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Abstract

In this dissertation, we have considered the phenomena of phantom energy accretion onto

(2+1)-dimensional BTZ black hole. The first two chapters are devoted to introductions

to General Relativity and black hole solutions. In the first chapter, we discuss basic

equations of General Relativity and also focus on different types of energies. In the second

chapter, we briefly discuss some black hole solutions: namely Schwarzschild solution and

(2+1)-dimensional BTZ black hole solution.

In chapter three, we study the accretion of phantom energy onto a (2+1)-dimensional

non-rotating BTZ black hole as well as rotating BTZ black hole. An interesting finding is

that the rate of change of mass of the non-rotating BTZ black hole is independent of its

mass and depends only on energy density and pressure of the phantom energy. Similarly

the rate of change of mass of the rotating BTZ black hole depends not only on the energy

density and pressure of the phantom energy but also on the mass of the rotating BTZ

black hole. In the case of rotating BTZ black hole, we find that the mass will decrease

only if,

q
M2−J2

l2
+M

2
q

M2−J2

l2

= 2n, M > r2

l2
and M > J

l where n = 0,±1,±2, · · · . Finally we

conclude the dissertation and discuss some further lines of work.
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Chapter 1

Introduction

In Astrophysics, accretion is defined as “a process by which matter is collected around a

central object” [1]. In binary systems accretion, one star is tidally deformed and matter

flows out from it to the compact companion. When one deals with an isolated object,

it may accrete from the interstellar medium at a very low rate. In many of the galactic

centers, there is evidence of supermassive black holes [1]. There are no companions, but

matter is accreted from winds of the surrounding stars. In these cases, stars may also

be tidally disrupted if they come very close to the black hole and the matter would be

accreted from the disrupted star to the central black hole.

Though the subject began with the study of accretion onto ordinary stars, very quickly

a similar method was found to be useful for the study of accretion onto compact objects,

such as white dwarfs, neutron stars and black holes.

The recent observational evidence obtained from Wilkinson Microwave Anisotropy

Probe (WMAP) strongly suggests that the current expansion of the Universe is accelerat-

ing [2]. This positive accelerated expansion of the Universe is explained by the dominance

of dark energy with a negative pressure in the Einstein theory of gravity [3]. A peculiar

property of cosmological models with dark energy is the possibility of a Big Rip [4]: an

infinite increase in the scale factor of the Universe in a finite time. The Big Rip scenario

is realized in the case of phantom energy (for which (ρ + p) < 0, where ρ is the energy

2



CHAPTER 1. INTRODUCTION 3

density and p is the pressur of the phantom energy). In the Big Rip scenario the phantom

energy tends to infinity and all the bound objects are torn apart upto subatomic scales.

It should be noted, however, that the condition (ρ + p) < 0 alone is not enough for the

Big Rip scenario to be realized [5].

The history of research on the accretion of an ideal fluid onto a compact object began

with Hoyle and Lyttleton’s paper in 1939 [1]. The problem was to study how much

matter would accrete on a star moving through an interstellar medium. The work was

not satisfactory as pressure effects were ignored. In 1952, the classic paper of Bondi [6]

was published. There he computed the mass accretion rate on a star ‘in rest in an infinite

cloud of gas’ by including the pressure effects. According to Bondi, the compressional

heat may be lost and pressure at the inner edge may be diminished causing much larger

inflow rate. His work was not suitable to discuss the accretion onto objects like black

holes, neutron stars and white dwarfs, etc. A few years later, Michel extended the Bondi’s

work by studying the accretion phenomena near the Schwarzschild black hole [7]. Michel

showed that high energy X-rays and gamma rays will be emitted in the accretion process.

Carr and Hawking consider the accretion of dust and radiation onto a black hole by solving

the complete system of the Einstein equations and taking into account back reaction of

the surrounding matter [8].

Babichev et al, discuss the effect of dark energy accretion onto Schwarzschild black

hole. They obtain a solution for the stationary accretion of a test relativistic ideal fluid

with an arbitrary equation of state p = p(ρ) onto the Schwarzschild black hole. They

found that

dM = 4πAM2 (ρ+ p) dt, (1.0.1)

where it is clear that the mass of the black hole increases as it accretes the gas of particles

when p > 0, but decreases as it accretes the phantom energy. In particular this implies

that the black hole mass in the Universe filled with phantom energy must decrease [9].
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Babichev et al, showed that accretion of phantom energy will induce the mass of black

hole to decrease. They conclude that the mass of all black holes will vanish before the Big

Rip is reached.

The accretion of phantom energy onto a (2+1)-dimensional non-rotating Banados-

Teitelboim-Zanelli (BTZ) black hole was studied by M. Jamil and M. Akbar [11]. In their

work they showed that the mass of a (2+1)-dimensional BTZ black hole decreases due to

the accretion of phantom energy. They showed that the change in BTZ black hole mass is

dM = 2πA1(ρ+ p)dt. (1.0.2)

Note that for phantom energy (ρ+ p) < 0 which leads to the decrease in the mass of the

BTZ black hole. We extend this work to rotating BTZ black hole and find that the mass

of rotating BTZ black hole will decrease only if,

q
M2−J2

l2
+M

2
q

M2−J2

l2

= 2n, M > r2

l2
and M > J

l

where n = 0,±1,±2, ......

Most of the energy of the Universe is in the form of dark energy and dark matter. It

has been found that 97 percent energy of the Universe consist of dark energy and dark

matter (73 percent dark energy and 24 percent dark matter) [12]. This dark energy has

some remarkable effects on the Universe. In fact the effect of dark energy on the black

hole produces a huge change in the physics of the black hole. In this dissertation, we will

consider the effect of phantom energy on the physics of a (2+1)-dimensional BTZ black

hole.

Einstein’s theory of General Relativity (GR) is the most beautiful and elegant of phys-

ical theories. It is the foundation of cosmology, the subject that discovers the evolution of

the Universe from its first intensely hot and dense beginning to its possible features. GR

is also the foundation for our understanding of compact stars. Neutron stars and black

holes can be understood correctly only in GR as formulated by Einstein.

In this chapter, we discuss some basic definitions and known results which will provide

us a background for our research work in subsequent chapters. We begin by giving some
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ideas about vectors and tensors. Our next and most important task will be to discuss

curvature tensors and Einstein’s field equations, which relate the geometry of spacetime

to the distribution of matter in the Universe. Finally we will discuss dark energy and

phantom energy.

In this dissertation, we use the following conventions and units: the signature of the

underlying metric will be (−,+,+,+), unless otherwise mentioned, we use the natural

units in which c = G = 1, also the Planck’s units in which c = ~ (= h
2π ) = 8G = 1. Here c

is the speed of light, G is Newton’s gravitational constant and h is the Planck’s constant.
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1.1 Definitions

1.1.1 Vectors

A vector is defined as a geometric object that has both magnitude and direction. Usually

a vector is denoted by a letter with an arrow above it, for example ~u, or by boldface letter,

for example u. We shall use the latter notation.

Vectors can also be defined as quantities satisfying certain axioms:

1. If u and v are vectors then u + v is also a vector,

2. au is a vector, for every vector u and real number a.

An expression of the form ανeν where αν (with ν ∈ {1, ...n}) are real numbers, is called

a linear combination of the vectors eν . Here we use the Einstein summation convention:

according to this convention, when an index variable appears twice in a single term, one

subscript and one superscript, then we are summing over all of its possible values, i.e.,
n∑

ν=1
ανeν = ανeν . The vectors e1, ..en are said to be linearly independent if no real numbers

αν 6= 0 exist so that ανeν = 0.

A set of linearly independent vectors {eν} is said to be maximally linearly independent

if for all vectors u the set of vectors {eν ,u} is linearly dependent. Then there exist non-zero

real numbers αν , such that

ανeν + u = 0 (1.1.1)

A vector basis for a space V is defined as a set of vectors in V that are maximally linearly

independent. The number of vectors in the basis is called the dimension of V .

Let the vector set {e1, ..., en} be a basis in an n-dimensional space. Setting αν = −uν

in equation (1.3), we get

u = uνeν . (1.1.2)

The numbers uν are called the components of u relative to the basis {eν}.
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1.1.2 One-forms

Let the set of real numbers be denoted by R and let V be a vector space. A function f is

said to be linear if

f(au + bv) = af(u) + bf(v), (1.1.3)

where a, b ∈ R and u,v ∈ V .

A one-form, a is defined as a linear function from V into R; i.e., a : V 7→ R. In other

words, a one-form, a, acts on a vector, v, and gives out a real number, a(v). In order to

be able to write a form in component-form, we have to define a one-form basis {ωµ}. The

basis is defined by

ωµ(eν) = δµ
ν , (1.1.4)

where δµ
ν is the Kronecker-symbol. We can now write a one-form as a linear combination

of the basis-forms

a = aµωµ. (1.1.5)

The numbers aµ are called the components of a relative to the basis {ωµ}. By means of

equation (1.6) and (1.7), we have

a(eµ) = aνω
ν(eµ) = aνδ

ν
µ = aµ. (1.1.6)

The number a(v) is called the contraction or interior product of a with v which may be

expressed by the components of a and v as

a.v = vµaµ. (1.1.7)

This is just the same number that is obtained by taking the scalar product of two vectors

v and a. One-forms correspond to vectors and the contraction of a one-form by a vector

to the scalar-product of two vectors.

Just like forms, vectors can also be perceived as linear functions. If a vector v acts

on a form a, it gives out the number v(a) = aµv
µ. Since this is equal to vµaµ we have
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v(a) = a(v), which corresponds to the symmetry of the scalar-product of two vectors. It

follows that the vector components vµ can be expressed as

vµ = v(ωµ). (1.1.8)

The components of a vector are the contractions of the vector with the basis forms.

Like the vectors, one-forms satisfy the axioms of a vector space. Therefore, one-

forms are sometimes referred to as dual vectors. In Dirac’s bra-ket notation in quantum

mechanics, the kets |ψ〉 are the vectors and the bras 〈ψ| are the forms.

1.1.3 Tensors

GR is formulated in the language of tensors. A tensor is a quantity which remains invariant

under coordinate transformation [13]. The component of a tensor can be written either

in covariant ξµν , contravariant ξµν or mixed ξµ
ν form. We can also define the rank of a

tensor as “the total number of free indices”. For example a vector has rank 1, a scalar has

rank 0. Similarly ξµν , ξµν and ξµ
ν all have rank 2 and so on. The transformation rule for

the components of a contravariant vector is given by

ξ′µ =
∂x′µ

∂xν
ξν . (1.1.9)

Similarly the transformation rule for the components of a covariant vector is given by

ξ′µ =
∂xν

∂x′µ
ξν . (1.1.10)

The transformation rules for contavariant, covariant and mixed tensors of rank 2 are

written respectively as

ξ′µν =
∂x′µ

∂xλ

∂x′ν

∂xδ
ξλδ, (1.1.11)

ξ′µν =
∂xλ

∂x′µ
∂xδ

∂x′ν
ξλδ, (1.1.12)

and

ξ′µν =
∂x′µ

∂xλ

∂xδ

∂x′ν
ξλ
δ . (1.1.13)
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1.1.4 Metric Tensor

This is the most important tensor in GR and is a symmetric tensor. A metric basically

defines the distance or the length of a vector. This distance ds between two neighboring

points in space is defined by

ds2 := gµνdx
µdxν , (1.1.14)

where gµν is the metric tensor. In flat spacetime gµν = ηµν , where ηµν = diag(−1, 1, 1, 1)

and is called the Minkowski metric, so in flat spacetime

ds2 = −c2dt2 + dx2 + dy2 + dz2. (1.1.15)

Depending upon the sign of the metric tensor, we have the following three kinds of sepa-

ration

ds2 > 0 spacelike separated,

ds2 = 0 null separated,

ds2 < 0 timelike separated.

1.1.5 4-Vectors

Spacetime is four-dimensional. Every point of spacetime can be characterized by four

linearly independent basis vectors eν . Thus, a vector in spacetime has four components.

Such vectors are called four-vectors. The basis vectors in this system are denoted by

{et, ex, ey, ez}. They are mutually orthogonal unit vectors. Since they are unit vectors,

so they form an orthonormal basis.

According to the Galilean and Newtonian kinematics, all particles move in a three-

dimensional space, and the velocity u is a vector. The ordinary velocity of a particle

is

u = uxex + uyey + uzez =
dx

dt
ex +

dy

dt
ey +

dz

dt
ez. (1.1.16)
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According to the relativistic description, however, particles exist in a four dimensional

spacetime. In this description the ordinary velocity of a particle is not a vector. Instead

one defines a four-velocity

U = c
dt

dτ
et +

dx

dτ
ex +

dy

dτ
ey +

dz

dτ
ez, (1.1.17)

where τ is the proper time of the particle, i.e., the time measured by a standard clock

carried by the particle. Using Einsteins summation convention we may write

U = uµeµ =
dxµ

dτ
eµ, xµ ∈ {xo, x1, x2, x3}, (1.1.18)

where xo = ct, x1 = x, x2 = y and x3 = z. Since dt/dτ = γ, so the components of the

four-velocity are given in terms of the components of ordinary velocity as

U = γ(c, ux, uy, uz) = γ(c,u). (1.1.19)

In the rest frame of the particle, u = 0 and γ = 1. Hence, the four-velocity reduces to

U = cet. (1.1.20)

In this frame the particle moves in the time direction with the speed of light. One often

uses units such that c = 1. In these units, both time and space are measured in units of

length. In such geometrical units of measurement the particle moves with unit velocity

in the time-direction in its own rest frame. The four-momentum, P, of a particle with

rest-mass m0 is defined by

P = m0U. (1.1.21)

Referring to the rest-frame of the particle and using units such that c = 1, we see that the

magnitude of the four-momentum is equal to the rest-mass of the particle. The ordinary

(three-dimensional) relativistic momentum of the particle is

p = mu = γm0u. (1.1.22)
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1.1.6 Covariant Derivative

The covariant derivative is a way to specify a derivative along the tangent vector to a

manifold. This is an extension of the gradient operator to tensors and is denoted by ∇µ.

The covariant derivative of a scalar field, ϕ, is simply the partial derivative and is defined

as

∇µϕ := ϕ,µ. (1.1.23)

The covariant derivative of covariant and contravariant vectors are, respectively, defined

as

∇νξµ := ξµ;ν = ξµ,ν − Γρ
µνξρ (1.1.24)

and

∇νξ
µ := ξµ

;ν = ξµ
,ν + Γµ

ρνξ
ρ, (1.1.25)

where Γµ
ρν is the Christoffel symbol defined by

Γµ
ρν :=

1
2
gµλ(gρλ,ν + gλν,ρ − gρν,λ). (1.1.26)

Similarly the the expression for the covariant derivative of a mixed tensor is

∇νξ
µ
ρ = ξµ

ρ;ν = ξµ
ρ,ν + Γµ

ανξ
α
ρ − Γα

ρνξ
µ
α. (1.1.27)

In general the covariant derivative of a higher rank mixed tensor is

ξαβ..
γλ..;ν = ξαβ..

γλ..,ν +Γα
µνξ

µβ..
γλ.. +Γβ

µνξ
αµ..

γλ....−Γµ
γνξ

αβ..
µλ..−Γµ

λνξ
αβ..

γµ..... (1.1.28)

1.2 Riemann Tensor

The Riemann tensor, also known as Riemann curvature tensor, measures the deviation of

spacetime from Minkowski spacetime [13]. It is given by

Rµ
νλδ = Γµ

νδ,λ − Γµ
νλ,δ + Γρ

νδΓ
µ
ρλ − Γρ

νλΓµ
ρδ. (1.2.1)

It is useful to look at the components of Riemann curvature tensor R in a locally inertial

frame at a point p. In a locally inertial frame Γα
µν = 0 but Γα

µν,λ 6= 0, because the second
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derivative of gµν does not vanish. Thus from equation (1.28), we have

Γµ
νδ,λ =

1
2
gµσ(gνσ,δλ + gσδ,νλ − gνδ,σλ). (1.2.2)

Using equation (1.32) in (1.31), the components of the Riemann curvature tensor reduce

to

Rµ
νλδ =

1
2
gµσ(gνσ,δλ + gσδ,νλ − gνδ,σλ − gσν,λδ − gσλ,νδ + gνλ,σδ). (1.2.3)

Using the symmetry of gαβ and the fact that

gαβ,µν = gαβ,νµ, (1.2.4)

because partial derivatives commute, we find

Rµ
νλδ =

1
2
gµσ(gσδ,νλ − gσλ,νδ + gνλ,σδ − gνδ,σλ). (1.2.5)

Lowering the indices µ by multiplying equation (1.35) with gµγ , we have

Rµνλδ = gµγR
γ
νλδ =

1
2
(gµδ,νλ − gµλ,νδ + gνλ,µδ − gνδ,µλ). (1.2.6)

In this form it is easy to verify the following identities:

Rµνλδ = −Rνµλδ = −Rµνδλ = Rλδµν , (1.2.7)

and

Rµνλδ +Rµδνλ +Rµλδν = 0. (1.2.8)

From equation (1.37) it is clear that Rµνλδ is antisymmetric in both the first and the

second pair of indices and symmetric in exchange of the two pairs. Equations (1.37) and

(1.38) are tensor equations. Therefore if they are true in one coordinate system, they are

true in all coordinate systems.

1.3 Bianchi Identities: Ricci and Einstein Tensors

Bianchi Identities. Differentiating equation (1.31) with respect to xα and evaluating

the result in locally inertial coordinates, we have

Rµνλδ,α =
1
2
(gµδ,νλα − gµλ,νδα + gνλ,µδα − gνδ,µλα). (1.3.1)
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Using the symmetry of gµν and the fact that partial derivative commute, it is easy to show

that

Rµνλδ,α +Rµναλ,δ +Rµνδα,λ = 0. (1.3.2)

Since equation (1.40) is a valid tensor equation and is true in one coordinate system, it is

true in all coordinate systems, i.e.,

Rµνλδ;α +Rµναλ;δ +Rµνδα;λ = 0. (1.3.3)

the results in equation (1.41) are called the Bianchi identities [13].

The Ricci tensor. In order to discuss the consequences of the Bianchi identities, we first

need to define the Ricci tensor Rµν :

Rµν = Rλ
µλν = Rνµ. (1.3.4)

It is the contraction of Rλ
µδν on the first and third indices. Other contractions would in

principle also be possible: on the first and second, the first and fourth, etc, but because

Rµνδλ is antisymmetric in µ and ν and in δ and λ, all these contractions either vanish

identically or reduce to ±Rµν . Therefore the Ricci tensor is the only independent contrac-

tion of the Riemann tensor.

Ricci scalar. Contracting Rµν with gµν , we have

R = gµνRµν . (1.3.5)

This scalar R is known as the Ricci scalar. Notice that Rµ
νλδ = 0 implies that Rµν = 0

yielding R = 0, but the inverse may not be true in general.

The Einstein tensor. Contracting the Bianchi identities given in equation (1.41), we

have

gµλ(Rµνλδ;α +Rµναλ;δ +Rµνδα;λ) = 0,

or

Rνδ;α −Rνα;δ +Rλ
νδα;λ = 0. (1.3.6)
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To derive this result we use the following facts. First gδλ;µ = 0, since gδλ is a function

only of gδλ, it follows that gδλ
;µ = 0. Therefore gδµ and gλν can be taken in and out of

covariant derivatives. Equation (1.44) is called the contracted Bianchi identities. A more

useful equation is obtaine by contracting again on the indices ν and δ, we have

gνδ[Rνδ;α −Rνα;δ +Rλ
νδα;λ] = 0,

or

R;α −Rλ
α;λ −Rλ

α;λ = 0. (1.3.7)

Again the antisymmetry of R has been used to get the correct sign in the last term. Now

equation (1.45) can be written in the form

(Rλ
α −

1
2
δλ

αR);λ = 0,

(gδαRλ
α −

1
2
gδαδλ

αR);λ = 0,

(Rδλ − 1
2
gδλR);λ = 0, (1.3.8)

These are the twice contracted Bianchi identities. If we define the symmetric tensor

Gαβ = Rαβ − 1
2
gαβR, (1.3.9)

then we see that equation (1.46) is equivalent to

Gαβ
;β = 0. (1.3.10)

The tensor Gαβ is obtained from the Riemann tensor and the metric, and is automatically

divergence free as an identity. It is called the Einstein tensor and its importance for gravity

was first understood by Einstein.

1.4 Energy-Momentum Tensor

The energy momentum tensor, Tµν , is a tensor which describes the matter and energy

contents of a spacetime. The components of energy-momentum tensor can be described

as follows [13]:
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1. T 00 represents the energy or mass density

2. T 0i is the energy flux

3. T i0 is the momentum density

4. T ij is the momentum flux

5. T ii represent the pressure.

The conservation of energy momentum tensor yields

∇νT
µν = 0. (1.4.1)

In a locally inertial frame, this equation reduces to

Tµν
,ν = 0. (1.4.2)

1.5 The Einstein Field Equations

The Einstein field equations (EFEs) are basically a relationship between the geometry of

spacetime and the distribution of matter. These equations are obtained [13] by varying

the Einstein-Hilbert action with respect to the metric tensor and are given as

Gµν = κTµν , (1.5.1)

where Gµν is the Einstein tensor which is symmetric i.e., Gµν = Gνµ, Tµν is the energy-

momentum tensor which can be thought of as the source for the gravitational field. It

is a divergenceless tensor due to Bianchi Identities. The coupling constant κ, written in

arbitrary units is 8πG/c4, while it reduces to 8π in natural units (c = G = 1). The

complete form of Einstein field equations contain an extra term called the cosmological

constant denoted by Λ. Its value was found to be extremely small. This constant Λ is

responsible for the present accelerated expansion of the Universe. Thus the Einstein field

equations with cosmological constant, Λ, can be written as

Rµν −
1
2
gµνR+ Λgµν = κTµν . (1.5.2)
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The right hand side of equation (1.52) gives information about the matter distribution

while the left hand side represents the geometry of the spacetime. The Einstein field

equations are a system of second order, non-linear partial differential equations in the

metric tensor.

The significance of the cosmological constant appears mostly in the context of cosmol-

ogy in which one studies the fate of the Universe. The cosmological constant will appear

again when we discuss the BTZ black hole in chapter 2.

1.6 Energy Momentum Conservation

The law of conservation of energy-momentum states that the total flux of energy momen-

tum into a four dimensional region Ω is zero, i.e.,

∫
∂Ω
Tµνnνdσ = 0, (1.6.1)

where ∂Ω is the boundary of Ω and nν is the outward normal vector to ∂Ω. From Gauss’s

divergence theorem we obtain

∫
Ω
Tµν

;ν

√
−gd4x = 0, (1.6.2)

for an arbitrary region Ω. Hence, the local formulation of the law of energy momentum

conservation has the form

Tµν
;ν = 0. (1.6.3)

Here the time component describes conservation of energy and the space components

represent the conservation of momentum.

1.7 Perfect Fluid

A fluid is defined as [13] “a special kind of continuum in which the collection of particles

is so large that the dynamics of individual particle can not be followed, leaving only

the description of the collection interms of average quantities”. The average quantities
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are the number of particles per unit volume, density of momentum, density of pressure,

temperature, pressure, etc. The behavior of a lake of water does not depend upon a single

particle, but it mainly depends on the average properties of a large collection of particles.

The above mentioned properties change from point to point in a lake of water. For

example, the pressure at the bottom of a lake is greater than at the top. The temperature,

pressure, etc may also change from point to point in the lake. A question arises that,

how large a collection of particles to average over, this collection must be clearly large

enough so that the single particles do not matter, but it must be small enough so that it is

relatively homogeneous: the kinetic energy, interparticle spacing and the average velocity

must be the same every where in the collection and this collection is called an element.

A fluid can also be defined as “a continuum that flows”. As we know that most of

the solids flow under high temperature and pressure, so this definition is not very precise,

because the division between fluid and solid is not very well defined. What makes a

substance rigid? The rigidity of a substance comes from the forces parallel to the interface

between two adjacent elements.

A perfect fluid is defined as “a fluid that has no viscosity and no heat conduction”.

It is the generalization of the ideal gas of ordinary thermodynamics. The two restrictions

(no viscosity and no heat conduction) in the definition of perfect fluid has many properties

which we will discuss in detail. Viscosity is a force which is parallel to the interface between

particles, the absence of this force means that the force should always be perpendicular to

the interface. This condition makes the perfect fluid a continuum that can flow. Another

interesting property of a perfect fluid which makes it distinguished from other fluids is the

‘no heat conduction’. A fluid is able to exchange energy with its surrounding in only two

ways: by heat conduction and by work (doing an amount of work). If there is no heat

conduction then the perfect fluid can only exchange energy with its surrounding by doing
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work. The energy momentum tensor for a perfect fluid is

Tµν = (ρ+ p)uµuν + pgµν , (1.7.1)

where ρ is the energy density, p is the pressure and uµ is the four velocity vector of the

fluid.

1.8 Dark Energy

Dark energy is the most popular way to explain recent observations that the Universe

appears to be expanding at an accelerated rate. The exact nature of dark energy is a

matter of speculation. It is known to be homogeneous, not very dense and is not known

to interact through any of the fundamental forces other than gravity. Since it is not very

dense, roughly 10−29 grams per cubic centimeter, it is hard to imagine experiments to

detect it in the laboratory. Dark energy is supposed to have a strong negative pressure in

order to explain the observed acceleration in the expansion rate of the Universe.

The theory of GR has resolved many problems since its birth. There are still issues

which need attention for their solution. For example, there are some problems in astro-

physics and cosmology like the issue of dark energy and dark matter where we experience

several theoretical difficulties. It has been found that 97 percent energy of the Universe

consist of dark energy and dark matter (73 percent dark energy and 24 percent dark

matter) [12].

In the frame work of GR, the positive accelerated expansion of the Universe means

that, at present our Universe is dominated by a mysterious component called the dark

energy [14], the component with a positive density ρ > 0 and with a negative pressure

p < −1
3ρ. This dark energy may be in the form of vacuum energy (cosmological constant

Λ) with p = −ρ or a dynamical evolving scalar field with a negative pressure. One of

the peculiar features of the cosmological dark energy is a possibility of the Big Rip [4],

the infinite expansion of the Universe in a finite time. The Big Rip scenario is realized
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if a dark energy is in the form of the phantom energy with (ρ + p) < 0. In this case the

cosmological phantom energy density grows at large times and disrupts finally all object

upto subatomic scale.

1.9 Phantom Energy

Phantom energy is a hypothetical form of dark energy which possesses strong negative

pressure. We shall consider the simplest case where the energy is given by a real scalar

field ϕ with Lagrangian density [15]

L =
−χ
2

∂ϕ

∂xµ

∂ϕ

∂xµ
− V (ϕ). (1.9.1)

In the above equation the first term represents the kinetic energy and the second term

V (ϕ), represents the potential energy. χ = −1 corresponds to the phantom energy while

χ = +1 represent the standard scalar field called quintessence field. Considering the perfect

fluid energy momentum tensor, the above Lagrangian gives the following expressions for

the energy density and the pressure respectively:

ρ =
l

2
ϕ̇2 + V (ϕ), (1.9.2)

and

p =
l

2
ϕ̇2 − V (ϕ). (1.9.3)

From equations (1.58) and (1.59), we have

ρ+ p = lϕ̇2. (1.9.4)

It is clear from equation (1.60) that, for χ = −1, ρ+ p < 0, so it results in the violation of

the Null energy condition (ρ + p) > 0. The most striking property of phantom energy is

that its energy density varies as some power of the scale factor a(t) [16] and hence grows

as the Universe expands, i.e.,

ρ ∝ a3|1+ω|, ω < −1, (1.9.5)
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which is quite unlike the behavior of normal matter whose density decreases with the

growth of the Universe. Thus phantom energy causes a future singularity commonly called

the ‘Big Rip’. At this singularity, the energy density of the phantom energy will become

infinite and the scale factor reaches infinity in a finite time [17]. Near this singularity,

everything is pulled apart and converted into the subparticles. The phantom energy will

destroy first the galactic clusters, then galaxies, solar system, atoms and nuclei. Eventually

at the Big Rip, even the very fabric of spacetime will be pulled apart.



Chapter 2

Some Black Hole Solutions

2.1 Introduction

The idea of a black hole is fairly old. John Michell and Laplace at the end of the eighteenth

century showed that light cannot escape from an object more compact than a radius less

than 2GM (with c = 1). This radius is now called the Schwarzschild radius Rs. A particle

of mass m moving with velocity v has its kinetic energy T = mv2/2. This particle cannot

escape from an object with massM only if its kinetic energymv2/2 is less than the absolute

value of the potential energy GMm/R. If we take v = c, than one can get easily from this

condition the limit on the size of the object M from which nothing can escape. Later in

1916, Carl Schwarzschild was able to solve the Einstein field equation in the vacuum for

uncharged spherical systems. His solution known as the Schwarzschild solution, represent

the simplest black hole type called the Schwarzschild black hole which is determined by a

single parameter only, namely its mass M .

The physics of black holes is largely based on Einstein’s general theory of relativity,

which is a theory of gravitation. Relativity is a geometrical theory because the mathe-

matical study of spacetime, whether curved or flat, is geometry (it can simply be said

that in Special Relativity (SR) we deal with the Euclidean geometry, which is a geometry

of flat spacetime, whereas in GR we deal with the non-Euclidean geometry which is the

Riemannian spacetime). There is no doubt that GR is one of the most successful physical

21
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theories (of course it cannot tell everything about the universe) owing to its predictions

that have been confirmed by a number of experimental tests [18].

2.2 Black Hole

The pressure supporting a star comes from the heat produced by fusion of light nuclei

into heavier ones. When nuclear fuel is used up, the temperature at the core of the star

decreases and the star begins to collapse under the influence of gravity. This collapse may

suddenly be stopped due to Fermi degeneracy pressure: the electrons are bring so close

to each other that they resist further collapsing. A star supported by Fermi degeneracy

pressure is called a white dwarf. White dwarfs are found throughout the Universe and are

the end state for most stars

If the total mass of a star is sufficiently high, it will reach the Chandrasekhar limit

(1.5Ms, where Ms = 1.2×1033g is the mass of the Sun), where even the Fermi degeneracy

pressure is not high enough to resist the gravitational pull. At this limit, the star is

forced to collapse into a smaller radius and the electrons combine with protons to produce

neutrons and neutrinos. The neutrinos simply fly away and the core of the star becomes

rich with neutrons. Such a type of star is called a neutron star [19].

The conditions at the core of a neutron star are very different from those of the earth.

The massive neutron stars will itself be unable to resist the gravitational pull and will

continue to collapse; current estimates of the maximum possible neutron star mass are

around 3 − 4Ms. Since a fluid of neutrons is the densest material we know about, it is

believed that the outcome of such a star is a black hole.

A black hole is a region of spacetime, where gravity is so strong that nothing including

light can escape from it. A black hole is formed when a star of mass M contracts to a

size less then r = 2GM
c2

. A star with mass at least 3.2 times the mass of our sun, reduces

to such a small size when it runs out of its hydrogen and other nuclear fuel. It gets cold
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and will shrink to an infinitely small, infinitely dense, hypothetical point which is called

a singularity. Its surface gravity becomes so strong that it sucks everything into it that is

in the range of r = 2GM
c2

, including light.

How would we know if there was a black hole? Black holes have strong gravitational

fields, so one can detect them indirectly by observing matter being influenced by these

fields. When matter falls into a black hole, it will accelerate and heat up due to which

the matter emits X-rays, which one can easily detect with satellite observatories. A large

number of black hole candidates have been detected by this method and the probability

of the existence of real black holes in our universe is very large [20]. The large majority

of candidates fall into one of the two classes. There are black holes having masses of the

order of solar mass or somewhat higher. The other category describes suppermassive black

holes, with masses between 106 and 109 solar masses, which are found at the centers of

galaxies. Our own Milky Way galaxy contains an object that is believed to be a black hole

of at least 2× 106Ms.

2.3 The Schwarzschild Black Hole

Einstein in 1915 published his theory of GR, a new theory of gravitation that made funda-

mental predictions on the effect of gravity on light. A few months after the publication of

Einstein’s GR, Carl Schwarzschild solved the Einstein field equations by assuming a sta-

tic and spherically symmetric geometry, obtaining what is now called the Schwarzschild

solution.

The Newtonian potential around a point mass situated at the origin in its own rest

frame is spherically symmetric. Also for objects like stars and planets the same is true

to lowest order. Exterior to such objects there is a static, spherically symmetric space.

Motivated by this we study spherically symmetric solutions to the Einstein field equation

for empty space.



CHAPTER 2. SOME BLACK HOLE SOLUTIONS 24

The geometry of a spherically symmetric vacuum, i.e., vacuum spacetime outside the

spherical black hole is the Schwarzschild geometry describable in terms of the Schwarzschild

metric

ds2 = −(1− 2GM/r)dt2 + (1− 2GM/r)−1dr2 + r2(dθ2 + sin2 θdϕ2). (2.3.1)

The Schwarzschild metric is asymptotically flat, that is, for large r

ds2 ≈ −(1− 2GM/r)dt2 + (1 + 2GM/r)dr2 + r2(dθ2 + sin2 θdϕ2). (2.3.2)

It is clear from equation (2.1), that the metric coefficients gtt and grr become infinite at

r = 0 and r = 2GM respectively. These are called singularities: the values of coordinates

at a given point where the matric ds2 become undefined [19]. What type of singularities

these are? In order to check whether a singularity is a physical singularity or a coordinate

singularity, we check a simple criterion. As we see that the metric coefficients are coor-

Figure 2.1: In Schwarzschild coordinates, light cones appear to close up as we approach

r = 2GM . This trajectory is given by solving the Schwarzschild metric ds2 = 0 (null

geodesic) with dθ2 + sin2 θdϕ2 = 0.

dinate dependent, the curvature is measured by the Riemann curvature tensor. Thus it

is difficult to say when this tensor becomes infinite, since its components are coordinate

dependent. But from Riemann curvature tensor we can construct various scalar quantities
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and since scalars are coordinate independent it is meaningful to say that they become

infinite. The simplest such scalars are R = gλδRλδ, RλδRλδ, RλδµνRλδµν and so on. If any

of these scalars goes to infinity at a given point, we say that the point is a singularity of

the curvature otherwise not. In the case of Schwarzschild metric (2.1), direct calculation

of ‘Kretschmann’s curvature scalar’ reveals that

RλδµνRλδµν =
48G2M2

r6
. (2.3.3)

The curvature scalar (2.3) become infinite at r = 0, so r = 0 is a physical (curvature)

singularity, whereas r = 2GM is a coordinate singularity, i.e., this singularity appears due

to the bad selection of coordinate. The singularity at r = 2GM is however removable

by choosing appropriate coordinates like the Kruskal-Szekeres coordinates found in 1960,

which represents the spacetime more appropriately. The Kruskal-Szekeres coordinates are

v =
( r

2GM
− 1
)1/2

er/4GM sinh(
t

4GM
), (2.3.4)

and

u =
( r

2GM
− 1
)1/2

er/4GM cosh(
t

4GM
). (2.3.5)

Using these coordinates, the metric in equation (2.1) becomes

ds2 =
32G3M3

r
e−r/2GM (−dv2 + du2) + r2(dθ2 + sin2 θdϕ2), (2.3.6)

where, now, r is not to be regarded as a coordinate but as a function of u and v, given

implicitly by the inverse of equations (2.4) and (2.5):

( r

2GM
− 1
)
er/2GM = u2 − v2. (2.3.7)

From equation (2.6), it is clear that, there is nothing singular about any metric coefficient

at r = 2GM . There is, however, a singularity at r = 0, where we expect it. Hence the

coordinate singularity at r = 2GM is removed by using Kruskal-Szekeres coordinates.
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Figure 2.2: The Schwarzschild black hole in the Kruskal-Szekeres coordinates have no

“coordinate singularity”, hence represents the real spacetime where r = 0 is the singularity

which is represented by the broken thick line in the figure.

2.4 General Relativity in (2+1)-Dimensions

For many purposes especially in the field of quantum gravity, a particularly useful model

is general relativity in three (spacetime) dimensions. Work on (2+1)-dimensional gravity

dates back at least to 1963, and occasional articles appeared over the next twenty years [21].

But credit for the recent growth of interest should probably go to Deser, Jackiw, and t’

Hooft [22], who examined the classical and quantum dynamics of point sources.

Let us begin by examining the reasons for the simplicity of general relativity in 2+1

dimensions. The Einstein-Hilbert action in three spacetime dimensions becomes

I =
1
2π

∫
S
d3x

√
−g(R− 2Λ) + Im, (2.4.1)

where Im represents the matter part of the action, the units are chosen such that 8G = 1.

The resulting Euler-Lagrange equations are the standard Einstein field equations in (2+1)-

dimensions

Rµν −
1
2
gµνR+ Λgµν = πTµν . (2.4.2)



CHAPTER 2. SOME BLACK HOLE SOLUTIONS 27

In any spacetime, the Riemann curvature tensor may be decomposed into a curvature

scalar R, a Ricci tensor Rµν , and a remaining trace-free Weyl tensor Cσ
µνρ, i.e., in n-

dimensions with n ≥ 3, the Riemann curvature tensor can be written as follows

Rµνρσ = Cµνρσ +
2

n− 2
(gµ[ρRσ]ν − gν[ρRσ]µ)− 2

(n− 1)(n− 2)
Rgµ[ρgσ]ν . (2.4.3)

In 2+1 dimensions, however, the Weyl tensor vanishes identically [23], and the full curva-

ture tensor is determined algebraically by the curvature scalar and the Ricci tensor

Rµνρσ = gµρRνσ + gνσRµρ − gνρRµσ − gµσRνρ −
1
2
(gµρgνσ − gµσgνρ)R. (2.4.4)

There is no surprise since the number of independent components of Rµνρσ and Rµν are,

respectively n2(n2−1)
12 and n(n+1)

2 in n-dimensions and are both equal to 6 when n = 3. Thus

the fundamental physical difference between general relativity in 2+1 and 3+1 dimensions

originates from the fact that the curvature tensor in 2+1 dimensions depends linearly on

the Ricci tensor. In particular, this implies that any solution of the vacuum Einstein field

equations is flat, and that any solution of the field equations with a cosmological constant,

Rµν = 2Λgµν , (2.4.5)

has constant curvature.

2.5 The (2+1)-Dimensional BTZ Black Hole

Maximo Banados, Claudio Teitelboim and Jorge Zanelli discovered, in 1992, the black hole

solution of Einstein’s equation with a negative cosmological constant, in 2+1 dimensions

[24]. This discovery was rather surprising as there was no speculation that there would

exist a black hole solution in 2+1 dimensions at that time. The BTZ black hole is known

as a simple toy model for a number of studies including the string and supergravity theory.

The cosmological constant, Λ is written as −1/l2 in the BTZ black hole’s metric which

reads:

ds2 = −N(r)dt2 +N−1(r)dr2 + r2(dϕ− J

2r2
dt)2, (2.5.1)
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where the lapse function is given by

N(r) = −M +
r2

l2
+
J2

4r2
(2.5.2)

with −∞ < t < +∞, 0 < r < +∞ and 0 ≤ ϕ ≤ 2π. In equation (2.13), M is the mass

and J is the angular momentum of the BTZ black hole. The lapse function N(r) vanishes

for two values of the radial coordinate r given by

r2± =
l2

2

[
M ±

√
M2 − J2

l2

]
. (2.5.3)

The larger root, r+, is the event horizon of the BTZ black hole. It is evident that in order

for the horizon to exist one must have

M > 0, |J | ≤Ml. (2.5.4)

Therefore, negative black hole masses are excluded from the physical spectrum. There

is, however, an important exceptional case. When one sets M = −1 and J = 0, the

singularity, i.e., r = 0, disappears. There is neither a horizon nor a singularity to hide.

For the special case of spinless (J = 0) BTZ black hole, the line element (2.13) takes

the simple form

ds2 = −N(r)dt2 +N−1(r)dr2 + r2dϕ2, (2.5.5)

where the lapse function is now given by

N(r) = −M +
r2

l2
. (2.5.6)

In this specific case, the lapse function also vanishes for two values of r given by

r± = ±l
√
M. (2.5.7)

The rotating BTZ black hole with the incorporation of the charge Q, i.e., charged rotating

BTZ (CR-BTZ) black hole solution is given by [25]

ds2 = −N(r)dt2 +N−1(r)dr2 + r2(dϕ− J

2r2
dt)2, (2.5.8)
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Figure 2.3: The 2+1 dimensional BTZ black hole. This black hole can be visualized as a

circular disc with spin J. Its event horizon depends on its mass.

with lapse function given by

N(r) = −M +
r2

l2
+
J2

4r2
− π

2
Q2 ln r. (2.5.9)



Chapter 3

Phantom Energy Accreting BTZ

Black Hole

3.1 Introduction

Over the past decade, (2+1)-dimensional gravity has become an active field of research,

drawing insights from general relativity, differential geometry and topology, high energy

particle physics, field theory and string theory. Interest in (2+1)-dimensional gravity -

general relativity in two spatial dimensions plus time - dates back at least to 1963, when

Staruszkiewicz first showed that point particles in a (2+1)-dimensional spacetime could

be given a simple and elegant geometrical description [26]. Over the next twenty years,

occasional papers on classical [27] and quantum mechanical [28] aspects appeared, but

until recently the subject remained largely a curiosity.

In this chapter, we first review the accretion of phantom energy onto a static non-

rotating (2+1)-dimensional BTZ black hole discussed in [11]. After this review, we will

discuss the accretion of phantom energy onto a rotating (2+1)-dimensional BTZ black

hole. We investigate the accretion of phantom energy onto a static non-rotating (2+1)-

dimensional BTZ black hole. It is obvious that the usual spacetime has three spatial

dimensions, so the BTZ black hole is merely a mathematical construct. In the present

chapter, we are interested in understanding how the accretion of phantom energy will

30
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effect a lower dimensional black hole. The expression for the evolution of non-rotating

BTZ black hole mass is independent of its mass and depends only on the energy density

and pressure of the phantom energy, although the mass decreases due to accretion. We

are also interested in understanding how the accretion of phantom energy will effect the

rotating BTZ black hole. We will show that the expression of the evolution of rotating

BTZ black hole mass depends not only on the energy density and pressure of the phantom

energy but also on the mass of the rotating BTZ black hole.

3.2 Model of Accretion for Non-Rotating BTZ Black Hole

In this section, we review the model of accretion for a (2+1)-dimensional non-rotating

BTZ black hole discussed in [11]. The Einstein field equations for a (2+1)-dimensional

spacetime with a negative cosmological constant, Λ = − 1
l2

, is

Rab −
1
2
Rgab −

1
l2
gab = πTab, a, b = 0, 1, 2, (3.2.1)

where Rab is the Ricci tensor in (2+1)-dimensions, R is the Ricci scalar and Tab is the

stress energy tensor of the matter field. The units are chosen such that c = 1 and 8G = 1.

Consider the vacuum stress energy tensor for which the Einstein field equations has the

solution of a (2+1)-dimensional BTZ black hole metric [24]

ds2 = −N(r)dt2 +
1

N(r)
dr2 + r2dφ2, (3.2.2)

where N(r) = −M + r2/l2 is the lapse function, M is the dimensionless mass of the BTZ

black hole and l2 = −1/Λ is a positive constant. The event horizon of the BTZ black hole

is obtained by setting N(r) = 0, which yields

r± = ±l
√
M, (3.2.3)

where r+ = l
√
M is the outer horizon and r− = −l

√
M is the inner horizon of the (2+1)-

dimensional non-rotating BTZ black hole. Now the metric tensor and its inverse have the
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components

gab =



−N(r) 0 0

0 1
N(r) 0

0 0 r2


, (3.2.4)

gab =



− 1
N(r) 0 0

0 N(r) 0

0 0 r−2


. (3.2.5)

Also we have
√
|g| = r, where g is the determinant of the metric gab. Considering the

phantom energy to be a perfect fluid with the energy momentum tensor

T ab = (ρ+ p)uaub + pgab, (3.2.6)

where ρ is the energy density and p is the pressure of the phantom energy while ua =

(u0, u1, 0) is the three vector velocity of the fluid flow. Considering u1 = u, which is the

radial component of velocity of the flow while the third component of the three vector ve-

locity is zero because of the spherical symmetry of the BTZ black hole. The normalization

condition of the three vector velocity is

gabu
aub = −1,

or

g00(u0)2 + g11u
2 = −1. (3.2.7)

The solution of equation (3.7) is

u0 = ±
√
N(r) + u2

N(r)
. (3.2.8)

The metric gab can be used to raise and lower the indices, i.e., u0 = g00u
0, which yields

u0 = ∓
√
N(r) + u2. (3.2.9)
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In order to discuss the accretion dynamics of phantom energy onto a (2+1)-dimensional

non-rotating BTZ black hole one can employ the formalism from the work of Babichev

et al. [9]. The accretion phenomenon mainly depends on two important conservation

equations, one which controls the energy flux T 0a
;a = 0 across the event horizon and the

other that controls the conservation of mass flux Ja
;a = 0, where Ja is the current density

whose components are (ρu0, ρu, 0) . Since the black hole is stationary, the only component

of stress energy tensor of interest is T 01. Thus from the equation of energy conservation

T 0a
;a = 0, one gets

T 01
,1

T 01
+
N ′(r)
N(r)

+
1
r

= 0, (3.2.10)

where “, 1” represent partial derivative with respect to the radial coordinate. Integrating

equation (3.10), gives

ln |T 01|+ ln |N(r)|+ ln |r| = C0,

or

|rN(r)T 01| = eC0 ,

or

rN(r)(ρ+ p)u0u = ±C1, (3.2.11)

where C1 = eC0 is a positive constant of integration. Substituting equation (3.8) in (3.11),

gives

±
(
ur(ρ+ p)

√
N(r) + u2

)
= ±C1. (3.2.12)

Since for the inward flow u < 0. Also for phantom energy (ρ + p) < 0. On the left

hand side of equation (3.12), the quantity inside the brackets is positive. Hence we take

u0 =
√

N(r)+u2

N(r) and u0 = −
√
N(r) + u2, therefore

ur(ρ+ p)
√
N(r) + u2 = C1. (3.2.13)
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In order to find the second integral of motion one can use the energy momentum conser-

vation along the velocity three vector (the energy flux equation)

uaT
ab

;b = 0. (3.2.14)

Assume phantom energy to be a perfect fluid for which the conservation law becomes [?].

ubρ,b + (ρ+ p)ub
;b = 0. (3.2.15)

Simplifying equation (3.15), gives

ρ,1

ρ+ p
+
u,1

u
+

1
r

= 0.

Integrating this equation, yields ∫ ρh

ρ∞

dρ

ρ+ p
+ ln |ur| = A

or

ur exp

[∫ ρh

ρ∞

dρ

ρ+ p

]
= ±eA, (3.2.16)

since u < 0, while all other quantities on the left hand side of equation (3.16) are positive,

this equation holds only if one take negative sign on the right hand side, i.e.,

ur exp

[∫ ρh

ρ∞

dρ

ρ+ p

]
= −A1, (3.2.17)

where A1 = eA is the positive constant of integration. Also ρh and ρ∞ are the energy

densities of the phantom energy at the BTZ black hole horizon and at infinity respectively.

Using equation (3.17) in equation (3.13), gives

(ρ+ p)
√
N(r) + u2 exp

[
−
∫ ρh

ρ∞

dρ

ρ+ p

]
= C2, (3.2.18)

where C2 = −C1/A1 = ρ∞ + p∞. In order to calculate the rate of change of mass of BTZ

black hole Ṁ , we integrate the flux of phantom energy over the entire BTZ black hole

horizon to get

Ṁ =
∮
T 1

0dS. (3.2.19)
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Here T 1
0 determines the energy flux in the radial direction only and dS =

√
−gdϕ is the

infinitesimal surface element of the BTZ black hole horizon. Equation (3.19) gives

Ṁ = 2πrT 1
0 . (3.2.20)

Since T 1
0 = −(ρ+ p)u

√
N(r) + u2, thus equation (3.20), becomes

Ṁ = −2πur(ρ+ p)
√
N(r) + u2. (3.2.21)

Substituting equations (3.17) and (3.18) in equation (3.21), we have

dM = 2πA1(ρ∞ + p∞)dt. (3.2.22)

It follows from equation (3.22) that the mass of a (2+1)-dimensional non-rotating BTZ

black hole decreases as it accretes the phantom energy (because all the parameters are

positive except (ρ+ p) which is negative). In particular, this implies that the BTZ black

hole mass in the Universe filled with phantom energy must decrease. Moreover, equation

(3.22) is independent of mass contrary to the case of Schwarzschild black hole [9]. The

physical reason of the decrease in the black hole mass is as follows: The phantom energy

falls on the black hole, but the energy flux associated with this fall is directed away from

the black hole. Further, equation (3.22) is valid for any general ρ and p violating the null

energy condition, thus one can write

dM = 2πA1(ρ+ p)dt. (3.2.23)

3.2.1 Critical Accretion for Non-Rotating BTZ Black Hole

In this section, we review critical accretion for non-rotating BTZ black hole discussed

in [11]. In order to evaluate the critical point of accretion, one can find out those solutions

which pass through the critical point. Such solution correspond to the material falling into

the black hole with monotonically increasing speed. Near the critical point of accretion,

the falling fluid can exhibit a variety of behaviors, close to the compact object. The



CHAPTER 3. PHANTOM ENERGY ACCRETING BTZ BLACK HOLE 36

continuity equation or the equation of mass flux is

Ja
;a = 0, (3.2.24)

where Ja is called the current density and has components Ja = (ρu0, ρu, 0). Equation

(3.24) after solving gives

ρur = K1, (3.2.25)

where K1 is a constant of integration. Using equation (3.25) in equation (3.13) and

squaring, we get (
ρ+ p

ρ

)2(
−M +

r2

l2
+ u2

)
= C3, (3.2.26)

where C3 = (C1/K1)2. Taking differential of equation (3.25) and (3.26), we get

dρ

ρ
= −du

u
− dr

r
, (3.2.27)

and

v2dρ

ρ
+

r2/l2

N(r) + u2

dr

r
+

u2

N(r) + u2

du

u
= 0, (3.2.28)

respectively, where

v2 =
d ln(ρ+ p)

dρ
− 1. (3.2.29)

Now eliminating dρ/ρ from equations (3.27) and (3.28), one gets[
−v2 +

u2

N(r) + u2

]
du

u
+
[
−v2 +

r2/l2

N(r) + u2

]
dr

r
= 0. (3.2.30)

Equation (3.30) is the general equation which can be used to get the critical speed of flow

for the phantom energy. It is clear from equation (3.30) that if one or the other bracket

factor is zero , one gets a turn-around point corresponding to double valued solution in

either r or u. We are interested only in those solutions that passes through the critical

point, such solutions will correspond to material falling into the black hole. In order to

get the critical point we take both the bracket factors in equation (3.30) to be equal to

zero, this will gives the critical points of accretion

v2
c =

r2c/l
2

N(rc) + u2
c

, (3.2.31)
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and

v2
c =

u2
c

N(rc) + u2
c

, (3.2.32)

here the subscript c refer to the critical quantities. Comparing equations (3.31) and (3.32),

one can easily get

u2
c =

r2c
l2
, (3.2.33)

and

v2
c =

u2
c

−M + 2u2
c

. (3.2.34)

Here the quantity uc represents the critical speed of flow at the critical points which are

to be determined below. For physically acceptable solution, we require v2
c > 0, hence we

get the following restriction on speed and location of critical points

u2
c >

M

2
, (3.2.35)

and

r2c >
r2+
2
. (3.2.36)

3.3 Model of Accretion for Rotating BTZ Black Hole

The accretion would be much more interesting when an additional parameter like angular

momentum is also incorporated in the BTZ black hole spacetime. In this section, we

extended the work of [11], discussed in section (3.2) for rotating BTZ black hole, by

studying the accretion of phantom energy onto a rotating BTZ black hole.

The axial symmetric rotating solution to the (2+1)-dimensional Einstein field equations

(3.1), is represented by the rotating BTZ black hole metric [24].

ds2 = −N(r)dt2 +
1

N(r)
dr2 + r2

(
dϕ− J

2r2
dt

)2

, (3.3.1)

where N(r) = −M + r2

l2
+ J2

4r2 is the lapse function and M is the dimensionless mass, while

J is the angular momentum of the rotating BTZ black hole. From equation (3.35), we can
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write

gab =



−N(r) + J2

4r2 0 −1
2J

0 1
N(r) 0

−1
2J 0 r2


, (3.3.2)

and

gab =



−1
N(r) 0 −J

2r2N(r)

0 N(r) 0

−J
2r2N(r)

0 4r2N(r)−J2

4r4N(r)


. (3.3.3)

The outer event horizon of the rotating BTZ black hole is obtained by setting N(r) = 0,

which gives

re = l

M
2

1 +

(
1−

(
J

Ml

)2
)1/2


1/2

. (3.3.4)

Note that
√
|g| = r, where g is the determinant of gab. In order to discuss the accretion

dynamics of phantom energy onto the rotating BTZ black hole we follow the formalism

from the work of M. Jamil and M. Akbar [11]. We consider the phantom energy to be a

perfect fluid for which the energy momentum tensor is

T ab = (ρ+ p)uaub + pgab, (3.3.5)

where ρ and p are the energy density and pressure of the phantom energy respectively,

while ua = (u0, u1, 0) is the three vector velocity of the fluid with pressure p = p(r) and

energy density ρ = ρ(r). The normalization condition of the fluid velocity implies

gabu
aub = −1. (3.3.6)

We can write equation (3.42) in components form as

g00(u0)2 + g11(u1)2 = −1. (3.3.7)

Here we consider u1 = u, which is the radial component of velocity of the fluid flow

while, the third component of the three vector velocity u2 is zero because of the spherical
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symmetry of the rotating BTZ black hole. We solve equation (3.43) for u0, which after

substitution of g00 and g11 from the metric (3.38), gives

u0 =

√√√√ N(r) + u2

N(r)
(
N(r)− J2

4r2

) , (3.3.8)

and lowering the indices of the velocity component by multiplying equation (3.44) by g00,

we have

u0 = −
√
N(r)− J2

4r2

√
N(r) + u2

N(r)
. (3.3.9)

There are two important equations of conservation on which the accretion process mainly

depends, among which one is the energy flux equation T 0a
;a and the other is the conserva-

tion of mass flux equation Ja
;a, where Ja is the current density of the fluid. Since the black

hole is stationary, from the energy flux conservation equation T 0a
;a, one gets the equation

of conservation

T 01
,1

T 01
+
N ′(r)
N(r)

+
1
r

+
J2

2r3N(r)
= 0, (3.3.10)

where “, 1” represent the partial derivative with respect to the radial coordinate r. Inte-

grating equation (3.46), we have

ln |T 01rN(r)|+ J2

2

∫
dr

r3N(r)
= lnC. (3.3.11)

Using T 01 = (ρ+ p)uu0 and the value of u0 and N(r) in equation (3.47), we have

ln

∣∣∣∣∣(ρ+ p)ur

√
N(r)(N(r) + u2)
N(r)− J2

4r2

∣∣∣∣∣+ J2

2

∫
dr

r
(

r4

l2
−Mr2 + J2

4

) = lnC. (3.3.12)

We first solve the integral on the left hand side of equation (3.48), which after simplification

gives ∫
dr

r( r4

l −Mr2 + J2

4 )

=
4
J2

ln |r|+

M −
√
M2 − J2

l2

J2
√
M2 − J2

l2

 ln

∣∣∣∣∣l2
(
M +

√
M2 − J2

l2
− 2r2

l2

)∣∣∣∣∣
−

M +
√
M2 − J2

l2

J2
√
M2 − J2

l2

 ln

∣∣∣∣∣l2
(

2r2

l2
−M +

√
M2 − J2

l2

)∣∣∣∣∣ .
(3.3.13)
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Using equation (3.49) in (3.48) and simplifying, we get

(ρ+ p)ur3
√
N(r) (N(r) + u2)

N(r)− J2

4r2


√
M2 − J2

l2
+ (M − 2r2

l2
)√

M2 − J2

l2
− (M − 2r2

l2
)


M

2

r
M2−J2

l2

×

1√
r2l2(M − r2

l2
)− J2l2

4

= C1,

(3.3.14)

where C1 = 2eC is the constant of integration. In order to find the second integral of

motion we use the energy momentum conservation along the three-vector velocity (the

energy flux equation)

uaT
ab

;b = 0. (3.3.15)

We consider the phantom energy to be a perfect fluid for which the conservation law

becomes

ρ,bu
b + (ρ+ p)ub

;b = 0, (3.3.16)

The solution of equation (3.52) is

ur exp

(∫ ρh

ρ∞

dρ

ρ+ p

)
= −A1, (3.3.17)

where A1 = eA is a positive constant of integration. Also ρh and ρ∞ are the energy density

of the phantom energy at BTZ black hole horizon and at infinity respectively. Substituting

equation (3.53) in (3.50), we have

(ρ+ p)r2 exp
[
−
∫ ρh

ρ∞

dρ

ρ+ p

]√
N(r)(N(r) + u2)
N(r)− J2

4r2

×


√
M2 − J2

l2
+ (M − 2r2

l2
)√

M2 − J2

l2
− (M − 2r2

l2
)


M

2

r
M2−J2

l2 1√
r2l2(M − r2

l2
)− J2l2

4

= C2,

(3.3.18)

where

C2 =
−C1

A1
= ρ∞ + p∞. (3.3.19)

The rate of change in the mass of rotating BTZ black hole is

Ṁ = 2πrT 1
0 . (3.3.20)



CHAPTER 3. PHANTOM ENERGY ACCRETING BTZ BLACK HOLE 41

The value of T 1
0 from the stress energy tensor is

T 1
0 = (ρ+ p)u

√
N(r) + u2

√
N(r)− J2

4r2

N(r)
. (3.3.21)

Using equation (3.53) along with (3.54), (3.55) and (3.57) in equation (3.56), we have

Ṁ = 2π
l

r
A1(ρ∞+p∞)


M − r2

l2

[−N(r)]

r
M2−J2

l2
+M

2

r
M2−J2

l2



(√

M2 − J2

l2
− (M − 2r2

l2
)
)2

4r2

l2


M

2

r
M2−J2

l2

.

(3.3.22)

By taking J = 0 in equation (3.58) one gets the result of the non-rotating BTZ black hole

(3.22). In equation (3.58), (ρ∞+p∞) < 0, so the mass of the rotating BTZ black hole must

decrease only if,

q
M2−J2

l2
+M

2
q

M2−J2

l2

= 2n, M > r2

l2
and M > J

l where n = 0,±1,±2, ...... Further

the last equation is valid for any general ρ and p violating the null energy condition, thus

we have

dM = 2π
l

r
A1(ρ+ p)


M − r2

l2

[−N(r)]

r
M2−J2

l2
+M

2

r
M2−J2

l2



(√

M2 − J2

l2
− (M − 2r2

l2
)
)2

4r2

l2


M

2

r
M2−J2

l2

dt.

(3.3.23)

3.3.1 Critical Accretion for Rotating BTZ Black Hole

Now we are in a position to evaluate the critical point of accretion. At the critical point

of accretion the phantom energy shows a variety of changes in their behaviors close to the

compact object. In order to observe these changes in the behavior of the phantom energy

we find out those solutions that pass through the critical point as these correspond to the

material falling into the black hole with monotonically increasing speed. The equation of

mass flux or the continuity equation is

Ja
;a = 0, (3.3.24)

where J is the current density. Simplifying equation (3.60), we have

ρur = C3, (3.3.25)



CHAPTER 3. PHANTOM ENERGY ACCRETING BTZ BLACK HOLE 42

where C3 is the constant of integration. Putting equation (3.61) in equation (3.50), we

have

(
ρ+ p

ρ

)2

r4
N(r)

(
N(r) + u2

)
N(r)− J2

4r2


√
M2 − J2

l2
+ (M − 2r2

l2
)√

M2 − J2

l2
− (M − 2r2

l2
)


Mr

M2−J2

l2

×

1
r2l2(M − r2

l2
)− J2l2

4

= C4,

(3.3.26)

where C4 = (C1
C3

)2. Taking the differential of equation (3.61) and (3.62) and eliminating

dρ
ρ , we get [

−v2 +
u2

N(r) + u2

]
du

u

+

[
−v2 +

r2

l2
− J2

4r2

N(r) + u2
− M

−M + r2

l2

+
M

f(r)

]
dr

r
= 0,

(3.3.27)

where

v2 =
d ln(ρ+ p)

dρ
− 1. (3.3.28)

It is clear from equation (3.63) that if one or the other bracket factor vanishes, we get

a turn-around point corresponding to double valued solution in either r or u. The only

solution that passes through the critical point of accretion is feasible. The feasible solutions

will correspond to the material falling into the black hole with monotonically increasing

velocity. In order to get the critical point of accretion we take both the bracket factors in

equation (3.63) equal to zero, this will give us the critical point of accretion as

v2
c =

r2
c

l2
− J2

4r2
c

N(rc) + u2
− M

−M + r2
c

l2

+
M

N(rc)
, (3.3.29)

and

v2
c =

u2
c

N(rc) + u2
c

, (3.3.30)

where the subscript c refers to the critical quantities. Comparing equation (3.65) and

(3.66), we have

u2
c =

r2c
l2

(−M + r2
c

l2
)2 − ( J2

4r2
c
)2

(−M + r2
c

l2
)2 + J2

4l2

 , (3.3.31)
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In equation (3.67) the quantity uc represents the critical speed of flow at the critical point.

Furthermore by taking J = 0 in equation (3.66) and (3.67), one gets the corresponding

results of the non-rotating BTZ black hole equations (3.34) and (3.33) respectively. For

physically acceptable solution, we require v2
c > 0. Hence we get the following restriction

on speed and location of critical points

u2
c > M − r2c

l2
− J2

4r2c
, (3.3.32)

and

r2c >
l2M

2
. (3.3.33)

Conditions (3.68) and (3.69) reduce to conditions (3.35) and (3.36) by taking J = 0.

3.4 Conclusion

The main objective of this dissertation was to study the accretion of phantom energy onto

a (2+1)-dimensional BTZ black hole. The motivation behind this work is to study the

accretion dynamics in low dimensional gravity.

In chapter 1, we discussed some definitions and basic equations. We also made the

background by discussing perfect fluid, dark energy, and phantom energy.

In the second chapter we discussed some black hole solutions, such as Schwarzschild

solution, (2+1)-dimensional BTZ black hole solution and the properties of these black hole

solutions.

Our main focus is chapter three, which consists of two major sections. In the first

section, we consider the effect of the phantom energy accretion onto a (2+1)-dimensional

non-rotating BTZ black hole, while in second section we discuss the effect of phantom

energy accretion onto a (2+1)-dimensional rotating BTZ black hole. In first section our

analysis has shown that the evolution of the non-rotating BTZ black hole mass dependent

only on the energy density and pressure of the phantom energy and is independent of mass

of the non-rotating BTZ black hole, the black hole mass decreases due to the accretion of
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phantom energy. The physical cause for the decrease in the black hole mass is as follows:

the phantom energy falls to the black hole, but the energy flux associated with this fall

is directed away from the back hole. We also discuss the critical accretion for phantom

energy and found the critical speed of flow.

The accretion would be much more interesting when additional parameters like charge

and angular momentum are also incorporated in the BTZ spacetime. So in second section

of chapter three we discuss the accretion of phantom energy by introducing the angular

momentum in the BTZ spacetime. We follow the same procedure as followed in the non-

rotating BTZ black hole case. By taking J = 0 all the results of the rotating BTZ black

hole convert to the results of non-rotating BTZ black hole. Our analysis has shown that

the evolution of the rotating BTZ black hole mass depends not only on the energy density

and pressure of the phantom energy but also on the mass of the rotating BTZ black hole.

In case of rotating BTZ black hole the mass will decrease only if,

q
M2−J2

l2
+M

2
q

M2−J2

l2

= 2n,

M > r2

l2
and M > J

l where n = 0,±1,±2, ...... We also discuss the critical accretion and

found the critical parameters.

3.5 Further Line of Work

In this dissertation, we focused on the accretion of phantom energy onto a non-rotating

and rotating BTZ black hole. It is also important to discuss the accretion of phantom

energy onto a charged rotating BTZ black hole. One can also investigate the thermody-

namic features of phantom energy accretion onto rotating BTZ black holes and charged

rotating BTZ black hole. It is important to verify whether the laws of thermodynamics

are respected in the processes under investigation. In particular, it is evident that the

second law of thermodynamics is violated, i.e., Ṡ < 0 due to violation of the null energy

condition. This suggests that we use the generalized second law of thermodynamics for

black holes accreting phantom energy, because generalized second law of thermodynamics
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holds in most cases.
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