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Abstract

For viscous compressible flow, a Cartesian grid approach has been devised to solve
the Navier-Stokes equations. Both steady and unsteady fluxes have been taken into
account. We treat the nearest grid points as mirror points of the ghost points using a
simpler ghost point approach. In the submerged boundary, wall boundary requirements
are established at the ghost spots. The method’s accuracy has been examined for a
number of test scenarios. We provide numerical instances of supersonic flow in a circular
cylinder and comapare them with analytical outcomes. Furthermore, we compute time-
accurate results of the compressible Navier-Stokes problems for an incidence shock
across a cylinder and compare the history with earlier studies. To demonstrate the
correctness of the approach, we calculated skin friction profiles and compared the results
with the body fitted method. Although it works better, the current approach is based
on a simplifed ghost point treatment that was previously established. The results
are comparable, although not being as precise as those obtained using more advanced
techniques.
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Chapter 1

Introduction

In place of the experiment, computational fluid dynamics (CFD) has become more
and more popular. Compared to laboratory studies, CFD is a relatively cost-effective
approach for solving complicated issues. Today, CFD and lab tests are used together
to examine physical issues. Using CFD and computer technologies to execute the iden-
tical task and make experiment modifications can reduce the expense of performing an
experiment numerous times. The quality of the experimental data still makes it more
valuable, although CFD is basically used to reduce the amount of laboratory exper-
iments required. Additionally, the investigator can add novel concepts that, without
adequate financing, would have been exceedingly challenging to duplicate in a lab.
CFD is gaining importance in a variety of scientific domains, including meteorology,
aerospace industry and astronomy [1].

Recently, the Cartesian grid approach has gained popularity in CFD as a way to es-
timate flows in or over complicated geometries [2, 3, 5, 9, 13, 12, 14]. The difference
between it and body-fitted structured and unstructured grid approaches may be at-
tributed to its quicker post processing, simpler grid creation, and reduced storage and
operation counts. Building higher order techniques is another benefit of the cartesian
grid approach. With the help of body-fitted technique, by adding a body necessitates
rewriting the whole grid, however with the Cartesian grid technique under investigation
here, this may be accomplished in a few straight forward stages. The body is fixed in
a small cartesian grid instead of a body-fitted organized grid, and its impact is offset
by suitable circumstances at grid places close to the body surface.

When using the cartesian grid approach at bent borders, the cut-cells on The edges are
not square , which makes it difficult to apply the plan [13]. This issue is not existing in
the simple ghost point method because ghost points in the solid next to the border are
required to satisfy symmetry criteria with respect to the boundary. But in the process,
conservativism is lost.
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The findings of this study are compared to other approaches for embedding solid bound-
aries reported in [3, 8, 12, 14]. These techniques are more intricate and better able to
reproduce the solid boundary’s impact. At the embedded border, Sjögreen and Peters-
son [3] employed linear interpolation. To cover the computation domain, H. Luo et al.
[12] used a gridless method to handle the boundary surfaces and a cartesian grid as an
indicator mesh.

In a research [9], the simplified ghost point technique for the 2D compressible Euler
equations was confirmed using an embedded boundary consisting of a bump with a
round arch within a channel. Previously, the simplified ghost point technique and a
circular cylinder were used to extend the compressible equations used by Navier-Stokes
[21]. The procedure ran into some issues when the body’s form caused the reflected
ghost points to shift in their orientation. Nonphysical behavior at these locations may
cause the solution to become awkward for small time steps or tiny grids, as well as
have an impact on accuracy.

1.1 Basic Definitions

1.1.1 Fluid

A material with the capacity to flow and adapt to the form of its container is called a
fluid. Fluids may change shape and flow in reaction to applied forces, in contrast to
solids, which have a fixed shape and volume.

1.1.2 Computational Fluid Dynamics

Computational fluid dynamics is referred to as CFD. It is a subfield of fluid mechanics
that use numerical techniques and algorithms to evaluate and resolve issues pertaining
to the behavior of fluids, including gases and liquids. Through the use of computer
simulations, CFD entails building a computational model of a fluid flow scenario in
order to comprehend and forecast the flow patterns, velocities, pressures, temperatures,
and other pertinent aspects.

1.1.3 Compressible Flow

The movement of a fluid in which the density significantly varies as a result of changes
in pressure and temperature is referred to as compressible flow.i.e ρ ̸= constant.
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1.1.4 Incompressible Flow

The movement of a fluid in which the density does not varies as a result of changes
in pressure and temperature is referred to as incompressible flow. i.e ρ=constant.

1.1.5 Mach Number

The ratio of a moving object’s speed to the sound speed in the environment is repre-
sented by the Mach number, which is a dimensionless quantity. It is used to express
how quickly something is moving in comparison to the speed of sound.
Mathematically,it is expressed as:

Ma =
u

c
, (1.1)

here, c is the sound’s speed, and the fluid speed is u. we can classify mach no as:

• Flow is subsonic, if Ma < 0.8.

• Flow is transonic, if 0.8 < Ma < 1.3.

• Flow is sonic, if Ma = 1.

• Flow is supersonic, if 1.3 < Ma < 5.0.

• Flow is hypersonic, if Ma > 0.8.

1.1.6 Viscous Fluid

Viscous fluid refers to a type of fluid characterized by its resistance to flow. This
resistance is due to internal friction within the fluid, which causes adjacent layers of
the fluid to move at different velocities when subjected to an external force. Viscosity
is the property that quantifies this resistance to flow.

1.1.7 Conservation Laws

The continuity equation and Navier-Stokes equations, which are useful in determining
the equation of motion for fluids, are examples of conservation laws. It is helpful to
evaluate fluid flow, and conservation law is also used to design fluid systems in fields
like aerodynamics, mechanical engineering, marine science, etc. When the mass of the
system stays the same, the principle is known as the conservation of mass.
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1.1.8 Continuity Equation

A key idea that describes the conservation of mass in a particular system is the con-
tinuity equation. According to this, the rate at which mass changes inside a volume
is equal to the net flow of mass into or out of that volume. Following are differential
and integral form of continuity equation:
Differential form

∂ρ∗

∂t
+∇ · (ρ∗U) = 0, (1.2)

here t, ρ∗ and U are time, density and velocity respectively.
Integral form

d

dt

∫
vol

ρ∗dV +

∮
surf

ρ∗Uds = 0, (1.3)

ds, denotes outward normal surface element.
continuity equation for stationary control volume will get form∫

σ

∂ρ∗

∂t
dV +

∫
∂σ

ρ∗u · ndA = 0. (1.4)

1.1.9 Momentum Equation

According to Newton’s second rule of motion, the system’s overall rate of momentum
change is equal to the sum of all external forces β operating on the system. Mathe-
matcally,

dΩsys

dt
= β, (1.5)

we employ the Reynolds transport theorem to establish a connection between the mo-
mentum in the control volume and the total rate of momentum change in the system
in following equation:

dΩsys

dt
=

d

dt
(

∫
χ

ρ∗udV ) +

∫
∂χ

ρ∗uu · ndA, (1.6)

when we have stationary control volume then momentum equation get form as:∫
χ

∂ρ∗U

∂t
+

∫
∂χ

ρ∗uu · ndA = −
∫
∂χ

pndA+

∫
∂χ

τdA+

∫
χ

ρ∗fdV, (1.7)

here χ, p, ρ∗f and τ represents control volume,pressure,external force density and
viscous stress tensor respectively.
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1.1.10 Energy Equation

According to the first law of thermodynamics, the rate of energy change in a system
is equal to the sum of the rates at which heat is added (J) and work is done on the
system (W) by an outside force. Mathematcally,

dκsyst

dt
= J +W, (1.8)

system’s overall energy is denoted by κsyst . The system’s overall energy rate is ex-
pressed in terms of control volume κχ =

∫
χ
ρ∗E∗dV using the Reynolds Transport

Theorem. ρ∗E∗ is total energy per unit volume.

dκsys

dt
=

d

dt
(

∫
∂χ

ρ∗E∗dv) +

∫
∂χ

ρ∗E∗u · ndA, (1.9)

for stationary control volume energy equation gets form:∫
χ

∂ρ∗E∗

∂t
dV+

∫
∂χ

ρ∗E∗u · ndA = −
∫
∂χ

pu · ndA+
∫
∂χ

τ · ndA+
∫
χ

ρ∗f · udV−
∫
∂χ

q · ndA,

(1.10)
here, E∗ = e+ 1

2
|u|2.

1.1.11 CFL Number

One-dimensional Courant-Friedrichs-Levy (CFL) numbers are defined as:

C = u′ △t′

△x′ , (1.11)

where u′ stands for fluid wave speed, t′ for time step, and x′ for grid spacing. When
governing equations are discretized in space and time, this number may be seen in both
viscous and inviscid fluid.

1.1.12 Von Neumann Number

Von Neuman number can be defned as:

V NN = △tv(
1

△x2
+

1

△y2
)max(

4

3

µ

ρ
,
γµ

ρPr
). (1.12)
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1.1.13 Rankine-Hugoniot Relations

The study of shock waves in particular uses a set of conservation equations called
the Rankine-Hugoniot relations. These equations explain the link between a fluid’s
characteristics before and after a shock wave travels through it, including its density,
pressure, velocity, and temperature. Mathematically,

Conservation of Mass
ρ1A1V1 = ρ2A2V2, (1.13)

here ρ1, A1 and V1 are the densities of the fluid, cross-sectional area of the flow and
velocities of the fluid before shock wave, respectively. ρ2, A2 and V2 the densities of the
fluid, cross-sectional area of the flow and velocities of the fluid after the shock wave,
respectively.

Conservation of Momentum

P1 + ρ1V
2
1 = P2 + ρ2V

2
2 , (1.14)

where, P1 and P2 are the pressures of the fluid before and after the shock wave, respec-
tively.

Conservation of Energy

1

2
ρ1V

2
1 + e1 =

1

2
ρ2V

2
2 + e2, (1.15)

where e1 and e2 are the specific internal energies of the fluid before and after the shock
wave, respectively.

1.2 Skin Friction Coefficient

In computational fluid dynamics (CFD) and fluid mechanics, the skin friction coeffi-
cient, commonly abbreviated as "Cf," is a dimensionless quantity that describes the
frictional resistance that a fluid experiences when flowing over a solid surface. It gives
crucial details on the drag forces in the flow and quantifies the shear forces that are
present at the fluid-solid interface. Mathematically,

Cf ≡ τw
1
2
ρ∞u2

∞
, (1.16)

here, τw is local shear stress and computed as:

τw =
(
τxxnx + τxyny

)
ny −

(
τxynx + τyyny

)
nx, (1.17)

where, x and y elements of unit normal vectors are nx and ny. Here , τxy, τxx and τxyy
show that viscous tensor element.
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1.2.1 MUSCL Scheme

It is a FV approach that is used to improve the numerical method’s order and pre-
vent oscillations. The acronym "MUSCL [21]" which stands for Monotonic Upstream-
Centered Scheme for Conservation Laws, was coined by Bram Van Leer in a seminal
article.

1.2.2 Total Variation Diminishing

TVD, or total variation diminishing, is a two-level strategy. We design a grid function
M for which:

TV (G) =
∞∑
−∞

|Gi+1 −Mi|, (1.18)

for each given collection of data Gn, the values Gn+1 computed using the method fulfill:

TV (Gn+1) ≤ TV (Gn). (1.19)

1.2.3 Roe’s Approximate Riemann Solver

A numerical technique used in computational fluid dynamics (CFD) to estimate the
solution of the Riemann problem a fundamental idea in fluid dynamics is called Roe’s
estimate riemann solver. Solving equations at the border between two distinct fluid
conditions is known as the riemann issue. In order to effectively compute the nu-
merical fluxes across cell interfaces in a numerical simulation, Philip Roe created the
approximate riemann solver.

1.2.4 Cartesian Grid Method

The Cartesian grid method is used to computationally solve partial differential equa-
tions (PDEs). Due of its straightforward programming, quicker grid creation, and
reduced computing effort, this approach is quite prevalent nowadays. This approach
does not allow embedded objects to pass through grid points and instead treats em-
bedded boundaries as ghost points.

7



Figure 1.1: Cartesian grid method.

1.2.5 Body Fitted Grid Method

Additionally, partial differential equations are solved using it. Boundary points refer
to grid locations in the framework that fits the body.

Figure 1.2: An expample of Body fitted grid.

technique. Embedded objects traverse grid points in this way. Its benefit is that it
may resolve difficult geometry issues.

1.3 Comparing the Cell-Vertex as well as Cell-Centred
Methodologies

Our concentration depend on FVM since their property for conservation is necessary
for effective shock capture. The field of computation can be made discrete using cells
as well as elements, or nodes. There are two possible approaches to display the solution
data on the computational domain.

8



(1) Cell-Centred technique
(2) Cell-Vertex technique

1.3.1 Cell-Centred Scheme

By using this scheme Data is positioned at the cell centroid and expressed as cell
averages in cell-centered schemes. At each of the cell’s faces, the fluxes are computed.

1.3.2 Cell-Vertex Scheme

In contrast to the cell-centered , the cell-vertex system places the variables at the
points. The cell-vertex system is better in some circumstances, while the cell-centered
design is better in others. When comparing the accurateness of cell-centered and cell-
vertex schemes, the former may become inconsistent whereas the latter is first-order
reliability even on distorted nodes.

1.3.3 Boundary Conditions

We discriminate between solid boundaries, supersonic outflows, and inflows as bound-
ary conditions. Dirichlet boundary conditions for each flow variable are given for the
conservatism quantities at the point of intake for supersonic supply in the x-direction.

The flow is supersonic, thus no boundary constraints need to be put in place at the
exit. Boundary constraints for extrapolation are assumed. we can see in below figure

Figure 1.3: Domain and boundary conditions diagram [21].
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The borders are later described as east, west, toward the north, and southward
with the west edge serving as a barrier to influx.
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Chapter 2

Governing Equations

2.1 Compressible Navier-Stokes Equations

Consider conservative form of compressible Navier-Stokes equations in 2D is

∂Q◦

∂t
+

∂H∗
c

∂x
+

∂G∗
c

∂y
=

∂H∗
v

∂x
+

∂G∗
v

∂y
, (2.1)

here,

Q◦ =


ρ◦
ρ◦u◦
ρ◦v◦
ρ◦E

 , H∗
c =


ρ◦u◦

ρ◦u
2
◦ + p◦

ρ◦u◦v◦
(ρ◦E + p◦)u◦

 , G∗
c =


ρ◦v◦
ρ◦u◦v◦

ρ◦v
2
◦ + p◦

(ρ◦E + p◦)v◦

 , (2.2)

H∗
v =


0

2µ∂u◦
∂x

− 2
3
µ
(

∂u◦
∂x

+ ∂v◦
∂y

)
µ
(

∂v◦
∂x

+ ∂u◦
∂y

)
τxxu◦ + τyxv◦ + k ∂T

∂x

 , G∗
v =


µ
(

∂v◦
∂x

+ ∂u◦
∂y

)
2µ∂v◦

∂y
− 2

3
µ
(

∂u◦
∂x

+ ∂v◦
∂y

)
τxyu◦ + τyyv◦ + k ∂T

∂y

 , (2.3)

density is denoted by ρ◦, components of velocity in x and y directions are u◦ and
v◦ respectively, pressure is p◦, µ denotes viscosity and E indicates energy. Tensor
components are defined as:

τxx = 2µ
∂u◦

∂x
− 2

3
µ

(
∂u◦

∂x
+

∂v◦
∂y

)
, (2.4)

τyy = 2µ
∂v◦
∂y

− 2

3
µ

(
∂u◦

∂x
+

∂v◦
∂y

)
, (2.5)
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τxy = τyx = µ

(
∂v◦
∂x

+
∂u◦

∂y

)
. (2.6)

pressure P◦ and temperature T for ideal gas are given as follows:

T =
p◦
Rρ◦

, (2.7)

p◦ = (γ − 1)

(
ρ◦E − 1

2
ρ◦

(
u2
◦ + v2◦

))
, (2.8)

here, γ = cp
cv

is ratio of specific heat for constant volume and pressure. R is con-
stant of gas air. Using Sutherland’s law, the viscosity is computed and depending on
temperature:

µ(t) = µ∞

(
T

T∞

)1.5
T∞ + 110K

T + 110K
. (2.9)

Here µ∞ and T∞ are reference viscosity and temperature respectively. Sound’s speed
is calculated as

c2 = γ
p◦
ρ◦

(2.10)

where γ = 1.4 is ratio for specific heat and Pr =0.72 for air.Prandtl number, which
relates thermal conductivity to viscosity, will be used as a constant.
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Chapter 3

Numerical Methods

The fundamental ideas of numerical techniques are presented in this chapter. Finite
volume approaches are our main emphasis. The discretization of the fundamental
equations is a crucial step. In this chapter, explicit techniques are also introduced.

3.1 Basic Discretization

There are actually three main categories of discretization techniques that could poten-
tially used to address actual-world issues monitored by PDEs.

(1) Finite Element Method (FEM)
(2) Finite Difference Method(FDM)
(3) Finite Volume Method (FVM)

FEM is one of the effective numerical methods approaches. The variables in FEM are
distributed throughout the elements. FEM has the benefit of being able to handle
complicated geometry more readily than FDM because of this.

The values are placed at a grid’s nodes in FDM. The benefit includes the applica-
bility to computer programs in addition to higher level approaches. On cartesian grids,
with the exception of boundary treatments, the FVM and FDM are the same for both
the initial and second order discretizations.

In FVM, the amount is averaged over all of the sections. using a variable that is
positioned in the center of each cell. Integrals that guarantee conservation qualities
and capture discontinuities are used in the derivation. The difficulty of raising the
method’s order is a drawback of this discretization. Due to low order restrictions for
high accuracy requirements, it is ineffective.
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3.2 Spatial Discretization

The domain is the rectangular box [−Lx1 , Lx1 ] ×
[
−Ly1 , Ly1

]
and [N ×M ] Cartesian

grid having equal grid △x1 = 2Lx1

N−1
,△y1 = 2Ly1

M−1
cartesian values for the grid point

(i1, j1) are
(
x1i1 , y1j1

)
, where x1i1 = −Lx1 + (i1 − 1)∆x1, i1 = 1, 2, . . . , N and y1j1 =

−Ly1 + (j1 − 1)∆y1, j1 = 1, 2, . . . ,M . The semi-discretization of 2D compressible
Navier-Stokes equation using finite difference method is:

dQ◦(i1,j1)

dt
=−

H∗c
i1+

1
2
,j1

−H∗c
i1− 1

2
,j1

∆x1

−
G∗c

i1,j1+
1
2

−G∗c
i1,j1− 1

2

∆y1
+

H∗v
i1+

1
2
,j1

−H∗v
i1− 1

2
,j1

∆x1

+
G∗v

i1,j1+
1
2

−G∗v
i1,j1− 1

2

∆y1
, (3.1)

Q◦(i1,j1) is an approximation of Q◦ at
(
x1i1 , y1j1

)
. Average of Q◦ at the cell is given

by:

σ◦(i1,j1) =

[
x1i1 −

∆x1

2
, x1i1 +

∆x1

2

]
×
[
y1j1 −

△y1
2

, y1j1 +
△y1
2

]
. (3.2)

H∗c and G∗c the convective parts are the numerical fluxes For 2D compressible Navier
Stokes Equation .

3.3 Local Lax-Friedrichs Method

The numerical flux for the convective parts for the local Lax-Friedrichs method is
described as:

H∗ILF
i+ 1

2
,j1

=
1

2
[H(Q◦(i1,j1)) +H(Q◦(i1+1,j1) −max(|u◦(i1+1,j1)|+ c◦(i1+1,j1),

|u◦(i1,j1)|+ c◦(i1,j1)))(Q◦(i1+1,j1) −Q◦(i1,j1))] (3.3)

G∗ILF
i1,j1+

1
2
=
1

2
[G(Q◦(i1,j1)) +G(Q◦(i1,j1+1))−max(|v◦(i1,j1+1)|+ c◦(i1,j1+1),

|v◦(i1,j1)|+ c◦(i1,j1)))(Q◦(i1,j1+1) −Q◦(i1,j1))]. (3.4)

Except in extreme cases where accuracy drops to first order, the MUSCL technique
utilizing the minmod limiter yields second order precision and prevents unwanted oscil-
lations. Here Q◦(i1,j1) is replaced by QL

◦(i1+ 1
2
,j1)

and Q◦(i1+1,j1) is replaced by QR
◦(i1+ 1

2
,j1)

[10].
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QL
◦(i1+ 1

2
,j1)

= Q◦(i1,j1) +
1

2
minmod(Q◦(i1,j1) −Q◦(i1−1,j1),Q◦(i+1,j) −Q◦(i1,j1)), (3.5)

QR
◦(i1+ 1

2
,j1)

= Q◦(i1+1,j1)+
1

2
minmod(Q◦(i1+2,j1)−Q◦(i1+1,j1),Q◦(i1+1,j1)−Q◦(i1,j1)), (3.6)

here, mimmod limiter is defined as:

minmod(m,n) =


m if |m| ≤ |n| and mn > 0
n if |n| < |m| and mn>0
0 if mn ≤ 0

. (3.7)

Now we will do the discretization of viscous terms H∗
v and G∗

v using central finite
difference,

H∗
v =


0

2µ∂u◦
∂x

− 2
3
µ
(

∂u◦
∂x

+ ∂v◦
∂y

)
µ
(

∂v◦
∂x

+ ∂u◦
∂y

)
τxxu◦ + τyxv◦ + k ∂T

∂x

 , (3.8)

here, H∗
v,1 = 0, H∗

v,2 = 2µ∂u◦
∂x

− 2
3
µ
(

∂u◦
∂x

+ ∂v◦
∂y

)
, H∗

v,3 = µ
(

∂v◦
∂x

+ ∂u◦
∂y

)
and

H∗
v,4 = τxxu◦ + τyxv◦ + k ∂T

∂x
.

Now, we will calculate (H∗
v )i1+ 1

2
,j1

, So(
H∗

v,1

)
i1+

1
2
,j1

= 0. (3.9)

(
H∗

v,2

)
i1+

1
2
,j1

= 2µ
(

∂u◦
∂x

)
i1+

1
2
,j1

− 2
3
µ

[(
∂u◦
∂x

)
i1+

1
2
,j1

+
(

∂v◦
∂x

)
i1+

1
2
,j1

]
,

(
H∗

v,2

)
i1+

1
2
,j1

= 2µ
[
u◦(i1+1,j1)

−u◦(i1,j1)
∆x1

]
−2

3
µ

u◦(i1+1,j1)
−u◦(i1,j1)

∆x1
+

∂v◦
∂y1

∣∣∣
i1+

1
2 ,j1+1

+ ∂v◦
∂y

∣∣∣
i1+

1
2 ,j1−1

2∆y1

,

(
H∗

v,2

)
i1+

1
2
,j1

=
4

3∆x1

(
u◦(i1+1,j1) − u◦(i1,j1)

)
− 1

3
µ[
v◦(i1+1,j1+1) − v◦(i1+1,j1−1)

2∆y1
+

v◦(i1,j1+1) − v◦(i1,j1−1)

2∆y1
]. (3.10)

(
H∗

v,3

)
i1+

1
2
,j1

= µ( ∂v◦
∂x1

+ ∂u◦
∂y1

),(
H∗

v,3

)
i+ 1

2
,j
= µ

[
v◦(i1+1,j1)

−v◦(i1,j1)
∆x1

+ µ
2

[
u◦(i1+1,j1+1)−u◦(i1+1,j1−1)

2∆y1
+

u◦(i1,j1+1)−u◦(i1,j1−1)

2∆y1

]]
,
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(
H∗

v,3

)
i1+

1
2
,j1

=
1

4∆y1
µ
[(
u◦(i1+1,j1+1) − u◦(i1+1,j1−1)

)
+
(
u◦(i1,j1+1) − u◦(i1,j1−1)

)]
+

1

∆x1

µ
(
v◦(i1+1,j1) − v◦(i1,j1)

)
. (3.11)

(
H∗

v,4

)
i1+

1
2
,j1

= 2µu◦
∂u◦]
∂x

− 2
3
µu◦

(
∂u◦
∂x

+ ∂v◦
∂y

)
+ v◦µ

(
∂v◦
∂x

+ ∂u◦
∂y

)
+K ∂T

∂x
,

(
H∗

v,4

)
i1+

1
2
,j1

=
1

2

(
u◦(i1+1,j1) + u◦(i1,j1)

) (
H∗

v,2

)
i1+

1
2
,j1

+
1

2

(
v◦(i1+1,j1) + v◦(i1,j1)

) (
H∗

v,3

)
i1+

1
2
,j1

+

1

∆x1

K
(
Ti1+1,j1 − Ti1,j1

)
. (3.12)

(H∗
v)i1+ 1

2
,j1

=



0
4

3∆x1

(
u◦(i1+1,j1) − u◦(i1,j1)

)
− 1

3
µ
[
v◦(i1+1,j1+1)−v◦(i1+1,j1−1)

2∆y1
+

v◦(i1,j1+1)−v◦(i1,j1−1)

2∆y1

]
1

4∆y1
µ
[(
u◦(i1+1,j1+1) − u◦(i1+1,j1−1)

)
+
(
u◦(i1,j1+1) − u◦(i1,j1−1)

)]
+ 1

∆x1
µ
(
v◦(i1+1,j1) − v◦(i1,j1)

)
1
2

(
u◦(i1+1,j1) + u◦(i1,j1)

)(
H∗

(v,2)
(i1+

1
2 ,j1)

)
+ 1

2

(
v◦(i1+1,j1) + v◦(i1,j1)

)(
H∗

(v,3)
(i1+

1
2 ,j1)

)
+ 1

∆x1
K

(
Ti1+1,j1 − Ti1,j1

)


(3.13)

G∗
v =


0

µ
(

∂v◦
∂x

+ ∂u◦
∂y

)
2µ

(
∂v◦
∂y

)
− 2

3
µ
(

∂u◦
∂x

+ ∂v◦
∂y

)
τxyu◦ + τyyv◦ +K ∂T

∂y

 , (3.14)

here , G∗
v,1 = 0 , G∗

v,2 = µ(∂v◦
∂x

+ ∂u◦
∂y

) , G∗
v,3 = 2µ

(
∂v◦
∂y

)
− 2

3
µ(∂u◦

∂x
+ ∂v◦

∂y
) and

G∗
v,4 = τxyu◦ + τyyv◦ +K ∂T

∂y
.

We will calculate (G∗
v)i1,j1+ 1

2
,

(G∗
v,1)i1,j1+ 1

2
= 0. (3.15)

(G∗
v,2)i1,j1+ 1

2
= µ∂v◦

∂x
|i1,j1+ 1

2
+ µ∂u◦

∂y
|i1,j1+ 1

2
,

(G∗
v,2)i1,j1+ 1

2
= µ[1

2
(v◦(i1+1,j1+

1
2
) + v◦(i1−1,j1+

1
1
))] + µ[

u◦(i1,j1+1)−u◦(i1,j1)
∆y1

],

(G∗
v,2)i1,j1+ 1

2
= 1

2
µ[

v◦(i1+1,j1+1)−v◦(i1−1,j1+1)

2∆x1
+

v◦(i1+1,j1)
−v◦(i1−1,j1)

2∆x1
] + µ[

u◦(i1,j1+1)−u◦(i1,j1)
∆y1

],
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(G∗
v,2)i1,j1+ 1

2
=

1

4∆x1

µ[v◦(i1+1,j1+1)−v◦(i1−1,j1+1)+v◦(i1+1,j1)−v◦(i1−1,j1)]+µ[
u◦(i1,j1+1) − u◦(i1,j1)

∆y1
].

(3.16)
(G∗

v,3)i1,j1+ 1
2
= 2µ∂v◦

∂y
|i1,j1+ 1

2
− 2

3
µ(∂u◦

∂x
|i1,j1+ 1

2
+ ∂v◦

∂y
|i1,j1+ 1

2
),

(G∗
v,3)i1,j1+ 1

2
= 2µ[

v◦(i1,j1+1)−v◦(i1,j1)
∆y1

]− 2
3
µ[1

2

u◦(i1+1,j1+1)−u◦(i1−1,j1+1)

2∆x1
+ 1

2

u◦(i1+1,j1)
−u◦(i1−1,j1)

2∆x1
+

v◦(i1,j1+1)−v◦(i1,j1)
∆y1

],

(G∗
v,3)i1,j1+ 1

2
=

4

3∆y1
µ(v◦(i1,j1+1) − v◦(i1,j1))−

1

6∆x1

µ[u∗
◦(i1+1,j1+1) − u◦(i1−1,j1+1)+

(u◦(i1+1,j1) − u◦(i1−1,j1))]. (3.17)

(G∗
v,3)i1,j1+ 1

2
= [τxyu◦ + τyyv◦ +K ∂T

∂y
]i1,j1+ 1

2
,

(G∗
v,4)i1,j1+ 1

2
= µ(∂v◦

∂x
|i1,j1+ 1

2
+∂u◦

∂y
|i1,j1+ 1

2
)u◦|i1,j1+ 1

2
+v◦|i1,j1+ 1

2
2µ∂v◦

∂y
|i1,j1+ 1

2
−2

3
µ(∂u◦

∂x
|i1,j1+ 1

2
+

∂v◦
∂y

|i1,j1+ 1
2
) +K ∂T

∂y
|i1,j1+ 1

2
,

(G∗
v,4)i1,j1+ 1

2
=
1

2
(u◦(i1,j1+1) − u◦(i1,j1))(G

∗
v,2)i1,j1+ 1

2
+

1

2
(v◦(i1,j1+1)−

v◦(i1,j1))(G
∗
v,3)i1,j1+ 1

2
+K(

Ti1,j1+1 − Ti1,j1

∆y1
), (3.18)

hence,

(G∗
v)i1,j1+ 1

2
=


0

1
4∆x1

µ(v◦(i1+1,j1+1) − v◦(i1−1,j1+1) + v◦(i1+1,j1) − v◦(i1−1,j1))− 1
∆y

µ[u◦(i1,j1+1) − u◦(i1,j1)]
4

3∆y1
µ(v◦(i1,j1+1) − v◦(i1,j1)) +

1
6∆x1

µ[(u◦(i1+1,j1+1) − u◦(i1−1,j1+1) + (u◦(i1+1,j1) − u◦(i1−1,j1)]
1
2
(u◦(i1,j1+1) + u◦(i1,j1))(G

∗
v,2)i1,j1+ 1

2
+ 1

2
(v◦(i1,j1+1) + v◦(i1,j1))(G

∗
(v,3)

(i1,j1+
1
2 )
) + 1

∆y1
K(Ti1,j1+1 − Ti1,j1)


(3.19)
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Figure 3.1: Diagram exhibiting the Cartesian domain’s numerical fluxes.

3.4 Boundary Conditions Discretization

Here, first-order boundary conditions are employed since their robustness has been
established. Second order conditions can also be applied, however in such scenario,
each iteration should verify if the condition is physical or not. Since we are thinking
about the inflow boundary condition for supersonic flow, we define variables at the
inlet:

Q◦(1, j1) = Q◦(ref), (3.20)

also,

ρ◦(1, j1) = ρ◦(ref), p◦(1, j1) = p◦(ref), u◦(1, j1) = u◦(ref), v◦(1, j1) = 0 (3.21)

Extrapolation is employed here.
Regarding the eastward outflow boundary:

Q◦(N, j1) = Q◦(N − 1, j1). (3.22)
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Regarding the northward outflow boundary:

Q◦(i1,M) = Q◦(i1,M − 1). (3.23)

Regarding the southward outflow boundary:

Q◦(i1, 1) = Q◦(i1, 2). (3.24)

Figure 3.2: Domain sketch with discretized boundary conditions.

3.5 Temporal Discretization

The options for selecting a time-integrating technique are numerous. The machine
utilized for the computation, the required precision, and the computation’s runtime
should all be taken into account. Multistep techniques like the Adam Bashforth ap-
proach can be utilized if the computer has a lot of fast memory [4]. Runge-Kutta
methods are other techniques that use less memory but more CPU computations. The
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third order Runge-Kutta (RK3) technique is a widely used option. The approach is
stable enough to handle a pretty big time step, and the precision is sufficient for most
purposes. Two distinct RK3 techniques have been examined.

In computational fluid dynamics, numerical techniques with less random-access mem-
ory (RAM) are crucial. To fit an issue in a cache—a high-speed memory that is closely
connected to the central processor unit—minimum memory use is required. In order
to fit an issue into a cache more successfully, one is frequently ready to perform an ad-
ditional number of floating point operations because efficient cache utilization is such
a crucial component of numerical code execution.

We compute ∂Q◦
∂t

= R(Q◦) for every step of time integrating approach.where R is
the residual, or the right side of equation (3.1), for all inside grid points and Q◦is the
vector containing the conservative variables.

here, residual of the 2D compressible Navier-Stokes equations is,

Ri1,j1 = −
H∗c

i1+
1
2 ,j1

−H∗c
i1−

1
2 ,j1

∆x1
−

G∗c
i1,j1+

1
2

−G∗c
i1,j1−

1
2

∆y1
+

H∗v
i1+

1
2 ,j1

−H∗v
i1−

1
2 ,j1

∆x1
+

G∗v
i1,j1+

1
2

−G∗v
i1,j1−

1
2

∆y1
.

The Runge-Kutta techniques with total variation declining (TVD) provide an addi-
tional option. Since this is a strong stability preserving approach (SSP), they maintain
the TVD property of the procedure [2]. The argument that TVD Runge-Kutta tech-
niques are vital for such applications is verified when non-TVD but linearly stable
Runge-Kutta temporal discretization may induce oscillations even for TVD spatial
discretization [6].

Therefore, the TVD RK3 technique is utilized to ensure that the discretization’s
TVD property is maintained.

Thus, TVD RK3 [6] is employed and computed as:

Q
(1)
◦ = Qn

◦ +∆t1R(Q
(n)
◦ ),

Q
(2)
◦ = 3

4
Qn

◦ +
1
4
Q

(1)
◦ + 1

4
∆t1R(Q

(1)
◦ ),

Q(n+1)
◦ =

1

3
Qn

◦ +
2

3
Q(2)

◦ +
2

3
∆t1R(Q(2)

◦ ). (3.25)

3.6 Analysis of a Numerical Scheme’s Stability

The stability of time-based iterations is determined by the discretization technique’s
characteristics and the eigenvalues of the flux vector’s Jacobian matrices. Since a very
long step cannot be made, Von-Neumann number (VNN) and Courant-Friedrichs-Lewy
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(CFL) are employed. Given the 2D compressible Navier-Stokes equations, the following
formulas are used to determine CFL and VNN:

CFL = ∆t1(
|u◦|+ c

∆x1

,
|v◦|+ c

∆y1
), (3.26)

V NN = △t1(
1

△x2
1

+
1

△y21
)max(

4

3

µ

ρ◦
,

γµ

ρ◦Pr
), (3.27)

CFL is changed from 0.5 to 0.25 while VNN is fixed at 0.4. At each step, the time
step sizes ∆tI and ∆tv are calculated using CFL and VNN the least of both is selected
as ∆t in RK3.

3.7 Roe’s Approximate Riemann Solver

To compute the numerical fluxes across cell interfaces in a numerical simulation, Philip
Roe created the Approximate Riemann Solver in 1981. The technique is based on
employing a local Jacobian matrix to linearize the flow vector. This linearized approx-
imation is then used to the cell interfaces to calculate the numerical fluxes. Defining
the vector of conserved quantities as follow

Q◦ =

 ρ◦
ρ◦u◦
ρ◦eT

 , (3.28)

the terms u1,u2, and u3 may be used to refer to different components of Q◦. These
terms stand for mass , momentum, and total energy per unit volume, respectively. .

Defining the flux vector as fellows

F◦ =

 ρ◦u◦
ρ◦u

2
◦ + P◦

(ρ◦eT + P◦)u◦

 =

 ρ◦u◦
ρ◦u

2
◦ + P◦

ρ◦HTu◦

 , (3.29)

The terms f1, f2, and f3 may be used to refer to the component of F◦. These terms
stand for mass flux, momentum flux plus pressure force, and total energy flux pressure
work, respectively. Despite being referred to as the flow vector, F◦ also takes pressure
effects into account. Although they are not technically fluxes, the pressure effects on
momentum and energy are frequently handled as such. However, if you’d want, you
may separate the contributions from pressure and flux as:

F◦ =

 ρ◦u◦
ρ◦u

2
◦

ρ◦u◦eT

 =

 0
P◦
ρ◦u◦

 , (3.30)
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consider conservative form of Euler equation using vector notation:

∂Q◦

∂t
+

∂F◦

∂x
= 0. (3.31)

One way to express the flow vector F◦ is as a function of the conserved values Q◦. f3
can be written explicitly as a function of u1,u2, and u3 :

f3 = (ρ◦eT + P◦)u = [ρ◦eT + (γ − 1)(ρ◦eT − 1
2
ρ◦u

2
◦)]u◦,

= (γρ◦eT − γ−1
2

ρ2◦u
2
◦

ρ◦
)ρ◦u◦

ρ◦
,

= (γu3 −
γ − 1

2

u2
2

u1

)
u2

u1

= γ
u3u2

u1

− γ − 1

2

u3
2

u2
1

, (3.32)

then by chain rule , ∂F◦
∂x

= ∂F◦
∂Q◦

∂Q◦
∂x

,
where ,

∂F◦

∂Q◦
=


∂f1
∂u1

∂f1
∂u2

∂f1
∂u3

∂f2
∂u1

∂f2
∂u2

∂f2
∂u3

∂f3
∂u1

∂f3
∂u2

∂f3
∂u3

 , (3.33)

which is called Jacobian matrix of F◦.
suppose the quasi-linear equation

∂Q◦

∂t
+A

∂Q◦

∂x
= 0, (3.34)

here, A = ∂F◦
∂Q◦

is the Jacobian matrix of F. Such that:

A =

 0 1 0
γ−3
2
u2
◦ (3− γ)u◦ γ − 1

−γu◦eT + (γ − 1)u3
◦ γeT − 3

2
(γ − 1)u2

◦ γu◦

 , (3.35)

note that A = A(Q◦).
Define the linear problem:

∂Q◦

∂t
+ Â

∂Q◦

∂x
= 0, (3.36)

where Â = Â(Q◦(L),Q◦(R)) = constant such that:

• Â(Q◦(L),Q◦(R)) → A(Q◦) for Q◦(L) → Q◦ and Q◦(R) → Q◦.

• Fc
◦(1)(Q◦R)− Fc

◦(1)(Q◦(L)) = Â(Q◦(L) −Q◦(R)).

• Real eigenvalues and linearly independent eigenvectors are present in Â.
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These prerequisites are met for

Â = A(Q̂◦), (3.37)

where the Roe-averages decide Q̂◦,

ρ̂◦ =
√
ρ◦(L)ρ◦(R), û◦ =

√
ρ◦(L)u◦(L) +

√
ρ◦(R)u◦(R)

√
ρ◦(L) +

√
ρ

, Ĥ◦ =

√
ρ◦(L)H +

√
ρ◦(R)H◦(R)

√
ρ◦(L) +

√
ρ◦(R)

.

(3.38)
The Roe-averaged sound speed is obtained from ĉ2 = (γ − 1)(Ĥ∗ − 1

2
|û◦|2).

If there is just one shock or one contact discontinuity connecting Q◦(L) and Q◦(R),
then Roe’s approximation riemann solver is accurate.

we can diagonalize Â like A and express equation as 3 linear equations in 2D

∂Wi

∂t
+ λ̂i

∂Wi

∂x
= 0, i = 1, 2, 3. (3.39)

where W = R̂−1Q◦ =

− ρ̂◦u◦
2ĉ

+ 1P◦
2ĉ2

ρ◦ − 1
ĉ2P◦

ρ̂◦u◦
2ĉ

+ 1P◦
2ĉ2

 are the characteristics variables.

ˆλ(1) = û◦ − ĉ, ˆλ(2) = û◦, ˆλ(3) = û◦ + ĉ are the constant wave of speed.
let δWi denote the strength of the i-th wave ,i.e the i-th component of R̂−1(Q◦(R)−

Q◦(L)) = T̂−1(V◦(R) −V◦(L)),
then exact solution of (3.36) at the interface can be expressed can be as:

Wi(0, t) =

{
WiL = WiR − δWi, if λ̂i > 0

WiR = WiL + δWi, if λ̂i < 0,
(3.40)

the flux difference can be written as:

Fc
◦(1)(Q◦(R))− Fc

◦(1)(Q◦(L)) = R̂Â∗R̂−1(Q◦(R) −Q◦(L)) =
3∑

i=1

δWiλ̂ir̂i, (3.41)

where r̂i is the ith right eigenvector of Â , i.e. the ith column of R̂ = R(Q̂◦) The
right eigenvector matrix of R(Q◦) reads:

R =

 1 1 1
u◦ − c u◦ u◦ + c

H◦ − u◦c
u2
◦
2

H◦ + u◦c

 , (3.42)

So, Roe describes the flow at the contact as follows:
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F◦(0, t) = F◦(Q◦(L) + Â−(Q◦(R) −Q◦(L)), (3.43)

F◦(0, t) = F◦(Q◦(R))− Â+(Q◦(R) −Q◦(L)), (3.44)

F◦(0, t) =
1

2
[F◦(Q◦(L)) + F◦(Q◦(R))− |Â|(Q◦(R) −Q◦(L))], (3.45)

where (3.45) is obtained by averaging (3.43) and (3.44). Here, Â∓ = R̂Â∗∓R̂−1 and
|Â| = R̂|Â∗|R̂−1, where Â∗ = diag(λ̂∓

j ) with λ̂∓
j = 1

2
(λ̂j ∓ |λ̂j|) and |Â∗| =

diag(|λ̂j|).
If the expansion fan spans the time axis, that is, if its sonic condition is either

u∗ + c = 0 or u∗ − c = 0, then approximating the expansion fan by an expansion
shock violates the entropy requirement and results in an incorrect flux at the interface.
For example, using Roe’s approximation riemann solver, an expansion shock at the
interface will incorrectly stay unaltered rather than spreading like an expansion fan.

By adding a sonic state to a sonic expansion fan, we may impose the entropy
requirement, i.e. if either u◦ − c = 0 or u◦ + c = 0; alternatively, if |u◦ − c| or |u◦ + c|
become tiny due to numerical dissipation added to the acoustic waves.

3.8 Explanation for Simplified Ghost Point Method
on Embedded Boundary in two Dimensions

For the simple ghost point treatment, the reflecting point is the point F1 of the fluid
next to the embedding border. The embedded boundary is therefore thought to be
midway between ghost and fluid points. The concept is shown in figure on a 9x9 grid.
The cylinder’s highlighted ghost cells, generated by the algorithm, are displayed on a
finer grid in figure.
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Figure 3.3: 81x81 grid with ghost cells marked with flags. Ghost points’ whereabouts
are indicated by back points.

When there are ghost points , the primitive variables are configured as

ρ◦G1 = ρ◦F1 , u◦G1 = −u◦F1 , v◦G1 = −v◦F1 , P◦G1 = P◦F1 . (3.46)

Considering that the embedding boundary is situated halfway between mirrored
point F1 and ghost point G1.The boundary criteria u◦ = v◦ = 0 and ∂ρ◦

∂n
= 0 are

presumed to exist at the embedded boundary. It’s important to pick the mirror points
F1 carefully. The values at the fluid points to the west of the ghost points Q◦(i1G1,j1G1) =
Q◦(i1G1−1,j1G1) are used to find the values of the ghost spots on the western edge of the
domain’s boundaries. similarly, we can get ghost point for southern side, east side
and northern side Q◦(i1G1,j1G1) = Q◦(i1G1,j1G1−1), Q◦(i1G1,j1G1) = Q◦(i1G1+1,j1G1) and
Q◦(i1G1,j1G1) = Q◦(i1G1,j1G1+1), respectively.
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Figure 3.4: The configuration of the ghost points to create a solid cylinder and the
selection of the fluid points as mirror points as an example.

The circle and the grid lines’ junction at the center point (a1, b1), or four locations
on the grid, are precisely on the circle. These are fluid points that need to be addressed
explicitly.

On the grid, the 45-degree junction lines represent four ghost locations. The closest
fluid point in either the x or y directions can be used to compute a ghost point on this
line. The closest fluid point in the x-direction is used in this function to compute these
ghost spots. Selecting the diagonal, or closest fluid point on the intersecting line, is an
additional strategy.

3.9 Treatment of Ghost Points with Second Order Ac-
curacy

It takes a new set of ghost points, If the MUSCL’s minmod limitation is used to
obtain second order precision. Ghost point values need to be set at (x1(i1±2), y1(j)) and
(x1j1 , y1j1±2) if they are inside the solid, as the minmod limiter also utilizes the values
Q◦(i1±2,j1) and Q◦(i1,j1±2). Primitive variables are set at the ghost spots to

26



ρ◦(G2) = ρ◦(F2), u◦(G2) = −u◦(F2), v◦(G2) = −v◦(F2), P◦(G2) = P◦(F2), (3.47)

accomplishes this, as seen in figure.

Figure 3.5: A demonstration of the MUSCL ghost point computations.

3.10 Calculating the Shear Stress on a Body

Due to its location between two points, it might be challenging to precisely identify
the wall of the selected embedded body when using the basic ghost point treatment.
This problem was solved by averaging the skin friction at locations close to the wall.
There have been several uses near the implanted body’s wall.

The averaged wall shear stress (τp′)i1,j1 may be obtained by averaging the following
values, where (τw′)i1,j1 is the fluid point’s shear stress at its closest to the wall. See in
figure and equation.

(τw′)i1,j1 =
2(τp′)i1,j1 + (τp′)i1+1,j1 + (τp′)i1,j1−1 + (τp′)i1,j1+1

6
, (3.48)

Figure 3.6: The locations for which the shear stress on the wall was averaged.
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Chapter 4

Test Cases for Navier-Stokes Equation

The aim of this chapter is to compare the simplified ghost point method with the
well-established cartesian grid methodology for viscous movement under flow under
supersonic speed settings.

4.1 Supersonic Flow over Circular Cylinder Employ-
ing Compressible Navier-Stokes Equation

In context of the compressible Navier-Stokes equation, flow at supersonic speed across a
circular cylinder is examined. It has been thought about the movement across a circular
cylinder at supersonic speed having Mach = 3 and Re = 500. The computational
domain [−2, 2] × [−2, 2] has been discretized using grids consisting of 71 × 71, 141 ×
141,281×281 and 561×561 cells. The cylinder has a diameter of D = 1, and its center
is at (0,0). It is believed that the cylinder wall is adiabatic. For each test instance, the
boundary conditions are as follows: supersonic outflow for all other boundaries, and
supersonic inflow for boundary. x = -2. The MUSCL system achieves second order
precision, with the exception of extrema. Here minmod is used, hence it’s accuracy
is second. Here we havedone comparison of velocity u, v and density contours using
different grids. Figures depicts the curves of the Mach number. We note a bow shock
that is sharply resolved.
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(a) Velocity u◦ contours. (b) Velocity u◦ contours.

Figure 4.1: Velocity u◦ contours having 5000 iterations for 81×81 and 161×161 grid
points for 1 cylinder.

(a) Velocity v◦ contours. (b) Velocity v◦ contours.

Figure 4.2: Velocity v◦ contours having 5000 iterations for 81×81 and 161×161 grid
points for 1 cylinder.
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(a) Mach number contours. (b) Mach number contours.

Figure 4.3: Mach number contours having 5000 iterations for 81×81 and 161×161
grid points for 1 cylinder.

(a) Density contours. (b) Density contours.

Figure 4.4: Density contours having 5000 iterations for 81×81 and 161×161 grid
points for 1 cylinder.
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(a) Velocity u◦ contours. (b) Velocity u◦ contours.

Figure 4.5: Velocity u◦ contours having 5000 iterations for 81×81 and 161×161 grid
points for 3 cylinder.

(a) Velocity v◦ contours. (b) Velocity v◦ contours.

Figure 4.6: Velocity v◦ contours having 5000 iterations for 81×81 and 161×161 grid
points for 3 cylinder.
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(a) Mach number contours. (b) Mach number contours.

Figure 4.7: Mach number contours having 5000 iterations for 81×81 and 161×161
grid points for 3 cylinder.

(a) Density contours. (b) Density contours.

Figure 4.8: Density contours having 5000 iterations for 81×81 and 161×161 grid
points for 3 cylinder.
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Figure 4.9: A comparison for skin friction coefficient of the body-fitted method, sim-
plified ghost point treatment with average and without average.

Figure 4.10: A comparison for skin friction coefficient of the body-fitted method,
simplified ghost point treatment with average and without average.
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Figure 4.11: A comparison for skin friction coefficient of the body-fitted method,
simplified ghost point treatment with average and without average.

Figure 4.12: A comparison for skin friction coefficient of the body-fitted method,
simplified ghost point treatment with average and without average.
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Figure 4.13: A comparison for skin friction coefficient of the body-fitted method,
simplified ghost point treatment with average and without average.

Figure 4.14: A comparison for skin friction coefficient of the body-fitted method,
simplified ghost point treatment with average and without average.
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Figure 4.15: A comparison for skin friction coefficient of the body-fitted method,
simplified ghost point treatment with average and without average.

Figure 4.16: A comparison for skin friction coefficient of the body-fitted method,
simplified ghost point treatment with average and without average.
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Figure 4.17: A comparison for skin friction coefficient of the body-fitted method,
simplified ghost point treatment with average and without average.

Figure 4.18: A comparison for skin friction coefficient of the body-fitted method,
simplified ghost point treatment with average and without average.
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Figure 4.19: A comparison for skin friction coefficient of the body-fitted method,
simplified ghost point treatment with average and without average.
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Chapter 5

Conclusions and Outlook

Our consideration is to flow at supersonic speed across a circular cylinder in compress-
ible Navier-Stokes equations. We have employed several grid locations for supersonic
flow across a circular cylinder. For spatial discretization, we employed the MUSCL
(Monotone Upstream-centered Schemes for Conservation Laws) scheme and the local
Lax-Friedrichs approach. We used Runge-Kutta (RK3) and Total Variation Diminish-
ing (TVD) techniques for temporal discretization.

A technique for calculating viscous compressible flows around intricate geometries
is the embedded boundary approach that we have demonstrated. For two-dimensional
issues, the approach is simple to apply and can yield first- or second-order precision.
Using viscous flow with modest Reynolds numbers, varying The quantity of grid points,
and increasing the number of iterations, the approach has been validated against thor-
oughly recorded steady and unsettled test situations in supersonic flow regimes. Com-
pared to methods that utilize gridles points at borders or local grid refining , we discover
further grid points are needed to obtain excellent resolution at nearness to the body and
in regions with significant flow-gradients. The accuracy, resilience, and adaptability of
the suggested approach have all been shown by a number of numerical tests. According
to the numerical data, the simplified approach outperforms the ghost point method in
terms of performance. While not as exact as other more advanced approaches, the
results obtained by the simplified method are comparable.

It would be interesting to improve the approach for computing three-dimensional
problems further in future studies. Enhancing the precision level is possible, and it
makes sense to consider implementing local grid refinement. We can increase the
Reynolds number by finding solutions for smaller sizes. if we have improved resolution
in relevant regions. Further research and testing of the skin friction coefficient calcu-
lation is increasingly urgent since it has shown to be extremely sensitive to changes in
the computation techniques. Finally, there is a chance to refine and test the simplified
ghost point approach for other scenarios.
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