
Specific Emitter Identification using Deep
learning Models

By
Muhammad Montaha

(Registration No: 00000327401)

Supervisor
Dr. Muhammad Usman Akram

DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING
COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING
NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY

ISLAMABAD, PAKISTAN





Specific Emitter Identification using Deep
learning Models

By
Muhammad Montaha

(Registration No : 00000327401)

A thesis submitted to National University of Sciences and Technology,
Islamabad

in partial fulfillment of the requirements for the degree of

Master of Sciences in Computer Engineering

Supervisor
Dr. Muhammad Usman Akram

DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING,
COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING,
NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY

ISLAMABAD
April 2024



Dedicated to my parents, whose
tremendous continuous support and

endless prayers led me to this
accomplishment.

i



Acknowledgment

I would like to begin by expressing my appreciation to Allah, who is known for his im-
mense kindness and benevolence, for the numerous blessings I have received, and for
providing me with the determination to accomplish this task.

In line with the 012/RAC-IX/NUST-CEME/2022 Project series, I extend my gratitude to
the National Engineering and Scientific Commission (NESCOM) for their sponsorship of
this research project.

I am deeply indebted to my supervisor, Dr. Muhammad Usman Akram, for his unwaver-
ing intellectual support and valuable ideas throughout this research journey. He has been
an inspirational instructor, providing me with technical guidance and moral encourage-
ment. His insightful feedback has honed my skills and critical thinking, enabling me to
achieve my research goals. Without his continuous support, completing this dissertation
would not have been possible. I am immensely grateful for the motivation he has instilled
in me throughout this challenging expedition. Concluding my research study under his
supervision has been a great honor.

I dedicate this work to my supervisor, mentor, and teacher, Dr. Muhammad Usman
Akram, and my beloved parents, who have supported and stood by me unwaveringly
throughout this journey. Without their love and encouragement, I would not have been
able to accomplish this work.

ii



Abstract

In today’s world, Specific emitter identification (SEI) has become crucial task in elec-
tronic warfare and signal intelligence that involves identifying a particular communication
device by examining the unique radio frequency (RF) signals it emits. The ability to dis-
criminate between different emitters is essential for ensuring the security and efficiency
of communication networks, spectrum management, and electronic warfare operations.
Existing emitter recognition methods often ignore the radio frequency (RF) fingerprint
details carried by the waveforms which are primarily susceptible to a specific application
scenario and radio environment and thus can be interfered with by unreliable RF features.
It has been found that deep learning methods have demonstrated effectiveness in this
task. This research introduces an innovative approach for Specific Emitter Identification
(SEI) utilizing a Savitzky-Golay filter for denoising and a Stacked Multivariate Convolu-
tional Neural Network (SMvCNN) architecture for classification. The inputs which are
fed to Stacked Multivariate Convolutional Neural Network (SMvCNN) are time domain,
frequency domain and phase of signals. By using this our proposed method surpasses
conventional machine learning classifiers, achieving an impressive classification accuracy
of 96% even under challenging conditions with a signal to noise ratio (SNR) of 5 dB.
The integration of the Savitzky-Golay filter for noise reduction and the SMvCNN model
demonstrates superior performance, underscoring its potential as a robust SEI technique
in real-world scenarios.

Key Words: Savitzky-Golay filter, Time Domain, Frequency Domain, Radio Frequency,
Machine Learning, Deep Learning, CNN Model, Signal-to-Noise Ratio (SNR).
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Chapter 1

Introduction

In recent years, wireless communication has developed and became significant part of

our daily life [1]. The newly wireless technology aims to get wider coverage, large no of

users and improve power consumption. With the increase of wireless technology there are

many challenges associated with it. Especially its security due to the broadcast nature of

the wireless channel as it is openly accessible to both legal and illegal users [2]. In com-

parison to wired communication, the open wireless environment makes communications

more susceptible to attacks such as passive eavesdropping for data interception and active

jamming causing disruptions to legitimate transmissions. Device Authentication is one

of the methods to secure wireless communication. Some traditional methods, bit-level

security mechanisms have been used to protect wireless networks. However, these tech-

niques frequently have flaws. In recent years, a great deal of research has been done on

radio frequency fingerprinting (RFF) [3]. The term RF fingerprint describe the variations

in transmitters caused by manufacturing and debugging, This variation can be extracted

from the signal received from the transmitter and is used to uniquely identify each wire-

less device. The extraction of the variation is known as RF fingerprint extraction. The

method is also known as specific emitter identification [4] which aims to differentiate au-

thorized transmitters users based on the unique characteristics of radio frequency signals

at the physical layer. Figure 1.1 illustrates a standard framework for RF Fingerprinting

(RFF). This framework serves the purpose of extracting the inherent characteristics or dis-
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tinctive attributes from intercepted signals. In practical terms, it outlines the process by

which relevant information is derived from the received RF signals, enabling subsequent

analysis and identification.

Figure 1.1: Basic Framework of RFF Extraction.

Only the legitimate users have given acces to use the network which improves the net-

work security moderately. The SEI method has been implemented in variety of systems

containing intrusion detection, satellite communication, IoT, radar and network security

systems in 4G and 5G networks.

1.1 Motivation

As the wireless technology is getting advance day by day, the wireless security has be-

come the topmost concern. Devices need to be recognized using both conventional and

unconventional methods.The basic operating principle is that every electronic device is

made up of many numerous nonlinear components. Since there is a certain amount of

tolerance used during component manufacturing, which means that manufacturing errors

cannot be avoided and this unique non linearity for each device distinguishes it from the

others, just as humans have different thumb prints despite having the same name.The same

approach is used here despite having the same make and type of transmitter, each device

is different and unique due to its hardware components.

Specific emitter identification (SEI) is a technique of identifying a wireless transmitter

based on its physical RF waveform. Although the name SEI may indicate the capacity

to identify a unique ”fingerprint” for each particular wireless device, this is not always
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the case. SEI, on the other hand, has been demonstrated [4] to be beneficial for detect-

ing larger kinds of devices. The commonly RF feature-based SEI technique generally

consist of steps such as pre-processing, feature extraction and identification [5]. The pre-

processing stage generally contains several operations like power normalization, target

signal interception, filtering and so on [6], While the fundamental processes of SEI are

feature extraction and identification. Prior to the advent of deep learning (DL), traditional

SEI approaches generally used statistical techniques to create features, then followed by

machine learning classifiers for identification. Although there are several drawbacks of

RF features created by artificial knowledge like weak performances and the inability to

deal with complicated and numerous wireless transmitters.

In last few years deep learning has proved to have powerful technique for data analysis

[7],These DL-based SEI techniques, which have been shown to perform better than arti-

ficial hand crafted feature-based approaches, used deep neural networks to extract more

robust and useful RF features from large historical RF signal samples.

1.2 Problem Statement

With the advance in wireless network technique its security becomes of paramount im-

portance. Specific emitter identification distinguishes cradio emitters with the fingerprint

features obtained from the received signal and this method has been widely used in mil-

itary and civilian fields. SEI is generally labeled as a classification task. To identify any

radio frequency transmitter, underlying nonlinear characteristics of hardware can be used

as a unique ID for specific emitter identification. Deep learning-based techniques are

getting popular to build smart and intelligent classifier in which manual signals feature

extraction is not mandatory. The deep learning model takes the raw input to automatically

finds the features which is then used for classification purposes.Therefore, the specific

problem statement for the proposed research is ”To identify specific signal emitters using

deep learning under low SNR ”.
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1.3 Scope

Many SEI techniques based on manual hand crafted feature extraction have been devel-

oped recently, including IQ imbalance [8], power spectral density [9], Hilbert-Huang

transform [10], etc. However, it has been established that they require manual feature

engineering based on protocol and are highly dependent on the calibre of receiver hard-

ware. Combining a data-driven convolutional neural network (CNN) with a steady-state

RFF for SEI has drawn more interest in light of the impressive advancements in deep

learning across numerous fields [11]. In contrast to the human feature extraction used in

the SEI technique, the SEI approach built on deep learning often uses CNN model and in-

put he original signal directly and associate the emitter without the need for manual hand

crafted feature extraction. In essence, the deep learning-based SEI technique matches the

input and output by developing non-linear functions, which is typically considered as an

automated feature extraction framework to separate the emitter.

1.4 Aims and Objectives

The objectives of this research study are:

1. To design and develop a deep learning-based framework capable of using radio

frequency (RF) fingerprint of signal to identify the individual emitter.

2. To get better emitter identification accuracy under low signal to noise ratio(SNR).

3. To enhance the security of various wireless communication systems.

4. Comprehensive evaluation of the proposed method is carried out using the most

recent methods on real-world and open-source datasets.
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1.5 Contribution

The contributions of this paper are summarized as follows:

1. We employed a distinctive approach with the Savitzky-Golay Filter (SGF) to cap-

ture the signal’s envelope and extract samples representing the steady-state portion

of the signal.

2. SMvEnN, a technique that combines stacked multivariate networks, was introduced

to attain precise classification even in scenarios with low Signal-to-Noise Ratios

(SNR).

3. Thorough assessment of the proposed approach is conducted by comparing it with

the latest methods using both real-world and publicly available datasets.

1.6 Thesis Organization

The organization of the thesis is as follows:

• Chapter 2 presents the state-of-the-art side-channel attacks and their types.

• Chapter 3 comprehensive literature analysis of specific emitter identification with

feature based approach and deep learning based approach

• Chapter 4 presents the proposed network in detail.

• Chapter 5 discuses the datasets, evaluation metrics and implementation detail. It

also presents the comparison of our proposed network with already methods in

terms of accuracy.

• Chapter 6 concludes the thesis and presents future directions along with major con-

tributions of our research.
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Chapter 2

Principles of Radio Frequency

Fingerprinting

Radio frequency (RF) fingerprinting refers to the distinct set of characteristics and pat-

terns present in the RF signals emitted by electronic devices. Devices like laptops, smart-

phones, and Internet of Things (IoT) devices emit RF signals when communicating with a

network. Differences and defects in the hardware components of radio transmitters, such

as errors in analog-to-digital converters, local oscillators, and power amplifiers, can be

reflected in the propagated signals, creating a unique pattern known as an RF fingerprint.

If developed, this RF fingerprint has the potential to allow the signal receiver to identify

the transmitter by analyzing the characteristic of the propagated signal.

Typically, the RF fingerprinting process involves two main steps. Firstly, a database is es-

tablished using the created fingerprints, where each fingerprint represents a unique iden-

tifier associated with a device or a specific category like model. Secondly, any fingerprint

extracted from the device(s) in question is then compared to the database for the purpose

of identification, essentially functioning as a pattern recognition system. In this iden-

tification system based on RF fingerprinting, the communication signals of devices are

captured, undergo feature extraction, are stored in a database, and are subsequently com-
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pared to the database when new device signals are generated, facilitating the identification

of devices or their respective classes.

2.1 Basics of RF Emission Characteristics

The fundamentals of radio frequency (RF) emission characteristics are essential to com-

prehending the core of RF fingerprinting. This section examines the essential character-

istics and ideas that characterize the distinct radio frequency signatures that electronic

devices emit.

2.1.1 Radio Frequency Signal Properties

2.1.1.1 Frequency

Frequency is a basic feature of RF transmissions that describes the pace at which a sig-

nal oscillates. Various electronic devices operate on particular frequency bands, and the

device at which it transmit the signals or it recieves the signal at some frequency can be

use as a discriminating feature. The frequency at which a device emits signals has a sig-

nificant impact on its distinct RF signature. Variations in frequency can be use to identify

many devices.

2.1.1.2 Amplitude

Amplitude indicate radio frequency signal strength or the power. The signal amplitude

can be influenced by number of factors such as transmitter power or the distance from the

receiver. Difference in amplitude can also help to distinguish RF fingerprints. The devices

can be differentiated by analyzing the amplitude changes.

2.1.1.3 Phase

Relative position of a waveform in time refers to phase. Phase discrepancies in RF signals

can arise from variances in signal propagation pathways, different antenna designs, or
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other specific aspects of devices. Phase information is used for signal arrangement and

synchronization in communication devices. Analyzing phase differences can be used as

differentiating powers of RF fingerprinting. Each device’s RF signature is different due to

its specific phase characteristics present in signal.

2.2 Signal Variability

The intrinsic differences and oscillations in radio frequency (RF) emissions can happen

between electronic devices, even in same model and type, are usually stated as signal

variability. Since signal variability is the root for differentiating the devices from one

another, it is essential for RF fingerprinting. Following section will tell about the causes

of signal fluctuation and its importance for RF fingerprinting.

2.2.1 Manufacturing Variations

The word ”manufacturing variations” refers to difference in the construction process that

give devices their unique characteristics. Difference in material quality, assembly tech-

niques, and electronic devices tolerances often cause these discrepancies. It’s difficult to

create unique uniform RF fingerprinting models for same model devices due to manufac-

turing errors.

2.2.2 Aging Effects

Aging effects in the context of radio frequency (RF) emissions are the changes that occur

in device components over time due to number of factors such as utilization, environment

conditions, and wear and tear of devices. These effects that come from device changes can

have an impact on the strength and characteristics of RF signals sent by devices, giving

them a non lasting fingerprint. Considering these aging effects is critical for long-term

distinctiveness of RF fingerprints.
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2.3 Signal Processing Techniques

Radio frequency (RF) fingerprinting depends massively upon signal processing methods.

These methods include analyzing and handling radio frequency signals in order to ex-

tract relevant features and find distinct patterns. This section inspects the various signal

processing algorithms that are used in RF fingerprinting.

2.3.1 Spectrum Analysis

In radio frequency (RF) fingerprinting, spectrum analysis is a fundamental signal pro-

cessing method. In order to find unique patterns and features, it requires analyzing the

frequency components present in a RF signal. Studying the basic of spectrum analysis is

the focus of this subsection.

2.3.1.1 Fourier Transform

A fourier transform is mathematical approach that breaks down a signal into its com-

plex frequency components. It shows what frequencies that are present in the signal by

providing a depiction of it in the frequency domain.

2.3.1.2 Spectrogram Analysis

A spectrogram is a figure that shows how a signal’s frequency spectrum or it contents

changes over time interval. It offers a dynamic picture of how a signal’s frequency con-

tent changes over time. For the purpose of capturing unique variations in RF signals,

spectrogram analysis is useful. It helps to detect transitory features, modulation patterns,

and changes in signal properties across time.

2.3.2 Time-Domain Analysis

In radio frequency (RF) fingerprinting, time-domain analysis is a important signal pro-

cessing technique that is used to study properties in the temporal dimension. In order to
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understand the temporal characteristics of radio frequency signals, this subsection dives

into the essential aspects of time-domain analysis.

2.3.2.1 Pulse Analysis

The study of signal temporal characteristics, such as their intervals, duration’s, and forms,

is known as pulse analysis. It focus on the RF signals’ time-dependent properties. Finding

unique pulse characteristics helps to distinguish devices according to their time-domain

attributes. For devices that use pulse modulation method, pulse analysis is really essential.

2.3.2.2 Modulation Analysis

Modulation analysis in the time domain studies how particular signal properties, such

as amplitude, frequency, or phase, alter with time. Examining modulation characteristic

improves the distinguishable powers of RF fingerprinting. It enables the recognizing of

device-particular modulation patterns, which adds to the incomparable of RF signatures.

2.3.2.3 Timing Analysis

Timing analysis inquire the timing components of signal propagation. This includes

studying packet timing, synchronization patterns, and other time-relevant aspects of RF

propagation. Precise timing data helps in to distinguish device’s RF signature. Timing

analysis is essential for differentiating unique devices, especially in cases where synchro-

nization patterns or certain temporal periods are indication of a device.

2.4 Summary

In short, Radio Frequency (RF) fingerprinting is a advanced method for identifying de-

vices by examining their unique RF properties. These properties, include modulation,

amplitude, phase, and frequency, which serve as cause for establishing fingerprints that

are unique for each individual device. A fundamental understanding of RF fingerprinting

10



involves studying the fundamentals of RF transmission, spectrum analysis, time-domain

analysis, and advanced signal processing methods. By using both spectrum and time-

domain analysis, RF fingerprinting provides a detail understanding of device signatures,

which helps in accurate identification and discrimination of devices.
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Chapter 3

Literature Review

The RF fingerprinting problem has been studied extensively in the past, with a large por-

tion of that research concentrating on methods that call for domain-specific expert knowl-

edge to meticulously create hand-crafted feature vectors on which to categorise the trans-

mitters using common machine learning techniques. For feature extraction and classifi-

cation, other authors have employed neural networks. Some of these models use a hybrid

strategy that combines manually created feature vectors and neural network classifiers.

We have divided our literature into two sections.

The objective of literature review is to perceive how features with machine learning and

deep learning models has evolved over the time and how these architectures have been

employed in specific emitter identification task.The chapter is divided into 2 sections: 3.1

reviews the feature based approach, 3.2 reviews the deep learning approach, 3.3 and 3.4

defines the research gaps and concludes the chapter.

3.1 Feature Based Approach

Radio frequency feature based specific emitter identification methods are typically based

on artificial created radio frequency features and machine learning classifiers, there are

12



several radio frequency artificial created features for SEI system, which can be broadly

classified as instantaneous features, modulation features, and domain tranform features,

as described below.

[12] examined the VMD’s performance limits during RFF implementation. In order to

achieve this, a thorough analysis of the effects of HOS features (variance, skewness, fre-

quency, and phase) obtained from band-limited modes on the classification accuracy is

performed. While making this, bluetooth devices are identified at various SNR ranges

using the LSVM classifier. Figure 3.1 shows a figure that shows the general overview of

the process.

Figure 3.1: Operational diagram of the RFF implementation
[12]

[13] presented algorithms for extracting RF fingerprints from IoT devices based on statis-

tical features. 10 IoT devices are successfully identified by extracting the instantaneous

features of time domain signals, the properties of wavelet coefficients and time frequency

spectrum. The identification accuracy of the feature extraction from time domain and

time frequency spectrum can reach above 95% in 10 dB, and in a 15 dB environment, it

is close to 100%. [14] examined the signal using non linear analysis across various do-
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mains, because the generation process for the nonlinear RF fingerprints is complex. First,

the CEEMDAN algorithm is used to reduce the impact of noise on the original signal.

Then, the IMF of high-frequency components multidomain joint entropy features are ex-

tracted. Finally, the SVM classifier achieves a high recognition rate. The workflow of this

technique is shown in Figure 3.2.

Figure 3.2: Flowchart of the CEEMDAN-MJE method
[14]

3.2 Deep Learning Approach

Deep learning models can be used to identify a specific emitter by examining the signal’s

or emissions’ properties like frequency, amplitude, and phase. A deep learning model

can be trained to identify the signature of various emitters using these characteristics. By

comparing the characteristics of new signals to those of known emitters, the model can be

used to determine the source of new signals after it has been trained.

Convolutional neural networks (CNNs), recurrent neural networks (RNNs), and long short

term memory (LSTM) networks are among the deep-learning architectures that may be

utilised for particular emitter identification. The architecture used will be determined

by the unique needs of the emitter identification job, such as the kind of signal being

examined and the size of the dataset. The deep learning based SEI approaches may be

divided into two types namely time domain signal and spectrogram.

14



3.2.1 Time Domain Based SEI Methods

Time domain signals are raw IQ signals or the break down of signal using empirical mode

decomposition (EMD) and variational mode decomposition (VMD). [15] demonstrated

that the use of a convolutional neural network can successfully differentiate between

transmitters, even for devices that have the same make and type. To achieve this, the

authors preprocessed the raw IQ signal samples of seven Zigbee devices and used them

as input to the CNN. The network was trained to learn the unique RF characteristics of

each device, such as the transmission power, modulation scheme, and channel impulse re-

sponse. A LSTM and raw IQ samples based specific emitter identification technique was

proposed by [16], but they concentrated on the issue that the identification performance

of SEI degrades over time, so they introduced transfer learning to address this issue. A

specific emitter identification technique based on LSTM was also proposed by [17], but

their approach used training or test samples that were signal components that had been de-

composed by empirical mode decomposition (EMD), intrinsic time-scale decomposition

(ITD). More significantly, they looked into how multiple receivers could improve identi-

fication performance The LSTM-based cooperative identifier is shown in Figure 3.3.

Figure 3.3: The block diagram of the LSTM-based cooperative approach
[17]
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3.2.2 Spectrogram Based SEI Methods

Bispectrum analysis and the fourier transform are frequently used in the spectrogram

based specific emitter identification techniques.

[18] propoed an SEI method that utilizes the compressed bispectrum of the received sig-

nals through the use of CNNs. Normally, the high dimensional nature of the original RFF,

such as the bispectrum, can lead to issues such as the ”dimension curse” and misiden-

tification. However, by using the compressed RFF, it was able to reduce the impact of

redundant information on identification. The CNN is able to learn and extract impor-

tant features from the data, leading to an improvement in identification performance. In

contrast to IQ based methods and fast fourier transform based techniques, the short time

fourier transform based spectrogram and CNN based SEI technique was proposed by [19]

which have shown superior identification performance. Additionally, the impact of car-

rier frequency offset (CFO) on the performance of identification is also disclosed. The

estimated CFO is then incorporated to change the identification result and prevent perfor-

mance deterioration. The architecture of spectrogram based CNN architecture is depicted

in Figure 3.4.

Figure 3.4: CNN architectures of spectrogram model
[19]

[20] presents a new method for analyzing signal features using a combination of short

time fourier transform (STFT) and k means algorithm to achieve better recognition prob-

abilities in low SNRs. The proposed method calculates time frequency spectrograms of
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emitter signals, which are then analyzed using convolutional neural network (CNN) for

automatic identification. Figure 3.5 presents the CNN model.

Figure 3.5: CNN Model
[20]

[21] applied one dimensional convolutional neural network for target recognition of radar.

In this method ADS-B signal was used as a data sample and the original data was prepro-

cessed using the FFT algorithm before being fed into a single dimensional convolution

neural network for feature extraction. Additionally, when compared to the original time

domain sampling signal, the FFT-based preprocessing method significantly increase the

model’s recognition accuracy. [22] proposed a SEI technique based on EMD feature ex-

traction and deep neural network. The created CNN model shown in Figure 3.6 takes grey

scale hilbert spectrum as an input and is efficient inlearning nonlinear features.

Figure 3.6: CNN Architecture
[22]
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3.3 Research Gaps

In the Literature review for specific emitter identification, the following research gaps

have been identified.

1. To identify the emitter in the presence of noise and interference.

2. Need scalable SEI technique that can handle large numbers of emitters without

requiring extensive training data.

3. Need for SEI technique that can perform well in low SNR environments.

3.4 Summary

The literature survey revealed the current limitations of specific emitter identification.

Over many years, SEI algorithms and methods have been created and improved. These

include more conventional methods of signal processing as well as statistical and machine

learning based approaches. Analyzing the spectral, temporal, modulation, and encoding

aspects of RF signals is one of the SEI techniques. Deep learning methods like convo-

lutional neural networks and recurrent neural networks have been the subject of recent

research aimed at enhancing SEI performance. These techniques have demonstrated en-

couraging results in locating emitters in practical situations, and they could be a consid-

erable advancement over conventional SEI techniques.
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Chapter 4

Proposed Specific Emitter Identification

Specific emitter identification is an important task for improving the security of various

wireless communication systems and to get better emitter recongnition accuracy under

low signal to noise ratio (SNR). In this research, we have proposed a specific emitter

identification technique based on discrete fourier transform and convolutional neural net-

work. Figure 4.1 shows an overview of our proposed methodology. It starts with a filter

which is used for denoising. The denoising process acts as a crucial preprocessing step to

impove pattern visibility. It is intended to enhance performance by bringing down network

complexity while successfully extracting complicated patterns. Denoising techniques en-

able the network to capture and distinguish tiny patterns even in environments with noise.

After that discrete fourier transform is applied to extract frequency domain and phase

information. The processed time domain, frequency domain and phase information of

signal are fed to three parallel stacked CNNs which then extract features in parallel. Then

the extracted features from each individual CNNs are concatenated and combined to pass

on to the softmax layer for classification of emitters.
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Figure 4.1: Illustration of proposed method.

4.1 Savitzky Golay filter

An technique for digital signal processing known as the savitzky golay filter is used to

smooth data or identify a signal’s derivatives. Abraham Savitzky and Marcel Golay in-

troduced it in 1964. The filter operates by fitting a polynomial of a particular degree to

a window of nearby data points and then calculating the smoothed value of the centre

point in the window using the coefficients of that polynomial. The window size and poly-

nomial degree are user-specified parameters that affect the trade-off between smoothing

and maintaining signal features. A least-squares fitting procedure is used to calculate the

coefficients a, which minimises the squared error between the original data points and the

fitted polynomial.

e(n) =
M∑

n=−M

(p(n)− x(n))2 (4.1)

consider a group of data samples where n = 0,1,..M and M is the half width of the approx-

imation interval. By selecting the window size and polynomial order, the new smoothed

value is given by

Yn =

(m−1)/2∑
i=(1−m)/2

Ciyn+i (4.2)
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Here, Ci are the coefficients of the polynomial of degree N and yi is the observed value.

Compute the coefficients Ci for the polynomial using the least-squares method. Ci can be

mathematically calculated as

Ci = (ATA)−1ATy (4.3)

where, A is a matrix containing powers of 2M+1 Values within the window and y is the

observed value.

Figure 4.2 shows some signals before and after denoising.

Figure 4.2: Denoising of Signals

4.2 Discrete Fourier Transform

The time domain signals which indicates its amplitude over the time instant or the sample

number. However, in some circumstances, signal frequency content is more helpful than

the signal samples.

The discrete fourier transform, or the DFT, is the technique used to convert time domain

signal samples to frequency domain representation. The DFT also forms a connection
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between both representation the time domain and frequency domain. As a result, we

can use the DFT to conduct frequency analysis on a time domain signal. A mathematical

operation known as the DFT which transform a set of N complex numbers into an other set

of N complex numbers, where each number in the output sequence denotes the amplitude

and phase of a certain frequency component in the input signal.

Xk =
N−1∑
n=0

x[n]e
−j2πkn

N (4.4)

The amplitude and the phase that buid the signal can be calculated from the complex array

Xk are as follows (Im and Re denotes the Imaginary and Real parts of a complex number)

Amplitude =

√
Im2(Xk) + Re2(Xk)

N
(4.5)

Phase = tan−1(
Im(Xk)

Re(Xk)
) (4.6)

Figure 4.3 shows magnitude and phase plots of the dataset we used.

Furthermore, the DFT is frequently employed in a variety of different fields such as spec-

trum analysis, acoustics, audio, instrumentation, and communications systems.

4.3 Convolutional Neural Network

A Convolutional Neural Network (CNN) is represented as subset of machine learning, be-

longing to the broader family of artificial neural networks. These networks are utilized for

various applications across different data types. CNNs are a specific network architecture

tailored for deep learning algorithms, primarily applied in image recognition and tasks

that involve pixel data processing. Convolutional Neural Networks are predominantly

employed for classification and computer vision tasks, basic network stucture shown in
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Figure 4.3: Magnitude and Phase Plot

Figure 4.4. Before the advent of CNNs, the process of identifying objects in images relied

on intensive manual feature extraction methods. Nonetheless, CNNs have introduced a

more efficient and scalable approach to tasks like image classification and object recog-

nition. They achieve this by harnessing principles from linear algebra, notably matrix

multiplication, to detect and recognize patterns within an image.

Figure 4.4: Basic CNN Stucture
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4.3.1 Convolutional Layer

The bulk of computations within a Convolutional Neural Network (CNN) occur within

the convolutional layer, which serves as the basic block of the neural network. In many

cases, a second convolutional layer follows the initial one. The essence of the convolution

operation entails a kernel or filter within this layer traversing the receptive fields of the

image, systematically examining whether specific features are present in the image. For

the numerous iterations, the kernel travels over the entire image. Following each iteration,

a dot product computation occurs between the input pixels and the filter. This process re-

sults in a final output, known as a feature map. This convolutional layer is responsible for

transforming the image into mathematical values, enabling the CNN to illustrate the image

and extract pertinent patterns from it. The convolution operation can be mathematically

expressed as

Y (i, j) =
∑
m

∑
n

X(i−m, j − n).K(m,n) (4.7)

Where Y(i,j) is the value at position (i,j) in the output feature map. X is the input feature

map. K is the kernal or filter. m and n are the indices of the elements in K.

4.3.2 Pooling Layer

Pooling layer plays a pivotal role in lowering the spatial dimensions of the convolved

feature. Pooling operation sweeps a filter across the whole input, but the difference is that

this filter does not contain any weights. Its primary purpose is to reduce the computational

demands involved in processing data by diminishing the dimensions and also results in

some information loss. There are two principal types of pooling employed in this layer

average pooling and max pooling. Max-pooling is a popular pooling operation:

Y (i, j) = maxp,q∈Ri,j
X(p, q) (4.8)
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Where Ri,j is the local region in the input feature map corresponding to the output location

(i,j).

4.3.3 Fully Connected Layer

The term fully-connected layer is quite straightforward. Unlike the limited connected lay-

ers, where the pixel values of the input image are not directly related to the output layer.

In the fully-connected layer, every node in the output or last layer establishes a direct

connection with a node in the previous layer. The main goal of this layer involves classifi-

cation, relying on the features extracted from preceding layers and their diverse filters. All

the layers in the CNN are not entirely connected because it would give unessential dense

network. It would also increase the losses and affect the output quality, and it would be

computationally expensive. The fully connected layer can be expressed as

Y = f(WX + b) (4.9)

4.3.4 Activation Function

The activation function plays a crucial role in determining whether a neuron should be

activated. It achieves this by computing the weighted sum and incorporating bias. The

role of the activation function is to give output from a set of input values fed to a node (or

a layer) and to inject non linearity into the neuron’s output.

ReLu (Rectified Linear unit) preferred over other nonlinear activation functions due to its

ability to rapidly convergence.ReLU speeds up deep neural network learning by introduc-

ing a simple thresholding method that allows positive values to pass through unchanged.

ReLU is an appealing option because it improves model convergence by reducing the

vanishing gradient problem and speeding up training-phase optimisation.

f(x) = max(0, x) (4.10)
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4.3.5 Loss Function

A loss function is an important component in the field of machine learning. It serves

as a statistical technique that determines the error between a machine learning or deep

learning model’s predicted outputs and the actual output labels. The main aim of this

function is to increase the model performance by minimizing the loss, which will guide

to a reduction in the model’s errors obtained on the training data. The loss function is an

important aspect in the machine learning or deep learning, since it not only allows you to

assess the model’s performance but also gives essential guidance during the optimization

phase. The loss function engaged is determined on the type of model or the task being

performed. For instance, mean squared error is regularly applied in regression based tasks

and categorical cross-entropy loss is used in classification based activities.

L = − 1

N

N∑
n=1

[yt(n) log10(ŷ(n)) + (1− yt(n)) log10(1− ŷ(n))] (4.11)

where, yt(n) shows the true output label, ŷ(n) is the predicted output generated from

model.

4.3.6 Backpropagation

Backpropagation in a Convolutional Neural Network (CNN) is an essential training proce-

dure that allows the network to learn from its errors during training procedure and improve

the parameters, such as weights and biases, to have better performance on specific tasks

like image classification etc. For training feed forward neural networks backpropagation

is a popular approach used nowadays. It computes the gradient of the loss function rela-

tive to the network weights. It is far more efficient than simply computing the gradient for

each weight. This efficiency enables gradient methods to be used to train multi layered

networks and update weights to minimize loss.
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θ = θ − α∇L(θ) (4.12)

Where θ represents network parameters (weights and biases), α is the learning rate and

∇L(θ) is the gradient of the loss function with respect to θ.

4.4 Summary

In the proposed methodology it integrates denoising, discrete Fourier transform, and par-

allel CNNs to enhance specific emitter identification accuracy in wireless communica-

tion systems, particularly in challenging low SNR conditions. The combination of these

techniques aims to improve the model’s ability to discern subtle patterns and features,

ultimately contributing to the overall security and reliability of wireless communication

systems.
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Chapter 5

Experiments and Results

The proposed model has been tested on walkie talkie dataset and open source cellphone

dataset. An ablation study has been carried out on how our proposed model performed

with various SNRs and compared with the existing methods in terms of accuracy. This

chapter is divided into 5 sections: Section 5.1 explores the dataset, Section 5.2 contains

implementation details, 5.3 describes the evaluation metrics, Section 5.4 contains detailed

analysis of results from ablation studies and Section 5.5 concludes the chapter.

5.1 Dataset

This section covers the information about two different datasets used for the evaluation of

the proposed method. One dataset is based on VHF radios that was generated in a real-

world environment, other dataset consist of bluetooth signals of cellphone. The datasets

are splited into 80 percent training data and 20 percent testing data.

5.1.1 Walkies Talkies Dataset

Eleven walkie talkies were used in our trials, which were done as part of the extensive

field testing phase, and their frequencies were adjusted to fall between 136 and 176 MHz.
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The signals were captured at a particular frequency of 136 MHz, with a channel band-

width of 25 kHz, and in a multi-path environment. A total of 100 signals, each lasting 2

to 5 seconds, were recorded for each walkie-talkie, and this data was gathered at a sam-

pling rate of 50 kS/sec on each individual emitter. To evaluate the performance of our

technique at various SNRs, we used synthetic Additive White Gaussian noise (AWGN)

during simulation. This enabled us to systematically assess the algorithm’s robustness

and efficacy in tough noise settings. Overall, we captured and processed 20900 signals,

each with 2000 samples, which were strategically used for training and validation of the

proposed technique. 5.1 shows the some walkie talkie signals

Figure 5.1: Walkie Talkie Signal.

5.1.2 Cellphone Dataset

Bluetooth signals was captured at an isolated laboratory at Atilim University, Ankara,

Turkey from different smartphone brands with a sampling rate of 250Ms/sec. A set of

16 smartphones of various models produced by five manufacturers were used in the data

collection. In the dataset, there are 4950 records of Bluetooth signals. For one smart-

phone, there are 300 records and for each record it consists of 625 samples. To evaluate

the performance of our technique at various SNRs, we used synthetic Additive White

Gaussian noise (AWGN) during simulation. This enabled us to systematically assess the

algorithm’s robustness and efficacy in tough noise settings. 5.2 shows the some cellphone
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signals

Figure 5.2: Cellphone Signal.

The summary of the two dataset used to evaluate the performence of our technique are as

follows.

Table 5.1: Dataset Summary

Description Walkies Talkies Cell Phones
Sampling Frequency 50 Ks/Sec 250 Ms/Sec
Classes 11 16
Records 20900 4950
Samples 2000 625
Signals per Class 1900 300

5.2 Implementation details

Convolutional Neural Networks (CNNs) have proven to be highly effective in discerning

complex patterns in signals. They excel at extracting features through a sequence of

mathematical operations, harnessing the strength of convolutional and pooling layers to

filter out noise, showcasing their impressive capabilities in this regard. 5.3 and 5.4 shows

the proposed stacked architecture, convolutional layer with 64 filters of kernal size 3 and

dense softmax layer.
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Figure 5.3: CNN Network Architecture

Figure 5.4: CNN Layer wise Configuration

This design smoothly incorporates denoising directly within the network, strengthening

the CNN’s ability to handle demanding situations with high levels of noise. The denoising

step serves as a pivotal initial phase, enabling subsequent layers to concentrate on extract-

ing pertinent features that are resistant to noise interference. Consequently, this suggested
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architecture presents a hopeful remedy for enhancing the unclear outlines in the signal

caused by noise, facilitating the network in effortlessly discerning distinctive patterns.

The proposed model is implemented using keras and trained on a T4 GPU. The AdamW

optimizer is used to fine-tune the network for 100 epochs with a batch size of 64.

5.3 Evaluation Metrics

We assessed the performance of our approach in RF Fingerprinting by employing met-

rics such as classification accuracy, confusion matrix, and benchmarking against various

established deep learning methods. This evaluation, conducted across different Signal-to-

Noise Ratios (SNRs), aims to gauge the efficacy of our proposed method in comparison

to existing techniques.

5.4 Quantitative Results

To evaluate the proposed classification model, we have conducted detailed experiments.

All of our experiments are carried on walkies talkies and cellphone dataset. We con-

ducted a comprehensive analysis to understand how the accuracy of the proposed model

is affected by varying the SNRs(Signal to noise ratio). The results yielded intriguing ob-

servations regarding the model’s performance are shown in Table 5.2 and 5.3 for both

datasets.

Table 5.2: Classification Accuracy of Walkies Takies Dataset

SNR Walkies Talkies
Accuracy

0 dB 90 %
5 dB 95 %
10 dB 96.3 %
15 dB 97.6 %
20 dB 98.4 %

32



Table 5.3: Classification Accuracy of Cellphone Dataset

SNR Cellphone
Accuracy

0 dB 92 %
3 dB 95.5 %
6 dB 96.3 %
9 dB 98 %
12 dB 98.4 %
15 dB 99.2 %

It can bee seen from Table 5.2 and 5.3, Thorough evaluation across 100 iterations, we

observed highly encouraging outcomes. Specifically, when the Signal-to-Noise Ratio

(SNR) exceeds 5 dB, our proposed method demonstrates an outstanding average accu-

racy exceeding 97%. This indicates its proficiency in accurately discerning walkie-talkie

and cellphone signals, particularly in favorable SNR scenarios. The notable precision

achieved in these tests underscores the significant potential of our approach for practi-

cal applications, especially in contexts where precise identification of walkie-talkie and

cellphone signals holds paramount importance for communication security and adminis-

tration.

Moreover the findings from confusion matrices shown in 5.5 and 5.6, further reinforce

the model’s accuracy, highlighting its proficiency in classifying signals accurately. The

matrix’s diagonal elements depict the count of accurate classifications for each class, pro-

viding a measure of the model’s precision in specific categories. In contrast, the upper and

lower triangular matrices reveal cases of misclassifications, offering a transparent view of

the method’s errors.

5.4.1 Comparison with Literature

After finalizing the model En-ConvNet, we also performed comparative analysis on walkies

talkies dataset and cellphone dataset with following existing state of the art techniques.

• Inphase and Quadrature Convolutional Neural Network, IQ-CNN
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Figure 5.5: Walkies Talkies Confusion Matrix

Figure 5.6: Cellphone Confusion Matrix

• Short Time Fourier Transform Convolutional Neural Network, STFT-CNN

• Discrete Wavelet Transform Convolutional Neural Network, DWT-CNN

• Empirical Mode Decomposition Convolutional Neural Network, EMD-CNN

Figure 5.7 ,5.8, 5.9 and 5.10 illustrates our discoveries, showcasing that the En-ConvNet
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approach outperforms other established deep learning methods. Specifically, as the Signal-

to-Noise Ratio (SNR) falls below 15 dB, the classification accuracy of the existing meth-

ods noticeably declines. This suggests that these methods face challenges in handling

substantial noise levels, which in turn hinders their capability to extract pertinent features

from the RF fingerprints effectively.

Figure 5.7: Comparision of Walkies Talkies Dataset with Existing Methods

Figure 5.8: Accuracies of Walkies Talkies Dataset with Existing Methods
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Figure 5.9: Comparision of Cellphone Dataset with Existing Methods

Figure 5.10: Accuracies of Cellphone Dataset with Existing Methods

Nonetheless, the En-ConvNet approach distinguishes itself by maintaining its robust-

ness even when confronted with elevated levels of noise and low Signal-to-Noise Ratios

(SNRs). This durability can be attributed to the integration of the Savitzky-Golay Fil-

ter (SGF) within the proposed deep learning framework. The SGF plays a pivotal role

in enhancing the delineation of the RF fingerprints, allowing the En-ConvNet to extract
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discernible and meaningful patterns with notable precision.

5.5 Summary

This chapter has analyzed the datasets, implementation details and results of proposed

architecture quantitatively on various Signal-to-Noise Ratios (SNR). A detailed compari-

son with different methods has been elaborated in Section 5.4. Chapter 6 will discuss the

shortcomings and future work related to our research.
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Chapter 6

Conculsion and Future Work

6.1 Discussion

In today’s world, there is an increasing demand for advanced computational systems.

Deep learning techniques have becoming increasingly prominent. Their outstanding ca-

pacity to recognize patterns has led to significant application across numerous disciplines.

CNNs excel in categorization tasks, making them a standout deep learning method. This

is mainly due to their ability to automatically extract features. CNNs are designed to

detect and learn relevant patterns and properties from input data, making them extremely

effective in tasks like image and signal categorization. This unique capability in automatic

feature extraction allows CNN-based techniques to thrive in a variety of applications, in-

cluding Signal Emitter Identification (SEI). CNN-based approaches perform very well in

SEI, where precise recognition and classification of complicated and unique signal fea-

tures is critical.

The study evaluates the performance of the En-ConvNet technique on two different datasets,

specifically walkie-talkies and cell phones. The purpose is to investigate how variations in

signal-to-noise ratio (SNR) affect classification accuracy. On both datasets, En-ConvNet

showed outstanding performance, when compared to other deep learning techniques,
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showing exceptional robustness in low SNR state. The results generated from the confu-

sion matrices further highlights the model’s precision, showing its ability to appropriately

classify the signals.

6.2 Conclusion

This research study provide a unique ensemble neural network that greatly highlights the

importance of feature extraction and classification of devices. This is obtained by apply-

ing stacked multivariate lightweight Convolutional Neural Networks (CNNs) to signals

from diverse domains and intregating savitzky golay filtering as a denoising step. In

particular, when applied on real-world walkie-talkie dataset under low Signal-to-Noise

Ratio (SNR) conditions, our proposed model also outperforms more complex deep neu-

ral networks. Furthermore, the model also shows outstanding performance on a publicly

available dataset which are of cell phone signals. In particular, when the SNR goes 5 dB

and its beyond, the classification accuracy surpasses an amazing 95% on both datasets,

showing strong proof of the ensemble neural network’s efficiency in managing complex

signal processing tasks.

6.3 Future work

Potential possible improvement for future research work in Specific Emitter Identification

(SEI) highlights the following:

• Advanced Signal Processing Techniques: In order to improve the accuracy and

flexibility of SEI systems, we can inquire into more complicated signal processing

techniques.

• Machine Learning and AI: More evolution in artificial intelligence, deep learning,

and machine learning methodologies can result in SEI techniques that can be more

reliable and are more efficient.
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• Quantum Computing for SEI: Investigate how quantum computing could poten-

tially offer methods for SEI tasks, especially in scenarios when dealing with large-

scale data.
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