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Abstract

In this thesis motion of a charged particle around a slowly rotating Kerr black

hole immersed in a magnetic field is investigated. There is both theoretical

and observational evidence that a magnetic field is present in the vicinity of

a black hole. This is probably due to plasma present in the accretion disk of

the black hole. Particularly our focus is on escape trajectories of the particle

moving around a black hole in the innermost stable circular orbit. It is found

that either the particle moves in clockwise or anticlockwise direction around

the black hole, after the kick by another particle, it will escape to infinity or

its motion remain bound, depends on its energy. The change in the energy

of the particle is investigated and its escape velocity is also calculated. It

is observed that the magnetic field in the vicinity of black hole has a very

strong effect on the particle’s motion. It plays the key role in the transfer

mechanism of energy to the escaping particle. As the particle moves away

from the black hole the effect of the magnetic field on its motion is reduced

(the magnetic field becomes homogeneous far from the black hole vicinity).

In general, the motion of the particle is unpredictable (chaotic).



Chapter 1

Introduction

General relativity (GR) theory is a theory of motion of macroscopic objects.

It gives a satisfactory explanation of the motion of macroscopic particles as it

explains the perihelion shift of Mercury, bending of light due to gravity and

gravitational red shift in total agreement with the experimental results [1].

But at a microscopic level the limitations of the theory are felt. For funda-

mental level (microscopic level) the Quantum theory is needed. This theory

also has problems in dealing with gravitational forces. Up till now there is

no theory which can satisfactorily explain motion at both the macroscopic

and microscopic levels [2].

GR is the only theory by which we understand the astrophysical phe-

nomena like black hole, pulsars, quasars, the big bang and the Universe

itself. It is the essential ingredient in the system of global positioning system

and it also deals with the slight shift (like perihelion shift) of the orbit of

planets [3]. It was presented by Einstein in 1915 not as a new force law or

new theory of gravity, but as a conceptual revolution in our views of space

and time. That all bodies fall with the same acceleration in a gravitational

field led him to understand gravity in terms of curvature of the space-time.

Mass curves the space-time in its surroundings, and paths along which all

the bodies fall are the “straightest trajectories” in this curved space-time [4].

1
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According to GR the mass of the Sun curves the surrounding space-time and

the planets in its vicinity move on straight trajectories in that space-time.

Gravity is geometry.

Some relativistic phenomena and relativistic stars are explained below.

Most stars support themselves by the radiation pressure produced due to

nuclear reaction inside the star against the gravitational attraction. When

the nuclear fuel inside the star vanishes or is not sufficient then gravitational

attraction dominates over the radiation pressure produced due to the nuclear

reaction inside it and gravitational collapse occur as discussed in [5]. The

core of some stars become highly compact like “white dwarfs”, “neutron

stars”, or “black holes”. If the mass of the star is m ≤ 1.44 solar masses

(Chandrasekhar limit) then it will become a white dwarf after. GR also

place a strict limit on the maximum mass of the neutron star which is 3.2

solar masses [6] and the mass greater then this leads to the black hole. GR

predicts that black hole is formed when mass is compressed to the extend

that the gravitational pull on the surface is too large, such that nothing can

escape from the surface, even light. According to Newtonian gravity a body

can escape from the vicinity of a star and its velocity can be calculated by

using its kinetic and potential energy as

1

2
mv2

esc =
GmM

R
. (1.0.1)

According to the above expression the escape velocity is (vesc =
√

2GM
R

) and

a body can escape from the vicinity of star if its initial velocity is greater then

escape velocity (vinitial > vesc). Therefore, the velocity of body can exceed

from velocity of light if 2GM > c2R. The newtonian theory of gravity puts no

limit on the speed, and it is not applicable to the relativistic situation [3,7].

The black hole is defined by its surface, called the event horizon (boundary

beyond which events cannot effect the outside observer). Things can fall

through it but nothing can emerge out. Laplace was the first to suggest such

objects and John Wheeler gave it the name “black hole”[8]. For a star of
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mass (M = 2×1030), to become a black hole its radius would be about 0.3km

[1].

GR predicts gravitational waves. As mass causes space-time curvature,

moving mass should produce ripples in space-time, which propagate with the

speed of light. These ripples are called gravitational waves. The sources of

gravitational waves are binary stars, supernova explosions, black holes and

the big bang. Gravitational waves cannot be easily detected due to the weak-

ness of the gravitational attraction. But it could enable us to observe the

black hole horizon more closely and other earlier events which occur in the

Universe.

The motion of a particle around a black hole is one of the most important

problems of black hole astrophysics as it helps in understanding the geometri-

cal structure of space-time near the black hole. Motion of the particle outside

the black hole might be predictable. There are observational and theoreti-

cal evidence that magnetic field is present in the nearby surrounding of the

black hole [7]. The origin of this magnetic field is the probable existence of

plasma in the surrounding of the black hole such as the accretion disk or

a charged gas cloud. The relativistic motion of particles in the conducting

matter (plasma) in the accretion disk can generate a magnetic field in the

vicinity of black hole. Therefore, near the black hole’s event horizon, there

may exists very strong magnetic fields. This field does not effect the geome-

try of the black hole much but its effect on the motion of a charged particle

moving around it can be significant as explained in [9]. More importantly,

a rotating black hole may provide sufficient energy to the particle for it to

escape to spatial infinity. This physical effect appears to play a crucial role in

the ejection of high energy particles from accretion disks around black holes.

But it is predicted that the main role is played by the magnetic field, along

with the black hole’s rotation, in the transfer of energy to the particle [5,10].
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Our main focus in this thesis is to investigate how a particle behaves when

it interacts with another particle during its motion around the black hole.

We are interested in the conditions for the particle: when it escapes from the

surrounding of the black hole, or is captured by the black hole.

Modeling the motion of a particle around a black hole is a very compli-

cated problem because during its motion around the black hole, the particle

is under the influence of both gravitational and magnetic forces. Hence before

dealing with a complicated problem of dynamics of a charged particle around

a black hole, we start with the simpler case of a neutral particle. Generally

the dynamical equations for a particle, obtained from a Lagrangian or some

other methods, are not solvable analytically. In this thesis we consider a

slowly rotating Kerr black hole which is surrounded by an axially-symmetric

magnetic field, which is homogeneous at spacial infinity. The motion of the

charged particle around a magnetized black hole was studied in [11]. Main

features of their study are, there exist three asymptotic behaviour behaviour

for a particle during its motion around a black hole: capture by the black

hole and escape to infinity. There is an asymptotic limit on energy of the

particle or the minimum energy required to escape. Same problem was stud-

ied for weakly charged rotating black holes in [12]. The main conclusion is

that if the magnetic field is present then the innermost stable circular orbit is

located closer to the black hole horizon. In this case, the action of the black

hole rotation on a neutral particle is the same as the action of the magnetic

field on a charged particle. In this thesis we use sign convention (+,−,−,−)

and units where c = 1, G = 1.



Chapter 2

General Relativity Theory: A
Review

In this chapter we explain the curvature tensor and its properties which are

essentially required for the derivation of the Einstein tensor and to study

the space-time curvature. We derive the Einstein field equations by using

a variational principle and the Lagrangian equations of motion. We solve

the Einstein field equations for a point mass which is static and spherically

symmetric in an empty space and also discuss its singularities and event

horizon. We also present the Kerr solution, which is stationary and axially

symmetric, and also study some of the aspects of this space-times.

2.1 Metric Tensor

Metric tensor is defined as a bilinear map of two vectors into the reals (R),

i. e. giving their inner product, represented as given in [13]

g(u,v) = u · v. (2.1.1)

From the above definition we can see that the metric tensor is symmetric

tensor and its covariant and contravariant components are respectively

gij = g(ei, ej) = ei · ej (2.1.2)

gij = g(ei, ej) = ei · ej. (2.1.3)

5
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A metric tensor gij is a non singular covariant symmetric gij = gji tensor-field

of rank 2. In terms of its components non singular mean, its determinant is

non zero. It has the unique inverse denoted by gij which guarantees that the

rank of inverse metric is also 2.

The metric tensor defines the infinitesimal distance ds, between two points

on a curve xi(λ) and xi(λ+∆λ). If vi is the tangent vector field of the curve.

Then

ds2 = g(v,v)dλ2 = gijv
ivjdλ2 = gijdx

idxj, (2.1.4)

where vi = dxi

dλ
. The quantity ds is called the line element of metric tensor gij.

We now assume a function of several variables. A function is multi-linear

if it is linear in all its arguments. A Tensor is a multi-linear function that

maps vectors and one-forms into R.

2.2 Riemann Curvature Tensor and Other Re-

lated Tensor

The Riemann curvature tensor describes the curvature in an invariant way

and is defined as [1]

Ra
bcd = Γa bd,c − Γa bc,d + Γa ecΓ

e
bd − Γa edΓ

e
bc. (2.2.1)

Here Γ is the Christoffel symbol which is defined by

Γabc =
1

2
gad
(
gdc,b + gbd,c − gbc,d

)
. (2.2.2)

The Riemann tensor can also be written in covariant form as

Rabcd = gaeR
e
bcd. (2.2.3)

We can write Rabcd as

Rabcd =
1

2
(gbc,ad − gac,bd + gad,bc − gbd,ac)− gef (ΓeacΓfbd − ΓeadΓfbc). (2.2.4)
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From the above expression we can easily deduce the symmetry properties of

curvature tensor. But by choosing the arbitrary point P on the manifold and

constructing the geodesic coordinate system (Riemanian normal coordinates)

in which the Christoffel symbol vanishes Γa bc = 0, which is not true in

general. Therefore we can reduce the expression (2.2.4) to

(Rabcd)P =
1

2
(gbc,ad − gac,bd + gad,bc − gbd,ac)P (2.2.5)

It is antisymmetric with respect to first two indices and last two indices

Rabcd = −Rbacd, Rabcd = −Rabdc. (2.2.6)

Now it is very easy to check, it is symmetric with respect to pair of the indices

Rabcd = Rcdab, (2.2.7)

and Riemann tensor satisfies the following two Bianchi identities

Ra
bcd +Ra

cbd +Ra
bdc = 0, (2.2.8)

Rabcd;e +Rabde;c +Rabec;d = 0. (2.2.9)

Here ”;” represents the covariant derivative. The Riemann curvature ten-

sor (2.2.3) appears to have n4 independent components but by using the

properties (2.2.6)− (2.2.8) independent components reduce to n2(n2−1)
12

[2].

For the flat region of space we have the coordinate in which connection

symbol Γabc and its derivative are zero, hence

Re
abc = 0, (2.2.10)

everywhere in the region for flat space. This relation must hold for every

coordinate system for the flat space because it is most general as it is a

tensor defined relation. conversely we can say that Riemann tensor is zero

then the space must be flat.

From the symmetry properties of the curvature tensor it follows only two

independent contractions. We can do these contractions on the first and
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last indices or on the first two indices. From (2.2.6) raising the first index

and contracting it with the last index or contracting the first two indices

respectively we get

Rbd = Ra
bda = Rbd = Ra

abd. (2.2.11)

From the above equation it is clear that Ricci tensor is the trace of Reimann

curvature tensor The expended form of it is

Rbd = Γa bd,a − Γa ba,d + Γa eaΓ
e
bd − Γa edΓ

e
ba. (2.2.12)

Further contraction gives curvature scalar (Ricci scalar).

R = gbdRdb. (2.2.13)

Ricci scalar is the trace of Ricci tensor.

2.2.1 The Einstein Tensor

Here we are deriving the Einstein tensor from the Bianchi identity as follow

Rabcd;e +Rabde;c +Rabec;d = 0. (2.2.14)

Raising the index a and contracting it with d gives

Rbc;e +Ra
bae;c +Ra

bec;a = 0. (2.2.15)

Further by using the antisymmetric property for the second term we can

write

Rbc;e −Rbe;c +Ra
bec;a = 0. (2.2.16)

If we raise b and contract it with e we get

Rb
c;b −R;c +Rab

bc;a = 0. (2.2.17)

By using the symmetry property we have

Rab
bc;a = Rba

cb;a = Ra
c;a = Rb

b;c. (2.2.18)
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Hence the first and the last terms are same of equation (2.2.17) and we can

write it as

2Rb
c;b −R;c = (Rb

c − δbcR);b = 0. (2.2.19)

Here we get the Einstein tensor by lowering the index c in the last expression

(Rbc − 1

2
gbcR);b = 0. (2.2.20)

The expression in the parentheses is the Einstein tensor and is usually de-

noted by

Gab ≡ Rab − 1

2
gabR. (2.2.21)

The Einstein tensor is symmetric and divergence free. This is the tensor

which describes the curvature of space-time in the field equations of GR.

2.3 The Einstein Field Equations

We will derive the Einstein field equations by using variational principle,

δSG = 0, (2.3.1)

where SG is the action integral for gravitation [13]. As it is geometrical, the

Lagrangian is a function of the metric tensor.

SG =
1

2κ

∫
M

L(gµν , gµν,λ)
√
−gd4x. (2.3.2)

Here κ = 8π is a constant and calculated by the required condition that

the Einstein field equations reduce to Newton’ law in the weak field limit.

For the integral to be invariant under any transformation the function L[gµν ]

should be scalar. So, we are using

L(gµν , gµν,λ) = R− 2Λ. (2.3.3)

Λ is the cosmological constant. After putting the above values in (2.3.2)

action will reads

SG =
1

2κ

∫
(R− 2Λ)

√
−gd4x. (2.3.4)
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Now we will vary the action inside a infinitesimal region V and assuming

that the variation of the metric and its differentiation on the boundary of

the region will vanishes. Then we deduce the Einstein field’s equation by the

requirement that δSG = 0, for any variation in the metric. We can write the

metric as

SG =
1

2κ

∫
(Rµνg

µν
√
−g − 2Λ

√
−g)d4x. (2.3.5)

We get

δSG =
1

2κ

∫
(gµν
√
−gδRµν +Rµνδg

µν
√
−g − 2Λδ

√
−g)d4x. (2.3.6)

As we said the variation of the metric and its differentiation on the boundary

of the region will vanishes. Then the Ricci tensor is given by the equation

(2.2.12) will reduce to

Rµν = Γλµν,λ − Γλµλ,ν . (2.3.7)

Thus

δRµν = δΓλµν,λ − δΓλµλ,ν . (2.3.8)

As the partial derivative commute with the variation

δRµν = (δΓλµν),λ − (δΓλµλ),ν . (2.3.9)

Partial derivative of the metric tensor will vanish at boundary of V . Then

we may write the above equation as

gµνδRµν = (gµνδΓλµν − gµλδΓνµν),λ. (2.3.10)

We introducing a vector Aλ

Aλ = gµνδΓλµν − gµλδΓνµν . (2.3.11)

Then the above equation can be written as

gµνδRµν = Aµ,µ , (2.3.12)
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which is the total divergence. As the metric tensor and its derivative vanishes

at the boundaries then according to Stoke’s theorem the first term will vanish

and contribute nothing to δSG∫
(
√
−ggµνδRµν)d

4x = 0. (2.3.13)

For δ
√
−g:

δ
√
−g =

[∂√−g
∂gαβ

]
δgαβ = − 1

2
√
−g
( ∂g

∂gαβ

)
δgαβ. (2.3.14)

δ
√
−g =

1

2

√
−ggαβδgαβ. (2.3.15)

Now for the second term

δ
[
gµν
√
−g
]

=
√
−gδgµν + gµνδ

√
−g (2.3.16)

as we know gµβgαβ = δµβ . We get

δ(gµαgαβ) = 0 (2.3.17)

Accordingly we can write

δgαβ = −gαµgβνδgµν . (2.3.18)

After putting the value we get

δ
[
gµν
√
−g
]

=
√
−g
(
δgµν +

1

2
gµνgαβδgαβ

)
=
√
−g
(
δgµν − 1

2
gµνgαβδg

αβ
)
.

(2.3.19)

After putting the values of equation (2.3.15) and (2.3.19) in (2.3.6) then the

variation in the action reads

δSG =
1

2κ

∫ √
−g
(
Rαβ −

1

2
Rgαβ + Λgαβ

)
δgαβd4x. (2.3.20)

It is required for the vacuum field equations of the general theory of relativity

that the δSG = 0, for any arbitrary variation in the metric as explained [13].
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The variation in the action δSG can only be zero if the integrant is zero.

Accordingly we get from the above equation (2.2.12)

Rαβ −
1

2
Rgαβ + Λgαβ = 0 (2.3.21)

Since Rαβ and gαβ are symmetric. Therefore it has only 6 independent com-

ponents and there are only six field equations.

2.4 The Einstein Field Equations in the Pres-

ence of Matter

Now we derive the field equation for non vanishing energy momentum tensor

from the variational principle

δ(SG + SM) = 0. (2.4.1)

SM is the action integral for matter and energy.

SM =

∫
LM(gµν , gµν,λ)

√
−gd4x. (2.4.2)

LM is the Lagrange density for matter. For the variation in the argument

gives

δ[
√
−gLM(gµν , gµν,λ)] =

∂[
√
−gLM ]

∂gµν
δgµν +

∂[
√
−gLM ]

∂gµν,λ
δgµν,λ. (2.4.3)

Generally the Lagrangian depends on the metric tensor and its derivative.

We define a vector Bλ as

Bλ =
∂[
√
−gLM ]

∂gµν,λ
δgµν . (2.4.4)

The divergence of Bλ is

Bλ
,λ =

[∂[
√
−gLM ]

∂gµν,λ

]
,λ
δgµν +

∂[
√
−gLM ]

∂gµν,λ
δgµν,λ. (2.4.5)

From equations (2.4.5) and (2.4.3)

δ[
√
−gLM ] =

∂[
√
−gLM ]

∂gµν
δgµν −

[∂[
√
−gLM ]

∂gµν,λ

]
,λ
δgµν +Bλ

,λ. (2.4.6)
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We have assumed that the variation vanishes at the boundary so, according

to Gauss integral theorem
∫
Bλ

,λd
4x = 0. Finally we get

δSM =

∫ (∂[
√
−gLM ]

∂gµν
−
[∂[
√
−gLM ]

∂gµν,λ

]
,λ

)
δgµνd4x. (2.4.7)

The energy momentum tensor with Lagrange density is defined as

Tµν = − 2√
−g
(∂[
√
−gLM ]

∂gµν
−
[∂[
√
−gLM ]

∂gµν,λ

]
,λ

)
. (2.4.8)

This will give us

δSM = −1

2

∫
Tµν
√
−gδgµνd4x. (2.4.9)

From equation (2.3.20) and (2.4.9) we get the gravitational field equation in

the presence of matter and energy for the theory of general relativity

Rµν −
1

2
Rgµν + Λgµν = κTµν . (2.4.10)

These are the Einstein’s field equations. As like Einstein tensor the stress

energy tensor is also divergence free which assures the conservation of energy

and momentum.

2.5 The Schwarzschild Solution of the Ein-

stein Field Equations

The Schwarzschild obtained the solution to Einstein’s Field equations for

a point mass in an empty space which is static and spherically symmetric

[2]. The Einstein field equations are 10 partial differential equations of 10

independent functions (gµν) of 4 variables (xµ). They are second order and

non linear in the first order. By choosing some assumptions and appropriate

coordinate we can reduce the number of independent variable and unknowns.

The simplest case is T µν = 0.

Let a point gravitational source of mass M , situated at the origin in

its own rest frame. This implies that the solution is spherically symmetric
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and, excluding the origin, there is a vacuum. The most general spherically

symmetric metric is

ds2 = ev(t,r)dt2 − eλ(t,r)dr2 − f(t, r)dΩ2, (2.5.1)

where dΩ2 = dθ2 + sin2 θdφ2. The gravitational field due to point mass can

not vary with time. Then the above equation becomes

ds2 = ev(r)dt2 − eλ(r)dr2 − f(r)dΩ2. (2.5.2)

As Tµν = 0 therefore the Einstein’s field equations become

Rµν = 0. (2.5.3)

The metric tensor is

gµν =


ev 0 0 0
0 −eλ 0 0
0 0 −r2 0
0 0 0 −r2 sin2 θ

 (2.5.4)

The inverse of a diagonal matrix is simply the inverse of the diagonal entries.

Therefore we have

gµν =


e−v 0 0 0
0 −e−λ 0 0
0 0 − 1

r2
0

0 0 0 − 1
r2 sin2 θ

 . (2.5.5)

The determinant of the metric gµν is

|g| = −ev+λr4 sin2 θ. (2.5.6)

The metric is independent of t, φ. The non-zero Christoffel symbols are

Γ0
01 =

1

2
v′, Γ1

00 =
1

2
v′ev−λ, Γ1

11 =
1

2
λ′, Γ1

22 = −re−λ,

Γ1
33 = −r sin2 θe−λ, Γ2

21 =
1

r
= Γ3

31,

Γ2
33 = − sin θ cos θ, Γ3

32 = cot θ. (2.5.7)
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There are 4 equations for R00, R11, R22, R33 given below

R00 =
1

2

[
v′′ +

1

2
v′λ′ − 1

2
v′λ′ +

2

r
v′
]
ev−λ = 0, (2.5.8)

R11 = −1

2

[
v′′ +

1

2
v′λ′ − 1

2
v′λ′ − 2

r
λ′
]

= 0, (2.5.9)

Comparing equations (2.5.8) and (2.5.9) we see

v(r) + λ(r) = constant. (2.5.10)

We can take the constant = 0 or may be absorbed in the units. Then we

have

v(r) = −λ(r). (2.5.11)

The equation for R22 is

R22 = (−re−λ)′ +
[1
2

(v′ + λ′) +
2

r

]
(−re−λ)− 2

r
(−re−λ) + 1 = 0. (2.5.12)

By using equation (2.5.11) in R22

R22 = (−re−λ)′ + 1 = 0. (2.5.13)

Solving the above equation we get

e−λ = ev = 1 +
α

r
. (2.5.14)

Here α is a constant of integration.

R33 = sin2 θR22 = 0. (2.5.15)

The other components of the Ricci tensor are identically zero.

Now we have the complete solution for the vacuum Einstein’s field equa-

tions for spherical symmetric gravitating object

ds2 = (1 +
α

r
)dt2 − 1

1 + α
r

dr2 − r2dΩ2. (2.5.16)
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It can be seen that the integration constant α must be representing a constant

mass which produces gravitational field. Considering the weak field limit we

can identify α. As we require in weak field limit

eν(r)

c2
= 1 + 2α. (2.5.17)

Here α is the Newtonian gravitational potential. Furthermore, in the weak

limit r can be identified as the radial distance. If the gravitational source is

spherically symmetric having mass M then in the weak field limit we have

α = −2M. (2.5.18)

Thus the Schwarzschild metric for the empty space-time outside a spherically

symmetric body of mass M will become

ds2 =
(
1− 2M

r

)
dt2 − 1(

1− 2M
r

)dr2 − r2dΩ2. (2.5.19)

This is the required metric for the spherically symmetric Schwarzschild space-

time with Schwarzschild radius r = 2M = rg. We can see that this metric

reduces to Minkowski space-time as M → 0 or r → ∞. The Schwarzschild

solution is also an asymptotically flat solution. We can use this metric to

investigate the motion of the particle (macro or micro) in the vicinity of

spherically symmetric object of mass M . This metric is valid down to r =

2M .

2.5.1 Singularities and Event Horizon

For large r it will approximately reduce to flat Minkowski space-time. Metric

becomes singular at r = rg and r = 0 these two values of r have special

physical importance. At r = rg, g11 becomes infinite and at r = 0, g00

becomes infinite. The singularity r = 2M is not essential singularity as it

arises due to bad choice of coordinates. Hence we can remove it by the

proper choice of coordinates like Eddington Finkelstein coordinate , Kruskal

coordinate and Kruskal-Szekeres coordinates etc [2].
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The singularity at (r = 0) is the essential singularity or a physical sin-

gularity where the curvature becomes infinite or the curvature invariants

diverge. We cannot remove it by any choice of coordinates. There are many

interesting properties associated with r = rg, such that things can fall into

the region r < rg and cannot emerge from it. Due to this reason it is called

event horizon and the region of space inside it is called the Schwarzschild

black hole. The observer which is just outside the event horizon r = rg can

see nothing beyond this surface. The Schwarzschild radius r = rg, represents

the boundary of the events which can be observed.

2.6 The Kerr Solution of the Einstein Field

Equations

We will not derive here the complete Kerr solution. We take it as granted

from the book [13]. We will discuss the singularities and event horizon and

some other features of Kerr black hole. Space-time is called stationary if there

is a Killing vector ξµ which is time-like at spatial infinity. If this Killing vector

is orthogonal to the other three space-like vectors then the space-time is static

e. g. the Schwarzschild. Here we are assuming the space-time is stationary

and axi-symmetric. It has two dimensional surface which is orthogonal to

Killing vectors ξt = ∂
∂t

and ξφ = ∂
∂φ

.

For stationary and axi-symmetric space-time the metric components should

be independent of t and φ; i. e.

gµν = g(x1, x2) = g(r, θ). (2.6.1)

Besides the axially symmetric and stationary, the line element (ds2) should

be invariant under the simultaneous inversions t → −t and φ → −φ. It

means that the motion of the gravitational source must be purely rotational

about the axis of symmetry. According to the above assumption we require
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that

g01 = g02 = g12 = g13 = g23 = 0. (2.6.2)

Hence, the line element must have the form

ds2 = g00dt
2 + 2g03dtdφ+ g33dφ

2 + [g11dr
2 + g22dθ

2]. (2.6.3)

Metric coefficients depend only on r and θ. Further simplification to this

kind of metric can be achieved by the fact that any two dimensional (pseudo)

Riemannian curvature must be flat. Hence, by using this fact and writing

the result for the rotating body, the line element (2.6.3) takes the form

ds2 = Adt2 − Cdr2 −Ddθ2 −B(dφ− ωdt)2. (2.6.4)

Here (A,B,C,D and ω) are function of two spacelike coordinate r and θ.

We can write the metric coefficients as

g00 = A−Bω2, g03 = Bω, g33 = −B, g11 = −C, g22 = −D. (2.6.5)

Finally, we have the metric of the form (2.6.4) for the spherically symmetric

and stationary space-time. The metric we have (2.6.4) is the general one

as it is valid for outside the rotating “extended” axi-symmetric body. To

calculate Kerr metric we have to impose the condition on solution that space

time geometry should transform to Minkowiski form at r → ∞ then the

solution is unique. In Boyer-Lindquist coordinate the line element for Kerr

geometry is given by [25]

ds2 =
∆− a2 sin2 θ

ρ2
dt2 +

4Mar sin2 θ

ρ2
dφdt− ρ2

∆
dr2 − ρ2dθ2 − A sin2 θ

ρ2
dφ2,

∆ = r2 − 2Mr + a2

ρ2 = r2 + a2 cos2 θ

A = (r2 + a2)2 − a2∆ sin2 θ, (2.6.6)

where M is the mass of the black hole and a is the rotation of the black

hole and it is interpreted as angular momentum per unit mass of black hole
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a = L
M

. This solution (2.6.6) is for vacuum Einstein’s field equations outside

the axially symmetric rotating body. The Kerr metric diverges where ∆ = 0,

or ρ = 0,

∆(r) = r2 + a2 − 2Mr = 0. (2.6.7)

From the above equation we get two values of r

r+ = M +
√
M2 − a2, r = r− = M −

√
M2 − a2. (2.6.8)

∆ > 0 for r+ < r < r− and ∆ < 0 for r > r− and r < r+. The region r = r+

and r = r− are the event horizon. The Kerr metric has two event horizons

and for a = 0, there is only one which is at r = 2M = rg like Schwarzschild

metric. The intrinsic geometry of both horizon is not spherically symmetric.

The singularities r+ and r− are only the coordinate singularity which occur

on the surfaces.

The place ρ = 0 is the curvature singularity

ρ2 = r2 + a2 cos2 θ = 0, (2.6.9)

and we can see from the above equation that ρ = 0 only for r = 0 and θ = π
2
.

We can say that r = 0 and θ = π
2

represents disc of coordinate of radius a in

the equatorial plane and r = 0 and θ = π
2

is the outer edge of the disc which

means the singularity is a ring like singularity.



Chapter 3

Motion of a Charged Particle
Around the Schwarzschild
Black Hole Immersed in a
Magnetic Field

This chapter is devoted to review the motion of charged particles around

the Schwarzschild black hole immersed in a magnetic field [11]. We calculate

the location of the innermost stable circular orbit (ISCO) in the vicinity

of the black hole which is immersed in a magnetic field. There are many

astrophysical observations which show that a magnetic field is present in

the vicinity of the black hole, probably due to a plasma in the accretion

disc [16, 19]. Therefore the particle moves around the black hole under the

influence of both gravitational and magnetic forces.

Constants of motion and the effective potential will be reviewed for the

Schwarzschild space-time and discussed in detail in this chapter [11,16]. Two

cases are considered: motion near the black hole when the particle is neutral;

and when it is charged. The main focus is on trajectories of the particle’s

motion near the black hole, how it is effected by the magnetic field present in

the vicinity of the black hole as we follow from the paper [10,20]. Conditions

on the energy of the particle to escape to infinity as it is kicked by another

particle are discussed in detail. Escape velocity of the particle moving under

20
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the influence of both gravitational and magnetic forces are calculated.

This chapter is organised as follows: In section 3.1 we discuss the motion

of the neutral particle in the absence of magnetic field. In section 3.2 the

expression for magnetic field present in the accretion disc of Schwarzschild

black hole is given. Equations of motion and constants of motion are pre-

sented in section 3.3 and discuss their limiting cases in section 3.4. We study

the behaviour of effective potential in section 3.5.

3.1 Motion of a Neutral Particle Around the

Schwarzschild Black Hole

First we consider the simple case of the neutral particle in the absence of a

magnetic field . In this case the Lagrangian for a particle outside a spherically

symmetric body is defined as [13]

L =
1

2
gµν ẋ

µẋν . (3.1.1)

From (2.5.19), we get

L =
1

2

[
(1− rg

r
)ṫ2 − ṙ2

1− rg
r

− r2θ̇2 − r2 sin2 θφ̇2
]
, (3.1.2)

Note that t and φ are cyclic coordinates, so the canonical momenta, pt and

pφ respectively are constant. There exist three constants of motion, two of

them are calculated by the Lagrangian equation which is given below.

d

dτ

( ∂L
∂ẋµ

)
− ∂L
∂xµ

= 0 (3.1.3)

The corresponding conserved quantities are the energy E and the azimuthal

angular momentum Lz as measured by an observer at infinity. Using La-

grangian (3.1.2) and the Euler-Lagrange equation (3.1.3) we have

Pt = E = ṫ
(
1− rg

r

)
, (3.1.4)
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where E is the energy per unit mass and

Pφ = Lz = φ̇r2 sin2 θ, (3.1.5)

where Lz is the angular momentum per unit mass. The over dot represents

the derivative with respect to proper time, τ . The third constant of motion

is the square of the total angular momentum L2

L2 = r4θ̇2 +
L2
z

sin2 θ
. (3.1.6)

Introducing the symbol v = −rθ̇o, then the above equation can be written as

L2 = r2v2 +
L2
z

sin2 θ
. (3.1.7)

Without loss of generality by appropriate choice of the z-axis we can take

θ(τo) = π
2

and θ̇(τo) = 0 . Then the Lagrangian equation of motion for θ is

0 =
d

dτ
(r2θ̇)2 +

d

dτ

( L2
z

sin2 θ

)
. (3.1.8)

By integrating the equation (3.1.8) and taking integration constant to be

zero we get

(r2θ̇)2 = −L2
z csc2 θ. (3.1.9)

Both sides have to be zero to satisfy the equation because the left side is

never negative and the right side can never be positive. Hence the orbit is

plane and therefore (θ̇ = 0).

The equation of motion for the massive particle in the equatorial plane is

d2u

dφ2
+ u =

m

L2
z

+ 3mu2, (3.1.10)

where u = 1
r

and solution of the above equation is

u =
m

L2
z

+ 3mu2. (3.1.11)

Hence, for ISCO, as du
dφ

= 0, we get ro = 3rg. Let the particle is in the circular

orbit, r = ro, where ro is the local minima of the effective potential and
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ro ∈ (3rg,∞). We get the critical values for energy and azimuthal angular

momentum corresponding to this local minima which are given below.

Lzo =
ro
√
rg√

2ro − 3rg
, (3.1.12)

Eo =

√
2(ro − rg)√
ro(2ro − 3rg)

. (3.1.13)

The ISCO for the Schwarzschild black hole is defined by ro = 3rg. which is

the convolution point of the effective potential.

Now we are assuming that the particle is in the circular orbit and collides

with another particle. After the collision, particle will move in a new plane.

There can be three possibilities: (i) captured by the black hole, (ii) bounded

motion and (iii) escape to infinity. It depends on the mechanism of the col-

lision. For small change in the energy and the momentum, the orbit of the

particle will be slightly perturbed and its motion will remain bound but for

large change, it may escape to infinity or it might be captured by the black

hole.

Generally, after the collision the particle will have new values of the con-

stants of motion E,Lz and L2. The problem is simplified by considering the

following assumptions: (i) the azimuthal angular momentum is not changed

after the collision and (ii) the radial velocity is also unchanged after colli-

sion. Then using one parameter (the energy E) after the collision we can

determine the motion of the particle as explained in [11].

After the collision the azimuthal angular momentum, L2
z, changes to L2

and the energy of the particle changes which corresponds to the same local

minima, ro, and are given respectively as

L2 = r2
ov

2 + L2
z, (3.1.14)
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and

E =

√
E2
o + v2

ro − rg
ro

. (3.1.15)

These values of the energy and angular momentum after collision are greater

than the values of energy and angular momentum before collision. Thus,

immediately after the collision, the particle is still at the turning point where

ṙo = 0 and lies in between the extreme values of the energy. We can also see

from the equation (3.1.15) that as r → ∞ then E → 1. This implies that

the particle will escapes to infinity if E ≥ 1. We can also find the escape

velocity of the particle by solving the equation (3.1.15)

| v |≥

√
ro(1− E2

o)

(ro − rg)
, (3.1.16)

where the above equality correspond to E = 1.

3.2 Magnetic Field Around the Schwarzschild

Black Hole

The motion of the particle is one of the most important problem of mod-

ern astrophysics. The matter (plasma) in the vicinity of the black hole and

rotation of the black hole might provide the sufficient energy to the parti-

cle moving around it to escape. But the main role in the energy transfer

mechanism is played by the magnetic field [5, 10]. During the motion in

the surrounding of black hole, the charged particle will radiate and stability

might be lost. Here we consider that the effect of radiation energy on the

motion of the particle is very small as compare to the effect of magnetic field

and black hole rotation, therefore it can be ignorable.

There are theoretical and experimental evidence that magnetic field should

be present in the surrounding of the black hole [14]. A regular magnetic field

exists in the vicinity of the black hole due to plasma (conducting matter),
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e.g., if the black hole has the accretion disk. The motion in the conducting

matter around the accretion disk can generate the regular magnetic field in-

side the disk. This type of magnetic field is trapped in the vicinity of black

hole [11]. The effect of magnetic field on the geometry of black hole is very

small but it effects the motion of the charged particle largely. This type of

black hole is called magnetized black hole [11].

The mechanism for the extraction of the rotational energy from the black

hole in the presence of magnetic field is proposed by Blandford and Znajek

[16] and it is given in detail in [17]. Different features of the motion of

the charged particle moving in both gravitational and magnetic field in the

vicinity of the black hole are discussed here .

Magnetic Field

We are assuming the case that the particle has charge q and mass m moving

around the black hole which is immersed in a magnetic field. The particle

motion is effected by the magnetic field in the black hole vicinity. We have

considered that there exists a magnetic field in the black hole exterior which

is axi-symmetric and it is decreasing as we move away from the black hole.

It has the strength B far away from the black hole. We can calculate such a

magnetic field by the procedure given in [12,18].

As the metric is asymptotically flat then for the Killing vectors, we have

ξµ ;ν
;ν = 0, (3.2.1)

where ξµ is a Killing vector. Eq. (3.2.1) coincides with the Maxwell equation

for 4-potential Aµ in the Lorentz gauge Aµ ;µ = 0. The special choice for Aµ

is [12]

Aµ =
B

2
ξµ(φ), (3.2.2)
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where B is the magnetic field strength. The 4-potential is invariant under

the symmetries which correspond to the Killing vectors, i.e.,

LξAµ = Aµ,νξ
ν + Aνξ

ν
,µ = 0. (3.2.3)

A magnetic field vector is defined as [11]

Bµ = −1

2
eµνλσFλσuν , (3.2.4)

where

eµνλσ =
εµνλσ√
−g

, ε0123 = 1, g = det(gµν), (3.2.5)

and εµνλσ is the Levi Civita symbol. The Maxwell tensor is defined as

Fµν = Aν,µ − Aµ,ν = Aν;µ − Aµ;ν . (3.2.6)

In the schwarzschild space-time. a stationary observer has the 4-velocity

like uν0 = (1 − rg
r

)ξνt . From equations (3.2.2) − (3.2.6) we get the magnetic

field

Bµ = B(1− rg
r

)
1

r

(
r cos θ

∂

∂r
− sin θ

∂

∂θ

)
. (3.2.7)

Magnetic field is directed upward along the z direction at the spacial infinity.

We assume that the magnetic field is along the positive z direction that is

why we take it positive B > 0.

3.3 Equations of Motion of the Charged Par-

ticle

If the particle is charged then its motion is effected by the magnetic field in

the vicinity of the black hole and the generalized 4 momentum is defined as

Pµ = muµ + qAµ. (3.3.1)

Lagrangian for the charged particle moving around the magnetized black hole

is defined as [24]

L =
1

2
gµν ẋ

µẋν +
qAµ
m

ẋµ. (3.3.2)



CHAPTER 3. Motion of the Charged Particle Around..... 27

Since the Lagrangian (3.3.2) does not depend explicitly on the coordinates

t and φ. Therefor we can calculate two conserved quantities correspond to

these two coordinates. These conserved quantities are energy per unit mass

and azimuthal angular momentum per unit mass as measured by an observer

at infinity. From lagrangian (3.3.2) and (3.1.3) we have

E = ṫ
(
1− rg

r

)
, (3.3.3)

Lz =
(
φ̇+ β

)
r2 sin2 θ. (3.3.4)

Here we denote

β =
qB

rg
. (3.3.5)

From the equations (3.3.3) and (3.3.4), we have

ṫ =
E(

1− rg
r

) , (3.3.6)

φ̇ =
Lz

r2 sin2 θ
− β. (3.3.7)

By putting the values of ṫ and φ̇ into the Lagrangian and solving for the

Lagrangian equation for r and θ we get

r̈ =
rg
2r2

(2Lzβ − 1) +
(2r − 3rg)(θ̇

2)

2
+

(2r − 3rg)L
2
z

2r4 sin2 θ
− β2(2r − 3rg) sin2 θ

2
,

(3.3.8)

θ̈ =
L2
z cot θ

r4 sin2 θ
− 2β2 sin 2θ − 2ṙθ̇

r
. (3.3.9)

Using the normalization condition uµuµ = 1 and putting the values of ṫ and

φ̇ we get

E2 =
(
1− rg

r

)[
1 + r2 sin2 θ

(
Lz

r2 sin2 θ
− β

)2]
+ ṙ2 + r2

(
1− rg

r

)
θ̇2. (3.3.10)

From the above equation (3.3.10) we can define the effective potential for a

charged particle in the vicinity of black hole as

Veff =
(
1− rg

r

)[
1 + r2 sin2 θ

(
Lz

r2 sin2 θ
− β

)2]
. (3.3.11)
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Equation (3.3.11) is the effective potential by which we can predict the motion

of the particle. Equation (3.3.11) is a constraint if it is satisfied initially then

it will always be satisfied provided that the dynamics of r and θ are controlled

by equations (3.3.8) and (3.3.9) respectively.

There are some symmetries associated with the equations (3.3.6)−(3.3.11).

These equations are invariant under the following transformations

φ→ −φ, Lz → −Lz, β → −β. (3.3.12)

For (β > 0) then we will have to study both the cases of positive Lz and

negative −Lz because they are physically different. If we change the sign of

Lz, we are actually changing the direction of the Lorentz force on the particle

[11].

The system of equations (3.3.6− 3.3.11) is invariant under reflection θ →
π − θ. According to this transformation the initial position of the particle

remain fix but the direction of its velocity will change as v → −v.

The geodesic equation in the Schwarzschild space-time is already studied

very well. Our focus is that how the motion of the charged particle changes

due to presence of magnetic field. The solution of the problem largely de-

pends upon the initial conditions r(τo), φ(τo) and t(τo) because by these

condition we may decide the initial position of the particle.

3.4 Weak Gravitational Field

3.4.1 Flat Space-time Limit

Before the study of the motion of the particle close to the black hole we

discuss the motion in the weak gravitational field i.e. the gravitational field

approaches to zero, M → 0. Let the particle escapes to infinity after collision.

The gravitational field of the black hole vanishes at infinity. Hence particle

moves in the homogeneous magnetic field in the flat space-time. Such type
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of motion is discussed in [15]. By introducing the cylindrical coordinates

r = a sinα, z = a cosα. (3.4.1)

and taking the limit |z| → ∞. The equations (3.3.6)− (3.3.11) become

E = ṫ, φ̇ =
Lz − βr2

r2
, (3.4.2)

r̈ =
L2
z − β2r4

r3
, (3.4.3)

E2 = 1 + ż2 + ṙ2 +
(Lz − βr2)2

r2
. (3.4.4)

The solution of the above equations represents a helix with the axis directed

along the magnetic field, i.e. as parallel to z axis. If the components of

the velocity along the z direction vanishes then the trajectory of the particle

becomes a circle in a plane. Suppose rc be the radius of the circle in which

particle is moving then its velocity can be written as

v = − q

m
[B× rc]. (3.4.5)

Here (B× r) is the cross product of 3-vectors B and r defined in the standard

way in the Euclidean space. The vector potential for a uniform magnetic field

as defined by (3.2.2) become

A =
1

2
(B× r). (3.4.6)

Therefore, generalized 3-momentum of the particle is defined by

P =
q(B× r)

2
− q(B× rc), (3.4.7)

and the corresponding angular momentum is

L = r×P. (3.4.8)

Angular momentum is directed along the positive z direction. Let the center

of the circle of radius (r = rc) is on the z-axis then the z component of

3-angular momentum is

L = −qBr
2
c

2
< 0. (3.4.9)
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By using (3.3.5) we can write the above equation as

L = −r2
cβ. (3.4.10)

If ż = 0, then the solution of the equations (3.4.2)− (3.4.4) is

r = rc, φ = φo −
2βt

E
. (3.4.11)

Here φo is the solution corresponding to t = 0. We can calculate the general

solution of these equations by shifting the center of the circle from (rc, φo)

to some other point (rd, φd) on the same plane where it is moving [11]. The

solution of the equations (3.4.11) transforms as

r =

√
r2
d + r2

c + 2rcrd cos
(
φo − φd −

2βt

E

)
, (3.4.12)

φ = φd + arccos
(r2 − r2

c + r2
d

2rdr

)
, (3.4.13)

z = zo +
V t

E
. (3.4.14)

By these transformations the angular momentum will become

L = β(r2
d − r2

c ). (3.4.15)

Here we boosted the solution to a distance rd, where rd is the distance from

the z-axis to the helix. We can see from the above equation for (rd > rc),

the z-axis is located outside the circle and for (rd < rc) the z-axis is located

inside the circle. If (rd = rc) then the z-axis will pass through the circle.

The particle’s energy does not depend on the position of the circle. It

can be expressed as

E2 = 1 + ż2 + 4β(βr2
d − L). (3.4.16)

The energy E = 1, if the particle is at rest. This corresponds to ż = 0, and

rc = 0. These conditions imply

L = βr2
d ≥ 0. (3.4.17)
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If the particle is located on the z axis then rd = 0 and L = 0. If ż = 0 and

L < 0 then the energy can be written as

E2 = 1 + 4β(βr2
d − L) > 1. (3.4.18)

3.4.2 Approximation of the Weak Gravitational Field

In the presence of the black hole, symmetry of the flat space-time is broken

and it also provides the strong gravitational force to the particle. Let us

discuss the motion of the particle in the approximation when gravitational

force exerted by the black hole is very weak and particle is moving in a

constant magnetic field. Equations (3.3.6) − (3.3.8) in the limit r >> rg

become

ṫ = E, φ̇ =
L− βr2

r2
, (3.4.19)

r̈ =
L2

r3
− β2r − g, (3.4.20)

where g is the Newtonian gravitational force and it is perpendicular to the

magnetic field. We consider a point (ro, φo) and define the Cartesian coordi-

nate (x, y) closer to (ro, φo) as

r − ro = y, φo − φ =
x

ro
. (3.4.21)

The value of go = rg
2r2o

, is the only leading term because the other higher

terms are very small. By putting the values from (3.4.21) into equations

(3.4.19)− (3.4.20) and retaining the linearity in x and y we get for the zero

order

L = βr2
o. (3.4.22)

For the first order

ÿ = −4β2y − go, (3.4.23)

ẋ = 2βy. (3.4.24)
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The solution of the above equations are

y(τ) = a cos(2βτ)− go
4β2

, (3.4.25)

x(τ) = a sin(2βτ)− (
go
2β

)τ. (3.4.26)

The above solution describes the plane called trochoid. If go = 0, then the

above solution describes the motion of the particle moving along a circle with

frequency ω = 2β = ωcE which is the relativistic cyclotron frequency. In the

presence of gravity the centre of circle moves in the negative x direction with

the velocity given by

v =
go
2β
. (3.4.27)

The velocity with respect to the rest frame of the observer is defined by

V = vE. (3.4.28)

For a = go
ω2 , the solution becomes

y(τ) =
go cos(ωτ)

ω2
− go
ω2
, (3.4.29)

x(τ) =
go sin(ωτ)

ω2
− goτ

ω
. (3.4.30)

The above solution represents a cycloid. In this solution if a > go
ω2 , then the

path is curly and if a < go
ω2 , then there are no curls in the path of the particle

as explained in [9].

The interpretation of this solution is, consider a frame which is moving

with the velocity as given in (3.4.28). The changing magnetic field produces

the electric field ε = γvB, which is perpendicular to both velocity and the

magnetic field B. This electric field applies the force qε, directed along the

y axis. The above velocity is defined by the condition that this electric force

exactly compensates the gravitational force. Hence the motion of the charged

particle under the influence of the gravitational force which is orthogonal to

the magnetic field is exactly analogous to the motion of the particle under

the influence of electric and magnetic field which are orthogonal to each other

[15].
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3.5 Charged Particle in the Schwarzschild Space-

time

Limiting cases of motion in the flat space-time and weak gravitational field

limit is discussed above. Now we return to our problem. First we introduce

some dimensionless quantities: σ, ρ, b, and ` which are defined below

t = τrg, r = ρrg, τ = σrg, Lz = rg`, b = βrg. (3.5.1)

Using these dimensionless quantities in (3.3.6)− (3.3.11), we have

d2ρ

dσ2
=
( dθ
dσ

)2 (2ρ− 3)

2
+

(2ρ− 3)`2

2ρ4 sin2 θ
+

1

2ρ2
(2`b−1)− b

2(2ρ− 1) sin2 θ

2
, (3.5.2)

d2θ

dσ2
=

`2 cot θ

ρ4 sin2 θ
− 2

ρ

dρ

dσ

dθ

dσ
− 2b2 sin 2θ, (3.5.3)

Veff =

[
1 +

(`− bρ2 sin2 θ)

ρ2 sin2 θ

](
1− 1

ρ

)
, (3.5.4)

E2 =
(dρ
dσ

)2
+ (ρ2 − ρ)

( dθ
dσ

)
+ Veff . (3.5.5)

If the particle is moving around the black hole at the equatorial plane θ = π
2
,

in the circular orbit of radius ρo, then the equation (3.5.4) becomes

Vo = Eo =

(
1− 1

ρo

)[
1 +

(`− bρ2
o)

2

ρ2

]
. (3.5.6)

As we have assumed that for a neutral particle that during motion of the

particle around black hole if it collides with another particle its azimuthal

angular momentum ` does not change and only energy will change. This

collision gives the particle the transverse velocity v > 0. The energy change

is given by

Enew =

√(
E2
o −

v2(1− ρ)

ρ

)
. (3.5.7)

For b ≥ 0, the parameter ` can be positive or negative ` = ±`. If ` > 0

then the Lorentz force on the particle is repulsive, i.e. directed away from
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the black hole and if ` < 0 then it is attractive, i.e. directed toward black

hole. To study the effective potential’s characteristics we have assumed that

the magnetic field strength is fixed, hence the parameter b is fixed. There are

only two parameters in the effective potential ` and ρ which can vary. We

are interested only in the black hole exterior where ρ > 1 and the effective

potential is positive. It vanishes at the black hole horizon at ρ = 1 and

increases at the rate b2ρ2 for ρ > 1.

In figure 3.1 we plot the effective potential as a function of ρ, for ` = 10,

and b = 0.5

1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

Ρ

V
ef

f

1

Figure 3.1: Plot of effective potential for b = 0.5 and ` = 1. We can see from
the figure that there are no circular orbits.

3.5.1 Innermost Stable Circular Orbit

Initially we assume the particle is in ISCO. To study the characteristic as-

pect of the effective potential we will find its the critical points (maximum,

minimum) using first and second derivative test of equation (3.5.6). Using

∂Vo
∂ρ

= 0 and ∂2Vo
∂ρ2

= 0 we can determine the ISCO.

1

ρ4
(b2ρ4(2ρ− 1) + `2(3− 2ρ) + ρ2(1− 2`b)) = 0, (3.5.8)
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Figure 3.2: In this figure ` = 2, there is an ISCO corresponding to ρ ≈ 1.60.

2

ρ5
(ρ2(b2ρ3 + 2`b− 1) + 3`2(ρ− 2)) = 0. (3.5.9)

The extreme values of the effective potential correspond to equation (3.5.8).

From the above two equations (3.5.8) and (3.5.9) we can find ` and b in term

of ρ. By adding (3.5.8) and (3.5.9) we get [27]

`± = ±
bρ2
±
√

3ρ± − 1√
−ρ± + 3

. (3.5.10)

From the above equation we can see that the real solution exist only in the

interval ρ± ∈ (1
3
, 3]. We are considering the black hole exterior, so we have

ρ± ∈ (1, 3]. By inserting the values from equation (3.5.10) into either of the

equation (3.5.8) or (3.5.9) we get the equation in terms of ρ±

±
√

(3− ρ±)(3ρ± − 1) + 4ρ± − 9ρ± + 3 +
ρ± − 3

2b2ρ2
±

= 0. (3.5.11)

By solving the above equation for b we get

b =

√
2(3− ρ±)

2ρ±

√(
4ρ± − 9ρ± + 3±

√
(3− ρ±)(3ρ± − 1)

) . (3.5.12)
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Figure 3.3: In this figure ` = 4, there are both unstable and stable circular
orbits defined by the minimum and maximum value of the effective potential.

For ρ± = 3 we have b = 0. Inserting the values of b from equation (3.5.12)

into equation (3.5.10) we obtain `± in term of ρ±, i.e.

`± = ± ρ±
√

3ρ± − 1√
2
(
4ρ± − 9ρ± + 3±

√
(3− ρ±)(3ρ± − 1)

) . (3.5.13)

For b to be real, it will remain same as we defined above 1 < ρ+ ≤ 3. But for

ρ− it will change and impose an extra restriction which is
√

13+5
4

< ρ− ≤ 3.

The location of ISCO around the Schwarzschild black hole corresponds to

ρ± = 3, `± = ±
√

3 and b = 0.

Figure 3.4 shows that as the magnetic field increases then the ρ will

decrease. It means that the magnetic field is stronger in the accretion disc

of the black hole and it decreases far away from it. For the repulsive Lorentz

force and the strong magnetic field, the innermost stable orbit may be very

close to the black hole horizon as explained in [12] and [26].
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Figure 3.4: Dependance of the stable orbit on the magnetic field b. As ρ
increases magnetic field decreases this may shift the ISCO near to horizon.

From (3.5.6) and (3.5.13) we have

Eo = 1 +
(ρo − 3.463)0.115

(1.85− ρo)(3.433− ρo)
, (3.5.14)

and

Eo = 1 +
(3.19− ρo)0.439

(2.10− ρo)(ρo − 3.667)
. (3.5.15)

We have plotted equations (3.5.14) and (3.5.15) as shown in figure 3.5 and

3.6.
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Figure 3.5: Here we plot the energy as a function of ρ for b = 0.5 and ` = 0.3.
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Figure 3.6: Here we plot the energy as a function of ρ for b = 0.5 and
` = −0.3.

For escape velocity putting the values of equations (3.5.6) and (3.5.14) in

equation (3.5.7) for ` > 0 we get

v =

√(
1 + (ρo−3.463)0.115

(1.85−ρo)(3.433−ρo)

)2

ρo − (ρo − 1)

(
1 + (1.22−0.5ρ2o)2

ρ2o

)
√
ρo − 1

, (3.5.16)

for ` < 0 from equations (3.5.6) and (3.5.15)

v =

√(
1 + (3.19−ρo)0.439

(2.10−ρo)(ρo−3.667)

)2

ρo − (ρo − 1)

(
1 + (1.22−0.5ρ2o)2

ρ2o

)
√
ρo − 1

. (3.5.17)

We have plotted equations (3.5.16) and (3.5.17) for escape velocity for both

cases ` > 0 and ` < 0 in figures 3.7 and 3.8.
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Figure 3.7: Here we plot the escape velocity against ρ for b = 0.5 and ` = 0.3..
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Figure 3.8: Here we plot the escape velocity as a function of ρ for b = 0.5
and ` = 0.3..



Chapter 4

Motion of a Charged Particle
Around the Slowly Rotating
Kerr Black Hole Immersed in a
Magnetic Field

4.1 Introduction

In this chapter, we investigate the dynamics of a charged and a neutral

particle around a slowly rotating Kerr black hole immersed in a magnetic

field. Here we consider a particle moving around black hole in equatorial

plane. As it collides with another particle, under what circumstances the

particle can escape to infinity is studied. We consider that the magnetic field

decreases away from the black hole and gravitational field can be ignorable at

large distance from the black hole. Therefore the charged particle moves in a

constant magnetic field far away from the black hole. Hence, before reaching

infinity where the magnetic field is constant, it will pass through a region

where both fields strongly effect its motion. In that region particle’s motion

is completely unpredictable (chaotic). Its motion is also unpredictable if a

particle moving in a non uniform magnetic field in the absence of black hole.

[22,23].

We are extending a previous work (Motion of a charged particle around

40
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the magnetized Schwarzschild black hole)[11], by choosing a slowly rotating

magnetized Kerr black hole. We are following the same procedure as we have

done in previous chapter.First we will discuss the motion of a neutral particle

and then we will investigate the dynamics of a charged particle.

4.2 Escape Velocity of a Neutral Particle

We start with the simple case of calculating the escape velocity of the neutral

particle in the absence of magnetic field. The Kerr metric is given by equation

(2.6.6). For simplicity, we consider the slowly rotating Kerr black hole and

neglect the terms involving a2, then equation (2.6.6) becomes

ds2 = (1− rg
r

)dt2+
2arg sin2 θ

r
dφdt− 1

1− rg
r

dr2−r2dθ2−r2 sin2 θdφ2. (4.2.1)

The above metric diverge at r = 0 and r = rg = 2M like Schwarzschild

metric. Therefore the event horizon is same for schwarzschild and slowly

rotating Kerr black hole. The metric (4.2.1) has the following symmetries

φ = 2π − φ, θ → π − θ. (4.2.2)

These symmetries imply the following transformations [26].

Lz → −Lz and v⊥ → −v⊥. (4.2.3)

There are three constants of motion in which two of them are given as [11]

ξ(t) = ξµ(t)∂µ =
∂

∂t
, ξ(φ) = ξµ(φ)∂µ =

∂

∂φ
. (4.2.4)

The black hole metric is invariant under time translation and rotation around

the symmetry axis. The corresponding conserved quantities are the energy

E per unit mass and the azimuthal angular momentum Lz per unit mass

ṫ =
1

r2 − rgr

[(
1− rg

r

)
Lz +

rga

r
E
]
, (4.2.5)
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φ̇ =
1

r2 − rgr
[
r2E +

rga

r
Lz
]
. (4.2.6)

Throughout in this chapter over dot represents differentiation with respect

to proper time τ . The third integral of motion is, i.e. [15]

L2 = r4θ̇2 +
L2
z

sin θ2
= r2v2

⊥ +
L2
z

sin θ2
. (4.2.7)

Here we denote v⊥ ≡ −rθ̇o. Using the normalization condition uµuµ = 1, we

get [25]

ṙ2 =
(Er2 ∓ aLz)2

r4
− r2 − rgr

r4
(r2 + Lz ∓ 2aELz). (4.2.8)

In the above equation (4.2.8) the upper sign represents the co-rotation (di-

rection of rotation of particle and black hole is same to each other) and the

lower sign represents the contra-rotation (direction of rotation of particle and

black hole is opposite to each other)

At the turning points (ṙ = 0), the equation (4.2.8) becomes quadratic in

E whose solution is

E =
aLzrg +

√
r5(r − rg) + L2

z(r
4 − r3rg + a2r2

g)

r3
, (4.2.9)

Here E is the effective potential, E = Veff.

In case of a Schwarzschild black hole, we discard the negative energy

by the condition that the energy of the particle should be positive in the

exterior region of black hole. However the negative energy is allowed in Kerr

geometry because in case of Kerr black hole if r2 << L2
z, this condition can

always be satisfied by taking the mass of the particle to be small. Inside static

limit surface, which is defined by r = rst = 2M = rg, the term r4L2 always

contributes less as compared to r2
gr

2L2 in equation (4.2.9) (inside static limit

surface, we have rg > r). Therefore its square root will always contributes

less than rga|L|r to E . Thus

E < (rgaLr + rgar|L|)
r4

. (4.2.10)
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If L < 0, then E < 0. At the static limit surface of Kerr black hole, at the

equatorial plane r = rst = 2M = rg, there are orbits inside rst in which

L < 0 then energy is also negative E < 0. Hence we can say that within the

static limit surface there are retrograde orbits which have negative energy.

It means that energy required to remove a particle from its orbit to infinity

is greater than its rest mass.

Consider a particle at the circular orbit r = ro, where ro is the local min-

ima of the effective potential. The energy and azimuthal angular momentum

corresponding to ro are

Lzo =
r6
or

2
g√

rorg(2r4
o + 18a2rorg − 3r3

org − 12a2r2
g)

+(r6
or

2
g)

[√
6(a2r2

or
2
g)
(
2r5

o + 9a2r2
org − 4r4

org

−12a2r2
gro − 2r3

or
2
g + 4a2r3

g

)]−1
2

, (4.2.11)

Eo =
aLzorg +

√
r5
o(ro − rg) + L2

zo(r
4
o − r3

org + a2r2
g)

r3
o

. (4.2.12)

Now consider the particle is in a ISCO and collides with another particle.

Therefore after the collision it will move within a new plane with respect to

the previous one. After collision between particles, three cases are possible

for the particles: (i) bounded motion, (ii) captured by black hole and (iii)

escape to infinity. The results depends on the collision process. For small

change in energy and momentum, orbit of the particle is slightly perturbed.

While for large change in energy and momentum, it can go away from initial

path and captured by black hole or escape to infinity.

After the collision particle should have new values of energy and momen-

tum E , Lz and the total angular momentum L2. We simplify the problem

by applying the following conditions: (i) the azimuthal angular momentum

is fixed and (ii) initial radial velocity remains same after the collision ṙ = 0.

Under these condition only energy can change by which we can determine
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the motion of the particle. After collision particle acquires an escape velocity

v⊥ in orthogonal direction of the equatorial plane [7].

After the collision the momentum and energy of the particle become (at

the equatorial plan θ = π
2
)

L2 = r2
ov

2
⊥ + L2

z, (4.2.13)

Enew =
aLrg +

√
r5(r − rg) + L2(r4 − r3rg + a2r2

g)

r3
. (4.2.14)

These values of momentum and energy are greater then the values of mo-

mentum and energy before collision.

We can see from the equation (4.2.14) that as r → ∞, Enew → 1. So for

the unbound motion Enew ≥ 1. Physically it means that the energy of the

particle exceeds its rest mass energy. Therefore, all the orbits with Enew ≥ 1

are unbound in the sense that particle escape to infinity. Conversely for

Enew < 1, particle cannot escape to infinity.

Therefore the particle escape to infinity if Enew ≥ 1, or

v⊥ ≥
arrg + rLz(rg − r) +

√
r2rg(r3 + (a2 − r2)rg)

r2(r − rg)
. (4.2.15)

We get the above expression for velocity v from equation (4.2.14) by putting

E = 1 and then solve it for v.

4.3 Charged Particle Around the Slowly Ro-

tating Magnetized Kerr Black Hole

We investigate the motion of a charged particle q (electric charge) in the

presence of the magnetic field in the exterior of the black hole. The Killing

vector equation is [18]

�ξµ = 0, (4.3.1)

where ξµ is a Killing vector in equation (4.3.1) which coincides with the

Maxwell equation for 4-potential Aµ in the Lorentz gauge Aµ ;µ = 0. The
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special choice for Aµ is [12]

Aµ =
B
2
ξµ(φ) + aBξµ(t), (4.3.2)

Here B is the magnetic field strength. The 4-potential is invariant under the

symmetries which correspond to the Killing vectors, i.e.,

LξAµ = Aµ,νξ
ν + Aνξ

ν
,µ = 0. (4.3.3)

A magnetic field vector is defined as [11]

Bµ = −1

2
eµνλσFλσuν , (4.3.4)

where

eµνλσ =
εµνλσ√
−g

, ε0123 = 1, g = det(gµν). (4.3.5)

In equation (4.3.5) εµνλσ is the Levi Civita symbol. For a local observer at

rest (4.2.5)

uµ0 =
( 1√

(1− rg
r

) +
4am
√

(1− rg
r

)

r2 sin θ

)
ξµ(t), (4.3.6)

uµ3 =
( 1

r sin θ
√

(1 + 4am

r2 sin θ
√

(1− rg
r

)
)

)
ξµ(φ). (4.3.7)

and the other two components uµ1 = 0, at the turning points (ṙ = 0) and

uµ2 = 0, at the equatorial plane. From equations (4.3.2) − (4.3.7) we have

obtained the components of the magnetic field

Bµ = B
[(

cos θ
( (1− rg

r
)√

(1− rg
r

) +
2rga
√

(1− rg
r

)

r2 sin θ

)

+
rga sin θ cos θ

r5

( (1− rg
r

)

r sin θ
√

(1 + 2rga

r2 sin θ
√

(1− rg
r

)
)

))
δµr

−
( sin θ(1− rg

r
)

r

√
(1− rg

r
) +

2rga
√

(1− rg
r

)

r2 sin θ

)
δµθ

]
. (4.3.8)
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Figure 4.1: Magnetic field B as a function of r for θ = π
2
. It can be seen

from this figure as r →∞, magnetic field B → 0.

The Lagrangian of the particle of mass m and charge q moving in an external

magnetic field of a curved space-time is given by [24]

L =
1

2
gµν ẋ

µẋν +
qAµ
m

ẋµ. (4.3.9)

Generalized 4-momentum [11] of the particle is defined as Pµ = muµ + qAµ

. Constants of motion are

ṫ =
r3E + aLzrg
r2(r − rg)

− 2aB, (4.3.10)

φ̇ =
1

r2

( aE
(r − rg)

− Lz
)
−B. (4.3.11)

Here we denote

B ≡ qB
2m

. (4.3.12)

We also derive the dynamical equation for r by using Euler Lagrange equation

(3.1.3) and constants of motion (4.3.10) and (4.3.11)

r̈ =
BaErg
r(r − rg)

+
1

2r4(r − rg)

[
6B2r6 − 2L2

z(r − rg)2 + r3rg(−E2

+6B2rrg + ṙ2 − 12B2r2)

]
. (4.3.13)
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Using normalization condition uµuµ = 1 and constants of motion given

by equation (4.3.10) and (4.3.11) we have calculated the effective potential

E =
1

r6(r − rg)

[
2aBr7 + argr

3
(
2Br2(rg − 2r) + Lz(rg − r)

)
+

(
a2r6(r − rg)2

(
rg(Lz + 2Br2)− 2Br3

)2
+

r9(r − rg)3
(
r2 + (Lz +Br2)2

)) 1
2
]
. (4.3.14)

If equation (4.3.14) satisfied initially (at the time of collision), then it is

always valid (throughout the motion), provided that r(τ) is controlled by

equation (4.3.13).

Let us discuss the symmetries of equations (4.3.9) − (4.3.14). First, these

equations are invariant under the transformations

φ→ −φ, Lz → −Lz, B → −B. (4.3.15)

Therefore, without losing the generality, we consider the particle of positive

electric charge then the magnetic field B > 0. To consider the particle of

negative charge, one should apply the transformations (4.3.15). So, the tra-

jectory of a negatively charge particle is related to positive charge’s trajectory

by transformation (4.3.15). For B > 0 we will have to study both cases when

Lz > 0, Lz < 0. These cases are physically different: the change of sign of

Lz means the change of direction of the Lorentz force on the particle.

The system of equations (4.3.9) − (4.3.14) is invariant with respect to

reflection (θ → π− θ). This transformation retains the initial position of the

particle and changes v⊥ → −v⊥ as v⊥ ≡ −rθ̇o. Therefore it is sufficient to

consider only the positive value of v⊥.
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4.4 Dimensionless Form of the Dynamical Equa-

tions

To perform the numerical analysis, it is convenient to convert equations into

dimensionless form by introducing the following dimensionless quantities: σ,

ρ, `, and b [9]:

σ =
τ

rg
, ρ =

r

rg
, ` =

Lz
rg
, b = Brg. (4.4.1)

The equation (4.3.14) become

Eo =
1

ρ6
o(ρo − 1)

[
− aρ3

o(ρo − 1)(`− 2bρ2
o(ρo − 1))

+

(
ρ6
o(ρo − 1)2(a2

(
`− 2bρ2

o(ρo − 1)
)2

)

+ρ3
o(ρo − 1)

(
ρ2
o + (`+ bρ2

o)
2
)) 1

2
]
. (4.4.2)

The energy of the particle moving around the Kerr black hole of radius ρo in

the equatorial plane is given by equation (4.4.2). For ρ → ∞ and magnetic

field is zero at ∞, hence E → 1 by equation (4.4.2). Dimensionless form of

equation (4.3.13) is

d2ρ

dσ2
=

1

2ρ4(ρ− 1)

[
ρ3
(
2aEb+ 6E2b2ρ(ρ− 1)2

)
−2`(ρ− 1)2 + ρ3 dρ

dσ

]
. (4.4.3)

We have solved the equation (4.4.3) numerically by using the built in com-

mand NDSolve of Mathematica. As ISCO exists at r = 3rg, and using ρ = r
rg

and σ = τ
rg

, our initial conditions for solving (4.4.3) become ρ(1) = 3 and

ρ̇(1) = 3. We get the interpolating function ρ(σ) as the solution of the equa-

tion (4.4.3) which we have plotted in figure 4.2 against σ. In figure 4.3 we

have plotted the radial velocity (derivative of the interpolating function) vs σ

which shows that the particle will escape to infinity according to the applied

initial conditions. As we did before, in the case of a neutral particle, we
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Figure 4.2: Figure shows the graph for ρ(σ) vs σ. Here E = 1, q = 1, b =
0.5, ` = 2, and a = 0.1.
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Figure 4.3: Figure shows the graph for ρ′(σ) (radial velocity) vs σ. Here
E = 1, q = 1, b = 0.5, ` = 2, and a = 0.1.

assume that the collision does not change the azimuthal angular momentum

but it will change the transverse velocity. Hence the energy of the particle

become Eo → E and it is given by the equation

E =
1

ρ6(ρ− 1)

[
− aρ3(ρ− 1)((`+ ρv)− 2bρ2(ρ− 1))

+

(
ρ6(ρ− 1)2(a2

(
(`+ ρv)− 2bρ2(ρ− 1)

)2
)

+ρ3(ρ− 1)
(
ρ2 + ((`+ ρv) + bρ2)2

)) 1
2
]

(4.4.4)
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We explained before as ρ → ∞ then the energy E → 1. For the unbound

motion the energy of the particle should be E ≥ 1. From (4.4.4) we get four

formulae for escape velocity of the particle

v2
esc =

1

ρ2(ρ− 1)

[
ρ(ρ− 1)(`+ bρ2)− aρ

+
√
a2ρ2 + ρ4(ρ− 1)− 2abρ4(ρ− 1)(2ρ− 1)

]
(4.4.5)

v2
esc =

1

ρ2(ρ− 1)

[
ρ(ρ− 1)(`+ bρ2)− aρ

−
√
a2ρ2 + ρ4(ρ− 1)− 2abρ4(ρ− 1)(2ρ− 1)

]
(4.4.6)

The above equations (4.4.5) and (4.4.6) correspond to E = 1. We now

discuss the behavior of the particle, when it escapes to asymptotic infinity.

For simplicity we consider the particle initially in ISCO. We can express the

parameters ` and b in term of ρo by simultaneously solving dEo
dρ

= 0 and

d2Eo
dρ2

= 0 for ` and b. But the First and the second derivative of effective

potential Eo are very complicated and we cannot find the explicit expression

for ` and b in term of ρ.

4.5 Trajectories for Escape Energy

Here we plot only the positive energy E+ of the particle. We cannot consider

the negative energy because it exist only within the static limit surface (rst =

2M). There are retrograde orbits which have negative energy in the static

limit surface. We have ignored the terms involving a2 from the metric, hence

we have only one horizon (r = 2M = rg). The ISCO are exist only outside

the event horizon, therefore we cannot consider the negative energy. For the

rotational (angular) variable

dφ

dσ
=

`

ρ2
− b+

aE
ρ3(1− ρ)

. (4.5.1)
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If ` > 0 and ` + E < b in equation (4.5.1) then the right hand side is

always negative. For ` < 0 the Lorentz force on the charged particle is

attractive. This motion is like the oscillation in the radial direction. This

motion is very similar to the bound motion of the test particle rotating around

the Schwarzschild black hole [4]. Presence of magnetic field might shift the

trajectory of the particle away from the black hole. Hence it is easy for a

particle to escape when the Lorentz force is attractive. If ` > 0 and (`+E > b)

then right hand side of equation (4.5.1) is always positive. For ` > 0 the

Lorentz force on the particle is repulsive. The repulsive Lorentz force and the

magnetic field might shift the ISCO of the particle very close to the horizon

as discussed in [12,27]. Figures 4.4− 4.11 correspond to equation (4.4.2). In

figure 4.4 the shaded region corresponds to escape energy (unbound motion)

and the unshaded region corresponds to the bound motion. The curved line

represents the minimum energy required to escape.
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Figure 4.4: Effective potential E as a function of ρ for ` = 0.3, b = 0.5 and
a = 0.1.

In figure 4.5 we have plotted effective potential (4.4.2) as a function of ρ

for ` = 10 and plot is almost like Schwarzschild effective potential as given

in [9]. Where Emax corresponds to unstable circular orbit and Emin refers to

ISCO. It can be seen from figure 4.7 that as we increase the value of mag-

netic field, local minima is shifting toward the horizon. The local minima
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Figure 4.5: Here we plot the effective potential E against ρ, for ` = 10,
b = 0.5 and a = 0.1. In this figure Emax corresponds to stable circular orbit
and Emin corresponds to unstable circular orbit.

is correspond to ISCO. The effective potential E of a particle moving in a

slowly rotating Kerr spacetime is plotted as a function of radial coordinate

ρ for different values of ` in figure 4.6. Where Emin correspond to ISCO.

Figures 4.8 and 4.9 show the behaviour of energy for both `+ and `−.

Figure 4.10 show the increase in magnetic field results in the increase in

energy. Therefore magnetic field may provide more energy to the particle to

escape. Figure 4.11 is for energy vs angular momentum `.
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Figure 4.6: The effective potential E of a particle moving in a slowly rotating
Kerr spacetime is plotted as a function of radial coordinate ρ for different
values of angular momentum `.
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Figure 4.7: The effective potential E against ρ for different values of magnetic
field.

4.6 Trajectories for Escape Velocity

For unbound motion there are four expressions of escape velocity (two posi-

tive and two negative ). Trajectories for the particle which escape to infinity

either −∞ or +∞ are given below. Figures 4.12 and 4.13 corresponds to

equations (4.4.5) and (4.4.6). In figure 4.12, the shaded region corresponds

to escape velocity of the particle and the solid curved line represents the

minimum velocity required to escape to +∞. The unshaded region is for

bound motion. In figure 4.13 the shaded region correspond to escape veloc-

ity of the particle and the solid curved line represent the minimum velocity
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Figure 4.8: Escape energy E+

against ρ, for ` = 5, b = 0.5
and a = 0.1.
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Figure 4.9: Escape energy E+

vs ρ, for ` = −5, b = 0.5 and
a = 0.1.
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Figure 4.10: Escape energy E+

against magnetic field b, for
` = 0.3, ρ = 1.5 and a = 0.1 .
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Figure 4.11: Escape energy E+

against angular momentum `,
for ρ = 1.5, b = 0.5 and a =
0.1 .

required to escape to −∞. The unshaded region is for bound motion around

the black hole. We have plotted the escape velocity vesc for different values

of magnetic field b in figure 4.14. Due to the presence of magnetic field in

the vicinity of black hole, escape velocity of the particle increases. It become

almost same to which we have for the absence of magnetic field b = 0. Figure

4.15 show the behaviour of escape velocity vesc for different values of angular

momentum `. It is almost same as we get for different values of magnetic

field B in figure 4.14.

Figures 4.16 − 4.19 correspond to equation (4.4.6) v+. Figures 4.16 and

4.17 show the trajectories for the escape velocity have for ` = 0.3 and ` =

−0.3. Figure 4.18 is for escape velocity vs magnetic field. It is strong in

the accretion disc of the black hole as compare to away from it. Therefore
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Figure 4.12: Escape velocity as a function of ρ, for ` = 0.3, b = 0.5, E = 1
and a = 0.1.
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Figure 4.13: Escape velocity as a function of ρ, for ` = 0.3, b = 0.5, E = 1
and a = 0.1.

magnetic field may provide sufficient energy to the particle to escape. Figure

4.19 we have plotted escape velocity v+ against angular momentum. Figures

4.20-4.22 correspond to equation 4.4.5 v+. Figures 4.20 and 4.21 show the

trajectories of escape velocity, for ` = 0.3 and ` = −0.3. Figure 4.22 show

that the velocity increases linearly as the magnetic field increases.

Figures 4.23-4.26 correspond equation (4.4.6) v−. Figures 4.23 and 4.24

represent the trajectories for the escape velocity of the particle for ` = 0.3
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Figure 4.14: Escape velocity vesc for different values of magnetic field b.
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Figure 4.15: Behaviour of escape velocity vesc for different values of angular
momentum `.

and ` = −0.3. Figure 4.25 shows that as the magnetic field is increases, the

escape velocity also increases. Figure 4.26 shows escape velocity as a function

of angular momentum.

Figures 4.27-4.29 correspond to escape velocity as given by equation

(4.4.5) v−. Figures 4.27 and 4.28 represent the trajectories of the parti-
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Figure 4.16: Escape velocity
v+ vs rho, for ` = 0.3, b = 0.5
and a = 0.1 .
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Figure 4.17: Escape velocity
v+ against ρ , for ` = −0.3,
b = 0.5 and a = 0.1 .
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Figure 4.18: Escape velocity
v+ vs magnetic field b, for ` =
0.3, ρ = 1.3 and a = 0.1.
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Figure 4.19: Escape velocity
v+ as a function of angular mo-
mentum `, for ρ = 1.3, b = 0.5
and a = 0.1.

cle’s escape velocity for ` = 0.3 and ` = −0.3. Figure 4.29 show the escape

velocity vs magnetic field.



Chapter 4. Motion of the Charged Particle Moving..... 58

1 2 3 4 5 6

-100

-80

-60

-40

-20

0

Ρ

v

Figure 4.20: Escape velocity
v+ vs ρ, for ` = −0.3, b = 0.5
and a = 0.1.
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Figure 4.21: Escape velocity
(v+ against ρ, for ` = 0.3,
b = 0.5 and a = 0.1.
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Figure 4.22: Plot of Escape velocity v+ against magnetic field b, for ` = −0.3,
ρ = 1.3 and a = 0.1.
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Figure 4.23: Escape velocity
v− against ρ, for ` = +0.3,
b = 0.5 and a = 0.1.
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Figure 4.24: Escape velocity
v− vs ρ, for ` = −0.3, b = 0.5
and a = 0.1.
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Figure 4.25: Escape velocity
v− as a function of magnetic
field b, for ` = 0.3, ρ = 1.3 and
a = 0.1 .
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Figure 4.26: Escape velocity
v− vs angular momentum `, for
ρ = 1.3, b = 0.5 and a = 0.1 .
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Figure 4.27: Plot of escape ve-
locity v− as a function of ρ, for
` = 0.3, b = 0.5 and a = 0.1.
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Figure 4.28: Escape velocity
v− against ρ, for ` = −0.3,
b = 0.5 and a = 0.1.

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

0.4

0.6

0.8

1.0

1.2

1.4

1.6

b

v

Figure 4.29: Escape velocity v+ as function of magnetic field b, for ` = −0.3,
ρ = 1.3 and a = 0.1.
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Conclusion

We have studied the dynamics of a neutral and a charged particle around

the slowly rotating Kerr black hole which is immersed in a magnetic field.

Therefore the particle is under the influence of both gravitational and electro-

magnetic forces. We have obtained equations of motion by using Lagrangian

formalism. We have also calculated the expression for magnetic field present

in the vicinity of slowly rotating Kerr black hole. We have calculated the

minimum energy for a particle to escape from ISCO. With zero spin, our

results reduced to the case of Schwarzschild’s black hole [11]. We have also

discussed the behavior of energy and escape velocity with angular momen-

tum in the presence of magnetic field. Negative energy is also possible for the

Kerr metric inside the static limit. Here we have considered the slowly ro-

tating case, therefore we have only one horizon and did not have ergosphere.

It is found that event horizon is the same for both Schwarzschild and slowly

rotating Kerr black hole.

It is shown by figures under what conditions particle escape from the black

hole vicinity or its motion remain bound. It is presented that for large value of

angular momentum, effective potential behaviour is much like Schwarzschild

effective potential[9]. It is concluded that magnetic field largely effects the

motion of the particle in the vicinity of the black hole and it decreases far

away from it. It is found that as we increase the value of magnetic field, local

60
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minima of effective potential is shifting toward the horizon.

Particle can escape to +∞ or to −∞ depending on its energy. Escape

velocity vesc for different value of magnetic field b is plotted. It is found

that due to the presence of magnetic field in the vicinity of black hole escape

velocity of the particle increases. It become almost same to which we have

for the absence of magnetic field b = 0. Behaviour of escape velocity vesc for

different value of angular momentum ` is almost same as we get for different

value of magnetic field b.
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