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ABSTRACT 

Computed Tomography (CT) is a commonly used diagnostic tool that uses X-Rays in order 

to detect and diagnose injuries, tumors and other diseases by providing an in-depth view 

inside the patient’s body. A CT scanner takes cross sectional images of your body in layers 

or “slices”. This technique helps diagnosticians to be able to observe the patient’s body in 

great detail. However, one of the major problems in CT imaging is that of artifacts caused 

by high-density regions in the vicinity of normal tissues, for example calcified regions and 

metal implants. These high-density regions in the CT images could cause false voxel 

values. The study aimed to develop an innovative machine learning-based technique called 

residual dense U-Net (RDU-Net), specifically for spectral photon-counting CT (SPCCT), 

to mitigate metal artefacts across all energy bins. The proposed model was quantitatively 

evaluated and compared with and without the metal artefact reduction algorithm (MAR) 

using the line profiles, histogram analysis, signal-to-noise ratio (SNR), root mean squared 

error (RMSE), and structural similarity index measure (SSIM). The results show significant 

improvements with the average SNR across the five energy bins increasing from 3.37 to 

17.40 after the application of the MAR algorithm. The average RMSE decreased from 

0.016 to 0.001, and the average SSIM increased by 34.9%. The study also evaluated 

material density images of hydroxyapatite (HA) and iodine (I), with and without the MAR, 

using the receiver operating characteristic (ROC) paradigm. The results showed improved 

accuracy in the material identification for HA (86% to 91%) and I (84% to 93%) after 

MAR. Overall, the evaluation of the model showed promising results and the potential to 

significantly decrease the metal artefacts in all the parameters used in the energy analysis 

while preserving the attenuation profile of SPCCT images. 
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CHAPTER 1: INTRODUCTION 

Computed Tomography commonly known as CT is one of the most widely used diagnostic 

tool (Esses et al., 2004; Mettler Jr et al., 2008). CT scanning refers to the technique in 

which we used slices of X-Rays images to form a comprehensive three-dimensional 

depiction of the human body (Coupal et al., 2014). In order to measure the intensity of 

incoming photons, CT scanners are comprised of an X-ray emitter and an X-ray detector 

positioned in direct opposition to each other. Similar to a traditional X-ray equipment, a 

CT scanner releases radiations that are permitted to enter the human body and are 

subsequently absorbed in different amounts (Willi, 2006). However, the CT scanner rotates 

the gantry, which houses the X-ray emitter and detector, in an arc-like motion to obtain a 

circular slice of the designated area in order to detect a circular slice of the body (Withers 

et al., 2021). The subject is moved laterally while this process is repeatedly performed. 

This produces a range of slices from which we can construct a full three-dimensional 

image. Furthermore, by calculating the energy of the photons reaching the detector, the 

variation in the absorbed amount of the X-ray waves by various bodily sections and organs 

produces a clear internal image of the body. Energy-integrating detectors (EIDs) are used 

in clinical CT scanners to identify the incoming photons. These EIDs are kept in batches 

of 900 in a row, arranged linearly apart by a thin septum. These housings, together referred 

to as detector banks, comprise what is often known as a detector. A semiconductor material 

used to create an EID responds to the strength of the incoming photon. The top layer of the 

semiconductor, referred to as the scintillator, absorbs the incoming photons and transforms 

them into visible light rays. A photodiode, which makes up the detector's second layer, 

detects light rays and produces an electrical signal whose strength is proportionate to the 

energy of the deposited rays. We then utilize this electric signal to calculate the incoming 

X-ray photons' intensity. The CT scanners employ the Hounsfield unit (HU) to calculate 

the intensities. The dimensionless unit known as HU is employed to provide a quantitative 

scale for characterizing radio density. The definition of HU is derived from the radiation 

absorbance or attenuation coefficients in a body's tissues (DenOtter & Schubert, 2023). As 

our output, the HU values enable us to obtain a distinct multifaceted grayscale image 

(Gücük & Üyetürk, 2014). 
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Since its inception in the beginning of the 1970s, CT scanning has grown to be a widely 

used diagnostic technique. A comprehensive three-dimensional image of the body is 

provided by CT scanning, which is very helpful in the detection of a number of ailments, 

including liver masses, cancer, and cardiovascular disorders (Nicol et al., 2019) 

(Wijesekera et al., 2010). It also helps in detection of internal bleeding, complex bone 

fractures as well as aid in planning of various treatments (Battista et al., 1980; Scripes & 

Yaparpalvi, 2012). Nevertheless, a significant disadvantage of CT scanning is the 

blooming artifacts that result from high density areas in the body. Because metal is 

typically the origin of this, it is also referred to as "metal artifacts" because of how much 

more common these are (De Man et al., 1998). The issue of metal artifacts is getting worse 

on an exponential scale as metal implants become more widespread. There is an urgent 

need to develop a way to lessen or eliminate this artifact since precise CT scans are essential 

for both disease detection and diagnosis. Mechanisms include beam hardening, dispersion, 

noise, and the non-linear partial volume (NLPV) effect are among the most frequent causes 

of metal artifacts 

The evaluation of tissues encompassing metal structures, including intracranial coils, clips, 

stents, orthopedic or dental implants, fixation devices, and other metallic items, is greatly 

impacted by these artifacts (Arabi & Zaidi, 2021; Liao et al., 2019). This restriction makes 

it difficult to see structures, making it more difficult to identify early-stage problems 

including inflammation, infection, and malignancies, as well as to evaluate how well metal 

implants integrate with bone tissue. (Gjesteby et al., 2016).  

When an incoming means interacts with high Z materials, such as metals, it becomes 

"hardened," which is the principal cause of beam hardening in polychromatic x-ray beams. 

This phenomenon happens because certain materials absorb photons with low energies 

considerably more readily, raising the average energy of the beam. Because of the 

attenuation mostly caused by Compton Scattering in the high energy beam that is left 

behind, the hardening of the x-ray beam alters the beam's course. Defects in the photonic 

paths caused by beam hardening and scattering now affect the attenuation profile 

calculation during the scan. This effect is so strong in metal items that it causes streaks to 
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emerge and the introduction of cupping artifacts ultimately resulting in loss of data and 

incorrect spectral profiles (Boas et al., 2012; Hunter & McDavid, 2012). 

The non-linear partial volume (NLPV) effect happens when a metal object's edge is 

partially positioned along a projection line. The computed attenuation coefficient varies as 

a result of this. This indicates that the intensity calculated within this region no longer 

follows a linear function, which leads to a mistake in the data projection. An error occurs 

during the reconstruction of the picture profile due to this irregularity in the projection 

domain. (Glover & Pelc, 1980).  

Due to the fact that statistical noise becomes more pronounced when dealing with lower 

photon counts—that is, when the photon flux measured by the detector deviates from the 

standard Poisson Distribution—noise also played a significant role in the creation of metal 

artifacts (Hsieh, 2009). Furthermore, electronic noise also becomes more noticeable at low 

signal levels, which causes sporadic, thin streaks of light and dark to appear in the 

reconstructed image (Lee et al., 2021). The combined effect of these artifacts produces 

wildly divergent results, particularly when spectral attenuation profiles are involved. It can 

also lead to errors in subsequent tasks, like material decomposition, where the accuracy of 

the attenuation profile is crucial to achieving the best possible results. 

But we are now able to acquire an increasing amount of information from CT imaging 

because to improvements in the area and the introduction of new and superior CT 

equipment, such as multi-photon-counting CT. This has opened the door for more creative 

solutions to these issues. These developments allow us to extract a more comprehensive 

and thorough spectral attenuation profile from CT scans, and they have created new 

opportunities for innovative research aimed at diagnosing and identifying an increasing 

number of disorders within the human body from a single complete scan. It is therefore 

becoming extremely vital to increase the accuracy of the attenuation profiles we obtain 

from our CT scanners by now only removing artefacts from the reconstructed images but 

by also adjusting and correcting the required attenuation values in the spectral profiles.  
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1.1 Physical Principles of Photon-Counting CT 

Counting photons CT has the power to significantly change clinical CT. The mechanics of 

the novel energy-resolving x-ray detectors employed in photon-counting CT differ greatly 

from those of the conventional energy-integrating detectors. Photon-counting CT detectors 

are those that measure and count incoming photons. Instead of using a separate layer to 

convert x-rays into light, photon-counting detectors (PCDs) use a single wide layer 

consisting of a diode made from semiconductors to which high-voltage electricity is 

supplied. (Ballabriga et al., 2021).  The semiconductor creates a cloud of charges that are 

both positive and negative traveling in opposite directions if it absorbs a single x-ray. The 

electrical pulse that the moving charges in the electrodes produce is recorded by an 

electronic readout circuit. PCDs convert each individual x-ray photon directly into an 

electric signal, as opposed to EIDs, which are currently used in CT and need to convert 

photons to visible light first. Each photon that enters the detector element causes an 

electrical pulse to be produced, the height of which is inversely related to the amount of 

energy absorbed. The detector's electronics system keeps track of how many pulses have 

heights greater than the predetermined threshold level. The detector can then compare each 

pulse to a set of threshold values in order to classify the arriving photons into an array of 

energy bins (typically two to eight) based on the amount of energy they have (Leng et al., 

2019).  Higher contrast-to-noise ratios, improved spatial resolution, and tailored spectrum 

imaging are the outcomes of using PCDs (Willemink et al., 2018). In contrast to current 

CT technology, photon-counting CT can reduce radiation exposure, improve the 

reconstruction of images with higher resolution, alleviate beam-hardening artifacts, 

enhance the administration of contrast agents, and pave the way for novel and more precise 

non-invasive diagnostic approaches. (Wu et al., 2023). 

1.2 Benefits of Photon-Counting CT 

Photon-counting CT is different from conventional CT in several key ways and these 

differences offer unique benefits (Danielsson et al., 2021) (Flohr et al., 2020). Some of 

these benefits are: 



5 

 

a. Data acquisition: Conventional CT acquires continuous data from an X-ray 

source, while photon-counting CT acquires discrete data from individual photons. 

This results in a different data acquisition process, which can provide improved 

image quality and increased accuracy. 

b. Dynamic range: Because of its constrained dynamic range, conventional CT can 

provide pictures with significant intensity differences and low contrast. Photon-

counting CT can capture pictures with better contrast because of its significantly 

greater dynamical range. 

c. Radiation dose: Photon-counting CT can use lower radiation doses compared to 

conventional CT, as it can use a lower X-ray flux while still achieving high image 

quality. This is particularly important in medical imaging, where minimizing 

radiation exposure is critical. 

d. Image processing: Advanced techniques that cannot be applied to standard CT 

data can be used to process CT data with photon-counting. This may lead to 

enhanced precision, better image quality, and new quantitative data that may be 

utilized for treatment planning and diagnostics. 

e. Material composition: Photon-counting CT can provide information about the 

material composition of the objects being imaged, as different materials interact 

differently with X-rays. This information can be used to produce images with 

improved contrast and to quantify the properties of materials. 

f. Improved time resolution: Photon-counting CT has the ability to accurately time 

stamp individual photons, which can provide improved time resolution compared 

to other types of detectors. This is important in applications such as time-resolved 

spectroscopy and laser-induced fluorescence imaging. 

g. Improved data processing: Photon-counting CT provides a digital signal that can 

be processed and analyzed by a computer, which enables advanced data processing 

techniques, such as image reconstruction and image analysis algorithms, to be used 

for improved image quality and quantitative analysis. 

h. Reduced imaging artifacts: Through the reduction of imaging aberrations such 

scatter, metal, and beam hardening, photon-counting CT can increase picture 

accuracy. 
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1.3 Problems with Photon-counting CT 

Photon-counting CT (Computed Tomography) is a relatively new technology and, like any 

other new technology, it has some problems and limitations that need to be addressed. 

Some of the current problems and limitations of photon-counting CT include: 

a. Cost: Photon-counting CT systems are currently more expensive than conventional 

CT systems, which can limit their adoption and use in some clinical and research 

settings. 

b. Complexity: Photon-counting CT systems are more complex than conventional CT 

systems, which can make them more difficult to use and maintain. The data 

acquisition and processing systems for photon-counting CT are also more complex 

than those for conventional CT, which can increase the time and effort required to 

produce images. 

c. Limited availability: Photon-counting CT systems are currently not widely 

available, and they are only available at select research and medical institutions. 

This limits the ability of researchers and clinicians to use and test the technology, 

and it can also limit the availability of data and information about its benefits and 

limitations. 

d. Data acquisition time: Photon-counting CT systems typically require more time 

to acquire data than conventional CT systems, which can limit their use in clinical 

settings where speed is important. 

e. Image quality: Even though photon-counting CT has the ability to create high 

quality pictures with enhanced contrast, precision, and lower noise, other factors 

including noise, photon hunger, and artifacts from data processing can still affect 

the image quality. 

f. Radiation dose: Although photon-counting CT can use lower radiation doses 

compared to conventional CT, it still requires the use of ionizing radiation, which 

can be a concern for some patients and healthcare providers. 

g. Image analysis: The advanced data processing techniques used in photon-counting 

CT can also introduce new sources of error and artifacts into the images, which can 

limit the accuracy of the images produced and the results of the image analysis. 
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Moreover, the photon-counting detector that the PCT uses also comes with a lot of 

technical problems these that result in errors and noise in the images produced. Some of 

these technical challenges include: 

a. Dead-Time: Dead-time is the period during which a photon-counting detector is 

not able to detect incoming photons after a primary photon has been detected. This 

is caused by the time required for the detector to reset itself and prepare for the next 

photon. Dead time can result in errors in the measurement of the number of photons 

detected, and it can also result in photon starvation, where the number of photons 

detected is lower than the actual number of photons present. 

b. Crosstalk: Crosstalk occurs when two or more photons are counted as a single 

event, resulting in an overestimate of the number of photons detected. Crosstalk 

can result in image artifacts, such as streaking and blurring, and it can also result in 

an overestimate of the density of tissues in the image. 

c. After-pulsing: After-pulsing occurs when a detector counts an additional photon 

after a primary photon has been detected. This can result in errors in the 

measurement of the number of photons detected, and it can also result in image 

artifacts. 

d. Nonlinearity: Photon-counting detectors can have nonlinear response to incoming 

photons, which can result in errors in the measurement of the number of photons 

detected. 

e. Dark Counts: Dark counts are counts produced by the detector in the absence of 

incoming photons. These counts can result in errors in the measurement of the 

number of photons detected, and they can also result in noise in the images. 

f. Pile-up: Pile-up occurs when two or more photons arrive at the detector so closely 

in time that they are counted as a single event. Pile-up can result in errors in the 

measurement of the number of photons detected, and it can also result in image 

artifacts. 

g. Data Processing Artifacts: The data processing algorithms used to generate 

images from the data acquired by the photon-counting detector can also introduce 

errors and noise into the images. This can include errors introduced by the 
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correction of dead time and after-pulsing, as well as errors introduced by the image 

reconstruction algorithms. 

To minimize these technical challenges, a number of methods have been developed, such 

as dead time correction algorithms, crosstalk correction algorithms, and image 

reconstruction algorithms that take into account the unique characteristics of photon-

counting detectors. However, further research and development are needed to address these 

technical problems and to improve the performance of photon-counting detectors and 

photon-counting CT. And thus, while photon-counting CT has the potential to offer several 

benefits over conventional CT, such as improved image quality and radiation dose 

reduction, it also faces several technical challenges that result in errors and noise in the 

images produced. Addressing these technical challenges will be essential for the successful 

implementation and widespread adoption of photon-counting CT. 

1.4 Effects of acquisition parameters  

Adjusting the scanning parameters in photon-counting CT plays a major role in the 

reduction of artifacts and enhancement of the resultant images. Metal artifacts occur due 

to the interaction of X-rays with high-density materials like metal implants thus, changing 

acquisition parameters can greatly reduce these artifacts (Vellarackal & Kaim, 2021) 

(Richtsmeier et al., 2023) (Skornitzke et al., 2023) (Puvanasunthararajah et al., 2021). 

Acquisition parameters that can greatly affect these artefacts include: 

a. Tube Voltage (kVp): Changing the tube voltage affects the energy of the emitted 

X-ray photons. Increasing the tube voltage results in higher-energy photons which 

are less prone to being absorbed by the metal, reducing beam hardening artifacts 

caused by low-energy photons getting absorbed more readily.  

b. Tube Current (mA): Adjusting the tube current regulates the number of X-ray 

photons generated this in turn increases the signal-to-noise ratio, providing better 

images by reducing noise levels. However, this increases the radiation exposure to 

the patient and thus it is necessary to find a balance between image quality and 

dose. 
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c. Exposure Time: Longer exposure times can potentially help capture more data, 

improving the image quality. However, longer exposure may also increase patient 

motion artifacts. Likewise, shorter exposure times may reduce motion artifacts but 

could lead to a decrease in image quality due to insufficient photon number of 

photons being detected. 

d. Spectral Filtering: Implementing spectral filters like tin filters can optimize the X-

ray spectrum. These filters preferentially remove lower-energy photons, reducing 

the impact of beam hardening and scatter caused by metal implants. 

In summary, tweaking acquisition parameters in photon-counting CT, such as tube voltage, 

current, exposure time and spectral filtering allows for customization to mitigate metal 

artifacts. However, these adjustments often involve trade-offs between image quality and 

radiation dose, necessitating careful optimization for especially in clinical scenarios. 

1.5 Applications of Photon-counting CT: 

Photon-counting CT has paved to various applications for medical imaging and diagnosis 

and has the ability to revolutionize the current healthcare system. Its ability to discriminate 

photon energies, advanced image reconstruction algorithms, and enhanced contrast-to-

noise ratio contribute to its effectiveness across healthcare system. It can precisely analyse 

and utilize different energy levels and thus, PCCT can enhance diagnostic accuracy and 

provide a detailed anatomical and functional information which is critical for various 

medical disciplines. 

Among these applications some of the most notable ones include:  

a. Improved Soft Tissue Contrast: 

PCCT's has the capability to differentiate tissues based on their energy absorption 

profiles allowing for improved soft tissue contrast. This is achieved by analysing 

the varying attenuation characteristics of different tissues. PCCT acquires high-

resolution images at multiple energy levels and therefore enhances the visualization 

of soft tissues. This is very crucial in oncology for detecting minute lesions, in 
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vascular imaging for precise delineation of vessels, and in neurological studies for 

accurate depiction of brain structures and pathologies. 

b. Material Decomposition: 

PCCT has energy-resolving capabilities which enables material differentiation by 

assessing how different materials interact with varying photon energies. It 

accurately identifies and distinguishes various materials, such as tissues, implants, 

or contrast agents, based on their unique energy absorption properties. Moreover, 

with new and improved algorithms PCCT is also able to perform material 

decompositions and is able to segment material profiles as well as quantify the 

amount of material present. This helps in identifying the location of various 

materials within the body, mitigating metal artifacts, and assessing the integration 

of implants into surrounding tissues. 

c. Metal Artefacts Reduction: 

Photon-counting CT effectively reduces the metal artifacts using multiple 

techniques. It utilizes energy thresholding to differentiate metal-related signals 

from imaging photons, using spectral analysis to identify the material composition 

and selectively exclude metal-induced artifacts. Advanced iterative reconstruction 

algorithms correct for metal impact on projections, reducing artifacts by 

compensating for scattering and beam hardening. Moreover, specific correction 

algorithms address photon starvation, scatter, and beam hardening caused by metal, 

enhancing image quality during reconstruction. Optimizing scanning parameters 

further aids in artifact reduction, balancing image quality with radiation exposure. 

These combined strategies enable photon-counting CT to produce clearer, 

diagnostically valuable images despite the presence of metal implants. 

 

d. Low Radiation Dose Imaging: 

PCCT has the ability to achieve high-quality images at lower radiation doses 

because of its efficient energy utilization and noise reduction capabilities. It uses 

photon-counting detectors to acquire high-resolution images while minimizing 

radiation exposure. This makes it particularly beneficial for paediatric imaging and 

scenarios where reducing radiation dose is especially important. 
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e. Quantitative Imaging and Material Analysis: 

PCCT's photon-counting detector allow for quantitative assessment of tissue 

density and material composition. PCCT also provides precise measurements of 

tissue characteristics, such as bone density for osteoporosis evaluation and accurate 

material analysis for implants. By quantifying material composition, PCCT aids in 

understanding tissue properties and assessing health conditions more accurately. 

f. Spectral Imaging and Functional Assessment: 

The Spectral Imaging from PCCT allows for the assessment of tissue perfusion and 

function. PCCT can generate energy-specific images to map specific materials, 

such as iodine, aiding in angiography or organ perfusion studies. This provides 

insights into tissue functions and enhances the understanding of physiological 

processes. 

g. Non-invasive Angiography and Cardiovascular Imaging: 

PCCT enables high-resolution non-invasive imaging of blood vessels and cardiac 

structures and accurately delineates vascular structures, identifies plaque 

composition in coronary arteries, and assesses cardiovascular diseases. The 

technology's ability to provide detailed images with reduced artifacts means it can 

help with precise diagnoses in cardiac care. 

h. Point-of-Care Imaging and Precision Medicine: 

The enhanced image quality, portability, and reduced radiation exposure make 

PCCT very suitable for point-of-care imaging as well. It allows real-time 

diagnostics at the bedside, aiding in prompt decision-making and personalized 

patient care. Moreover, it’s improved image quality and reduced artifacts facilitate 

accurate on-the-spot evaluations. 

1.6 Metal Artefacts Reduction (MAR) Algorithms  

Metal artifact reduction (MAR) is a crucial image processing technique used in computed 

tomography (CT) to mitigate the deleterious effects of metal artifacts on image quality and 

diagnostic accuracy. Metal artifacts commonly arise in CT imaging when highly 

attenuating materials, such as metal implants or foreign bodies, are present within the 

scanned region. These artifacts manifest as streaks, shadows, or bright spots in the 
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reconstructed CT images, leading to obscuration of anatomical structures, distortion of 

tissue boundaries, and degradation of image quality. 

Metal Artefact Reduction (MAR) can be accomplished through the utilization of complex 

and sophisticated computational techniques, commonly referred to as MAR algorithms. 

MAR algorithms detect and segment the corrupted projection data are caused by metallic 

implants, and further modify the corrupted data by replacing them with estimates of the 

corrected values. MAR techniques typically involve advanced image processing and 

reconstruction methods, often leveraging principles from signal processing, machine 

learning, and optimization theory. We can divide these algorithms into conventional and 

deep-learning-based approaches. Conventional methods typically involve mathematical 

models to identify and correct metal artifacts in CT images. These methods often rely on 

assumptions about the behavior of metal objects in the imaging process and employ 

strategies such as interpolation, segmentation, or statistical modeling to mitigate artifacts. 

While conventional algorithms have been widely used and have demonstrated 

effectiveness in certain scenarios, they may struggle to handle complex artifact patterns or 

variations in metal composition. 

In contrast, deep-learning-based approaches leverage the power of artificial neural 

networks, particularly convolutional neural networks (CNNs), to automatically learn and 

extract complex features directly from the data. These algorithms are trained on large 

datasets of CT images with and without metal artifacts, allowing them to learn intricate 

mappings between corrupted and artifact-free images. Deep learning models excel at 

capturing subtle patterns and relationships in the data, making them well-suited for tasks 

like metal artifact reduction. By learning from data rather than relying on predefined rules 

or assumptions, deep-learning-based MAR algorithms can adapt to diverse artifact patterns 

and achieve superior performance in artifact suppression. However, they require large 

amounts of labeled training data and computational resources for training and inference. 

Nonetheless, their remarkable flexibility and effectiveness make them increasingly popular 

in the field of medical image reconstruction and artifact reduction.  

MAR algorithms are categorized into four main groups 



13 

 

• Sinogram domain (Projection-Based) 

• Image domain 

• Dual Domain 

• Iterative Approaches 

a. Projection-Based MAR Algorithms: 

These algorithms handle metal artifact reduction directly in the sinogram, which represents 

the raw data acquired by the CT scanner before image reconstruction. Projection-based 

methods focus mainly on identifying and rectifying corrupted data points caused by metals. 

Various techniques, such as forward projection, interpolation, or masking of corrupted 

projections, are employed to minimize the artifacts. 

b. Image Domain MAR Algorithms: 

Image domain approaches focus on correcting artifacts after the image has been 

reconstructed. The algorithms then identify metal regions within the reconstructed images. 

The algorithms then either correct the images in the image domain or forward-project these 

regions back into the sinogram where the corrupted projection data is replaced or corrected 

to reduce artifacts. Commercially available MAR algorithms often use this method due to 

its effectiveness in identifying and mitigating artifacts in the image domain. 

c. Dual Domain MAR Algorithms: 

Dual Domain methods, work simultaneously in both projection and image domain in order 

to achieve MAR. These methods leverage the strengths of each approach to overcome their 

respective limitations and achieve better artifact suppression in computed tomography 

(CT) images. 

d. Iterative Approaches: 

Iterative methods refine the CT images by repetitively updating and refining the 

reconstructed image. These approaches use mathematical optimization techniques, refining 

the image and gradually reducing the metal artefacts. 
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Each category aims to minimize metal artifacts by detecting, segmenting, and modifying 

the corrupted data caused by metal implants. They differ in the domain they primarily 

operate in – sinogram, reconstructed image, or through iterative image refinement. The 

selection of a specific approach often depends on the characteristics of artifacts present and 

the desired trade-offs between computational complexity and artifact reduction efficiency. 

To summarize, photon-counting CT (PCCT) represents a significant advancement in 

medical imaging with potential to revolutionize the field of medical imaging. However, 

to completely utilize its benefits, thorough research is required to address the challenges 

associated with PCCT, particularly in mitigating metal artefacts. By minimizing these 

artefacts and preserving information, PCCT can be optimized for accurate diagnosis and 

comprehensive analysis, paving the way for its widespread clinical application and 

transformative impact on patient care.  
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CHAPTER 2: LITERATURE REVIEW 

2.1 Conventional MAR Approaches: 

2.1.1 Projection Domain: 

This section details some of the conventional MAR approaches in the projection domain, 

where the metal artefacts are delt with directly in the sinogram domain.  

Table 2.1: Conventional MAR approaches in the projection domain 

Technique CT type Setup Key feature 

Metal artifact reduction 

technique for flat detector 

based on forward projection 

(Prell et al., 2009) 

FD-CT Experimental Increased CT value precision 

and reduced picture noise 

Sinogram Total Variation 

(TV) inpainting (Duan et al., 

2008) 

Conventional 

CT 

Simulation • Images of superior quality 

after reconstruction 

• smoothly and accurately 

fill metal projection gaps 

Iterative De-blurring for CT 

Metal Artifact 

Reduction(Wang et al., 

1996) 

Conventional 

CT 

Simulation • Simultaneous Iteration 

• Faster Convergence 

Non-local Means Algorithm 

(Mouton et al., 2012) 

Conventional 

CT 

Experimental Achieved notable gains over 

a reprojection-reconstruction 

method and a traditional 

linear interpolation-based 

approach. 

  

In (Prell et al., 2009), the forward projection-based metal artifact reduction (FP-MAR) and 

flat detector CT (FD-CT) correction algorithms that the authors have devised can suppress 
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secondary artifacts brought about by the interpolation approach and outperform 3DLI-

MAR in all untruncated cases. It performs poorly on the, nevertheless. When the FOV is 

greater than the subject size, FP-MAR produces inferior results. 

In (Duan et al., 2008) the authors have proposed Projection based MAR technique. The 

technique consists of TV painting method which consists of five steps, i.e. Initialization, 

segmentation, reprojection, inpainting and reconstruction respectively. Whereas setup and 

use FBP to recreate the image. Thresholding is used in segmentation to identify metal 

objects in the reconstructed image. The metal objects are reprojected to the Metal 

Projection Region (MPR) using reprojection. Metal items are inserted into the 

reconstructed inpainted data by the use of TV inpainting in MPR. The outcome 

demonstrates that in both noisy and noise-free incomplete projection data, TV inpainting 

performed better than linear interpolation. Nevertheless, this method's drawback is that it 

requires a high computing cost for handling spherical metal objects.  

In (Wang et al., 1996) the authors have proposed an iterative method of the EM type, 

comparable to multi ART (MART). The primary distinction between the MART and EM 

iterative algorithms is the application of correction factors to the FOV after they have been 

concurrently computed while accounting for all projection profiles. The non-negativity 

restriction may have aided the EM-type reconstruction in achieving a faster convergence 

rate, according to the authors' additional comparison of the EM- along with ART-type 

iteration algorithms.  However, the ART-type approach suppressed the noise better, maybe 

because the noise we added to the projection data was additive. The authors came to the 

conclusion that the computing complexity of the metal reduction using EM and ART types 

is the same.  

This book-based method limits the intensity of the corrected pictures and uses the non-

local means filters for post-filtering, which enhances the output of a traditional sinogram 

completion-based MAR strategy. The performance of the suggested method is assessed by 

the authors using both a conventional qualitative comparison according to visual quality 

and an entirely new quantitative analysis technique, which is based on the ratio of noisy 

3D SIFT detection points found. Assessing the effect of MAR on the use of computer 
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vision algorithms for autonomous object identification is the primary goal of the 

quantitative analysis. According to the study, the suggested approach works better than 

algorithms based on reprojection-reconstruction and linear interpolation, especially when 

it comes to lowering the frequency of new artifacts in the fixed images. The positive results 

show that the suggested approach can enhance the effectiveness of computational and 

human evaluations of 3D CT baggage images for transportation security screenings. The 

suggested approach can aid in improving overall security measures and the detection of 

potentially harmful materials by lowering metal artifacts in 3D CT baggage images. 

2.1.2 Image domain 

This section details some of the conventional MAR approaches in the image domain, where 

the metal artefacts are dealt in the image domain after the reconstruction.  

Table 2.2: Conventional MAR approaches in the Image domain 

 

Technique 

 

CT Type 

Data 

Acquisition 

Setup 

 

Key Features 

Novel subtraction 

method (S-MAR) 

(Zheng et al., 2022) 

dual-layer 

detector 

spectral CT 

Experimental Subtracts out the contribution of 

metal artefacts and improves 

image quality 

Constrained 

optimization (Zhang 

et al., 2011) 

Fan-Beam CT Simulated Outperforms the FBP-type methods 

and ART and EM methods and 

yields artifacts-free images. 

Tilted CT volume 

post-processing sets 

(Ballhausen et al., 

2014) 

Conventional 

CT 

Experimental • Computationally inexpensive 

• Comparable quantitatively to well-

established techniques 

• Surpassing visually in a straight 

comparison 

Techniques for 

Multi-Layer 

Entropic 

Conventional 

CT 

Experimental Provides promising 

performance in detecting and 

removing metal artifacts from 
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Thresholding and 

Label Filtering 

(Koonsanit et al., 

2009) 

dental CT images. 

Additional Tilted 

Scan based CT (Kim 

et al., 2019) 

Conventional 

CT 

Both Shows possibilities in identifying 

and eliminating metal artifacts from 

dental CT scans 

Morphological 

image Filtering 

(Rodríguez-Gallo 

et al., 2019) 

Conventional 

CT 

Experimental Significantly reduced artifacts 

and improve image quality. 

Empirical Scatter 

Correction (ESC) 

(Meyer et al., 

2010) 

Conventional 

CT 

Simulated • Convenient and flexible 

method 

• Requires neither a precise 

calibration nor a great deal of 

prior knowledge. 

  

The article (Zheng et al., 2022) proposes a method that involves acquiring two CT scans 

of the same patient: one with the metal embolism coil in place and another without the coil. 

The two scans are then registered using a deformable registration algorithm, which aligns 

the two images based on their anatomical features. The aligned images are then subtracted, 

resulting in an image that shows only the tissue surrounding the metal coil, with reduced 

metal artifact. The authors name this approach as Novel subtraction method (S-MAR). The 

method was tested on 20 patients who had undergone cerebral aneurysm embolization 

using metal coils. The outcomes demonstrate a notable decrease in metal artifacts, 

improving the ability to see the surrounding tissue. In comparison to the uncorrected image, 

the suggested approach was able to minimize the metal artifact with an average of 51.3%. 

In this article (Zhang et al., 2011), the authors present a constrained optimization-based 

approach that entails estimating the projection data that has been corrupted by metal 

artifacts and recovering the true attenuation coefficients through the use of a model that 
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makes use of background information about the imaging system and the object being 

imaged. The technique doesn't require any prior understanding of the precise geometry or 

substance of the implant because it is made to function with a variety of different metal 

implants. The constrained optimization method basically involves estimation of the 

corrupted projection data caused by metal artifacts using a forward projection model. 

Following this, the technique seeks to solve a limited optimization problem incorporating 

past information of the imaging system and the object being photographed in order to 

retrieve the true attenuation coefficients. When compared to the uncorrected photos, this 

method reduced the metal artifacts by up to 90%, and when compared with various state-

of-the-art methods, it reduced them by up to 50%. Additionally, it showed a high level of 

precision and resilience with respect to various metal implant types and imaging systems, 

with no picture quality loss in non-metallic areas. However, the following method was 

found to be more time-consuming than some other methods, but can be improved with 

further optimization. 

The authors in this method (Ballhausen et al., 2014) used a unique approach of acquiring 

a set of CT volumes that are tilted at different angles by using a tilting gantry that allows 

for the acquisition of tilted volumes. The tilted volumes are then reconstructed using 

standard CT reconstruction algorithms to produce a set of individual images, each with its 

own metal artifacts. Simple post-processing algorithm is used to correct the artifacts at first 

then the authors algorithm combines the tilted volumes into a final corrected using a 

combination of weighted averaging and interpolation of the voxel values in the individual 

images. Finally, an iterative refinement process is applied to the corrected volume to further 

reduce any residual metal artifacts. The algorithm was tested on a range of phantom and 

clinical datasets with metal implants, and compared with other state-of-the-art techniques 

for metal artifact reduction and was it reduced the metal artifacts by up to 75% compared 

to the uncorrected images. 

In this study(Koonsanit et al., 2009), the authors propose a post-processing technique for 

automatically removing metal artifacts from dental CT scans, presuming that the artifact-

containing pictures are already accessible. The suggested approach comprises of two steps: 

first, the dental region of the image is segmented using a regional entropy thresholding 
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methodology, and secondly, utilizing the connected pixel labeling concept, a label filtering 

technique is employed to remove isolated pixels, or the metal artifacts. Using hand-labeled 

dental pictures as the reference, this algorithm was tested on thirty sets of dental CT images, 

and its performance was assessed with regard to accuracy, sensitivity, and specificity. The 

algorithm's sensitivity was 87.89%, specificity was 99.54%, and accuracy was 99.21%, 

according to the results. These experiments demonstrated the robustness and effectiveness 

of the said method, which can notably improve the 3D visualization of CT images by 

automatically detecting and removing metal artifacts. 

In this study(Kim et al., 2019), the researchers suggest a novel technique for minimizing 

metal artifacts in CT scans by utilizing complementing data from a separate slanted CT 

scan. The technique is based on the observation that the most noticeable metal artifacts in 

CT pictures are found along the direction of the x-ray beam, and that complementary 

information from an angled CT scan can be obtained without the presence of these metal 

abnormalities from the earlier scan. The procedure entails creating an image processing 

algorithm that suppresses the metal artifacts by using structural similarity (SSIM). 

Furthermore, if more suppression of metal artifacts in each scan is required, an established 

metal artifact reduction (MAR) technique can be applied. A simulation investigation of the 

pelvis region of an XCAT numerical phantom and a field test of the head area of the Rando 

phantom were used to validate the efficiency of the suggested method. The findings 

showed that, in both the simulation and experimental investigations, the suggested strategy 

successfully decreased the mean exact percentages of errors by as much as 86% and 89%, 

respectively.  

In (Rodríguez-Gallo et al., 2019), the author proposes a morphological image filtering 

approach for MAR, called MIFMAR. In the MIFMAR algorithm, the metal implants are 

first identified in the CT-images using thresholding. Morphological picture filtering 

methods are then applied to the CT images to reduce the metal artifacts while preserving 

the surrounding tissues. The filtered images are then combined with the original CT images 

to produce final images with reduced metal artifacts and improved image quality. Three 

popular MAR techniques—linear interpolation (LI) as well as  normalized metal artifact 

reduction (NMAR) and frequency split metal artifact reduction (FSMAR)—were 
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compared to MIFMAR. The linear-weighted κ test was utilized to assess inter-observer 

agreement, and the non-parametric Friedman-ANOVA test was employed to compare 

image quality across the various techniques. The outcomes demonstrate that, with good 

inter-observer acceptance, MIFMAR may effectively minimize metal artifacts in CT 

images while maintaining tissue features and enhancing image quality. In addition, there 

was a significant (p<0.01) improvement in image quality & diagnostics scores when 

compared to the other three approaches. MIFMAR doesn't require raw CT data and is 

computationally cheap. 

In this article (Meyer et al., 2010) the author proposes a fresh approach to CT scatter 

correction to get rid of metal artifacts in scans. Conventional scatter correction techniques 

rely on modeling the scatter content using scatter kernels based on raw data or data from 

Monte Carlo simulations of photon trajectories. These techniques take a lot of time and 

demand in-depth understanding of the spectral characteristics of the scanner. Here, they 

present an approach for empirical scatter correction (ESC) that doesn't require a lot of pre-

knowledge or calibration. The ESC algorithm makes the assumption that a scatter-free 

linear combination that includes the uncorrected image and different ESC basis images 

exists. By optimizing a flatness condition of the combined volume, the coefficients 

comprising the linear combination are found in the image domain. By employing the 

gradient descent method in conjunction with a line search, the author reduced the overall 

variation in soft tissue regions. Then, with the addition of scatter using a Monte Carlo 

scatter calculation algorithm, they assessed ESC using both simulated data and multiple 

patient data sets obtained using a clinical cone-beam spiral CT scanner. These datasets also 

included metal implants simulations. Our initial findings show that ESC effectively 

minimizes metal artifacts as well as scatter artifacts in general. When compared to 

conventional techniques, ESC is more versatile, inexpensive to compute, and doesn't 

require knowledge of the parameters of the scanner.  

2.1.3 Iterative reconstruction 

This section details some of the conventional MAR approaches that remove metal artefacts 

using iterative reconstruction techniques. 
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Table 2.3: Conventional MAR approaches using iterative reconstruction 

 

Technique 

 

CT Type 

Data 

Acquisition 

Setup 

 

Key Features 

Constrained One-Step 

Spectral CT Image 

Reconstruction 

(cOSSCIR) (Schmidt et 

al., 2022) 

Photon-

counting CT 

Simulated By avoiding beam 

strengthening, noise, 

and photon hunger, 

cOSSCIR prevents 

metal artifacts. 

  

In this article (Schmidt et al., 2022) the author proposes the constrained one-step spectral 

CT image reconstruction (cOSSCIR) approach as a solution to metal artifacts in computed 

tomography (CT) that result from beam hardening, noise, and photon starvation. Using a 

physics-based forward model that takes beam hardening into account, the program directly 

calculates basis materials maps from photon-counting data. It then applies restrictions to 

the basis maps to stabilize the process of decomposition and lessen streaks brought on by 

noise and photon starvation. Because the spectral data is not required to be registered, the 

approach can be used even in cases when some energy window measures are not available. 

Photon-counting CT simulation of a virtualized pelvis phantom with symmetrical hip 

prosthesis and low-contrast soft tissue texture were used to test the algorithm. A "two-step" 

decomposition method and a non-spectral total variation restricted least-squares the 

reconstruction have been compared with the cOSSCIR images. With a standard variation 

of 20 HU in the central iodine region of interest and a quantitative error of -1 HU, the 

results demonstrated that cOSSCIR was more accurate and stable than the other 

approaches. Increasing photon deprivation did not change the cOSSCIR images' bias or 

standard deviation. The method reduced metal artifacts while accurately recreating the 

texture of soft tissue. All things considered, cOSSCIR offers a practical method for 

reducing metal artifacts in CT. 
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2.2 Deep Learning Based MAR:  

This section details some of the prominent deep learning based  MAR approaches that has 

shown reliable and accurate results. 

Table 2.4: Deep Learning-based MAR approaches 

 

Technique 

 

CT Type 

 

Domain 

Data 

Acquisition 

Setup 

 

Key Features 

Deep Residual 

Learning 

(Huang et al., 

2018) 

Convention

al CT 

Image Simulated Significantly lowers metal 

artifacts and enhances the view of 

important structures. 

Self-

supervised 

Cross-domain 

Learning (Yu 

et al., 2021) 

Convention

al CT 

Image Simulated Yields better MAR results and 

performs better than other 

persuasive techniques. 

Spectral Deep 

Learning 

(Busi et al., 

2022) 

Photon-

counting CT 

Image Simulated It is adaptable and generalizable to 

the current issue. 

DoDoNet (Lin 

et al., 2019) 

Convention

al CT 

Hybrid Simulation Radon consistency reduction, end-

to-end dual domain network for 

MARCH, and radon inversion 

layer. 

U-Net (Zhang 

& Yu, 2018) 

Dental CT Projection Simulation Reduced computational 

complexity 
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To lessen metal artifacts within cervical CT images, the authors of (Huang et al., 2018) 

presented a unique residual learning technique that utilized a convolutional neural network 

(RL-ARCNN). For deep residual learning, the RL-ARCNN was trained on a dataset 

comprising artifact-free and artifact-residual images as well as artifact-inserted, to produce 

a large number of image patches. Then, using cervical CT scans, the model that had been 

trained was applied to MAR. On a test group of simulated artifact photos, the suggested 

approach produced a good MAR result with a peak signal-to-noise ratio (PSNR) of 38.09. 

The PSNR of residual learning has been determined to be greater than that of conventional 

learning, suggesting a notable reduction in artifacts with CNN-based residual imaging. In 

a 512x512 image, artifact removal took less than a second on avg. The investigators came 

at the conclusion that RL-ARCNN is a useful technique for lowering metal artifacts in 

cervical CT scans. It makes key structures easier to see and gives radiation oncologists 

more assurance when it comes to target delineation. This technique effectively removes 

metal artifacts without the need for sophisticated post-processing steps or sinogram data. 

In (Yu et al., 2021)Lequan Yu suggests a deep learning-based method for metal artifact 

reduction (MAR). Based on a self-supervised cross-domain learning framework, his 

approach eliminates the need for pairs of CT scans with artifacts and those without, as it is 

a network learning technique. In the provided metal-free sinogram, where the metal trace 

is recognized by the forward projection of metallic masks, a neural network is trained to 

recover the values of the metal trace region. A newly developed filtered backprojection 

(FBP) reconstruction loss is applied to enhance the MAR image quality by motivating the 

network to produce more precise finishing results. Additionally, a residual-learning-based 

image refinement module is employed to lessen supplementary artifacts in the recreated 

CT images. The metal trace substitution is added to the overall framework and substitutes 

CNN-MAR 

(Hegazy et al., 

2019) 

Convention

al CT 

Projection Both • RMSE decreases and the 

SSIM increases dramatically  

• performance depends upon the 

size of the training data 
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the previous sinogram produced by the frontward projection of the CNN output for the 

metal-affected projections of the original sinogram in order to maintain the fine structural 

features and authenticity of the final MAR picture. Lastly, he reconstructs the complete 

MAR image using FBP methods. The approach beats previous state-of-the-art approaches 

and yields superior MAR findings when tested on both simulated & real artifact data. 

The method in (Busi et al., 2022) specifically uses the energy data from Spectral X-ray 

computed tomography (SCT). Although SCT reduces energy-dependent distortions, it still 

suffers from metal artifacts caused by photon starvation, especially in low-energy channels. 

The spectral deep learning-based metal artifact reduction technique has been presented to 

deal with this problem. The technique effectively minimizes streaked artifacts in all energy 

pathways and can improve low-energy reconstructive quality that has been impacted by 

metal artifacts. To enhance image quality, this method makes use of the extra data that is 

accessible in the energy domain. Additionally, the correction technique is parameter-free 

and takes only 15 ms per energy channel, which satisfies industrial scanners' need for near-

real-time performance. 

In order to address the issue of material artifacts, the authors of (Lin et al., 2019) have 

created a deep learning architecture known as an end-to-end trainable Dual Domain 

Network (DuDoNet), which simultaneously enhances CT images and restores the sinogram 

consistency. The Radon invert Layer, a Radon consistency loss, SE-Net, and IE-Net make 

up the model. The results of the experiments indicate that DuDoNET has outperformed the 

most advanced MAR approaches.  

In The CNN-MAR model, an open artifact reduction framework that can separate tissue 

components from artifacts and merge the relevant data to create CNN images, was 

presented by the authors in (Zhang & Yu, 2018) The intended tissue manipulation 

technique is used to suppress the artifacts in order to produce a high-quality previous 

image. Statistical and clinical simulations have demonstrated that CNN-MAR can 

significantly minimize metal artifacts as well as restore fine features close to the metals. 

In (Hegazy et al., 2019) the authors have introduced the U-NET model for the MAR in 

dental CT. The four distinct CT configurations—Unet-64, Unet-32, Unet-16, and Unet-8—
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have been compared by the authors. According to the experiments, the computing speeds 

of Unet-32 and Unet-16 are boosted by approximately 3.6 and 7.3 times, respectively, when 

compared to Unet-64. Thus, with 7.3 times faster computing, Unet-16 was able to divide 

up the metallic regions with a degree of precision that was extremely close to that of the 

original U-net. The authors did, however, suggest that because of the small quantity of data 

the model is conditioned on, their technique is still unsuitable for clinical use. 

In conclusion, there are a lot of MAR algorithms available, mostly for dual or conventional 

CT, but not many for PCCT. As a result, a MAR algorithm that is specifically made to 

correct multi-energy images obtained from SPCCT and that can operate simultaneously 

across multiple energy bins must be developed. 
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CHAPTER 3: METHODOLOGY 

In this chapter, the details of the experimental procedures, data collection methods, and 

analytical techniques utilized to create our MAR algorithm. The overview of the 

methodology is described in a comprehensive workflow shown in Fig 3.1. 

 

Figure 3.1 The figure presents the methodological pipeline implemented in this 

study. It shows the acquisition, processing, and utilization of datasets for the 

development and analysis of a machine learning-based Metal Artifact Reduction 

(MAR) algorithm.  

3.1 MARS Microlab 5x120 

The MARS Microlab 5x120 is a cutting-edge spectral photon-counting computed 

tomography (CT) scanner engineered by MARS Bioimaging Ltd. This advanced imaging 

system is designed to deliver high-resolution and energy-resolving imaging capabilities for 

various applications in medical diagnostics and research. At the heart of the MARS 

Microlab 5x120 lies its core technology, leveraging spectral photon-counting capabilities. 

It employs the Medipix 3RX chip, an innovative detector renowned for its ability to discern  
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different energy levels of incoming photons. This chip is instrumental in achieving superior 

spectral resolution by dividing X-ray energy into discrete bins, allowing detailed analysis 

of different materials and tissues. The Medipix 3RX chip is a pivotal component within the 

scanner. It operates using charge summing mode and effectively segregates X-ray energy 

into five distinct energy bins. This functionality enables precise energy measurements, 

crucial for differentiating between various materials and tissues based on their energy 

absorption properties. The MARS Microlab 5x120 boasts high-resolution imaging 

capabilities, enabling detailed visualization of anatomical structures and materials. It offers 

exceptional spatial resolution, allowing for fine differentiation and analysis of tissues, 

materials, and artifacts. The scanner is equipped with customizable scan parameters, 

allowing meticulous control over imaging conditions. Operators can adjust tube current, 

tube voltage, slice thickness, number of projections, and energy thresholds to optimize 

image quality and capture specific energy ranges relevant to the study or diagnostic needs. 

This system empowers researchers and medical professionals with the means to delve into 

intricate material characterization and high-resolution diagnostics, contributing 

Figure 3.2: Shows the MARS Microlab 5x120, a cutting-edge spectral photon-counting 

CT scanner engineered by MARS Bioimaging Ltd. 
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significantly to advancements in both medical and scientific research domains (Moghiseh 

et al., 2023) (Ibrahim et al., 2024). 

3.2 Medipix 3RX Chip 

The Medipix 3RX chip stands as a pivotal component within photon-counting computed 

tomography (CT) systems, renowned for its remarkable capabilities in spectral imaging 

and precise energy resolution. Developed by CERN (European Organization for Nuclear 

Research), this chip constitutes a cornerstone of CT detectors, delivering advanced 

functionality that allows for enhanced differentiation of X-ray energies. It finds extensive 

application in medical imaging and material analysis due to its unparalleled features. 

Operating on the principle of direct conversion technology, the Medipix 3RX chip is 

ingeniously designed to interact with incoming X-ray photons. As X-rays penetrate the 

detector's semiconductor material—often silicon, Cadmium Telluride (CdTe), or Cadmium 

Zinc Telluride (CZT)—they create electron-hole pairs within the semiconductor layer. 

These pairs, comprising positively charged holes and negatively charged electrons, travel 

in opposite directions when subjected to an electric field. 

The chip's pixelated elements serve as detectors, capturing and quantifying these charge 

clouds generated by the interaction of X-ray photons. Each pixel registers the number of 

charge carriers produced by the incoming photons, and based on this count, discerns the 

energy levels of absorbed X-ray photons. Through this precise energy measurement, the 

chip differentiates incoming photons, categorizing them into discrete energy bins—

typically five in the case of Medipix 3RX. This distinction enables the chip to provide 

detailed spectral information, identifying materials and tissues based on their unique 

energy absorption characteristics. With exceptional energy resolution, the Medipix 3RX 

chip stands out for its ability to discern X-ray photons based on their energy levels with 

extraordinary accuracy. Additionally, its pixelated design allows for high spatial 

resolution, capturing intricate details and structures within the imaged object or specimen. 

By directly converting X-ray photons into electrical signals without intermediary steps, the 

chip significantly reduces electronic noise, contributing to clearer and more accurate 

imaging results (Ballabriga et al., 2013). 
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The chip's sophisticated capabilities in energy discrimination, high spatial resolution, and 

noise reduction position it as an indispensable component within photon-counting CT 

systems. Its precise spectral imaging capabilities significantly enhance diagnostic 

capabilities in both medical and material science applications, enabling detailed analysis 

and characterization of diverse materials and tissues. 

3.3 QRM Phantom 

The QRM phantom is a specialized and standardized phantom used in medical imaging, 

particularly in quality assurance, calibration, and validation of imaging systems such as 

computed tomography (CT) scanners. It serves as a controlled test object designed to 

mimic various tissue properties and structures found in the human body. The QRM 

phantom is engineered with specific materials and inserts to simulate anatomical features 

and evaluate imaging performance. 

Comprising a robust and reproducible structure, the QRM phantom typically replicates the 

size and shape of a human body part, often a specific anatomical region or organ system. 

It's manufactured with materials that imitate human tissues' radiodensity and composition, 

including various inserts mimicking bones, soft tissues, and sometimes materials like 

metals or contrast agents to simulate implants or anomalies within the body. The phantom 

is instrumental in assessing and calibrating CT systems by providing known standards for 

testing image quality, quantifying accuracy, evaluating resolution, and detecting artifacts. 

By mimicking human tissues' characteristics, radiologists and technicians can verify and 

fine-tune imaging parameters, ensuring that the CT scanner produces accurate and reliable 

images for diagnosis and analysis. Different configurations of the QRM phantom are 

available, allowing for versatility in the assessment of imaging systems. For instance, there 

are phantoms designed specifically for bone density measurements, while others focus on 

assessing soft tissue imaging accuracy. These phantoms come with standardized imaging 

targets, allowing for comparisons across different CT scanners and imaging protocols. 

The QRM phantom serves as a crucial tool in developing and validating novel imaging 

techniques, quality control procedures, and research studies within the medical imaging 

field. Its standardized design and known properties make it an essential component for 
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evaluating and optimizing CT systems to ensure the accuracy and reliability of clinical 

imaging procedures. 

3.4 Data Acquisition  

The data collection process involved utilizing ten distinct experimental datasets to establish 

ground truths and facilitate the training and testing of a Deep Learning (DL) model. This 

process relied upon the MARS Microlab 5x120, a spectral photon-counting CT developed 

by MARS Bioimaging Ltd. The scanner incorporates the Medipix 3RX chip, renowned for 

its capability to segment energy into five distinct bins utilizing charge summing mode.  

Figure 3.3:1Illustrates the QRM Phantom and all the available inserts. 
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To acquire the datasets, the MARS Photon-counting CT was employed to scan a QRM 

Phantom. All scans were performed using 118 kVp tube voltage, 981 circular projections 

with an exposure time of 160 ms per frame. The tube current was set at 80 µA to maintain 

a photon count rate of less than 11 counts/ms to avoid detector saturation and pulse pileup 

(Aamir et al., 2011). All scans were performed in the charge-summing mode using the 

default energy thresholds of 40, 50, 60, and 79 keV. The data were reconstructed using the 

proprietary MARS iterative reconstruction technique in the narrow energy bins, 7-40, 40-

50, 50-60, 60-79, and 79-118 KeV. The resulting images had an isotropic voxel size of 0.1 

mm and an image matrix of 1300 x 1300. 

In this work, six datasets were used for training the MAR algorithm, two datasets for 

generating simulated images, and the remaining two datasets for validation, see Fig. (3.4). 

Training datasets include two types of datasets: one dataset comprises variations in the 

placements of aluminium (99% Al; 20 mm-diameter) and steel (surgical stainless steel; 20 

mm-diameter) (shown in Fig. (3.4) (a-d)), while the other dataset consists of varying 

concentrations of hydroxyapatite (HA) (201.4 and 406.9 mg/cm3) and iodine (9.66, and 

14.56 mg/cm3) along with adipose and CT water in the presence of aluminium and steel 

(Fig. (3.4) (e, f)). The training datasets comprised a scan length of 50 mm: 20 mm 

containing metal inserts, followed by 10 mm eliminated to prevent the detection of residual 

artefacts, and 20 mm used as an empty phantom for generating simulated images, as shown 

in Fig. (3.1). Simulated datasets (Fig. (3.4) (g, h)) were used to extract.  

metal-specific attenuation profiles of aluminium and steel. After the training of MAR 

model, we assessed its performance using two validation datasets: the first dataset consisted 

of aluminium and steel, while the second dataset included varying concentrations of HA 

and iodine, along with muscle and CT water in the presence of an aluminium insert, as 

shown in Fig. (3.4) (i, j). 
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3.5 Artefact Free Simulation 

Any supervised deep learning-based MAR technique requires artefact-free images for 

model training. For this task, simulated images were generated using an automated strategy 

developed in Python (Python 3.10.12). Datasets for simulation depicted in Fig. (3.4) (g,h) 

were employed to calculate the mean attenuation and standard deviation values across five 

energy bins for aluminum and steel, using equations (3.1) and (3.2). The two datasets 

Figure 3.4 1Illustration of different datasets used in this study as Phantom image 

and its CT image across first energy bin (7-40 keV) acquired at 118 kVp and 80 µA. 

The training datasets consist of varying placements of steel and aluminium (a-d), 

while(e,f) contained two concentrations of hydroxyapatite (HA) (201.4 and 406.9 

mg/cm3) and iodine (9.66, and 14.56 mg/cm3), along with adipose, CT water, in the 

presence of steel insert (e), and aluminium insert(f). Datasets used for simulation 

(g,h), consist of only steel, and aluminium inserts, respectively, for extracting 

material-specific attenuation profiles. Two types of validation datasets (i) a dataset 

that includes both metal inserts, and (j) a dataset that includes material inserts in 

the presence of aluminium insert. All energy images are in linear attenuation 

coefficients (cm-1) in the range of 0 to 0.3 cm-1 
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consist of individual scans of each metal separately within the phantom, to ensure the 

extraction of metal-specific profiles without any external factors influencing the results. 

The values were then superimposed throughout the images of the empty phantoms acquired 

from the training dataset (Fig. (3.4) (a-f)) in order to obtain artefact-free ground truths for 

the model training. 

𝑀𝑒𝑎𝑛 (µ) =  
1

𝑁𝑚𝑡
∑ 𝑀𝑇𝑝𝑖𝑥𝑖

                    (3.1)

𝑁𝑚𝑡

𝑖=1

 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (σ) =  √
1

𝑁𝑚𝑡 − 1
∑(𝑀𝑇𝑝𝑖𝑥𝑖

− µ)2

𝑁𝑚𝑡

𝑖=1

                   (3.2) 

Where: 

• µ is the mean value for the metal insert. 

• σ is the Standard deviation within the region of the metal insert. 

• 𝑁𝑚𝑡 represents the number of pixels within the circular region for the metal insert. 

• 𝑀𝑇𝑝𝑖𝑥𝑖
represents individual pixel values in the region of the metal insert. 

 

3.6 Deep Learning MAR Algorithm 

A SPCCT image array denoted by 𝐼𝜖ℝ𝐸∗𝐿∗𝑊, where ℝ is a set of real numbers, E is the 

number of energy bins, L is the length of the image, and W is the width of the image. A 

deep learning model is trained to generate an artefact free image array 𝑀𝜖ℝ𝐸∗𝐿∗𝑊  This 

process of MAR is expressed as 𝑀 = 𝑓(𝐼; 𝜃) where, 𝜃 contains the learnable parameter of 

the model. 

The proposed MAR algorithm employs a deep learning approach based on RDU-Net 

performing image-to-image transformation; DenseNet (Huang et al., 2017), ResNet (He et 

al., 2016), and U-Net (Ronneberger et al., 2015) architectures were combined to create the 
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RDU-Net architecture. The RDU-Net model was implemented using the PyTorch library, 

as shown in Fig. (3.5). 

 

Figure 3.51 Architecture and functioning of the RDU-Net Model For MAR. The 

RDU-Net Model is an encoder and decoder based architecture. The encoder block 

consists of four Dense Blocks and three residual connections. The decoder consists 

of three convolution layers and is followed by an adaptive average pooling layer. 

The figure depicts how an input image obtained from SPCCT having five energies, 

containing numerous metal artefacts is corrected using the MAR algorithm to give 

the artefact free output.  E1 (7-40keV), E2 (40-50keV), E3 (50-60keV), E4 (60-

79keV) and E5 (79-118keV) represents the five energy bins. Conv2D refer to two-

dimensional convolution layers, while 'n' is the number of connected layers in the 

dense block. 

3.6.1 ResNet 

ResNet (Residual Network) model was developed to tackle the problem of vanishing 

gradients in deep neural networks. The vanishing gradient problem arises when gradients 

decrease exponentially during back-propagation in deep neural networks, impeding the 

training process and leading to degradation in performance. ResNet addresses this issue by 

incorporating residual connections, which enable the model to learn residual functions. 

This innovation allows for the training of significantly deeper networks without a 

deterioration in performance. Through the integration of residual connections, ResNet 
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models achieve state-of-the-art performance on various image recognition tasks while 

being more straightforward to optimize and train in comparison to traditional deep 

networks. 

3.6.2 Densenet 

DenseNet, or Densely Connected Convolutional Networks, introduces dense connectivity 

patterns between layers, where each layer receives feature maps from all preceding layers. 

This dense interconnection facilitates feature reuse and gradient flow, promoting deeper 

networks with fewer parameters. This leads to improved feature propagation, ultimately 

enhancing model performance and training efficiency. 

3.6.3 U-net 

U-Net is a convolutional neural network architecture designed for biomedical image 

segmentation tasks. It features a U-shaped architecture with an encoder-decoder structure, 

where the encoder extracts high-level features and the decoder performs pixel-wise 

classification. Additionally, U-Net incorporates skip connections between corresponding 

encoder and decoder layers to preserve spatial information and facilitate precise 

segmentation. 

3.6.4 RDU-Net (Proposed Method) 

The RDU-Net architecture features an entry channel of dimensions 5x1300x1300 and is 

structured around a U-net type encoder-decoder backbone. The encoder module consists 

of 4 Dense blocks and 3 residual layers, as shown in Fig. (3.5). The dense block is denoted 

by 𝐷 = 𝑋0 ⨁ 𝑓1(𝑋0; 𝜃0) ⨁ … ⨁  𝑓𝑛(𝑋𝑛; 𝜃𝑛), where ‘𝑋’ represents the feature map, ‘⨁’ 

represents the concatenation operation, ‘𝑓’ represents the convolution function, and ‘𝑛’ 

represents the number of layers in the dense block. The dense block connects each layer to 

every other layer in a feed-forward fashion by concatenating features after every layer. This 

dense connectivity facilitates feature reuse, encourages feature propagation, and enhances 

gradient flow throughout the network, resulting in more efficient feature extraction. The 

first dense layer consists of 4 connected layers while the remaining three consists of 8 

connected layers each. The residual layers include two 2D convolution layers and are 
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combined with the dense blocks within the encoder. The initial two residual layers establish 

connections between the input and the first two dense layers, thereby mitigating the risk of 

gradient vanishing and preserving features from the input. The last residual layer 

interconnects the third and fourth dense layers, ensuring stability in gradient propagation. 

Subsequently, the decoder comprises of three 2D convolution layers to reconstruct the 

encoded image back to its original input format. An adaptive average pooling layer is 

applied following the encoder-decoder sequence to adjust the output dimensions to match 

those of the input. For model training, we employed the L1 Loss Function along with the 

Adam optimizer, utilizing a learning rate of 0.001. Various loss functions, including MSE 

and BCE loss, were tested, but L1 loss gave more distinct boundaries. The utilization of 

the adam optimizer contributed to faster convergence of gradients, leading to a quicker and 

more accurate reduction in loss. This resulted in a decreased number of epochs required 

for convergence. 

3.7 Evaluation Strategy 

Evaluation of the RDU-Net-driven MAR algorithm comprises two distinct phases: 

validation using a dataset containing only metal inserts, and validation using a dataset 

encompassing both materials and metal inserts. The initial validation of the first dataset 

consists of analyzing images across five discrete energy bins, referred to as "Energy 

Analysis." The second evaluation of the second dataset involves the utilization of density 

images, identified as "Material Analysis." 

3.7.1 Energy Analysis 

Three major techniques were employed in order to conduct a thorough Energy Analysis of 

the obtained results. The spectral response of the first validation dataset (Fig. (3.4) (i)) was 

analysed using line profiles (with a length of 30 mm) through the centre of the inserts. 

These lines were consistently positioned across all five energy bin images, see Fig. (4.2) 

(a, b). Furthermore, plotting the histogram for the six Region of Interests (ROIs), as 

indicated in Fig. (4.3) (a), cumulatively across all energy bins allowed us to study the 

difference in the distribution of the linear attenuation values in input, simulated, and output 

images. For the statistical assessment of these energy images, Signal-to-noise ratio (SNR), 
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root mean squared error (RMSE), and structural similarity index measure (SSIM) were 

calculated. 

The SNR and the RMSE were calculated using equations (3.3) and (3.4), respectively, 

within the same six ROIs. SNR represents the ratio between the mean attenuation and the 

standard deviation values inside the ROI. A higher SNR indicates that the signal is more 

prominent relative to the noise, which generally corresponds to a clearer and more accurate 

representation of the imaged structures. 

Signal-to-Noise Ratio (SNR): 

SNR measures the ratio between the power of a signal and the power of corrupting noise 

that affects the quality of its representation. For images, it's used to quantify the quality of 

output image to the original image. 

𝑆𝑁𝑅 = (
𝜇

𝜎
)                     (3.3) 

Where: 

• 𝜇 is the mean attenuation value of the ROI. 

• 𝜎 is the standard deviation within the ROI. 

Root Mean Squared Error (RMSE): 

RMSE measures the average of the squares of the errors between corresponding values 

of the original and reconstructed images. It's a standard measure of the differences 

between values predicted by a model or an estimator and the values observed. 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

                    (3.4) 
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Where: 

• 𝑥𝑖  and 𝑦𝑖  are the corresponding pixel values of the original and predicted images. 

• 𝑛 is the total number of pixels in the image. 

The SSIM was employed using equation (3.5) to quantitatively evaluate the similarity 

across the entire scanned phantom, as shown in Fig. (4.4) (d). 

Structural Similarity Index (SSIM): 

SSIM measures the similarity between two images. It considers luminance, contrast, and 

structural similarity between two images to provide a value between -1 and 1, where 1 

indicates perfect similarity. 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝐶1)(2𝜎𝑥𝑦 + 𝐶2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2)
                   (3.5) 

Where: 

• 𝑥 and 𝑦 are the two compared images. 

• 𝜇𝑥 and 𝜇𝑦 are the means of 𝑥 and 𝑦. 

• 𝜎𝑥
2 and 𝜎𝑦

2 are the variances of 𝑥 and 𝑦. 

• 𝜎𝑥𝑦 is the covariance of 𝑥 and 𝑦. 

• 𝐶1 and 𝐶2 are constants to stabilize the division with weak denominator. 

3.7.2 Material Analysis 

The Material Analysis was conducted using the validation dataset that contain materials 

and metal inserts (as shown in Fig. (3.4) (j)) to evaluate the effect of MAR algorithm on 

material identification and quantification obtained through MD on CT images. All energy 

images were converted to material density images using vendor-provided MARS-

FASTMD v1.4 software. The software employs the basis vectors and the linear least 
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squares estimation to predict the material combinations and concentrations from the 

attenuation profiles (Aamir Younis et al., 2018). Additional details on Mars MD are found 

in (Bateman et al., 2018). The MD algorithm was utilized to decompose input and output 

images, both with and without MAR algorithm, into HA and I. The QRM phantom 

contained two concentrations of HA (201.4 and 406.9 mg/cm3) and I (9.66 and 14.56 

mg/cm3), along with water, and muscle. Material decomposition were quantitatively 

assessed using Python 3.10.12. The sensitivity was determined by comparing voxel counts 

in a ROI for the target material in density images against ground truth energy images. The 

specificity was evaluated for the entire density image ROI against the target material ROI. 

The comprehensive quantitative assessment encompassed additional metrics, including 

accuracy, positive predicted value (PPV), and negative predicted value (NPV). 
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CHAPTER 4: RESULTS  

4.1 Energy Analysis:  

In this section, we present the results of the Energy Analysis using our proposed machine 

learning model. Fig. (4.1) shows the validation dataset we used for this analysis. The input 

images included various prominent artefacts including streaking, increased noise, as well 

as deep ring artefacts that were significantly enhanced in the presence of metals. The 

qualitative evaluation of the output images, after the application of MAR, shows a 

considerable decrease in these artefacts. Nevertheless, a subtle spatial distortion was 

observed in the output images, particularly in regions impacted by ring artefacts and in 

close proximity to metals. However, the extent of this distortion progressively diminishes 

from Fig. (4.1) (c1) to (c5) as the energy level increases. 

 

Figure 4.1 The validation dataset contains input images (a), simulated images (b), 

and output images(c) in the presence of steel (S) and aluminium (Al). Input images 

were acquired at 118kVp and 80 µA across five energy bins (a). The simulated 

images were created using mathematical simulation in order to generate artefact-

free reference images (b). The output images (c) are the input images (a) corrected 
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using the proposed RDU-Net model. The grayscale bar represents the linear 

attenuation coefficient range from 0 to 0.3 cm-1. 

Fig. (4.2) illustrates the line profiles of the linear attenuation coefficient across both steel 

and Aluminium metal inserts. The line profiles show gross overestimation of linear 

attenuation coefficients at the edges of the metal inserts, which can be observed as two 

steep peaks seen in the line profiles of Fig. (4.2) (b) for aluminium and Fig. (4.2) (f) for 

steel. Furthermore, it is noticeable that this overestimation is particularly pronounced in 

steel, which consistently displays elevated levels of noise even at higher energies. In 

contrast, for aluminium, the height of the peaks diminishes, indicating a reduction in 

artefacts and noise compared to steel. Remarkably, in Fig. (4.2) (d) and Fig. (4.2) (h), it is 

evident how the utilization of the RDU-Net model eliminates the metal artefact, reduces 

the noise and produces sharper edges. 

 

Figure 4.2 Line profiles 30 mm in length (shown in red color), passing through the 

center of both the aluminium (a) and the steel (e) inserts showing the linear 

attenuation values in the input, simulated, and output images in the validation 

datasets shown in Fig. (4.1) 

Fig. (4.3) demonstrates the spread of pixel values along the phantom body. The histogram 

analysis reveals consistently narrower spreads in the output images, indicating lower noise 

effects compared to the input images. Fig. (4.3) (g) illustrates the percentage differences 

between the mean values of the pixel values across the five energy bins.  
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Figure 4.3 (a) Six ROIs, indicated by the yellow circles, were used to plot the 

histograms of pixel values in different regions of the phantom. (b), (c), (d), (e) and (f) 

are the histogram plots for the input, simulated and output images in the five 

respective energy bins. (g) The percentage difference between the mean values of the 

input and output compared to the simulated images. 

Fig. (4.4) shows the graphical representation of the evaluation metrics. Fig. (4.4) (a) shows 

the ROIs that were selected in order to calculate SNR and RMSE results. SNR results, 

calculated for the input and output images across the five energy bins, are shown in Fig. 

(4.4) (b). Additionally, the comparison of the RMSE values, calculated between input and 

stimulated images, and between output and simulated images, are shown in Fig. (4.4) (c). 

Moreover, the comparison of the SSIM values, calculated between the input and the 

simulated images, and between the input and the output images, are shown in Fig. (4.4) 

(d). 
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Figure 4.4: The Evaluation metrics for the MAR algorithm. (a) The ROIs used for 

the calculation of SNR and RMSE calculations. (b) Graph for input and output SNR 

and (c) RMSE values of Input to Output calculated with respect to the simulated 

images. (d) The ROI for SSIM calculation and (e) SSIM of the input and output 

images with respect to simulated images. 
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4.2 Material Analysis 

In this section, we present the results of the Material Analysis using our proposed machine 

learning model. Fig. (4.5) (b) and (c) show the phantom material density images of both 

HA and I without MAR. On the other hand, Fig. (4.5) (f) and (g) show the phantom material 

density images of HA and I after the application of the proposed MAR algorithm. 

Following the implementation of MAR algorithm, a significant improvement in the 

accuracy of the MD was observed. Artefacts misclassified as HA and I were properly 

identified and corrected after the application of MAR. In Fig. (4.5) (d) and (h), the voxel-

wise distribution of HA and I is depicted based on known concentrations, with and without 

MAR algorithm, utilizing the box and whiskers plot. The smaller size of the boxes and 

whiskers for both materials highlight a notable reduction in material density distributions 

when the MAR algorithm is applied. 

 

Figure 4.51The results of the Material Analysis after using MAR algorithm. (a) 

shows the first energy bin image obtained from the SPCCT containing aluminium 

and material inserts. (b) and (c) show the material density images of hydroxyapatite 

(HA) and iodine (I) obtained from the image shown in (a). (d) Shows the box 

whiskers plot for HA with and without MAR. (e) Shows the output obtained after 

the application of MAR algorithm on (a). (f) and (g) show the material density 

images of HA and I obtained from the scan shown in (e), after the application of 
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MAR algorithm. (h) Shows the box whiskers plot for Iodine with and without MAR. 

The materials labels are 'Al' for aluminium, HA200 and 400 are for hydroxyapatite 

concentrations of 201.4 and 406.9 mg/cm3 respectively. I-10 and I-15 refers to iodine 

concentrations of 9.66, and 14.56 mg/cm3 respectively. 

Performance parameters including, sensitivity, specificity, accuracy, Negative Predictive 

values (NPV), and Positive Predictive Value (PPV) for the material density images of I and 

HA, with and without MAR are shown in Table 4.1.  

 

Table 4.1 Material Identification (sensitivity, specificity, Accuracy, NPV, and PPV) 

and quantification (RMSE) analysis for material decomposition of hydroxyapatite 

(HA) and Iodine(I) without and with metal artefact reduction (MAR), in the 

presence of aluminium insert.  

 

Material 

(mg/cm3) 

       Material Identification Material Quantification 

Sensitivity 

     (%) 

Specificity 

      (%) 

Accuracy 

    (%) 

Recall 

  (%) 

Precision 

    (%) 

RMSE 

(mg/cm3) 

HA 

HA with MAR 

Iodine  

Iodine with MAR 

74 

85 

72 

90 

90 

94 

9 

94 

8 

91 

84 

93 

91 

91 

88 

96 

73 

91 

74 

86 

0.937 

0.117 

0.049 

0.003 
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DISCUSSION 

The RDU-Net exhibits good performance across all evaluated metrics, as detailed in the 

study. It effectively mitigates artefacts induced by metallic objects while accurately 

preserving multi-energy attenuation characteristics. This capability ensures the retention of 

spectral data integrity and the post-artefact correction. Moreover, the algorithm underwent 

elaborate energy and material analyses to quantitatively assess its effectiveness. As 

illustrated in Fig. (4.1) (a), input images showed significant streaking and overestimation 

of the attenuation coefficient in all energy bins. Moreover, an increase in the depth of ring 

artefacts was also observed, which is more prominent in the proximity of the metal inserts. 

Fig. (4.1) (c) shows the corrected images obtained from the proposed MAR algorithm. The 

visual analysis of the two images shows a significant reduction in metal artefacts, ring 

artefacts, and noise levels.  

Fig. (4.2) illustrates the line profiles of aluminium and steel. In Fig. (4.2) (b) we can 

observe that aluminium has considerably less NLPV and cupping artefacts in the higher 

energy bins as the peaks at the edges of the aluminium profile nearly vanish in these bins. 

Steel however, has much more prominent artefacts which did not insignificantly decrease 

at higher energies, as can be seen in Fig. (4.2) (f). Additionally, it was observed that the 

mean linear attenuation coefficient of the region containing steel increased with the 

increasing energy level, primarily due to the cupping artefact. The pronounced artefacts 

observed in steel arise mainly from its substantially higher density, 7.98 g/cm3, in contrast 

to the comparatively lower density of aluminium, 2.71 g/cm3. Nevertheless, the application 

of the MAR algorithm effectively eliminates most of artefacts including NLPV, cupping 

artefacts, as well as noise for both metals, as shown in Fig. (4.2) (d, h). 

Fig. (4.3) illustrates this observation, indicating that although the mean linear attenuation 

values of the output images closely matches those of the simulated images, there is a 

consistent reduction in the spread or width of the histogram. This indicates that the 

algorithm corrects the images without significant effecting to the attenuation profiles, thus 

maintaining the integrity of the extracted data. In Fig. (4.4) (b), we observe a significant 

improvement of SNR in the output images, compared to the input images, indicating a 
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substantial reduction in the noise following the application of MAR algorithm. Moreover, 

Fig. (4.4) (c) demonstrates that the RMSE of the output images is notably lower than that 

of the input images, indicating a closer resemblance to the artefact-free simulated images. 

Additionally, Fig. (4.4) (e) illustrates the higher structural similarity between the output 

and the simulated images, which shows that our algorithm maintains the spatial and 

attenuation profile integrity while correcting the noise and artefacts form the scan images. 

Furthermore, we conducted Material Analysis to assess the impact of MAR algorithm on 

MD. Fig. (4.5) (b) and (c) illustrate substantial loss of material information and miss-

identification that occurs as a result of streaking and noise. However, after applying the 

MAR algorithm, we observe a significant improvement in the density images of both HA 

and I, Fig. (4.5) (f) and (g), show more accurate material identification and decomposition. 

The box plot graphs for HA, shown in Fig. (4.5) (d) and I, shown in Fig. (4.5) (h), similarly 

demonstrate improvement as the variations in calculated densities for both materials 

decrease. 

This is evident from the reduction in the size of the box and whiskers in the plots after 

implementing MAR algorithm. Additionally, the quantification becomes more accurate, 

with the median positioned closer to the actual values in both plots following the 

application of MAR. Furthermore, Table (4.1) provides statistical quantification of these 

enhancements, revealing a significant improvement in all evaluation metrics following the 

implementation of the MAR algorithm. 
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CONCLUSION & FUTURRE PROSPECTS 

The proposed RDU-Net has demonstrated promising results, exhibiting improvements in 

artefact-affected images across all evaluation metrics. This advancement represents a 

significant step towards the development of a commercially viable MAR algorithm for 

Single Photon-counting Computed Tomography (SPCCT). The algorithm not only 

effectively eliminates artefacts but also retains comprehensive spectral information from 

the scans. This capability holds immense potential for facilitating advanced analyses, as 

evident from the results of MD presented in the paper. However, the MAR algorithm needs 

to be trained and tested on more versatile biological datasets in order to validate it for 

clinical application. 

Looking ahead, the future prospects of the RDU-Net algorithm are promising. With further 

refinement and optimization, this algorithm holds much potential. Its ability to accurately 

correct artefact-affected images while preserving spectral information opens doors to a 

wide range of applications. For instance, in oncology, the enhanced imaging provided by 

RDU-Net could lead to more accurate tumor detection and characterization, ultimately 

improving treatment planning and patient outcomes. Additionally, in cardiology, the 

algorithm's ability to mitigate artefacts in cardiac CT scans could improve the diagnosis of 

cardiovascular diseases and enhance preoperative planning for cardiac surgeries. 

Moreover, the algorithm's adaptability and robustness make it suitable for integration into 

existing CT systems, offering a seamless solution for clinicians and radiologists. As the 

field of medical imaging continues to evolve, the RDU-Net algorithm can make significant 

positive changes, paving the way for more precise diagnoses, personalized treatments, and 

improved patient care. 
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