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Abstract

We have reviewed atomic scattering from cavity field and its application to entangle

distant cavities. In particular we are studying the entanglement generation between

atomic momenta and photon number state of the cavity. This is then extended to

employ entanglement swapping and generate entanglement between distant cavities.

The principle of the model is based upon the scattering of atoms and fulfilling the

conditions of Bragg scattering. This leads to the entanglement generation between

atomic momenta of atoms and the cavities if cavities are in the superposition state

of 0 and 1 photons. Further, the Einstein-Podolsky-Rosen(EPR) pairs are made by

passing these atomic momenta through the beam splitters where the cavity fields act

as beam splitter for atomic momenta states. The beam splitters acts as EPR state

analyzer which enables entanglement swapping and entangles the distant cavities.
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Chapter 1

Introduction

Quantum theory is the theoretical basis of modern physics and the nature and be-

havior of matter and energy on the atomic and subatomic level is explained by

quantum theory. Quantum theory is based on the principle that matter and energy

have dual nature i.e, they have both light nature and wave nature. Quantum theory

explains many phenomena like black-body radiation, photoelectric effect and un-

certainty principle which are unexplained by classical mechanics. Quantum theory

emerged from the idea of Max Planck which assumed that the light is made up units

of energy. Then, Albert Einstein gave the idea that energy in light waves is made

up of energy packets which are called quanta.

Quantum teleportation is an application of quantum mechanics, which transfers the

quantum state from one point to another without sending the original state. This

becomes possible due to the entanglement. In quantum information entanglement

plays a vital role. Entanglement is a correlation between two or more systems which

is non-classical. Quantum entanglement has many applications in the field of quan-

tum computation and quantum information such as teleportation, quantum dense

coding and cryptography. Quantum computers are also based on the idea of entan-

glement. Quantum entanglement is used in entanglement swapping. Entanglement

swapping is a procedure of entangling systems which have never interacted. Entan-

glement swapping is already studied but it is not applied to entangle the atoms at

large distances.

The interaction of an atom and field can be studied in different ways in which a two
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level atom interacts with the field. Cavity QED techniques are used for the interac-

tion of the atom and field. In particular atomic momenta can be used as a tool to

entangle distant cavities by entanglement swapping. In Sec. 1.1, we will tell about

the qubit and in Sec. 1.2, we will tell about the quantum states. Entanglement is

being discussed in Sec. 1.3. Entanglement swapping is discussed in Sec. 1.4 and

entanglement swapping experiment with photons is explained in Sec. 1.5 and with

ions is discussed in Sec. 1.6. Then the atom and photon interferometry is explained

in Sec 1.7 and Sec. 1.8 respectively.

1.1 Qubit

In classical mechanics, the basic unit of information is called bit. It exits in the

form of ’0’ or ’1’, which tells either the state is ’true’ or ’false’. While in quantum

mechanics it is called qubit. It is in the superposition state of ’0’ and ’1’ while in

classical mechanics bit is not in superposition state.

The superposition state of bit is written as

|ψ〉 = α|0〉+ β|1〉,

where, α and β are the probabilities. The sum of the probabilities is equal to 1.

|α|2 + |β|2 = 1.

1.2 Quantum State

Quantum state is the superposition of all the states in Hilbert space. It can be

either pure or mixed. Quantum state is a vector in Hilbert space which contains all

the information about the system. State is expressed in bra-ket notation which was

given by Dirac. State is written as |ψ〉 the ket notation and 〈ψ| in bra notation.

Here ψ represents the state. The state of a system is usually expressed as the sum

of its probability amplitudes given as:

|ψ〉 = ΣnCn|ψ〉,

where, Cn is the probability amplitude.
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1.3 Entanglement

Entanglement is an important quantum mechanical resource which plays an impor-

tant role in the field of quantum computation and quantum information. Entan-

glement was first studied by Schrodinger. Further it was questioned by Einstein,

Podolsky and Rosen. Entanglement is created when two particles interact in such a

way that by doing measurement on one particle we can get the information about

the other particle. If the measurement on one particle affects the state of the other,

then the particles are said to be entangled. But Einstein said that this interaction

is not possible as it is non-local. Non-locality means that the effect of a quantum

system should be at a distance. Einstein called it a ”spooky action at a distance”.

An entangled state can never be described as a separable state or in the form of

a tensor product. Entangled state can be fully defined only by considering all its

particles. One or two particles cannot describe the state fully.

1.3.1 Mathematical Definition for Pure States

A pure state is a coherent superposition of two or more states. A state |ψ〉k is pure

if its density matrix ρ has following properties:

• It is hermitian, that is, ρ† = ρ.

• Its trace is equal to one. Trace( ρ2) = 1.

• ρ2 = ρ. [1]

For pure states, if |ψ〉A and |ψ〉B are states of subsystem of a system |ψ〉AB then

|ψ〉AB is an entangled state of system if its states cannot be written as tensor product

of state of two sub-systems

|ψ〉AB 6= |ψ〉A ⊗ |ψ〉B,

The states |ψ〉A and |ψ〉B are thus non-separable and are called entangled.
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1.3.2 Mathematical Definition for Mixed States

For mixed states, the density matrix ρAB of a composite system is separable if and

only if

ρAB = Σk pkρA ⊗ ρB.

For the sets of density matrices {ρA} and {ρB} and for probabilities Σk pk = 1 , ∀k
, Σk pk ≥ 0 . The separable state is also known as unentangled [2].

1.4 Entanglement Swapping

Entanglement swapping is a technique which is very closely related to the telepor-

tation. Entanglement swapping is also called teleporting entanglement. The idea of

entanglement swapping was given by Zukowski, Zeilinger, Horne and Ekert [3].

Before entanglement swapping, it was thought that the two particles can only get

entangled if they come from the same source or they must have interacted in the

past to get entangled. But after entanglement swapping technique, it was discovered

that the particles can get entangled even if they did not have any interaction in the

past.

Alice and Bob both have entangled pairs. They send their particles to Charlie. Then

Charlie perform BSM(Bell state measurement) on the two particles which entangles

the Alice and Bob particles.

We can describe entanglement swapping in such a way, that Alice and Bob share an

entangled pair of particles and Charlie and David. Bob teleports his pair of particle

to Charlie, so, as a result of teleportation, David’s particle is in the same state in

which Alice’s was at the beginning. Now, Alice and David’s particles get entangled

without any interaction [3].

Entanglement swapping is done experimentally in the past. Many experiments have

done on entanglement swapping of which one of them is the entanglement swapping

of photons that have never interacted [4].
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1.5 Entanglement Swapping of Photons that Have

Never Interacted in the Past

To obtain entanglement, the state of two particles is projected on an entangled state.

For this projective measurement we do not require a direct interaction between the

two particles. When the two pair of particles will get entangled, then by doing a

EPR state measurement on partner particles will collapse the other partner particles

into an entangled state.

For the entanglement swapping, we consider two EPR sources, each of them emit-

ting a pair of entangled particles simultaneously. We have assumed that there are

polarized entangled photons in the state.

Figure 1.1: Principle of entanglement swapping

In Fig. 1.1 two EPR sources are shown that produce two entangled pair of photons

5



which are pair 1, 2 and 3, 4. One of the photon of each of the pair is projected

to Bell-state measurement. As a result of this, the other two photons 3 and 4 are

projected into an entangled state.

|ψ〉1234 =
1

2
(|H〉1|V 〉2 − |V 〉1|H〉2)× (|H〉3|V 〉4 − |V 〉3|H〉4),

Here, |H〉 and |V 〉 indicates the horizontal and vertical polarization of photons. The

total state describes the entanglement of photons 1 and 2 (3 and 4) in an antisym-

metric polarization. Although, there is no entanglement between any photons of 1

and 2 with any photon of 3 and 4, but by performing a joint EPR state measurement

on the photons 2 and 3, the photon 2 and photon 3 are projected on one of the the

four EPR states, which form a complete basis for combined photons state 2 and 3.

|ψ±〉23 =
1√
2

(|H〉2|V 〉3 ± |V 〉2|H〉3),

|φ±〉23 =
1√
2

(|H〉2|H〉3 ± |V 〉2|V 〉3),

This measurement projects photons 1 and 4 onto a Bell state which is a different

Bell state from the photons 2 and 3. For the initial state of four photons, it has seen

that the photons 1 and 4 are collapsed to the state identical to the state of photons

1 and 2. So the photon state will be:

|ψ〉1234 =
1

2
(|ψ+〉14|ψ+〉23 + |ψ−〉14|ψ−〉23 + |φ+〉14|φ+〉23 + |φ−〉14|φ−〉23),

In all the cases the emerging photons 1 and 4 are entangled although they have

never interacted in the past [4]. The state of photons 1 and 2 is destroyed as they

are measured.

1.6 Long Distance Entanglement with Ions and

Photons

For entanglement, photons are excellent in a way that they preserve their coherence

over large distances and they propagate very fast. For entanglement swapping and
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purification, it is of our interest that we have systems which can be stored and

between these systems we can realize the quantum gates easily. The systems we are

using should have the coherence time larger than the propagation time of photons

over larger distances. So to fulfill these requirements ions are the best choice.

In this scheme, by doing the joint detection on two photons the distant trapped ions

are entangled, each photon comes from an ion. A pair of ions is shared between

Alice and Bob. Entanglement is created between this pair of ions. Alice and Bob

both have an ion which have λ energy levels. The excited state |e〉 can decay into

two meta stable states |x1〉 and |x2〉 and in this decay it emits a photon which have

two orthogonal polarization modes d1 and d2. For simplicity we have assumed that

the probability of transitions from e→ x1 and e→ x2 are same.

Both ions are excited to the state |e〉A |e〉B. A photon is emitted by each ion and

the state becomes:

1

2

[
|x1〉Aa†1 + |x2〉Aa†2]

[
|x1〉Bb†1 + |x2〉Bb†2]|0〉, . (a)

which shows that each ions is maximally entangled with the emitted photon by it-

self. Photons from A and B propagate to intermediate location where partial EPR

state analysis is performed as shown in Fig. 3.1.

When the two photons will be detected in |ψ±〉 = 1√
2
(a†1b

†
2 ± a†2b

†
1)|0〉 state then

the two distant ions will also be projected to the state |ψ±〉 corresponding to
1√
2
(|s1〉A|s2〉B ± |s2〉A|s1〉B). While the remaining |φ±〉 cannot be distinguished [5].

1.7 Atom Interferometry

An atom interferometer is based on exploiting the wave character of atoms. To

observe the interference, the atomic beam is subjected to a periodic scattering re-

alized with massive gratings or optical lattices. Depending on the relative phase

between the different paths, the atoms interfere constructively or destructively, and

an interference pattern can be observed on a distant screen. The atom continues

on either of two spatially separate paths, the interferometer arms. When the paths

are recombined, the probability that the atom is found depends upon the phase
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difference between them, which determines whether the two waves will add or can-

cel. This phase is shifted by the atoms coupling to electromagnetic fields, gravity,

inertial forces, and other influences.

Interferometers using atoms rather than light can measure acceleration and rota-

tion to high precision. Because atoms are slower than light, atom interferometers

have the potential to reach greater inertial sensitivity than optical interferometers.

The atoms inside an atom interferometer are controlled by beam splitters and mir-

rors. The first beam splitter that an incoming matter wave encounters separates

the wave into two different paths. The accumulation of phase along the two paths

leads to interference at the last beam splitter, whose two output channels produce

complementary probability amplitudes for detecting atoms.

1.8 Photon Interferometry

In photon interferometers, we use a light source that strikes the beam-splitter BS1

and after passing through the BS1 it diverts into two parts as shown in Fig. 1.2.

Beam gets reflected and other get transmitted through the beam-splitter. Reflected

beam is named as R and transmitted one is named as T. Both are then projected

to the mirrors. After passing through the mirrors they are deflected to the second

beam-splitter BS2. After which, one ray is again transmitted and other is reflected.

So, we get TR+RT at detector D1 and TT+RR at detector D2. As shown in Fig.

1.2. This procedure tells us about the particle nature of light.
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Figure 1.2: Photon Interferometer

1.9 Atom-Field Interaction

Atom can interact with the field in many ways. It can be scattered or it can be

absorbed and emitted from the field in Rabi cycles. The atom can get scattered in

either Bragg regime or Raman-Nath regime.

In Bragg regime, atoms are incident in ground state at some angle to the standing

wave cavity field. Here the momentum component along the field is considerable.

The injection rate is taken so small that only one atom can enter the cavity at one

time. Then the atom passes through the field and get absorbed and emitted in Rabi

cycles. Rabi cycle is a cycle in which when a two-level atom is illuminated by a

coherent beam of light, then it absorbs photon and emits them during stimulated

emission. Energy is conserved which allows only two possible directions for the

scattering atom. Through this process the momentum of the atom gets kick of 2~k
or 0~k.

In Raman-Nath regime, atoms enter the field at almost normal to the field. Here
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the momentum component along the field is very small as it becomes ignorable.

So the momentum transfer is also very small. It is an inelastic scattering in which

kinetic energy is not conserved. This regime can be achieved when we take very

small interaction time. When the interaction time is very small then due to energy

time uncertainty principle ∆E∆t ≥ ~/2, energy becomes very large and atom can

get scatter in many possible directions.

Entanglement generation is very important step for entanglement swapping between

distant cavities. For entanglement generation between the atoms and cavities, the

cavities are taken in Bragg regime. When atoms pass through the cavities they get

scattered in two possible directions. These two scattered atoms from each cavity,

pass through the beam splitters and then BSM entangles the atoms and cavities

by their atomic momenta. Here the beam splitter used is also a cavity which is in

superposition state of zero and one photon.

1.10 Thesis Outline

In this thesis, we give a review on scattering of atoms from cavity field and how this

process can be used to entangle distant cavities using entanglement swapping.

In Chapter 2, we describe the full mathematical and physical description of our

system. We explain our system that how it is being used to entangle the cavities.

We explain the Bragg regime and conditions to achieve it. Then we explain the

Bragg scattering in full detail and then development of Hamiltonian. From this

Hamiltonian we develop the equations of motion for solving the system. Then we

solve them to obtain the solution of these equations.

In chapter 3, we explain the entanglement generation between the atoms to their

atomic momenta by using the cavities in Bragg regime. Then we explain the entan-

glement of these atoms to the cavities. Then by doing the Bell-state measurement

we explain the entanglement of two distant cavities. After that, the detectors detect

the state of the atom.

In chapter 4, we conclude our thesis.
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Chapter 2

Fundamental Process of Atomic

Scattering from Cavity Field

In this chapter, we tell about the atom-field interaction from the cavity field. We

send atoms with some initial momentum |P0〉 in the cavity. The variation in the

momentum of the atoms after passing through the cavity are studied. Further, these

atomic momenta are used to entangle the cavities.

In Sec. 2.1, we explain the model used for the entangling of cavities and its physical

description. In Sec. 2.2, we tell the requirements to meet the conditions of Bragg

regime. In Sec. 2.3, we explain the basic phenomenon occurring inside the cavity.

In Sec. 2.4, we explain the Bragg scattering in detail and its types.

2.1 Model

We have two cavities in which, we inject a beam of two level atom such that there

is only one atom in each cavity at a time by keeping the injection rate very small.

We keep the atoms at very large detuning which means that the frequency of the

field is kept much larger than the transition frequency. We take one-dimensional

quantized field for simplicity. We inject the atom at some angle to the cavity with

some initial momentum. We take the component of momentum along the cavity to

be smaller than the perpendicular component of the cavity. When atom interacts
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with the optical field the longitudinal component gets a shift and get scattered at

different angles, keeping the energy and momentum conserved.

By energy conservation, we achieve the Bragg regime in which an atom gets deflected

in only two possible directions. The interaction of these two atoms from the two

cavities entangles the atoms and hence, their momentums are entangled. Then, we

pass these atoms through the beam splitters to detect them.

Figure 2.1: Suggested Experimental Setup: Highly detuned atomic beam is scattered

by a quantized cavity field by εx at various angles. The momentum component P0

is very small compared to the normal component Pz.
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2.2 Requirements

Our purpose is to entangle distant cavities by taking the cavities in Bragg regime,

to achieve Bragg Regime and to entangle only one atom at a time we take following

measures.

(i) The atoms are taken in initially ground state so that when an atom undergoes

even number of oscillations it deposit no photon in the field. Thus the photon

numbers in the field remains conserved.

(ii) Atom must leave the cavity in ground state, thus taking away no photons with

it. This is achieved by emission of photon followed by absorption of photon.

(iii) Emission must not be spontaneous as it leads to emission of photon in arbitrary

direction.

We keep the field frequency much larger than the transition frequency. As a result,

atoms experience it as large detuning, such that

∆2 � γ2 + g2,

∆ = ν−ω denotes the detuning, ν is the field frequency, ω is the transition frequency

of the atom, γ is the spontaneous emission decay rate and g is the Rabi frequency.

Rabi frequency tells us about the oscillation of atoms between two levels. It also

tells the atomic population fluctuation between the levels of the field.

gm,n =

−−→
dm,n.

−→
E0

~
,

Here, dm,n is the dipole moment of transition from initial state m to final state n

and
−→
E0 = εE0 is the vector electric field amplitude including the polarization.
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Figure 2.2: Energy Level Diagram: |n〉 is the excited level and |m〉 is the ground

level. ∆ is the detuning between two levels.

2.3 Basic Phenomenon

When an atom passes through the cavity it interacts with the optical field, and

during interaction it emits and absorbs photons. Whenever a photon of frequency

ν = ck, where c is the velocity of light and k is the wave number k = 2π/λ, is

absorbed or emitted a transfer of recoil momentum ∆P = ~k takes place between

atom and field. As we have taken the normal component of momentum of the atom

to be very large so it will be treated classically and we will take the momentum

component along the cavity in quantum treatment.

The profile of the standing wave cavity field is given by

ε0 =
1

2
ε(eikx + e−ikx). (2.3.1)
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When the atom enters the cavity it experiences standing waves of field there. Waves

are moving opposite to each other with a phase difference of 180o. If atom absorbs

the photon in its own direction and gets a transition from lower to upper level then

to conserve momentum it gets a recoil momentum of +~k. Then by emitting a

photon in either direction it transits from upper to lower level. If it is stimulated to

emit the photon in its own direction then it gets a recoil momentum of -~k. Then

there is no momentum transfer and the net momentum in this case will be ∆P = 0

i.e the photon is restored in the cavity. If the atom is stimulated to emit the photon

in opposite direction then it will get a recoil momentum of +~k and in this case

there will be a momentum kick of ~k. Thus when atom returns to ground state the

net momentum will be ∆P = 2~k. This is the greatest possible momentum kick in

one Rabi cycle which is due to the counter propagating waves.

As we know that the recoil momentum is transferred in the form of +2~k, thus the

momentum of exiting atom from the cavity will be

Pl = P0 + l~k, (2.3.2)

where, l is an even integer.

Thus atoms can scatter in any possible momentum component spaced by momenta

2~k. The strength of recoil force on an atom, divides the atomic scattering into two

regimes; Raman-Nath Regime and Bragg Regime. Our interest is in Bragg regime.

Bragg Regime is possible when the recoil energy is greater than the interaction en-

ergy of an atom between its energy levels.

2.4 Bragg Scattering

Bragg scattering of x-rays from the crystal planes was shown by W . H . Bragg and

W . L . Bragg in 1912, for which they got Noble prize in 1915. Bragg scattering

from neutrons was first discovered in 1946 from where the neutron interferometry

got started [6].

15



2.4.1 Optical Bragg Scattering

Scattering of the atom through standing wave cavity field in Bragg regime can be

best understood if we consider the optical Bragg scattering.

In optical Bragg scattering, the light waves incident on a crystal plane, scatter from

the crystal planes of atoms. This means the crystal planes are matter gratings from

which the light waves are reflecting. This Bragg scattering requires two conditions

to be fulfilled.

(i) Energy should be conserved during interaction. This requires that the light waves

should reflect at the same angle at which they are incident on the crystal planes.

(ii) Reflected waves from the adjacent planes interfere constructively only if the

incident angle satisfies the condition

2d cos θ = nλ,

where, θ is the angle that the incident wave makes with normal to the lattice plane,

d is the lattice spacing and λ is the wavelength of the incident light. As shown in

figure, only at these values of θ, the phase difference between two reflected light

waves is equal to an integral multiple of wavelength and Bragg’s reflected waves

superimpose constructively. Here n is the order of Bragg scattering which tells us

the number of wavelengths that fit in the distance of 2dcosθ.
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Figure 2.3: Optical Bragg Scattering: (a) Scattering of plane waves from lattice

sites.

Figure 2.4: (b) Optical Bragg Scattering
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2.4.2 Atomic Bragg Scattering

Bragg scattering of atoms from standing light waves was first discovered by Martin

in 1988. In case of atomic Bragg scattering from the standing wave cavity field, wave

particle duality is the guiding principle. Previously we discussed the scattering of

light waves from the crystal planes, now we will discuss the atomic Bragg scattering,

by considering the scattering of matter de-Broglie matter waves from an optical

lattice, which has the lattice spacing or periodicity as

dlight =
λlight

2
, (2.4.1)

The first condition of conservation of energy of Bragg reflection implies that

P 2
in

2M
=
P 2

out

2M
, (2.4.2)

l(l + l0)

2M
~2k2 = 0, (2.4.3)

either l = 0, or l = -l0

Thus either the atom goes undeflected or deflected such that the momentum com-

ponent along the direction is reversed i.e, it is deflected at the same angle at which

it was incident.

Incident angle satisfies the Bragg condition for constructive interference as

2dlight cos θ = nλdB,

where, n is the order of Bragg scattering. This Bragg condition allows momentum

transfer only for discrete initial values of atomic momenta i.e,

P0 =
l0
2
~k, (2.4.4)

where, l0 is an even integer and l0 =2, 4 and 6 etc corresponds to first, second and

third order Bragg scattering respectively. It is clear, that by changing the angle and

longitudinal component of momentum, we can change the order of Bragg scattering.

We are using first order Bragg scattering for simplicity.
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Figure 2.5: Scattering in Bragg Regime: Conservation of energy allows only two

possible directions of deflection. Either the momentum component goes un deflected

as P0 or deflects at −P0

2.5 Development of Hamiltonian

In order to calculate the Hamiltonian we take both, the field and probing atom,

quantum mechanically. The atom is considered to be of mass M and is completely

described by its centre of mass momentum P and position r and its internal states.

The energy of free quantized field in terms of creation operator a† and annihilation

operator a is given as

HF = ~ν(a†a+
1

2
). (2.5.1)

The internal states of two-level atom are labelled as, the ground state |m〉 with eigen

energy Em and the excited state as |n〉 with eigen energy En.
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The atomic Hamiltonian HA is given by

HA = En|n〉 〈n|+ Em|m〉 〈m|,

It can be written as,

HA =
1

2
(En − Em)(|n〉 〈n| − |m〉 〈m|) +

1

2
(En + Em)(|n〉 〈n|+ |m〉 〈m|). (2.5.2)

Since we are considering two level atom, we can treat its internal states in close

analogy with spin 1/2 particles. Therefore, we adopt the pauli matrices formalism

and introduce operators σz, σ+ and σ− as

σz = |n〉 〈n| − |m〉 〈m|,

σ+ = |n〉 〈m|,

σ− = |m〉 〈n|,

where, σ+, σ− act as atomic raising and lowering operators, respectively.

Now, using (En − Em) = ~ω and using the above defined operator σz, we get

HA =
1

2
~ωσz, (2.5.3)

where, we have taken |n〉 〈n| + |m〉 〈m| = 1 and (En + Em) is constant additive

term.

Atom Field Interaction

When an atom of dipole moment -exe interacts with an electric field E, during

passage through the cavity then the interaction Hamiltonian will be:

Hi = −exe.E,

where, xe is the polarization vector of electron having charge e. As we have assumed

that the electric field is y−polarized and it is propagating in x-direction, so electric

field is given by

E = ε(x+ xe) cos kx(a+ a†)ex,
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where, ε is the amplitude of the field, cos kx gives us the profile of the field and ex

is the unit vector along x-axis.

Since we are considering a point like particle, therefore we assume that the profile

of the field remains same throughout the dimension of the atom.

Thus using dipole approximation we can write interaction Hamiltonian as

Hi = −exeε(x) cos kx(a+ a†).

By using the identity |n〉 〈n|+ |m〉 〈m| = 1, we get

Hi = −e(|n〉 〈n|+ |m〉 〈m|)re(|n〉 〈n|+ |m〉 〈m|)ε(r) cos kx(a+ a†).

Hi = −(℘nmσ+ + ℘nmσ−)ε(r) cos kx(a+ a†),

where, ℘nm = ℘nm∗ = e〈n|re|m〉 is the matrix element of the electric dipole moment.

We define Rabi frequency as g = −℘nmε/~, and we get

Hi = ~ cos kx(gσ+ + g ∗ σ−)(a+ a†).

Now we can apply the rotating wave approximation by dropping the terms in which

energy is not conserved. These terms are a†σ+ and aσ− where the first term shows

that the gain of energy while emitting a photon and the 2nd term shows the loss

of energy while absorbing a photon which is not feasible. So Hi takes the following

form

Hi = ~ cos kx(gσ+a+ g ∗ a†σ−). (2.5.4)

During this interaction, atom absorbs a photon and goes to a higher state (σ+a)

term and then emits a photon and returns to lower state (a†σ−) term. This means

that atom undergoes Rabi oscillation with frequency g.

2.6 Total Hamiltonian

We can express the complete Hamiltonian by adding field Hamiltonian, atomic

Hamiltonian and interaction Hamiltonian, which is given by

H =
P 2

2M
+ ~νa†a+

1

2
~ωσz + ~ cos kx(gσ+a+ g ∗ a†σ−), (2.6.1)
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here, the first term is added on account for the centre of mass momentum of the

atom.

As we have taken the component normal to the cavity Py to be very large, therefore

it will be treated classically and the component along the cavity will be treated

quantum mechanically. So, we can replace P 2 by P 2
x and the total Hamiltonian

becomes,

H =
P 2
x

2M
+ ~νa†a+ ~ωσz + ~ cos kx(gσ+a+ g ∗ a†σ−). (2.6.2)

2.7 Interaction Picture Hamiltonian

Total Hamiltonian can be converted to interaction picture Hamiltonian by using the

following transformation

V = exp(ι̇H0t/~)H1exp(ι̇H0t/~), (2.7.1)

where, H0 is the unperturbed and H1 is the interaction part of the Hamiltonian, H.

We can separate H0 and H1 from the total Hamiltonian as

H0 = ~νa†a+
1

2
~ωσz. (2.7.2)

H1 =
P 2
x

2M
+ ~ cos kx(gσ+a+ g ∗ a†σ−). (2.7.3)

Thus interaction picture Hamiltonian is given as,

H1 =
P 2
x

2M
+ (

~g
2
eι̇∆tσ+a+

~g∗

2
e−ι̇∆ta†σ−) cos kx. (2.7.4)

2.8 Equations of Motion

In order to calculate the momentum distribution of the exiting atoms we require

equations of motion of the probability amplitudes of atoms in momentum space.

We can take atom-field wave function as

|ψ(t)〉 =
∑
j

∑
l

(Cn,j
Pl
|n, j, Pl〉+ Cm,j

Pl
|m, j, Pl〉), (2.8.1)
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here, Ci,j
Pl

is the probability amplitude of the atom in state i = n,m with probabil-

ity amplitude Pl and cavity is having j photons in it. We have considered discrete

momentum space.

We can develop the rate equations for the probability amplitude by using the

Schrodinger equation

ι̇~
∂|ψ(t)〉
∂t

= V |ψ(t)〉. (2.8.2)

Under consideration of large detuning, we assume that atom does not exist in excited

state. Due to this reason we take the temporal and spatial change in probability

amplitude of excited state to be zero. This is known as secular approximation

or adiabatic approximation. This implies that

P 2
xC

n,j
Pl

= −~2
∂2Cn,j

Pl

∂x2
= 0, (2.8.3)

and

∂Cn,j
Pl

∂t
= 0. (2.8.4)

As, we know 〈n|m〉 = 0 and 〈m|n〉 = 0 and from equation(2.8.2), we get equations

of motion for probability amplitude as:

ι̇~
∂C

(n,j)
Pl

(t)

∂t
=

~g∗
2

√
j + 1e−ι̇4t

(
C

(m,j+1)
Pl+~k (t) + C

(m,j+1)
Pl−~k (t)), (2.8.5)

ι̇~
∂C

(m,j)
Pl

(t)

∂t
=

~g
2

√
je−ι̇4t

(
C

(n,j−1)
Pl+~k (t) + C

(n,j−1)
Pl−~k (t) +

P 2
l

2M
C

(m,j)
Pl

(t)), (2.8.6)

Now, we take

C0(t) = eι̇4tCn,j
Pl

(t), (2.8.7)

and using secular approximation on equation(2.8.5) we get,

ι̇~
∂C0(t)

∂t
=

~g∗
2

√
j + 1

(
C

(m,j+1)
Pl+~k

(t) + C
(m,j+1)
Pl−~k

(t))− ~4C0(t), (2.8.8)

We get,

C0(t) = − g∗
24
√
j + 1

(
C

(m,j+1)
Pl+~k

(t) + C
(m,j+1)
Pl−~k

(t)). (2.8.9)
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Compare the value of C0 to equation(2.8.7), and we get the equation for C
(n,j)
Pl

(t):

Cn,j
Pl

(t)eι̇4t = − g∗
24
√
j + 1

(
C

(m,j+1)
Pl+~k

(t) + C
(m,j+1)
Pl−~k

(t)). (2.8.10)

Now, replace j −→ j − 1 and Pl −→ Pl+~k,

Cn,j−1
Pl+~k

(t)eι̇4t = − g∗
24
√
j
(
C

(m,j)
Pl+2~k(t) + C

(m,j)
Pl

(t)), (2.8.11)

and j −→ j − 1 and Pl −→ Pl−~k,

Cn,j−1
Pl−~k

(t)eι̇4t = − g∗
24
√
j
(
C

(m,j)
Pl

(t) + C
(m,j)
Pl−2~k

(t)). (2.8.12)

Now, put equation(2.8.11) and (2.8.12) in equation(2.8.6),

ι̇~
∂C

(m,j)
Pl

(t)

∂t
= −~|g|2j

24
(C(m,j)

Pl+2~k
(t) + C

(m,j)
Pl−2~k

(t)

2
+C

(m,j)
Pl

(t))+
P 2
l

2M
C

(m,j)
Pl

(t). (2.8.13)

Re-arranging,

ι̇~
∂C

(m,j)
Pl

(t)

∂t
= (−~|g|2j

24
+
P 2
l

2M
)C

(m,j)
Pl

(t)− ~|g|2j
44

(
C

(m,j)
Pl+2~k

(t) +C
(m,j)
Pl−2~k

(t)). (2.8.14)

We can ignore the first term which is constant additive term and putting the value

of Pl from equation(2.3.2), we get

ι̇~
∂C

(m,j)
Pl

(t)

∂t
=

~k
2M

l(l + l0)C
(m,j)
Pl

(t)− ~|g|2j
44

(
C

(m,j)
Pl+2~k

(t) + C
(m,j)
Pl−2~k

(t)). (2.8.15)

Now, we can see that the atom is oscillating due to large detuning having Rabi

frequency |g|
2j

2∆
, so, effective Hamiltonian can be written as:

Heff = −~|g|2

2∆
jσ−σ+(

e−ι̇2kx + e+˙̇ι2kx

2
+ 1) +

P 2
x

2M
, (2.8.16)

Heff = −~|g|2

2∆
jσ−σ+(cos 2kx+ 1) +

P 2
x

2M
. (2.8.17)

Now, we need to derive the coupled equations for ±l0. So for this purpose, we take

values of l0 from l = 0 to l = −l0 and get coupled equations:

ι̇
∂Cm,j

P0

∂t
= −|g|

2j

4∆

(
Cm,j
P2

+ Cm,j
P−2

), (2.8.18)
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ι̇
∂Cm,j

P−2

∂t
=

~k2

2M
(−2)(−2 + l0)Cm,j

P−2
− |g|

2j

4∆
(Cm,j

P0
+ Cm,j

P−4
), (2.8.19)

ι̇
∂Cm,j

P−4

∂t
=

~k2

2M
(−4)(−4 + l0)Cm,j

P−4
− |g|

2j

4∆
(Cm,j

P−2
+ Cm,j

P−6
), (2.8.20)

...

ι̇
∂Cm,j

P−l0+4

∂t
=

~k2

2M
(4)(−l0 + 4)Cm,j

P−l0+4
− |g|

2j

4∆
(Cm,j

P−l0+6
+ Cm,j

P−l0+4
), (2.8.21)

ι̇
∂Cm,j

P−l0+2

∂t
=

~k2

2M
(2)(−l0 + 2)Cm,j

P−l0+2
− |g|

2j

4∆
(Cm,j

P−l0+4
+ Cm,j

P−l0
), (2.8.22)

ι̇
∂Cm,j

P−l0

∂t
= −|g|

2j

4∆
(Cm,j

P−l0+2
+ Cm,j

P−l0−2
), (2.8.23)

here, diagonal terms vanish at l = 0 and l = −2l0. The non-diagonal terms dominate

in the limit when ~k2
2M

is much much larger than |g|2j
4∆

. We see that probability is

oscillating between two terms l = 0 and l = −l0 and outside this probability range,

probability is very low. So, we can ignore all the underlined terms. Keeping only

the lowest coefficients of |g|
2j

4∆
, and back substituting the values we get the coupled

equations for l0 > 1 :

ι̇
∂Cm,j

P0

∂t
= − (|g|2j/4∆)

~k2
2M

(l0 − 2)(2)
Cm,j
P0

+
(−1)l0/2(|g|2j/4∆)l0/2

(~k2
2M

)l0/2−1[(l0 − 2)(l0 − 4)...4.2]2
Cm,j
P−l0

, (2.8.24)

ι̇
∂Cm,j

P−l0

∂t
= − (|g|2j/4∆)

~k2
2M

(l0 − 2)(2)
Cm,j
P−l0

+
(−1)l0/2(|g|2j/4∆)l0/2

(~k2
2M

)l0/2−1[(l0 − 2)(l0 − 4)...4.2]2
Cm,j
P0
, (2.8.25)

These two equations are:

ι̇
∂Cm,j

P0

∂t
= ACm,j

P0
− 1

2
BCm,j

P−l0
, (2.8.26)

and

ι̇
∂Cm,j

P−l0

∂t
= ACm,j

P−l0
− 1

2
BCm,j

P0
, (2.8.27)

These equations are decoupled by Laplace transformation by re-arranging above

equations, we get:

ι̇Ċm,j
P0

+ ι̇ACm,j
P0
− ι̇

2
BCm,j

P−l0
= 0, (2.8.28)
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ι̇Ċm,j
P−l0

+ ι̇ACm,j
P−l0
− ι̇

2
BCm,j

P0
= 0. (2.8.29)

Now applying Laplace transformation on equation(2.8.28) and equation(2.8.29)

sC̄P0(s)− CP0(0) + ι̇AC̄P0(s)−
ι̇

2
BC̄P−l0

(s) = 0,

ι̇C̄P−l0
(s)− CP−l0

(0) + ι̇AC̄P−l0
(s)− ι̇

2
BC̄P0(s) = 0

Re-arranging above equations, we get

C̄P0(s) =
ι̇B

2

1

s+ ι̇A
C̄P−l0

(s) +
1

s+ ι̇A
CP0(0), (2.8.30)

C̄P−l0
(s) =

ι̇B

2

1

s+ ι̇A
C̄P0(s) +

1

s+ ι̇A
CP−l0

(0). (2.8.31)

Now, put the value of C̄P−l0
(s) from equation(2.8.31) in equation(2.8.30) and re-

arranging equation we get:

C̄P0(s) =
ι̇B

2

1

(s+ ι̇A)2 +B2/4
CP−l0

(0) +
s+ ι̇A

(s+ ι̇A)2 +B2/4
CP0(0). (2.8.32)

Applying inverse laplace transform

CP0(t) = e−ι̇At[cos(1/2Bt)CP0(0) + ι̇ sin(1/2Bt)CP−l0
(0)]. (2.8.33)

Now, putting value of C̄P0(s) from equation(2.8.30) in equation(2.8.31) we get:

C̄P−l0
(s) =

ι̇B

2

1

(s+ ι̇A)

( 1

1 + B2/4
(s+ι̇A)2

)CP0(0) +
1

(s+ ι̇A)

( 1

1 + B2/4
(s+ι̇A)2

)CP−l0
(0).

(2.8.34)

Now, applying inverse laplace transform

CP−l0
(t) = e−ι̇At[cos(1/2Bt)CP−l0

(0) + ι̇ sin(1/2Bt)CP0(0)]. (2.8.35)

Equation(2.8.33) and equation(2.8.35) can be written as:

C
(m)
j,+l0

= e−ι̇Ajt[C
(m)
j,+l0

(0) cos(
1

2
Bjt) + ι̇C

(m)
j,−l0(0) sin(

1

2
Bjt)], (2.8.36)

C
(m)
j,−l0 = e−ι̇Ajt[C

(m)
j,−l0(0) cos(

1

2
Bjt) + ι̇C

(m)
j,+l0

(0) sin(
1

2
Bjt)], (2.8.37)
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where,

Aj ≡

{
− (|g|2j/4∆)2

ωrec(l0−2)(2)
Forl0 6= 2,

0 l0 = 2,

(2.8.38)

and

Bj ≡

{
− (|g|2j/2∆)l0/2

2ω
(l0/2−1)
rec [(l0−2)(l0−4)...(4.2)]

Forl0 6= 2

|g|2j/2∆ l0 = 2.

(2.8.39)

So, probability of exiting atom flips with a cosine function[7].

27



Chapter 3

Entangling Distant Cavities By

Entanglement Swapping

In this chapter, we study the entanglement of cavities and atoms through the beam

splitter action and the formation of EPR pairs. The detection of these four EPR

states will throw these EPR states into one of the corresponding four Bell states.

In Sec. 3.1, Bell states are discussed. Sec. 3.2, explains the Bell theorem. In

Sec. 3.3, Bell state measurement and in Sec. 3.4, teleportation is discussed. In

Sec. 3.5, entanglement of cavities is discussed. In Sec. 3.6, we apply the Bell-

state measurement upon the atoms exiting from these entangling cavities. When

the Bell-state measurement is done, then the cavities that are non-interacting are

also entangled. In Sec. 3.7, we tell how these exiting atoms from the beam-splitters

are detected at the detectors. In the detection process, we get one of the four Bell

states at the detectors.

3.1 Bell States

There are four Bell states which are maximally entangled. These are also known as

EPR pairs. These are given as

|φ+〉 =
1√
2
|00〉+ |11〉
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|φ−〉 =
1√
2
|00〉 − |11〉

|ψ+〉 =
1√
2
|01〉+ |10〉,

|ψ−〉 =
1√
2
|01〉 − |10〉,

The most important property that entangled state has is the correlation, such that

measurement on the two qubits are correlated.

3.2 Bell Theorem

For two observables a and b which have average values given by

〈ab〉 = 〈a′b〉 = 〈ab′〉 =
1√
2
,

〈a′b′〉 = − 1√
2
,

Bell-inequality is given as

〈ab〉+ 〈a′b〉+ 〈ab′〉 − 〈a′b′〉 = 2
√

2, (3.2.1)

Bell state violates the Bell-inequality maximally. For example, for Bell state |ψ−〉,
we can show that the Bell inequality is violated. For this purpose, we take four

observables a, a′, b and b′. These observables can take the following values:

a = −→σ A.â., a
′ = −→σ A.â

′.

b = −→σ B.b̂., b
′ = −→σ B.b̂

′.

They have eigen values ±1. Now, for |ψ−〉 state

〈ab〉 = 〈ψ−|ab|ψ−〉,
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Applying operators −→σ B
x and −→σ A

x on |ψ−〉

|ψ−〉 =
1√
2

[|0A1B〉 − |1A0B〉],

−→σ B
x

1√
2

[|0A1B〉 − |1A0B〉] =
1√
2

[|00〉 − |11〉],

−→σ A
x

1√
2

[|0A1B〉 − |1A0B〉] =
1√
2

[|11〉 − |00〉],

Operating −→σ B
x on |ψ−〉 is as if we are applying

−→−σAx . So,

〈ab〉 = 〈ψ−|(−→σ A.a)(−→σ B.b)|ψ−〉

= 〈ψ−|Σi
−→σ A

i .âiΣj
−→σ B

j .b̂j|ψ−〉, (3.2.2)

= ΣiΣjaibj〈ψ−−→σ A
i
−→σ B

j |ψ−〉

Putting the value of −→σ A

〈ab〉 = −ΣiΣjaibj〈ψ−−→σ A
i
−→σ A

j |ψ−〉,

〈ab〉 = −ΣiΣjaibjTrA(−→σ A
i
−→σ A

j ρA)

From,

ρA =
1

2
[|0〉〈0|+ |1〉〈1|] =

1

2
I,

So,

〈ab〉 = −1

2
ΣiΣjaibjTrA(−→σ A

i
−→σ A

j ),

= −ΣiΣjaibjδij = −Σjajbj = −â.b̂,

= cos(θ1 − θ2) = − cos θab,
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〈C〉 = 〈ab〉+ 〈a′b〉+ 〈ab′〉 − 〈a′b′〉,

The angle between the four observables a, a′, b and b′ is π/4. So the equation

becomes

〈C〉 = − cos
π

4
− cos

π

4
− cos

π

4
+ cos

3π

4
,

= −4/
√

2,

Now, taking the mod

|〈C〉| = 2
√

2 ≤ 2,

So, the Bell inequality is violated by Bell states.

The entangled states which have the reduced density matrix equal to 1/2I(identity)

are called maximally-entangled states. Bell states are maximally-entangled states.

There are also states which are entangled but not maximally entangled. If we have

the state |ψ〉AB = 1√
3
(|11〉+ |12〉+ |21〉), then

ρAB =
1

3
(|11〉〈11|+ |11〉〈12|+ |11〉〈21|+ |12〉〈11|

+ |12〉〈12|+ |12〉〈21|+ |21〉〈11|+ |21〉〈12|+ |21〉〈21|)

Then we find that,

ρA =
2

3
|1〉〈1|+ 1

3
)|1〉〈2|+ 1

3
)|2〉〈1|+ 1

3
)|2〉〈2|.

This state is entangled but not maximally entangled, the density matrix is not equal

to 1/2I.

3.3 Bell-State Measurement

Bell-state measurement is defined to be the projection of two qubits on maximally-

entangled Bell states. It is main operation in many quantum processes like teleporta-

tion and entanglement swapping. There are many types of Bell-state measurements.
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Here we discuss the linear optical method of Bell-state measurement. In this process,

we are able to distinguish between two symmetric Bell states |ψ+〉 and |ψ−〉 but we

cannot distinguish between the anti-symmetric Bell states |φ+〉 and |φ−〉 through

the detectors. That is why it is called 50− 50 beam splitter action.

In this technique, two photons are incident (as shown in Fig below) upon 50 − 50

beam splitter and they are detected at the corresponding (single-photon) detectors

[8].

Figure 3.1: Partial Bell-state analyzer
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In Fig. 3.1 one photon comes from mode a and other comes from mode b. Only

if the two photons are in the antisymmetric Bell state |ψ−〉, there will be one photon

in each output mode of the first beam splitter (BS), c and d. Therefore a coincidence

detection between D1 and D3 or D2 and D4 identifies this state. D4 identifies this

state. If the photons are in the state |ψ+〉, they both go into c or both into d and

are then split by the subsequent polarizing beam splitters (PBS), because they have

orthogonal polarizations. Therefore coincidences between D1 and D2 or between

D3 and D4 signify a state |ψ+〉. For the two other Bell states |ψ−〉 and |φ+〉 both

photons go to the same detector.

Beam splitter action is defined as

a†1 =
1√
2

(a†1 + ι̇a†2),

where a and a† are the ladder operators.

a†1 =
1√
2

(ι̇a†1 + a†2),

a† replaced by h† and v† for horizontal and vertical polarization respectively. Under

the above transformation, the four Bell-states evolve as

|ψ+〉 =
1√
2

[h†1v
†
2 + h†2v

†
1]|0〉 → ι̇√

2
[h†1v

†
2 + h†2v

†
1]|0〉,

|ψ−〉 =
1√
2

[h†1v
†
2 − h

†
2v
†
1]|0〉 → ι̇√

2
[h†1v

†
2 − h

†
2v
†
1]|0〉,

|φ+〉 =
1√
2

[h†1h
†
2 + v†1v

†
2]|0〉 → 1√

2
[h†21 + h†22 + v†21 + v†22 ]|0〉,

|φ−〉 =
1√
2

[h†1h
†
2 − v

†
1v
†
2]|0〉 → 1√

2
[h†21 + h†22 − v

†2
1 − v

†2
2 ]|0〉,

where, 1, 2 stands for the 1st and 2nd qubit respectively.

For |ψ+〉 and |ψ−〉, we get two different results at the output but for |φ+〉 and

|φ−〉 we get the same results but with a phase difference of π/2. For |ψ+〉 both

photons reach at the same detector but with different polarizations while for |ψ−〉
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one photon reaches at each detector. For |φ+〉 and |φ−〉, both photons reaches

at the same detectors with same polarizations. This Bell-state measurement can

distinguish between |ψ+〉 and |ψ−〉 while for |φ+〉 or |φ−〉 it gives degenerate results

i.e. we get the results with 50 % probability [8].

3.4 Entanglement of Cavities

We now give the procedure to generate entanglement between two distant cavities.

This is done by entanglement swapping procedure explained in Sec. 1.5. Here

entanglement is swapped from that between two pairs of atomic momentum state

and cavity filed state to that between cavities by making EPR state measurement

on the two atomic momentum states.

We can write the wave function for two- atom field pairs as

|ψ(t)〉 = [
1√
2

(|01, P
(1)
l0
〉+ ι̇e−ι̇φ|11, P

(1)
−l0〉)]⊗ [

1√
2

(|02, P
(2)
l0
〉+ ι̇e−ι̇φ|12, P

(2)
−l0〉)], (3.4.1)

where, φ = rπA1/B1. Here A1 and B1 are the constants.

Atoms in their external degrees of freedom get entangled with their respective cavity

fields. This entanglement is created when the atoms with some initial momentum

Pl0 pass through the cavities and get deflected after passing through the cavities in

two possible directions having atomic momenta Pl0 and P−l0 . Then the combined

wave function can be written as:

|ψ(t)〉 =
1

2
(|01, 02, P

(1)
l0
, P

(2)
l0
〉+ ι̇e−ι̇φ|01, 12, P

(1)
l0
, P

(2)
−l0〉

+ ι̇e−ι̇φ|11, 02, P
(1)
−l0 , P

(2)
l0
〉 − ι̇e−2ι̇φ|11, 12, P

(1)
−l0 , P

(2)
−l0〉). (3.4.2)

We want to project the state into one of the four Bell states. For this purpose, we

add and subtract some terms. Adding 1
2
(|01, 02, P

(1)
l0
, P

(2)
l0
〉+ι̇e−2ι̇φ|11, 12, P

(1)
−l0 , P

(2)
−l0〉),
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and 1
2
(ι̇e−ι̇φ|01, 12, P

(1)
l0
, P

(2)
−l0〉+ ι̇e−ι̇φ|11, 02, P

(1)
−l0 , P

(2)
l0
〉), we get

|ψ(t)〉 =
1

2
(|01, 02, P

(1)
l0
, P

(2)
l0
〉+ ι̇e−ι̇φ|01, 12, P

(1)
l0
, P

(2)
−l0〉

+ ι̇e−ι̇φ|11, 02, P
(1)
−l0 , P

(2)
l0
〉 − ι̇e−2ι̇φ|11, 12, P

(1)
−l0 , P

(2)
−l0〉

+ |01, 02, P
(1)
l0
, P

(2)
l0
〉+ ι̇e−2ι̇φ|11, 12, P

(1)
−l0 , P

(2)
−l0〉

+ ι̇e−ι̇φ|01, 12, P
(1)
l0
, P

(2)
−l0〉+ ι̇e−ι̇φ|11, 02, P

(1)
−l0 , P

(2)
l0
〉). (3.4.3)

Now, subtracting 3
4
(|01, 02, P

(1)
l0
, P

(2)
l0
〉+ ι̇e−2ι̇φ|11, 12, P

(1)
−l0 , P

(2)
−l0〉) and

3
4
(ι̇e−ι̇φ|01, 12, P

(1)
l0
, P

(2)
−l0〉+ ι̇e−ι̇φ|11, 02, P

(1)
−l0 , P

(2)
l0
〉) ,

we get:

|ψ(t)〉 =
1

4
(P

(1)
l0
, P

(2)
l0
〉+ e−ι̇2φ|P (1)

−l0 , P
(2)
−l0〉)(|00〉 − |11〉)

+
1

4
(P

(1)
l0
, P

(2)
l0
〉 − e−ι̇2φ|P (1)

−l0 , P
(2)
−l0〉)(|00〉+ |11〉)

+
1

4
ι̇e−ι̇φ(|P (1)

l0
, P

(2)
−l0〉+ P

(1)
−l0 , P

(2)
l0
〉)(|01〉+ |10〉)

+
1

4
ι̇e−ι̇φ(|P (1)

l0
, P

(2)
−l0〉 − |P

(1)
−l0 , P

(2)
l0
〉)(|01〉 − |10〉). (3.4.4)

Thus, we have entangled the cavities and atoms in separate four EPR pairs, and

four states are also entangled with each other. By measuring the atoms in one of

the four EPR states projects two cavities in corresponding Bell state.

Here, in Fig. 3.2 C1 and C2 stands for the cavity 1 and cavity 2. Atoms with initial

momentum |P (i)
l0
〉 interacts with the cavity which is already in superposition photon

state of zero and one. The interaction time is adjusted such that when the cavity is

in zero superposition state atom does not get deflected and has the same momentum

|P (i)
l0
〉 as was the initial momentum. For one photon state, atom deflects and has

momentum state |P (i)
−l0〉.

3.5 EPR State Measurement

Our main purpose is to create entanglement between two distant cavities. For this

purpose, we do EPR state measurement on atomic momentum states corresponding

with the cavities. By doing EPR state measurement on atomic momentum states,
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Figure 3.2: Showing dispersive interaction of atoms with the cavity field.

the field states are collapsed into one of the EPR states.

When two level atom in its ground state interacts off-resonantly with the cavity

(which is in the superposition state (|0〉 + |1〉)/
√

2) the atomic momentum states

associated with the atom are entangled to the cavities. The superposition in cavity

is created by passing the two-level atom in excited state for half of the Rabi cycle.

Due to this interaction the atomic state is transferred to the cavity and the cavity

comes into the superposition state of zero and one photon. After interacting with the

cavity, the atom exits in one of the two equally probable discrete momentum states

|Pl0〉 and |P−l0〉. The resultant state is the entangled state of atom and cavity. After

passing through the cavity these momentum states are passed through the beam

splitters.

For EPR state measurement, we have two beam splitters, BS1 and BS2. The two

beam splitters are prepared in superposition of zero and one photon as (|0〉+|1〉)/
√

2.

The four incoming components from the cavities pass through the beam splitters.

|P 1
l0
〉 and |P 2

l0
〉 pass through the beam splitter BS2 and |P 1

−l0〉 and |P 2
−l0〉 pass through
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the beam splitter BS1 as shown in Fig. 3.4. They can be deflected to desired

cavities by using mirrors. The dispersive interaction of atom with the cavity beam

splitter for an interaction time t = 2πδ′/|g′|2, transfers atomic momentum states

into superposition, where, δ′ is the atom-beam splitter field detuning and g′ is the

vacuum rabi-frequency [9].

Atoms and the beam splitter cavities are adjusted such that there is first order

Bragg-scattering of atoms. Beam splitter action is performed as follows:

|P (1)
l0
〉 −→ |P (1)

l0
〉+ ι̇|P (2)

l0
〉,

|P (2)
l0
〉 −→ ι̇|P (1)

l0
〉+ |P (2)

l0
〉,

|P (1)
−l0〉 −→ |P

(1)
−l0〉+ ι̇|P (2)

−l0〉,

|P (2)
−l0〉 −→ ι̇|P (1)

−l0〉+ |P (2)
−l0〉.

When the beam splitter action is performed, the first factor of equation(3.4.4) goes

like this:

|P (1)
l0
, P

(2)
l0
〉+ e−ι̇2φ|P (1)

−l0 , P
(2)
−l0〉 −→ (|P (1)

l0
〉+ ι̇|P (2)

l0
〉, |P (1)

−l0〉+ ι̇|P (2)
−l0〉),

+e−ι̇2φ(|P (1)
−l0〉+ ι̇|P (2)

−l0〉, ι̇|P
(1)
−l0〉+ |P (2)

−l0〉),

= ι̇(|P (1)
l0
, P

(1)
l0
〉+ |P (2)

l0
, P

(2)
l0
〉+ e−ι̇2φ|P (1)

−l0 , P
(1)
−l0〉+ e−ι̇2φ|P (2)

−l0 , P
(2)
−l0〉). (3.5.1)

Similarly, the first factor of second term after action of beam splitter transforms as:

P
(1)
l0
, P

(2)
l0
〉 − e−ι̇2φ|P (1)

−l0 , P
(2)
−l0〉 −→ (|P (1)

l0
〉+ ι̇|P (2)

l0
〉, ι̇|P (1)

l0
〉+ |P (2)

l0
〉), (3.5.2)

+e−ι̇2φ(|P (1)
−l0〉+ ι̇|P (2)

−l0〉, ι̇|P
(1)
−l0〉+ |P (2)

−l0〉),

= ι̇(|P (1)
l0
, P

(1)
l0
〉+ |P (2)

l0
, P

(2)
−l0〉 − e

−ι̇2φ|P (1)
−l0 , P

(1)
−l0〉 − e

−ι̇2φ|P (2)
−l0 , P

(2)
−l0〉). (3.5.3)

Then the third term of equation(3.4.4) is:

|P (1)
l0
, P

(2)
−l0〉+ P

(1)
−l0 , P

(2)
l0
〉 −→ (|P (1)

l0
〉+ ι̇|P (2)

l0
〉, ι̇|P (1)

−l0〉+ |P (2)
−l0〉),
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+(ι̇|P (1)
l0
〉+ |P (2)

l0
〉, |P (1)

−l0〉+ ι̇|P (2)
−l0〉),

= 2ι̇(|P (1)
l0
, P

(1)
−l0〉 − |P

(2)
l0
, P

(2)
−l0〉. (3.5.4)

And then the fourth term transforms as

|P (1)
l0
, P

(2)
−l0〉 − |P

(1)
−l0 , P

(2)
l0
〉 −→ (|P (1)

l0
〉+ ι̇|P (2)

l0
〉, ι̇|P (1)

−l0〉+ |P (2)
−l0〉),

−(|P (1)
−l0〉+ ι̇|P (2)

−l0〉, ι̇|P
(1)
l0
〉+ |P (2)

l0
〉),

= 2(|P (1)
l0
, P

(2)
−l0〉 − |P

(1)
−l0 , P

(2)
l0
〉). (3.5.5)

The interaction time of atoms with the cavities acting as a beam splitter can be

controlled by using velocity selector.

Velocity selector is a device that is used to separate the particles according to the

charges upon them. Only the particles which have the correct speed are deflected

through the velocity selector while others remain be un-deflected. A velocity selector

is a region in which there is a uniform electric and magnetic field. These two fields are

mutually perpendicular and are also perpendicular to the velocity of the incoming

particles.

Force exerted on a charged particle by electric field is given by:

F = qE

The magnitude of the force exerted by the magnetic field for the perpendicular

velocity is given by:

F = qvB.

The net force is zero when two forces are equal and opposite, and particle passes

undeflected through the region. As magnetic force is dependent on speed, the par-

ticles having speed less or more than the applied magnetic force will be deflected in

one direction or the other [10].
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Figure 3.3: Velocity Selector: E is the electric field and B is the magnetic field. +

is the in-ward direction of field.

3.6 Detection

For the detection purpose, we use four detectors D1, D2, D3 and D4 to detect the

direction of atomic momentum components. These detectors are placed in spatial

paths of atoms in different directions of propagation of atoms, which then corre-

sponds to different momenta [11].

Whenever a detector clicks, it detects an atom in that direction and the atomic mo-

mentum associated with that atom. Detectors can be used to detect the fast moving

atoms like Rydberg atoms 85Rb. For that purpose, cavity is used in two linear or-

thogonal polarizations H and V. A weak magnetic field is set parallel to the incident

polarization. When Rb atoms pass through the cavity then during π transitions the

cavity mode is transversed to the atoms. The excited atoms can come in ground

state in two possibilities. Either the excited atom can come into ground state by

emitting the same polarization light H during stimulated emission and preserving

the ground state number δm = 0, or by emitting light during spontaneous emission
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in circular polarization, where the ground number is changed to δm = ±1 and is

collected by the polarization V. The presence of atom is identified by the detection

of light [12].

For different atomic momenta different detectors give clicks. When D1 detector de-

tects a click then it detects atomic momentum |P (2)
−l0〉. When D2 detector give a click

then it detects |P (1)
−l0〉. Similarly, when D3 gives a click it detects |P (2)

l0
〉 and D4 gives

click for |P (1)
l0
〉 atomic direction as shown in Fig. 3.4.

Below is the Fig. 3.4 which shows the EPR state measurement of atomic momenta.

In which atoms are passed through the beam splitters BS1 and BS2 and then these

are detected at the detectors D1, D2, D3 and D4. The undeflected atoms pass

through the beam splitter BS1 while the deflected atoms pass through the BS2.

Beam splitters are cavities prepared in superposition state of zero and one photon.

These cavities get entangled when their atomic momenta states are detected.

Figure 3.4: EPR state measurement
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Now, combining equation(3.4.4) with equation(3.5.1-3.5.4) we get the following

table for detector clicks.

Cavities State Detectors Click

|φ+〉 = 1√
2
|00〉+ |11〉 Two clicks at one of the four detectors

|φ−〉 = 1√
2
|00〉 − |11〉 Two clicks at one of the four detectors

|ψ+〉 = 1√
2
|01〉+ |10〉 Either we get a click at D1 and D4 or at D2 and D3

|ψ−〉 = 1√
2
|01〉 − |10〉 Either we get a click at D2 and D4 or at D1 and D3

Table 3.1: Detector clicks of two entangled cavities

By getting different clicks on each detector, we can distinguish between four states

|φ+〉, |φ−〉, |ψ+〉 and |ψ−〉. After the detection, the cavities are in the Bell state.

With this procedure, we can distinguish only between |φ+〉 and |φ−〉, while |ψ+〉 and

|ψ−〉 cannot be distinguished as happens in linear optical Bell-state measurement[13].

The scheme of entangling cavities through beam splitter possesses strong non-

locality. There is a procedure in which high fidelity can be achieved by using

microwave cavity QED which have lifetime up to seconds. In this scheme, light

atoms such as He is used,which has a mass of 6.64 × 10−27 Kg and emission line

at wave length l = 543.5nm. Chosen temperature is 230 K. The recoil energy is

~k2/2M = 1.06MHz. For detuning 6.28 GHz the effective Rabi frequency is approx-

imately 208 KHz. The interaction time with one cavity is approximately 8.3 ms.

The total interaction time for 20 atoms comes as 166 µs. Under first order Bragg

diffraction, 15-20 helium atoms are passed through the cavity and high fidelity is

achieved as in given [14].
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Chapter 4

Conclusion

We have reviewed atom field interaction. This review work also includes the method

of entanglement for two non-interacting cavities at a distance. For this process, we

have seen the entangling of the cavity fields with the atomic momenta in their ex-

ternal degrees of freedom. Then we have reviewed the EPR state measurement to

entangle these cavities by passing them through the beam splitters, which are also

the cavities in superposition state of zero and one. Then these atoms are detected

at the detectors and give clicks corresponding to the state of atom.

The atom-field interaction from the cavity field in Bragg regime is thoroughly stud-

ied. The behavior of atoms is analyzed by sending them in ground state into the

cavity. Then from equations of motion we reviewed the momentum variation of

atoms after passing through the field.

We have studied the process of entanglement of atoms and the cavities. The atoms

and cavities are first entangled, then the EPR pairs thus formed are passed through

the EPR state analyzer. This leads to entanglement swapping and entangles the

two cavities. This process can be further used for the entanglement of N distant

cavities.

42



Bibliography

[1] G. Benenti, G. Casati, G. Strini, Principles of Quantum Computation and In-

formation, Vol.II; World Scientific Publishing Co. Pte. Ltd, (2007).

[2] D. Esteve, J. M. Raimond, J. Dalibard, Quantum Entanglement And Informa-

tion Processing, Vol.LXXIX; Elsevier Science Publisher, (2004).

[3] A. Whitaker, The New Quantum Age: From Bell’s Theorem to Quantum Com-

putation and Teleportation, (OUP Oxford) (2012).

[4] Pan, J. W., Bouwmeester, D. Weinfurter, H. Zeilinger, Experimental entangle-

ment swapping: Entangling photons that never interacted., Phys. Rev. Lett. 80,

3891 (1998).

[5] Christoph Simon, William T. M. Irvine, Robust Long-Distance Entanglement

and a Loophole-Free Bell Test with Ions and Photons, Phys, Rev. 91, 110405

(2003).

[6] Peter J. Martin, Bruce G. Oldaker, Andrew H. Miklich, David E. Pitchard,

Bragg scattering of atoms from standing light wave, Phys. Rev. 60, 515 (1988).

[7] A. Khalique, F. Saif, Engineering entanglement between external degrees of free-

dom of atoms via Bragg scattering, Phys. Rev. A 314, 2003.

[8] W. P. Grice, Arbitrarily complete Bell-state measurement using only linear op-

tical elements, Phys. Rev. A 84, 042331 (2011).

[9] R. Islam, A. Khosa, F. Saif, J. Bergou, Generation of atomic momentum cluster

and graph states via cavity QED, Quantum Inf. Proc., 1, (2012).

43



[10] W. Wien, W. Karl, 100 years of ion beams: Willy Wien’s canal rays, Brazilian

Journal of Physics. 29, (3) (1999)

[11] R. ul Islam, A. H. Khosa, F. Saif, Generation of Bell, NOON and Wstates via

atom interferometry, J. Phys. B: Atom. Mol. Opt. Phys. 41, 035505 (2008).

[12] M. L. Terraciano, R. Oson Knell, D. G. Norris, J. Jing, A. Fernandez, L. A.

Orozco, Photon burst detection of single atoms in an optical cavity, Nat. Phys.

Rev. 5, 480 (2009).

[13] S. U, Haq, A. Khalique, Long distance cavity entanglement by entanglement

swapping using atomic momenta, Optics Communications 334, (2015).

[14] A. H. Khosa, M. Ikram, M. S. Zubairy, Measurement of entangled states via

atomic beam deflection in Braggs regime, Phys. Rev. A 70, 052312 (2004).

44


