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Abstract

We have taken into account the recently developed quantum kinetic model, for lin-
ear wave analysis in which quantum effects are incorporated. Two types of quantum
plasma are considered here. The first type consist of electron-positron-ion degenerate
Fermi gas in which we take me = mp, here damped zero sound waves exist in contrast
to undamped one in degenerate electron-ion plasma. Second type of quantum plasma
is composed of electron-hole-ion plasma, where me 6= mh. Here longitudinal quantum
sound waves exist which have no analogue in quantum electron-ion plasma. The ex-
citation of these longitudinal quantum sound waves by low density electron beam is
examined. Moreover, the zero sound waves and longitudinal quantum sound waves are
examined for degenerate ions along with degenerate electrons and positrons.
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Chapter 1

Introduction

Plasma physics is the study of large number of charged particles, in which the long-
range coulomb force is much larger than the force due to neighboring particle. Tonks
and Langmuir were first used the word plasma by in 1929. The charged particles ex-
hibit a collective behavior i.e., motion of charged particles affect the motion of other
charged particles far away via fields. It was first described by Lord Rayleigh in 1966
[3]. Plasmas are commonly found in the outer layers of the sun and stars, which are
made up of matter in an ionized state. From these regions charge particles emerge
out to form a wind that filled the interplanetary space [4]. The plasmas are also ob-
served in compact objects like white dwarfs, neutron stars or black holes. Thus it was
claimed that most of the matter in the universe is in the plasma state. The plasma
state is defined as an electrified gas with the atoms dissociated into positive ions and
negative electrons. This gas is quasi neutral i.e., neutral enough so that one can take
ni ≈ ne ≈ n where n is the plasma density but not as neutral so that various interesting
electromagnetic effects vanishes. The terrestrial plasmas are limited to a few exam-
ples: the flash of lightning bolt, the ionosphere, the magnetosphere contains plasma
in the Earth’s surrounding space environment and the slight amount of ionization in a
rocket exhaust [5]. Laboratory plasmas can also exist with wide range of applications
in semiconductor device fabrication including reactive-ion etching, sputtering, surface
cleaning and plasma-enhanced chemical vapour deposition. In laboratory, plasma can
also be formed when high power lasers interact with materials.
The matter particles such as electrons, protons, neutrons are fermions which obey the
laws of quantum mechanics. Therefore all plasmas are in some sense quantum, so in
general plasma can be described in two categories i.e., Classical Plasma and Quantum
Plasma. In classical plasma the quantum nature of the constituent particles dose not
affect the macroscopic dynamics of plasma. By high temperature and low density, we
can characterize such plasma. In this regime the de-Broglie wavelength (λT = h√

2πmkBT

) is so small. Therefore particles behaves point like, and wavefunctions will not over-
lapp. But when the density (ne ≈ 1020 − 1030) of plasma increases or its temperature
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decreases, then we can enter in a regime where quantum mechanical laws effect the
macroscopic dynamics of the system.

1.1 Quantum Plasmas

Before the concepts of quantum plasma researchers deal with the free electron gas
(single particle) model in which the effect of periodic ionic lattice (The ions form a
regular lattice in which the ionic bonds act in all directions, where ionic bonds are
the electrostatic force of attraction between oppositely charged ions) the motions of
electrons will be taken into account. Here motion of one electron is quite independent of
all the other electrons and there will be no coulomb interactions. Later in the decade
1950-60, David Joseph Bohm and Pines studied the electromagnetic interactions of
dense electron gas (e.g., metals). By electromagnetic interactions it means that the
coulomb interactions were not ignored and here first time the free electron gas were
treated as quantum plasma. Quantum plasma is characterized in-terms of high density
with low temperature and here the de-Broglie wavelength is comparable to the inter
particle distance, so that the overlapping of wave function occurs. However, high
particle density is not the necessary criteria for quantum plasma. Because when the
semiconductor plasma is cooled up to T = 0K then quantum effects dominates and
Fermi-Dirac statistics is applied for the particles. Besides temperature and density
the intrinsic spin also contributes to quantum effects, but while dealing with classical
plasma this intrinsic effect is ignored.

1.1.1 Quantum Plasma Environments

Due to its diverse application quantum plasma is gaining interest in modern tech-
nology e.g., metallic and semiconductor Nanostructures, metal clusters, spintronics,
Nanotubes etc. In semiconductor plasma the electron density (ne > 1016 − 1018cm−3)
is much less than in metals (ne ≈ 1020 − 1023cm−3), but due to attenuation of com-
ponents, the de-Broglie wavelength is comparable to the inter particle distance. The
quantum mechanical effects such as tunneling are assumed to play a central role in the
behavior of electronic component to be constructed in next upcoming years. Quantum
plasma also occur in planetary interiors in compact astrophysical objects e.g, in the
interior of white dwarf, magnetosphere’s of neutron star etc. In interior of white dwarf
stars the density is some ten orders of magnitudes larger than the ordinary solids. Due
to such high number density (n ≈ 1030) a white dwarf can be as hot as fusion plasma
(108K) but still behave quantum mechanically [1].
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Figure 1.1: Various plasma regimes characterized by temperature and density.

1.1.2 Basic Regimes of Classical and Quantum Plasma

The de-Broglie wavelength which is the additional length scale, is introduced when
quantum effects taken into account. The larger the de-Broglie wavelength the more
important the quantum effect is. As for ions the de-Broglie wavelength is small there-
fore ions are treated classically whereas electrons and positrons are treated quantum
mechanically, which form a complex system. However dimensionless analysis can reduce
the complexity of the problem, that give insight to fundamental scales (time, length
and velocity etc). A number of parameters that represent these fundamental scales in
a classical and quantum plasma are explained here. These dimensionless parameters
characterize or distinguish plasma in its different regimes that either it is classical or
quantum. Moreover either it is dominated by collisional or collision less effects. The
coulomb coupling parameter (gc, gQ), The quantum degeneracy parameter (γ) and the
typical densities and temperature are the defining features of dense plasma.

1.1.3 Degeneracy Parameter (γ)

A gas is in the quantum plasma regime when the average de-Broglie wavelength is
comparable to average inter-particle distance i.e., λB > d, where λB = ~

mvtα
(~ is Planck

constant vTα is the thermal velocity (α=e,i etc)). The electron and positron can be no
longer described by considering classical point particle. The inter particle distance is
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approximately d ∼ (n)
−1
3 , where n being the density of particles. Mathematically the

condition for quantum plasma is written as

nλ3
B ≥ 1. (1.1)

The Eq.(1.1) will be satisfied, when the temperature is low and corresponding density
of particles is high, then the particles get close to each other. In such case the de-Broglie
wave length increases so the overlapping of wave-functions occurs and quantum effects
dominate.

Figure 1.2: In this figure ∆x shows the de-Broglie wavelength and d is the inter particle
distance whose relation with density of particles is written as d = n

−1
3

In terms of degeneracy parameter γ (which is the ratio of Fermi energy to that of
thermal energy or in terms of temperature is expressed as the ratio of Fermi temperature
(TF ) and Thermal temperature(T ) i.e., γ = TF

T
) these two regimes (Classical(non-

degenerate) and Quantum(degenerate)) can be differentiated. The Fermi temperature
is defined as

TF =
~2

2mkB
(3π2)

2
3n

2
3 ,

where kB is the Boltzmann constant. The de-Broglie wavelength is

λT =

√
~2

4πmkB
.

Therefore TF can be expressed as

TF =
T

2
(3π2)

2
3 (nλ3

T )
2
3 ,

hence γ can be written as

γ =
1

2
((3π2)

2
3 (nλ3

T )
2
3 .
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When γ ≥ 1 than plasma is in quantum regime and when γ < 1 than the plasma is in
classical regime. While moving from classical to quantum regime the plasma statistics
changes from Maxwellian to Fermi Dirac distribution. The plasma degeneracy is an
important effect in quantum regime and the average inter particle distance is the scale
for plasma degeneracy. Beside this scale there are some other length scales which play
an important role in plasma degeneracy even in classical (non-degenerate) hot plasma
e.g, Landau length Ze2α

kBTα
. When the λB is comparable or greater then Landau length

then, quantum effects will prominent in classical regime. Mathematically,

λB ≥
Ze2

α

kBTα
.

There is another example in which λB is greater then the landau length but less than
the average distance of inter particle . Hence quantum interference can occur in this
regime its example is in typical fusion plasma having densities n = 1018cm−3 and
T = 108K. Spinning motion of charged particles is an other example of quantum
effects in classical plasma [6].

1.1.4 Coupling Parameter (gc, gQ)

The coupling parameter in classical and quantum regime are gc and gQ. Through these
parameters the ideality (collision less or weakly coupled) or non-ideality (collisional
or strongly coupled) of plasma can be checked, gc is define as the ratio of average
potential energy or interaction (electric) energy ∼ e2n

1
3

ε0
and average kinetic ∼ kBT .

This coupling parameter is a measure of the degree to which many-body interactions
affects the dynamics of particles in the system. So the coupling dimensionless parameter
is

gc = 4π
e2n

1
3

kBT
. (1.2)

When gc is small or gc << 1 then it means that thermal effects are dominant and
binary collisions are weak so the plasma is ideal (weakly coupled). On the other hand
when it is large i.e., gc ≥ 1 means binary collisions are dominated and collisions are
not ignored, here plasma is considered to be non-ideal (strongly coupled). In terms of
Debye length

λD =

√
kBT

4πne2
,

the coupling parameter can be expressed as

gc =
1

4π
(

1

nλ3
D

)
2
3 .
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When Debye length is larger than inter particle distance then gc is small which indicates
that it is ideal (collision-less). For Quantum regime the dimensionless parameter is
same as in Eq.(1.2) but the thermal energy is replaced by Fermi energy, and Debye
length should be replaced by Thomas Fermi screening length λDf . Quantum coupling
parameter can be expressed as

gQ =
1

4π
(

1

nλ3
Df

)
2
3 . (1.3)

When gQ << 1 it indicates degenerate collision-less regime and when gQ ≥ 1 then
it is degenerate collisional regime. The coupling and degeneracy parameters are the

Figure 1.3: Here the Log T and Log n plane is divided into 4 regimes, two of which
are classical and two are quantum mechanical region which is further divided into
collisional and non collisional regime. In this figure gc is classical coupling parameter
and gQ is quantum coupling parameter. This figure is taken from Ref[1]

functions of density and temperature. In figure (1.4) the straight line corresponds to
γ = gc =gQ =1, which differentiate the various plasma regime.
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1.2 Electron-Positron-Ion Quantum Plasma

The Astrophysical and laboratory plasma may have multi-components. A multi-
component plasma composed of fully or partially ionized mixture of charged and neu-
tral particle that satisfy the condition of quasi-neutrality. The four widely studied
multi-component plasma systems are electron-positron-ion plasma, pair plasma, dusty
plasma and multi-ion plasma.

1.2.1 Pair Plasma

There are many sources of pair production (e+, e−) in laboratory as well as in Astro-
physical environment. In laboratory the pair production takes place through light −
matter, light − light interactions. When an intense laser interact with solid target
(light-matter) or when two high intensity laser beams (light-light) interact with each
other then pair production occurs. In light-matter interaction pair production occurs
through two processes, first is BH-process (Bethe-Heitler) and second is Trident process.
In BH-process the laser accelerated the electrons up to MeV energies. These accelerated
electrons then interact with nuclei of target material to give bremsstrahlung photons (
e.m radiation produced by deceleration of charged particles, the loss in kinetic energy
of moving particles is converted into photons by satisfying the law of conservation of
energy), which than interact with nuclei to produce electron-positron pairs. Moreover
in Trident process the accelerated electrons directly produce pairs upon interactions
with target nuclei. In light-matter interaction when laser interacts with a solid target
the density of positron as high as 1016/cm3 and pair density approaching 1021/cm3 has
been acheived [7]. These processes occur at fundamental frequency known as plasma
frequency. When the frequency of laser is greater then plasma frequency ω > ωp
than laser interaction with plasma can occur otherwise laser cannot pass through the
plasma. On the other hand when counter propagating laser beam pass through dense

Figure 1.4: laser plasma interaction and how electron positron are produced [2].

plasma they accelerated the plasma electrons to ultra-relativistic speeds, which in turn

10



emit photons having energy comparable to laser photons. The energy of these pho-
tons are ∼ 100MeV , when they interact with laser photons then pairs are produced.
The intensity of the laser beams is achieved up to 1022Wcm−2 and the latest running
setups like High Power Laser Energy Research Facility (HIPER) and Extreme Light
Infrastructure(ELI) are expected to achieve the laser intensity as high as 1026Wcm−3

by the end of 2020. When a γ-ray strikes a nuclei it gives rise to electron-positron pair
only when the energy of these γ-ray photons is greater then the threshold energy. The
threshold energy is equivalent to the rest mass energy of two electrons, i.e., 1.02MeV .
According to law of conservation of energy when the energy of photon is greater then
1.02MeV than it can split into two particles i.e., e+, e−. According to E = mc2 when
the positron come to rest then it may interacts with other electrons as a result photons
or γ-rays are produced. In the magnetosphere of Pulsars (a magnetized neutron star
emitting electromagnetic radiation) and magnetars (a neutron star with ultra-strong
magnetic field) pairs are produced as these objects are highly magnetized. Due to the
rotation of these highly magnetized objects electric field is induced. The component
of this induced electric field which is parallel to magnetic field accelerates the electron
upto ultra-relativistic speeds. These high energy particles are constrained to move in a
curved magnetic field and emit high energy photons (whose energy is greater then the
pair production threshold). Thus they create pairs by the interaction of two photons,
when the magnetic field is strong B > 1012G as in Magnetars Ref[7].

1.2.2 Electron-Positron-Ion Plasma Environment

Electron-positron-ion plasma is present in interstellar medium which is the matter
and radiation that exists in space between the star systems in a galaxy. This matter
includes gas in ionic, atomic and molecular form as well as dust and cosmic rays. In
Astrophysical objects positrons are produced when a cosmic ray nuclei interact with
atom, however in laboratory plasma a short relativistically strong laser pulse interact
with matter as a result epi plasma is formed due to pair production

γ + A→ A+ e+ + e−.

In compact Astrophysical objects, for example in white dwarfs, magnetars, pulsars and
neutron stars etc degenerate plasmas exist. A high pair creation rate is expected in
compact objects due to high densities of positrons and electrons therefore here electrons
and positrons are treated relativistically degenerate. However ions are also present in
astrophysical environment. The existence of a fraction of ion in astrophysical plasmas
have been confirmed by "Advanced Satellite for cosmology and Astrophysics (ASCA)"
[8], therefore the equilibrium quasi-neutrality condition for epi plasma is

n0e ≈ n0p + n0i.

The intrinsic symmetry between electron (e−) and positron (e+) particles with in the
e-p plasma makes there dynamics quite different from e-i plasma. In e-p plasma due
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Figure 1.5: magnetic field lines of magnetar according to Artist’s conception (NASA
logos)

to the mass symmetry of charged particles, induced different growth rates of series of
kinetic and fluid instabilities [9]. When ions are introduced in e-p plasma then there
dynamic scales changes significantly, linear wave spectrum also increases and wide
range of frequencies are available in three component (e-p-i) plasma, as compared to
two component (e-p or e-i) plasma. Another aspect of epi plasma is that many non-
linear phenomenon could happen and possibility of wave-wave interaction increases.
e-p plasma is extensively studied theoretically in astrophysical context as well as in
laboratory experiments in which due to the short lifetime of positron, the transport
(plasma) mechanism in tokamakit can be study. By injecting of neutral positronium
atom, the positron is introduced in tokamak, and it get ionized by plasma. In tokamak
the confinement of particles is less than the annihilation time of positrons in plasma.
[10, 11].
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1.2.3 Relativistic Degenerate Plasma

Relativistic degenerate plasma exist extensively in fusion and astrophysical environ-
ments. Now a days, relativistic plasmas can also be produced by intense Laser-matter
interactions [12], when the laser power is high enough to cause the plasma oscillation
velocity to become highly relativistic. The relativistic factor becomes greater than 1
which give rise to variety of ultra-relativistic effects. In laboratory e-p plasma has been
produced by the interaction of solid gold target with an intense picosecond laser, here
the result shows that the positron density can be up to 1026cm−3 [13]. The degenerate
electron, positron may be non-relativistic, relativistic and ultra-relativistic depending
upon the ratio of Fermi energy and rest mass energy of an electron. In relativistic
degenerate plasma Fermi energy is either comparable or larger than rest mass energy

of an electron i.e., EF >> m0c
2, where EF = (3π2)

2
3 ~2

2mα
n

2
3
α . Thus very high density must

be reached to set relativistic degeneracy, such densities naturally exist in dwarf stars
and neutron stars. The core of a white dwarf has a high average density which is
typically ∼ 1034cm−3, where the electrons and positrons are relativistically degenerate
with weak electrostatic interaction. While the ions may consider as classical or strongly
coupled. In the outer mantle with a lower density (∼ 1026cm−3) the electron may be
weakly relativistic degenerate [14].
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Chapter 2

Kinetic Theory

2.1 Theoretical Study of Plasma Physics

In order to describe the plasma system that consist of number of particles there are
three level of description i.e., exact microscopic description, kinetic theory and the
fluid or macroscopic description. The microscopic description is exact classically in the
sense that if a system consist of a few thousand particles than one imagines to write
down Newtons law (F=ma) for each individual particle and then solve the interacting
trajectories. This description is inappropriate because numerical analysis of this system
is quite complex and the system cannot be fully solved. Therefore we move towards
kinetic description or kinetic theory in which statistical and probability concepts and
ensemble averaging is considered. In kinetic theory the identity or precise location of
particles are lost and we need complete description about the particle motion, therefore
it is still considered as microscopic theory. It can be reduced further and we considered
fluid theory in which macroscopic quantities such as temperature and velocity density
gives the description of physical system in space and time. In fluid theory we don’t
need the individual particle motion to describe the physical system.

2.2 Kinetic and Fluid Description

The fluid theory is the simplest description of plasma that have been used so far but
there are some phenomenon where fluid theory is inadequate to apply. The dependent
variables in fluid theory are functions of only four variables i.e., x, y, z and t. Therefore
in this theory the velocity distribution of each species is assumed to be Maxwellian every
where and it can be described by one number i.e., the temperature. As an example
when we consider two different velocity distribution the fluid theory dosen’t distinguish
the difference between them as long as the area under the curve is same. If the thermal
velocity of charged particle is close to the phase velocity of waves than the wave particle
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interaction cannot be described by the fluid equations, because this interaction depends
on the dynamics of the particles i.e., phase space distribution function in which the
velocity and position are independent variables. Therefore we need to consider velocity
distribution for each species i.e., f = f(r, v, t), here f is function of seven independent
variables. This treatment is known as kinetic theory and it provides the complete
description of the plasma with self consistent fields [15].

2.3 Quantum Kinetic Theory

In Quantum kinetic description of plasma the particles should be treated as waves, then
it is quite difficult to solve the Schroedinger’s equation for the N particle wave function
of the system. However it can be simplified by considering that plasma is nearly ideal
i.e., we focused on the collective behavior of plasma rather then the dynamics of each
and every particle. Hence the plasma can be considered as the collection of quan-
tum particles. The dynamical equations that are used for the description of quantum
system is Schroedinger’s equation (for pure states) and density-matrix equation (for
mixed states). There are commonly three approaches used for the mathematical mod-
eling of quantum plasma i.e., the Wigner-Poisson, the Schroedinger-Poisson and the
Dirac Maxwell. These approaches define the statistical and hydrodynamic behaviour of
plasma particles at quantum scales. The quantum hydrodynamic model (QHD) have
been developed to study the dynamics of transport phenomenon of charge particle in
a system that interact through self-consistent electrostatic potential. Manfredi gives
insight to quantum plasma in his paper "How to Model Quantum Plasma" [1] that urge
plasma physicist to propose comprehensive quantum plasma models. For instance, the
development of a new quantum kinetic model for Fermi particles by Tsintsadze [16] was
actually incited by a previously proposed work of Kuzelev [17]. This model provides a
very understandable and easy explanation of the particle dispersion effects. Moreover
recently developed spin kinetic theories bring new effects in the limelight. In particu-
lar, these newly developed models of spin quantum plasmas encompass the concept of
some new kinds of resonances caused by electron spin motion [18, 19, 20, 21], which
cannot be found in the formerly developed theories.

2.3.1 Quantum Kinetic Equation

Let us first consider the case when we include the external magnetic field and ne-
glecting the spin effects. The quantum Hamiltonian of charged spin- 1

2
particle in an

electromagnetic field is written as

Ĥ =
1

2mα

(P̂ − eα
c
A(r, t))2 + eαφ(r, t),
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where P̂ = −i~∇, A(r,t) and φ(r, t) are the scalar and vector potentials. After Simpli-
fying the above equation, we get

Ĥ =
1

2mα

[−~2∇2 +
e2
α

c2
A2(r, t) +

i~eα
c

(∇.A(r, t) + A(r, t).∇)] + eαφ(r, t).

By using i~eα
2mαc

[∇.A(r, t) + A(r, t).∇] = i~e
mαc

[A(r, t).∇] the above Hamiltonian becomes

Ĥ =
−~2∇2

2mα

+
e2
αA

2(r, t)

2mαc2
+
i~eα
mαc

(A(r, t).∇) + eαφ(r, t). (2.1)

Now by considering the time dependent Schrodinger equation and inserting the above
hamiltonian in it, we get

i~
∂

∂t
ψα(r, t) = Ĥψα(r, t),

i~
∂

∂t
ψα(r, t) = [

−~2∇2

2mα

+
e2
αA

2(r, t)

2mαc2
+
i~eα
mαc

(A(r, t).∇) + eαφ(r, t)]ψα(r, t), (2.2)

here we use the Madelung representation [17], [22] of wave function i.e.,

ψα(r, t) = Rα(r, t)e
iSα(r,t)

~ ,

where Rα(r, t) and Sα(r, t) are real magnitude and real phase function. Now using this
Madelung representation in Eq.(2.2) L.H.S can be written as

i~
∂

∂t
[Rα(r, t)e

i
~Sα(r,t) ] = i~

∂Rα

∂t
e
i
~Sα(r,t) −Rα(r, t)

∂Sα(r, t)

∂.t
e
i
~Sα(r,t) .

After neglecting the nonlinear term the R.H.S will become

= [− ~2

2mα

∇2Rα(r, t)− i~
mα

∇Rα(r, t).∇Sα(r, t)− i~
2mα

Rα(r, t).∇2Sα(r, t)

+
e2
αA

2(r, t)Rα(r, t)

2mαc2
+
i~A(r, t)

mαc
.∇Rα(r, t)− eαA(r, t)

mαc
.∇SαRα(r, t)

+ eαφ(r, t)Rα(r, t)]e
i
~Sα(r,t)

.

Hence the resulting equation becomes

i~
∂Rα

∂t
e
i
~Sα(r,t) −Rα(r, t)

∂Sα(r, t)

∂t
e
i
~Sα(r,t) = [− ~2

2mα

∇2Rα(r, t)− i~
mα

∇Rα(r, t).∇Sα(r, t)

− i~
2mα

Rα(r, t).∇2Sα(r, t) +
e2
αA

2(r, t)Rα(r, t)

2mαc2
+
i~A(r, t)

mαc
.∇Rα(r, t)

− eαA(r, t)

mαc
.∇SαRα(r, t) + eαφ(r, t)Rα(r, t)]e

i
~Sα(r,t)

.

(2.3)
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Now we have to separate the real and imaginary parts of above equation. By comparing
the imaginary part of above equation the resulting equation is continuity equation i.e.,

∂R2
α

∂t
+∇.R

2
αPα
mα

= 0

and the real parts becomes

− ~2

2mα

∇2Rα(r, t) +
e2
α

2mαc2
A2(r, t)Rα(r, t)− eα

mαc
A(r, t).∇Sα(r, t)Rα(r, t)

+ eαφ(r, t)Rα(r, t) = −Rα(r, t)
∂Sα(r, t)

∂t
,

(2.4)

dividing both side by −Rα(r, t)

∂Sα(r, t)

∂t
=

~2

2mα

(
∇2Rα(r, t)

Rα(r, t)
)− e2

α∇A2(r, t)

2mαc2
+

eα
mαc

A(r, t).∇Sα(r, t)− eαφ(r, t).

Now taking the gradient of above equation and also neglecting the second term on
R.H.S because this term is so small as compared to other terms

∂∇Sα(r, t)

∂t
=

~2

2mα

∇(
∇2Rα(r, t)

Rα(r, t)
) +

eα
mαc
∇(A(r, t).∇Sα(r, t))− eα∇φ(r, t), (2.5)

where pα = mαvα − eα
c
A(r, t), mαv = ∇Sα(r, t). Therefore

∇Sα = pα +
eα
c
A(r, t),

time derivative of above equation becomes

∂(∇Sα(r, t))

∂t
=
dpα
dt

+
eα
c

[
∂A(r, t)

∂t
+ (v.∇)A(r, t)]. (2.6)

As the total derivative of vector potential is

dA(r, t)

dt
= [

∂A(r, t)

∂t
+ (v.∇)A(r, t)].

Now using Eq.(2.6)in (2.5), we get

dpα
dt

+
eα
c

[
∂A(r, t)

∂t
+ (v.∇)A(r, t)] =

~2

2mα

∇(
∇2Rα(r, t)

Rα(r, t)
) +

eα
c
∇(A(r, t).v)− eα∇φ(r, t).

(2.7)
The identity that we consider here is

vα × (∇× A(r, t)) = ∇(vα.A(r, t))− (vα.∇)A(r, t)

17



by rearranging the terms, we get

∇(v.A(r, t)) = vα × (∇× A(r, t)) + (v.∇)A(r, t).

The dot product is commutative so we write above equation as

∇(A(r, t).vα) = vα × (∇× A(r, t)) + (vα.∇)A(r, t).

Now using the above identity in Eq.(2.7) yields

dpα
dt

=
~2

2mα

∇(
∇2Rα(r, t)

Rα(r, t)
) +

eα
c

(vα × (∇× A(r, t)) + (vα.∇)A(r, t)− eα∇φ(r, t)

− eα
c

[
∂A(r, t)

∂t
+ (vα.∇)A(r, t)].

(2.8)
In electromagnetic field the modified electric and magnetic fields are

E = −∇φ(r, t)− ∂A(r, t)

c∂t

and
H = ∇× A(r, t).

Using these modified electric and magnetic fields in above equation, we get

dpα
dt

=
~2

2mα

∇(
∇2Rα(r, t)

Rα(r, t)
) + eα[E +

vα ×H
c

]. (2.9)

The Quantum Boltzmann equation which is also called landau’s equation is

∂fα(r, p, t)

∂t
+ (vα.∇)fα(r, p, t) +

dpα
dt

∂fα(r, p, t)

∂t
= c(fα),

here collisional effects are negligible so R.H.S of above equation is zero therefore

∂fα(r, p, t)

∂t
+ (vα.∇)fα(r, p, t) +

dpα
dt

∂fα(r, p, t)

∂t
= 0. (2.10)

As Fermionic particles satisfy the above equation therefore using Eq.(2.9) in (2.10) the
resulting equation is quantum kinetic equation which includes the dispersion effects of
particles

∂fα(r, p, t)

∂t
+ (vα.∇)fα(r, p, t) +

~2

2mα

∇(
∇2Rα(r, t)

Rα(r, t)
) + eα[E +

vα ×H
c

]
∂fα(r, p, t)

∂t
= 0.

(2.11)

18



2.4 Mathematical Approaches in Quantum Plasma

When we move towards low temperature i.e., in quantum regime numerous new issues
emerge, so to express the new effects in quantum plasma we have the following many
body approaches or models.

2.4.1 Schroedinger-Poisson System

In quantum plasma (dense) within a small volume, there are large number of particles .
Its inappropriate to solve Schroedinger equation for the trajectories of each individual
particle. So by generalization from single body to N-body dynamics we can solve the
problem. In N-body dynamics we neglect the higher correlations between the two bod-
ies for simplification. Therefore the wave functions for N particle i.e., ψ(x1, x2, .....xN , t)
can be written as i.e.,

ψ(x1, x2, ...., t) = ψ1(x1, t), ψ2(x2, t).....ψN)(xN , t).

This leads to N independent Schroedinger equations

i~
∂ψk(x, t)

∂t
=

~2

2m
∆ψN(x, t) + eV (x, t)ψk(x, t),

where k = 1, 2, ....N and V(x,t) is the electrostatic potential (self consistent), given by
the Poisson’s equation

∆V (x, t) = 4πe(
N∑
k+1

pk|ψk(x, t)|2 − n0),

where ψk(x, t) is the wave function of N pure states. The probability occupation pi of
different quantum states for Fermi particles is given by Fermi Dirac statistics i.e.,

pk =
1

e
(E−EF )

kBT − 1

by definition
∑N

k=1 pk = 1. In Schroedinger-Poisson model, the quantum mechanical
equation of motion and long-range self consistent interactions are main aspects of
quantum plasma. This model is consider to be the quantum analogue of Vlasov Poisson
model, because majority of suppositions of two models are the same. For example,
neglected collisions, electrostatic potential is considered and single particle dynamics
is utilized.
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2.4.2 Wigner-Poisson Approach

In detailing of quantum mechanics, in order to find the probability density in position
space x we take square of the wave functions, ρ(x) = |ψ(x)|2, similar expression exist in
momentum space. So its convenient to express wave function in phase space that have
position and momentum coordinates. In 1932, Wigner recommended a phase space
distribution of quantum mechanics by methods of joint probability distribution. Main
objective of Wigner is to establish a relation between quantum and classical mechanics
by expressing Boltzmann factor, as the functions of both position and momentum.
Wigner distribution for mixed quantum states ψN(x, t) each classified by occupation
probability pi [23] is

W (x, v, t) =
m

2π~

N∑
k=1

pi

∫ + inf

− inf

dλψ∗i (x+
λ

2
, t)ψi(x−

λ

2
, t)e

ιmvλ
~ ,

where the normalization condition is
∑N

k=1 pk = 1. The density is defined as

n(x, t) =

∫ + inf

− inf

W (x, v, t)dV.

2.4.3 Quantum Hydrodynamic Approach

QHD model or quantum fluid model is generalization of classical fluid model, here
the conservation laws of particles, energy and momentum are used to express trans-
port equations. Comparatively QHD is the simplest description that uses collective
dynamics rather than S-P and W-P(phase space dynamics). By making use of average
quantities both S-P and W-P lead to QHD equations.
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Chapter 3

New Longitudinal Waves in Electron
Positron Ion Quantum Plasma

3.1 Introduction

In this chapter we study longitudinal waves in epi quantum plasma. For this purpose
two different quantum plasmas are considered. One comprised of Fermi gas which
is composed of electron, positron and ion (i.e., me = mp), and the other consist of
electron hole and ions (in this case mass of hole is greater than the mass of electron
here the mass difference arises due to interaction between particles). In these two
quantum plasmas, we assume that ions are stationary and they provide a uniform
fixed background. Semiconductors which contains light electrons and heavy positive
holes (charge carriers), can be degenerate (ne ≥ 1016 − 1018cm−3) with effective mass
of electron m∗e ≈ (0.01 − 0.1)me and it occurs at temperature T < 102K [24]. The
wavelength of the particles is larger than the inter particle distance r0 at low tempera-
ture in degenerate solid state, and in quantum Fermi liquid . Pauli exclusion principle
and screening of coulomb interaction between the particles is responsible for such long
mean free path. Also in solid state and liquid quantum plasma the effective masses of
holes and negative electrons are different from free electrons due to interaction between
particles.

3.2 Linear Analysis of Quantum Kinetic Equation

In this section we consider three component (electron positron-ion) collisionless plasma
at low temperature i.e., T ≈ 0K and than taken into account the linear Landau
damping. For longitudinal waves E(r, t) = −∇φα and here we take B=0 and the
amplitude function in term of density can be expressed as Rα(r, t) =

√
nα(r, t) so
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Eq.(2.11) can be written as

∂fα(r, p, t)

∂t
+(vα.∇)fα(r, p, t)−eα∇φα

∂fα(r, p, t)

∂t
+

~2

2mα

∇(
∇2

√
nα(r, t)√
nα(r, t)

)
∂fα(r, p, t)

∂p
= 0.

(3.1)
Now by linearizing the above equation with respect to small perturbations in the field
i.e., fα = fα0 + δfα, φα = φα0 + δφα,nα = nα0 + δnα, we get

∂(δfα0)

∂t
+ (v.∇fα0)− eα∇δφα

∂fα0

∂p
+

~2

2mα

∇. ∇2δnα
(nα0 + δnα)

(
∂fα0

∂p
+
∂δfα0

∂p
) = 0. (3.2)

In the linear analysis we consider nα0
δnα

> 1, so the above equation becomes

∂(δfα)

∂t
+ (v.∇fα)− eα∇δφα

∂fα0

∂p
+

~2

4mα

∇.∇
2δnα
nα0

∂fα0

∂p
= 0. (3.3)

The Poisson equation for longitudinal waves can be written as

−∇2φα = 4πΣαeαnα. (3.4)

By linearizing the above equation, we get

∇2(δφα) = −4πΣαeαδnα.

The density of particles is expressed as

δnα = 2

∫
dp

(2π~)3
δfα,

where 2 is due to the spin of electron i.e., (up and down spin). As here all the perturbed
quantities vary like expi(k.v − ωt) so above Eq.(3.4) and (3.5) becomes

−iωδfα + i(v.k)δfα − ieαδφαk.
∂fα0

∂p
+ i

~2k2

4mα

δnα
nα0

k.
∂fα0

∂p
= 0, (3.5)

k2δφα = 4πΣαeαδnα. (3.6)

By simplifying Eq.(3.5), we get

δfα = eαδφα
k.∂fα0

∂p

(k.v − ω)
+

~2k2

4mα

δnα
nα0

k.∂fα0
∂p

k.v − ω
. (3.7)

Now integrate both sides of above equation over the volume element 2
∫

dp
(2π~)3

i.e.,

2

∫
dp

(2π~)3
δfα = eαδφα

∫
2

(2π~)3

k.∂fα0
∂p

(k.v − ω)
dp+

~2k2

4mα

δnα
nα0

∫
2

(2π~)3

k.∂fα0
∂p

k.v − ω
dp. (3.8)
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As δnα = 2
∫

dp
(2π~)3

δfα so the above equation becomes

δnα = eαδφα

∫
2

(2π~)3

k.∂fα0
∂p

(k.v − ω)
dp+

~2k2

4mα

δnα
nα0

∫
2

(2π~)3

k.∂fα0
∂p

k.v − ω
dp, (3.9)

we can write above equation as,

δnα =
eαδφα

∫
2

(2π~)3
k.
∂fα0
∂p

(k.v−ω)
dp

1− ~2k2
4mαnα0

∫
2

(2π~)3
k.
∂fα0
∂p

k.v−ω dp

. (3.10)

Let

I =

∫
2

(2π~)3

k.∂fα0
∂p

k.v − ω
dp (3.11)

then the above equation becomes

δnα =
eαδφαI

1− ~2k2
4mαnα0

I
, (3.12)

where nα0 represents the equilibrium density of the plasma species. We assume that at
nearly T=0K positrons and electrons are completely degenerate, and their respective
equilibrium density functions for plasma particles are considered as the step function

fα0 = δ(EFα − Eα),

where fα0 is equal to 1 when EFα ≥ Eα otherwise it is zero, here EFα is the Fermi
energy (EFα =

V 2
Fα

2
) and Eα is the thermal energy of electron and positron and

∂fα0

∂p
= −vδ(Eα − EFα).

In spherical coordinates d3p = p2sinθdθdpdφ. The corresponding components that we
consider here are pz = p‖ k = (0, 0, k), vz = vcosθ. Then the Eq.(3.11) becomes

I = −4πk

∫ ∞
0

p2∂fα0

∂p
dp

∫ π

0

sinθcosθ

ω − kvαcosθ
dθ.

After performing the θ-integration, we get∫ π

0

sinθcosθ

ω − kvαcosθ
dθ =

−2

kvα
[1− ω

2kvα
ln

(ω + kvα)

(ω − kvα)
].

Therefore I integral takes the form

I = 8π

∫ ∞
0

p2∂fα0

∂p
dp[

1

vα
(1− ω

2kvα
ln

(ω + kvα)

(ω − kvα)
)].
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Here we assumed that when T → 0 than the Fermi distribution is a step function
therefore TF >> T so that EF >> E, where T is the thermal temperature, TF is
the Fermi degeneracy temperature. Which means that all the energy states below the
Fermi level are filled and all those above are vacant. As E2 = p2

2mα
so by using this we

move from momentum to energy distribution where

∂fα0

∂E
= − 2

(2π~)3
δ(E − EFα).

Now using this in above integral, we get

I = − 8π

(2π~)3

∫ ∞
m0c2

(2mαE
2)δ(E − EFα)dE[

1

vα
(1− ω

2kvα
ln

(ω + kvα)

(ω − kvα)
)].

When E = EFα then p = pFα and v = vFα, then the above integral becomes

I = − p2
Fα

π2~3vFα
[1− ω

2kvFα
ln

(ω + kvFα)

(ω − kvFα)
].

Multiply and divide R.H.S of above equation by 3pFα. As n0α =
p3Fα

3π2~3 employing this
in above

I = − 3n0α

mαv2
Fα

[1− ω

2kvFα
ln

(ω + kvFα)

(ω − kvFα)
]. (3.13)

Using Eq.(3.13) in (3.12)

δnα =
eαδφα[− 3n0α

mαv2Fα
(1− ω

2kvFα
ln (ω+kvFα)

(ω−kvFα)
)]

1− ~2k2
4mαn0α

[− 3n0α

mαv2Fα
(1− ω

2kvFα
ln (ω+kvFα)

(ω−kvFα)
)]
. (3.14)

By using δnα in Eq,(3.7) and rearranging the terms, we get

1 +
∑
α

3ω2
α

Γαk2v2
Fα

[1− ω

2kvFα
ln

(ω + kvFα)

(ω − kvFα)
] = 0, (3.15)

where ω2
pα = e2αn0α

mαε0
is the plasma frequency of the particles and

Γα = 1 +
3~2k2

4m2
αv

2
Fα

[1− ω

2kvFα
ln

(ω + kvFα)

(ω − kvFα)
]

is the Madelung term which arises due to the particle dispersion effect in quantum
regime. Eq.(3.15) is the generalized dispersion relation of longitudinal waves in quan-
tum plasma.
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3.3 Zero Sound Waves

In neutral Fermi liquid two modes of vibration exist, first one is low frequency mode
(ωτ << 1) where τ is the mean free path time of the quasi particle, τ ∼ 1

T 2 . In this
mode wavelength is long as compared to mean free path of the quasi particle which
corresponds to ordinary sound also known as first sound. The propagation of these
waves takes place through density variation therefore regions of compression and rare
fraction are formed. Now when the temperature is reduced (ωτ ∼ 1) than ordinary
sound attenuates. Landau suggested that at high frequencies and low temperature
for which ωτ >> 1, a new type of sound exist which is called zero sound or second
sound. Here necessary criteria is that the wavelength of the wave is much less than the
Thomas Fermi screening length or the mean free path of the quasi particles, collisions
is not the criteria for the propagation of wave nor to establish thermodynamic equi-
librium. Thus zero sound is non-equilibrium type of wave propagation which involves
periodic deformation of Fermi surface (i.e., a variation in the distribution function).
These waves are also called temperature wave which doesn’t involve density variation.
Landau[25] study the weak interaction between He3 atoms at sufficiently low tempera-
ture and comes with the conclusion that in degenerate electron-ion plasma undamped
zero sound (ω ' kvFe) can propagate almost in an ideal Fermi gas and electron os-
cillations do not damp until ω

k
→ vFe [6]. In degenerate electron-ion plasma in the

collision-less approximation dissipation is totally absent. As ω >> kvFe, ω >> kvFi so
the dispersion relation are purely real in this frequency range, where as in degenerate
electron positron-ion plasma the situation changes drastically due to the existence of
positron and damping also exist.

3.4 Positron Zero Sound Waves in epi Quantum Plasma

The generalized dispersion relation of longitudinal waves are

1 +
∑
α

3ω2
pα

Γαk2v2
Fα

[1− ω

2kvFα
ln

(ω + kvFα)

(ω − kvFα)
] = 0. (3.16)

First we consider it without the Madelung term here α = e, p

1 +
3ω2

pp

k2v2
Fp

[1− ω

2kvFp
ln

(ω + kvFp)

(ω − kvFp)
] +

3ω2
pe

k2v2
Fe

[1− ω

2kvFe
ln

(ω + kvFe)

(ω − kvFe)
] = 0. (3.17)

When we choose the frequency range kvFe > ω ∼ kvFp, we take me = mp so that

ln(ω − kvFe) = ln |ω − kvFe| − ιπδ(ω − kvFe),
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then the above equation becomes

1+
1

k2λ2
p

[1− ω

2kvFp
ln |ω + kvFp

ω − kvFp
|]+ 1

k2
λ2
e[1−

ω

2kvFe
ln |ω + kvFe

ω − kvFe
|− iπ

2kvFe
δ(ω−kvFe)] = 0,

(3.18)
where δ(ω − kvFe) = 1 when ω < kvFe otherwise it is zero and λe = vFe√

3ωpe
, λp =

vFp√
3ωpp

are the electron and positron Fermi screening length. Now in order to simplify the
above equation multiplying 2k2λ2

p on both side and than by rearranging the terms, we
get

− ω

kvFp
ln |ω + kvFp

ω − kvFp
|−

λ2
p

λ2
e

ω

kvFe
ln ||ω + kvFe

ω − kvFe
| = −2k2λ2

p−
2λ2

e + 2λ2
p

λ2
e

−
iπωλ2

p

kvFeλ2
e

. (3.19)

As kvFe > kvFp so λ2
e >> λ2

p due to this the second term on L.H.S is small in comparison

to first term and can be neglected. After using the condition ω ∼ kvFp and ρ2 =
λ2eλ

2
p

(λ2e+λ
2
p)

the above equation becomes

ln(
ω

2kvFp
− 1

2
) = −2[k2λ2

p +
λ2
p

ρ2
]− iπω′

kvFe

λ2
p

λ2
e

. (3.20)

Taking the exponential on both sides and by rearranging the terms the dispersion
relation of zero sound waves without Madelung term can be obtained

ω = kvFp[1 + 2exp[−2(k2λ2
p +

λ2
p

ρ2
)− iπω′

kvFe

λ2
p

λ2
e

]]. (3.21)

As λ2p
λ2e

= (n0e

n0p
)
1
3 so the above dispersion relation can be written as

ω = kvFp[1 + 2exp[−2(1 + k2λ2
p + (

n0e

n0p

)
1
3 )− iπω′

kvFe
(
n0e

n0p

)
1
3 ]]. (3.22)

Now we have to separate the real and imaginary part of frequencies. For this let

θ =
πω′

kvFe
(
noe
n0p

)
1
3 ,

then the above equation is written as

ω = kvFp[1 + 2exp[−2(1 + k2λ2
p + (

n0e

n0p

)
1
3 )]exp[−iθ]. (3.23)

By using the de moivre’s theorem [exp(−iθ) = cosθ − isinθ] as ( vFe
vFp

= (noe
n0p

)
1
3 so

θ = πω′

kvFp
) the above equation becomes

ω = kvFp[1 + 2exp[−2(1 + k2λ2
p + (

n0e

n0p

)
1
3 )][cos(

πω′

kvFp
)− isin(

πω′

kvFp
)]. (3.24)
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By applying the approximation ω′ ∼ kvFp the imaginary term vanishes therefore we
can’t neglect a small exponential term also. When θ ≈ 0 than cosθ ≈ 1 but sinθ ≈
θ, here we assumed that exp[−2(1 + k2λ2

p + (n0e
n0p

)
1
3 )] << 1. Therefore we first find

the ωr and then use this in imaginary part of frequency in place of ω′ such that the
approximation becomes ωr ∼ ω′ ∼ kvFp. For real part ω′ ∼ kvFp so ωr becomes

ωr = kvFp[1− exp[−2(1 + k2λ2
p + (

n0e

n0p

)
1
3 )]]. (3.25)

The imaginary part of frequency becomes

ωi = −2kvFpexp[−2(1+k2λ2
p+(

n0e

n0p

)
1
3 )]sin(π−2πexp[−2(1+k2λ2

p+(
n0e

n0p

)
1
3 )]). (3.26)

Let θ = 2πexp[−2(1 + k2λ2
p + (n0e

n0p
)
1
3 )], as sin(π − θ) = sinθ and when θ << 1 then

sinθ ≈ θ. Therefore the imaginary part of frequency is modified as

ωi = −4πkvFpexp[−4(1 + k2λ2
p + (

n0e

n0p

)
1
3 )]. (3.27)

Now we have to find the dispersion relation of zero sound waves with Madelung term.
For this we consider again the general dispersion relation Eq.(3.16) for electron and
positron.

1 +
3ω2

pp

k2v2
Fp

1

Γp
[1− ω

2kvFp
ln

(ω + kvFp)

(ω − kvFp)
] + 1 +

3ω2
pe

k2v2
Fe

1

Γe
[1− ω

2kvFe
ln

(ω + kvFe)

(ω − kvFe)
] = 0.

(3.28)
As

Γe = 1 +
3~2k2

4m2
ev

2
Fe

[1− ω

2kvFe
ln
ω + kvFe
ω − kvFe

],

where ω2
q = ~k2

4m2
e
is quantum oscillation frequency so

Γe = 1 +
3ω2

q

k2v2
Fe

[1− ω

2kvFe
ln
ω + kvFe
ω − kvFe

].

By rearranging the terms and noting that ω2
pq = ω2

pe = ω2
q the above equation becomes

v2
Fek

2

3ω2
q

(Γe − 1) = [1− ω

2kvFe
ln
ω + kvFe
ω − kvFe

], (3.29)

v2
Fpk

2

3ω2
q

(Γp − 1) = [1− ω

2kvFp
ln
ω + kvFp
ω − kvFp

]. (3.30)
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Now by using Eq.(3.29) and (3.30) in Eq.(3.28), we get

1 +
ω2
pe

ω2
q

(
Γe − 1

Γe
) +

ω2
pp

ω2
q

(
Γp − 1

Γp
) = 0. (3.31)

Multiplying both side by ω2
qΓp

ω2
qΓp + ω2

peΓp(1−
1

Γe
) + Γpω

2
pp = ω2

pp,

hence Γp becomes

Γp = (
ω2
pp

ω2
q + ω2

pe(1− 1
Γe

) + ω2
pp

). (3.32)

As
Γp = 1 +

3~2k2

4m2
pv

2
Fp

[1− ω

2kvFp
ln
ω + kvFp
ω − kvFp

],

let γ2
qp =

v2Fp
3ω2
q
, γp = ω − kvFp whereas quantum oscillation frequency is ω2

q = ~2k4
4m2

p

therefore
Γp = 1 +

1

k2γ2
qp

[1− ω

2kvFp
ln
ω + kvFp

γp
].

When ω → kvFp then

Γp = 1 +
1

k2γ2
qp

[1− ln
2kvFp
γp

]. (3.33)

Now comparing Eq.(3.32) and (3.33) gives

1 +
1

k2γ2
qp

[1− ω

2kvFp
ln

2kvFp
γp

] =
ω2
pp

ω2
qp + ω2

pe(1− 1
Γe

) + ω2
pp

,

multiplying both sides by 2k2γ2
qp, we get

ln(
γp

2kvFp
) =
−2(1 + k2γ2

qp)[ω
2
pe(

Γe−1
Γe

) + ω2
qp]− 2ω2

pp

ω2
pp + ω2

pe(
Γe−1

Γe
) + ω2

qp

. (3.34)

As
Γe − 1

Γe
=

1 +
3ω2
q

k2v2Fe
[1− ω

2kvFe
ln ω+kvFe

ω−kvFe
]− 1

1 +
3ω2
q

k2v2Fe
[1− ω

2kvFe
ln ω+kvFe

ω−kvFe
]
,

when ω << kvFe then ln(ω − kvFe) = ln |ω − kvFe| − iπ(ω − kvFe) hence
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Γe − 1

Γe
=

3ω2
q

k2v2Fe
[1 + iπω

2kvFe
]

1 +
3ω2
q

k2v2Fe
[1 + iπω

2kvFe
]
.

Let k2v2
Fe >> ω2

q so drop this term in the denominator because this term is small in
comparison to 1

Γe − 1

Γe
=

3ω2
q

k2v2
Fe

[1 +
iπω

2kvFe
]. (3.35)

By using Eq.(3.35) in (3.34), we get

ln(
γp

2kvFp
) = −2[1 +

v2Fe
v2Fe
ω2
pe +

v2Fe
v2Fe
ω2
pe

iπω
2kvFe

+ k2v2
Fp

ω2
pp + ω2

pe
3ω2
q

k2v2Fe
+ ω2

pe
3ω2
q

k2v2Fe

iπω
2kvFe

+ ω2
qp

].

Multiplying and divide the second term of above equation by ω2
pp and as ω2

pp >> ω2
qp

so neglect the two terms in the denominator and v2FP
v2Fe

ω2
Pe

ω2
pp

= (n0e

n0p
)
1
3 . So using this in

above equation it becomes

ln(
γp

2kvFp
) = −2[1 +

k2λ2
p + (n0e

n0p
)
1
3 + iπω

2kvFe
(n0e

n0p
)
1
3

1 +
3ω2
q

k2v2Fe
(n0e

n0p
)
1
3

].

Let a =
3ω2
q

k2v2Fe
(n0e

n0p
)
1
3 using this in above equation

ln(
γp

2kvFp
) = −2[1 +

k2λ2
p + (n0e

n0p
)
1
3 + ιπω

2kvFe
(n0e

n0p
)
1
3

1 + a
],

simplifying the above equation

ln(
γp

2kvFp
) = [−2(1 +

k2λ2
p + (n0e

n0p
)
1
3

1 + a
)− iπω

kvFe

(n0e

n0p
)
1
3

1 + a
],

taking exponential on both side, we get

ω = kvFp[1 + 2exp[−2(1 +
k2λ2

p + (n0e

n0p
)
1
3

1 + a
)− iπω

kvFe

(n0e

n0p
)
1
3

1 + a
]]. (3.36)

This is the required dispersion relation of zero sound waves with Madelung term .
Now we have to separate its real and imaginary parts by using de moivre’s theorem
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exp(iθ) = cosθ − ιsinθ here θ =
πω
kvFe

(
n0e
n0p

)
1
3

1+a
, vFe
vFp

= (n0e

n0p
)
1
3 and using the approximation

ω ∼ kvFp, we get

ω = kvFp + 2kvFpexp[−2(1 +
k2λ2

p + (n0e

n0p
)
1
3

1 + a
)][cos(

π

1 + a
)− isin(

π

1 + a
)].

As ω = ωr − ιωi so putting this in above equation and than comparing its real and
imaginary parts of frequency i.e.,

ωr + iωi = kvFp + 2kvFpexp[−2(1 +
k2λ2

p + (n0e

n0p
)
1
3

1 + a
)][cos(

π

1 + a
)− isin(

π

1 + a
)].

Hence

ωr = kvFp[1 + 2kvFpexp[−2(1 +
k2λ2

p + (n0e

n0p
)
1
3

1 + a
)]cos(

π

1 + a
)], (3.37)

ωi = −2kvFP exp[−2(1 +
k2λ2

p + (n0e

n0p
)
1
3

1 + a
)]sin(

π

1 + a
). (3.38)

Zero sound waves with or without Madelung term in degenerate electron positron-
ion plasma provides a new spectrum that incorporates the damping rates of positron
oscillation, here a is called the quantum parameter. Which can take any value but
only those values significantly effect the real and imaginary frequency at which the
wavenumber is approximately close to inverse of λFp. When a ≤ 1 then it will have
no significant effect on real frequency. As an example let we set a ' 1 and k2λ2

p ∼
(n0e

n0p
)
1
3 that satisfy the condition of semiconductor plasma. Hence Eq.(3.39) and (3.40)

becomes
ωr ' kvFp

ωi = −2kvFeexp(−2[1 +
k2λp + (n0e

n0p
)
1
3

2
]).

In degenerate semiconductor plasma the crystal lattice vibrations occurs at approx-
imately ω ≈ kvFp. A packet of these waves can travel throughout the crystal with
a definite energy and momentum. In quantum mechanical terms these waves can be
treated as particle, called a phonon. In other words these crystal lattice vibrations are
also called phonon waves. So above equation shows that these are phonon waves and
they are purely quantum in nature. The zero sound waves in degenerate electron-ion
plasma exist only in the lime k2λ2

p >> 1. But here it exist even in the limit k2λ2
p ∼ 1

because of the existence of (n0e

n0p
)
1
3 in the exponential part of above equations [26].
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3.5 Logitudinal Sound Waves

In semiconductor plasma the electrons and holes interact with coulombic field, if same
magnitude of electric field is applied to electrons in both vacuum and inside the crystal.
They will accelerate at a different rate from each other due to the existence of different
potential inside the crystal. So the electrons and holes inside the crystal will have
a different mass than that of free electron in vacuum. This altered mass is called
an effective mass. In degenerate semiconductor plasma, the complete description of

Figure 3.1: An external force Fext is applied to an electron (a) in vacuum (b) in a solid

electrons are based on their wave functions. The electron wave function will be of the
form exp(±k.r) where k is the wave vector. When external electric field is applied
it will accelerate the electron with acceleration a = qE

~2
d2E
dk2

here meff = ~2
d2E
dk2

in order

to interpret the acceleration equation as F = ma [27]. In semiconductors we can
categorized the electron-hole-ion plasma as an epi-plasma by taking the mass of hole
smaller or larger than positron. However in this section we consider the special case
in which the mass of positron is considered greater then effective mass of electrons.
Effective mass difference arises due to the interaction and momentum transfer between
the particles. The effective mass of electrons is not always less than the effective mass
of holes, it depends on the type of semiconductor. For Silicon and GaAs me

mp
< 1

Table 3.1: Electron and Hole effective masses me, mp where m0 is the rest mass of an
electron

Effective mass Si Ge GaAs InAs AlAs
me 0.26m0 0.12m0 0.068m0 0.023m0 2.0m0

mp 0.39m0 0.30m0 0.50m0 0.30m0 0.3m0

and its the basic criteria for the existence of these waves in the frequency regime
kvFe > ω > kvFp, where as in other semiconductor like AlAs me

mp
> 1 holds. In previous

section, the new type of zero sound waves are found where as here in electron-hole-ion
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plasma a new longitudinal quantum waves are found out, which have nothing to do
in quantum electron-ion plasma. In the next section the low density mono-energetic
straight electron beam will examine by using the excitation of these waves.

3.5.1 Longitudinal Sound Waves without Madelung Term

In positron sound waves we choose the frequency range kvFe > ω > kvFp, heremp > me

as in semiconductor plasma in which mass of hole is greater than mass of electron. For
this frequency range the Madelung terms are

Γe = 1 +
3ω2

qe

k2v2
Fe

(1 +
ιπω

2kvFe
),

and

Γp = 1−
ω2
pq

ω2
[1 +

3

5
(
kvFp
ω

)2].

At first we consider the dispersion relation of Eq.(3.16) without the Madelung term
(Γα) i.e.,

1 +
3ω2

pe

k2v2
Fe

[1 +
ιπω

2kvFe
]−

ω2
pp

ω2
[1− 3

5
(
kvFp
ω

)2] = 0. (3.39)

where ω2 >> k2v2
Fp, so above equation becomes

1 +
3ω2

pe

k2v2
Fe

[1 +
iπω

2kvFe
]−

ω2
pp

ω2
= 0. (3.40)

By separating the real and imaginary part, we get

ω2
r(1 + α)− 3αβωiω

2
r = ω2

pp, (3.41)

2iωiωr(1 + α) + iαβω3
r = 0. (3.42)

where α =
3ω2
pe

k2v2Fe
, β = 2

kvFe
. In long wavelength limit i.e., k2v2

Fe << ω2
pe, the real and

imaginary part of frequency becomes

ωr =
1√
3

(
me

mp

n0p

n0e

)
1
2kvFe, (3.43)

ωi = − π

12
(
me

mp

n0p

n0e

)kvFe. (3.44)

As me
mp

n0p

n0e
<< 1 so the imaginary part is smaller than the real part. We also note

that this spectrum (3.43) and damping rate (3.44) are novel and they described the
propagation of new waves with slow damping and are called positron sound waves.
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As we are dealing with acoustic waves so its better to express the waves in terms of
positron sound velocity i.e., vs =

√
me
3mp

vFe

ωr = (
n0p

n0e

)
1
2kvs (3.45)

ωi = − π

4
√

3
(
n0p

n0e

)(
me

mp

)
1
2kvs. (3.46)

Now we consider Eq.(3.410 and (3.42) for short wavelength limit i.e.,k2v2
Fe >> ω2

pe

ω2
r = ω2

pp (3.47)

ωi = −
3πω2

ppω
2
pe

(4kvFe)(k2v2
Fe)

. (3.48)

In term of Positron sound velocity above equation becomes

ω2
r = ω2

pp (3.49)

ωi = −π
4

ω2
ppω

2
peme
√
me

k3v3
smp
√
mp

. (3.50)

These are new longitudinal waves in epi quantum plasma which are absent in Fermi
electron-positron-ion gas where mp = me. The necessary condition for these waves i.e.,
mp
me

> (n0e

n0p
)
1
3 must be satisfied.

3.5.2 Longitudinal Sound Waves with Madelung Term

Now we consider Eq.(3.16) to incorporate the Madelung term in positron sound waves
i.e.,

1 +
ω2
pe

ω2
qp

(
Γe − 1

Γe
) +

ω2
pp

ω2
qp

(
Γp − 1

Γp
) = 0. (3.51)

For kvFe > ω > kvFp
Γe − 1

Γe
=

3ω2
qe

k2v2
Fe

(1 +
iπω

2kvFe
), (3.52)

Γp − 1

Γp
= −

ω2
qp

ω2

1− ω2
qp

ω2

. (3.53)

Putting Eq.(3.52) and (3.53) in (3.51), we get the resulting equation

ω2 − ω2
qp + (

3ω2
pe

k2v2
Fe

ω2 −
3ω2

pe

k2v2
Fe

ω2
qp)(1 +

iπω

2kvFe
) = ω2

pp. (3.54)
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The real and imaginary part of above equation becomes

ω2
r = ω2

qp +
ω2
pp

(1 +
3ω2
pe

k2v2Fe
)
. (3.55)

ωi = −
π

2kvFe
ω2
r

2(
1+

3ω2pe

k2v2
Fe

3ω2pe

k2v2
Fe

)

. (3.56)

For long wavelength limit or k2λ2
e << 1 then the real and imaginary parts of frequencies

are
ω2
r = ω2

qp + (
me

mP

n0p

n0e

)(
k2v2

Fe

3
), (3.57)

ωi = − π

12
(
me

mP

n0p

n0e

)kvFe. (3.58)

For short wavelength limit or k2λ2
e >> 1 the real and imaginary part of frequencies

becomes
ω2
r = ω2

qp + ω2
pp, (3.59)

ωi = − 3π

4kvFe

ω2
ppω

2
pe

k2v2
Fe

. (3.60)

The quantum correction term or Madelung term appear for both long and short wave-
length, in real frequencies but the damping rates are unaffected by this term.

3.6 Beam-Plasma Interaction

In Beam-Plasma interaction, a beam of electron is injected into a degenerate EPI
plasma. The density of electron beam nb is much less than the plasma density so we
assume that the beam (electron) obeys the Maxwellian distribution. Starting from
Eq.(3.1) and proceeding with the same procedure for electron and positron(hole),
whereas ions are treated as non-degenerate which provide a uniform fixed background.
So dispersion relation which includes the electron beam contributions is,

1 + δεe + δεp + δεb = 0.

where

δεe = 1 +
3ω2

pe

Γek2v2
Fe

[1− ω

2kvFe
ln

(ω + kvFe)

(ω − kvFe)
] = 0

δεp = 1 +
3ω2

pp

Γek2v2
Fp

[1− ω

2kvFp
ln

(ω + kvFp)

(ω − kvFp)
] = 0.
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Now for beam part we consider Eq.(3.5) and use it in Eq.(3.6) it takes the form

1 +
4πe2

k2
[

I1

1 + ~2k2I1
4men0

] = 0. (3.61)

As in 1D case

I1 = k

∫ ∂fpx
∂px

ω − kvx
dpx,

where the distribution function is

f(px) =
n0

(2πmeTe)
1
2

exp(− p2
x

2meTe
).

Using this in I1 and by setting appropriate substitution p2x
2meTe

= s2, px =
√

2meTeds,
px =

√
2meTeds. The integral I1 becomes

I1 =
n0√
πTe

∫
se−s

2

(s− x′)
ds. (3.62)

Now by inserting Eq.(3.62) in (3.61), we get

1 +

4πe2

k2
n0

Te
√
π

∫
se−s

2

(s−x′ )ds

1 +
ω2
qb

k2v2tb

1√
π

∫
se−s2

(s−x′ )ds
= 0. (3.63)

By taking the derivative of plasma dispersion function[28]

1√
x

∫
e−s

2

(s− x′)
ds = Z(x

′
),

which gives

Z
′
(x
′
) =

1√
x

∫
se−s

2

(s− x′)2
ds.

Integrating the above equation by parts, we get∫
se−s

2

(s− x′)
ds =

√
π(1 + x

′
Z(x

′
)).

Now we have to insert above equation in (3.63) i.e.,

1 +

ω2
pb

k2v2th
(1 + x

′
Z(x

′
))

1 +
ω2
qb

k2v2th
(1 + x′Z(x′))

= 0. (3.64)
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The dispersion function has the following identities

Z(x
′
) ≈ −2x

′
(1− 2x

′2

3
+

4x
′4

15
.....) + iπe−x

′2 |x′ | << 1 (3.65)

Z(x
′
) ≈ − 1

x′
(1 +

1

2x′2
+

3

4x′4
+ ......) + i

√
πe−x

′2 |x′ | >> 1. (3.66)

So by using these expansion the dispersion relation for beam part becomes

δεb = 1 +

ω2
pb

k2v2th
(1− I+(x))

1 +
ω2
qb

k2v2th
(1− I+(x))

= 0. (3.67)

As

Γb = 1 +
ω2
qb

k2v2
tb

(1− I+(x)),

where I+(x) = xe−
x2

2

∫
dτe

τ2

2 is the modified form of plasma dispersion function[29].
Here x = ω−k.u

kvtb
or x = ω

′

kvtb
where u is the velocity of electron beam and ω− k.u is due

to Doppler effect. When x >> 1 or when ω′ >> kvtb the asymptotic value of modified
plasma dispersion function is

I+(x) = 1 +
1

x2
+

3

x4
+ .....− i

√
π

2
xe−

−x2
2 .

Here we consider the terms upto second order, therefore I+(x) = 1 + 1
x2

if x»1 and
I+(x) ≈ −ι

√
π
2
x if x«1 or ω′ << kvtb. When we consider the frequency range kvFe >

ω > kvFp and x >> 1 or ω′ >> kvtb than from previous section

δεe = 1 +
3ω2

pe

k2v2
Fe

[1 +
iπω

2kvFe
],

δεp = −
ω2
pp

ω2 − ω2
qp

.

The beam part becomes

δεb = −
ω2
pb

(ω − k.u)2 − ω2
qb

,

and the dispersion relation becomes

1 +
3ω2

pe

k2v2
Fe

[1 +
iπω

2kvFe
]−

ω2
pp

ω2 − ω2
qp

−
ω2
pb

(ω − k.u)2 − ω2
qb

. (3.68)
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Considering the instability in long wavelength limit i.e., k2v2
Fe << ω2

pe and frequency
range kvFe > ω > kvFp, in electron and positron part ω = ωr + γ and in beam part we
use ω = ωr = k.u+ ωqb + γ. Hence the above dispersion relation becomes

1 +
3ω2

pe

k2v2
Fe

−
ω2
pp

ω2
r + 2ωrγ

−
ω2
pb

2ωqbγ
= 0.

Rationalize the positron part for simplification i.e.,

1 +
3ω2

pe

k2v2
Fe

−
ω2
pp

(ω2
r − ω2

qp)
(1− 2ωrγ

(ω2
r − ω2

qp)
)−

ω2
pb

2ωqbγ
= 0,

where γ = ιωi. The imaginary part of above equation is

ωi =
1

2
(
mp

mb

n0b

n0p

)
1
2

(ω2
r − ω2

qp)√
ωrωqb

. (3.69)

By inserting ω2
r from Eq.(3.57) than above equation become

ωi =
1

2

√
n0pn0b

n0e

me√
mbmp

k2v2
Fe

3
√
ωrωqp

. (3.70)

For the same frequency range kvFe > ω > kvFp but ω′ << kvtb and for k2v2
Fe >> ω2

Fe

than Eq.(3.68) casts in the form

1 +
3ω2

pe

k2v2
Fe

[1 +
iπω

2kvFe
]−

ω2
pp

ω2 − ω2
qp

+
ω2
pb

k2v2
tb

(1 + i

√
π

2

ω
′

kvtb
) = 0. (3.71)

Here we use ω = ωr + iωi then the above equation becomes

1 +
3ω2

pe

k2v2
Fe

[1 +
iπωr
2kvFe

]−
ω2
pp

(ω2
r − ω2

qp)
(1− 2ωriωi

(ω2
r − ω2

qp)
) +

ω2
pb

k2v2
tb

(1 + i

√
π

2

i(ωr − k.u)

kvtb
) = 0.

Now by comparing the imaginary terms on both side, which leads to following result

ωi = −3π

4
(
mp

me

n0e

n0p

)
(ω2

r − ω2
qp)

2

k3v3
Fe

− 1

2

√
π

2
(
mp

me

noe
nop

)
(ωr − k.u)

k3v3
tb

(ω2
r − ω2

qp)
2. (3.72)

For instability ωi > 0 which means that we must have

−3π

4
(
mp

me

n0e

n0p

)
(ω2

r − ω2
qp)

2

k3v3
Fe

− 1

2

√
π

2
(
mp

mb

nob
nop

)
(ωr − k.u)

ωrk3v3
tb

(ω2
r − ω2

qp)
2 > 0

−3
π

2
(
n0e

me

) >

√
π

2
(
n0b

mb

)
ωr − k.u

ωr

v3
Fe

v3
tb

,

rearranging the terms

k.u > ωr(1 + 3

√
π

2

mb

me

n0b

n0e

v3
tb

v3
Fe

)

which is the required condition of kinetic instability.
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Chapter 4

Positron Zero Sound Waves in
epi-Quantum Plasma

4.1 Zero Positron Sound Waves

The quantum effects of lighter species (electrons, positrons and so on) are prominent
due to their smaller mass than those of heavior (ion) species, which may behave clas-
sically or quantum mechanically depending upon the degeneracy parameter i.e., nλ3

B,
which should be greater than unity for quantum effects to be significant. Moreover,
it is predicted that the main constituents of compact astrophysical objects such as
white dwarfs are degenerate electrons, positrons, light nuclei (He, Hydrogen or Car-
bon) and heavy nuclei (ferrous or molybdenum). When these stars contract to very
high densities, matter in their interiors will cool and become degenerate under certain
conditions [30]. Therefore in these environments we may treat ions as degenerate along
with electrons and positrons, here the densities of ions, electrons and positrons are
approximately ni0 = 1.1× 1029cm−3, ne0 = 9.1× 1029cm−3, np0 = 1.5× ne0. Hence in
this section we consider the propagation of electrostatic perturbations in four compo-
nent degenerate plasma containing degenerate inertial ions having both positive and
negative ions, degenerate electrons, positrons and static heavy positively charged ions
[30]. The quasi-neutrality condition at equilibrium is ne0 + Zini0 ≈ Zhnh0 + Zpnp0,
where Zs is the charge per ion (s=i,h,p). Moreover, we assumed that mi > mp = me

and TFi < TFp < TFe due to difference in there equilibrium number densities. The
general dispersion relation of longitudinal waves in degenerate plasma is

1 +
∑
α

3ω2
pα

Γαk2v2
Fα

[1− ω

2kvFα
ln

(ω + kvFα)

(ω − kvFα)
] = 0, (4.1)

where α = e, p, i. At first we consider it without Madelung term, choosing the in-
termediate range of phase velocities ω >> kvFi, kvFp ∼ ω < kvFe and noting that
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δ(ω − kvFe) = 1 when kvFe > ω otherwise it is zero. Using these approximations in
the above equation

− ω

kvFp
ln|ω + kvFp

ω − kvFp
|−
λ2
p

λ2
e

ω

kvFe
ln||ω + kvFe

ω − kvFe
|−2k2λ2

p(
ω2
pi

ω2
) = −2k2λ2

p−
2λ2

e + 2λ2
p

λ2
e

−
iπωλ2

p

kvFeλ2
e

.

(4.2)
As v2

Fe >> v2
Fp so the second term on L.H.S is small as compare to first term so it can

be neglected. Above equation can be simplified by using the approximation ω ∼ kvFp
i.e.,

−ln| 2kvFp
ω − kvFp

| = 2(
ω2
pi

ω2
pp

)− 2k2λ2
p −

2λ2
e + 2λ2

p

λ2
e

−
iπωλ2

p

kvFeλ2
e

. (4.3)

As ω2
pi

ω2
pp

=
Z2
i

Z2
p

mp
mi

n0i

n0p
and λ2p

λ2e
= (n0e

n0p
)
TFp
TFe

= α using this in above equation

ω = kvFp[1 + 2exp[−2(1 + k2λ2
p −

1

3
(
Z2
i

Z2
p

mp

mi

n0i

n0p

) + α)− iπω′

kvFe
α]]. (4.4)

The real and imaginary part of above dispersion relation becomes

ωr = kvFp[1− exp[−2(1 + k2λ2
p −

1

3
(
Z2
i

Z2
p

mp

mi

n0i

n0p

) + α)]], (4.5)

ωi = −4πkvFpexp[−4(1 + k2λ2
p −

1

3
(
Z2
i

Z2
p

mp

mi

n0i

n0p

) + α)]. (4.6)

Now we consider the dispersion relation (4.1) with Madelung term and using the same
technique that we used in chapter 3 i.e.,

1 +
ω2
pi

ω2
qi

(
Γi − 1

Γi
) +

ω2
pe

ω2
q

(
Γe − 1

Γe
) +

ω2
pp

ω2
q

(
Γp − 1

Γp
) = 0. (4.7)

Multiplying both side by ω2
qΓp and rearranging the terms, we get

Γp = (
ω2
pp

ω2
q +

ω2
qp

ω2
qi
ω2
pi(1− 1

Γi
) + ω2

pe
ω2
qp

ω2
qe

(1− 1
Γe

) + ω2
pp

). (4.8)

As
Γp = 1 +

1

k2γ2
qp

[1− ln2kvFp
γp

], (4.9)

Γe − 1

Γe
=

3ω2
qe

k2v2
Fe

[1 +
iπω

2kvFe
], (4.10)
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Γi − 1

Γi
= −

ω2
qp

ω2

. (4.11)

Using Eq.(4.9), (4.10) and (4.11) in Eq.(4.8), we get the required dispersion relation

ω = kvFp[1 + 2exp[−2(1 +
k2λ2

p − 1
3
(
Z2
i

Z2
p

mp
mi

n0i

n0p
) + α

1 + a
)− iπω

kvFe

α

1 + a
]]. (4.12)

The real and imaginary part of above dispersion relation becomes

ωr = kvFp[1 + 2kvFpexp[−2(1 +
k2λ2

p − 1
3
(
Z2
i

Z2
p

mp
mi

n0i

n0p
) + α

1 + a
)]cos(

π

1 + a
)], (4.13)

ωi = −2kvFpexp[−2(1 +
k2λ2

p − 1
3
(
Z2
i

Z2
p

mp
mi

n0i

n0p
) + α

1 + a
)]sin(

π

1 + a
), (4.14)

here

a =
ω2
qp

k2v2
Fp

[α− Z2
i

Z2
P

mp

mi

n0i

n0p

].

4.2 Positron Sound Waves

Here we consider degenerate plasma by treating ions, electrons and positrons as degen-
erate. Noting that here we consider the effective masses, as in semiconductor plasma
and we assume that the effective mass of hole is greater than mass of electron i.e.,
mp > me, moreover we assumed that mass of ion become approximately equal to effec-
tive mass of hole i.e., mi = mp and choosing the frequency range kvFi < ω < kvFe and
ω > kvFp. First we consider the case without Madelung term. The general dispersion
relation are

1 +
∑
α

3ω2
pα

k2v2
Fα

[1− ω

2kvFα
ln

(ω + kvFα)

(ω − kvFα)
] = 0, (4.15)

here α = e, i, p. Hence the above dispersion relation is

ω2(1 + α) + iαβω3 = ω2
pi + ω2

pp.

The the real and imaginary part of above equation becomes

ω2
r =

ω2
pi

(1 +
3ω2
pe

k2v2Fe
)

+
ω2
pp

(1 +
3ω2
pe

k2v2Fe
)
, (4.16)

ωi = − βω2
r

2(1+α
α

)
. (4.17)
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When k2v2
Fe >> ω2

pe or we can say in the limit of short wavelength, above real and
imaginary parts become

ω2
r = ω2

pp + ω2
pi, (4.18)

ωi = −
3πω2

pe

(4kvFe)(k2v2
Fe)

(ω2
pp + ω2

pi). (4.19)

In term of positron acoustic velocity it becomes

ωi = −π
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ppω

2
peme
√
me

k3v3
smp
√
mp

(1 +
Z2
i

Z2
p

n0i
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). (4.20)

When k2v2
Fe << ω2

pe or in the limit of long wavelength Eq.(4.35) and (4.36) becomes
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me

mp

n0p

n0e
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mp
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ωi = − π

12
(
me

mp

n0p

n0e

+
me
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e

n0i

n0e

)kvFe. (4.22)

In term of positron acoustic velocity it becomes

ωi = − π

4
√

3
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n0i

n0p

+
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i

Z2
e

n0p

n0e

)(
me

mp

)
1
2kvs. (4.23)

Now we consider Madelung term and choosing the same frequency range by repeating
the same procedure the real part of the dispersion relation for long and short wavelength
becomes

ω2
r = ω2

qp + (
n0i

n0p

+
me

mp

n0p

n0e

)(
k2v2

Fe

3
), (4.24)

ω2
r = ω2

qp + ω2
pp + ω2

pe. (4.25)

The damping rates are unaffected in the presence of Madelung term.
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Chapter 5

Results and Discussion

5.1 Zero Sound Waves in Electron-Positron-ion Quan-
tum plasma

The real and imaginary part of frequencies with Madelung term are

ωr = kvFp[1 + 2exp[−2(1 +
k2λ2

p + (n0e

n0p
)
1
3

1 + a
)]cos(

π

1 + a
)], (5.1)

ωi = −2kvFP exp[−2(1 +
k2λ2

p + (n0e

n0p
)
1
3

1 + a
)][sin(

π

1 + a
) + (

2π

1 + a
)

exp[−2(1 +
k2λ2

p + (n0e

n0p
)
1
3

1 + a
)]cos2(

π

1 + a
)],

(5.2)

here a is called the quantum parameter, which can take any value but only those values
significantly affect the real and imaginary frequency at which kλFp ∼ 1 which implies
λFp ≈ λB and it is shown in figure(5.1) and (5.2). When a increases then due to this
frequency shift is created and as a result these waves shifted upward. When we move
towards more short wavelength limit then waves merge together this can be shown in
figure(5.2). Quantum effects are associated with de-Broglie wavelength larger the de-
Broglie wavelength is larger the quantum effect. In long wavelength limit zero sound
waves do not exist, because these waves are high frequency waves.
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Figure 5.1: Plot of Eq.(5.1) for arbitrary value of a. Here we consider the fixed ratio
(n0e

n0p
)
1
3 = 6

Figure 5.2: Plot of Eq.(5.1) for arbitrary value of a, when we move towards more short
wavelength limit.

Now we consider imaginary part of these waves, as imaginary part of frequency
is negative which indicate damping of these waves, here damping exist due to wave-
particle interaction. Whereas damping is significant when kλFp ∼ 1 this is shown in
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figure(5.3).

Figure 5.3: Plot of Eq.(5.2) for arbitrary value of a.

5.2 Positron Zero sound Waves when we assumed ions
as Degenerate

The real and imaginary part of positron zero sound waves when we assumed that ions
are also degenerate along with electrons and positrons with frequency approximation
ω > kvFi, kvFe > ω ∼ kvFp.

ωr = kvFp[1 + 2kvFpexp[−2(1 +
k2λ2

p − 1
3
γ + α

1 + a
)]cos(

π

1 + a
)], (5.3)

ωi = −2kvFpexp[−2(1 +
k2λ2

Fp − 1
3
γ + α

1 + a
)][sin(

π

1 + a
) + (

2π

1 + a
)

exp[−2(1 +
k2λ2

Fp − 1
3
γ + α

1 + a
)]cos2(

π

1 + a
)]

,

(5.4)

here a =
ω2
qp

k2v2Fp
[γ − α] and α =

λ2p
λ2e

= (n0e

n0p
)
TFp
TFe

and γ =
Z2
i

Z2
P

mp
mi

n0i

n0p
. When we treat ions

as degenerate and taking mi > mp = me so that TFi < TFp < TFe for light nuclei
like hydrogen the zero sound waves propagate in the same way in both short and long
wavelength limit. But for heavy nuclei like Helium these waves significantly differ.
When there is no quantum effect i.e., a=0, then ions, electrons and positrons move
gradually at low perturbed frequency, as the perturbed frequency increases then ion
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inertia becomes important, here only electrons and positrons move gradually.
When quantum effects are taken into account then initially ions respond but the quan-
tum effects associated with ions are very small therefore the graph appear to seem
merge initially. When we move towards high perturb frequency then these effects
prominently exist due to electrons and positrons, here quantum effects appear only
when kλFp ≈ λB. Therefore when we move towards more short wavelength then these
effects vanishes like in previous case. Now we consider imaginary part of these waves,
the trend of the waves is same like in previous case, here damping exist because of
wave-particle interaction and is significant when kλFp ∼ 1, But damping rate is high
because of the presence of ions.

Figure 5.4: Plot of Eq.(5.3) for arbitrary value of a.
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Figure 5.5: Plot of Eq.(5.3) for arbitrary value of a.

Figure 5.6: Plot of Eq.(5.4) for arbitrary value of a.

5.3 Special Cases with mh > me

The imaginary frequency for long wavelength limit (k2λ2
e << 1) is

ωi = − π

4
√

3
(
n0p

n0e

)(
me

mp

)
1
2kvs. (5.5)
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The imaginary frequency for short wavelength limit (k2λ2
e >> 1) is

ωi = −π
4

ω2
ppω

2
peme
√
me

k3v3
smp
√
mp

(5.6)

The arbitrary values of (me
mp

) = 0.1 and (n0p

n0e
) = 0.01 are taken so that they satisfy the

condition me
mp

> (n0p

n0e
)
1
3 . Note that the mass ratio of electron to holes depends on the

type of material which is used in semiconductor e.g., Silicon and GaAs, me
mp

< 1 holds,
while opposite in AlAs i.e, me

mp
> 1. Fig(5.3) and Fig(5.4) shows that the damping for

short wavelength waves is quite larger than the long wavelength waves. Low damping
rates give rise to long-lived oscillations. So in quasi-neutral medium, these positron or
longitudinal sound waves should propagate. For long wavelength limit this spectrum
is valid i.e, k2λ2

α << 1, whereas in short wavelength limit both electrons and holes
move at different frequency due to difference in their masses as a result these waves
are highly damped.

Figure 5.7: Plot of Eq.(5.5) for arbitrary values of (me
mp

) and (n0p

n0e
) in long wavelength

limit.
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Figure 5.8: Plot of Eq.(5.6) for arbitrary values of (me
mp

) and (n0p

n0e
) in short wavelength

limit.

5.4 Conclusion

Considering the propagation of small longitudinal perturbations in two types of quan-
tum plasmas i.e., electron-positron-ion and electron-hole-ion, by using Schrodinger-
Poisson model we derive a general quantum dispersion relation. Considering this for
some cases, in EPI plasma, we revealed a new type of damped (zero sound waves).
Moreover, in electron-hole-ion plasma we found a new longitudinal quantum waves.
Later the excitation of these longitudinal quantum waves are examined, and here we
found the instability condition for the generation of these waves. Further we consider
longitudinal quantum waves and examined by treating fully degenerate e-p-i plasma.
These investigations may be useful to describe the complex phenomenon in astrophys-
ical objects, and may have many applications in modern technology.[31]
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