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Abstract

A 2DEG is considered with the RSOI with external perpendicular magnetic field.

We use green functions method to derive analytical expressions of the DOS of a

2DEG with RSOI. Further with the help of DOS we obtain analytical expressions of

magnetoconductivities for up and down spin electrons. These conductivities oscillate

with dissimilar frequencies and thus give us beating patterns of amplitude of SdH

oscillations. If we know the magnetic field for any beat node through experiment,

we can find a simplest equation that enables us to determine the ZFSS energy. The

anaytical results obtained in this research will reproduce the measured ZFSS energy,

the amount of oscillations between two successive nodes and the non periodic beating

patterns obtained through experiments
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Chapter 1

Introduction and motivation

The spin orbit interaction pulls in a great deal of interest on account of its signif-

icance in basic principles of science and its practical applications. The SOI stems

from special relativity. A recent investigation in semiconductor based devices has

consolidated the spin degree of freedom as another state variable in novel electronic

devices with potential for future applications. Due to spin freedon semiconductors

provide over their insulating and metallic counterparts, i.e a small band-gap, that

can be tuned by doping or applying an electric field in the form of a gate bias.This has

lead to the advancement of bipolar and metaloxide-semiconductor transistors, uti-

lized all through present day electronics. Moreover, as strategies for manufacturing

semiconductor heterostructures have improved, so has the scope of semiconductor

structures accessible for study. In low dimensional condensed matter systems, a lot

of research and thought has been done with reference to the spin orbit interaction

(SOI) for low dimensional conden sed matter systems due to its potential uses in

spin based electronic devices [1–3]. The SOI is responsible for the following major

effects
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• Spin-FET [4, 5]

• Metal insulator transition in a 2DHG[6]

• Spin-resolved ballistic transport [7]

• Spin-galvanic effect [8]

• Spin-Hall effect [8, 9]

A key motivating factor has been to measure and maintain the strength of SOI

experimentally as it affects the spin degree of freedom.

Without external magnetic field, the SOI lets the two-fold spin degeneracy be

lifted at the finite momenta of the electron. Furthermore, there are two key mech-

anisms responsible for the ZFSS in semiconductor hetero-structures, which are -the

Dresselhaus interaction[11] which varies with k3 followed by the Rashba interaction

[12] varying linearly with k where k is the wave vector. The former is because of

crystals’ inversion asymmetry and the latter is due to asymmetric quantum wells.

A asymmetric quantum wells generate electric field that results in the RSOI. It is

also possible to tune an SOI with a very strong electric field externally which is at

right angle to the planer of motion of the electrons. The Dresselhaus interaction is

known for controlling wide-gap semiconductors with small thicknesses in contrast to

Rashba interaction which controls narrow-gap semiconductors for they have different

momentum dependencies [13, 14].

An immediate indication of the spin split levels is a beating change in the SdH

oscillations because of the two firmly dispersed dissimilar frequencies of the spin

down and up electrons. It was indicated that the RSOI produces customary beating

patterns in SdH motions [14]. However, only odd beating patterns observed in
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Dresselhaus interaction. The quality of an SOI can be observed by breaking down

and analyzing the SdH oscillations.

An experimental evidence of ZFSS is observed in modulation doped GaAs/AlGaAs

heterojunction [15, 16]. This evidence was found by utilizing the magnetotransport

and cyclotron reverberation. At first, it was clarified by Bychkov and Rashba relying

on the SOI created in the assymmetric quantum wells[17]. The ZFSS is identified

with the Fermi wave vector kF and the SOI’s strength α as ∆s = 2kFα. The RSOI

is viewed as the suitable effect for analyzing the ZFSS in low-dimensional quantum

frameworks, especially in restricted narrow gap semiconductors. The beating oscil-

lations in the SdH motions have been found in GaSb/InAs quantum wells and it

has been confirmed that the rise of the spin decadence is because of the RSOI [18].

Afterward, Das et al.[19] examined the SdH oscillations in a progression of three dif-

ferent tweak doped heterostructures with high electron densities and confirmed that

the lifting of the spin degeneracy is because of the RSOI. There are many proposed

methods to control the strength of SOI in 2DEG of different materials [20–22].

It is notable that with magnetic field at low temperature and low magnetic fields

SdH oscillations are produced. Extrapolating data along with model calculations

for the SdH oscillations were used to find out the RSOI strength in ZFSS energy

[23]. Moreover, the ZFSS theory was later studied based on contrast between self-

consistent Born approximation and Landau energy levels [24]. The expected SOI

strength was in a preferred pact with the generalized results acquired in [19].

In this dissertation, we focus on an approach to investigate the ZFSS energy

in 2DEG. The systematic articulations of the SdH oscillations are also obtained.

This result is for the up-down spin electrons. These oscillations are shown in the

beating pattern of absolute magnetoconductivity because of two firmly separated
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dissimilar frequencies of the SdH motions for up and down spin electrons. We follow

up by investigating the beating patterns and discover a simple equation to decide the

ZFSS energy from the area of any beat nodes. We likewise clarify systematically the

number of fluctuations between the two consecutive nodes and the non-intermittent

conduct of the beating patterns.

In chapter 2, there is a review of the basic concepts that are used throughout the

thesis. This chapter mainly discusses the origin of SOI, magnetotransport properties

and spin splitting in a 2DEG. It ends with the single particle picture of a 2DEG.

Chapter 3 includes the derivation of Hemiltonian of our system by applying the non

relativistic limit on the Dirac equation. In this chapter, we sum up the eigenvalues of

energy and their related eigenfunctions of the system of 2DEG including RSOI and

a right angled magnetic field. We also calculate the density of states by using imagi-

nary part of self energy. Analytical and numerical results about SdH oscillations are

discussed in chapter 4. In section 4.1, utilizing the accessible experimental data, we

compute spin splitting energy when magnetic field approaches zero and number of

fluctuations between two consecutive nodes from theoretical results. Experimental

and theoretical results are compared in section 4.2. At the end, summary of the

work is presented in chapter 5 along with recommendations for future work.
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Chapter 2

Theory and Backgroud

In this chapter, some basic definitions and concepts will be discussed briefly like two

dimensional electron gas, SOI and its types, magneto-transport, integer quantum

Hall effects and SdH oscillations. Some basic equations are derived like Hamiltonian

and wave function of single particle moving in magnetic field etc.

2.1 Two-dimensional electron system

Many decades ago, the ”2D electron gas” became the center of interest in semicon-

ductor physics. Many publications and several groups are using this concept in their

respective research fields because this 2D system not only provides basic research

but also has many applications. An electron gas, which is free to move in 2D, but

firmly restricted in third dimension. This causes quantized energy levels to move in

third direction, which can be avoided for multiple problems. It seems the electrons

to be 2D sheet ingrained in 3D world. Similarly, for holes it is called 2D hole gas.

For example, as it can be seen in Fig. 2.1(a) that electrons are confined in a very
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thin potential layer. A new quantum phenomenon will be observed if potential layer

width is of the order of 10−9m because the electrons’ De-Broglie wavelength must

be fitted in quantum well. This results into energy sub-bands i.e. (E0, E1, ...). The

system will be called two dimensional system when energy separation of quantum

levels of electrons i.e. E1 − E0 is greater than other energies like broadening (Γ),

thermal energy (kT ) etc. Now in z-direction energy is fixed and electrons can move

freely in xy-plane. Such systems have many interesting and useful applications.

Figure 2.1: (a)Schematic view of two dimensional electron system(b) Schematic

view of semiconductor heterojunction. AlGaAs has higher Fermi energy and electron

spills into GaAs, leaving positively charge donors behind. This cause a band bending

and produces high electron density near the inerface, the 2D electron gas.[25]

2.1.1 Semiconductor Heterojunction

Among the impactful scientific discoveries made in the early stagesof 20th century

physics was that non-artificial processes are impossible for actions lesser then S =
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h/2. The constraint is defined as the Heisenberg uncertainty principle. Processes

occurring with action near the proximity of ~/2 it belongs to the quantum physics

domain. Up till late stages of the twentieth century the unusual new existence

was only seen, likewithin the atom. The changes due toadvancement in physics

allowed the manufacturing of artificial quantumsystems.They are generally scaled

in nanometers and at current time are Major interest in both fundamentals and

applied research [26]. An adaptable plat-form for these man-made systems are

semiconductor heterostructures(Fig. 2.1(b)), which are essentially, made of multi-

layered distinct kinds of semi-conductors. Between the levels, jumps take place in

the form of bands of energy We will be taking into consideration a case of two types

of hetero-junction layers, under the assumption that, middle layers have less energy

gaps compared to adjoining layers [27]. This will cause the formation of a quantum

well towards the growth direction of the composition. Considering there is enough

depth, only the last level in the direction of growth will be attainable to electrons

within the band. This will cause effect in the electrons, withheld inside a place at

right angles in the growth direction of 2DEG. This type of system can be seen in

Fig. 2.2.
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Figure 2.2: Figure showing three layer heterostructure with different energy gaps.

Quantum well is created, if Eg,I is small compared to other two layers, confining, in

the z-direction, the charge density of the conduction band.[28]

In most pragmatic circumstances, where the vector k is comparatively smaller

than reciprocal of the lattice constant, it is to be expected that the electrons have

a free energy scattering in 2DEG. Considering this supposition electron mass me

is supplanted with m∗ i.e effective mass. In k space, the relation between effective

mass and the conduction band curvature can be shown as [29]

1

m∗
=

1

~2

∂2Ec
∂k2

With the assistance of entryway cathodes, or by smart example manufacture, a huge
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assortment of potential energy structures can be accomplished in the 2DEG.

2.2 Semiconductor spintronics

Normally charge in an electron is the key element, and warming the bench for the

key element is the spin. Spintronics6 in electronics is when the spin will enact a

vital role. Spintronics are the reason for the huge changes in mettalic mediums of

storing, due to success of finding GMR in 1988 [30]. Updating in semiconductor

dominated spintronics allow more demanding and less paced. In spite of the fact

that Supriyo Datta hypothetically proposed a turn FET in 1990 [31]. After couple

of years it had yet to be recognized practically. A major challenge while producing

these spintronics based gadgets was production of controlled field to generate rota-

tions.After couple of years it had yet to be recognized practically. A major challenge

while producing these spintronic based gadgets was productionof controlled field to

generate rotations. Effectively changing the field according to such sizes is not a

practical. A solution to the identified issue is under study. The use of DMSC (dilute

magnetic semiconductor) is a proposed solution[32]. Another is the manipulation of

electronsusing electricity based fields [33].

2.2.1 Spin orbit interaction(SOI) in semiconductor con duc-

tion band

As stated in the theory of special relativity, fields generated through electricity

and magnets are Lorentz transformed when changes occur inside the inertial frame.

hence for particles carrying charge and in motion insidea field, they begin to feel

a field push on them within their inertial frame. A similar case due to this is
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interactivity atoms i.e SOI. Powerful electronic fields of the particles combine with

their spins, causing a Zeeman type separation of the spectral lines[34]. Is it possible

that the aforementioned could allow the spin to be controlled conduction? Below is

the emphasis of Hamiltonian HSO, known as the Pauli spin-orbit term, displaying

the spin-orbit interactivity:

HSO = − ~
4m2

ec
2
σ · p× (∇V0) (2.1)

where

c= the speed of light

σ = (σx, σy, σz) = a vector of the Pauli matrices

V0= an electric potential

It can be derived from the non relativistic limit of Dirac equation[35]. Here,

crystal potential will play the role of V0.

The electricity based field with most strength which an electron can experience

is from the core of the atom. This allows outside effect to be considered null in the

Pauli spin orbit term. The potential in crystals that is basically originated from

core can be assumed radial near the core. According to this assumption we Pauli

SO is termed as

HSO ∼ L · S

Here

L = p× r= orbital angular momentum operator

S = (h/2)σ

Taking a start from excessively protected center through their valance electrons

however more critically they are s like orbital electrons which implies that L =
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0. Better competitors, by a wide margin, would be the valence electrons. They

experience bigger electric fields coming from nuclear centers and are p type orbital

electrons, which implies that L = 1. This is for sure the case for holes in the valence

band which experience huge SOI[36].

The k · p method

The k ·p approximation method is used for convenience to elaborate the SOI effects

on energy band structure of the semiconductors. Bloch’s theorem is used as a

starting point in this method of approximation. For band n the wave function is

Ψn,k(x) = eik·xun,k(x)

where

un,k(x)= Bloch function

Both the Block’s function and the crystal potential V0(x) has same periodicity.

Using this information, Hamiltonian of the system including SOI can be written as

[28]

H =

[
p2

2me

+ V − ~
4m2

ec
2
σ · p× (∇V0(x))

]
︸ ︷︷ ︸

H0

+

[
~2k2

2me

+
~k · π
me

]
︸ ︷︷ ︸

H′k

(2.2)

with

π = p +
~

4mec2
σ × (∇V0(x))

|k| is very small as compared to the reciprocal of lattice constant, so H ′k can be

treated as perturbation. It is quite cumbersome task to find the spectrum of the

above Hamiltonian. The standard beginning stage is to extend the Bloch function in
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a premise of s and p like orbitals. In this premise the components of the Hamiltonian

in Eq. (2.2) are

Hnσ,n′σ′ =

[
En′ +

~2k2

2me

]
δn,n′δσ,σ′ + ∆nσ,n′σ′ +

~
me

k ·Pnσ,n′σ′ (2.3)

and

Pnσ,n′σ′ = 〈n, σ|π|n′, σ′〉

shows inter band interaction and SO energy gap. With Eqs. (2.2) − (2.3) we have

the way to investigate SO impacts in 2DEG. Two sorts of SO impacts are significant

in 2DEG frameworks. These sorts are known as the Dresselhaus [11] and Rashba

[12] SOI and emerge from a BIA and SIA, respectively

2.2.2 Dresselhaus spin orbit interaction

A system has time reversal balance without magnetic field. This satisfies the

Kramer’s theorem that is

E↑(k) = E↓(−k)

If H(x) = −H(x), then both down and up spin energy levels are degenerate i.e.

E↑(k) = E↓(k)

This avoids the impacts of SOC on the energy levels. Nonetheless, crystals with

a zinc blende structure, for example GaAs, InAs, InP, etc., missing inversion sym-

metry. Because of this the spin degeneracy is expelled and we can expect impacts

of SOC on the band structure. In mass structures the impacts of SOC on the
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conduction band can be inferred to be [36, 37].

HD ∝ px[p
2
y − p2

z]σx + py[p
2
z − p2

x]σy + pz[p
2
x − p2

y]σy (2.4)

For 2 DEG structures developed in the [1,0,0] crystals heading Eq.(2.2) diminishes

to

HD =
β

~
[σxkx − σyky] (2.5)

if we assume expectation value in the z direction and ignoring all terms that are

in high order than p. Where β is defined as the Dresselhaus term depending upon

thickness of a 2DEG and the material band parameters.

2.2.3 Rashba spin orbit interaction

The Dresselhaus expression, Eq.(2.5), originates due to the crystal structure’s inver-

sion asymmetry and is completely dependent on material, aside from the thickness

of a 2DEG. While, the Rashba SOI arises from an unnatural inversion asymmetry.

Due to this reason it is easy to manipulate RSOI. As it is clear from the name, SOI

generates interaction between its spin dynamics and the orbital motion of electron.

If the electron travels through electric field, in its rest frame electric field is appeared

to be moving. As a result, internal magnetic field is produced by moving charges in

rest frame of electron which, in return, couples to electron spin. The direction and

magnitude of internal magnetic field depends on velocity and traveling direction of

electron in material i.e internal magnetic field is dependent on wave vector. When

the electrons are restrained in asymmetrical potential to narrow layer 2D electron

gas, their orbital and spin DOF (degree of freedoms) are coupled. This is known as

rashba effect in which spin of electron having finite momentum experiences a mag-
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netic field that is perpendicular to the momentum of electron in inversion symmetry.

When magnetic field is absent, spin degeneracy of 2D electron gas energy bands is

lifted by coupling of orbital motion of electron with its spin. This type of coupling

arises due to asymmetric inversion of potential confined in 2DES. A natural clari-

fication of the Rashba SOI is to see it in terms of an effective magnetic field. This

can be done by changing the Rashba Hamiltonian with Zeeman like Hamiltonian

HR =
α

~
z · (σ × p) = α(k× z)︸ ︷︷ ︸

BR(k)

·σ

This BR(k) manifests itself as being always at right angle to the k vector of the

electron in the 2DEG, see Fig. 2.3

Figure 2.3: Schematic view of production of effective magnetic field by RSOI “fol-

lows” the path of the electron.[27]

The spin precession caused by RSOI occurs around the kx direction along ky

direction and vice versa, as shown in Fig. 2.4(a), Fig. 2.4(b) and Fig. 2.4(c) show
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the spin (precession axis) orientation for the linear and cubic term respectively.

In an InGaAs 2DEG, the Rashba SOI is usually greater than Dresselhaus SOI.

Thus in the thesis, we only focused on HR by neglecting HD to fit the low-field

magnetoconductance data.

Figure 2.4: Schematic sketches of spin orientation due to Rashba and Dresselhaus

effects. Here kx is choosen to be [010], ky the [100] crystal diection and z is along

[001]
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2.3 Magnetotransport in 2DEG

Magneto-transport is basically transport of electrons in semiconductors and metals

in the company of a magnetic field. Restriction in the motion of electrons in a two

dimensional plane (e.g 2DEG) in the company of magnetic field, will result in the

most surprising and wonderful phenomenon known as Hall effect. The Hall efect

was found more than ten dacades ago, and has since become a generally utilized tool

for considering the transport properties of materials, just as the reason for countless

mechanical applications[1, 9]. Magnetotransport is an amazing and advantageous

procedure to analyze 2DEG.

2.3.1 The Drude Model and the Hall effect

When applying an electric and/or magnetic field to a material the electrons or holes

within that material will experience a force. Treating the carriers as though they

had an effective mass m∗, a time between scattering events τ and considering the

total force on the particles due to the externally applied fields results in the Drude

Model [38]:

m∗
(

dv

dt
+

v

τ

)
= q(E + (v ×B)) (2.6)

where

v=velocity of the carriers,

q=electronic charge,

E= Electric field

B= magnetic fields.

For a given carrier type of mass m∗ the current density J can be related to the
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to the electric field via the relationship

E = ρJ (2.7)

where ρ is the resistivity tensor. For a 2D carrier gas (2DCG) in the xy - plane with

a magnetic field applied along z-axis, as in Fig. 2.5. ρ is given by the 2x2 matrix

ρ =

 ρxx ρxy

ρyx ρyy

 Onsager→ ρ =

 ρxx ρxy

−ρxy ρxx

 (2.8)

where it has been assumed that there is no current flowing in the z-direction (Jz = 0)

and the electric fields in the y and z directions are equal to zero. Assuming Onsager

reciprocity the, argument on the left side of Eq. 2.8 undergoes the transformation

shown by the arrow [39]. Experimentally the transverse and longitudinal voltages,

Vxy and Vxx respectively, are measured as shown in Fig. 2.5
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Figure 2.5: (a) Measurement setup for the Hall effect with a sample of width W

and length L. The Hall voltage VXY can be measured between probes 3 and 5 or 4

and 6. (b) Plan view of (a) with the voltage probes removed and the current path

of the charge carriers with the effects of magnetic field.[40]

These quantities allow the carrier density and mobility to be calculated vin the

relations

ρxx =
WVxx

LI
=

1

nseµ
, ρxy =

WVxy

LI
=

B

nse
(2.9)

This, however, is not the entire picture as any misnlignment between the voltage

probes must be taken into account as these would lead to to errors when measuring

Vxy. Using Eqs 2.6,2.7 and 2.8 it can be shown that when the magnetic field is

reversed ρxx and ρxy are respectively even and odd functions

ρxx(+B) = ρxx(−B)

ρxy(+B) = −ρxy(−B)
(2.10)
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thus

ρxx(+B) =
W

2L
(Rxx(+B) +Rxx(−B)) (2.11)

ρxy(+B) =
1

2
(Rxy(+B)−Rxy(−B)) (2.12)

Although this method can account to a certain degree for the inclusion of Rxx in the

measured Rxy signal, it cannot fully remove its presence under certain conditions.

These conditions are present at low carrier densities where ρxx will be large and

magnetic fields where ρxy becomes similar in magnitude to ρxx. This introduces a

high degree of noise in the measured Rxy signal making it more difficult to extract

an accurate value of the carrier density using this method [38].

Eq. 2.9 agrees well with Hall’s original measurements in 1879. [41]. However,

later they were found to need modifying at lower temperatures where the quantum

Hall effect appears. It is also possible to determine carrier densities via the quantum

Hall effect without the need to resort to Eqs. 2.10 through 2.12.

2.3.2 The Integer Quantum Hall Effect (QHE)

In confined 2D systems, a plateau in Hall voltage occurs when the Fermi energy is

halfway between two adjacent Landau levels. At this point, the DOS, and hence the

longitudinal resistivity, is zero. The transverse resistivity is given as

Rxy =
h

e2

1

v

where v = hn2D
eB2

is the filling factor. This quantization in the longitudinal resistivity

is known as the integer quantum Hall effect. This effect was apprehensively predicted

by Ando et al. in 1975 [42] and was unexpectedly discovered and reported by von
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Klitzing in 1980 [43]. The main results of that study are repeated in figure 2-12

Figure 2.6: From [43]. The voltage drop UPP and the Hall voltage UH between

the probes (where UPP is equivalent to Vxx in figure 2-10) are both plotted as a

function of the gate voltage Vg. Troughs and plateaus, signatures of the QHE, can

be clearly seen in UPP and UH respectively.
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The plateaus in Vxy and troughs in Vxx appear for the following reasons. Consider

an SiMOSFET hosting a 2DEG of constant density. At zero magnetic field the

density of states of this 2D system is a constant function of energy given by

g2D =
m∗m0

πh2

where

m∗= effective mass of carriers

m0= free electron mass[38] (Fig. 2.6(a)).

Applying a magnetic field causes the electrons to act like simple harmonic oscil-

lators with energies En where n is an integer. The frequency with which the carriers

orbit the magnetic flux lines is given by the cyclotron frequency ωc = eB/m∗. [38].

The effect of this on the DOS is shown in Figs. 2.6(b) and 2.6(c). As the mag-

netic field increases the Landau Levels move relative to EF as the magnetic field is

increased [38]. When the Fermi level be placed in a gap, as it does in Fig. 2.6(c)

the movement of electrons to the new states becomes impossible and no scattering

occurs. As a result of this the transport through the MOSFET is dissipationless

and Vxx goes to zero. Additionally, the plateaus in Vxy appear as the edge currents

in the Hall bar become quantised in units of Ih/2e2. Note that although the above

argument has assumed a fixed Fermi energy and electron density, the same effect

can also appear for a fixed magnetic field and changing carrier density. The electron

density would be altered by manipulating the gates of the device.

All of the carriers may occupy a single Landau level. In this instance the ratio

of the total carrier density to the density within a Landau level is equal to one.

This ratio is given by ν = nn/(eB/h) where ν is the filling factor, ns is the carrier
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density and (eB/h) is the density of carriers in the Landau level. The effects of spin

splitting on the SdH oscillations are discussed after considering the effects of the

magnetic field on the carrier momentum.

Figure 2.7: : (a) At zero magnetic field (B = 0 T) the 2D DOS remains constant

with increasing energy. With the increase in magnetic field, available states form

group into Landau levels that are separated by the cyclotron energy as shown in (b)

and (c).[40]

With the effects of magnetic field the momentum of the carriers becomes (p −

eA) where A is defined as magnetic vector potential. Using the Landau gauge for

the magnetic vector potential gives Ay = Bx,Ax = 0.[44]. Utilising these and

considering a single particle, the SWE can be written

(−i~∇− eA)2

2m∗
Ψ = EnΨ

where the potential has been set zero and Ψ is the wavefunction of the carriers in
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the xy-plane. This results in the energies En

En =

(
n+

1

2

)
~ωc

where ωc = eB/m∗ is the cyclotron frequency. Plotting En as a function of B

produces a fan diagram (figure 2− 14 ).

Figure 2.8: : (a) Fan diagram of first four En Plots (b) replacing vertical axis of

energy with the sheet density.[40]

2.3.3 Shubnikov-de Haas Oscillations

With increasing magnetic field Bz , the separation between the Landau levels in-

creases and the Landau levels pass through EF . However, since the 2D den- sity is

constant, the Fermi energy and DOS oscillate with Bz. The Fermi energy follows

each Landau level as each level depopulates. Once a Landau level is depopu- lated,

the Fermi energy drops to the next Landau level. The oscillations of the DOS
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at Fermi energy is what give rise to the SdH oscillations, where the longitudinal

magnetoresistance oscillates as a function of magnetic field. When the Fermi energy

is exactly in the middle of two Landau levels, the DOS is zero and so is the resistance.

Conversely, when the Fermi energy coincides with a Lan- dau level the DOS is at

maximum and the resistance is finite. Therefore, for a given 2D density n2D as the

magnetic field is varied, the DOS oscillates periodically in (1/Bz) such that

n2D =
2e

h

∆n

∆ (1/Bz)n
(2.13)

where ∆n is the difference in index between two adjacent Landau levels and ∆ (1/Bz)n

is the spacing in 1/Bz corresponding to two adjacent magnetoresistance peaks. Ac-

cording to the Einstein relation, the conductivity of a 2D system is pro- portional

to the DOS Consequently, the oscillations in the DOS are manifested in the conduc-

tivity of the 2D system. Furthermore, since

σ =

 σxx σxy

−σxy σxx

 = ρ−1 =

 ρxx −ρxy

ρxy ρxx


we have:

ρxx = σxx
σ2
xx+σ2

xy

ρxy = σxy
σ2
xx+σ2

xy

When EF does not coincide with a Landau level, σxx → 0 and ρxx → 0. Conversely,

when EF coincides with a Landau level, σxx is a maximum, and so is ρxx. Therefore,

Shubnikov-de Haas oscillations can be seen as oscillations in ρxx

By using Eq. 2.13, if ∆n and ∆ (1/Bz)n are both known, the density n2D can be

de- duced. This result can be generalized for systems with a multi-subband occu-

24



pancy. When there are two occupied subbands with differing effective masses (i.e.

in the case of a 2D system with finite spin-orbit interactions), the SdH oscillations

show a beating pattern as each subband of population ni gives rise to oscillations

of period ∆ (1/Bz)n = (1/h)(1/ne). The population of the individual subband can

be extracted by performing Fourier transform to the SdH traces, or by counting the

periodic Landau level population/depopulation. Typical experimental results for

Shubnikovde Haas oscillations and Hall resistivity are shown in Fig. 2.9

Figure 2.9: : Hall effect and SdH oscillations in a modulation-doped heterojunction

of GaAs/Ga0.7Al0.3As measured at 1.18 K. Electron density measured as 5.6 ×

1015m−2 and mobility 15.3m2(V s)−1 [45].
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2.4 Single Particle Picture of 2DEG

2.4.1 Landau Quantization

Classically, when an electron moves in a magnetic field then it experiences a Lorentz

force F = −e[E + v × B], which in the absence of electric field would be F =

−e(v × B). This force results in the circular motion of electron for which the

Lorentz force provides centripetal acceleration.

v2

r
=
−evB

m
(2.14)

and hence

r =
mv

−eB

This is the cyclotron or Larmour radius and the cyclotron frequency, that is inde-

pendent of radius, can be written as

ω =
−eB
m

Similarly, energy of the system can be written as

E =
mv2

2
=

1

2
mr2ω2

Quantum mechanically, these cyclotron orbits are quantized i.e. charge particle can

occupy only those orbits which have discrete values of energy. These discrete levels

are called Landau levels and quantization is known as Landau quantization.
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2.4.2 Kinetic term

For a two dimensional system of a particle in the presence of a magnetic field B that

is in the z-direction i.e. B =


0

0

B

 , we have Lagrangian

L =
1

2
m(ẋ2 + ẏ2) + eA · v (2.15)

where A is the vector potential and v = ẋî+ ẏĵ is the velocity of particle.For given

a magnetic field, there is a gauge freedom in the choice of the vector potential. To

make our calculations simple we consider Landau gauge in which,

A = (0, Bx, 0)

As magnetic field is in the z direction and vector potential is in the y-direction, the

Lagrangian can be written as,

L =
1

2
m(ẋi

2 + ẏi
2) + e|A|ẏ

From the Lagrangian, the canonical momenta can be easily determined using

Px =
∂L

∂ẋ
= mẋ

⇒ ẋ =
Px
m
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and

Py =
∂L

∂ẏ
= mẏ + eAy

⇒ ẏ =
(Py + eAy)

m

We can find out Hamiltonian easily by using all the above parameters

H =
∑
i

Piq̇i − L

⇒ H = Pxẋ+ Pyẏ − L

H = Px(
Px
m

) + Py
(Py + eAy)

m
− 1

2
m ((Pxm)2 + (Py + eAy)

2) + eA(P + eAy)

H =
P 2
x

2m
+ (Py + eAy)

(Py + eAy)

m
− (Py + eAy)

2

2m

H =
P 2
x

2m
+

(Py + eAy)
2

2m
(2.16)

Using Ay = Bx we get,

H =
P 2
x

2m
+

(Py + eBx)2

2m

H =
P 2
x

2m
+
e2B2

2m

(
Py
eB

+ x

)2

It can be seen from above equation that y does not appear in this Hamiltonian which

means that it is a cyclic coordinate implying that, Py is conserved.In other words

we can say that the Hamiltonian commutes with Py and we can use x0 = Py
eB

and

ω = eB
m

to get,

H =
P 2
x

2m
+

1

2
mω2(x+ x0)2 (2.17)
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which is similar to the Hamiltonian of simple harmonic motion restricted to move

along the x axis about point x0. Now we have to find out the eigenfunction of this

Hamiltonian. By applying Schroedinger wave equation we get,

(
P 2
x

2m
+

1

2
mω2(x+ x0)2

)
ψ(x, y) = Eψ(x, y)

where ψ(x, y) is an eigenfunction and we can solve this equation by using separation

of variables method by considering ψ(x, y) = φ(x)φ(y).

(
P 2
x

2m
+

1

2
mω2(x+ x0)2

)
φ(x)φ(y) = Eφ(x)φ(y)

As y is cyclic coordinate in this case and Hamiltonian commutes with Py hence

the φ(y) has simply the plane wave solution that is φ(y) = Aeikyy where A is the

normalization constant having value of 1√
Ly

and Ly is the length of system in the y

direction.Now all we need to do is solve for φ(x) using,

P 2
x

2m
+

1

2
mω2(x+ x0)2)φ(x) = Eφ(x) (2.18)

Let us introduce ξ ≡
√

mω
~ (x+x0) and l ≡

√
~
mω

. To solve this we temporarily make

the change (x + x0) → x so, ξ =
√

mω
~ x. To quantize Hamiltonian we construct a

and a†

a† =
1√

2m~ω
(−ip̂+mωx)

a =
1√

2m~ω
(ip̂+mωx)
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as p̂x = −i~ δ
δx

so we can write a† and a in the form of ξ,

a† =
1√
2

(ξ − δ

δx
)

a =
1√
2

(ξ +
δ

δx
)

So now we can write Hamiltonian in the form of annihilation and creation operator

as

H = ~ω(
1

2
+ a†a) (2.19)

To find wave function φ(x) we first need to find out the wave function at ground

state which obeys the condition, aφ0 = 0. Now by this condition we calculate the

ground state wave function as

(ξ +
δ

δx
)φ0 = 0

δφ0

δξ
= −ξφ0

By integrating above equation over the interval 0 to φ0 and 0 to ξ, we get φ0 =

A0e
−ξ2/2. Through normalization we can easily get the value of normalization con-

stant, which is 1
(π)1/4

. So ground state wave function is

φ0 =
1

(π)1/4
e−ξ

2/2
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Similarly, we can find out φ1 by applying a† on the ground state as it will raise the

quantum state of particle.

φ1 = a†φ0

φ2 =
1√
2
a†φ1 =

1√
2
a†a†φ0 =

1√
2

(a†)2φ0

.

.

.

.

φn =
1√
n

(a†)nφ0

Now by putting the value of a† and ξ and substituting the value of Hermite polyno-

mials that is Hn(ξ) = (−1)neξ
2/2 dn

dxn
e−ξ

2/2, wave function φn(x) becomes,

φn(x) =
1√

n!2nπ1/2
Hn(

x+ x0

l
)e−(x+x0)2/(2l)2

Combining both the solutions i.e. φ(x) and φ(y) we can write the complete solution

of eigenfunction as

ψn(x, y) =
1√
Ly
eikyy

1√
n!2nπ1/2

Hn(
x+ x0

l
)e−(x+x0)2/(2l)2 (2.20)

In the next chapter, we are going to derive Hamiltonian for our system by applying

non relativistic limit on Dirac equation. Using the same approach, we will determine

the eigen values and corresponding eigenfunctions.
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Chapter 3

Methodology

A 2DEG is considered in xy plane with magnetic field in z-direction. We use Landau

gauge A = (−By, 0, 0), as a gauge freedom, in the 1e Hamiltonian. With Rashba

term this Hamiltonian reads

H =
(p + eA)2

2m∗
+
α

~
[σ × (p + eA)]z + gµBBσz (3.1)

where

p= electron’s momentum operator,

m∗ = effective mass of electron,

muB= Bohr magneton,

g= Zeeman factor,

σ = (σx, σy, σz)= spin Pauli matrix

α= strength of SOI
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3.0.1 Derivation of Hamiltonian

Hamiltonian of this system can be derived from Dirac Equation

(iγµDµ −m)ψ = 0 (3.2)

Where ψ is the wave function for 4-spinors, that gives a detail account for spin-

1/2 particles having mass m, ∂µ = ∂
∂xµ

are partial derivatives with the reference to

space-time coordinates xµ = t, x, y, z and γµ are Dirac 4×4 matrices. Using identity

Dµ = ∂µ − ieAµ in above equation,we get

[iγµ(∂µ − ieAµ)−m]ψ = 0

[γµ(iδµ − i2eAµ)−m]ψ = 0

[γµ(Pµ + eAµ)−m]ψ = 0

As we know that momentum operator is Pµ = −~
i
∂
∂xµ

putting in above equation,we

get

[γµ{(−~
i

∂

∂xµ
) + eAµ} −m]ψ = 0

[γµ{( ∂

∂xµ
)− i

~
eAµ}+

i

~
m]ψ = 0

introducing a constant k = m
~

[γµ{( ∂

∂xµ
)− i

~
eAµ}+ ik]ψ = 0 (3.3)
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Taking its adjoint we get,

((
∂

∂xµ
) +

i

~
eAµ)ψ†(γµ)† − ikψ† = 0

(γµ)†γ0 = γ0γµ

ψ = ψ†γ0

((
∂

∂xµ
) +

i

~
eAµ)ψ(γµ)− ikψ = 0

starting from equation (3.3)

[γ0{( ∂

∂x0
)− i

~
eA0}+ γi{( ∂

∂xi
)− i

~
eAi}+ ik]ψ = 0

multiplying both sides by i~γ0 and (γ0)2 = 1

[i~{( ∂

∂x0
)− i

~
eA0}+ i~γ0γi{( ∂

∂xi
)− i

~
eAi}+ i2~γ0k]ψ = 0

taking x0 = t

i~
δψ

δt
= −eA0ψ − i~γ0γi

∂ψ

∂xi
− eγ0γiAiψ + γ0mψ

now this equation has the form of SWE

i~
∂ψ

∂t
= Hψ
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By comparing with Schrodingre Wave equation we have Hamiltonian

H = −eA0 − i~γ0γi
∂

∂xi
− eγ0γiAi + γ0m

H = γ0γi(−i~ ∂

∂xi
− eAi)− eA0 + γ0m

H = −γiγ0(Pi + eAi)− eA0 + γ0m

introducing πi = (Pi + eAi) and putting matrices γiγ0

H = −

 0 σi

−σi 0


πi 0

0 −πi

+

−eA0 0

0 −eA0

+

m 0

0 −m



H −m =

 0 σ.π

−σ.π 0

+

−eA0 0

0 −eA0

+

0 0

0 −2m


H −m =

−eA0 σ.π

σ.π −eA0 − 2m

 (3.4)

Now we consider the Dirac spinor

ψ(x, t) = e−imt

φ
ξ


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as i~∂ψ
∂t

= Hψ

i∂0ψ = i∂0e
−imt

φ
ξ


e−imtH

φ
ξ

 = me−imt

φ
ξ

+ e−imti∂0

φ
ξ


i∂0

φ
ξ

 = (H −m)

φ
ξ

 (3.5)

Inserting equation (3.4) into above equation,

i∂0

φ
ξ

 =

−eA0 σ.π

σ.π −eA0 − 2m


φ
ξ


i∂0φ = eA0 + σ.πξ (3.6)

i∂0ξ = σ.πφ− (2m− eA0)ξ (3.7)

If the kinetic energy and field interaction energies are small enough as compared to

the rest mass so from eq. (3.7)

(2m− eA0)ξ = σ.πφ

ξ =
σ.πφ

(2m− eA0)
1

2m(1− eA0/2m)
=

(1− eA0/2m)−1

2m

so we can write ξ as

ξ =
1

2m
(1 +

eA0

2m
)σ.πφ
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eq.(3.6) becomes

i∂0φ =
1

2m
(σ.π)(σ.π) +

e

4m2
(σ.π)A0(σ.πφ) + eA0φ (3.8)

solving the operator

(σ.π)(σ.π) = π2 + iσ.(π× π)

where

π2 = (P + eA)2

(π× π)φ =
e

i
[(∇×A)φ+ (∇φ)×A+A× ((∇φ))]

=
e

i
Bφ

first term of eq. (3.8) can be written as

1

2m
(σ.π)(σ.π) =

1

2m
(P + eA)2 +

e

2m
σ.B

=
1

2m
(P + eA)2 + gµBσ.B (3.9)

here µB = e
2m

, taking ~ = 1. solving second part of eq. (3.8)

e

4m2
(σ.π)A0(σ.πφ) =

e

4m2
σiπiA0σ

jπj

=
e

4m2
σiσjA0π

iπj

=
e

4m2
(∂ij + iεijkσk)πiA0π

j

=
e

4m2
πiA0π

j + iεijkσkπiA0π
j
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πiA0π
j term have no contribution in non-relativistic case since it contributes P 2/m2,

so we consider second term only

iεijkσkπiA0π
j = iεijkσk[πi, A0]πj + iεijkσkA0π

iπj

second term would vanish and ignoring the second and third terms of potential

= iεijkσk[P i, A0]P j

= σ(∇φ× P )

∇φ = φ
′ r

r

=
e

4m

1

r
φ
′
σ.(r × P )

= α(σ.L)

combining Eq. (3.8), (3.9) and ignoring the term eA0 due to absence of external

electric field, we get Hamiltonian as

H =
1

2m
(P + eA)2 + gµBσ.B + α(σ.L) (3.10)

3.0.2 Eigenstates and Eigenvalues

By using Landau wave function excluding spin orbit interaction as a basis our rele-

vant eigen wavefunction can be expressed as(Hamiltonian commutes with kx)

ψk(r) =
eikxx√
Lx

Σnφ(y − yc)Cσ
n |σ〉
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=
eikxx√
Lx

Σnφ(y − yc)

C+
n

C−n

n = 0, 1, 2, ... (3.11)

Here

Lx= length of system in the x-direction

φn(y − yc) = 1√√
π2nn!lc

e(y−yc)2/2l2cHn( (y−yc)
lc

)= Harmonic oscillator function

lc =
√

~
mωc

= cyclotron orbit’s radius centered at yc = l2ckx

ωc = eB/m= cyclotron frequency

n= index of Landau level

|σ〉= electron spin which is written as column vector

|σ〉=

1

0

= for spin up and |σ〉=

0

1

= for spin down Now we have Hamiltonian

and wave function in matrix form as

H =

 ~2
2mlc

(y − yc)2 +
p2y
2m

+ gµB α
~py −

iα
l2c

(y − yc)
α
~py + iα

l2c
(y − yc) ~2

2mlc
(y − yc)2 +

p2y
2m
− gµB



ψk(r) =

 eikxx√
Lx

Σnφ(y − yc)C+
n

eikxx√
Lx

Σnφ(y − yc)C−n


Substituting into Schroedinger wave equation Hψ = Eψ

 ~2
2ml4c

(y − yc)2 +
p2y
2m

+ E+
α
~py −

ια
l2c

(y − yc)
α
~py + iα

l2c
(y − yc) ~2

2ml4c
(y − yc)2 +

p2y
2m

+ E−


 eikxx√

Lx
Σnφn(y − yc)C+

n

eikxx√
Lx

Σnφn(y − yc)C−n

 = 0
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where E+ = gµB − E and E− = −gµB − E.By multiplying both matrices we get

(
~2

2ml4c
(y−yc)2+

p2
y

2m
+E+)(

eikxx√
Lx

Σnφn(y−yc)C+
n )+(

α

~
py−

ια

l2c
(y−yc))(

eikxx√
Lx

Σnφn(y−yc)C−n ) = 0

(3.12)

(
α

~
py+

iα

l2c
(y−yc))(

eikxx√
Lx

Σnφn(y−yc)C+
n )+(

~2

2ml4c
(y−yc)2+

p2
y

2m
+E−)(

eikxx√
Lx

Σnφn(y−yc)C−n )

(3.13)

using py = −i~ ∂
∂y

~2

2ml4c
(y − yc)2Σnφn(y − yc)C+

n −
~2

2m
Σnφ

′′

n(y − yc)C+
n + E+Σnφn(y − yc)C+

n

−αΣnφ
′

n(y − yc)C−n −
α

l2c
(y − yc)Σnφn(y − yc)C−n = 0 (3.14)

−iαΣnφ
(
ny − yc)C+

n +
iα

l2c
(y − yc)Σnφn(y − yc)C+

n +
~2

2ml4c
(y − yc)2Σnφn(y − yc)C−n

− ~2

2m
Σnφ

′′

n(y − yc)C−n + E−Σnφn(y − yc)C−n = 0 (3.15)

solving Eq. (3.14) first by using identities

ψ
′′

n(x) = (−2n− 1 + x2)ψn(x)

ψ
′
(x) =

√
n

2
ψn−1(x)−

√
n+ 1

2
ψn+1(x)

xψn(x) =

√
n

2
ψn−1(x) +

√
n+ 1

2
ψn+1(x)

we get

[~ωc(n+ 1/2) + E+]φn(y − yc)C+
n −

iα

lc

√
2nφn−1(y − yc)C−n = 0 (3.16)

similarly by solving Eq. (3.15) we get
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iα

lc

√
2(n+ 1)φn+1(y − yc)C+

n + [~ωc(n+ 1/2) + E−]φn(y − yc)C−n = 0 (3.17)

multiplying by φl(y− yc) and integrating over y, we find the system of equations as

follows (by using property of orthogonality
∫∞
−∞ ψn(x)ψl(x)dx = δnl)

[~ωc(l + 1/2) + E+]C+
l − i(α/lc)

√
2(l + 1)C−l+1 = 0

i(α/lc)
√

2lC+
l−1 + [~ωc(l + 1/2) + E−]C−l = 0

 (3.18)

here l = 0, 1, 2, 3, .... We can solve this infinite system of equations by converting it

into 1 or 2-dimensional secular equations with s as a new index.

[1/2~ωc + E−]C−s = 0, s = 0

(s− 1/2)~ωc + E+ −i(α/lc)
√

2s

i(α/lc)
√

2s (s+ 1/2)~ωc + E−


C

+
s−1

C−s

 = 0 (3.19)

Corresponding to ground level there is only one lowest level just like Landau level

without spin orbit interaction. Energy and wave function of ground state can be

written as

E0 = 1/2~ωc − gµBB

ψ0(kx) =
eikxx√
Lx
φ0(y − yc)

0

1


By taking determinant of the matrix in Eq. (3.19) we obtain energy branches for
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s = 1, 2, 3, ..

((s− 1/2)~ωc + E+)((s+ 1/2)~ωc + E−) + (−i(α/lc)
√

2s)(i(α/lc)
√

2s) = 0

E2 − 2s~ωc − [E2
0 + 2sα2/l2c − s2~2ω2

c ] = 0

solving quadratic equation we get two branches of energy levels

E± = s~ωc ±
√
E2

0 + 2sα2/l2c (3.20)

To find wavefunction we first need to find out the value of coefficients C+
s−1 and C−s .

For this we solve Eq. (3.19) by substituting the values of E+ and E−,

[(s− 1/2)~ωc + gµBB − E]C+
s−1 +−i(α/lc)

√
2sC−s = 0 (3.21)

i(α/lc)
√

2sC+
s−1 + [(s+ 1/2)~ωc − gµBB − E]C−s = 0 (3.22)

Solving Eq. (3.21) first for + branch,

[(s− 1/2)~ωc + gµBB − s~ωc −
√
E2

0 + 2sα2/l2c ]C
+
s−1 +−i(α/lc)

√
2sC−s = 0

C+
s−1 =

−i(α/lc)
√

2sC−s

E0 +
√
E2

0 + 2sα2/l2c

C+
s−1 = −iDsC

−
s

Now solving Eq. (3.22) for - branch,

i(α/lc)
√

2sC+
s−1 + [(s+ 1/2)~ωc − gµBB − s~ωc +

√
E2

0 + 2sα2/l2c ]C
−
s = 0
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C−s =
−i(α/lc)

√
2sC+

s−1

E0 +
√
E2

0 + 2sα2/l2c

C−s = −iDsC
+
s−1

Now the wave function of + branch is

ψ+
s (kx) =

1√
LxAs

eikxx

−iDsφs−1(y − yc)

φs(y − yc)

 (3.23)

and similarly the − branch is

ψ−s (kx) =
1√
LxAs

eιkxx

 φs−1(y − yc)

−iDsφs(y − yc)

 (3.24)

where As is the normalization constant which is As = 1 +D2
s and Ds is

Ds =
(α/lc)

√
2s

E0 +
√
E2

0 + 2sα2/l2c

Now the density of state can be defined as D(E) = Σskxσδ[E − Eσ
s ]. Considering

Gaussian broadening of the width Γ, we get

D(E) =
S0

(2π)3/2
Σsσ

e−(E−Eσs )2/2Γ2

l2cΓ
(3.25)
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Figure 3.1: Subband Energy Es versus index s. The circles for− branch and triangles

for + branch.

We plotted level energies E−s and E+
s as a function level index s. In our case

here, we have

E−1 ' E+
0

It is because of the larger level spacing of + branch as compared to the − branch. It

is clear from the graph that increase in level energy of + branch is faster than that

of − branch and its slope is also larger than the slope of line of − branch. From the

graph it is also noted that

E−7 '
E+

5 + E+
6

2

E−25 '
E+

22 + E+
23

2

DOS modulations are resulted due to the level spacing difference.
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3.0.3 Density of States

DOS of 2DEG is calculated with of weak magnetic field, including RSOI term, by

using imaginary part self energy. DOS interms of self energy can be defined as

D(E) = Im[
Σ−(E)

(π2l20Γ2
0)

] (3.26)

Here,

Γ0=induced impurity level broadening

Where the self energy is

Σ−(E) =
∑
s

Γ2
0

E − Σ−(E)− Es

Considering lower branch, residue theorem was used to solve summation and ignor-

ing the term (Eα/~ω0), we get

Σ−(E) = [πΓ2
0/~ω0]× cot (πr+)

where r+ ' 1
hω0

{
E + Eα/2− Σ−(E) +

√
E2

0 + EαE
}

. According to defination of

self energy

Σ−(E) = ∆ + iΓ/2

Comparing both equations and substituting v = 2π
(hω0)

{
E + Eα/2−∆ +

√
E2

0 + EαE
}

and u = πΓ/ (hω0), we get

∆ + iΓ/2 =
πΓ2

0

~ω0

cot

[
(v − iu)

2

]
=

(
πΓ2

0

hω0

)
sin(v)

cosh(u)− cos(v)
+ i

(
πΓ2

0

hω0

)
sinh(u)

cosh(u)− cos(v)
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In above equation, Γ
2

=
(
πΓ2

0

hω0

)
sinh(u)

cosh(u)−cos(v)
is the imaginary part. We can simplify it

by using the standard result as

sinh(u)

cosh(u)− cos(v)
= 1 + 2

∞∑
k=1

e−ku cos(kv)

By applying limit hω0 � πΓ, we get Γ/2 = πΓ2
0/ (~ω0) for first iteration. As all

other terms are smaller than the first term so we only consider k = 1 and imaginary

part will become Γ
2

=
(
πΓ2

0

hω0

) [
1 + 2e−πΓ/(hω0) cos(u)

]
. Now writing this expression in

its earlier form

Γ

2
=

(
πΓ2

0

~ω0

)[
1 + 2 exp

{
−2

(
πΓ0

~ω0

)2
}

× cos

{
2π

hω0

(
E + Eα/2 +

√
EαE + E2

0

)}]

In the similar manner, we can get the same expression with the minor change of

sign for upper branch. Finally, we can write the expression for density of states for

both branches as

D±(E) =
m∗

2π~2

[
1 + 2 exp

{
−2

(
πΓ0

~ω

)2
}

× cos

{
2π

~ω

(
E +

Eα
2
∓
√
EαE + E2

0

)}] (3.27)

Without the Rashba and the Zeeman expressions, Eq. (3.27) minimizes to the

notable result of [46, 47]:

D(E) =
m∗

π~2

[
1− 2 exp

{
−2

(
πΓ0

~ω

)2
}

cos

(
2πE

~ω

)]
(3.28)
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Chapter 4

Results and Discussion

4.1 Analytic Results

To begin with, there are two dispersing methods which are diffusive and collisional

scattering that adds into the traveling properties. Starting with diffusive dissipating,

which is assumed to limit float speed picked up by the electrons.For our situation,

finite group velocity is absent along y-heading because of the ky decadence in power

range. Consequently, the diffusive dissipating to reach the maximum conductivity

limit is 0. Whereas, collisional scattering emerges due to cyclotron orbit relocation

as charge impurities exist in the system. Moreover, diagonal conductance σxx is

equal to σcol
xx because σdif

xx = σdif
yy = 0. Also, the magneto resistivity is ρyy = σxx/S

as S = σxxσyy − σxyσyx = σ2
xy when σxy is approximately equal to nee/B.

An assumption is made that electrons are dissipated elastically by charged im-

purities in a uniform manner at low temperatures. The basic equation for collisional
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conductivity is [48]:

σcolµµ =
βe2

S0

∑
ξ,ξ′

fξ (1− fξ)×Wξ,ξ′ ×
(
αξµ − αξ

′

µ

)2

(4.1)

In the equation,Wξ,ξ′ is equal to transition rate between |ξ′〉 and |ξ〉. states. µ from

locating operator will have this value αξµ = 〈ξ |rµ| ξ〉 when the electron has reached

the |ξ〉 state. Resulting in scattering speed as :

Wξ,ξ′ =
∑
q0

|U(q0)|2× |〈ξ|eiq0·(r−R)|ξ′〉|2× δ (Eξ − Eξ′)

q = qxx̂+qyŷ is the 2D wave vector. Screened impurity potential will be U (q) when

resulted from a Fourier transform of

U(r) =
(
e2/4πε

) (
e−ksr/r

)
ks will be the 1/screening length and ε is just di-electric constant. Each material

will have a different ε.

U (q) = 2πe2/(ε
√
q2
x + q2

y + k2
s)

Incase |q| is very small and is� ks, then U (q) is approximately equal to 2πe2/ (εks) =

U0. Then R and r will be impurity and the positioning vectors of the electron respec-

tively. All summing up to result in the conductivity of spin up and down electrons

[24]

σ±xx =
e2

h

βNIU
2
0

2πΓ0l20

∑
s

I±s f
±
s

(
1− f±s

)
(4.2)

f±s is known as Fermi-Dirac particles distribution and NI will be the 2D impurity
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density number. Finalizing I±s as:

I±s =
[
(2s± 1)D4

s − 2sD2
s + 2s± 1

]
/A2

s

Using the DOS given we can infer terms systematically for the conductiviness of

spin up and down electrons in Eq. (3.27). The
∑

over ‘s’ (quantum No) in Eq.

(4.2) could be supplanted as∑
s → 2πl20

∫∞
0
D(E)dE.

After a long estimation; we get the logical equations for conductivity of both

electron:
σ±xx
σ′

=
ẼF

8(ωτ)2

[
1 + 2 exp

{
−2

(
πΓ0

~ω

)2
}

×A
(
T

Tc

)
× cos

(
2πf±

B

)] (4.3)

where

σ′ = nee2τ
m∗

= Drude conductivity,

ẼF =

[
1 +

1

2‘q

Eα
EF
∓ 3

2

√
Eα
EF

]

A

(
T

Tc

)
=

(
T

Tc

)
× 1

sinh
(
T
Tc

)
with Tc = ~ω/2π2kB. Using diverse frequencies, Spin up and down will oscillate

their conductivities as given:

f± =
m∗

~e

[
EF +

Eα
2
∓
√
E2

0 + EαEF

]
(4.4)
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Now the conductivity can be written as

σxx
σ0

' 1

4(ωτ)2

[
1 + 2 exp

{
−2

(
πΓ0

~ω

)2
}
A

(
T

Tc

)
× cos

(
2π
fa
B

)
cos

(
2π
fd
B

)] (4.5)

Figure 4.1: Plots of the analytical (solid) and exact (dashed) expressions of the total

conductivities vs 1/B.

When fd = [f+ − f−]/2. and fa = [f+ + f−]/2 .It unmistakably represents that

entire conductivity generates different beating outlines when in adequacy of SdH

motions. From Fig. 4.1 we can see scientific consequence of the entire complete

conductivity along with precise numbered outcomes using Eq. (4.2). Diagnostic

equation gives a beating outline pattern which is in amazing concurrence with the

precise numbered outcomes, especially in area where a node is present. Fig. 4.1
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Variables: α = 10−11eV − m,Γ0 = 0.02meV , e− density ne = 3 × 1015/m2 and

e−, (m∗) = 0.05m0 along with m0 being the free e− mass, and temperature at 1K.

Oscillations in between two progressive or successive nodes are:

Nosc = fa∆

(
1

B

)
=
m∗

~e

(
EF +

Eα
2

)(
1

Bj+1

− 1

Bj

)

Each JthJ node will have its own corresponding magnetic field (Bj) cos (2πfd/B),

the last cosine value’s fd = m∗

Le

√
E2

0 + EαEF , (frequency difference) depends on the

magnetic force field itself, which makes it non-periodic in B inverse.

When observed, it is known that due to magnetic field depending on fd, the

beating pattern in turn will have non periodic manners. At Bj node the cosine terms

will have the following conditions B = Bj = 0 which will give us the following:

√
4E2

0 + ∆2
s = ~ωj

(
j +

1

2

)
(4.6)

Where j are the beating nodes i.e. 1, 2, 3, ..,∆s = 2kFα is zero field spin spitting

energy and ωj = eBj/m
∗ which will allow us to calculate magnetic field for any beat

node.
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Figure 4.2: Plot of resistivity vs magnetic field B.

Bj =
2m∗

e~
∆s√

(2j + 1)2 − (g − 2)2

The equation above is obtained using self consistency Born approximation mentioned

in Ref.[49].

4.2 Side by side assessment with known experi-

ment

Our diagnostic articulations are tested by ascertaining the places of nodes, the

ZFSS energy, and the beating patterns between two successive/progressive nodes

and afterward contrasting them with the known experimental perceptions. Now, if

we recreate those experimental beating motion values, we will have to take resistiv-
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ity as a component of the magnetic Field in Fig.4.2. In Fig.4.2, the experiment will

have the following variables for sample A: α = 3.76× 10−12eV −m,Γ0 = 1.5meV ,

e− density ne = 1.75× 1016m2, e− effective mass m∗ = 0.046m0 with m0 a as the

free e− and temperature at 1.5K.

node Beat points (B) in Tesla ∆A
s (10−3) eV α(10−12)eV m

1 0.874 2.45 3.70
2 0.461 2.64 3.99
3 0.292 2.44 3.69
4 0.228 2.50 3.77
5 0.184 2.48 3.75
6 0.154 2.46 3.72

Table 4.1: Sample A:ZFSS and Rashba interaction SOI power at different node
locations

Its reassuring to see oscillations between any 2 nodes and the position of beat

nodes are coordinating almost perfectly when compared with the experimental val-

ues. We might want to decide the ZFSS energy and consequently the Rashba’s

interaction SOI power by utilizing the places of beat nodes for 3 separate tests

A, B, and C utilized in Ref.[19]. The variables utilized are: m∗ = 0.046m0 and

ne = 1.75× 1016/m2, 1.65× 1016m2, 1.46× 1016m2 for each A, B, and C test, cor-

respondingly [19]. Utilizing Eq. (4.8), for the starting 6 nodes we decide ZFSS

energy and the SOI mentioned in the table above. ZFSS energy’s average value at

the Fermi level is ∆A
s = 2.50meV and the RSOI value is 3.77× 10−12eV −m. Our

outcomes are almost equivalent to got in Ref.[19]. Additionally, for sample test B,

the acquired outcomes are given in the Table below:

ZFSS energy’s average value in this is ∆B
s = 2.7meV and the RSOI strength α is

equal to 4.20×10−12eV −m. Moving on to sample test C, the average value acquired

is ∆C
s = 1.76meV and the RSOI strength α is 4.19× 10−12eV −m. These outcomes
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node Beat points (B) in Tesla ∆B
s (10−3) eV α(10−12)eV m

1 0.295 2.70 4.20
2 0.201 2.70 4.20
3 0.153 2.68 4.16
4 0.129 2.78 4.32
5 0.104 2.68 4.16

Table 4.2: Sample B: ZFSS and Rashba α SOI power at different node locations

are incredibly concurrent to the outcome achieved in Ref.[19]. Presently another

examination is recommended where the SOI strength has been noted down [18]. By

remembering the places of the 2 progressive nodes, we could likewise compute the

SOI strength. Utilizing the variables in Ref.[18], we achieve the RSOI strength α

as 0.9 × 10−9eV − cm which is the exact same of Ref.[18]. Also, the oscillations

between 2 beating nodes in Ref[19] ( j = 1andj = 2) is 36 [show in figure of

Ref.[19]. Utilizing the variables from test [19], we acquire Nosc = 37. This value

precisely coordinates with the experimented values. Moreover, another examination

is considered changing SOI strength by differing the gateway voltages. Door voltages

were set as Vg = 0.3 and 1.5V , through which the determined oscillations between

2 nodes had Nosc values of 27 and 30, separately. These numbers are equivalent to

the immediate observations.
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Chapter 5

Conclusion

In conclusion, the beating patterns from 2DEG in the SdH oscillations were con-

ceptualized. We experimented and inferred the DOS in a 2DEG for spin-down and

spin-up electrons with the RSOI in the nearness of a magnetic force field. The DOS

diagnostic articulations will be valuable to ascertain different properties, system-

atically. We have given diagnostic calculations of the magneto conductivities for

spin-down and spin-up electrons, that’ll waver with 2 intently different frequencies.

The conductivity varies with frequencies that rely on e− density, strength of SOI,

and furthermore the outside magnetic force field. The regular way to get the basic

condition has been used. It decides the ZFSS power by remembering the force field’s

relation to any beat nodes. The total oscillations in between any 2 beating nodes

can be effectively calculated from our equation. Most of those oscillations in a beat

precisely coordinate with the experimented values. The non-uniform beating design

relies on the frequency difference between spin-up and down electrons present in the

same magnetic force field.

55



Bibliography
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