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                                           Abstract 

 

Aim of the work is to engineer entanglement in cavity QED for quantum 

networks. We propose two schemes, first, to produce entanglement in atomic 

degrees of freedom using cavity QED techniques, and, second among cavities. 

In the first scheme, we pass two atoms, called tagged atoms, through cavity 

fields dispersively and entangled the atoms with cavity fields in their external 

degrees of freedom. Now, to transfer atom-field entanglement to atom-atom 

entanglement, we pass two auxiliary atoms initially in their ground state 

through cavity field and make them interact in non-dispersive and dispersive 

fashion. After interaction, the cavity field states transfer to auxiliary atoms. 

Hence, the external degrees of freedom of the tagged atoms are entangled with 

the internal degrees of freedom of the auxiliary atoms. We apply atomic 

detection operator on auxiliary atoms and develop multipartite entangled state. 

In the second scheme, we consider three different resonators, which may 

confine, separately, same mode or different modes of electromagnetic field. 

Two cavities share field entangled states with the third cavity. By applying 

field detection operator on the third cavity, entangled all the three cavities. 
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Chapter 1 

Introduction 

                             

 

At the dawn of the 20𝑡𝑕  century, experimental physics brought to light various 

unexplainable phenomena, such as, black body radiation, photoelectric effect 

and atomic structure [1], and eventually gave birth to the quantum mechanics. 

Later, the development of quantum mechanics saw two time periods: 1900 

to1925, the first generation of quantum mechanics and, 1925 to 1928, the 

second generation of quantum mechanics [2]. 

As a critic of quantum mechanics, on 4𝑡𝑕  December 1926, Einstein wrote to 

Max Born “Quantum mechanics is certainly imposing, but an inner voice tells 

me that it is not yet the real thing” [3]. His famous criticism of quantum theory 

came as he tried to explain quantum entanglement.  

Entanglement, an important feature of quantum mechanics, is taken as a 

manifestation of quantum correlations. In 1935 [4] Schrödinger, the one who 

gave the idea of entanglement, said  

“When two systems, of which we know the states of their respective 

representation, enter into the temporary interaction due to known forces 

between them and after mutual influence the systems separated again, then they 

no longer be described as before viz by endowing each of them with a 

representative of its own. I would not call that one but rather the characteristics 

trait of quantum mechanics”. 

Einstein discussed the idea of entanglement with Rosen during 1933 Solvay 

conference, saying, 
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What would you say about the following situation? “Suppose two particles 

moving toward each other with equal and very large momentum and interact 

for a very short interval of time when they pass at aknown position. Now an 

observer which measures the momentum of one particle, far away from the 

region of interaction, is able to deduce the momentum of the other particle. 

However, if he chooses to measure the position of first particle, he will be able 

to tell where the other particle is. This is correct and straight forward deduction 

from the principles of quantum mechanics; but is it not very paradoxical? How 

can the final state of the second particle be influenced by a measurement 

performed on the first, after all physical interactions has ceased between them” 

[5]. 

In 1935, the above idea was published in the form of a research paper by 

Einstein, Podolosky and Rosen [6]. The main point in statement of EPR is “If 

without disturbing in any way a system, we can predict with certainty the value 

of physical quantity, and then there exist an element of physical reality related 

to this quantity.” There are two fundamental assumptions in this definition, 

existence of element of physical reality and causality. 

Causality means that two non-interacting spatially well separated objects 

cannot influence each other globally. 

The EPR paradox seems to violate the uncertainty principle, that we can 

determine the position and momentum of a particle with certainty. But in fact 

when we measure the position (momentum) of a particle, its momentum 

(position) will no longer remain as before, uncertainty principle states. So after 

the measurement we cannot tell about the position or momentum of a particle, 

over which we made the measurement by measuring the position or momentum 

of second particle. 
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1.1   The version of David Bohm 

  

  David Bohm accepts the EPR concept of incompleteness and proposed hidden 

variable theory [7]. However his most important work in present context is to 

explain the EPR concept in particle spin basis instead of position-momentum 

basis i.e. instead of using two continuous variables, he used single discrete 

variable. Let us consider a source that emits electron-positron pairs. Alice and 

Bob are two observers who observing their spin prepared initially in the spin 

singlet state.  

Let us consider that both choose z-axis for their measurement. When spin of the 

one particle is measured and is found to be along positive z-axis, then the spin 

of the other particle is automatically be along negative z-axis, irrespective of the 

distance between them. Both have 
1

2
 probability to find +ℏ

2  and − ℏ
2 . The 

result of Alice and Bob can never be same. Thus, the wave function for the two 

particles, which are prepared in spin singlet state, is  

             |𝜓𝑠 =
1

 2
{|a: +𝑧, b ∶ − 𝑧  - |a:-z, b: +  𝑧 }           (1.1) 

According to quantum mechanics the spin singlet state may equally be expressed 

as a superposition of spin state pointing in x-direction. So they can be written in 

rotated eigen basis  | ± 𝑧 =
1

 2
 | + 𝑥 ± | − 𝑥 ). 

The wave function given in equation (1.1) for the system becomes, 

               | 𝜓𝑠 =
1

 2
{|a: + 𝑥, b: − 𝑥  - | a: − 𝑥 , b: + 𝑥 }.            (1.2) 

Both results of equation (1.1) and (1.2) are perfectly correlated. There exists an 

element of physical reality with 𝑆𝑏𝑍  (spin component of Bob particle) that Bob 

can determine 𝑆𝑏𝑍  without interacting with particle b. Since we can transfer our 
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argument from z-axis to the x-axis, so there must be an element of physical 

reality related with 𝑆𝑏𝑥 . This is correct for all possible directions and bases 

irrespective of the distance between them [8]. 

1.2   Bell’s inequality 

 

Quantum mechanics predicts the probabilities for different possible 

measurement outcomes, whereas in the classical physics measurement 

outcomes are not random if we have complete knowledge of all system 

variables. The random measurement outcomes are possible only when we have 

incomplete knowledge of the system. Are there hidden variables which we 

cannot observe directly, but which determine the outcomes of our measurement. 

In 1964, John Bell provided rules which any classical hidden variable theory 

must obey [9]. Thus he settled a long standing question that whether the system 

behaves classically as EPR insisted it must be, or demonstrates quantum non 

locality that we call as entanglement. 

According to Einstein view for quantum measurement outcomes (a, b) there 

exists a parameter 𝜆, called hidden variable, that completely determines the 

measurement outcomes of two observers, called, Alice and Bob. Here, both 

Alice and Bob can make only two possible measurements (𝑎, 𝑎  for Alice and 

𝑏, 𝑏  for Bob) and outcomes are binary i.e. a, b є (+1, -1).  

  

For local deterministic strategy, λ𝐷 , specifies the two measurement outcomes 

of Alice and two measurement outcomes of Bob. It may be any set  λ𝐷 =

(a, a′, b, b′ ). In all cases, each of these set of measured values, satisfies the 

expression S (λ𝐷) = (a + a′) b + (a − a′) b′= ±2. Here, it is simple to note that 

either of the two terms (a±a′) is zero whereas the other is always equal to ±2. 

After measurement, the outcomes can be averaged out in four terms 

 a, b , a′, b ,  𝑎, b′ ,  a′, b′ .  

 



5 

 

 

 

For these values we can formulate it into an algebraic sum i.e. 

          S =  a, b +  a′, b +  𝑎, b′ −  a′, b′                                                 (1.3) 

This is the average of a quantity that has ±2 value only and this gives us a limit. 

Hence for local realism criteria we get the following inequality, known as 

CHSH- Bell inequality given as -2  𝑆 ≤ +2 which was also tested to be correct 

[10]. In quantum mechanics, a measurement that results into two outcomes +1 

and  

-1 is defined by hermition operators with those eigen values. Therefore 

                                  a, b             𝐴 ⊗ 𝐵                                                        (1.4)               

 Here, 𝐴 and 𝐵 are two such operators. The average value of the CHSH 

operator given in equation (1.3) becomes  

            S = [ 𝐴 ⊗ 𝐵 ]+[ 𝐴 ⊗ 𝐵 ]+ [ 𝐴 ⊗ 𝐵 ] -  𝐴 ⊗ 𝐵                               (1.5) 

Using the fact, 𝐴2 = 𝐵2 = 𝐴 2 = 𝐵 2 = 𝕝 , we can easily calculate 𝑆2 = 4  𝕝 ⊗ 𝕝+ 

[ 𝐴, ]⊗  𝐵, 𝐵  . The maximal possible eigen value of [ 𝐴, 𝐴 ] cannot exceed 2, 

because    

                           |  𝐴, 𝐴  |  ≤ |  𝐴𝐴  | + |  𝐴 𝐴 |                        (1.6) 

Here, both 𝐴 and 𝐴  contain only +1 and -1. Hence the maximum possible eigen 

value of 𝑆2 never exceeds 8. This implies that in quantum mechanics                              

                                       𝑆  ≤ 2 2                         (1.7) 

Let us consider that we are observing the spin of two spin-1/2 particles. Here, 

we have  

                            a1 = 𝜎𝑥𝑎 , b1 = 𝜎𝑥𝑏  , a2 = 𝜎𝑦𝑎 , b2 = 𝜎𝑦𝑏 . 

Let the state of the particle is  

                         |𝜓  =  
1

 2
 |00 + e𝑖𝜋/4|11   ,                           (1.8) 

where 

      𝜎𝑥 |0  = |1 ,          𝜎𝑥 |1  = |0 ,      𝜎𝑦 |0  = 𝑖|1 ,        𝜎𝑦  1 = -𝑖|1  . 

Here, |𝜓  is an entangled state. Here, a, b ,  a′, b  and  a′, b′  are equal to 

  2 2  and   𝑎, b′  is equal to –  2 2 . Hence, S = 2 2, which voilates the Bell 

inequality. 



6 

 

 

 

Actual experiments are employed to differentiate between the hidden variable 

theory of local realistic model and the quantum theory. Stuart Freedman and J. 

S. Clauser experimentally tested the inequality [11, 12] and gave the 

confirmation of non-local correlation of quantum mechanics which cannot be 

explained by any classical local model.  

 

1.3    Entanglement 

 

We consider two independent systems, A and B, at time t just before 

interaction and initially are expressed in their respective state vectors  |𝜓𝑎 (𝑡)  

and  |𝜓𝑏(𝑡) . However, their interaction with each other or with a third system 

(entangler) for a time, 𝑡1,  leads to state  |𝜓𝑎𝑏 𝑡1 > 𝑡) . The systems are 

entangled iff  

                                |𝜓𝑎𝑏  𝑡1 > 𝑡  ≠  |𝜓𝑎 𝑡   ⨂ |𝜓𝑏 𝑡               (1.9) 

Hence, their present state is no more factorizable into original subsystems. 

Physically, they have now lost their identities and are non-separable in their 

behavior irrespective of the spatial separation between them. The strong 

correlation between entangled entities distinguished quantum theory from 

classical physics and local realism. 

Entanglement can be generated when we interact an atom with a cavity field 

[13]. We interact a two level atom, which is initially in an excited state |e , 

with a cavity field which is in the vacuum state |0 . After the interaction equal 

to 
𝜋

2
 Rabi pulse, there is 50% probability that the atom remains in the excited 

state |e  or comes to ground state |𝑔 . Hence, when the atom remains in excited 

state |e , the cavity remains in vacuum state |0 , but, if the atom comes to 

ground state  𝑔  then the cavity is in one photon state |1 . The interaction 

generates the atom-field entangled state, as 

                                   | 𝜓   = 
1

 2
 |𝑔, 1 + |e, 0            (1.10) 



7 

 

 

 

There are many types of entangled states such as Bell states, NOON state, GHZ 

state, W state and Cluster state. Bell states are the maximally entangled bi-

partite state of the form 

                                |𝜓+ =
1

 2
 {|0𝑎   ⊗ |0𝑏  +|1𝑎 ⊗  |1𝑏  },                      (1.11) 

                                   |𝜓− =
1

 2
 {|0𝑎   ⊗ |0𝑏  −|1𝑎  ⊗  |1𝑏  },                          (1.12) 

                                    |𝜑+ =
1

 2
  |0𝑎   ⊗ |1𝑏  +|1𝑎   ⊗ |0𝑏   ,                           (1.13) 

                                    |𝜑− =
1

 2
  |0𝑎   ⊗ |1𝑏  −|1𝑎   ⊗ |0𝑏   ,                           (1.14) 

 The Bell states are orthonormal and normalized, so provide a complete set of 

bases. 

A NOON state is many partite entangled state of the form 

                     |𝜓𝑁𝑂𝑂𝑁  =
1

 2
{|𝑁𝑎 , 0𝑏  +𝑒𝑖𝑁𝜃 |0𝑎 , 𝑁𝑏 }.                       (1.15) 

This represents a superposition of N-particles in mode “a” and zero particle in 

mode “b” and vice versa. The highly non-classical entangled NOON state are 

used in quantum lithography and metrology, where its important application is 

in producing interference fringes with a resolution of λ/ N. Here, N represents 

number of entangled particles. Greenberger-Horn-Zeilinger state is a certain 

type of entangled state which involves at least three subsystems of the 

following form. 

                         |GHZ  = 1
 2

  |0 ⨂𝑀  +  |1 ⨂𝑀 ,                                              (1.16) 

                                               Where, M> 2.      

 For three partite system |GHZ  = 
1

 2
 |000 + |111   .                       (1.17) 

 An interesting point is that when we trace one of the three systems of GHZ 

state we get a non-entangled mixed state. 
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The W state is three partite quantum entangled state of the following form 

             |W  = 
1

 3
 |001 + |010 +  |100   .                     (1.18) 

The W-state is different from GHZ due to an interesting property, that if 

measurement is performed on one of the three qubits, remaining system of two 

qubits exhibit entanglement in the reduced Hilbert space. The W state is an 

ideal resource for communication due to highly nonclassicality as compared to 

GHZ state.                                          

1.4 Entanglement Applications 

1.4.1 Quantum cryptography 

 

      After the discovery of the non-locality of the quantum entangled states, 

scientists started thinking on its applications and the first one of them is 

quantum cryptography by Stephen Wiesner [13]. He did his work in the 70s but 

published much later in1983. Many classical cryptographic systems were 

proposed at different times but everyone has its own problem. Wiesner gave 

quantum mechanical demonstration of cryptography. Charles Bennet and Gilles 

Brassard, extended this idea practically and published a paper in which they 

proposed a quantum key distribution protocol (QED), called BB84 protocol 

[14]. Charless and Gills along with F. Bessette, L. Salvail and J. Smolin 

demonstrated it experimentally in lab where the parties are separated by a 

distance of 32cm and transfer rate is 10 bits per second [15]. In 2002, the task 

was achieved over a distance of 20km [16]. In 2003, Andrew Shields and his 

co-worker, proposed a prototype QKD system which is able to transfer 

information over a distance of 122km using optical fiber at a rate of 2kb/s [17], 

there are now commercially available. Artur Ekert is the first one who 

proposed the quantum cryptography based on entanglement [18]. This 

technique was published in an improved version and experimentally 

demonstrated, in1998, upto a distance of 10km [19] and later extended by same 
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authors using fiber optic to a 50Km distance [20]. Anton Zeilinger, using 

photon polarization entanglement, demonstrated internet Bank transfer over 

1.45km distance and later for 7.8km using free space optical link.  

1.4.2   Quantum teleportation 

 

      Another important discovery is quantum teleportation proposed by Bennett 

in 1993 [21]. In teleportation process, we have a qubit which can be transported 

exactly from one location to another, without the qubit being transmitted 

through the intervening space. After the discovery of teleportation by Bennet, 

many theoretical proposals for atomic and field states teleportation were 

proposed [22, 23]. Theoretical and experimental work has been done on 

quantum teleportation in both independent state and squeeze state teleportation. 

Classical communication is used with the existence of entanglement. We 

follow the following steps 

1)  An EPR pair is generated and distributed to two separate locations between    

    the two observers Alice and Bob.                                                                                                                                  

2) Alice performs Bell`s state measurement on her part of entangled state and  

    the unknown state that is to be teleported.                                                                                

3)  Through classical channel, Alice sends two bits of classical information to  

     Bob.    

 4)  Bob uses unitary operation in order to get the qubits which Alice wish to  

      transport [24]. 
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Fig 1.1: We show the teleportation process between two observers Alice and Bob. The source 

shares an entangled pair between Alice and Bob. Alice performs unitary operation on the 

unknown set which wants transmit and sent her result Bob. He apply unitary operation to get 

the desired result. 

 

Let us consider, Alice wish to transmit a qubit in an unknown state 𝗅𝜑𝑐  to Bob, 

i.e. 

                 |𝜑𝑐  = a|0𝑐  + b|1𝑐                   (1.19) 

Let‟s, Alice and Bob share a maximally entangled pair in the state  

                 |𝜑𝐴𝐵 =  
1

 2
{|0𝐴0𝐵  + |1𝐴1𝐵 }             (1.20) 

Hence the combined state of the three qubits given in equation (i) and (ii), one 

the teleported and other the entangled, is    

   |𝜑𝐴𝐵𝐶   = 
1

 2
  a|0𝐴0𝐵0𝐶  +  a|1𝐴1𝐵0𝐶  + b|0𝐴0𝐵1𝐶  +  b|1𝐴1𝐵1𝐶        (1.21) 

Now we apply CNOT gate and Hadamard gate operations, which have the 

following operations 

                    CNOT |a, b  = |a, a⊕ b               (1.22) 

Here, first qubit is controlling and second one is target qubit. This gate flips the 

second bit if the first bit is 1 and acts trivially when the first bit is zero. The 

Hadamard gate has following operation  
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                               H|0  =  
1

 2
{|0 +|1 }             (1.23) 

                                H|1  =  
1

 2
{|0 -|1 }                                                              (1.24) 

          

 

Fig 1.2: We show the operations of the CNOT gate and Hadamard gate on qubits and their 

sequence (left to right) for teleportation process. Here, A and B are two qubits of entangled 

state and |𝜑𝑐  is the state to be teleported. 

               

  Hence, after the application of these operations given in equation (1.22), (1.23) 

and (1.24) the final state expressed by equation (1.21)  of the combined system 

becomes 

 

   |𝜑  = 
1

2
 {|0𝐴0𝐶 } a|0  +  b|1   +{|1𝐴0𝐶 }  a|0  −  b|1   

              +{|0𝐴1𝐶 }  b|0  +  a|1   + {|1𝐴1𝐶 } −b|0 +  a|1            (1.25) 

           =   {||𝜑+ } a|0  +  b|1   +{|𝜑− }  a|0  −  b|1   

                +{|𝜓+ }  b|0  +  a|1   + {|𝜓− } −b|0 +  a|1                              (1.26) 

Alice performs measurement, which collapse the four possibilities given in 

equation (1.26) into one and yield two classical bits. These two bits are sent to 
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Bob, which, he uses to know about which operators (X, Y, Z, I) is applied to 

his qubits in order to place it in state given in equation (1.19). 

1.4.3   Quantum dense coding 

 

      It is a process of exchange of information by transferring a single qubit in 

place of two classical bits, with existence of entanglement [25]. It was 

proposed by C. H. Bunnett and S. J. Wiesner in 1992 [26]. The dense coding 

was experimentally demonstrated and mostly discussed for the discrete 

quantum variable [27]. However quantum dense coding for continuous variable 

has many applications in quantum communication and in development of 

quantum information process [28]. 

    

 All the four Bell`s maximally entangled states can be generated by operation 

on single qubit. Let us consider Alice and Bob share maximally entangled state 

i.e. 

                 |𝜓𝐴𝐵
+   = 

1

 2
  |0𝐴0𝐵 + |1𝐴1𝐵   .           (1.27) 

Then Alice, using the four unitary operations (X, Y, Z, I), can generate any of 

the Bell`s maximally entangled state, as 

                 I|𝜓𝐴𝐵
+   = 

1

 2
  |0𝐴0𝐵 + |1𝐴1𝐵   = |𝜓𝐴𝐵

+  ,          (1.28) 

               X|𝜓𝐴𝐵
+   = 

1

 2
  |1𝐴0𝐵 + |0𝐴1𝐵   = |𝜑𝐴𝐵

+  ,          (1.29) 

                 Y|𝜓𝐴𝐵
+   = 

1

 2
  |0𝐴0𝐵 − |1𝐴1𝐵   = |𝜓𝐴𝐵

−  ,          (1.30) 

               Z|𝜓𝐴𝐵
+   = 

1

 2
  |1𝐴0𝐵 − |0𝐴1𝐵   = |𝜑𝐴𝐵

−  .          (1.31) 

Alice then sends her qubits to Bob, who operates CNOT gate operation and 

measuring the target bits, to distinguish between |00 ± |11  and|10 ± |01 . 

Bob operates Hadamard gate to distinguish between the sign in the 

superposition as  
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                   |𝜓+ →CNOT→ 
1

 2
 |00 + |10   →H→|00 ,         (1.32) 

               |𝜑+ →CNOT→ 
1

 2
  |11 + |01   →H→|01 ,         (1.33) 

                   |𝜑− →CNOT→ 
1

 2
 |11 − |10   →H→|10 ,         (1.34) 

                 |𝜓− →CNOT→ 
1

 2
 |01 − |11   →H→|11 .         (1.35) 

 

Hence, by Bell`s measurement Bob decodes her massage and gets two classical 

bits that she wants to transfer. Dense coding permits secure communication.   

 

1.4.4   Entanglement swapping 

 

The meaning of entanglement swapping is to transfer entanglement from one 

pair to another by means of suitable local operations. In entanglement 

swapping [29], we have two pairs of entangled states, (1 and 2), (3 and 4), by 

local measurements on pair, 2 and 3, entangled the other two, 1 and 4. The 

entanglement swapping protocol have been demonstrated experimentally with 

different systems [30]. In entanglement swapping we entangled to the system 

by operation without any interaction between these systems. 

 

 

 

Fig 1.3: We show entanglement swapping; initially two pairs (1&2) and (3&4) are entangled 

and by local measurement entanglement swap to pairs 1&4 and 2&3.  
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 Let us consider two entangled states 𝗅𝜑12
+   and 𝗅𝜑34

+  , such that  

𝗅𝜑12
+  𝗅𝜑34

+  =  
1

 2
(|0102 + |1112 )  

1

 2
(|0304 + |1314 ) ,          (1.36) 

                                 = 
1

2
 |0000 1234 +  |0011 1234 +  |1100 1234 +

                                   |1111 1234   ,                                   (1.37)     

                           = 
1

2
 |0000 1423 +  |0101 1423 +  |1010 1423 +

                                   |1111  1423}.               (1.38) 

 Now, we perform Bell`s state measurement on qubits 2 and 3 of equation (iii), 

we get  

                 |𝜑 1423   = 1/2  |𝜑14
+  |𝜑23

+   +1/2 |𝜑14
−  |𝜑23

−    

                                  +1/2 |𝜓14
+  |𝜓23

+   +1/2 |𝜓14
−  |𝜓23

−   .            (1.39) 

  Thus, by Bell`s state measurement on 2 and 3, we entangled 1 and 4, although 

they never interact. Entanglement swapping shows that direct interaction is not 

necessary to generate entanglement. 

 

1.8   Outline 

 Our aim is to engineer multipartite entangled state in cavity QED for 

quantum networks. In the thesis, first, we develop two partite entangled state of 

atomic external degree of freedom with cavity fields using Bragg diffraction. 

Later, we develop atom-atom and field-field entangled states for quantum 

networks. 

In the second chapter, we give a brief introduction to Bragg diffraction. We 

explain the scheme proposed for non-dispersive interaction of atoms with 
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cavity field and develop the effective Hamiltonian for this interaction. We 

explain the scheme for the development of maximally entangled Bell states in 

the atomic external degrees of freedom. In addition, we explain field-field 

entanglement.      

In the third chapter, we explain the schemes proposed for engineering of 

multipartite entangled states. In the first scheme, we entangled atoms with 

cavity fields in external degrees of freedom. Later, we interact auxiliary atoms 

with cavity fields to transfer cavity fields state to the internal state of the 

auxiliary atoms. In the last step we use atom detector which detect the auxiliary 

atoms in their excited state and develop entangled state. In the second scheme, 

we have three cavities system A, B and C, where the third cavity C has two 

modes, C1 and C2. We develop entanglement of two cavities, A and B, in two 

modes of cavity C which are distinguishable. By using field detection operator 

on third cavity we develop entanglement among the three cavity fields. In the 

end, we give conclusion and experimental parameters for our proposed 

schemes. 
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Chapter 2 

Engineering Bi-partite Entanglement  

 

 

 

In this chapter, we explain two schemes to develop Bi-partite entangled states. 

These are basic models for our proposed schemes for entanglement extended to 

many parties. In the first scheme, we explain the entanglement between cavity 

fields and atomic external degrees of freedom using Bragg diffraction [1], 

whereas in the second scheme, we develop entanglement between the cavities 

field states [2, 3]. 

 

2.1   Entanglement via atomic Bragg’s scattering 

W. H. Bragg and W. L. Bragg first time demonstrated the diffraction of X-rays 

from crystal [12]. Bragg‟s explain the coherent and incoherent scattering from 

crystal plane. When the phase shift of scattered wave is integral multiple of 2𝜋 

the waves interfere constructively. Energy and momentum are conserved 

during Bragg‟s scattering. In atomic Bragg scattering due to energy 

conservation, atoms get a momentum kick and deflect at various angles due to 

light induced force. We take large detuning between field frequency and any 

atomic transition frequency. The scattering of the atom takes place in the Bragg 

regime and in the Raman Nath regime.        
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 2.1.1 The model   

           We interact two super-cooled two-level atoms with cavity field which is 

in the superposition state of zero and one photon. The direction is chosen such 

that electric field is polarized along y-axis and propagates along x-axis. The 

atom interacts with the cavity field at an angle, 𝜃, to the normal having initial 

momentum, 𝑃𝑖 . The momentum of atom has two components, one along the 

field, 𝑃0  and second normal to the field 𝑃𝑧 . The momentum component,  𝑃𝑧 , is 

very large and we treat it classically. The longitudinal component of 

momentum changes and atom leaves the cavity at different angles whose 

probability distribution gives us information about photon number of the field. 

 

                   

 

 

 

 

 

 

Fig. 2.1: We show that highly detuned atomic beam is scattered by quantized cavity 

field. The component 𝑷𝒛 is very large as compared to component𝑷𝟎 . 
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2.1.2   Basic requirements 

                

The spontaneous emission causes the emission of photons in any arbitrary 

direction. Hence to avoid spontaneous emission, we take large detuning 

between atomic and field frequencies. The photon number in the field remains 

same during interaction as in large detuning only virtual transition take place. 

This implies that atom undergoes even number of Rabi oscillations. The atom 

is taken initially in ground state and after interaction it does not leave the cavity 

in excited state.  

 

2.1.3   Basic phenomena 

When atom interacts with cavity field a transfer of recoil momentum, 

∆p=ħk, takes place between atom and field. The field profile in the cavity is 𝜀0 

= 
1

2
𝜀(𝑒𝑖𝑘𝑥  +𝑒−𝑖𝑘𝑥 ). Since the field has standing wave profile, the atom sees two 

light waves moving in opposite direction, one in its velocity direction and other 

opposite to it. Suppose atom absorbs a photon from the wave moving in its 

direction, it gets a recoil momentum +ħk to conserve momentum. Now in de-

excitation it can emit the photon in either of the two waves. If it emits the 

photon in the wave moving in same direction, it gets a recoil momentum –ħk to 

conserve momentum. So the net change in momentum is zero in this case i.e. 

∆p=0. However if it emits photon in opposite wave then gets a recoil 

momentum +ħk, then, ∆p=2ħk. This is the maximum momentum transfer to 

atom in one Rabi cycle. Hence the net momentum change of the atom is given 

as 

                                   𝑝𝑙  = 𝑝0+ℓħk.     (2.1)              
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Here, ℓ is an even integer. Thus the atoms can scatter into any momentum 

components separated by momenta 2ħk. 

 

Fig 2.2: We show the dispersive interaction of atom with cavity field in the 

superposition state. For zero photon state their momentums remain same and for one 

photon state it gets a momentum kick.   

 

The atomic scattering has two regimes depending on strength of recoil force, 

Bragg regime and Ramen-Nath regime. The Bragg regime is long interaction 

time regime [4, 5, 6] and is achieved when recoil energy is larger than energy 

of interaction [7, 8, 9]. The Ramen-Nath regime is complementary to Bragg 

regime, having short interaction time [10] and recoil energy is smaller than 

interaction energy [11]. 

2.1.4   Atomic scattering in Bragg Regime 

           The mechanical action of light on material particles is well known 

physical phenomenon. Bernhardt, B. W. Shore and R. J. Cook explain the 

atomic theory of Bragg diffraction from crystal [5, 6] and demonstrated 

experimentally [13, 14]. In 1988 Peter J. Martin et al. [15] demonstrated the 

Bragg diffraction of sodium atom. As the momentum splitting is coherent in 
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Bragg diffraction, so atomic mirror, beam splitters and atomic interferometer 

can be constructed [16, 17, 18, 19]. In optical Bragg scattering, light waves 

interacts with crystal and scatter from atomic plane of crystal. The Braggs 

scattering have two conditions  

i) During the interaction, energy is conserved. 

ii) The reflected waves interfere constructively only if it satisfies the 

condition,  

                                       2dsin𝜃 = n𝜆.        (2.2) 

Here, d is atomic spacing, 𝜆 is wavelength of incident light, n is order of Bragg 

diffraction and 𝜃 is the angle made by the incident beam with normal. From 

first condition, that is, energy conservation 

                                         
𝑃𝑖𝑛

2

2𝑀
 =  

𝑃𝑜𝑢𝑡
2

2𝑀
,        (2.3) 

                                            
𝑙(𝑙+𝑙0)ħ2𝑘2

2𝑀
 = 0.        (2.4) 

 So either, 𝑙 = 0, means that atoms goes undeflected or, 𝑙 = -𝑙0, means that the 

momentum component along the propagation direction, of deflected atom, is 

reversed.  

The second Bragg condition allows momentum transfer, during the interaction, 

is only for discrete values of the initial atomic momentum [8, 9, 20, 21]. 

                        𝑃0 =
𝑙0

2
ħk.            (2.5)                      

Where,  𝑙0 = 2,4 and 6 etc. gives the first, second and third order Bragg 

scattering [6]. The order of the Bragg scattering is changed by changing the 

angle  𝜃.   
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2.1.5   Effective Hamiltonian 

           In order to write the total Hamiltonian governing the interaction of the 

atom with the field, we treat the atom and the field quantum mechanically. The 

Hamiltonian for the quantized field is 

                                       𝐻𝐹  = ħ𝜈 (𝑎 †𝑎  +
1

2
).        (2.6) 

where 𝑎 †  and 𝑎  are field creation and annihilation operators.  We take two level 

atom with ground state, |b , with energy 𝐸𝑏  and excited state, |𝑎 , with energy 

𝐸𝑎 . The atomic Hamiltonian is  

                        𝐻𝐴= 𝐸𝑎 | 𝑎    𝑎 |+𝐸𝑏|b  b|,       (2.7) 

                            =  
1

2
(𝐸𝑎 -𝐸𝑏 ) (| 𝑎    𝑎 |-|b  b|) + 

1

2
(𝐸𝑎 +𝐸𝑏 ) (| 𝑎    𝑎|+|b  b|). 

Introducing the operators, 𝜎𝑍 = | 𝑎   𝑎 |-|b  b| the inversion operator, 𝜎+ = 

|𝑎  b|(𝜎−= |b  𝑎 |) atomic raising (lowering) operator. Using 𝐸𝑎 -𝐸𝑏 =ħω and 

ignoring the constant energy term 
1

2
(𝐸𝑎+𝐸𝑏 ), also take |𝑎  𝑎|+|b  b|=Ι. We get 

                                        𝐻𝐴 = 
1

2
 ħω𝜎𝑍 .     (2.8) 

 The atom-field interaction Hamiltonian is 

                                         𝐻𝑖  = -e𝑿𝑒 .E     (2.9) 

 Here, e𝑿𝑒  is the dipole moment with 𝑿𝑒  is the position vector of charge e and 

E is electric field intensity. The direction is chosen such that field is polarized 

along y-axis and is propagated along x-axis. So the electric field intensity is 

given as 

                                         E = ℰ (𝑿𝑒+X) (𝑎 +𝑎 †) cos (kx).   (2.10) 

Here, ℰ is field amplitude, cos (kx) is field profile in cavity along x-axis. We 

consider dipole approximation, i.e. the field profile is same throughout the 



24 

 

 

 

dimension of atom and take  ℰ(𝑿𝑒 +X) = ℰ(𝑿). The interaction Hamiltonian 

under the dipole approximation is 

                                          𝐻𝑖  = -e𝑿𝑒ℰ(𝐗) (𝑎 + 𝑎 †cos(kx) .  (2.11) 

 Putting the identity, | 𝑎  𝑎|+|b  b| =  Ι, we get 

        𝐻𝑖  = -e(| 𝑎  𝑎| + |b  b|)𝑿𝑒(| 𝑎  𝑎| +  b  b|)ℰ 𝐗  𝑎 + 𝑎† cos(kx), 

                = -e(℘𝑎𝑏 𝜎 + + ℘𝑏𝑎 𝜎 −)ℰ(𝐗)(𝑎 + 𝑎 †) cos(kx).     (2.12) 

With ℘𝑎𝑏 = ℘𝑏𝑎
∗ = e a|𝑋𝑒 |b , is the electric dipole moment matrix element. We 

define the Rabi frequency as  𝑔 = - 
ε℘𝑎𝑏

ℏ , we get  

                                     𝐻𝑖  = ħ(𝑔𝜎 + + 𝑔∗𝜎 −)(𝑎 + 𝑎 †)cos(kx).  (2.13) 

By rotating wave approximation, we drop the energy non-conservative term i.e. 

𝑎†𝜎 + and 𝑎𝜎 −. The total Hamiltonian for the system is 

                     H = 
𝑝 2

2𝑀
+ħ𝜈𝑎 †𝑎  +

ħ𝜔

2
𝜎𝑍+ħ (𝑔𝜎 +𝑎  +𝑔∗𝜎 −𝑎 †) cos(kx).     (2.14) 

Here, M is mass of atom. In case of large detuning between field frequency and 

atomic transition frequency, the derivative of the probability amplitude of the 

wave function with respect to time and position become vanishingly small. 

Drop the zero energy term, the effective interaction picture Hamiltonian under 

adiabatic approximation in which the wavelength and atomic size are the 

comparable and the field profile through the atom remain constant [22] is   

                                     𝐻𝑒𝑓𝑓 =
𝑝 2

2𝑀
 – 

ħ|𝑔|2

2∆
𝑛 𝜎 −𝜎 +(1+cos2kx).            (2.15) 

Here, ∆= 𝜈 −ω is detuning between the field frequency and atomic transition 

frequency and 𝑛  is the field operator.  
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2.1.6   Generation of entangled state 

         We interact two super cooled two level atoms with cavity field 

dispersively, where cavity is in superposition state of zero and one photon. The 

wave function for the system under the above Hamiltonian, in product form, is  

 

|𝜓𝑎𝑡 .𝑓(𝑡)  =  
1

 2(2𝑚+1)
  [𝑚

𝑙 ′
`
=−𝑚

𝑚
𝑙=−𝑚 𝑐0, 𝑝𝑙

(1)
(𝑡)𝑐0, 𝑝

𝑙′

(2)
(t)|𝑝𝑙

(1)
, 𝑝

𝑙 ′
`

(2)
, 0 +   

                      𝑐1, 𝑝𝑙

(1)
(𝑡)𝑐1, 𝑝

𝑙′

(2)
(t)|𝑝𝑙

(1)
, 𝑝

𝑙 ′
`

(2)
, 1 ].    (2.16) 

𝑐𝑛,𝑝𝑙

𝑗
(t), is the probability amplitude for atom j=1, 2 at any time t, with 

momentum, 𝑝𝑙  and, 𝑝𝑙 ′  in the presence of the field. The atoms evolution during 

interaction is given by Schrödinger equation  

                          𝑖 ħ
𝜕

𝜕𝑡
|𝜓𝑎𝑡 .𝑓 (t)   =  𝐻𝑒𝑓𝑓 |𝜓𝑎𝑡 .𝑓 (t)  .    (2.17) 

We find set of coupled rate equation for probability amplitude, 𝑐𝑛,𝑝𝑙

(𝑗 )
, viz 

          𝑖
𝜕

𝜕𝑡
𝑐𝑛,𝑝𝑙

(𝑗 )
(t) = −𝜔𝑟𝑒𝑐 (ℓ+ℓ0)𝑐𝑛,𝑝𝑙

(𝑗 )
(t)- 

𝜒𝑛

2
{𝑐𝑛,𝑝𝑙+𝑖ħ𝑘

(𝑗 )
(t)- 𝑐𝑝𝑛 ,𝑙−2ħ𝑘

(𝑗 )
(t)},        (2.18) 

where 𝜔𝑟𝑒𝑐 = 
ħ𝑘2

2𝑚
 is the recoil frequency of the atom and 𝜒𝑛 = 

|𝑔|2𝑛

2∆
 is the 

effective Rabi frequency. In Braggs scattering, the recoil frequency is much 

larger than effective Rabi frequency i.e. 𝜔𝑟𝑒𝑐 >>>𝜒𝑛  [7, 10]. In this region 

conservation of energy provides ℓ= 0 and ℓ = ℓ0, which show that atom have 

two possible momentum propagation after scattering one is 𝑝0= 
𝑙0

2
ħk and other 

is 𝑝−𝑙0
= 

−𝑙0

2
ħk [20, 21, 22]. Thus, we get set of coupled rate equation for Braggs 

region under these condition 

                   𝑖
𝜕

𝜕𝑡
𝑐𝑛,𝑝0

(𝑗 )
(t) = - 

𝜒𝑛

2
{𝑐𝑛,𝑝2

(𝑗 )
(t)+ 𝑐𝑛,𝑝−2

(𝑗 )
(t)},    (2.19) 

                  𝑖
𝜕

𝜕𝑡
𝑐𝑛,𝑝−2

(𝑗 )
(t) = 𝜔𝑟𝑒𝑐 (−2)(-2+ℓ0)𝑐𝑛,𝑝−2

(𝑗 )
-  

𝜒𝑛

2
{𝑐𝑛,𝑝0

(𝑗 )
+ 𝑐𝑛,𝑝−4

(𝑗 )
}, (2.20) 
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               𝑖
𝜕

𝜕𝑡
𝑐𝑛,𝑝−4

(𝑗 )
(t) = 𝜔𝑟𝑒𝑐 (−4)(-4+ℓ0)𝑐𝑛,𝑝−4

(𝑗 )
-  

𝜒𝑛

2
{𝑐𝑛,𝑝−2

(𝑗 )
+ 𝑐𝑛,𝑝−6

(𝑗 )
}, (2.21) 

-      -       - 

      -      -      - 

 

            𝑖
𝜕

𝜕𝑡
𝑐𝑛,𝑝−𝑙0+4

(𝑗 )
= 𝜔𝑟𝑒𝑐 (- ℓ0 + 4)(4)𝑐𝑛,𝑝−𝑙0+4

(𝑗 )
-  

𝜒𝑛

2
{𝑐𝑛,𝑝−𝑙0+6

(𝑗 )
- 𝑐𝑛,𝑝−𝑙0+2

(𝑗 )
},   (2.22) 

           𝑖
𝜕

𝜕𝑡
𝑐𝑛,𝑝−𝑙0+2

(𝑗 )
= 𝜔𝑟𝑒𝑐 (- ℓ0 + 2)(2)𝑐𝑛,𝑝−𝑙0+2

(𝑗 )
-  

𝜒𝑛

2
{𝑐𝑛,𝑝−𝑙0+4

(𝑗 )
+ 𝑐𝑛,𝑝−𝑙0

(𝑗 )
},    (2.23) 

                                 𝑖
𝜕

𝜕𝑡
𝑐𝑛,𝑝−𝑙0

(𝑗 )
= - 

𝜒𝑛

2
{𝑐𝑛,𝑝−𝑙0+2

(𝑗 )
+ 𝑐𝑛,𝑝−𝑙0−2

(𝑗 )
}.      (2.24) 

In the above set of equations, for ℓ = 0 and ℓ = −ℓ0, the diagonal term vanish. 

Under adiabatic condition i.e. large detuning case in which no transition occur 

we can ignore the time derivative of probability amplitude. Only retaining the 

lowest order term of  
𝜒𝑛

2
 in co-efficient and putting back, we get two coupled 

equation for (𝑙0 > 2) as 

                    𝑖
𝜕

𝜕𝑡
C𝑛,𝑝 𝑙0

(𝑗 )
 = 𝐴𝑛C𝑛,𝑝𝑙0

 𝑗  
(𝑡) - 

1

2
𝐵𝑛C𝑛,𝑝−𝑙0

 𝑗  
(𝑡),        (2.25) 

                       𝑖
𝜕

𝜕𝑡
C𝑛,𝑝−𝑙0

(𝑗 )
= 𝐴𝑛C𝑛,𝑝−𝑙0

(𝑗 )
(t) - 

1

2
𝐵𝑛C𝑛,𝑝0

(𝑗 )
(t), 

where   

𝐴𝑛= 
𝜒

𝑛
2 

𝜔𝑟𝑒𝑐  (𝑙0−2 )(2)
 . 

                   |𝐵𝑛|= 
𝜒𝑛

1
2

(2𝜔𝑟𝑒𝑐 )

𝑙0
2

−1
{ 𝑙0−2  𝑙0−4 ……..4.2}2

. 

After solving these equations, we get 

        𝐶𝑛,𝑝±𝑙0

 𝑗   𝑡  =  𝑒−𝑖𝐴𝑛 𝑡{𝐶𝑛,±𝑝𝑙0

(𝑗 )
(0) cos(

1

2
𝐵𝑛𝑡) +𝑖𝐶𝑛,∓𝑃𝑙0

(𝑗 )
 (0) sin(

1

2
𝐵𝑛𝑡)}.      (2.26)                                                         
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To generate entanglement between the external degrees of freedom of atoms, 1 

and 2, we prepare them in their linear momentum state |𝑝+𝑙0

1   and |𝑝−𝑙0

2  . The 

initial conditions on atomic probability amplitude are  

        𝐶𝑛,𝑝+𝑙0

(1)
(0) =  𝐶𝑛,𝑝−𝑙0

(2)
(0) = 1, and 𝐶𝑛,𝑝−𝑙0

(1)
(0) = 𝐶𝑛,𝑝+𝑙0

(2)
(0) = 0. 

Putting these values, we get 

            𝐶𝑛,𝑝+𝑙0

(1)
(t) =  𝐶𝑛,𝑝−𝑙0

(2)
(t) =  𝑒−𝑖𝐴𝑛 𝑡  cos(

1

2
𝐵𝑛𝑡).                 (2.27) 

             𝐶𝑛,𝑝−𝑙0

(1)
(t) = 𝐶𝑛,𝑝+𝑙0

(2)
(t) = 𝑖 𝑒−𝑖𝐴𝑛 𝑡  sin(

1

2
𝐵𝑛𝑡).       (2.28) 

The combined state of two atoms in their external degrees of freedom and 

cavity field states is    

|𝜓𝑎𝑡 ,𝑓 (t) = 
1

 2
 |𝑝𝑙

(1)
, 𝑝

𝑙`

(2)
, 0 +   𝐶1,𝑝𝑙0

(1)
𝑙 ′ =+𝑙0 ,−𝑙0𝑙=+𝑙0 ,−𝑙0

𝐶1,𝑝
𝑙′

(2)
|𝑝𝑙

(1)
, 𝑝

𝑙 ′
`

(2)
, 1  .                                                  

                                                                                                                                 (2.29) 

 This gives a three-partite entangled state. Both 𝐴𝑛𝑎𝑛𝑑 |𝐵𝑛 | vanish for n = 0. 

Hence, for an interaction time t = s𝜋/𝐵1, s is an odd integer, leads as to atom-

field entangled state. So 

    |𝜓𝑎𝑡 ,𝑓 (t)  =  
1

 2
 |𝑝+𝑙0

(1)
, 𝑝−𝑙0

(2)
, 0 − 𝑒−𝑖𝜑 |𝑝−𝑙0

(1)
, 𝑝+𝑙0

(2)
, 1  ,       (2.30) 

 where the phase, φ = 2s𝜋𝐴1/𝐵1, depends on order of Bragg scattering. The 

second atom interacts for a time t = 2r𝜋/𝐵1, where r is an even integer. So φ = 

2(s+r)𝜋𝐴1 /𝐵1 . The second atom is initially in its ground state and is in 

resonance with optical cavity field. The time of interaction correspond to half 

of the Rabi cycle. The state vector becomes  

       |𝜓𝑎𝑡 ,𝑓(t)  =  
1

 2
 |𝑝+𝑙0

(1)
, 𝑝−𝑙0

(2)
, b − 𝑒−𝑖𝜑 |𝑝−𝑙0

(1)
, 𝑝+𝑙0

(2)
, 𝑎  .          (2.31) 
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After passing the atom through a  
𝜋

2
 Ramsey pulse [28], leads to superposition 

|b  =  
1

 2
[|b +|𝑎 ] and |𝑎  =  

1

 2
[|b -|𝑎 ]. For probe atom in their ground state |b , 

we get the following Bell basis  

                    |𝜓𝑎𝑡 (t)  = 
1

 2
 |𝑝+𝑙0

(1)
, 𝑝−𝑙0

(2)
 − 𝑒−𝑖𝜑 |𝑝−𝑙0

(1)
, 𝑝+𝑙0

(2)
  .          (2.32) 

 And for atom in their excited state |𝑎 , we get other bell basis 

                    |𝜓𝑎𝑡 (t)  = 
1

 2
 |𝑝+𝑙0

 1 
, 𝑝−𝑙0

 2 
 +  𝑒−𝑖𝜑 |𝑝−𝑙0

 1 
, 𝑝+𝑙0

(2)
   .           (2.33) 

Hence, controlling the interaction time, we get the other two Bell bases given 

below 

                     |𝜓𝑎𝑡 (t)  =  
1

 2
 |𝑝+𝑙0

(1)
, 𝑝+𝑙0

(2)
 − 𝑒−𝑖𝜑 |𝑝−𝑙0

(1)
, 𝑝−𝑙0

(2)
   .         (2.34) 

                     |𝜓𝑎𝑡 (t)  = 
1

  2
 |𝑝+𝑙0

(1)
, 𝑝+𝑙0

(2)
 +  𝑒−𝑖𝜑 |𝑝−𝑙0

(1)
, 𝑝−𝑙0

(2)
  .          (2.35) 

This theoretical suggestion can be realized experimentally by following the 

setup of references [20, 23]. In this process a Rubidium atom interact with 

cavity field in superposition state for 30ns. Later, pass another Rubidium atom 

for interaction time of 60ns. The life time of atom is 300ns. The life time of 

cavity is 600ns, which is greater than total experimental time. 

 

2.2   Engineering of entanglement between cavities 

 

Here, we discuss proposed scheme to engineer EPR-Bell state [2, 3] 

between different modes of electromagnetic field. The interaction of three-level 

atoms with cavity having two modes is desirable to investigate for two photon 

resonance transition [2].  
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2.2.1 The model 

We use a three level atom in V-configuration; the transition between upper two 

levels is forbidden and interacts with cavity in vacuum state. The three levels of 

atoms are |𝑎 , |b  and |c  with their energies 𝐸𝑎 , 𝐸𝑏  and 𝐸𝑐  respectively. The 

upper two levels are prepared in superposition with the help of Ramsey field 

before it enters into the cavity. We interact this atom with cavity having two 

modes A and B with velocity 𝜔𝐴 and 𝜔𝐵 .  

 

 

 

 

The cavity have two modes A and B which are in resonance with transition 

frequencies i.e. 𝜔𝐴 =
𝐸𝐴−𝐸𝐶

ħ
 and 𝜔𝐵 =

𝐸𝐵−𝐸𝐶

ħ
. The time of interaction is equal to 

π Rabi cycle. 

2.2.2 Creation of field entanglement  

The atom we use is three-level in which the upper two levels are in 

superposition. Initially two cavity modes are vacuum. The initial state of the 

system is  

                 |𝜓 (0)   =  
1

 2
 |𝑎 + 𝑒𝑖𝜑 | 𝑏    |0𝐴 , 0𝐵 .          (2.36) 

The interaction Hamiltonian for the system under the dipole and rotating wave 

approximation can be written as 

      H = ħ𝑔1  𝑎|𝑎  𝑐| + 𝑎†|c  𝑎| +ħ𝑔2  b|b  𝑐| + b†|c  b| ,      (2.37) 

where, 𝑔1 and 𝑔2 , are vacuum Rabi frequencies and 𝑎† , b†  and  𝑎, b  are cavity 

fields creation and annihilation operators. After interaction the atom-field state 

vector can be written as 
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 |𝜓 𝐴,𝐵 (𝑡) = 𝑐𝑎,0,0|𝑎, 0, 0 + 𝑐𝑏,0,0|b, 0, 0 + 𝑐𝑐,1,0|𝑐, 1, 0 + 𝑐𝑐,0,1|𝑐, 0, 1 .   (2.38)                                 

𝑐𝑎,𝑚,𝑛 , 𝑐𝑏,𝑚 ,𝑛 , and, 𝑐𝑐,𝑚,𝑛 , are probability amplitudes of atom in state |𝑎 , |b , 

and, |𝑐 , while, m and n, are number of photons in modes A and B respectively. 

By Schrödinger equation, the rate equations for the probability amplitudes is  

                                      
𝑑

𝑑𝑡
𝑐𝑎,0,0 = -𝑖𝑔1𝑐𝑐,1,0              (2.39)           

 
𝑑

𝑑𝑡
𝑐𝑐,1,0 = -𝑖𝑔1𝑐𝑎,0,0              (2.40) 

 
𝑑

𝑑𝑡
𝑐𝑏,0,0 = -𝑖𝑔2𝑐𝑐,0,1               (2.41) 

               
𝑑

𝑑𝑡
𝑐𝑐,0,1 = -𝑖𝑔2𝑐𝑏,0,0              (2.42) 

Solving equations (2.39) and (2.40), we get 

                                    
𝑑2

𝑑𝑡 2
𝑐𝑎,0,0+ħ𝑔1

2𝑐𝑎,0,0 = 0.                  (2.43) 

Similarly, we can find the other probability amplitudes by solving the above 

rate equations. Their solution gives the atom-field entangled state as 

 |𝜓 𝐴,𝐵  𝑡   = 
1

 2
[cos 𝑔1𝑡  𝑎, 0,0 − 𝑖 sin 𝑔1𝑡  𝑐, 1,0 + 𝑒𝑖𝜑 cos 𝑔2𝑡  b, 0,0  

                       −𝑖𝑒𝑖𝜑 sin 𝑔2𝑡 |𝑐, 0,1 ].                   (2.44)              

After interaction, the atom is detected in ground state and takes equal 

probability amplitude to produce maximal entangled state i.e. 

                                    sin 𝑔1𝑡  =   sin 𝑔2𝑡 .  

The interaction time can be calculated from probability amplitude given in 

equation (2.44). For an interaction time m𝜋/2𝑔1 and n𝜋/2𝑔2 (where m and n 

are odd integers) with modes A and B, the probability amplitude for detecting 

the atom in ground state is maximum. After interaction the atom develops an 

entangled state between two cavity field modes as 
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                   | 𝜓 (A, B)   =  
−𝑖

 2
 |0𝐴 , 1𝐵 + 𝑒𝑖𝜑 |1𝐴 , 0𝐵  .             (2.45) 

By adjusting the interaction time of atom with cavity field, we get another Bell 

state 

                   | 𝜓 (A, B)   = 
−𝑖

 2
  |0𝐴 , 1𝐵 − 𝑒𝑖𝜑 |1𝐴 , 0𝐵  .           (2.46) 

To generate the other two bases we will not consider superposition in |𝑎  and 

|b . The transition from state |𝑎  to |𝑐  is in resonance with mode A and from 

|b  to |𝑐  is in resonance with mode B. By adjusting the interaction time such 

that atoms experiences  
𝜋

2
  pulse, hence there is equal probability for atom to 

remain in their ground state or in their excited state. After interaction, we get 

                  | 𝜓 (A, B)   = 
1

 2
  |𝑎, 0𝐴 + |𝑐, 1𝐴  ⨂|0𝐵 .           (2.47) 

Apply laser field to excite the atom from state |𝑐  to state |b  and have no effect 

if atom is in excited state |𝑎 . After interaction, the final state is 

                  | 𝜓 (A, B)   = 
1

 2
 |0𝐴 , 0𝐵 |1𝐴 , 1𝐵  ,                     (2.48) 

which are the Bell maximally field entangled states. Now to engineer GHZ 

state, repeat this process using different exciting state. Thus we can develop 

GHZ entangled state 

     | 𝜓 (AB…..N)   = 
1

 2
 |0𝐴0𝐵 … … . . 0𝑁 + |1𝐴1𝐵 … … . . 1𝑁  .         (2.49) 

For the proposed scheme, we consider slow Rubidium atoms with life time of 

few milliseconds. The atoms are prepared in higher Rydberg states, and pass 

through high Q-superconducting cavity with a speed of 400m/s. The interaction 

time of atom is of order of few tens of microseconds, which is much smaller 

than cavity life time [2]. 
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Chapter 3 

Engineering Entanglement for quantum 

networks 

 

 

 

 

 Entanglement provides a successful way to develop quantum channels and is, 

therefore, important in quantum communication, quantum cryptography, and 

quantum computation. The bipartite entanglement has been successfully 

generated between two electromagnetic cavities [1], multimode‟s of single 

cavity [2] and in internal [3, 4, 5, 6] as well as in external degrees of freedom 

of atoms [7] using Bragg diffraction regime. The Bragg regime cavity QED 

techniques have many interesting applications in quantum information, 

entanglement engineering [8, 9], teleportation [10] and in the development of 

quantum logic gates [11]. The entanglement in multipartite states, such as 

Noon state, W state, Cluster state and Graph state have also been reported [12, 

13, 14]. The experimental advancements in generating quantum correlations in 

multipartite systems have enabled researchers to develop quantum networks 

based on cavity QED techniques [15] and colored Laser [16]. The atom-cavity 

system forms universal nodes capable of sending, receiving, storing and 

releasing photonic quantum information. The transfer of the quantum state and 

creation of the maximally entangled state are have also being demonstrated 

[17]. 
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3.1    Introduction 

 

In our proposed scheme, we suggested two techniques to generate 

multipartite entanglement using cavity QED. In the first technique, we develop 

entanglement in atomic degrees of freedom and in the second technique, we 

engineer entanglement among cavities. In the first scheme, we have two type of 

atoms tagged atoms and auxiliary atoms. We interact these atoms with two 

cavities in non-dispersive and dispersive fashion with cavity which is in 

superposition state. First, we dispersively interact two-level tagged atoms with 

the cavity fields, which entangled the tagged atoms in their external degrees of 

freedom with cavity field states.  Later, we used two auxiliary atoms which 

interact in non-dispersive and dispersive fashion with the cavity fields. The 

states of the cavity fields transfer to auxiliary atoms states and we can erase the 

cavities from our system. Hence by auxiliary atoms interaction we transfer the 

atom-field entanglement to atom-atom entanglement. Now by atomic detection 

operator on the auxiliary atoms, we develop entanglement of the entangled 

states, among the tagged atom‟s external degrees of freedom and the auxiliary 

atom‟s internal states. In second scheme, we have three cavities system A, B 

and C.  Cavity C has two modes 𝐶1 and 𝐶2 which are distinguishable. The two 

cavities, A and B, are in entangled state with the third cavity, C, in two modes, 

𝐶1  and 𝐶2 . This entanglement is engineered by non-dispersive interaction of 

two-level atom in their excited state. Now we interacts an atoms in λ 

configuration with cavity in ground state. The lower two-levels are in 

superposition state. After interaction the atoms is detected in their excited state. 

Hence we develop entanglement of the entangled states among the cavities. 
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3.2   Engineering entanglement of the entangled state in 

atomic degrees of freedom 

 

3.2.1 The Model 

Our proposed scheme for generation of multipartite entanglement in 

atomic external degrees of freedom is based on cavity QED techniques. We 

used two sets of atoms, one to engineering momentum entangled state with 

cavity fields called tagged atom and the other called auxiliary atoms which 

used to erase cavity information [13]. The tagged atoms are two level atoms, 

initially prepared in ground state | 𝑔  , with transverse momentum | 𝑝0  , 

interacting dispersively with cavity fields which is in superposition of vacuum 

and one photon state. For simplicity, we take only the first order Bragg‟s 

diffraction regime. So the atomic momentum state is tagged with cavity field 

state through entanglement correlation. Auxiliary atoms are again two-level 

atoms, initially in ground state, undergo prescribe non-dispersive and 

dispersive interaction with cavity fields to erase the cavity information 

respectively.  

 

 

             

           

             

 

 

Fig 3.1 We show our basic model. The green edges show tagged atoms, Yellow show 

cavities, Blue corner show auxiliary atoms and red line show entanglement. 

 

 

2T1T
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2C

1A
2A
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3.2.1   Tagging of atom in momentum space 

  

        The tagging procedure of atom in momentum space with cavity field, 

initially prepared in superposition of zero and one photon state i.e. (|0 +|1 )/ 2 

[18, 19, 20], is based on dispersive Bragg diffraction. When atom enters the 

cavity, its momentum does not change if the cavity is in state |0  and get a 

momentum kick when cavity is in state |1 . The atom after its interaction for 

predetermine time, exit the cavity in its ground state with two equally probable 

discrete momentum states, |𝑝0 , and, |𝑝−2  [7, 10, 21, 22]. The longitudinal 

component of momentum is quite large, whereas the transverse component of 

the momentum spread is negligible and treated quantum mechanically [21, 22]. 

Hence, due to two possible momentum split the cavity fields become entangled 

with the tagged atoms in their external degrees of freedom.  

We consider the atom in its ground state | 𝑔 , with momentum |𝑝0 , interacting 

with cavity field in superposition state. The initial state vector for the system 

before interaction is 

                  |ψ  0)   = 
1

 2
  |0 + |1   ⨂|𝑔,  𝑝0 .             (3.1) 

The interaction Hamiltonian under dipole and rotating wave [23] 

approximation is  

                   H = 𝑝 𝑥
2/2𝑀+ħ𝛿𝜎𝑍/2+ħ𝜇cos (kx) [𝜎𝑒𝑔𝑐 + 𝑐 †𝜎𝑔𝑒 ].           (3.2) 

Here, 𝑥  (𝑝 𝑥 ) is the position (momentum) of center of mass of atom along x-axis, 

𝜎𝑒𝑔 =|e   𝑔 | (𝜎𝑔𝑒 = |𝑔  𝑒|) is atomic raising (lowering) operator, 𝜎𝑍 = |e  e|-

|𝑔   𝑔| is inversion operator, 𝑐  (𝑐 †) is field annihilation (creation) operator, 𝛿 is 

atom-field detuning, 𝜇 is vacuum Rabi frequency. 

The state vector for the Bragg atom-field interaction at arbitrary time t, is  

      | 𝜓 (t)   =  𝑒−і(
𝑝0

2

2𝑀
−

𝛿

2
)
  {∞

𝜉=−∞ 𝐴0,𝑔

𝑝𝜉
(t) |0, 𝑔, 𝑝𝜉   +  𝐴1,𝑔

𝑝𝜉
(t) |1, 𝑔,𝑝𝜉     
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                                + 𝐴0,𝑒

𝑝𝜉
(t) |0, e, 𝑝𝜉  }.                   (3.3) 

Here, ξ is summation for transverse atomic momentum during interaction, 𝐴
𝑗 ,𝑘

𝑝𝜉
 

is probability amplitude with j = 0, 1 where j is the field state, k = e, 𝑔 is 

atomic internal state and |𝑝𝜉   is atom transverse momentum. For mathematical 

convenience we have introduced global phase factor. When detuning 𝛿, is very 

large the spontaneous emission probability reduces and gives the persistence of 

atomic wave packet coherence when traveling.    

Schrödinger equation for the system after interaction in the adiabatic 

approximation, for a time of interaction t = 
2𝜋𝛿

𝜇2
 [17, 18, 19, 20, 21, 34, 35, 36] 

gives the following atom-field entangled state 

                     | 𝜓  = 
1

 2
(|0,𝑝0  +  |1,𝑝−2 ) |𝑔 .                                             (3.4) 

Thus, due to cavity field superposition state we get two possible momentum 

states for the atom which develops an entangled state between tagged atoms 

and cavity fields. 

3.2.2   Interaction of auxiliary atoms 

We interact two auxiliary atoms non-dispersively and dispersively with 

cavity fields which are in entangled state with tagged atoms to transform 

atoms-fields entanglement to atoms-atoms entanglement. The auxiliary atoms 

are taken initially in ground state, |𝑔1  𝑎𝑛𝑑 |𝑔2 . The initial state of our system 

before interaction is 
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Fig 3.2: We show two tagged atoms, T₁ and T₂, each in initial entangled state with 

cavities C₁ and C₂ respectively. Two auxiliary atoms, A₁ and A₂, in their ground state 

|g₁  and |g₂  at orange edge (lower, front), the yellow (lower, back) edge show cavities 

(C₁ and C₂) and the green edge (upper, back) show measurement operators, M₁ and M₂. 

 

 

    | 𝜓(𝑡1)  = 
1

 2
[( 01, 𝑝0

 1 
 +  11, 𝑝−2

 1 
  ⊗  𝑔 1  ]⨂

1

 2
[( 02, 𝑝0

 2 
  

                   + |12, 𝑝−2
 2 

 )⨂|𝑔 2  ].                      (3.5) 

Now in the next step, we interact the first auxiliary atom with first cavity non-

dispersively followed by the Hamiltonian, H = ħ 𝜇𝑟 (𝜎 𝑒𝑔𝑐  +𝜎 𝑔𝑒𝑐 †) under dipole 

and rotating wave approximation. Here, 𝜇𝑟  is atom-field coupling constant, 

𝜎 𝑔𝑒  (𝜎 𝑒𝑔)  are atomic raising (lowering) operators. The state of the system, 

given in equation (3.5), after interaction is 
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Fig 3.3:  We show the Interaction of first auxiliary atom resonantly with cavity C₁ and 

dispersively with cavity C₂. By this interaction we transfer the state of first cavity to 

the first auxiliary atom. 

 

| 𝜓(𝑡1) =
1

2
 [|01, 𝑔(1), 𝑝0

(1)
  +  cos(𝜇𝑟𝑡1) |11, 𝑔(1), 𝑝−2

(1)
  −

                𝑖sin 𝜇𝑟 |01, 𝑒(1), 𝑝−2
(1)

  ]  ⨂(|02, 𝑝0
 2 

 + |12, 𝑝−2
 2 

 )⨂|𝑔 2   .                (3.6) 

The first cavity comes to vacuum state for an interaction time, 𝑡1 = 𝜋/2𝜇𝑟 , of a 

𝜋-Rabi cycle. As the state of the first cavity transfer to auxiliary atom-1, so we 

trace the first cavity. Hence, the state vector of the system expressed by 

equation (3.6) becomes 

| 𝜓1  = 
1

 2
  𝑔(1), 𝑝0

 1 
 − 𝑖 𝑒(1), 𝑝−2

 1 
  ⨂ 

1

 2
|02, 𝑝0

(2)
 + |12, 𝑝−2

(2)
  ⨂|𝑔(2) .   

                                                                                                                       (3.7) 

In the second step, auxiliary atom-1 interact dispersively with second cavity 

govern by Hamiltonian given by  𝐻𝑑  = ħ𝜆  (𝑐 𝑐 †|𝑒  𝑒| -𝑐 †𝑐 |𝑔  𝑔|). Here, λ 

=  
𝜇𝑑

2

∆
  is the effective Rabi frequency, ∆, atom-field detuning, and, 𝜇𝑑

2 , is the 

atom-field coupling constant [21]. This dispersive interaction with the second 

cavity develops the following atom-field entangled state                 
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 | 𝜓 (𝑡3)  = 
1

2
  𝑔 1 , 02, 𝑝0

 1 
, 𝑝0

 2 
 − 𝑒і𝜆𝑡2   𝑔 1 , 12, 𝑝0

 1 
, 𝑝−2

 2 
                       

    +і𝑒−і𝜆𝑡2 |𝑒 1 , 02, 𝑝−2
 1 

, 𝑝0
 2 

   − 𝑖𝑒−2і𝜆𝑡2 |𝑒 1 , 12, 𝑝−2
(1)

, 𝑝−2
(2)

  ⨂|𝑔(2) .         (3.8) 

When auxiliary atom-1 leave the second cavity, we interact resonantly 

auxiliary atom-2 with second cavity, under the resonance interaction 

Hamiltonian, H = ħ 𝜇𝑟 (𝜎 𝑔𝑒𝑐  +𝜎 𝑒𝑔𝑐 †). The state of the system for an interaction 

time, 𝑡3 = 𝜋 2𝜇𝑟
 , which equal to 𝜋-Rabi cycle is 

      

                                                                                                                           

Fig 3.4: We show the resonant interaction of second auxiliary atom with cavity C₂. By 

this interaction we transfer the state of the second cavity to the second auxiliary atom. 

Hence we transfer the atom-field entanglement to atom-atom entanglement. 

 

 | 𝜓2  = 
1

2
  |𝑔(1), 𝑔(2), 𝑝0

(1)
, 𝑝0

(2)
  −  і𝑒і𝜆𝑡2  |𝑔(1), 𝑒(2), 𝑝0

(1)
, 𝑝−2

(2)
     

               - і𝑒−і𝜆𝑡2  𝑒 1 , 𝑔 2 , 𝑝−2
 1 

, 𝑝0
 2 

   −𝑒−2і𝜆𝑡2  𝑒 1 , 𝑒 2 , 𝑝−2
 1 

, 𝑝−2
 2 

  .               (3.9) 

3.2.3   Engineering entanglement of atomic entangled state 

We apply the atomic detection operator needs to detect the atom in 

excited state. For this purpose we apply an ionization pulse to the atoms which 

ionize them when the atom is in excited state and have no effect if atom is in 

ground state. After ionizing the atom we use a detector which detects them. 

When detector detect no atoms it mean that both are in ground state we get 
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non-entangled state  𝑝0
 1 

, 𝑝0
 2 

 . When both are detected in excited then again we 

have non-entangled state  𝑝−2
 1 

, 𝑝−2
 2 

 . But when detector detect only single atom 

then their either auxiliary atom-1 is in excited state or auxiliary-atom2 are in 

excited state. So applying the operator, 
1

 2
{| 𝑒(1)   𝑒(1) |+| 𝑒(2)   𝑒(2)|  and 

rearranging the equation (3.9) gives 

 

 

 

 

 

 

                                             

Fig 3.5: We show the state detection operation. we entangled auxiliary atoms in their 

internal degrees of freedom and tagged atom external degrees of freedom. 

 

 | 𝜓2  = 
1

 2
 −і𝑒−і𝜆𝑡2 |𝑔(2), 𝑝−2

(1)
, 𝑝0

(2)
  |𝑒(1) − 𝑒−2і𝜆𝑡2 |𝑒(2), 𝑝−2

(1)
, 𝑝−2

(2)
 |𝑒(1)   

           −і𝑒і𝜆𝑡2  |𝑔(1), 𝑝0
(1)

, 𝑝−2
(2)

 |𝑒(2) − 𝑒−2і𝜆𝑡2 |𝑒(1), 𝑝−2
(1)

, 𝑝−2
(2)

 |𝑒(2)  ,           (3.10) 

            =  
1

 2
   −і𝑒−і𝜆𝑡2 |𝑔(2), 𝑝0

(2)
  − 𝑒−2і𝜆𝑡2 |𝑒(2), 𝑝−2

(2)
  |𝑒(1), 𝑝−2

(1)
   

                        −   і𝑒і𝜆𝑡2  |𝑔(1), 𝑝0
(1)

 − 𝑒−2і𝜆𝑡2 |𝑒(1), 𝑝−2
(1)

  |𝑒(2), 𝑝−2
(2)

  .         (3.11) 
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      Here, each probability amplitude given in equation (3.11) depends on time. 

To get equal probability amplitude we choose time, 𝑡2 =
𝜋

2𝜆
, so 

            | 𝜓2  = 
1

 2
  −|𝑔(2), 𝑝0

(2)
  + |𝑒(2), 𝑝−2

(2)
  |𝑒(1), 𝑝−2

(1)
   

                            +  |𝑔(1), 𝑝0
(1)

 + |𝑒(1), 𝑝−2
(1)

  |𝑒(2), 𝑝−2
(2)

  .         (3.12) 

The resultant entangled state is in atomic internal and external degrees of 

freedom. 

3.3   Engineering entanglement among cavities field 

3.3.1   The Model   

We consider a three partite system of Alice, Bob and Charles, such that, Alice-

Charles and Bob-Charles are in one photon entangled states. The cavity C have 

two modes   𝐶1 and   𝐶2, which are distinguishable. To develop Alice-Charles 

and Bob-Charles entanglement we interacts two-level atom in their excited 

state. We interact this with cavity A and mode  𝐶1  which entangled them. 

Similarly we interacts another atom in their excited state with Cavity B and 

mode  𝐶2 and develop an entangled state between them. 

 

   

  

 

 

 

 

 

Fig. 3.6: We show the initial entangled states of the cavity A and mode  𝐶1, and, 

cavity B and mode 𝐶2. 
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3.3.2 Cavity field entanglement 

   In order to generate this entanglement, we let a two-level atom interact 

in its excited state |e , with a transition frequency 𝜈1 with cavity field initially 

in its vacuum state. The atom is initially in resonance with cavity field mode 𝐶1, 

and after interaction with cavity fields A and C, is measured in its ground 

state|g . Therefore, it contributes a photon in either of the two cavities and 

leads to maximal entangled state [1], given as 

 

    |A𝐶1   =  
1

 2
  |1A 0C1

 + |0A 1C1
  .                                                          (3.13) 

We follow the same procedure, to develop entanglement between the cavity 

fields, B and C, we use second atom with transition frequency, 𝜈2, between the 

two levels and in resonance with cavity mode  𝐶2 . This gives us another 

maximum entangled state as 

     |B𝐶2  = 
1

 2
  |1B 0C2

 + |0B 1C2
  .             (3.14)  

The state vector for the whole system can be written as 

|A𝐵𝐶1𝐶2 =
1

2
 |1𝐴1𝐵0𝐶1

0𝐶2
 + |0𝐴0𝐵1𝐶1

1𝐶2
 + |0𝐴1𝐵1𝐶1

0𝐶2
 + |1𝐴0𝐵0𝐶1

1𝐶2
   .                          

                                                                                                                                    (3.15) 

Eq. (3.15) have four terms in which first term show no photon of either of two 

modes of cavity C, second term show that each mode of cavity C have one 

photon, third term show one photon in  𝐶1 with no photon in  𝐶2, and the last 

term show that no photon in  𝐶1 with one photon in  𝐶2. All term have same 

probability of occurrence. 
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Fig 3.7: We show the resonance interaction of atom initially in their excited state with 

cavity fields. Finally the atom is detected in their ground state. After interaction with 

first cavity the atom have equal probability to remain in ground state or excited state. 

When passes through second cavity through resonance interaction atom is detected in 

ground. So by this way the two cavities get entangled.                                                                                                                                                                                                                 

 

3.3.3   Engineering entanglement of field entangled state 

 

To develop entangled state among the entangled cavity fields we apply 

field detection operator on cavity C, when the two mode of cavity C are taken 

distinguishable. The initial state of the system is expressed by Eq. (3.15). 

     To engineer entanglement of the entangled states, Charles used three 

level atoms in Λ configuration. The atom is initially prepared in superposition 

of lower levels |1  and |2 . The atom transition from level |1  to |3  is in 

resonance with mode 𝐶1  and |2  to |3  is in resonance with  𝐶2 . After its 

interaction, Charles measures the atom in excited state. The detection process, 

1

 2
  {|1𝐶1

  1𝐶1
| + |1𝐶2

  1𝐶2
|} |AB𝐶1𝐶2 , leads to multipartite entangled state, 

expressed as 
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Fig 3.8: Scheme diagram for entanglement of entangled state. We prepare a three-

level atom with superposition of lower two levels with help of Ramsey field. Pass this 

atom through cavity C having two modes. 

 

 

  |ψ  = 
1

 2
{|1𝐶1

  1𝐶1
| + |1𝐶2

  1𝐶2
|}|AB𝐶1𝐶2 , 

                               = 
1

2
[|0𝐴1𝐶1

 |B𝐶2 +|A𝑐1 |1𝐶2
0𝐵 ], 

                               = 
1

2
 [|0𝐴1𝐶1

 |𝜑 +|𝜑 |1𝐶2
0𝐵 ].    (3.16) 

   Where, |𝜑  is already entangled state given in equation (3.13) and (3.14).   

Here, we develop entanglement of entangled state among atomic degrees of 

freedom and among fields. We also generalize the idea for atomic degrees of 

freedom to n-partite which use for quantum networks.  

                                         

 

 

 

1

2

3
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CHAPTER 4:    

Results and Conclusions 

 

    

 

For multipartite entanglement in atomic degrees of freedom, we use two 

tagged atoms which, at first, make entangled states with two cavities. Later, we 

pass two auxiliary atoms in ground state through cavity fields to transform 

cavity field states to atoms. In the last, by atomic detection operator, if atom is 

detected in excited states and we get entanglement of the entangled state in 

atomic degrees of freedom. In our proposed scheme for optical cavity system, 

we have three party systems Alice, Bob and Charles. Here, Charles is 

separately entangled with Alice and Bob in different optical modes. By apply 

field detection operator at third party Charles, we entangled the already 

entangled states. The generation of this state requires that we detect only one 

photon in the indistinguishable modes.  

4.1 Generalization and experimental parameters 

We can easily generalize our work to N parties and the procedure leads to 

quantum networking. We use two sets of N-atoms, one to engineer momentum 

state entanglement with cavity field, called tagged atoms and the other to erase 

cavity information, called auxiliary atoms. First, we interact each tagged atoms 

with fields which gives an atom-field entangled state. Now interact first 

auxiliary atom non-dispersively with cavity 𝐶1  and then dispersively with 

cavity 𝐶2. We follow the same procedure for second auxiliary atom with cavity 

𝐶2 and 𝐶3, and so on. The nth auxiliary atom interacts non-dispersively with 

cavity 𝐶𝑛 , and hence the state of all cavities transfers to the auxiliary atoms. By 

applying detection operator on auxiliary atoms we can develop a network 

among N-party. 
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Fig 4.1: We show generalization of our work to N-parties in atomic degree of freedom. 

Here, each atom interacts resonantly with first cavity and dispersively with second 

cavity except the last one which interact resonantly with last cavity only. After 

interaction fields state transfer to auxiliary atoms state and by applying detection 

operator we can develop entangled state.  

 

 

The atom-cavity system form universal nodes capable of exchange of 

quantum information. The transfer of the atomic quantum state and creation of 

the entanglement between two nodes, separated in independent laboratories at a 

distance of 21m and are connected by optical fiber link of length 60m, are also 

demonstrated experimentally [1]. To generate cavity QED entangled state we 

use high Q-cavities of few centimeters in length. The atoms used are of two 

atomic levels as circular Rydberg level [2] which has large radioactive decay 

time and is strongly coupled to microwave. The interaction time of atom 

moving with velocity of 400m/s is of order of microsecond. The cavity life 

time is of few milliseconds, so that, atom does not undergo radioactive decay 

when passing through cavity. 

For the entanglement in atomic degrees of freedom, we use high Q-

cavities having a life time of up to a few seconds which is greater than atom-

field interaction time [3]. Microwave regime is used with the atom-field 

interaction is of microsecond [4]. The momentum deflection of atoms is very 

small so we use long arm interferometer to get sufficient separation. We can 
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use off-resonant Braggs scattering of 4He atoms (𝜆= 1083nm) up to sixteen 

order diffraction [5]. The measurement process needs to detect the atom in the 

excited state. For this purpose we apply a field which ionizes the atoms when 

in their excited states and has no affect when in their ground states. This 

ionized atom passed through the field where it is deflected and detected [6]. 
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