2λ

)b̂†hâh]

× exp [(
−ι̇ M
2λ

)â†vâv] exp [(
−ι̇ M
2λ

)b̂†v b̂v] exp [ι̇ tan(
M
2λ

)â†v b̂v]

× exp [− ln cos(
M
2λ

)b̂†v b̂v] exp [ln cos(
M
2λ

)â†vâv] exp [ι̇ tan(
M
2λ

)b̂†vâv]. (4.3.16)

The 2nd exponential factor in Eq.(4.3.8) is much easier to decompose as the operators

of both modes (â†h, â
†
h, â
†
h, â
†
h) commute with each other. So that term will reduce as

exp

[
φ(
â†hâ

†
v + â†hb̂

†
v − b̂

†
hâ
†
v − b̂

†
hb̂
†
v

2
− â†vâ

†
h + â†v b̂

†
h − b̂†vâ

†
h − b̂†v b̂

†
h

2
)

]
= exp [φ(â†hb̂

†
v)] exp [−φ(â†v b̂

†
h)]. (4.3.17)

Hence Eq.(4.3.8) can be written as

ÛB exp(
−ι̇N M
λ

)|χ〉 = exp [2ω(χ)] exp [(
−ι̇ M
2λ

)â†hâh] exp [(
−ι̇ M
2λ

)b̂†hb̂h] exp [ι̇ tan(
M
2λ

)â†hb̂h]

× exp [− ln cos(
M
2λ

)b̂†hb̂h] exp [ln cos(
M
2λ

)â†hâh] exp [ι̇ tan(
M
2λ

)b̂†hâh]

× exp [(
−ι̇ M
2λ

)â†vâv] exp [(
−ι̇ M
2λ

)b̂†v b̂v] exp [ι̇ tan(
M
2λ

)â†v b̂v]

× exp [− ln cos(
M
2λ

)b̂†v b̂v] exp [ln cos(
M
2λ

)â†vâv] exp [ι̇ tan(
M
2λ

)b̂†vâv]

× exp [φ(â†hb̂
†
v)] exp [−φ(â†v b̂

†
h)]|vac〉, (4.3.18)
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ÛB exp(
−ι̇N M
λ

)|χ〉 = exp [2ω(χ)] exp [(
−ι̇ M
2λ

)â†hâh] exp [(
−ι̇ M
2λ

)b̂†hb̂h]
∞∑
i=0

1
i!

[ι̇ tan(
M
2λ

)â†hb̂h]
i

× exp [− ln cos(
M
2λ

)b̂†hb̂h] exp [ln cos(
M
2λ

)â†hâh]
∞∑
j=0

1
j!

[ι̇ tan(
M
2λ

)b̂†hâh]
j

× exp [(
−ι̇ M
2λ

)â†vâv] exp [(
−ι̇ M
2λ

)b̂†v b̂v]
∞∑
k=0

1
k!

[ι̇ tan(
M
2λ

)â†v b̂v]
k

× exp [− ln cos(
M
2λ

)b̂†v b̂v] exp [ln cos(
M
2λ

)â†vâv]
∞∑
l=0

1
l!

[ι̇ tan(
M
2λ

)b̂†vâv]
l

×
∞∑
m=0

φm

m!
(â†hb̂

†
v)
m

∞∑
n=0

−φn

n!
(â†v b̂

†
h)
n|vac〉, (4.3.19)

ÛB exp(
−ι̇N M
λ

)|χ〉 = exp [2ω(χ)]
∞∑
n=0

∞∑
m=0

∞∑
l=0

∞∑
k=0

∞∑
j=0

∞∑
i=0

φm+n(−1)n[ι̇ tan(
M
2λ

)]i+j+k+l

× exp [(
−ι̇ M
2λ

)(m− j + i)] exp [(
−ι̇ M
2λ

)(n+ j − i)]

× exp [− ln cos(
M
2λ

)(n+ j)] exp [ln cos(
M
2λ

)(m− j)]

× exp [(
−ι̇ M
2λ

)(n− l + k)] exp [(
−ι̇ M
2λ

)(m+ l − k)]

× exp [− ln cos(
M
2λ

)(m+ l)] exp [ln cos(
M
2λ

)(n− l)]

× m!n!(m+ l)!(n+ j)!
m!n!l!k!j!i!(n− l)!(m− j)!

√
(n− l + k)!(m− j + i)!√
(m+ l − k)!(n+ j − i)!

×|m− j + i, n− l + k,m+ l − k, n+ j − i〉, (4.3.20)

ÛB exp(
−ι̇N M
λ

)|χ〉 = exp [2ω(χ)]
∞∑
n=0

∞∑
m=0

∞∑
l=0

∞∑
k=0

∞∑
j=0

∞∑
i=0

φm+n(−1)n[ι̇ tan(
M
2λ

)]i+j+k+l

× exp [(
−ι̇ M
2λ

)(m+ n)] exp [− ln cos(
M
2λ

)(−2j − 2l)]

× (m+ l)!(n+ j)!
l!k!j!i!(n− l)!(m− j)!

√
(n− l + k)!(m− j + i)!√
(m+ l − k)!(n+ j − i)!

×|m− j + i, n− l + k,m+ l − k, n+ j − i〉. (4.3.21)

To find the state which will come out after passing through the beam splitter we

apply projection operator on the above state in the following form,

(i′j′k′l′)∏
a′h,a

′
v ,b
′
v ,b
′
h

:= (|i′〉〈i′|)a′h ⊗ (|j′〉〈j′|)a′v ⊗ (|k′〉〈k′|)b′v ⊗ (|l′〉〈l′|)b′h . (4.3.22)

The modes ah,av,bv,bh are the output modes of the beam splitter. The operator ÛB

represents the unitary evolution corresponding to the beam splitter transformation.

Here and in what follows, |n〉 denotes an n-photon Fock state and it should be

clear from the context to which mode in refers. Accordingly,(|i′〉〈i′|)a′h represents a
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projection operator corresponding to the Fock state |i〉 of the mode a′h and so on.

Thus

(i′j′k′l′)∏
a′h,a

′
v ,b
′
v ,b
′
h

ÛB exp(
−ι̇N M
λ

)|χ〉 = exp [2ω(χ)]
∞∑
n=0

∞∑
m=0

∞∑
l=0

∞∑
k=0

∞∑
j=0

∞∑
i=0

φm+n(−1)n

[ι̇ tan(
M
2λ

)]i+j+k+l × exp [(
−ι̇ M
2λ

)(m+ n)]

exp [− ln cos(
M
2λ

)(−2j − 2l)]

× (m+ l)!(n+ j)!

l!k!j!i!(n− l)!(m− j)!

√
(n− l + k)!(m− j + i)!√
(m+ l − k)!(n+ j − i)!

×δi′,m−j+iδj′,n−l+kδk′,m+l−kδl′,n+j−i|i′j′k′l′〉, (4.3.23)

(i′j′k′l′)∏
a′h,a

′
v ,b
′
v ,b
′
h

ÛB exp(
−ι̇N M
λ

)|χ〉 = exp [2ω(χ)]
∞∑
n=0

∞∑
m=0

∞∑
l=0

∞∑
j=0

φm+n(−1)n

[ι̇ tan(
M
2λ

)]i
′+2j+2l−k′ × exp [(

−ι̇ M
2λ

)(m+ n)]

exp [− ln cos(
M
2λ

)(−2j − 2l)]

.
(m+ l)!(n+ j)!

l!j!(m+ l − k′)!(i′ −m+ j)!(n− l)!(m− j)!

×
√
j′!i′!√
k′!l′!

δi′−m,n−l′δj′−n,m−k′|i′j′k′l′〉, (4.3.24)

(i′j′k′l′)∏
a′h,a

′
v ,b
′
v ,b
′
h

ÛB exp(
−ι̇N M
λ

)|χ〉 = exp [2ω(χ)]
∞∑
m=0

n∑
l=0

m∑
j=0

φm+n(−1)i
′−m+l′

[ι̇ tan(
M
2λ

)]i
′−k′+2(j+l) × exp [(

−ι̇ M
2λ

)(m+ n)]

exp [− ln cos(
M
2λ

)(−2j − 2l)]

× (m+ l)!(j′ − k′ −m+ j)!

l!j!(m− j)!(m+ l − k′)!(i′ −m+ j)!(i′ + l′ −m− l)!

×
√
i′!j′!

k′!l′!
δi′−m,n−l′δj′−n,m−k′|i′j′k′l′〉, (4.3.25)
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(i′j′k′l′)∏
a′h,a

′
v ,b
′
v ,b
′
h

ÛB exp(
−ι̇N M
λ

)|χ〉 = exp [2ω(χ)]
∞∑
m=0

j′+k′−m∑
l=0

m∑
j=0

φi
′+l′(−1)i

′−m+l′

[ι̇ tan(
M
2λ

)]i
′−k′+2(j+l) × exp [(

−ι̇ M
2λ

)(i′ + l′)]

exp [− ln cos(
M
2λ

)(−2j − 2l)]

× (m+ l)!(j′ − k′ −m+ j)!

l!j!(m− j)!(m+ l − k′)!(i′ −m+ j)!(i′ + l′ −m− l)!

×
√
i′!j′!

k′!l′!
δi′+l′,j′+k′ |i′j′k′l′〉, (4.3.26)

l will remain positive only for m ≤ j′ + k′. So by changing the summation over m,

we get

(i′j′k′l′)∏
a′h,a

′
v ,b
′
v ,b
′
h

ÛB exp(
−ι̇N M
λ

)|χ〉 = exp [2ω(χ)]

j′+k′∑
m=0

j′+k′−m∑
l=0

m∑
j=0

φi
′+l′(−1)i

′−m+l′

[ι̇ tan(
M
2λ

)]i
′−k′+2(j+l) × exp [(

−ι̇ M
2λ

)(i′ + l′)]

exp [− ln cos(
M
2λ

)(−2j − 2l)]

× (m+ l)!(j′ − k′ −m+ j)!

l!j!(m− j)!(m+ l − k′)!(i′ −m+ j)!(i′ + l′ −m− l)!

×
√
i′!j′!

k′!l′!
δi′+l′,j′+k′ |i′j′k′l′〉. (4.3.27)

Now if i′ −m+ j > 0 =⇒ j > m− i′

m− j > 0 =⇒ j < m

i′ + l′ −m− l > 0 =⇒ l < i′ + l′ −m

m+ l − k′ > 0 =⇒ l > k′ −m

(i′j′k′l′)∏
a′h,a

′
v ,b
′
v ,b
′
h

ÛB exp(
−ι̇N M
λ

)|χ〉 = exp [2ω(χ)]
i′+l′∑
m=0

i′+l′−m∑
l=max.{0,k′−m}

m∑
j=max.{0,m−i′}

φi
′+l′(−1)i

′−m+l′

×[ι̇ tan(
M
2λ

)]i
′−k′+2(j+l) exp [(

−ι̇ M
2λ

)(i′ + l′)]

× exp [− ln cos(
M
2λ

)(−2j − 2l)]

× (m+ l)!(j′ − k′ −m+ j)!

l!j!(m− j)!(m+ l − k′)!(i′ −m+ j)!(i′ + l′ −m− l)!

×
√
i′!j′!

k′!l′!
δi′+l′,j′+k′ |i′j′k′l′〉. (4.3.28)
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Thus the probability for quantum dense coding experiment in case of ideal detection

will be

P (i′j′k′l′) =‖
(i′j′k′l′)∏
a′h,a

′
v ,b
′
v ,b
′
h

ÛB exp(
−ι̇N M
λ

)|χ〉 ‖2 . (4.3.29)

We have calculated the probabilities for photon number discriminating detectors

and ideal threshold detectors, both for the ideal case and in the presence of dark

counts. As mentioned earlier, given an actual readout (qrst) of an imperfect Bell

measurement with inaccurate detectors including dark counts, we infer what an

ideal four tuple of detectors would have yielded i.e read out (ijkl) with probability

P qrst
ijkl := P (ijkl|qrst) using Bayesian inference approach,

P qrst
ijkl ≡ P (ijkl|qrst) =

P (qrst|ijkl)P (ijkl)

P (qrst)
. (4.3.30)

P (ijkl) is the probability of hypothetical ideal measurement readout (ijkl) which in

our case of dense coding is given in Eq.(4.3.29). In an actual experiment, however,

detectors have efficiency less than 100% and in addition exhibit dark counts. Hence

we can calculate the conditional probability P (qrst|ijkl) for all the possible events

(ijkl). As the four detectors are statistically independent from one another, these

probabilities can be factorized into four terms,

Pη,ρdc(qrst|ijkl) = Pη,ρdc(q|i)Pη,ρdc(r|j)× Pη,ρdc(s|k)Pη,ρdc(t|l) (4.3.31)

Each of these probabilities has been calculated earlier. By combining the above equa-

tion with Eq.(4.3.29), we can calculate the posterior probability of ideal hypothetical

readout (ijkl) given the evidence (qrst) has happened.

P qrst
ijkl (χ, η, ρdc) = Pη,ρdc(q|i)Pη,ρdc(r|j)× Pη,ρdc(s|k)Pη,ρdc(t|l)× P (i′j′k′l′). (4.3.32)

We have found the hypothetical probability of the state |ψ−〉 in case of perfect

detectors given in Eq.(4.3.29) for quantum dense coding experiment. To detect the

other three Bell state we will have to include the half wave plate and quarter wave

plate and by changing their orientations we can detect two out of remaining three

Bell states. In principle, all four Bell states should detect at the detectors but yet it

is impossible to distinguish between |φ+〉 and |φ−〉. The two photons in this case are
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Figure 4.3: Curve shows that for the given value of χ the probability P(0000) along y-axis is maximum and it will

start decreasing when no. of photons striking at the detectors increases with the passage of time.

detected at either of the detectors Dh, Dv, D
′
h and D′v thus we cannot distinguish

between the two correlated photons. We draw the above calculated hypothetical

probability with different values of nonlinearity of the down converted crystal. In

this present setting of our model to detect |ψ−〉 state, the other Bell states could

not then be generated with respective setting. For numerical simulations we choose

the value of χ = 1 to calculate the probability of |ψ−〉 state. The dark counts effect

becomes stronger as the number of photon incident at the detectors increases, so

the probability P (i′j′k′l′) decreases. So our result of hypothetical probability by

Figure 4.4: Curve shows that for the given value of χ the probability P(1111) is less than P(0000) at χ = 1 as the

no. of photons striking at the detectors increases.

considering the detectors ideal is similar as given by Mattle at el. in [10]. The large

value of χ also result in increase of dark counts so usually we take smaller values of

χ to reduce the effect of dark counts.



Chapter 5

Conclusion

5.1 Sources and Detectors

In this dissertation non-ideal sources and detectors have been considered. Ideal

photon pair sources would create exactly one entangled photon pair on demand.

Such sources do not exist yet; realistic sources are probabilistic in nature. The rate

of pair generation using PDC crystal is proportional to nonlinearity χ2, the strength

of the classical pump field and interaction time. The role of the vacuum state in

equation below which is in chapter 2 in Eq.(2.5.4).

Y (γ) | vac〉 = |vac〉+
ι̇γ

2
|0110〉, (5.1.1)

is to allow for the particular feature that the generation of the desired photon pair

occurs at random instances of time. More precisely, when a pump pulse is sent, it

will either lead to the down conversion or not. The strong vacuum component shows

that there is a high probability that PDC will not take place at all.

The randomness of photon pair generation can be decreased by using a PDC

crystal with large value of nonlinearity χ2 or stronger pump fields, but this costs the

increased probability of emission of multipairs of photons, which really affects the

experiment and should be avoided as far as possible. However, multi-pair emission

effect cannot be excluded completely. Too small a value of χ leads to a strong

vacuum contribution, thus most of the time sources do not emit any photon pair.

While much higher values of χ also result in decrease of entanglement in the final
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quantum state after entanglement swapping and as such have an adverse impact.

The realistic models of the detectors used for these processes have also been dis-

cussed here. We have made a distinction between photon-number discriminating de-

tectors and threshold detectors. In practice, however, detectors cannot measure the

photon’s number efficiently but instead effectively measure if there are no photons in

a mode or atleast one photon. Such detectors are referred as threshold detectors and

for this reason these are considered more realistic than photon number discriminat-

ing detectors. We calculated the probabilities for both type of detectors realistically

and in the presence of dark counts.

5.2 Theoretical Entanglement Swapping

These realistic models of entanglement swapping and quantum dense coding could

be very helpful to understand these processes at the physical level. We have derived

the actual quantum state of the remaining modes a and d depending on the result

of a noisy Bell measurement with probabilistic sources and imperfect detectors for

entanglement swapping experiment. The most important advantage of this model is

to provide this quantum state for any given photon-pair production rate χ, any given

efficiency η of the detectors and any reasonable dark counts probability ρdc. One

can make predictions with regard to any quantity of interest using this calculated

quantum state, specifically, one can calculate the entanglement of the remaining

modes. It has been shown that predictions of our theory are in close accordance

with experimental entanglement swapping.

5.3 Theoretical Dense Coding

We have developed the theory of realistic quantum dense coding to some extent.

We have calculated the state produced by degenerate non-collinear type-II down-

conversion in a nonlinear BBO crystal given in Eq.(2.5.21). The theory of imperfect

detectors has already been developed in chapter 2. Using the theory for experimental

dense coding we calculated the hypothetical probability Eq.(4.3.29) by considering
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ideal detectors at Alice’s Bell state analyzer and we showed that our results in case

of ideal detection gives the maximum probability with for a given value of χ = 1 and

this probability decreases as the number of photon striking at the detector increases.

The methods provided in this dissertation provide the base components needed

to develop a model that will determine the best source and detector efficiencies for

use in an entanglement swapping and dense coding system. We have made a dis-

tinction between photon-number discriminating detectors and threshold detectors

and it is shown that threshold detectors are more realistic as compared to photon

number discriminating detectors. In developing the theory of realistic entanglement

swapping, the actual quantum state after entanglement swapping and the probabil-

ity with which this state exists are calculated . The original work which we have

presented in this dissertation is a realistic model of experimental dense coding up to

some extent. We calculated the state generated by these PDC sources in this process

and the hypothetical probability in ideal case scenario. The results which come out

from both processes have close resemblance with experimental results.

In future considerations, there is need to calculate the actual probability of the

state detected in dense coding process in a realistic case. The study of variation in

channel capacity in this case by taking into account all the inefficiencies present in

the sources, detectors and line losses etc. would also be interesting. This work will

be worth analyzing in view of promising technology advancements in research on

quantum communication.
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