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Abstract

The notion of coherent states was originated in 1926 for harmonic oscillator in the context of

classical-quantum correspondence of dynamical systems. They played a vital role in numerous

areas of physics, especially, in mathematical physics, quantum mechanics, quantum optics

and quantum information. Despite being purely quantum mechanical by construction, the

coherent states of harmonic oscillator exhibit a classical-like dynamical behavior. However,

the coherent states for the systems other than harmonic oscillator, known as generalized

coherent states, may exhibit several non-classical dynamical features. In this dissertation the

generalized coherent states for the gravitational cavity are constructed and their dynamical

characteristics are investigated.

In order to investigate the dynamical behavior, we �rst construct the time evolved coherent

state and calculate the autocorrelation function. In the short time evolution up to few classical

periods, the coherent states exhibit classical-like behavior. Afterwards, the dephasing between

various constituting eigenstates, due to the nonlinearity of the energy spectrum, dominates

and the coherent state observes a collapse. Later on, the coherent state reconstructs itself

under the condition of phase matching and the phenomenon of quantum revivals takes place.

Secondly, the time evolution of the position space probability density is studied that manifests

the formation of interference structures, known as quantum carpets. Moreover, the phase

space properties of the constructed coherent states are studied by means of Wigner function.

The negativity of the Wigner function re�ects the nonclassical behavior of these states.



Chapter 1

INTRODUCTION

The mysterious nature of the microphysical world exposed the limitations of celebrated classi-

cal physics, at the end of the nineteenth century, in explaining various phenomena at atomic or

subatomic level. Therefore, new ideas were essentially required to understand the phenomena

at the microscopic level. This essence gave birth to new theory known as quantum physics.

However, the classical-quantum correspondence of physical systems has been a much debated

topic ever since the emergence of quantum mechanics. In what follows, we review the histor-

ical development of quantum mechanical states, namely coherent states, in the perspective of

classical limit of a quantum mechanical system.

1.1 The Coherent States

Based on the ideas of Max-Plank, Albert Einstein and Louis de Broglie, Erwin Schrödinger

developed the wave mechanics wherein the state of a microscopic particle is represented by a

wave packet which is a superposition of complex valued functions namely wave functions. The

dynamical state of a particle, in classical mechanics, is represented by a point in phase-space,

whereas a wave packet, being delocalized, cannot have a similar phase-space representation.

Therefore, to establish the connection between the dynamics of a point particle and that

of a wave packet was a serious challenge. In 1926, Schrödinger [1] succeeded to construct
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the quantum wave packets for the harmonic oscillator whose centroids follow the classical

trajectories. Moreover, these quantum mechanical states minimize the Heisenberg uncertainty

relation and therefore known as minimum uncertainty states.

The minimum uncertainty states, introduced by Schrödinger, remained dormant for more

than three decades till 1963 when Roy Glauber used these states in the description of coher-

ent electromagnetic �eld, hence named as the coherent states. In fact, he re�ned these states

in a di�erent way by making use of the underlying algebra of harmonic oscillator, namely

Heisenberg-Wyle algebra. In its classical description, the energy of a single-mode electromag-

netic �eld is expressed by the Hamiltonian of a classical harmonic oscillator, also known as

radiation oscillator. The canonical quantization of the radiation oscillators give rise to the

quantized radiation energy as a multiple of ~ω, where ω is the frequency of the radiation. An

eigenstate of the quantized oscillator Hamiltonian corresponds to a state of the �eld in which

there are de�nite number of photons. However, the photon number states do not express

the actual state of the radiation �eld because the expectation values of the electric �eld and

the magnetic �eld vanish with respect to these number states. Glauber's coherent states are

perfectly suited to represent the quantum mechanical state of the radiation �eld which closely

resembles to its classical description. He de�ned the coherent states in three di�erent ways

[2] as; i) an eigenstate of annihilation operator, ii) the displaced vacuum state and, iii) the

state minimizing the uncertainty relation. However, all these de�nitions of coherent states

are equivalent.

Due to its equally spaced energy spectrum, the harmonic oscillator has a very special place

in the foundation of many quantum mechanical theories, so is the construction of its coherent

states. The coherent states of the harmonic oscillator exhibit a set of very important prop-

erties [3]. One of the most striking features of the coherent states is their temporal stability,

which means that a coherent state remains coherent under time evolution. These states are

nonorthogonal but yet hold the completeness relation. Another very unusual property of the

coherent is the over-completeness, which means that any coherent state can be represented in

terms of other ones. Hence there are more than enough states available to represent one co-

herent state in terms of the other. Although a complete orthonormal system of basis vector in

Hilbert space is one of the main concepts in functional analysis and mathematical physics [4].
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However, in many quantum physics problems the non-orthogonal and over-complete systems

of state vectors are very helpful. Besides their applications in quantum optics, the coherent

states have been successfully deployed in many other areas of physics [5], such as, radio-

physics, super�uidity, non-ideal Bose gases, etc. In the Heisenberg model of ferromagnetism,

they are used to describe spin waves, in quantum electrodynamics, they describe soft photon

clouds around charged particles. In the nonlinear �eld theories, they give an approximate

quantum description of localized �eld states.

1.2 Generalizations of the Coherent States

Due to abundant applications of the coherent states in various areas of physics and mathe-

matics, there has been a strong motivation to generalize the notion of coherent states for the

systems other than harmonic oscillator. Every generalization scheme has extended one of the

above mentioned de�nitions of coherent states for general systems. However, most of the early

generalizations were made by making use of the de�nitions based on the underlying algebra

of the system. De�nition of coherent states as an eigenstate of annihilation operator was

generalized by Barut and Girardello [6] for non-compact groups and satis�es the de�nition

of coherent states as annihilation operators eigenstates and are known as Barut-Girardello

coherent states. The displacement operator de�nition of coherent states was the takeo� point

of Gilmore and Perelomov [7] due to its clear group-theoretical �avor and was used for con-

structing the coherent states employing Lie groups. However, this approach is not applicable

to all Lie groups; in particular, it is invalid for compact groups. In contrast, Nieto [8] and

Simmons [9] generalized the idea, based on de�nition as the minimum uncertainty states, for

more general coherent states adapted to a local potential with at least one con�ned region.

The initial developments in constructing the generalized coherent states explicitly depen-

dent on the underlying algebra of the system. Therefore, a strong urge was felt to develop

some sort of technique that would be suitable for the systems that do not have a well de-

�ned algebra. In 1996, Klauder presented a new concept for constructing the generalized

coherent state of the system executing discrete, degenerate energy spectra [10]. Later on in

1999, Gazeau and Klauder extended this idea for the systems with bounded below discrete,
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non-degenerate and continuous energy spectra. These states hold a set of properties and were

named as Gazeau-Klauder coherent states. This methodology gets more praise due to its

algebraic independence. The coherent states for a vast range of Hamiltonian systems were

constructed using this method such as, the in�nite square well [11], the pseudoharmonic os-

cillator [12], the Pöschl-Teller potential [13], the power law potentials [14], the triangular well

potential [15], the Morse potential [16, 17], and single mode periodic potential systems. Fur-

thermore, another generalization technique for constructing coherent states was introduced

by R. F. Fox [18], in which he used a Gaussian function to approximate the behavior of the

coherent states. This formalism was named as Gaussian Klauder coherent states.

1.3 Dynamical Properties

Over the last one and a half decades the theoretical analysis, numerical prediction and ex-

perimental veri�cation of the occurrence of wave packet revivals in quantum systems has

�ourished a lot. An important tool used to measure the phenomena of wave packet revivals

[20] in coherent states is the autocorrelation function A(t) which measure the overlap of time

dependent coherent states with its initial one [11, 15, 19]. The maximum value of auto-

correlation function is unity which means that the initial coherent state is its self properly

normalized, but in general it has the value less than unity that is at the later time as the

coherent state develops in time di�erent energy or momentum components will contribute

di�erently. We can then describe quantum revivals as the periodic recurrence of the quantum

wave function from its initially localized form to that evolved with time either in the terms

of fractional revivals or regaining of its initial state as in the beginning so named as full re-

vival. In case of a wave function periodic in time the full revival occurs for every period. For

example, in case of harmonic oscillator, in�nite square well, while fractional revivals occur for

triangular well potential, the hydrogen atom and many other quantum systems [20]. Besides

being useful to measure the time evolution of a quantum state it can also be used to measure

the similarity between the two states that is we can measure its magnitude and phase using it

which plays the complementary role to this issue as addressed by the position and momentum

space approaches.
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In case of classical mechanics the position and momentum of a particle have a de�nite

value so can be represented by a point in phase space. Similarly for an ensemble of parti-

cles, the probability of �nding a particle at a certain position in phase space is speci�ed by

a probability distribution. This interpretation, however, fails in the case of quantum me-

chanics due to the limitations of the uncertainty principle. In order to solve this problem E.

P. Wigner [21] in 1932 introduce another tool to measure the joint probability distribution

in the position and momentum space known as Wigner function. Though in the classical

limit it approaches the classical distribution function so it cannot be explicitly interpreted

as probability density in quantum mechanical context. Unlike usual probability it takes the

negative value which clearly shows its non-classical behavior so named as qusai-probability

distribution [22]. The non-classicality of coherent states plays an important role in quantum

physics and have many applications in quantum information and quantum communication

such as quantum teleportation [23], quantum computation [24], quantum cryptography [25]

and interferometric measurements [26].

1.4 The Outline

Our task ahead is to construct the generalized coherent state for gravitational cavity and to

study its di�erent dynamical properties. For that we had tracked the following routes that are

in Chapter 2, we will discuss the quantum gravitational cavity and its physical interpretation in

the form of quantum bouncer. The governing potential inside the cavity can be approximated

as triangular well potential which is a linear potential and the solution of Schrödinger equation

for it, leads to the Airy function. We then calculate the matrix element for the two canonical

variables, that is position and momentum, which will be helpful in calculating the uncertainty

relationship ahead. In Chapter 3, we will give a detailed description of coherent states for

harmonic oscillator that is its di�erent de�nitions and the properties it holds. Moreover,

we will discuss the di�erent generalization techniques, keeping in view our system that does

not exhibit a well de�ned algebra. Chapter 4, is dedicated to the main idea of thesis that

is constructing the generalized coherent state for gravitational cavity using Gazeau-Klauder

formalism and study its di�erent statistical and dynamical properties. In the end, we will
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conclude the whole thesis.
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Chapter 2

The Quantum Dynamics in the

Gravitational Cavity

2.1 Introduction

Gravitational cavity is a very important quantum mechanical system which can be described

as a re�ecting surface on which particle bounce elastically under the in�uence of gravitational

�eld. This chapter comprises of three chapters. In Sec. 1, we will discuss the quantum

gravitational cavity and explain it with the help of its physical interpretation that is the

quantum bouncer. We then approximate the potential inside the quantum gravitational cavity

as the triangular well potential which can be described as a potential with a constant slope

having an in�nite barrier on one side. We resolve the potential in Sec. 2 using Schrödinger

which leads to the equation as an Airy di�erential equation. The solution of which is a

special function known as Airy function. Sec.3, comprises of matrix elements of the system

for position and momentum which will be then used in �nding the uncertainty relation ahead.
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2.2 The Quantum Gravitational Cavity

In the past few years, many experiments have been carried out using atoms which show that

they can be held almost stationary [27], made to exhibit quantum interference [28] and can

also trap in quantum wells [29]. The basic aim behind these experiments was to show that

though the internal structure of an atom is quite complicated, yet they produce observable

quantum interference and to highest precision facilitate the experimental techniques. With

this the periodically driven quantum systems have received much attention due to the existence

of Anderson-like localization [30, 31]. Now here we will consider a very important physical

system that is the quantum gravitational cavity in which the atoms are periodically driven

under the in�uence of the gravitational �eld. The concept of it can be very well understood

with the help of its physical interpretation given below.

Figure 2.1: Experimental arrangement of quantum bouncer

Here is an experimental demonstration of "quantum bouncer" which is a renowned physical

interpretation of the phenomena undergoing inside the gravitational cavity. The experimen-

tal realization of such a system is made possible due to the development of techniques of

cooling the atoms. In this experiment we cooled and trapped a cloud of atoms in magneto-

optical trap. This was then positioned at a certain altitude before the start of the experiment

which on switching o� starts moving towards the re�ecting surface with constant gravita-
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tional acceleration. The re�ecting surface is provided by an evanescent �led made by a glass

prism undergoing total internal re�ection of the laser beam on the other side. The evanes-

cent wave �eld is modulated with the help of acousto-optic modulator which results in the

intensity modulation of the incident laser light [32]. Hence, as the atoms strikes the surface,

they bounce o� and moves along the gravitational �eld as demonstrated in the �gure above.

Let us consider an atom in a gravitational cavity such that the atom moves in the direc-

tion of gravity in the positive z-direction and bounces back as it hits the re�ecting surface.

The re�ecting surface is due to the evanescent �eld provided by an electromagnetic �eld of

electric strength E(z, t) = exE0e
−ωLz/ce−iωLt + c.c. The evanescent �eld is modulated by

Eo = ζoexp (ϵ sin(ωt)) where ω is the driving frequency. For the one dimensional case, the

Hamiltonian is given by [32]

Ĥ =
p̂2

2m
+mgz +

~ΩR

4
e−2ωLz/c+ϵsin(ωt), (2.1)

where p̂ is momentum, g is the gravitational acceleration and m is the mass. The strength

of in�uence of the applied electric �eld is characterized by Rabi-frequency ΩR [33]. The

potential generated inside the quantum gravitational �eld can be approximated as triangular

well potential with an in�nite potential at z = cϵ
2ωL

of the re�ecting surface. By virtue of this

approximation our result becomes independent of the Rabi-frequency ΩR and laser frequency

ωL So the potential inside the gravitational cavity can be approximated as triangular well

potential which is a linear potential, mathematically de�ned as

V (z) =


mgz if z > 0,

∞ if z ≤ 0.

(2.2)

The Hamiltonian for the system is de�ned as

H =
P 2

2m
+ V (z), (2.3)

where m de�nes the mass of the particle.
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2.3 Eigenenergies and Eigenfunctions

The time-independent Schrödinger equation that corresponds to the Hamiltonian given by

Eq.(2.3) is
−~2

2m

d2Ψn

dz2
+mgzΨn = EnΨn, (2.4)

with the governing boundary condition as

Ψn(0) = 0. (2.5)

To �nd out the solution of Eq.(2.4) it is better to rescale the energy and position variable as

follows. Let the "characteristic gravitational length" be de�ned as

lg =

(
~2

2m2g

)1/3

. (2.6)

Let ξ = z/lg and ξn = En/(mglg) are the rescaled energy and position variables, respectively.

Then Eq.(2.4) becomes
d2Ψn

dξ2
− (ξ − ξn)Ψn = 0. (2.7)

The above equation is called "Airy Di�erential equation". Firstly, we will now see how to solve

this di�erential equation. Various techniques have been developed to solve this equation. One

very easy approach is via Fourier transform method. This method is advantageous because

it will convert a di�erential equation of second order into �rst which will then become a lot

easier to solve. For convenience let u = ξ − ξn then the above equation becomes

d2y(u)

du2
= uy(u). (2.8)

By applying on both sides the Fourier transform, we get

F (y
′′
(u)) = F (uy(u)), (2.9)

remembering the de�nition that the Fourier transform of position is momentum we have

F (y(u)) = ŷ(p) =

∫ +∞

−∞
e−ipuy(u)du, (2.10)

and the Fourier inverse of it is

y(u) = F−1(ŷ(p)) =

∫ +∞

−∞
eipuŷ(p)du. (2.11)
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In order to resolve the left hand side of Eq.(2.9) we will take the derivative of Eq.(2.11), that

is
dy(u)

du
=

d

du

(∫ +∞

−∞
eipuŷ(p)du

)
, (2.12)

=

∫ +∞

−∞
(ip)eipuŷ(p)du, (2.13)

again, taking the derivative we get

dy2(u)

du2
=

∫ +∞

−∞
(ip)2eipuŷ(p)du, (2.14)

= F−1((ip)2ŷ(p)), (2.15)

thus,

F

(
dy2(u)

du2

)
= −(p)2ŷ(p). (2.16)

Now evaluating the right hand side of Eq.(2.9)

dŷ(p)

dp
=

d

dp

(∫ +∞

−∞
y(u)e−ipudu

)
, (2.17)

=

∫ +∞

−∞
(−iu)y(u)e−ipudu, (2.18)

dŷ(p)

dp
= −iF (uy(u)), (2.19)

multiplying i on both sides, we get

i
dŷ(p)

dp
= F (uy(u)). (2.20)

Equating Eq.(2.16) and Eq.(2.20) we get the Airy Equation that is Eq.(2.9) as,

−(p)2ŷ(p) = i
dŷ(p)

dp
. (2.21)

This is a �rst order homogeneous di�erential equation and here we can see the advantage

behind using Fourier transform. Integrating on both sides,

i

∫
dŷ(p)

dp
= −

∫
(p)2ŷ(p), (2.22)

i ln ŷ = −p
3

3
. (2.23)
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Now taking anti-log, we get

ŷ(p) = eip
3/3, (2.24)

and converting it again to the position basis by the application of the inverse Fourier transform

y(u) = F−1(eip
3/3), (2.25)

=
1

2π

∫ +∞

−∞
eip

3/3eipudp ≡ Ai(u). (2.26)

As the Fourier transform changes a second order di�erential equation to the �rst one, so half

of the solution is vanished by the dimension count at �rst step and we are left with only single

function instead of double. The solutions which are not proportional to Ai (i.e., βAi + γBi

with γ ̸= 0) grows, so rapidly that their Fourier transform are not well de�ned at in�nity as

shown graphically in Fig(2.3).

Figure 2.2: Graph of Airy function Ai(solid curve) and Bi(dashed curve).

The solution to Eq. (2.7) are Airy function, Ai or Bi, of the variable (ξ − ξn). Since

in our case the system is not bounded above, so the Bi function which goes to in�nity for

the positive argument is discarded in our case. The boundary condition Eq. (2.6) puts a

condition on ξn which must be chosen so as Ai(−ξn) = 0. Let the zeros of Airy function are
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−ξn where n = 0, 1, 2, 3.... and ξn > 0 one then �nds the solution as

Ψn(ξ) = NnAi(ξ − ξn), (2.27)

where Nn is the normalization constant.

A precise analytic expression for the zeros of Airy function ξn are not available but one

can approximate it for large n [34] as

ξn =

[
3π

2

(
n− 1

4

)]2/3
. (2.28)

The normalization constant Nn can then be evaluated as

Nn =

[∫ +∞

0
Ai2(ξ − ξn)dξ

]−1/2

, (2.29)

squaring on both side, we get

1

N2
n

=

∫ +∞

0
Ai2(ξ − ξn)dξ. (2.30)

Let us suppose v = ξ − ξn than dv = dξ than the limits of integration would then be v → ∞

as ξ → ∞ and v → −ξn as ξ → 0 making these substitutions we will have

1

N2
n

=

∫ +∞

−ξn

Ai2(v)dv, (2.31)

using the identity, ∫
Ai2(v)du = vAi2(v)−Ai

′2(v), (2.32)

the above equation simpli�es to

1

N2
n

= znAi
2(−ξn)−Ai

′2(−ξn). (2.33)

Since, Ai2(v) and Ai
′2(v) → 0. Here, v → ∞ and Ai(−ξn) = 0 and the zeros of airy function

holds the following property that is Ai
′2(−ξn) → [ 3

8π2 (4n−1)]−1/3 as n→ ∞ so, we evaluated

the normalization constant as

Nn =

[
8π2

3(4n− 1)

]1/6
. (2.34)
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The energy eigenvalues of Eq(2.6) are

En = ξnFlg. (2.35)

Substituting the value from Eq.(2.28) and Eq.(2.6) we get

En = F

(
~2

2mF

)1/3 [
3π

2

(
n− 1

4

)]2/3
. (2.36)

Hence,

En = ω[(n− 1/4)]2/3 ≃ ω(n)2/3. (2.37)

where ω = (3πmg~/2
√
2m)2/3 owns the dimensions of energy. Now plotting the wave function

as a function of rescaled position for di�erent values of n as shown below.

Figure 2.3: Wave function as a function of rescaled position for n = 1, 2, 3, 4 from (a) to (d)

respectively.
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2.4 Matrix Elements

A matrix element plays a very signi�cant role in quantum mechanics. They can be utilized in

evaluating the di�erent statistical and phase space properties of a system. Before going to the

matrix elements we will calculate certain expression which would be helpful in the evaluation

of matrix elements ahead [35].∫ ∞

0
dξAi2(ξ − ξn) = ξ[Ai(ξ − ξn)]

2|∞0 − 2

∫ ∞

0
dξξAi(ξ − ξn)Ai

′
(ξ − ξn), (2.38)

on applying the limit the �rst term goes to zero and in the second term we can substitute

Ai
′′
(ξ − ξn) = ξAi(ξ − ξn) consequently, the above equation reduces to

= −2

∫ ∞

0
dξAi

′′
(ξ − ξn)Ai

′
(ξ − ξn), (2.39)

= −[Ai
′
(ξ − ξn)]

2|∞0 , (2.40)

�nally, we get the relation ∫ ∞

0
dξAi2(ξ − ξn) = [Ai

′
(ξn)]

2. (2.41)

The above expression provides a relation for the normalization constant. Putting the value

from above equation in Eq.(2.29) we get,

Nn = |Ai′(ξn)|−1. (2.42)

Here, the above expression illustrates that the normalization constant for the nth quantum

state is linked to the derivative of nth zero of the Airy function. As the Airy function is

oscillatory in the negative half plane subsequently the sign of its derivative at −ξn changes

Ai
′
(ξn) = (−1)n+1|Ai′(ξn)|. (2.43)

This result leads to an important fact that all normalized quantum states for gravitational

cavity have derivative ±1 at the origin that is

ψ
′
n(0) = (−)n+1. (2.44)

Now for calculating the matrix element of ξ and P we will proceed as:
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2.4.1 Matrix Element of Position

We shall �rst calculate the cross matrix element of position (ξ) and then the diagonal one's.

2.4.1.1 For Cross Matrix Element ξ and ξ2

To calculate the cross matrix element for ξ we need to evaluate the following expression that

is,

⟨n|ξ|m⟩ = NnNm

∫ ∞

0
ξAi(ξ − ξm)Ai(ξ − ξn)dξ. (2.45)

Now using the formula [36]∫
xA[β(x+ γ1)]B[β(x+ γ2)]dz

= −γ1 + γ2 + 2x

β3(γ1 − γ2)2
A[β(x+ γ1)]B[β(x+ γ2)]

+

[
x

β2(γ1 − γ2)
+

2

β5(γ1 − γ2)3

]
{A′

[β(x+ γ1)]B[β(x+ γ2)]

−A[β(x+ γ1)]B
′
[β(x+ γ2)]}

+
2

β4(γ1 − γ2)2
A

′
[β(x+ γ1)]B

′
[β(x+ γ2)]. (2.46)

Here

A[β(x+ γ1)] = Ai(ξ − ξm),

B[β(x+ γ2)] = Ai(ξ − ξn),
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so the above equation becomes,

⟨n|ξ|m⟩ = NnNm

∣∣∣− −ξm − ξn + 2ξ

(ξn − ξm)2
Ai[(ξ − ξm)]Ai[(ξ − ξn)]

+

[
ξ

(−ξn + ξm)
+

2

(−ξn + ξm)3

]
{Ai′ [(ξ − ξn)]Ai[(ξ − ξm)]

−Ai[(ξ − ξn)]Ai
′
[(ξ − ξm)]}

+
2

(ξn − ξm)2
Ai

′
[(ξ − ξn)]Ai

′
[(ξ − ξm)]

∣∣∣∞
0
. (2.47)

As limit tends to in�nity, Ai(ξ − ξm) = Ai(ξ − ξn) = Ai
′
(ξ − ξm) = Ai

′
(ξ − ξn) → 0 and for

ξ = 0 the Zeros of Airy function holds the following property that is Ai(−ξn) = Ai(−ξm) = 0.

Therefore simplifying the above equation we get

= NnNm
2(−1)n+m+1

(ξn − ξm)2
Ai

′
(−ξm)Ai

′
(−ξn). (2.48)

We know that

Nn =
1

Ai′(−ξn)
, Nm =

1

Ai′(−ξm)

putting these values we get

⟨n|ξ|m⟩ = 2(−1)n+m+1

(ξn − ξm)2
. (2.49)

To calculate the cross matrix elements for ξ2 we need to evaluate the following expression

that is,

⟨n|ξ2|m⟩ = NnNm

∫ ∞

0
ξ2Ai(ξ − ξm)Ai(ξ − ξn)dξ. (2.50)
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Now using the formula [36]∫
x2A[β(x+ γ1)]B[β(x+ γ2)]dx =

4

(γ2 − γ1)2{
− 1

β3

[
x2 + cx+

3(γ1 + γ2)

β3(γ2 + γ1)2

]
A[β(x+ γ1)]B[β(x+ γ2)]

−
[
(γ2 − γ1)x

2

4β2
+

3x+ γ2 + c

β5(γ2 − γ1)

]
A

′
[β(x+ γ1)]B[β(x+ γ2)]

+

[
(γ2 − γ1)x

2

4β2
+

3x+ γ2 + c

β5(γ2 − γ1)

]
A[β(x+ γ1)]B

′
[β(x+ γ2)]

+
1

β4

[
x+

6

β3(γ2 − γ1)2

]
A

′
[β(x+ γ1)]B

′
[β(x+ γ2)]

}
. (2.51)

with

c =
(γ2 − γ1)

2(γ2 − γ1) + 12/β3

2(γ2 − γ1)2
.

Now putting values in the above formula we have

=
∣∣∣NnNm

4

(ξn − ξm)2
∗
{
[ξ2 + cξ +

3(−ξn − ξm)

(ξn + ξm)2
]Ai

′
(ξ − ξm)Ai(ξ − ξm)

−
[
(−ξn + ξm)ξ2

4
+

3ξ − ξn + c

(−ξn + ξm)

]
Ai(ξ − ξm)Ai

′
(ξ − ξm)

+

[
ξ +

6

(ξn − ξm)2

]
Ai

′
(ξ − ξm)Ai

′
(ξ − ξm)

}∣∣∣∞
0
, (2.52)

on applying the limit we get

= NnNm(−1)n+m+1

[
4

(ξn − ξm)2
∗ 6

(ξn − ξm)2

]
Ai

′
(−ξn)Ai

′
(−ξm).

Since

Nn =
1

Ai′(−ξn)
, Nm =

1

Ai′(−ξm)

Therefore,

⟨n|ξ2|m⟩ = 24(−1)n+m+1

(ξn − ξm)4
. (2.53)

2.4.1.2 For Diagonal Matrix Element ξ and ξ2

To calculate the diagonal matrix element for ξ we need to evaluate the following expression

that is,

⟨n|ξ|n⟩ = NnNn

∫ ∞

0
ξAi(ξ − ξn)Ai(ξ − ξn)dξ. (2.54)
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Now using the formula [36]∫
xA[β(x+ γ)]B[β(x+ γ)]dx

=
1

3
(x2 − xγ − 2γ2)A[β(x+ γ)]B[β(x+ γ)]

+
1

6β2
{A′

[β(x+ γ)]B[β(x+ γ)]

+A[β(x+ γ)]B
′
[β(x+ γ)]}

+
2γ − x

3β
A

′
[β(x+ γ)]B

′
[β(x+ γ)]. (2.55)

Here A(x) and B(x) are any two linear combinations of Airy functions. So the above equation

will become,

⟨n|ξ|n⟩ = N2
n

∣∣∣1
3
(ξ2 + ξξn − 2ξ2n)Ai[(ξ − ξn)]Ai[(ξ − ξn)]

+
1

6
{Ai′ [(ξ − ξn)]Ai[(ξ − ξn)] +Ai[(ξ − ξn)]Ai

′
[(ξ − ξn)]}

+
−2ξn − ξ

3
Ai

′
[(ξ − ξn)]Ai

′
[(ξ − ξn)]

∣∣∣∞
0
, (2.56)

on applying the limit it simpli�es to

= N2
n

(
2ξn
3

)
(Ai

′
(−ξn))2. (2.57)

we know Nn = 1
Ai

′
(−ξn)

. Hence,

⟨n|ξ|n⟩ = 2

3
ξn. (2.58)

The direct physical interpretation of above expression can be given by the virial theorem of

classical mechanics for linear potential as ⟨T ⟩ = 1/2⟨V ⟩, which is equivalent to E = 3
2⟨V ⟩.

The potential energy and total energy in normalized units are V = ξ
′
, E = ξn. Hence the

above expression is consistent with classical virial theorem.

Now calculating the expression for the diagonal elements of ξ2 we need to evaluate the

following expression.

⟨n|ξ2|n⟩ = NnNn

∫ ∞

0
ξ2Ai(ξ − ξn)Ai(ξ − ξn)dξ. (2.59)
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Now using the formula [36]∫
xA[β(x+ γ)]B[β(x+ γ)]dx

=
1

15
(3x3 − x2γ + 4xγ2 + 8γ3 − 3β−3) ∗A[β(x+ γ)]B[β(x+ γ)]

+
3x− 2γ

15β2
A

′
[β(x+ γ)]B[β(x+ γ)] +A[β(x+ γ)]B

′
[β(x+ γ)]

− 3x2 − 4xγ + 8γ2

15β
A

′
[β(x+ γ)]B

′
[β(x+ γ)]. (2.60)

Putting the values in above formula we have,

= NnNn|
1

15
(3ξ3 + ξ2ξn + 4ξξ2n − 8ξ3n − 3) ∗Ai[(ξ − ξn)]Ai[(ξ − ξn)]

+
3ξ + 2ξn

15
{Ai′ [(ξ − ξn)]Ai[(ξ − ξn)] +Ai[(ξ − ξn)]Ai

′
[(ξ − ξn)]}

− 3ξ2 + 4ξξn + 8ξ2n
15

Ai
′
[(ξ − ξn)]Ai

′
[(ξ − ξn)]|∞0 , (2.61)

Applying the limit it reduces to,

= N2
n

(
8

15
ξ2nAi

′
(−ξn)Ai

′
(−ξn)

)
, (2.62)

as Nn = 1
Ai

′
(−ξn)

. Therefore,

⟨n|ξ2|n⟩ = 8

15
ξ2n. (2.63)

2.4.2 Matrix Element of Momentum

Now we shall �rst calculate the cross matrix element of momentum (P ) and then the diagonal

ones.

2.4.2.1 For Cross Matrix Element P and P 2

To calculate the cross matrix element for P we need to calculate the following expression,

⟨n| d
dξ

|m⟩ = NnNm

∫ ∞

0
Ai(ξ − ξn)

d

dξ
Ai(ξ − ξm)dξ. (2.64)

⟨n| d
dξ

|m⟩ = 2(−1)n+m

ξn − ξm
. (2.65)
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In order to calculate the matrix element of P 2 we �rst evaluate

⟨n| d
2

dξ2
|m⟩ = NnNm

∫ ∞

0
ξ2Ai(ξ − ξn)

d2

dξ2
Ai(ξ − ξm)dξ. (2.66)

Since we know that

Ai
′′
(ξ) = ξAi(ξ),

so the above equation becomes,

⟨n| d
2

dξ2
|m⟩ = NnNm

∫ ∞

0
ξAi(ξ − ξm)Ai(ξ − ξn)dξ, (2.67)

Now using the formula∫
xA[β(x+ γ1)]B[β(x+ γ2)]dz

= −γ1 + γ2 + 2x

β3(γ1 − γ2)2
A[β(x+ γ1)]B[β(x+ γ2)]

+

[
x

β2(γ1 − γ2)
+

2

β5(γ1 − γ2)3

]
{A′

[β(x+ γ1)]B[β(x+ γ2)]

−A[β(x+ γ1)]B
′
[β(x+ γ2)]}

+
2

β4(γ1 − γ2)2
A

′
[β(x+ γ1)]B

′
[β(x+ γ2)]. (2.68)

where,

A[β(x+ γ1)] = Ai(ξ − ξm),

B[β(x+ γ2)] = Ai(ξ − ξn).

Above equation then becomes,

⟨n| d
2

dξ2
|m⟩ =

∣∣∣− −ξm − ξn + 2ξ

(ξn − ξm)2
Ai[(ξ − ξm)]Ai[(ξ − ξn)]

+

[
−ξ

(−ξn + ξm)
+

2

(−ξn + ξm)3

]
{Ai′ [(ξ − ξn)]Ai[(ξ − ξm)]

−Ai[(ξ − ξn)]Ai
′
[(ξ − ξm)]}

+
2

(ξn − ξm)2
Ai

′
[(ξ − ξn)]Ai

′
[(ξ − ξm)]

∣∣∣∞
0
. (2.69)
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As the limit approaches in�nity Ai(ξ − ξm) = Ai(ξ − ξn) = Ai
′
(ξ − ξm) = Ai

′
(ξ − ξn) → 0

and for ξ = 0 from the properties of Zeros of Airy Function we have Ai(−ξn) = Ai(−ξm) = 0.

Therefore simplifying the above equation we get

⟨n| d
2

dξ2
|m⟩ = NnNm

2(−1)n+m+1

(ξn − ξm)2
Ai

′
(−ξm)Ai

′
(−ξn). (2.70)

We know that

Nn =
1

Ai′(−ξn)
, Nm =

1

Ai′(−ξm).

Putting these values we get

⟨n| d
2

dξ2
|m⟩ = 2(−1)n+m+1

(ξn − ξm)2
. (2.71)

So matrix element for P 2 would be

⟨n|P 2|m⟩ = (~)2
2(−1)n+m

(ξn − ξm)2
. (2.72)

2.4.2.2 For Diagonal Matrix Element P and P 2

To calculate the diagonal element for P we need to evaluate the following expression,

⟨n| d
dξ

|n⟩ = NnNn

∫ ∞

0
Ai(ξ − ξn)

d

dξ
Ai(ξ − ξn)dξ. (2.73)

= N2
n

∫ ∞

0
Ai(ξ − ξn)Ai

′
(ξ − ξn)dξ, (2.74)

=
1

2
N2

n|Ai2(ξ − ξn)|∞0 , (2.75)

on applying the limit we get

⟨n| d
dξ

|n⟩ = 0. (2.76)

Therefore,

⟨n|P |n⟩ = 0. (2.77)

Now to �nd matrix element P 2 we �rst need to evaluate the following expression that is,

⟨n| d
2

dξ2
|n⟩ = NnNn

∫ ∞

0
Ai(ξ − ξn)

d2

dξ2
Ai(ξ − ξn)dξ. (2.78)

using integration by parts

= N2
n(Ai(ξ − ξn)Ai

′
(ξ − ξn)|∞0 −

∫ ∞

0
[Ai

′
(ξ − ξn)]

2dξ), (2.79)
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on applying the limit the �rst term get zero and on second term again using by parts we have

= N2
n(−ξ[Ai

′
(ξ − ξn)]

2|∞0 + 2

∫ ∞

0
Ai

′′
(ξ − ξn)Ai

′
(ξ − ξn)ξdξ), (2.80)

we know that Ai
′′
(ξ − ξn) = ξAi(ξ − ξn). Again taking the derivative we get,

Ai
′′′
(ξ − ξn) = Ai(ξ − ξn) + ξAi

′
(ξ − ξn).

Now substituting this value above

= N2
n(ξn[Ai

′
(−ξn)]2+2

∫ ∞

0
Ai

′′
(ξ−ξn)Ai

′′′
(ξ−ξn)dξ−2

∫ ∞

0
Ai(ξ−ξn)Ai

′′
(ξ−ξn)dξ), (2.81)

the third term is the same as we are evaluating so, taking it on the left hand side we get∫ ∞

0
Ai(ξ − ξn)Ai

′′
(ξ − ξn)dξ =

1

3
N2

n

(
ξn[Ai

′
(−ξn)]2 + 2

[Ai
′′
(ξ − ξn)]

2

2

∣∣∣∞
0

)
. (2.82)

Now using

Ai
′′
(ξ − ξn) = ξAi(ξ − ξn)

than

⟨n| d
2

dξ2
|n⟩ = 1

3
N2

n

(
ξn[Ai

′
(−ξn)]2 + [ξAi(ξ − ξn)]

2
∣∣∣∞
0

)
, (2.83)

on applying the limit it simpli�es to,

⟨n| d
2

dξ2
|n⟩ = ξn

3
N2

n[Ai
′
(−ξn)]2, (2.84)

we know that Nn = [Ai
′
(−ξn)]−1 substituting back in above equation

⟨n| d
2

dξ2
|n⟩ = 1

3
ξn. (2.85)

Hence,

⟨n|P 2|n⟩ = −1

3
(~)2ξn. (2.86)

Now doing all this cumbersome e�ort we have calculated the matrix element of position and

momentum for the diagonal and o� diagonal terms up to the square power. Clearly this e�ort

can be continued inde�nitely, or as long as the time and requirement permits.
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Chapter 3

THE COHERENT STATES AND

THEIR GENERALIZATIONS

3.1 Introduction

Coherent states play a central role in quantum mechanics and in general to quantum optics and

in particular in quantum information [37]. The theory of coherent states was �rst introduced

by Erwin Schrödinger [1] in 1926 as part of his description of wave mechanics. He described

the non-stationary states of the harmonic oscillator that retain the shape of wave packet and

owns a classical motion. So they can be de�ned as the states which mimic in the best possible

way the classical trajectory of a particle for the harmonic oscillator. After Schrödinger this

idea didn't receive much attention until R. J. Glauber in 1963 de�ned them as quantum-

mechanical equivalent of a classical monochromatic electromagnetic wave [2]. Realizing their

importance in quantum optics he was awarded the Nobel prize for physics in 2005. During

the past two and a half decades, there have been breath taking development in the �eld of

coherent states and its application. Since then, throughout quantum physics coherent states

and its generalizations have been disseminated.

In Sec. 2 of this chapter, we will review the coherent states for harmonic oscillator which

includes its di�erent ways of construction and the properties it holds. Since we know that
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the electromagnetic �elds can be treated as a collection of the uncoupled harmonic oscillator.

Here, for simplicity, we will discuss a single mode �eld the results of which can then be

straightforwardly extended to n-modes.In Sec. 3, we will discuss the di�erent method of

generalization keeping in view our system which do not exhibit a well de�ned algebra.

3.2 Coherent State for Harmonic Oscillator

The idea of coherent state for harmonic oscillator came from the fact that since for the classical

oscillator the position and momentum behave as a sinusoidal function, but when we come

to the quantum oscillator calculating their expectation value vanishes for energy eigenstates.

Moreover, contrary to the ground state which is minimum uncertain, the uncertainty in higher

states increases as the value of n increases, which is against the correspondence principle which

expect it to behave more classically there. In order to cater these issues, coherent states came

into being. But before going to them, we will �rstly give an overview of the governing algebra

of a harmonic oscillator. The Hamiltonian of a harmonic oscillator having quadratic potential

is

Ĥ =
p̂2

2m
+

1

2
mω2q̂2. (3.1)

Where m is the mass of the particle and ω is the corresponding frequency. The quantization

of this Hamiltonian can be done by using the two operators that is

â =
1√

2~ωm
(ip̂+mωq̂), (3.2)

â† =
1√

2~ωm
(−ip̂+mωq̂). (3.3)

Which are the annihilation and creation operator respectively. There commutation relation

can be calculated straight forwardly using the above de�nition

[â, â†] =
−i
~
[q̂, p̂] = 1. (3.4)

Now we can represent the Hamiltonian in Eq. (3.1) in term of these operators as

Ĥ = ~ω
(
â†â+

1

2

)
, (3.5)
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satisfying the following commutation relations

[Ĥ, â] = −~ωâ , [Ĥ, â†] = −~ωâ†. (3.6)

Since we know that Ĥ|n⟩ = En|n⟩ where En denotes the eigenenergy of the system. Now

multiplying â on both side, we will see that it will always annihilate the energy of the state

thus named as annihilation operator.

Ĥâ|n⟩ = (âĤ − ~ωâ)|n⟩ = (En − ~ω)â|n⟩. (3.7)

Similarly, creation operator will create the same amount of energy as

Ĥâ†|n⟩ = (â†Ĥ + ~ωâ†)|n⟩ = (En + ~ω)â†|n⟩. (3.8)

So named as creation operator. The number operator is de�ned as N = â†â. Applying it to

the number states we get

N̂ |n⟩ = n|n⟩, (3.9)

and holds the following commutation relation.

[N̂ , â] = −â , [N̂ , â†] = â†. (3.10)

Using them, we can �nd the two important relations,

â|n| =
√
n|n− 1⟩ (3.11)

â†|n| =
√
n+ 1|n+ 1⟩ (3.12)

Now, having all this algebra in hand, we are now in a position to construct coherent states

for harmonic oscillator as described below.

3.2.1 Eigenstates of Annihilation Operator

In order to get non-zero value of position and momentum expectation value or equivalently

of annihilation and creation operator, we need to have such a superposition number state so

that the expectation value is a non zero. A unique way to achieve this requirement is to have

26



such a state which is an eigenstate of annihilation operator. Let that state be |α⟩ which is a

coherent state such that

â|α⟩ = α|α⟩, (3.13)

Where α is a complex number. Since â has been non-hermitian operator, its eigenvalues can

be, and are complex and in analogue we can say

⟨α|â† = (α)∗⟨α|. (3.14)

But, coherent state is not an eigenstate of creation operator. Since number state form a

complete set of orthonormal basis so we can represent a coherent state in terms of them by

using the following approach

|α⟩ =
∞∑
0

|n⟩⟨n|α⟩, (3.15)

where ⟨n|α⟩ denotes the probability amplitude. As ⟨n|â =
√
n+ 1⟨n + 1| so from Eq.(3.13)

we observe

⟨n|â|α⟩ =
√
n+ 1⟨n+ 1|α⟩ = α⟨n|α⟩, ⇒ ⟨n|α⟩ = α√

n
⟨n− 1|α⟩, (3.16)

so on iterating we will have,

⟨n|α⟩ = (α)n√
n!

⟨0|α⟩, (3.17)

Substituting this value above, we get

|α⟩ = ⟨0|α⟩
∞∑
0

(α)n√
n!

|n⟩. (3.18)

With normalizing it, we will have ⟨0|α⟩ = e−
|α|2
2 . Hence the coherent states can be represented

in terms of the number state as

|α⟩ =
∞∑
n=0

|n⟩⟨n|α⟩ = e−
|α|2
2

∞∑
n=0

αn

√
n!
|n⟩. (3.19)

3.2.2 Displaced Vacuum States

The de�nition of displacement-operator coherent states requires that the wave packet keeps its

shape and oscillates with some classical motion. The name refers to as a method of generating
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the states, whereby the displacement operator acts upon the ground state of the unperturbed

system. This has the e�ect of "displacing" the system from its equilibrium. In case of the

quantum harmonic oscillator, this causes the wave packet to oscillate within the potential.

The unitary displacement operator for a complex number α is de�ned as

D̂(α) = e(αâ
†−α∗â), (3.20)

which holds the following relation

D̂(−α) = D̂(α)† = D̂(α)−1.

The coherent states can then be de�ned as

|α⟩ = D̂(α)|0⟩. (3.21)

In order to derive the above relation we will use the Baker −Haussdorf formula given for

any two operators as

eX̂+Ŷ = eX̂eŶ e−
1
2
[X̂,Ŷ ]. (3.22)

provided [X̂, [X̂, Ŷ ]] = [Ŷ , [X̂, Ŷ ]] = 0 when [X̂, Ŷ ] ̸= 0. Here we have X̂ = αâ† and Ŷ = α∗â

and [X̂, Ŷ ] = |α|2 using the above identity we can write

D̂(α) = e−
1
2
|α|2e(−α∗â)e(αâ

†). (3.23)

Now applying the above form of displacement operator upon the vacuum state of a harmonic

oscillator and using the series expansion of the exponentials we see that

e(αâ
†)|0⟩ =

∞∑
n=0

αn

√
n!
|n⟩, (3.24)

and

e(−α∗â)|0⟩ = 0, (3.25)

Hence,

|α⟩ = D̂|0⟩ = e−
|α|2
2

∞∑
n=0

αn

√
n!
|n⟩. (3.26)

Now the equation is exactly the same as that obtained using the annihilation operator de�-

nition which shows the equivalence of the two de�nitions.
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3.2.3 Minimum-Uncertainty States

As we know that coherent states for the ground state of harmonic oscillator are minimum

uncertain. Except, of it when we calculate the uncertainty relation for higher order states we

see that the uncertainty is larger for higher order terms which is against the "correspondence

principle" which expect them to behave more classically. Coherent states are minimum un-

certain to prove that we will take the dimensionless position X̂1 and momentum X̂2 operators

of harmonic oscillator that is

X̂1 =
1

2
(â+ â†), X̂2 =

1

2
(â− â†). (3.27)

Now calculating the expectation value of position with respect to the coherent states as

⟨X̂1⟩ =
1

2
⟨α|â+ â†|α⟩ = 1

2
(α+ α∗), (3.28)

and the expectation value of X̂2 would then be

⟨X̂2
1 ⟩ =

1

2
⟨α|(â+ â†)2|α⟩ = 1

2
(1 + α2 + α∗2 + 2αα∗). (3.29)

Then the uncertainty in X̂1 would be

∆X̂1 =

√
⟨α|X̂2

1 |α⟩ − (⟨α|X̂1|α⟩)2 =
√

1

2
(3.30)

On similar footings we can �nd the uncertainty in momentum which will give us

∆X̂2 =

√
⟨α|X̂2

2 |α⟩ − (⟨α|X̂2|α⟩)2 =
√

1

2
(3.31)

The uncertainty relation would then be

∆X̂1∆X̂2 =
1

2
. (3.32)

Hence, in case of coherent states of the harmonic oscillator, the uncertainty in the X̂1-operator

and the X̂2-operator is minimum. If this is not the case, the states are said to be a squeezed

coherent state.
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3.3 Basic Properties of Coherent States

3.3.1 Non-Orthogonality of Coherent States

As we have earlier de�ned, coherent states as annihilation operator eigenstates owning a

complex value. This clearly shows that the operator â is not hermitian and we cannot auto-

matically say whether the coherent states are orthogonal or not. To see the result all we need

is to calculate the overlap of any two coherent states let it be ⟨γ|β⟩ such that

⟨γ|β⟩ = ⟨0|D̂†(γ)D̂(β)|0⟩, (3.33)

where

D̂(β) = e−1/2|β|2eβâ
†
e−β∗â.

and

D̂†(γ) = e−1/2|γ|2e−γâ†eγ
∗â.

Now substituting the above two values in Eq.(3.33) we get

⟨γ|β⟩ = ⟨0|e−γâ†eγ
∗âeβâ

†
e−β∗â|0⟩e−1/2(|γ|2+|β|2). (3.34)

Using Taylor series for the expansions of exponential

e−γâ† = (1− (γâ†) + ........),

e−β∗â = (1− (β∗â) + .....),

and operating them on left and right sides respectively, we get ⟨0|â† = 0 and β∗â|0⟩ = 0. All

other higher terms would also be zero. All we are left with is a single term contribution from

both sides that is

⟨γ|β⟩ = ⟨0|eγ∗âeβâ
† |0⟩e−1/2(|β|2+|γ|2). (3.35)

Again, using the Taylor expansion for the exponentials

⟨γ|β⟩ = ⟨0|(1 + (γ∗â) +
1

2!
(γ∗â)2 + ....)(1 + (βâ†) +

1

2!
(βâ†)2 + ....)|0⟩e−1/2(|γ|2+|β|2),
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on simplifying, we get,

=
[
1 +

βγ∗

1!

√
1! +

(βγ∗)2

2!

√
2! + ....

]
e−1/2(|γ|2+|β|2),

closing the above series, we get the exponential as,

⟨γ|β⟩ = eβγ
∗−1/2(|γ|2+|β|2), (3.36)

on taking the modulus square we have,

|⟨γ|β⟩|2 = (⟨γ|β⟩) ∗ (⟨γ|β⟩∗), (3.37)

= e(βγ
∗+β∗γ−(|γ|2+|β|2)),

|⟨γ|β⟩|2 = e−|γ−β|2 . (3.38)

So, the coherent states are not orthogonal. They are orthogonal only if |γ − β|2 is in�nity or

distance between them is very large.

3.3.2 Completeness

Coherent states bear a completeness relation except for the fact that they are not orthogonal.

The completeness relation can be de�ned over a complex plane β as

1

π

∫
d2β|β⟩⟨β| = 1. (3.39)

It can be proved using the number state representation of coherent state that is taking the

right hand side and substituting the values we get

1

π

∫
d2β|β⟩⟨β| = 1

π

1√
n!m!

∫
d2ββn(β∗)me−|β|2 |n⟩⟨m|. (3.40)

The above integral can be solved by making the substitution β = reiθ than d2β = rdrdθ and

|β|2 = r2 evaluating the above integral that is∫
d2ββn(β∗)me−|β|2 =

∫ ∞

0
rdre−r2rnrm

∫ 2π

0
dθe(m−n)θ, (3.41)

where
∫ 2π
0 dΘe(m−n)θ = 2πδnm, and for n = m

= 2π

∫ ∞

0
dr re−r2r2n.
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Putting r2 = t and 2rdr = dt

= π

∫ ∞

0
tnetdt, (3.42)

where the above integral is equal to the Gamma function. So the above equation becomes

= πn!. (3.43)

Substituting this value in Eq. (3.40) under the condition that n = m

1

π

∫
d2β|β⟩⟨β| = 1

πn!

∞∑
n=0

|n⟩⟨n|(πn!), (3.44)

so
1

π

∫
d2β|β⟩⟨β| = 1. (3.45)

Hence coherent states are said to form a complete set. With the help of this property we can

write any quantum mechanical state in terms of coherent states.

3.3.3 Over Completeness

The unusual property of coherent is its over-completeness by that we mean that together

with the property of non orthogonality and over completeness, we can not only represent any

quantum mechanical state in terms of coherent states but we can also write one coherent

state in terms of another coherent state. Suppose a system in a quantum state |β⟩, then by

non-orthogonality of coherent states there is a nonzero chance that the system is in quantum

state |γ⟩ because |⟨γ|β⟩|2 ̸= 0 when β ̸= γ. Consequently, the number of coherent states

is greater than that needed for basis, therefore coherent states are said to be over-complete.

Let's consider a coherent state |γ⟩ then

|γ⟩ = 1|γ⟩ = 1

π

∫
d2β|β⟩⟨β|γ⟩, (3.46)

and we know that

⟨β|γ⟩ = e−1/2(|β|2+|γ|2)+βγ∗
, (3.47)

so,

|γ⟩ = 1

π

∫
d2βe−1/2(|β|2+|γ|2)+βγ∗ |β⟩. (3.48)

The above equation shows that one coherent state can be represented in terms of another this

is referred to as over-completeness of coherent states.
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3.3.4 Temporal Stability

Coherent states are temporally stable by that we mean that under time evolution a coherent

state will remain coherent. Let us consider a coherent state |β(0)⟩ at time t = 0. By applying

the time evolution operator, we get the time evolved coherent state represented as |β(t)⟩ such

that

|β(t)⟩ = U(t)|β(0)⟩, (3.49)

where for the harmonic oscillator U(t) = e−iHt/~ with H = ~ω(â†a+ 1/2)

|β(t)⟩ = e−i(â†a+1/2)ωt|β(0)⟩, (3.50)

we know that

|β(0)⟩ = e−1/2|β|2
∞∑
n=0

βn√
n!
|n⟩, (3.51)

putting this value in the above equation

|β(t)⟩ = e−1/2|β|2
∞∑
n=0

βn√
n!
e−i(â†â+1/2)ωt|n⟩, (3.52)

= e−1/2|β2|e−iωt/2
∞∑
n=0

βn√
n!
e−iωtn|n⟩,

= e−1/2|β|2e−iωt/2
∞∑
n=0

(βne−iωt)n√
n!

|n⟩,

|β(t)⟩ = e−iωt/2[e−1/2|β|2
∞∑
n=0

β
′n

√
n!
|n⟩]. (3.53)

where β
′
= βe−iωtn and |β′ | = |β|. Hence, only a phase shift came so coherent states are

temporally stable.

3.4 The Generalized Coherent States

The coherent states of the electromagnetic �eld have been a strong source of stimulation in

the development of coherent states. Many attempts have been made to generalize the �eld

coherent states [38], by the generalization of three de�nitions, as explained in the previous
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section. In doing so one discovers that di�erent generalization will lead to di�erent outcomes

and in fact some of the de�nitions cannot be generalized [8, 6, 7]. But since these generaliza-

tions have the algebraic dependence so attempts have been made to construct the methods

which are algebraically independent and can be used to a construct coherent state for any

system. Recently two such techniques have been introduced such as Gazeau-Klauder coherent

states [39] and Gaussian-Klauder coherent state [40]. In the preceding section we have pre-

sented harmonic oscillator as an explicit example of �eld coherent state. Now in this section

keeping in view the eigen value and eigen-functions of our system we will see the method of

generalization for the construction of coherent state for any dynamical system without explicit

dependence of group algebra.

3.4.1 Gazeau-Klauder Coherent States

In 1999, an important class of generalized coherent state known asGazeau−Klauder coherent

states were introduced by Gazeau and Klauder which for any arbitrary quantum mechanical

system can be denoted by |J, φ⟩ [39]. Due to its algebraic independence, this formalism

receives much attention. For any Hamiltonian with discrete (non-degenerate) eigenvalues

en ≥ 0 these states are de�ned as,

|J, φ⟩ = (N (J))−1
∞∑
n=1

Jn/2e−ienφ

√
ρn

|n⟩, J ≥ 0, −∞ < φ <∞ (3.54)

where N (J) denotes the normalization constant. Note that the above relation is very similar

to the coherent state for harmonic oscillator except that we have ρn in place of n!. The

orthonormal vector {|n⟩}∞0 satisfy the eigenvalue equation:

Ĥ|n⟩ = En|n⟩ ≡ ~ωen|n⟩ = en|n⟩. (3.55)

where ω > 0, ~ ≡ 1. The eigenvalue for the Hamiltonian Ĥ are dimensionless energies 0 = e1 <

e2.... Following requirements should be satis�ed by these states: a)continuity of labeling,

b)resolution of the identity, c)temporal stability and d)action identity. The last two con-

ditions require ρ(n) = [en]!. Now �nding the value of the normalization constant

⟨J, φ|J, φ⟩ = (N (J))−2
∞∑

n,m=0

(J n+m
2 e−i(en−em)φ

ρnρm

)
⟨n|m⟩, (3.56)
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where δn,m = ⟨m|n⟩ and for n = m we have

(N (J))2 =
( ∞∑

n=0

J2n

ρn

)
. (3.57)

which properly normalizes the above state. Thus ρn, n = 0, 1, 2.... must satisfy the term∑∞
n=0(J

2n/ρn) is convergent. The range of variable J is �xed as 0 ≤ J ≤ R where R

shows the radius of convergence of this series. Thus the radius of convergence is de�ned as

R = limn→∞(ρn)
1/n and can also be given by the ratio test for convergence as

R = lim
n→∞

(
ρn+1

ρn

)
. (3.58)

Evidently, this R maybe �nite or in�nite and depends upon the large n behavior of ρn. For

the property of resolution of unity we need to see that

I =

∫
|J, φ⟩⟨J, φ|dµ(J, φ) =

∞∑
n=0

|n⟩⟨n|. (3.59)

Let us assume that the no. of ρn, n = 0, 1, 2.... arises from a probability distribution function

ρ(J) by

ρn =

∫ R

0
ρ(J)JndJ, (3.60)

where ρ(J) ≥ 0 is called a probability density function. In other words, ρn is the nth moment

of this density function.we assume that the moment exists and ρ0 = 1, ρn <∞.

Now let us consider the example of Harmonic oscillator where ρn = n!. The radius of

convergence for it can be calculated as

lim
n→∞

ρn+1

ρn
= lim

n→∞

(n+ 1)!

n!
, (3.61)

= lim
n→∞

(n+ 1) = ∞, (3.62)

Thus, we are required to �nd ρ(J) such that

ρn = n! =

∫ ∞

0
ρ(J)JndJ, (3.63)

Hence, ρ(J) = e−J where ρ(J) > 0for allJ and∫ ∞

0
e−JJndJ = Γ(n+ 1) = n!, (3.64)
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we need to obtain dµ(J, φ) to satisfy the resolution of unity. First, we de�ne∫
...dν(φ) = lim

Γ→∞

1

2Γ

∫ Γ

−Γ
....dφ, (3.65)

and we calculate∫
|J, φ⟩⟨J, φ|dν(φ) = lim

Γ→∞

1

2Γ

∫ Γ

−Γ

∞∑
n,m=0

J (n+m)/2 e
−iφ(ρm−ρn)|m⟩⟨n|
N 2(J)

√
ρnρm

. (3.66)

Considering ∫ Γ

−Γ
e−iφ(em−en)dφ = 0, if n ̸= m

and

lim
Γ→∞

1

2Γ

∫ Γ

−Γ
e−iφ(em−en)dφ = 0, if n = m

Then this integral covers the whole range of angle variable (φ) that varies from −∞ < φ <∞.

We arrive at

|J, φ⟩⟨J, φ|dν(φ) = 1

(N (J))2

∞∑
n=0

Jn

ρn
|n⟩⟨n|. (3.67)

To complete the resolution of unity we de�ne

K(J) = [N (J)]2ρ(J), for 0 ≤ J < R

and

K(J) = ρ(J) = 0, for J > R

where K(J) is expressed in terms of the function ρ(J) which results in the moment ρn and

N (J) is the normalization constant. Then

1

ρn

∫ R

0
K(J)(N (J))−2JndJ,

=
1

ρn

∫ R

0
(N (J))2ρ(J)(N (J))−2JndJ,

=
1

ρn

∫ R

0
ρ(J)JndJ =

1

ρn
ρ(n) = 1.

Hence, the resolution of unity is satis�ed.

The information we set for the model, then leads to action angle identity that is

H(J, φ) = ⟨J, φ|H|J, φ⟩ = ωJ. (3.68)
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Now evaluating it out

H|J, φ⟩ = H

N (J)

[ ∞∑
n=0

Jn/2e−ienφ

√
ρn

|n⟩

]
, (3.69)

=
1

N (J)

[ ∞∑
n=0

Jn/2e−ienφωen√
ρn

|n⟩

]
, (3.70)

then

⟨J, φ|H|J, φ⟩ = 1

(N (J))2

 ∞∑
n,m=0

Jn+m/2e−i(en−em)φωen√
ρnρm

⟨m|n⟩

 , (3.71)

Since
ω

(N (J))2
=

∞∑
n=0

(
Jnen
ρn

)
.

So the above equation becomes

= ω

(( ∞∑
n=0

Jnen
ρn

)/( ∞∑
n=0

Jn

ρn

))
. (3.72)

To satisfy the above condition, we demand that

∞∑
n=0

Jnen
ρn

= J

∞∑
n=0

Jn

ρn
=

∞∑
n=0

Jn+1

ρn
=

∞∑
n=1

Jn

ρn−1
. (3.73)

On comparing both sides, we get
en
ρn

=
1

ρn−1
.

Recalling e0 = 0 we get en = (ρn)/(ρn−1). Therefore, ρ0 = 1 which leads to the relation

ρn = e1e2.....en. (3.74)

Hence the above equation gives ρn in terms of e′ns. Then R is determined as the radius of

convergence for the series
∑∞

n=0 J
n/ρn and dJ dφν = d(J, φ) is the integration parameter.

K(J) is determined in term of ρ(J) when∫ R

0
ρ(J)JndJ = ρn,

The only unknown is the moment generating function to be determined from the numbers

ρn. We need to emphasize that ρ(J) so determined may not be positive throughout, then the
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coherent state construction would not be possible. Now �nding the connection of ρ(J) with

{ρn}. Indeed ∫ ∞

0

JnK(J)dJ

N 2(J)
= ρn, (3.75)

The Mellin transform for a complex s of a function f(x) is de�ned as

f∗(s) =

∫ ∞

0
xs−1f(x)dx ≡ M(f(x); s). (3.76)

and its inverse is then

f(x) =
1

2πi

∫ c+i∞

c−i∞
x−sf∗(s)ds ≡ M−1(f∗(s);x). (3.77)

here c is the integration over the imaginary axis. Then

K(J)

N 2(J)
= M−1(ρ(s− 1);J), (3.78)

we have generalized ρn to a function ρ(s − 1) of a complex variable s and then we calculate

its inverse Mellin transform in the K(J) we needed. The problem of determining the moment

generating function for the moment problem for coherent state on a plane R = ∞ (Stieltjes

moment problem) or coherent state on a disk R <∞ (Hausdor� moment problem) these are

related by inverse Mellin transformation [41].

3.4.2 Gaussian-Klauder Coherent States

In 1999 R. F. Fox introduced the generalized Gaussian-Klauder coherent states [40]. These

states were introduced in order to criticize the notion that a Gaussian function cannot be used

to approximate a coherent state. The basic idea was that a Gaussian function is appropriate

for the construction of generalized Gaussian-Klauder coherent states and the key advantage

of these states was that they satisfy the resolution of unity. Initially, these states were con-

structed for the harmonic oscillator and Rydberg atom. The generalized form of such states

[18] is

|J, φ⟩ = (N (J))−1/2
∞∑
0

e−
(n−J)2

4σ2 eienφ|n⟩, J ≥ 0, −∞ < φ <∞ (3.79)

where, ρn are the moments of positive weight function of the system and

N (J) = e−
(n−J)2

4σ2 . (3.80)

where σ is the width of the Gaussian.
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Chapter 4

Generalized Coherent States for the

Gravitational Cavity

As discussed earlier in the previous chapter the potential inside gravitational cavity do not

have explicitly de�ned algebraic structure. Therefore, Gazeau-Klauder(GK) formulism is

well suited to construct generalized coherent states for such systems. After obtaining the

eigenvalues and eigenfunction of gravitational cavity and discussing the GK coherent states,

we are now in a position to construct GK coherent states for gravitational cavity.

This chapter is organized as follow: In Sec. 1, Gazeau-Klauder coherent states for grav-

itational cavity are constructed. we will then discuss in Sec. 2, the statistical properties of

our coherent states. Furthermore Sec. 3, comprises of spatiotemporal properties of the GK

coherent states which will include the autocorrelation function, the position space probability

density and its time evolution. Lastly, we will study the Phase space picture using the Wigner

function.

4.1 GK Coherent States for Gravitational Cavity

We have discussed the potential inside the gravitational cavity in great detail in chapter 2.

Now following the same procedure as discussed in the previous chapter, we will construct
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the GK coherent states for our system [15]. Since we know that the Hamiltonian for our

system is bounded from below and posses a discrete spectrum with non-degenerate eigenstates.

Keeping in view the energy spectrum of our system as computed in Eq.(2.37) where ω has

the dimensions of energy. We can express H as

Ĥ = ωκ̂, (4.1)

where κ̂ is the dimensionless Hamiltonian. The eigenstates |n⟩ are orthonormal basis and

ful�lls the equation,

κ̂|n⟩ = en|n⟩. (4.2)

Here en are the dimensionless eigenenergies, such that e0 = 0 and en < en+1. By comparing

Eq.(2.37) and Eq.(4.1) we de�ne en for n = 0, 1, 2.... as

en = n2/3, (4.3)

The general form of Gazeau−Klauder coherent states with φ and J as real parameters,

such that −∞ < φ <∞ and J ≥ 0 is de�ned as;

|J, φ⟩ = C(J)

∞∑
n=0

Jn/2e−ienφ√
ρ(n)

|n⟩, (4.4)

we know that ρ(n) is de�ned as the product of all the eigen energies en as

ρ(n) = en.en−1.en−2......e1 (4.5)

putting the value of en we get

ρ(n) = (n!)2/3 = n!f(n!), (4.6)

where f(n!) = 1/(n!)1/3. Hence,the coherent state for gravitational cavity can be expressed

as

|J, φ⟩ = C(J)
∞∑
n=0

Jn/2e−ienφ√
n!f(n!)

|n⟩. (4.7)

Now evaluating the normalization constant �rst that is

⟨J, φ|J, φ⟩ = (C(J))2
∞∑

n,m=0

Jn+m/2e−i(en−em)φ√
n!f(n!)

⟨m|n⟩, (4.8)
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where, ⟨m|n⟩ = δn,m for n = m we evaluate the normalization constant which properly

normalizes our coherent states.

C(J) =
( ∞∑

n=0

Jn

n!f(n!)

)−1/2
. (4.9)

These states satis�es the set of properties necessary to be called GK coherent states [15].

4.2 Statistical Properties

In order to gain insight of the statistical properties of a coherent state, we need to �nd the

variance �rst and for that we need to calculate the expectation value of N̂ and N̂2 that is

⟨n⟩ = ⟨J, φ|N̂ |J, φ⟩ = |C(J)|2
∞∑
n=0

J2

f(n!)n!
n, (4.10)

and

⟨n2⟩ = ⟨J, φ|N̂ |J, φ⟩ = |C(J)|2
∞∑
n=0

J2

f(n!)n!
n2, (4.11)

respectively. The variance will be then

σ2 = ⟨n2⟩ − ⟨n⟩2, (4.12)

σ2 = |C(J)|2
∞∑
0

J2

f(n!)n!
n2 − |C(J)|4

∞∑
n=0

J4

(f(n!)n!)2
n2. (4.13)

In the case of coherent state of harmonic oscillator [3] the mean and variance are equivalent

that is

⟨n⟩cs = σ2cs =
|J |2n

n!
e−|J |2 , (4.14)

which is clearly the Poisson distribution. However, for the case of gravitational cavity the

variance is always greater than the mean as plotted in the Fig(4.2).

4.2.1 Weighting Distribution

The weighting distribution of the coherent states wave packets in gravitational cavity is cal-

culated as

P (n) = |⟨n|J, φ⟩|2, (4.15)
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Figure 4.1: The variance σ2 (solid curve) and mean ⟨n⟩ (dashed curve) as a function of

coherent state parameter J

⟨n|J, φ⟩ = C(J)
Jn/2e−ienφ√
n!f(n!)

, (4.16)

on taking the modulus square we get

P (n) = |C(J)|2 Jn

n!f(n!)
. (4.17)

Now in order to do a comparison we have plotted together the weighting distribution of har-

monic oscillator that is the Poisson distribution, and that in the present case as a function of n

as can be viewed in the Fig(4.2.1). It is clear from the graphs that the weighting distribution

depends only on the parameter J and its mean ⟨n⟩ which increases correspondingly with J .

The distribution for our coherent states is broader as compare to the Poisson distribution of

a harmonic oscillator for a particular value of ⟨n⟩.

42



Figure 4.2: The weighting distribution P (n) for gravitational cavity (bar chart) and harmonic

oscillator(solid curve) as a function of n for: (a) J = 4.56, (b) J = 6.02,(c) J = 7.31, and (d)

J = 9.62.

4.2.2 Mandel Q Parameter

A simple way to measure the nature of the photon statistics of any state is done by calculating

the so-called Q-parameter [37, 42] as

Q =
σ2

⟨n⟩
− 1 (4.18)

For a state with Q > 0 the statistics are super-Poissionian, and in the range −1 < Q < 0

it is sub-Poissonian. Obviously, Q = 0 for the coherent states of harmonic oscillator. A

convenient way to characterize the non-classicality of a state is via the Q-parameter which is

negative whenever, the statistics are sub-Poissonian. For a Fock state the Q-parameter takes

on its greatest possible negative value of −1. Now calculating the Mandel's parameter for the

coherent states wave packet in gravitational cavity and plotting it out as a function of J we

see that it exhibits the super-Poissionian distribution as shown in the �gure below.
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Figure 4.3: Mandel parameter Q as a function of J .

4.2.3 Second-order Correlation Function

The second-order correlation function g2(τ) is basically a mathematical entity for character-

izing the joint probability of detecting one photon followed by another at some �xed position

within the delay time τ [43]. For a single-mode �eld, g2(τ) = g2(0) = constant and thus there

can be no photon bunching (or anti-bunching for that matter). Anti-bunching and bunching

occur only for multi-mode �elds. For harmonic oscillator coherent states, g2(0) = 1. For

g2(0) > 1, the probability of detecting a second photon decreases and this indicates a bunch-

ing of photons. For a thermal �eld, g2(0) = 2 contrary to it, for g2(0) < 1, the probability of

detecting a second photon increases and this is called photon anti-bunching

For a classical �eld state one must have g2(0) ≥ 1 but for a nonclassical �eld state it is

possible to have g2(0) < 1, which, may be interpreted as a quantum mechanical violation

of the Cauchy inequality. One may notice that the condition g2(0) < 1 is the condition in

sub-Poissonian statistics of the Q-parameter to be negative. Indeed Q and g2(0) [44], for a

single-mode �eld are simply related:

g2(0) =
⟨n2⟩ − ⟨n⟩

⟨n⟩2
= 1 +

Q

⟨n⟩
(4.19)
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The fact that Q < 0 when g2(0) < 1 has led to some confusion regarding the relationship of

sub-Poissonian statistics and photon anti-bunching. Note that g2(0) will be less than unity

whenever ⟨(∆n)2⟩ < ⟨n⟩. (For a number state ⟨(∆n)2⟩ = 0.) States for which this condition

holds are sub-Poissonian. (States that possess sub-Poissonian statistics are also nonclassical)

Since g2(0) is constant for the single-mode �eld, photon anti-bunching does not occur, the

requirement for it to occur being g2(0) < 1. The point is that photon anti-bunching and sub-

Poissonian statistics are di�erent e�ects, although they have often been confused as being

essentially the same thing but they are not. Now using the above formula and calculating the

second order coherence for coherent states wave packets in gravitational cavity and plotting

it out as a function of α we see that it exhibits the bunching phenomena.
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Figure 4.4: Second-order correlation function g2(0) verses J .
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4.2.4 Uncertainty Relation

In order to calculate the time independent uncertainty product we �rst calculate the expec-

tation value of position with respect to coherent states

⟨ξ⟩ = ⟨J, φ|ξ|J, φ⟩ = |C(J)|2
∞∑

n,m=0

J (n+m)/2e−i(en−em)φ√
ρ(n)ρ(m)

⟨n|ξ|m⟩, (4.20)

As we have already evaluated the matrix elements in Chapter 2, putting the value

⟨n|ξ|m⟩ = 2(−1)n+m+1

(ξn − ξm)2
,

substituting this value above, we get,

⟨ξ⟩ = |C(J)|2
∞∑

n,m=0

J (n+m)/2e−i(en−em)φ√
ρ(n)ρ(m)

∗ 2(−1)n+m+1

(ξn − ξm)2
. (4.21)

Similarly, the expectation value of ξ2 would be,

⟨ξ2⟩ = ⟨J, φ|ξ|J, φ⟩ = |C(J)|2
∞∑

n,m=0

J (n+m)/2e−i(en−em)φ√
ρ(n)ρ(m)

⟨n|ξ2|m⟩, (4.22)

where,

⟨n|ξ2|m⟩ = 24(−1)n+m+1

(ξn − ξm)4
, (4.23)

so,

⟨ξ2⟩ = |C(J)|2
∞∑

n,m=0

J (n+m)/2e−i(en−em)φ√
ρ(n)ρ(m)

∗ 24(−1)n+m+1

(ξn − ξm)4
. (4.24)

On similar footing we calculate expectation value of momentum we get,

⟨P ⟩ = (−i)|C(J)|2
∞∑

n,m=0

J (n+m)/2e−i(en−em)φ√
ρ(n)ρ(m)

∗ (−1)n+m

ξn − ξm
. (4.25)

and

⟨P 2⟩ = (−i2)|C(J)|2
∞∑

n,m=0

J (n+m)/2e−i(en−em)φ√
ρ(n)ρ(m)

∗ 2(−1)n+m

(ξn − ξm)2
. (4.26)

Now using the above relation we can �nd the variance that is

∆ξ = (⟨ξ2⟩ − ⟨ξ⟩2)1/2. (4.27)

∆P = (⟨P 2⟩ − ⟨P ⟩2)1/2. (4.28)

On multiplying it, we will get the time independent uncertainty relation.
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4.3 Spatiotemporal characteristics

With the advent of modern computational technology, robust numerical calculations of di�er-

ent time-dependent phenomena in quantum mechanics are now common, as is the visualization

of the resulting e�ects. With this, we not only illustrate the wave packets, spread with time,

but also extending it to more novel phenomena such as wave packet revivals [20]. The concept

of wave packet revivals can be understood by considering a quantum wave packet solutions

which are initially highly localized and exhibit quasi-classical behavior, then disperse in time

to a so-called collapsed phase, and latter reform to something very much similar to its ini-

tial state. Which can then be extended to time-development of such solutions in terms of

their position and momentum uncertainties and expectation values. This type of expecta-

tion value analysis, coupled with existing numerical, analytical, and visualization studies can

then help to form a more complete picture of the model. In this section we will discuss the

spatiotemporal properties of our system.

4.3.1 Auto-correlation Function

A standard tool used to probe the approximate return of the wave packet to its initial state

is the auto-correlation function [19] de�ned as

A(t) = ⟨J, φ|J, φ, t⟩ (4.29)

Numerically, the value of |A(t)|2 varies between 1 and 0. The maximum value |A(t)|2 = 1 is

reached when time evolved state exactly matches the initial state, and the minimum value

0 corresponds to non overlapping that is |J, φ, t⟩ is far away from the initial state. For the

oscillator, one can argue that because the wave packets never collapse and are exactly periodic,

there are no revivals. Now calculating the autocorrelation for our coherent state. The time

evolved coherent state for our system can be evaluated by applying the time evolution operator

that is U(t) = e−iHt = e−iωκ̂t we then have,

|J, φ, t⟩ = C(J)

∞∑
n=0

Jn/2e−ien(φ+ωt)

√
ρn

|n⟩. (4.30)
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Then the auto-correlation function for the coherent states wave packet inside the gravitational

cavity would be

A(t) = ⟨J, φ|J, φ, t⟩ =
∞∑
n=0

P (n)e−iεnt (4.31)

here εn = ωen, and P (n) is the weighting distribution which shows the initial localization of

the coherent states with the help of mean and variance. By the revival of wave function we

mean that when the time evolved wave function closely resembles its initial form. A fractional

revival occurs when the time evolved wave function can be describe out as a collection of

spatially distributed sub-wave functions, each of which closely resembles the shape of the

initial shape. Let the coherent state be initially localized at ⟨n⟩ such that ∆n ≪ ⟨n⟩ than

taking the Taylor expansion of εn around n that is

εn = ε⟨n⟩ +
∣∣∣∂εn
∂n

∣∣∣
n=⟨n⟩

(n− ⟨n⟩)
1!

+
∣∣∣∂2εn
∂n2

∣∣∣
n=⟨n⟩

(n− ⟨n⟩)2

2!
+ ...... (4.32)

Which can then be reduces to the formula given below which shows the revival of wave packet

at various time [11] that is

Tr = 2π
( 1

r!

∣∣∣∂rεn
∂nr

∣∣∣
n=⟨n⟩

)−1
(4.33)

These derivatives de�nes di�erent time scales for r = 1, 2, 3.... namely, classical period Tcl =

2π/ε
′
n; the revival time Trev = 2π/12ε

′′
n; the superrevival time Tsup = 2π/16ε

′′′
n ; and so on.

Since the energy spectrum in the case of gravitational cavity is non-linear, so an exact revival

of the initial state does not occur. The revival times depend on ⟨n⟩ and therefore strongly

depends upon α with increasing r.

On plotting it out we see that the coherent states wave packets in the gravitational cavity

follow the classical trajectories for few classical periods and then undergo a collapse. But, in

general case, fractional "super-revivals" and fractional revivals appear as periodic peaks in

|A(t)|2 and the periods in that case are rational fractions of the classical period round-trip

Tcl and Trev the revival time.
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Figure 4.5: The Modulus squared of the autocorrelation function, |A(t)|2, as a function of

scaled time, τ = t/Tcl, for: (a) α = 4.56, (b) α = 6.02,(c) α = 7.31, and (d) α = 9.62.

4.3.2 Probability Density

4.3.2.1 Position Space Probability Density

A very important property to investigate the spatiotemporal evolution of coherent state is the

probability density function [11] which is mathematically described as,

P (ξ, t) = |⟨ξ|J, φ, t⟩|2. (4.34)

Evaluating it for the coherent states of gravitation cavity where

⟨ξ|J, φ, t⟩ = C(J)

∞∑
n=0

Jn/2e−ien(φ+ωt)

√
ρn

⟨ξ|n⟩, (4.35)

then the probability density is given as

P (ξ, t) = |C(J)
∞∑
n=0

Jn/2e−ien(φ+ωt)

√
ρn

ψn(ξ)|2. (4.36)
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where ψn(ξ) is the eigenfunction of gravitational cavity. On plotting it out as a function of

rescaled position ξ at time t = 0 for di�erent values of J we see the position space probability

density as shown below.

Figure 4.6: The probability density P (ξ) as a function of rescaled position for (a) J = 4.56,

(b) J = 6.02,(c) J = 7.31, and (d) J = 9.62.

4.3.2.2 Time Evolved Probability Density

The space time evolution of the probability density as calculated in Eq. (4.36) depends both

on the structure of energy spectrum en and the nature of eigenstates ψn(ξ) of the physical

system, therefore it exhibits an interference structure. This interference is in fact, due to the

time dependent part of the probability density. Now taking the snap shots of the probability

density at di�erent times. We see that the probability density splits into multiple peaks which

exhibits a single peak at t = 0 as shown in Fig. (4.3.2.2). We can also see the time evolution

of probability density which demonstrates the multiple splitting and interference pattern re-

sulting in quantum carpets [45, 32]. As shown in Fig. (4.3.2.2) for 2 and 20 classical periods
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respectively where dark region execute minimum probability and light region execute maxi-

mum probability.

Figure 4.7: Snap shot of probability density vs rescaled position at τ = 0, 1, 2, 3 from (a) to

(d) respectively.
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Figure 4.8: Quantum carpet for 2 and 20 classical periods respectively executing large prob-

ability in light region and low probability in the dark one.

4.3.3 Phase Space Picture Wigner Function

The Wigner function W (x, p) was introduced in 1932 by E. P. Wigner [21]. With the help of

this function we can represent a quantum state |ψ⟩ which can be interpreted as the quantum

equivalent of a "density" of traditional phase space. For any arbitrary density operator ρ̂ it

can be de�ned [3] as

W (x, p) =
1

2π~

∫ ∞

−∞

⟨
x+

1

2
y|ρ̂|x− 1

2
y
⟩
e

ipy
~ dy (4.37)

where |q ± 1
2y⟩ are eigenkets of the position operator and ρ̂ = |ψ⟩⟨ψ| then

W (x, p) =
1

2π~

∫ ∞

−∞
Ψ∗
(
x− 1

2
y
)
Ψ
(
x+

1

2
y
)
e

ipy
~ dy (4.38)

where ⟨x+ 1
2y|ψ⟩ = Ψ(q + 1

2y) and vice versa. Without going into much detail, W (x, p) is a

real function, but is not always positive. Since the Wigner function depends upon both the

position x̂ and momentum p̂ which holds an uncertainty relation that is [x̂, p̂] = i~. Due to

the incompatibility of these observable a joint probability of them cannot be measure which

is in accordance with famous Heisenberg uncertainty relation. The appearance of negative

value refers to as the non-classicality of the Wigner function. Hence the Wigner distribution is
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named as quasi probability distribution [22]. Consequently,W (x, p) cannot be considered as a

true density in phase space. Though it owns the usual properties of a probability distribution.

Integrating over position we get probability density in momentum space∫ ∞

−∞
W (x, p)dq = |⟨x|ψ⟩|2 (4.39)

Similarly, integrating over p we get the probability density of position that is∫ ∞

−∞
W (x, p)dp = |⟨p|ψ⟩|2 (4.40)

Now calculating the Wigner function for our system using Eq. (4.38). On plotting it out we

see the negative values which shows the non-classical behavior of the Wigner function. For

smaller values of J the non classicality is minimum but, as the value J increases, it becomes

more and more prominent.

Figure 4.9: Wigner function for J = 2.
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Figure 4.10: Wigner function for J = 9.62.
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Chapter 5

SUMMARY AND CONCLUSIONS

The thesis focuses on the construction of generalized coherent states for gravitational cavity

and their dynamical properties. Firstly, the gravitation cavity is described schematically as

well as mathematically. The Schrödinger equation corresponding to the gravitational cavity

is mapped onto the Airy di�erential equation whose solutions give the eigenstates in the form

of Airy functions and the eigenenergies as negative zeros of Airy functions. Secondly, using

these eigenenergies and eigenstates, the generalized coherent states are constructed following

Gazeau-Klauder formalism and their various properties are analyzed. Before proceeding to

the dynamical features of the constructed coherent states, we study various statistical char-

acteristics such as, weighting distribution, mean occupation number, second order correlation

function and Mandel Q-parameter. It is found that the coherent states of the gravitational

cavity exhibit the super-Poissionian distribution which is broader than the Poissonian one.

The analysis of the second order correlation function reveals that the constructed coherent

states show the bunching e�ect.

Finally, we analyze the dynamical characteristics of these coherent states with a spe-

cial focus on classical-quantum transition of various phenomena. In order to investigate the

dynamical behavior, the time evolved coherent state are constructed to calculate the auto-

correlation function. In their short time evolution up to few classical periods, the coherent

states exhibit classical-like behavior. Afterwards, the dephasing between various constituting

55



eigenstates, due to the nonlinearity of the energy spectrum, dominates and the coherent state

observes a collapse. Later on, the coherent state reconstructs itself under the condition of

phase matching and the phenomenon of quantum revivals takes place. In addition, the po-

sition space probability density is studied as a function of time. The time evolution of the

probability density undergoes to the constructive and destructive interferences that manifests

the interesting interference structures, known as quantum carpets. Moreover, the phase space

properties of the constructed coherent states are studied by means of Wigner function. The

negativity of the Wigner function re�ects the transition from classical to the nonclassical

behavior of these states.
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