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Abstract

Newton’s theory of gravity proposes instantaneous action at a distance and thus
violates the law of cause and effect. However, Einstein’s General Theory of Relativity
predicts the existence of gravitational waves to carry information throughout the
fabric of spacetime. Linearizing the Einstein field equations (EFEs), we get a wave
equation of gravity. However, this linearization does not help us in defining the
energy associated with gravitational waves. In this thesis, the post-Newtonian
(PN) approximation method has been used to define the energy associated with
gravitational waves. The lowest order post-Newtonian results have been used to
reproduce the Hulse-Taylor binary pulsar signal form.

Going to the higher order PN approximations, the formula for the gravitational
wave potential has been recalculated correct up to 1.5 PN order. The higher order
results (i.e, 2PN, 2.5PN and 3PN) have been taken from literature. The final
results for all these PN orders of approximations are compared and the behavior of
gravitational waves at different PN orders has been observed.
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1

Introduction

By the end of the 19th century, it became a common view that Physics is on the
verge of completion. Some of the great physicists, like William Thomson and Albert
Abraham Morley, made direct claims that the only motivation left in Physics is
precision and that there would now be no new discoveries. However, the 20th

century dawned with a surprise. It was found that for microscopic particles and
for particles moving at velocities comparable to the velocity of light, the laws of
Physics (known at that time) become inapplicable. Thus, there was a need to
develop complete theories for both these regimes. The one formulated for the
microscopic World is called “Quantum Physics” while the other, for ultra-high
velocities, is called “Special Relativity (SR)”.

The Special Theory of Relativity was formulated by Albert Einstein in 1905.
It deals with the motion of macroscopic particles moving with uniform velocities.
Nearly 10 years later, Einstein was able to formulate a ‘General’ Theory of Relativity
(GR).

In GR, Einstein articulated a picture of gravity which was not as such present
in Newton’s theory. In it’s very nature, GR is a field theory of gravity. It relates
geometry to the distribution of matter by a system of partial differential equations
known as the Einstein field equations (EFEs),

Rµν −
1

2
Rgµν + Λgµν =

8πG

c4
Tµν , (1.1)

where Rµν , R, gµν , Λ, G, Tµν are the Ricci tensor, Ricci scalar, metric tensor,
cosmological constant, gravitational constant and stress-energy tensor respectively.
These tensors and scalars are defined in section 1.2 and 1.3. The left hand side of
the field equations represents the geometry of spacetime while the right hand side
represents the matter distribution within a specific region of spacetime.

A limitation of Newton’s theory of gravity is that it proposes instantaneous
action at a distance due to gravity. This is because the scalar potential which
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specifies Newtonian gravity satisfies Poisson’s equation and hence the change in
potential due to the change in mass density is instantaneous. This violates the
principle of cause and effect. On the other hand, GR predicts the existence of
gravitational waves to carry information through the fabric of spacetime and hence
preserves causality. The idea is that GR pictures gravity as curvature of the fabric
of spacetime, and that the accelerated masses can produce disturbance in this
fabric. These disturbances can then propagate through the fabric of spacetime in a
similar fashion to ripples over the surface of water. These ripples in the fabric of
spacetime are called “Gravitational Waves” and they travel at the speed of light.

Another difference between Newton’s theory and GR is that the latter is a
highly non-linear theory. Newtonian gravity specified by scalar potential leads to
linear differential equations. However, the EFEs are a system of coupled non-linear
partial differential equations. This highlights the complexity of GR. We can think
of a method to linearize the EFEs and following this process we get a wave equation
for gravity (section 2.5). In principle, the exact gravitational waves are solutions of
the vacuum field equation (where Tµν = 0). Here arises a conceptual problem! The
source of gravity is mass, which is equivalent to energy (equation 1.23). Therefore,
being solutions of the vacuum field equations, gravitational waves (apparently) seem
to carry no energy, and this contradicts the very definition of a wave. This problem
of energy associated with gravitational waves along with its possible solution(s) is
discussed in the 2nd and the 3rd chapter in detail.

Gravitational waves produce a very small effect on a test particle placed in their
path. This makes it really hard to detect them. For 100 years after they were first
predicted, there was no direct detection of gravitational waves. However, there
was strong indirect evidence of the existence of gravitational waves. In 1974, Hulse
and Taylor observed a pulsar with an unseen companion named PSR B1913+16.
They were able to observe the orbital period decay of the system by emission of
gravitational waves [1]. This example is discussed in the 3rd chapter.

In September 2015 a direct observation of a gravitational wave signal was made
by LIGO (Laser Interferometer Gravitational wave Observatory) [2]. The observed
signal matches with the numerical relativity simulation of binary black hole mergers.
This discovery (or observation) is a milestone achieved in the field of Physics. Some
people call it “the discovery of the century”.

The 1st chapter is devoted to SR and Differential Geometry, which are needed
for GR and give an overview of the conservation laws and the Gaussian flux integrals
which give us the flux of energy (momentum) radiating out of a system. In the
2nd chapter, a brief review of GR is given and gravitational waves are discussed
as a consequence of GR. In the 3rd chapter, I shall discuss the basics of the post-
Newtonian approximation and use it to find the approximate solutions of the EFEs.
In the 4th chapter, I shall discuss the behavior of gravitational waves emitted by
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inspiralling compact binaries at higher post-Newtonian orders.

1.1 Special Relativity

Relativity can be regarded as a theory of motion. In Newton’s theory of motion,
relative velocity of an object is given by simple vector addition of the velocities of
the object and that of an observer. Thus if we consider only 1-dimensional motion,
then the magnitude of relative velocity of an object can be given by simple addition
or subtraction of magnitudes of velocities of the object and the observer. We can
write some transformation equations that allow us to develop a relation between
a moving frame and a rest frame. In Classical Physics, Galilean transformation
equations are used for this purpose. These transformation equations can be written
for 1-dimensional motion as,

t′ = t, x′ = x− vt, y′ = y, z′ = z .

if the motion is along x-axis. We can get to Newton’s velocity addition formula by
differentiating x′ with respect to t′. This velocity addition method suits well for
objects having speeds very small compared to the speed of light. However, it does
not hold when we deal with objects moving at speeds comparable to the speed of
light.

1.1.1 Pre-relativistic Mechanics

Before Albert Einstein, a lot of work was done by different scientists in the quest
of completing the theory of motion. The most important was the work of Hendrik
Lorentz and a famous experiment by Michelson and Morley.

In 1909, Lorentz proposed a theory of motion of electrons [3]. He proposed that
there must be a transformation of coordinates and a new “local time” parameter
must be introduced. The transformation equations thus formed are known as
Lorentz transformation equations.

Lorentz Transformations

In order to derive the Lorentz transformation equations, let us consider two observers
O and O′ as shown in Figure (1.1) such that the observer O′ is moving rightward
with a velocity v relative to the observer O. We consider that at some instance both
the observers coincide, i.e, they are displaced a little along the axis perpendicular
to the x−axis but the are not displaced along the x−axis. This instance can
be taken as the origin of time, i.e, both start their clocks at this instant. Both
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these observers send a signal of light in positive and negative x−directions as they
start moving. Since the speed of light comes out to be the same for all observers,
therefore both the signals travel together. Let the observer O measure time and
space by the coordinates (t, x, y, z) and the observer O′ by (t′, x′, y′, z′).

Figure 1.1: Two observers O and O′, in different frames which are specified by the
coordinates (t, x, y, z) and (t′, x′, y′, z′) respectively. Light signals sent by relatively
moving observers must travel together. The moving wave-fronts P and Q can be
utilized to translate from one frame to another [4].

In order to translate the coordinates from one to the other, we need to find
a common point and see how the coordinates of one observer are given in terms
of the coordinates of the other observer. We consider that at some instant, the
light signal traveling in the positive x−direction reach the point P and the other
traveling in negative x−direction reaches the point Q. The equations for points P
and Q according to observer O are given as,

ct− x = 0 , (at P ) (1.2a)

ct+ x = 0 . (at Q) (1.2b)

Similarly for observer O′ are given as,

ct′ − x′ = 0 , (at P ) (1.3a)

ct′ + x′ = 0 . (at Q) (1.3b)

Since P is given by both the equations (1.2) and (1.3), therefore for both the
frames to be physically equivalent we can write,

ct′ − x′ = λ(ct− x) . (1.4)

where λ is constant of proportionality. Similarly for Q we can write,

ct′ + x′ = µ(ct+ x) . (1.5)

where µ is constant of proportionality. Adding equations (1.4) and (1.5) and
dividing by 2 we get,

ct′ = act− bx . (1.6)
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where a and b are defined as,

a =
λ+ µ

2
, (1.7a)

b =
λ− µ

2
. (1.7b)

Now subtracting equations (1.4) and (1.5) and dividing by 2 we get,

x′ = −bct+ ax . (1.8)

In order to find the values of a and b we make use of the fact that the position
x of O′ according to O can given as x = vt, but according to O′ it is obviously
x′ = 0. Putting these values in eq. (1.8) we get,

0 = −bct+ avt . (1.9)

Since this equation is valid for all values of t, therefore,

b =
ax

c
. (1.10)

Equations (1.6) and (1.8) then become,

ct′ = a
(
ct− v

c
x
)
, (1.11a)

x′ = a
(
x− v

c
ct
)
. (1.11b)

Now, to find out the value of a we make use of the first postulate of special relativity
once again. It can be restated as ”if we interchange the primed and un-primed
variables, it would make no difference.” Now let us define x0 as x at t and x′0 as x′

at t′. Putting t = 0 in eq. (1.11b) we get,

x0
x′

=
1

a
. (1.12)

In order to find out an expression for x′0 we need to first find out a relationship
between x and t when t′ = 0. The relation thus obtained can then be used to find
out an expression for x′ at t′ = 0. Putting t′ = 0 in eq. (1.11a),

ct|t′=0 =
v

c
x
∣∣∣
t′=0

. (1.13)

Inserting this relation in eq. (1.11b) we get,

x′0 = a
(
x− v

c

v

c
x
)
. (1.14)
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Thus, we get,
x′0
x

= a

(
1− v2

c2

)
. (1.15)

Since in principle, x′0/x = x0/x
′, therefore,

a =
1√

1− v2/c2
. (1.16)

Finally we can write the Lorentz transformation equations as,

t′ = γ(t− vx/c2),
x′ = γ(x− vt),
y′ = y,

z′ = z ,

 (1.17)

where γ = 1/
√

1− v2/c2 .

The other significant development was Michelson’s attempt to measure the
velocity of the Earth through the luminiferous aether (using his newly developed
interferometer), as it was thought that space is filled with an invisible material
(aether) which makes it possible for light to reach the Earth from the Sun. The
interferometer consists of a beam splitter, which splits a single beam of light into
two beams. These two beams, after reflecting back from mirrors, come back to
the same point (in or out of phase). Depending upon the phase difference, these
waves interfere constructively or destructively. The constructive interference of two
light beams would appear as a bright band, whereas the destructive interference
would appear as a dark band on the screen. These bright and dark bands produce
interference fringes. Since the relative velocity of Earth is expected to be only in
the direction of relative motion, therefore the velocity of light would be different in
one direction compared to the other. This would result in a fringe shift. Michelson
and Morley expected that a significant fringe shift must be observed because of the
relative motion of Earth through the aether, but none was seen. The experiment
was repeated again and again, at different locations and at different times of the
year, but no fringe shift was observed.

Some explanations were given in the justification of the negative outcome of
the Michelson-Morley experiment. One was that the aether may be dragged with
the Earth, such that there is no relative velocity of the Earth with respect to the
aether. If this was the case then the Earth would lose energy in dragging the aether
and would eventually inspiral into the Sun. Another explanation was that the
aether does not take any energy during the drag as it is massless. This explanation
is even more inappropriate as the aether would then be accelerated infinitely under
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the action of a small force.
Yet another explanation was given by George Fitzgerald. He proposed that due

to some unknown phenomena, there is a contraction in the length of an object in
the direction of motion [4]. Thus, for the bodies moving at velocity v the length is
not d but d′, given as,

d′ = d
√

1− v2/c2 .

Following this argument, there would be no path difference for the two light rays
and hence no fringe shift would be expected. This idea of contraction of length is
called the Lorentz-Fitzgerald contraction.

1.1.2 Einstein’s Special Theory of Relativity

In 1905, Albert Einstein came up with an idea that could solve the problems related
to the theory of motion. He proposed that in the Classical Kinematics the speed of
light ought to be different for different observers. However, Maxwell’s equations
show that the speed of electromagnetic waves is constant in vacuum. Therefore
the idea of observer-dependent speed of light must be dismissed.

He further proposed that if we consider the speed of light to be observer-
independent, then this consideration directly leads us to the Lorentz transfor-
mations. Hence, Einstein put forth his own theory of motion (SR) based on the
following postulates:

1. All inertial frames are physically equivalent;

2. Speed of light in vacuum is the same for all observers.

Inertial frames are those in which Newton’s 2nd law of motion holds. Thus the laws
of physics are the same for a person at rest and a person moving with a uniform
velocity. This means that if you are traveling in a car (moving at constant speed in
a straight line) then you can flip a coin or pour a drink in a cup just as you could
do while sitting on a chair in your room.

The second postulate says that the speed of light in vacuum is observer-
independent. If measured by different observers in different reference frames
it would come out to be the same. We now look at the basic consequences of the
SR.

Time Dilation, Length Contraction and Relativity of Simultaneity

The Lorentz transformations are not directly physically testable. They only refer
to the transformation of coordinates. In order to test the Lorentz transformation
we need to make predictions in terms of intervals. For example, we can consider
what happens to the intervals of time. Let there be an interval of time δt as seen
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by observer O, i.e, δt = t1 − t2. The position remains the same according to O,
therefore x1 = x2 [4]. Writing down the Lorentz transformations for both the times
t1 and t2,

t′1 = γ
(
t1 −

v

c2
x1

)
, (1.18a)

t′2 = γ
(
t2 −

v

c2
x2

)
. (1.18b)

The time interval δt′ as seen by the observer O′ is δt′ = t′1 − t′2. Thus,

δt′ = γ
[
(t1 − t2)−

v

x2
(x1 − x2)

]
. (1.19)

Since x1 = x2, therefore,

δt′ =
δt√

1− v2/c2
. (1.20)

This is known as the time dilation formula. The factor
√

1− v2/c2 is always less
than 1. Therefore, the unit of measurement of time in a moving frame would always
be larger as compared to the that in a rest frame. This means that a moving clock
would run slower as compared to the one at rest.

Einstein proposed that if we synchronize two clocks and then send one of these
clocks to a long journey while the other is kept stationary, then when the moved
clock is brought back, it would be found lagging behind the one at rest. This does
not happen due to some fault in one of the clocks, but this happens because the
time has actually passed differently for both the clocks. Einstein put forth this idea
in the form of his so-called “thought experiment”. Let us replace the clocks with
humans beings. To be synchronized, we consider them to be twins. One of the
twins becomes an astronaut and goes to a long space journey while the other stays
on Earth (say he becomes a politician). After many years, the astronaut comes
back to the Earth. When he meets his twin brother, a young astronaut is amazed
to see an old politician. This thought experiment says that more time has passed
for the politician than that for the astronaut.

We can also think of measuring the spatial intervals. Let the spatial interval
for O be defined as δx = x1 − x2. Now the two ends of the spatial interval must be
seen simultaneously by the observer O′, i.e, t′1 = t′2. Then from eq. (1.17) we can
write,

t1 − t2 =
v

c2
(x1 − x2) . (1.21)
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Then the spatial interval according to O′ is given as,

δx′ = x′1 − x′2 = γ [(x1 − x2)− v(t1 − t2)] ,

δx′ = γ

[
(x1 − x2)−

v2

c2
(x1 − x2)

]
,

δx′ = γδx(1− v2/c2) ,
δx′ = δx

√
1− v2/c2 . (1.22)

This is how we get the Lorentz-Fitzgerald contraction formula.

Relativity of Simultaneity

Let us think of two spatially separated events which occur simultaneously according
to an observer O, one occurs at x1 and the other at x2. According to another
observer O′, moving with velocity v relative to O, both the events occur at,

t′1 = γ
(
t1 −

v

c2
x1

)
= γ

(
t− v

c2
x
)
,

and at,

t′2 = γ
(
t2 −

v

c2
x2

)
= γ

(
t− v

c2
x2

)
.

The difference in time of both events is not zero for O′, but it is,

t′1 − t′2 = γ
v

c2
(x2 − x1) .

This shows that simultaneity is relative.

Energy-Mass Equivalence

One of the most astonishing ideas of Einstein was the equivalence of mass and
energy. It follows from the fact that as a body moves faster it appears to gain more
inertia. Thus the relativistic mass is greater than the rest mass of a body, i.e.

m′ = m0/
√

1− v2/c2 , (1.23)

where m0 is known to be the rest mass of a body. Squaring both sides and
simplifying we get,

m′2c2 −m′2v2 = m2
0c

2 .

Taking the differential on both sides we get,

2m′c2dm′ − 2m′v2dm′ − 2vm′2dv = 0 ,
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since the term m2
0c

2 is constant. Further simplification leads us to,

c2dm′ = v2dm′ +m′vdv . (1.24)

The change in kinetic energy ‘K.E’ is equal to the change in work. i.e.

dK = dW = FdS ′ , (1.25)

where F is the force defined by Newton’s 2nd law of motion as the change in
momentum with respect to time and S ′ is the distance covered by the body. Since
the force is defined as the change in momentum and momentum is defined as the
product of mass and velocity of a body, therefore we can write,

F =
dp

dt′
=
d(m′v)

dt′
= m′

dv

dt′
+ v

dm′

dt′
,

Putting this in eq. (1.7) we have,

dK = m′
dS ′

dt′
dv + v

dS ′

dt′
dm′ ,

where dS ′/dt′ is the velocity v of the body. Thus we can write,

dK = m′vdv + v2dm′ . (1.26)

Comparing eq. (1.24) and eq. (1.26) we can write,

dK = c2dm′.

Integrating both sides within the limits 0 to K for dK and from m0 to m for dm′

we have,
K = mc2 −m0c

2 .

The total energy of a body is the kinetic energy K of the body plus the rest mass
energy m0c

2. Therefore, the total energy E of a moving body is given as,

E = mc2 . (1.27)

Now this is very beautiful to think about. Recall the time when one tries to
memorize the definition of basic sciences from his/her text book in school. There
we encounter the phrase, “Physics is the study of matter, energy and their mutual
interaction”. One concludes from it that Physics deals with the study of two
separate things, namely matter and energy. From the energy-mass equivalence we
have come to know that both matter and energy are actually the same thing with
different appearances.
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Einstein’s Velocity Addition Formula

Einstein showed that the second postulate of Special theory directly leads to the
Lorentz transformations (as we have seen in the previous sections). Therefore, we
can differentiate the spatial component x′ in Lorentz transformation equations (eq.
(1.17)) with respect to the time component t′ to get a relativistic velocity addition
formula. i.e.

ur =
u∓ v

1∓ (uv)/c2
. (1.28)

This is also called Einstein’s velocity addition formula. The minus and plus sign
come from Lorentz and inverse Lorentz transformations respectively (i.e. it depends
upon the relative direction of motion of two objects). After putting u = c in this
formula we can do simple arithmetic and it comes out that the answer is c again.
This shows that there exists a relativistic upper bound in the theory of motion.
The speed of light c is the maximum possible speed at which a body can move in
vacuum.

This is a mind-blowing fact indeed. If a person is engaged in a debate with a
relativist, the relativist would say that the speed of light is the maximum possible
speed available for anything to travel in a vacuum. The person might ask him,
“Think of a particle traveling at some velocity v. It would take a time t for the
particle to reach its destination, if it would travel at the speed of light. Suppose
the particle has reached its destination earlier than t. This surely means that the
particle has traveled faster than c”. The relativist would say “No, it didn’t.” The
other person would then ask him to justify the reason for the early arrival of the
particle. The relativist would say “Well, the particle didn’t reach early because it
traveled faster than light. It reached early because moving at relativistic velocity,
the time got stretched or the distance got shrunk for the particle. Therefore the
particle had more time or had to cover less distance to reach its destination.”

1.1.3 The 4-Vector Notation

Soon after the publication of the SR, Hermann Minkowski (who happened to be
a teacher of Mathematics to Einstein once) presented a more mathematical form
of the theory in the 4-vectors notation. Initially, Einstein seemed to deny the
importance of the 4-vector notation and considered it just a waste of time. However,
it was of great importance for him in the formulation of his General Theory.

The 4-vector notation is actually a mathematical trick to write different compo-
nents of a vector under one argument with a certain index. This index can then
give different components of a vector. For instance, the position 4-vector can be
represented as,

xµ = (x0, x1, x2, x3) = (ct, x, y, z),
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where time is taken to be the zeroth dimension (component) of the position 4-vector.
This language (or formulation) does not only serves well for the description of the
SR but also for the description of the GR. It is not restricted to vectors alone, but
is also good for higher rank tensors description.

Invariant Quantities

While discussing “Relativity”, it feels a bit weird when the word “invariant” comes
in. However, it is a common misconception that SR proposes everything to be
relative. There are certain quantities which remain invariant under coordinate
transformations.

First of all, scalar quantities are invariant under any kind of coordinate trans-
formation. This means that the magnitude of a vector or a scalar potential remains
invariant under the transformation of coordinates.

A vector can be invariant in a sense that during a transformation, the compo-
nents of the vector transform but not the actual vector. Thus the transformation
of the components is recovered by the transformation of the basis vectors, leaving
the vector invariant. If we represent a vector ‘V(x)’ in its components form as,

V(x) = V xi + V yj + V zk =
3∑
i=1

V i(x)ei = V i(x)ei ,

then the transformation of a vector is carried out by the transformation law,

V ′a(x′) =
∂x′a

∂xi
V i(x) ,

where ei represent the basis vectors. Here we have used the Einstein’s summation
convention, which requires that repeated indices imply summation. A vector
satisfying the transformation law discussed above is called a contravariant vector.
Similarly a covariant vector transforms by the transformation law,

V ′a(x
′) =

∂xi

∂x′a
Vi(x) .

The difference between a contravariant and a covariant vector is that a contravariant
vector transforms as a general vector whereas a covariant vector transforms as the
gradient of a scalar field under a coordinate transformation.

Another invariant quantity is a tensor. The invariance of a tensor is same in
sense as that of a vector. A 2nd rank tensor can be represented as,

K = Kij(x)ei(x)ej(x) .
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The transformation laws for a contravariant, covariant and a mixed tensor are given
respectively as,

K ′ab(x′) =
∂x′a

∂xi
∂x′b

∂xj
Kij(x) ,

K ′ab(x
′) =

∂xi

∂x′a
∂xj

∂x′b
Kij(x) ,

K ′ab (x′) =
∂x′a

∂xi
∂xj

∂x′b
Ki
j(x) .

Lorentz Transformations in Four-Vector Notation

We can represent Lorentz transformation equations in 4-vector notation as,

x′µ = Λµ
ax

a ,

where Λµ
a is called the Lorentz transformation matrix. In the matrix form we can

write these transformation equations as,
ct′

x′

y′

z′

 =


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1




ct
x
y
z

 , (1.29)

where β = v/c.

1.1.4 The Light Cone

Consider an infinitesimal displacement vector, whose magnitude remains invariant
under Lorentz transformation, such that,

ds2 = gµνdx
µdxν = c2dt2 − dx.dx .

The magnitude of the vector can be positive, negative, or zero. Corresponding
to these conditions, a 4-vector is called time-like, light-like or a space-like vector,

c2dt2 − dx.dx > 0 time-like ,

c2dt2 − dx.dx = 0 light-like , (1.30)

c2dt2 − dx.dx < 0 space-like .

A time-like vector correspond to the objects which have a velocity less than the
velocity of light. This represents the actual path of a physical (massive) object.
A light-like vector corresponds to objects having a velocity equal to that of the
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velocity of light. Only photons follow the light-like path. A space-like vector
correspond to objects traveling at velocities greater than the that of the velocity
of light. This is not possible for any physical object as the magnitude of vector
becomes negative for this condition. This whole idea is represented in the form of
a cone structure, which is called the “Light Cone”

Figure 1.2: The light cone. The lower half of the light cone represents the past
whereas the upper half represents the future. Present is represented in the form of
hypersurface of simultaneity. An event is a point in the light cone which describes
the ‘where’ and ‘when’ of an event.

1.2 Tensor Algebra and Tensor Calculus

General Relativity talks in the language of tensors, which makes it essential to
study tensors beforehand. Moreover, in GR we have to deal with curved spaces,
rather than flat spaces. The operations of flat spaces do not apply to curved spaces.
Therefore we need to find out a more abstract definition of a space. These abstract
spaces are called manifolds.

A manifold of dimension n is a topological space which consists of points that
have a neighborhood which locally resembles a Euclidean space (Rn) of dimension
n [5]. This means that no matter how complicated is the topology of a space, it
looks like Rn in a local region. The entire manifold is then constructed by smoothly
sewing together these local regions. For a space to be regarded as a manifold, it
must satisfy the following conditions:
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1. It must be a continuum everywhere and must not have many points every-
where;

2. It must be connected everywhere and there must be unique limit points;

3. It must be possible to provide the same number of coordinates for each region
of the space.

The examples of a manifold are the Euclidean space (Rn), the n-sphere (Sn), the
n-torus (T n), etc. Two cones connected at their vertices do not form a manifold as
there exists a point where it does not locally look like a Euclidean space. A single
cone can be thought of a manifold but not a smooth one due to the singularity at
its origin. It could be better described by the notion “manifold with boundary”.

A tensor ‘K’ of rank (n+m) at any point in space can be defined as a set of
numbers with indices n+m, which transforms over the transformation of coordinates
as,

K ′α1...αn
β1...βm

= Πα1
µ1
...Παn

µn(Π−1)
ν1
β1
...(Π−1)

νm
βm
Kµ1...µn

ν1...νm
,

here ‘Π’ serves as a transformation matrix in general. A tensor of such kind is
known as a tensor of contravariant rank n and covariant rank m, and of total rank
n + m. In fact matrices, vectors and scalars are all specializations of tensors of
rank 2,1 and 0 respectively.

A tensor ‘Kµν ’ is said to be symmetric in the pair of indices (µ, ν), if it remains
the same when its indices are interchanged. i.e.

Kµν = Kνµ .

. On the other hand, it is called anti-symmetric if it changes the symbol under
the same operation. i.e.

Kµν = −Kµν .

. Addition (or subtraction) of two tensors can only be carried out if both are
of same rank and of same type. Examples of possible additions of tensors are,

zµν = xµν + yµν ,

zαβγ = xαβγ + yαβγ ,

whereas following type of combinations for tensors cannot be added,

xµν + yµν ,

xµν + yαβ ,

xαµν + yµν .

The addition of two tensors gives a new tensor of the same rank and type. Tensor
addition is commutative and associative.
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The multiplication of two tensors can only be carried out if one is a contravariant
tensor and the other is a covariant tensor in the same index. The product of two
tensors is again a tensor whose contravariant and covariant indices comprise all
indices of the participants. e.g.

Kαβ
γ = Qα

γP
β ,

Kν = XµP
µν .

For a tensor of at least 1 contravariant index and 1 covariant index, the internal
inner product (or trace) can be defined as,

Kα
α .

This is actually the trace of a matrix Kα
β and it is invariant under coordinate

transformation. One can also do the contraction of indices for higher rank mixed
tensors as,

Kαβ
α = P β .

The result is a new tensor ‘P β’ of rank β. Following this procedure, one can get
the order of a tensor reduced from (n,m) to (n − 1,m − 1). This simplifies the
mathematics over the loss of some information.

Now we consider the calculus involving tensors. Tensor Calculus is basically an
extension of the Vector Calculus to the tensor fields. The calculus of tensors is not
entirely trivial. The presence of indices makes it easy to manipulate things in an
easy way but it also makes it too easy to write expressions that have no physical
meaning or have bad properties [6].

So far we have been concerned with the properties of tensors at a given point,
but in differential geometry the main point of concern are tensor fields where the
tensors depend upon the location given by (x). Now we can take the derivative
of the tensor fields and the derivatives can also be represented by an index. For
example the gradient and the divergence of a tensor field Kµν in the flat space can
be given as,

Kµν
,α = ∂Kµν

∂xα
,

Kµν
,ν = ∂Kµν

∂xν
.

For a curved space, simple derivatives do not behave as tensors and they do not
have a proper physical meaning. In order to make sense in the curved space, we
need to use the covariant derivatives in place of simple derivatives. The covariant
derivative gives the total derivative of a vector, i.e. the derivative of the vector
components and that of the basis vectors. Let us consider a vector V = V iei. If
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we differentiate V with respect to a position vector with index k (to differentiate
from index i), then we get,

∂V

∂xk
= (

∂V i

∂xk
)ei + V i(

∂ei
∂xk

) ,

where ∂ei/∂x
k = Γjkiej . Using this in the upper equation and inverting the dummy

indices gives us the definition of a covariant derivative. i.e.

V i
;k = V i

,k + ΓijkV
j ,

where V i
;k represents the covariant derivative of V i with respect to xk in a curved

space, V i
,k represents the simple derivative of V i with respect to xk in flat space

and Γαµν is called the Christoffel symbol which serves as a connection between the
manifold and the surface tangent to it. Christoffel symbols are defined in terms of
the metric tensor as,

Γαµν =
1

2
gαβ(gµβ,ν + gνβ,µ − gµν,β) . (1.31)

The Christoffel symbols contain all the information about the curvature of
coordinate system and can therefore be transformed to zero if the coordinates are
straightened up. Hence, they are not tensor quantities. Christoffel symbols are
also symmetric in the lower pair of indices (i.e. Γαµν = Γανµ). For contravariant and
covariant tensors of rank 2, the covariant derivative is written as,

Kµν
;α = Kµν

,α + ΓµαβK
βν + ΓναβK

βµ ,

Kµν;α = Kµν,α − ΓβαµKβν − ΓβανKβµ .

This can be generalized to the tensors of any rank. The number of times Christoffel
symbols appear in the definition of covariant differentiation is equal to the rank of
a tensor.

Metric Tensor

Of prime importance in GR is the metric tensor. It comes in the picture from the
idea that every point in space is a sort of generalization of the Pythagoras theorem.
The distance between two points in Euclidean space is given as the square root of
the sum of squares of the distances covered in each direction (or coordinate axis).

So, a distance ∆s between two points can be written as ∆s =
√

∆x2 + ∆y2 + ∆z2.
This formula encodes the geometry of Euclidean space and it can easily be written
in the form of a metric. Now, the idea of Pythagoras can be extended to the
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geometry of curved spaces. For instance, an infinitesimal displacement dx for an
arbitrary space can be written as,

dx = eαdx
α ,

Since dx is a vector quantity, so its scalar product with itself (i.e. dx.dx) can
be written as,

dx2 = gαβdx
αdxβ , (1.32)

where gαβ is the metric tensor and it is defined as,

gαβ = eα.eβ .

The metric tensor is symmetric and it depends upon the position of coordinates.
The inverse metric tensor is the contravariant form of metric tensor,

gαβ = eα.eβ .

The product of the metric tensor with its inverse is the Kronecker delta function.

gαβg
βγ = δγα .

The delta function is defined as,

δγα =

{
1 if α = β ,
0 if α 6= β .

Moreover, the metric tensor (in covariant or contravariant form) can be used to
raise or lower indices of a tensor. e.g.

Kα
ν = gαµKµν ,

Kµν = gαµgβνK
αβ .

1.3 Curvature Tensors and Scalars

Before going on to the curvature tensors, let us first go through an overview of
the curvature. The curvature of a surface is defined as the amount by which that
surface deviates from being a flat plane, or of a curve that deviates from being a
straight line. The curvature of a surface can be intrinsic or extrinsic. An intrinsic
curvature is one that can be observed from within the surface (i.e. someone existing
on the same surface can measure its curvature). However, an extrinsic curvature is
one that cannot be observed from within the surface.

The intrinsic curvature of a surface can be measured using the idea of parallel
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transport. Consider a closed curve of an arbitrary shape on an arbitrary surface.
Then draw a vector on the surface such as the tail of the vector lies on some point
on the curve. Now transport this vector throughout the curve by keeping the
direction of the vector parallel to itself. Observe the vector when it reaches the
point where it started. If the vector coincides with its previous image, then the
surface has no intrinsic curvature (i.e. the surface is flat) and if the vector does
not coincide with its image then the surface is curved.

For two dimensional surfaces, the intrinsic curvature is defined by Gauss’
invariant intrinsic curvature (Gaussian curvature). The Gaussian curvature, K, of
a surface can be defined as the product of the principle curvatures κ1 and κ2 at a
given point. i.e.

K = κ1.κ2 ,

To understand the concept of the Gaussian curvature, consider a surface of any
shape (surface of a sphere for example). At any point on the surface, we can find a
normal vector to the surface. The plane which contains a normal vector is called a
normal plane. This normal plane will intersect the surface in a curve. This curve
is called a normal section and its curvature is called the normal curvature. The
maximum and minimum values of normal curvatures are called principle curvatures.
Then finally, the product of two principle curvatures gives the Gaussian curvature
of a surface.

The generalization of the Gaussian intrinsic curvature to higher dimensional
spaces can be obtained by carrying a basis vector along two different directions
in opposite order and then taking the difference of the two results. This can be
done by the use covariant derivatives. We have got the knowledge that covariant
differentiation is sort of a generalization of partial differentiation. But there is a
great difference in both. Covariant differentiation yields a tensor as output whereas
partial differentiation does not. Also, the order of differentiation matters while
taking covariant derivative of a tensor field. Let us take for example the covariant
derivative of an arbitrary tensor K of rank 1,

Ka
;c = Ka

,c + ΓabcK
b . (1.33)

Taking covariant derivative of eq. (1.33) again,

Ka
;c ;d = (Ka

,c),d + ΓaedK
e
;c + ΓecdK

a
;e . (1.34)

Expanding eq. (1.34) with respect to the derivatives involved we get,

Ka
;c ;d = (Ka

,c + ΓabcK
b),d + Γaed(K

e
,c + ΓebcK

b)− Γecd(K
a
,e + ΓabeK

b) . (1.35)

Now interchanging the order of differentiation in eq. (1.35) we get,

Ka
;d ;c = (Ka

,d + ΓabdK
b),c + Γaec(K

e
,d + ΓebdK

b)− Γedc(K
a
,e + ΓabeK

b) . (1.36)
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Subtracting eq. (1.36) from eq. (1.35), balancing the dummy indices and using the
symmetry property of Christoffel symbols we get,

Ka
;c ;d −Ka

;d ;c = Ra
bcdK

b , (1.37)

where Ra
bcd is the “Riemann curvature tensor” and is to be,

Ra
bcd = Γabd,c − Γabc,d + ΓaecΓ

e
bd − ΓaedΓ

e
bc . (1.38)

It is clear from eq. (1.37) that Riemann curvature tensor is a tensor quantity as the
difference of two tensors is again a tensor. Riemann curvature tensor is a tensor of
rank 4 and it describes the curvature of a manifold. If Ra

bcd = 0 then the space is
flat and if Ra

bcd 6= 0 then the space is curved.
We can transform Ra

bcd into its covariant form by contraction of indices i.e.
Rabcd = gafR

f
bcd. It should be noted that Rabcd 6= Ra

bcd. The Riemann tensor is
anti-symmetric in first two as well as last two indices i.e. Rabcd = −Rbacd and
Rabcd = Rabdc. However, it is symmetric if the first and last pairs are interchanged
i.e. Rabcd = Rcdab. Riemann tensor also satisfies the cyclic property,

Rbcd +Racdb +Radbc = 0.

This is known as the first Bianchi identity. In a local coordinate system1 about
any arbitrary point P, i.e. Γabc(P ) = 0 but Γabc,d(P ) 6= 0, Riemann curvature tensor
can be written as,

Rbacd =
1

2
(gbc,ad − gac,bd + gad,bc − gbd,ac) .

The covariant derivative of Riemann tensor can then be written as,

Rabcd;f = Rabcd,f =
1

2
(gbc,ad − gac,bd + gad,bc − gbd,ac),f .

Permutation over c,d and f cyclically leads us to the result,

Rabcd;f +Rabdf ;c +Rabfc;d = 0 . (1.39)

This relation is known as the second Bianchi Identity. It holds in all coordinate
systems.

Contracting the first and the third index of Riemann tensor we can get a
symmetric tensor of rank 2. This 2nd rank symmetric tensor is known as the Ricci
tensor and it is defined as,

Rab = Rd
adb . (1.40)

1For instance the Riemann normal coordinates, which will be discussed in section 2.4 in detial
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From the definition of Riemann tensor in eq. (1.38), the Ricci tensor can be written
as,

Rbd = Γabd,a − Γaba,d + ΓaeaΓ
e
bd − ΓaedΓ

e
ba . (1.41)

The Christoffel symbols Γaba can be further simplified to the form (ln
√
|g|),b. Hence

the Ricci tensor can also be written as,

Rbd = Γabd,a − (ln
√
|g|),bd + (ln

√
|g|),eΓebd − ΓaedΓ

e
ba . (1.42)

The Ricci tensor is the trace of the Riemann tensor. We can further contract the
indices of the Ricci tensor using the metric tensor to get the Ricci Scalar, which is
the trace of the Ricci tensor.

R = gabRab . (1.43)

The Riemann curvature tensor is helpful for determining the nature of a singu-
larity. A singularity is a point (or space) where the curvature of a space becomes
infinite. The problem with the Riemann tensor is that it is expressed in terms
of coordinates. Therefore any problem within the coordinate system would affect
the components of the Riemann curvature tensor. Scalars, on the other hand, are
invariant under coordinate transformations. Thus, we need to construct scalars
from the Riemann tensor. Infinitely many scalars are possible to be constructed
from the Riemann tensor. However, symmetry conditions can be used to show
that there can be only finitely many possibilities of scalars. These scalars can be
written as,

R1 = gabRab ,

R2 = Rab
cdR

cd
ab ,

R3 = Rab
cdR

cd
efR

ef
ab... .

(1.44)

If all the independent curvature invariants defined above are finite then the singu-
larity that exists is a coordinate singularity 2. But if any of the curvature invariants
is infinite, then the singularity is essential 3.

1.4 Geodesics

A geodesic is the generalization of the concept of a straight line to manifolds. In
order to give a general definition of a straight line we can make use of the idea of

2A coordinate singularity is the one that arises due to the poor choice of coordinates. It can
be rooted out by an appropriate choice of coordinates.

3An essential singularity is the one that is a characteristic of the space. An essential singularity
cannot be removed by coordinate transformations
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parallel transport once again. Let us take two points on a flat surface and try to
connect them by means of arbitrary curves. Then draw a tiny vector tangent to
a curve with its tail at one of the two points. Now parallel transport this vector
through the curve to reach the other point. If this tangent vector remains tangent
to the curve throughout the transport, then the curve is said to be a straight line.

If this process is repeated on a manifold, then we get a generalization of what
is called a straight line in a flat space, i.e. a geodesic. A tangent vector ta on a
curve λ, parametrized by xa(λ), is defined as,

ta =
∂xa

∂λ
. (1.45)

In order to transport this tangent vector throughout the curve, we differentiate ta

with respect to λ. If the absolute derivative of ta vanishes with respect to λ, then
the curve is a geodesic. i.e.

Dta

Dλ
= 0 . (1.46)

Upper case is used to differentiate it from the ordinary derivative. Let the absolute
derivative of a vector V a on a curve λ be given as,

DV a

Dλ
=
dV a

dλ
+ Γabct

bV c , (1.47)

where tb is tangent vector to the curve. From eq. (1.46) we know that for a curve
to be geodesic, the absolute derivative of the tangent vector must vanish. By using
ta from eq. (1.45) into eq. (1.47) to get the absolute derivative of ta with respect
to λ and then using the condition (1.46) we get,

d2xa

dλ2
+ Γabc

dxb

dλ

dxc

dλ
= 0 . (1.48)

This is called the geodesics equation and its solutions are called geodesics.

Geodesics as the Shortest Path Between Two Points in a Manifold

We are aware of the fact that the shortest path between two points is a straight
line within a flat space. Now we need to find out the shortest path between two
points on a manifold. This can be done by using Euler-Lagrange equation. The
distance between two points (say A and B) is specified within a manifold by a line
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element,

SAB =

∫ A

B

dS

=

∫ A

B

gab(x
c)ẋaẋbdS

=

∫ A

B

L[xa, ẋa]bdS . (1.49)

Then, we can write,

∂L
∂xc

= gab,cẋ
aẋb ,

∂L
∂ẋc

= gcbẋ
b + gacẋ

a .

The Euler-Lagrange equation for xc is then,

d

dS

(
∂L
∂ẋc

)
− ∂L
∂xc

=

(
dxd

dS

∂

∂xd
gac

)
ẋa +

(
dxd

dS

∂

∂xd
gcb

)
ẋb

+ gac
ẋa

dS
+ gcb

ẋb

dS
− gab,cẋaẋb = 0

= 2gcdẍ
d + (gac,b + gbc,a − gab,c)ẋaẋb = 0 . (1.50)

where the comma in the subscript represents the partial derivative with respect
to the position coordinate with the same index i.e. gac,b = ∂gac/∂x

c.Inverting the
metric in this equation, we get the geodesic equation. This means that geodesics
are the shortest paths between two points on a manifold. It must be noted that
the shortest path between two points is always a geodesic but a geodesic is not
always the shortest path. For example, if a person continue to move on a geodesic
on the surface of the sphere, he would eventually reach the point from where he
set off his journey. Therefore, it is worthwhile to mention that the geodesics are
locally the shortest path between two points on a manifold and not globally.

Lie Derivative

Before we go on to the geodesic deviation, we need to go through the concept
of the Lie derivative. The Lie derivative gives the derivative of a tensor field
(tensor, vector and scalar fields) in the flow of the tangent vector field. When we
differentiate a function in a flat space we can easily write [f(x+ h)− f(x)]/δx.
However, this simple derivative does not hold within a manifold as it is not invariant
under coordinate transformations. There are two ways of defining an invariant
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derivative of a tensor along a curve in a manifold. One way is to ignore the effects
of coordinatization upon the tensor and perform the derivative on the tensor. This
is called absolute or intrinsic derivative (This was first introduced in eq. 1.46). In
actual the derivative is applied on the image of the tensor in the coordinate system.
The other way is to pull out the effects of coordinatization and compute the effects
of the derivative on the tensor in the manifold. This is called the Lie derivative
[7]. Acting on a scalar, the Lie derivative is the same as the intrinsic derivative.
The advantage of using Lie derivative is that there is no need of computing the
Christoffel symbols in order to find out the Lie derivative as we had to do in case
of intrinsic derivative.

In order to understand Lie derivatives let us consider a manifold in which a
tangent vector field is defined as ti(x). These tangent vectors satisfy the condition
(1.45). The curves of the manifold can be represented as shown in figure (1.3).

Figure 1.3: A tangent vector field ti(x) is defined in a manifold that contains
different curves. Another vector vi(x) is also defined on a certain curve in the
manifold, which is to be transported along the curve.

Let P (x) and Q(x+dx) be two points on a curve µ that are infinitely separated.
Another vector field vi(x) is defined on the curve µ. We wish to find out the change in
vi as it gets transported from point P (x) to Q(x+dx). Let xi+dxi = x′i = xi+tidλ,
and vi(x+ dx) = v′i, then the transformation law requires,

v′i(x′) = x′i,jv
j(x)

=
(
xi + tidλ

)
,j
vj(x)

=
(
xi ,j + ti ,jdλ

)
vj(x)

= (δij + ti ,jdλ)vj(x)

= vi(x) + ti ,jv
j(x)dλ . (1.51)
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The point xi + dxi represents the point Q on the curve, thus we can write the
above relation as,

v′i(Q) = vi(P ) + ti ,jv
j(P )dλ . (1.52)

We can also find the value of vi(x+ dx) at point Q(x+ dx) by using Taylor’s
expansion. i.e.

vi(Q) = vi(x+ dx) ≈ vi(x) + dxjvi,j(x)

≈ vi(x) + tjvi,j(x)dλ . (1.53)

Now the comparison of v′i(Q) with vi(Q), gives the change of vi in the flow of ti.
Therefore, the Lie derivative of vi along µ is given by,

£tv
i(P ) = lim

dλ→0

vi(Q)− v′i(Q)

dλ

= lim
dλ→0

vi(P ) + tjvj,j(P )dλ− vi(P − vj(P )tj,jdλ)

dλ
= tjvi,j(P )− vj(P )ti ,j . (1.54)

The general expression for the Lie derivative of a vector field is given as,

£XY (p) = ∂XY (p)− ∂YX(p) , (1.55)

where ∂X represents the directional derivative 4 along the direction of X. The
general expression for the Lie derivative of a tensor field is given as,

£XTab = TadX
d
,b + TdbX

d
,a + Tab,eX

e . (1.56)

We can now use the idea of Lie transport in place of parallel transport just as
are using Lie derivative in place of intrinsic derivative. The difference between both
is that the parallel transport displaces a tensor parallely in the coordinate system
whereas the Lie transport displaces the tensor along the curve on the manifold. For
a tensor to be Lie transported along a curve, the Lie derivative of it must vanish.
i.e.

£XTab = TadX
d
,b + TdbX

d
,a + Tab,eX

e = 0 .

4The directional derivative of a a multi-variable function f(xi) along a given vector v is the
rate at which the function changes at a given point in the direction of v. It is denoted as,

∇vf(xi) = v.∇f(xi) .
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If the metric remains invariant when Lie transported along a curve, then the
tangent vector to the curve is called isometry or a Killing vector. i.e.

£Xgab = 0 ,

Xcgab,c + gacX
c
,b + gbcX

c
,a = 0 . (1.57)

This is known as the Killing equation and its solutions are the Killing vectors.

Geodesic Deviation

If two objects are set to move along two initially parallel trajectories then under
the influence of spatially varying gravitational field, the trajectories of both objects
would bend towards or away from each producing a relative acceleration between
two objects. This phenomenon is known as the geodesic deviation.

Figure 1.4: Two neighboring geodesics which tend to deviate from each other under
the action of a spatially varying gravitational field. The vector tangent to the
geodesics is denoted as t and the separation between both the geodesics is denoted
by a separation vector p.

In order to calculate the relative acceleration vector consider two neighboring
geodesics with the tangent vector t and a separation vector p [7]. The relative
acceleration vector A is defined as,

Aa = p̈a =
d2pa

ds2

= tc(tbpa;b);c . (1.58)

The separation vector would be Lie transported along the geodesic. So its Lie
derivative must be equal to zero. i.e.,

£tp
a = tbpa;b − pbta;b = 0 . (1.59)
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Using eq. (1.59) in eq. (1.58) we can write,

Aa = tc(pbta;b);c

= tcpb;ct
a
;b + tcpbta;b;c

= pctb;ct
a
;b + tcpbta;b;c

= pc(tbta;b); c− pctbta;b;c + tcpbta;b;c . (1.60)

The first term on right hand side vanishes from geodesics equation. We can
interchange the indices b and c in the third term to get,

Aa = −pctbta;b;c + tbpcta;c;b

= −pctb(ta;b;c − ta;c;b) . (1.61)

Now using the eq. (1.37) we can write,

Aa = −Ra
bcdt

bpctd. (1.62)

This relation is known as geodesic deviation. It suggests that the relative
acceleration between two objects moving along neighboring geodesics depends upon
curvature. If Ra

bcd = 0, then the space is flat (i.e. does not have any curvature)
and there is no relative acceleration between objects moving along geodesics.



2

Background of General Relativity
and Gravitational Waves

General Relativity is a geometric theory of gravity. Of all existing theories of gravity,
GR is most consistent with the experimental data and it is accepted as the current
theory of gravity. In GR, space and time are treated as a single four-dimensional
manifold called spacetime. Every point in spacetime specifies an event (describing
the ‘where’ and ‘when’ of an event). The path of a particle in the spacetime is
called a worldline. The tangent vector to a worldline can be time-like, space-like or
light-like (section 1.1.4).

In a four-dimensional spacetime, the components of a diagonalized metric tensor
are specified by a signature. The signature of metric tensor used in this dissertation
is (+,−,−,−) .

2.1 Principles of General Relativity

The basic principles of the General Theory of Relativity are,

1. The Principle of Equivalence;

2. The Principle of General Covariance;

3. The Correspondence Principle.

2.1.1 The Principle of Equivalence

Einstein’s Special Theory of Relativity was restricted to the motion of objects
moving at constant velocities. This is why SR is also called the restricted theory of

35
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relativity. To study dynamics it was necessary to incorporate accelerations into
the theory.

The principle of equivalence allows us to add accelerations to the theory of
relativity. In order to understand the principle, let us first go through the meanings
of inertial and gravitational mass.

Inertial Mass: Inertial mass corresponds to the inertia of a body. i.e. the
property of a body of resisting the change in motion. Inertial mass is defined by
Newton’s second law of motion as,

F = mia .

Gravitational Mass: Gravitational mass corresponds to the property of a
body by which it imparts/experiences the force of gravity on/by another gravi-
tational mass. Depending upon the force imparted or experienced, gravitational
mass can be further subdivided into active and passive gravitational mass.

The active gravitational mass corresponds to the property of a body to generate
a gravitational field. Therefore, the gravitational potential φ due to an active
gravitational mass ma at a distance r from the center of ma is given by,

φ =
−Gma

r
,

where G is Newton’s gravitational constant.
The passive gravitational mass corresponds to the response of a body to a

certain gravitational field. For instance, the response of a massive body placed on
the surface of the Earth is defined in terms of the weight of the body,

W = mpg ,

where g is the gravitational acceleration, as measured on the surface of the Earth.
Repeated experiments from the 17th century showed that the gravitational and

inertial the masses are equivalent [8]. Einstein concluded from the equivalence of
inertial and gravitational masses that a frame in a uniform gravitational field is
physically equivalent to a frame subjected to a uniform acceleration. This is known
as Einstein’s principle of equivalence.

Think of a person in a rocket, and the rocket stands stationary on the surface
of the Earth. The rocket has no window to tell the person about the outside
environment. The person inside the rocket would feel an acceleration due to gravity
of the Earth at a rate equal to 1g = 9.81m/s2. Now consider the same kind of
rocket going out in free-space with an acceleration of exactly 9.81m/s2. There is no
way the person in the rocket can tell whether the rocket is standing on the surface
of Earth or is accelerating with 1g in free-space. This means that a person cannot
locally distinguish between a gravitational field and a corresponding acceleration of
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the frame of reference. Thus, acceleration is physically equivalent to gravity, and
in order to incorporate acceleration, we can incorporate gravity in the theory of
relativity. In this sense GR is a generalization of both SR and Newton’s theory of
gravity.

2.1.2 The Principle of General Covariance

The description of the laws of physics in SR was restricted to the inertial frames of
reference. This restriction is dropped in GR and all frames of reference are allowed.
A generalization of the postulate of SR is that all frames of reference are physically
equivalent. This is known as the principle of general covariance.

Another way to put general covariance is that valid physical laws are expressible
in tensorial form. A change of frame of reference correspond to a coordinate
transformation. Nature does not care about the choice of coordinates, and thus
a coordinate transformation must not affect the form of a physical law. Hence
the form of a physical law must remain invariant under arbitrary coordinate
transformations.

2.1.3 The Correspondence Principle

Newtonian Physics gives a very good description of nature at a scale of macroscopic
objects, moving at velocities very small compared to the velocity of light and in the
region of weak gravitational field. Therefore, GR must reduce to the Newtonian
Physics for the objects moving at velocities very small compared to the velocity of
light and in the domain of weak gravitational fields. This principle is known as
correspondence principle. The Newtonian limits of GR are 1/c→ 0 and G→ 0.

2.2 The Stress-Energy Tensor and the Einstein

Tensor

In GR we deal with the gravitational field. This gravitational field depends upon
the distribution of matter in the spacetime. Thus, a mathematical description of
matter distribution in spacetime is required. Since matter and energy are equivalent,
this mathematical description must incorporate the distribution of energy as well.
The energy can be carried by the matter or it can stored in a field. It can be
contained in stresses set up on a medium. The stress-energy tensor ‘Tαβ’ (also
called energy-momentum tensor) is a symmetric 2nd rank tensor which serves for
this purpose. It acts as a source for the generation of gravitational field and the
right hand side of EFEs is built from it [7].

In GR, dust and perfect fluid are the most commonly used cases of stress-energy
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tensors. The Dust is a type of matter distribution which consists of non-interacting
incoherent matter. It is given by the simplest possible stress-energy tensor defined
as,

Tαβ = ρuαuβ , α, β = 0, 1, 2, 3 , (2.1)

where ρ is the density of mass-energy and uα is the 4-velocity defined as uα = dxα/dτ ,
and τ is the proper time.

The perfect fluid is a non-viscous fluid that has zero heat conduction and no
force between the particles. It is fully characterized by its pressure p and mass
density ρ, defined as,

Tαβ =
(
ρ+

p

c2

)
uαuβ − pgαβ . (2.2)

If the pressure p of the perfect fluid tends to zero, then the stress-energy of
the perfect fluid reduces to the stress-energy of the dust. The conservation of
energy-momentum demands that the covariant divergence of stress-energy tensor
is zero.

Tαβ;β = 0 . (2.3)

This expression gives the conservation energy-momentum of matter distribution
plus that of the fields. In case of flat spacetime, the above equation reduces to,

Tαβ,β = 0 .

which is the conventional representation of conservation of energy-momentum as it
gives the conservation of energy-momentum of matter alone.

The left hand side of EFEs is built from the Einstein tensor ‘Gαβ’, which
expresses the curvature of spacetime in the presence of matter. The Einstein tensor
must be symmetric and divergence-free such that it must be consistent with the
properties of the stress-energy tensor. i.e.

Gαβ = Gβα ,

Gαβ
;β = 0 .

The simplest choice which satisfies the mathematical requirements is Gαβ = gαβ.
This is not only divergence-free but is also gradient-free. It gives a constant stress-
energy. However stress-energy does not necessarily need to be constant, this is
therefore trivial case.

The simplest non-trivial choice would be a linear function of curvature. We
start from the Bianchi identity (eq. (1.39)) to reach a divergence-free function,

Rabcd;f +Rabdf ;c −Rabfc;d = 0 .

Contracting over a and f we get,

Ra
bcd;a +Rbd;c −Rbc;d = 0 .
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Again contracting over b and d,

Ra
c;a +R;c −Rd

c;d = 0 .

or (
Ra

c −
1

2
Rδac

)
;a

= 0 .

We can alternatively write as,(
Rαβ − 1

2
Rgαβ

)
;β

= 0 . (2.4)

Hence the simplest non-trivial, 4-dimensional, divergence free, symmetric function
of curvature is,

Gαβ =

(
Rαβ − 1

2
Rgαβ

)
− Λgαβ , (2.5)

where Λ comes in as the constant of proportionality. It is called the cosmological
constant and its value is negligible for non-cosmological systems.

2.3 The Einstein Field Equations

Gravity is not described as a force in GR as it was in Newton’s theory. It is rather
described as the manifestation of curvature of spacetime. The entire Universe can be
considered a 4-dimensional manifold (the spacetime). In a source-free region (where
no matter is present), the spacetime possesses no curvature and can be represented
as Minkowski spacetime. The shortest path (geodesic) between two points in a flat
spacetime is a straight line. The presence of matter produces a curvature in the
fabric of spacetime. This curvature then results in the geodesic deviation (section
1.4) which produces a relative acceleration between two neighboring geodesics
(eq. (1.61)).Thus the acceleration is related to curvature. We can classically
say that “gravitation causes acceleration and it is caused by the presence of
matter” [7]. Therefore we need to find a mathematical relationship between matter
(energy) distribution and the curvature of spacetime. This relation can be found by
exploiting the fact that the Einstein tensor and the stress-energy tensor are both
divergence-free,

Gαβ = κTαβ + Λgαβ . (2.6)

Using eq. (2.5) we can write,

Rαβ − 1

2
Rgαβ − Λgαβ = κTαβ . (2.7)



40 2. BACKGROUNDOFGENERAL RELATIVITY ANDGRAVITATIONALWAVES

The left hand side of this equation represents the curvature of spacetime and
the right hand side represents the distribution of matter in particular region of
spacetime. κ is the constant of proportionality and its value can be found by
considering the Newtonian limit of the EFEs.

Newtonian Limit of the EFEs

The gravitational potential Φ in the Newton’s theory satisfies the Poisson equation.
i.e.

∇2Φ = 4πGρ . (2.8)

Since 1/c → 0 in the Newtonian limit, therefore ẋ0 → c, ẋi → ui and ui/c ≈ 0.
In other words we can say that ẋi = 0. Also there is no time variation so,
Γ0
00 = Γ0

ij = Γi0j = 0. Moreover the geodesic equations (1.52) can be broken down
into temporal and spatial parts and under the influence of the above mentioned
limits, they reduce to the form,

ẍ0 = 0 , (2.9)

ẍi + Γi00(ẋ
0)2 = 0 . (2.10)

The other limit G → 0 implies that the spacetime must reduce to Minkowki
spacetime. i.e. g00 ≈ − g11 ≈ − g22 ≈ − g33 ≈ 1 and gαβ = 0 otherwise. The
non-zero Christoffel symbols are,

Γ0
0i =

1

2
g00g00,i, Γi00 = −1

2
gijg00,j . (2.11)

Now we can write eq. (2.10) as,

ẍi = −1

2
(∇g00)c2 , (2.12)

where we have taken the limit gij = gii = −1. Classically we can take,

ẍi = −∇Φ .

Eq. (2.12) then reduces to the form,

g00 =
2Φ

c2
+ constant .

In the limit r → 0, constant→ 1. Therefore,

g00 = 1 +
2Φ

c2
. (2.13)
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We now come to the EFEs. Contracting the indices gives,

Rα
α −

1

ffl2
δααR = R− 2R = −R = κT .

We can rewrite eq. (2.7) as,

Rαβ = κ

(
Tαβ − 1

2
Tgαβ

)
,

and,

R00 = κ

(
T 00 − 1

2
Tg00

)
. (2.14)

Let us consider a gravitational source with no stress or other fields but consists
only of matter with density ρ. In the rest frame T 00 = ρc2 and Tαβ = 0 otherwise.
Thus,

T = gαβT
αβ = g00T

00 = ρc2 .

Therefore, eq. (2.14) reduces to,

R00 = κ

(
ρc2 − 1

2
ρc2
)

=
1

2
κρc2 . (2.15)

From the definition of the Ricci tensor (eq. (1.42)) we can write,

R00 = Γ0
00,0 + Γi00,i −

(
ln
√
|g|
)
,00

+
(

ln
√
|g|
)
,0

Γ0
00 +

(
ln
√
|g|
)
,i

Γi00

− (Γ0
00)

2 − 2Γ0
0iΓ

i
00 − Γi0jΓ

j
0i .

Putting in the values of non-zero Christoffel symbols we get,

R00 =

(
−1

2
gijg00,j

)
,i

+
(

ln
√
|g|
)
,i

(
−1

2
gijg00,j

)
,

− 2

(
1

2
g00g00,i

)(
−1

2
gijg00,j

)
,

R00 ≈
(
−1

2
gijg00,ij

)
. (2.16)

Comparing eq. (2.13), eq. (2.15) and eq. (2.16) we get,

∇2Φ ≈ 1

2
κρc4 . (2.17)

The above equation has the same form of Poisson equation as that in Newton’s
theory of gravity. Therefore we can see that GR does reduce to Newtonian theory
in appropriate limits. Comparing eq. (2.8) and eq. (2.17) we can find the value of
κ,

κ =
8πG

c4
. (2.18)
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2.4 Derivation of the EFEs by the Variational

Principle

In GR, the matter distribution serves as the source of spacetime curvature just as
the density serves as the source of potential. We can use the variational principle
to derive the EFEs. The variational principle states that a physical system must
follow the path of evolution for which the action must be minimized. i.e.

δS = 0 . (2.19)

The action S, which is a property associated with the dynamics of a system, consists
of two parts in GR, a gravitational part SG and a matter part SM . The matter
part involves the metric tensor as,

SM =

∫
V

√
|g|T (matter)d4x =

∫
V

√
|g|T (matter)

αβ gαβd4x . (2.20)

The action for gravity was independently proposed by Einstein and Hilbert [7].
It is purely geometric quantity,

SG = −γ
∫
V

√
|g|Rd4x = −γ

∫
V

√
|g|Rαβg

αβd4x , (2.21)

where R is the Ricci scalar, and γ is an arbitrary term that involves the coupling
of gravity to matter. Since the total action must remain invariant thus,

δS = δSG + δSM = 0 . (2.22)

Let us first consider the variation of gravitational part.

δSG = −γ
∫
V

δ
(√
|g|Rαβg

αβ
)
,

= −γ
∫
V

[(
δ
√
|g|
)
Rαβg

αβ +
√
|g|δRαβg

αβ +
√
|g|Rαβδg

αβ
]
d4x . (2.23)

The variation of Rαβ can be neglected using the Riemann normal coordinates. It is
a coordinate system where the Christoffel symbols are made negligibly small at
a point but its derivative may not be negligible. Consider for instance a function
(x− a)2. If we change the coordinate system as x′ = x− a, then near the origin
(i.e. at x′ = 0) the first derivative, 2x′, is negligible but the second derivative, 2, is
not. Thus in the Riemann normal coordinates Γαβγ = 0 but Γαβγ,ρ 6= 0. Therefore
the Ricci tensor can be defined as,

Rαβ = Γγαβ,γ − Γγαγ,β , (2.24)
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and,
δRαβ = δΓγαβ,γ − δΓ

γ
αγ,β . (2.25)

In our defined coordinate system gαβ,γ = 0, therefore,

gαβδRαβ = (gαβδΓγαβ − g
αγδΓβαβ),γ . (2.26)

The second term in eq. (2.23) then gets the form,∫
V

√
|g|gαβδRαβ =

∫
V

√
|g|(gαβδΓγαβ − g

αγδΓβαβ),γd
4x . (2.27)

We can use Gauss’s divergence theorem to see that only the boundary terms in
the above equation contribute to the variation of Rαβ. Since the metric and its
derivatives vanish at the boundary of region V , therefore,∫

V

√
|g|gαβδRαβ = 0 . (2.28)

The variation of
√
|g| comes out to be,

δ
√
|g| = −1

2

√
|g|gαβδgαβ . (2.29)

Using eq. (2.28) and eq. (2.29) in eq. (2.23) we get variation of gravitational part
of the action, i.e.

δSG = −γ
∫
V

[
Rαβ −

1

2
Rgαβ

]√
|g|δgαβd4x . (2.30)

whereas the variation of matter part goes in the variation of metric tensor as,

δSM =

∫
V

Tαβ
√
|g|δgαβd4x . (2.31)

Using eq. (2.30) and eq. (2.31) in eq. (2.22) we get,

δS =

∫
V

[
−γ
(
Rαβ −

1

2
Rgαβ

)
+ Tαβ

]√
|g|δgαβd4x = 0 . (2.32)

This is only true if,

−γ
(
Rαβ −

1

2
Rgαβ

)
+ Tαβ = 0 .

Putting γ = 1/κ we get the EFEs,

Rαβ −
1

2
Rgαβ = κTαβ . (2.33)
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In order to make this equation consistent with eq. (2.7) we can add a constant
to the gravitational Lagrangian and thereby modify the gravitational Lagrangian
density to,

LG =
√
|g|(R + 2Λ) . (2.34)

The modified form of EFEs after putting the value of κ from eq. (2.18) is,

Rαβ −
1

2
Rgαβ − Λgαβ =

8πG

c4
Tαβ . (2.35)

These EFEs are a system of 10 coupled, non-linear, partial differential equations
for 10 functions of variables. This highlights the complexities of GR.

2.5 Linearized EFEs

In the previous section, we have seen that the EFEs are non-linear. This makes
GR different from the Newton’s theory of gravity as the Newton’s theory includes
linear differential equations. Although any of the consequences of GR come from
its non-linearity, yet it is worthwhile to consider the linear approximation of GR.
The linearization of the EFEs leads us directly to a wave equation for gravity [7].

In GR, field is the metric tensor. The way it appears in the field equations gives
rise to the non-linearity of GR. The appearance of the metric tensor into the field
equations cannot be altered. However we can write the curved spacetime metric as
the flat Minkowski metric ηαβ plus an additional term hαβ. The magnitude of hαβ

must be very small such that the spacetime deviates slightly from being flat. In the
linear approximation we require that the higher powers of hαβ and its derivatives
can be neglected. Thus,

gαβ = ηαβ + hαβ . (2.36)

The inverse metric can be written using the property gαγgβγ = δαβ of metric tensor
as,

gαβ = ηαβ − hαβ . (2.37)

There are no derivatives of ηαβ as for the moment we can use Cartesian coordinates.
Therefore, the Christoffel symbols linearize to,

Γγαβ ≈
1

2
ηγρ(hαρ,β + hβρ,α − hαβ,ρ) . (2.38)
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Clearly the terms quadratic in Christoffel symbols become quadratic in h and can
be neglected. Thus the linearized Ricci tensor is,

Rαβ ≈ Γγαβ,γ − Γγαγ,β

≈ 1

2
[ηγρ((hαρ,β + hβρ,α − hαβ,ρ),γ]

− 1

2
[ηγρ((hαρ,γ + hγρ,α − hαγ,ρ),β]

≈ 1

2
ηγρ(hαρ,βγ + hβρ,αγ − hγρ,αβ − hαβ,γρ) . (2.39)

A choice of coordinates can be made to disappear unnecessary terms in the brackets.
We can rewrite the Ricci tensor as,

Rαβ ≈
1

2
(hγα,βγ + hγβ,αγ − h,αβ)− 1

2
�hαβ , (2.40)

where h = hαα and � is d’Alembertian operator defined as,

� = ηαβ∂α∂β = ∂α∂β = ∂2/∂t2 −∇2 .

The Ricci scalar can be written by contraction of Rαβ by gαβ. It comes out to
be,

R = gαβRαβ = (hγρ,γρ −�h) . (2.41)

We can rewrite the Ricci tensor and scalar as,

Rαβ ≈
1

2

(
hγα −

1

2
hδγα

)
,γβ

+
1

2

(
hγβ −

1

2
hδγβ

)
,αγ

− 1

2
�hαβ ,

R =

(
hγρ − 1

2
ηγρh

)
,γρ

− 1

2
�h , . (2.42)

Putting these values in the field equations we get,(
hγα −

1

2
hδγα

)
,γβ

+

(
hγβ −

1

2
hδγβ

)
,αγ

−�hαβ − ηαβ
(
hγρ − 1

2
ηγρh

)
γρ

−1

2
ηαβ�h =

16πG

c4
Tαβ . (2.43)

To simplify this expression we define a trace-reverse of hαβ as,

h̄γα = hγα −
1

2
hδγα . (2.44)
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Eq. (2.43) now takes the form,

h̄γα,γβ + h̄γβ,αγ −�h̄αβ − ηαβh̄γρ,γρ =
16πG

c4
Tαβ . (2.45)

These are the basic field equation in linearized form. However this can be further
simplified by incorporating another thing which is called the gauge condition. We
know that in Electrodynamics, we obtained a wave equation for 4-vector potential
by incorporating the Lorentz gauge. We can think of a similar kind of gauge
condition under which we could get to the wave equation for gravity. There can be
a number of choices of gauge condition but we had to make only that choice for
which all physical laws remain invariant under the transformation of coordinates.
This is why General Covariance is important. Let us see how the linearized field
equations look like under a gauge condition.

Gauge Transformation

Let us consider an infinitesimal transformation xα → x′α = xα + ξα(xρ) such that
we may neglect the terms quadratic in ξ or h. This is the one kind of coordinate
transformation which leaves the metric invariant. Therefore,

ds2 = gαβ(xρ)dxαdxβ = g′αβ(x′ρ)dx′αdx′β

= g′αβ(x′ρ)(dxα + ξα,µdx
µ)(dxβ + ξβ,νdx

ν) . (2.46)

Using linearization process it is easy to show that,

h′αβ ≈ hαβ − ξα,β − ξβα . (2.47)

Thus we have,

h̄′
γ
α = hγα −

1

2
hδγα − ηβγξα,β − ξγ,α + ξγ,γδ

γ
α . (2.48)

Differentiating w.r.t xγ, the last two terms cancel out and we are left with,

h̄′
γ
α,γ = h̄γα,γ − ηβγξα,βγ . (2.49)

Choosing ξα appropriately we can make,

h̄γα,γ = 0 . (2.50)

This is the analogue of the Lorentz gauge in GR. Using this condition in eq. (2.45)
we finally get the d’Alembertian equation for h. i.e.

�h̄αβ = −16πG

c4
Tαβ . (2.51)
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In the source-free region (where Tαβ = 0), this reduces to the classic wave equation.

�h̄αβ = 0 . (2.52)

This does not only verify the existence of gravitational waves but it also give us
the information that gravitational waves travel at the speed of light.

2.6 Conservation Laws and Gaussian Flux

Integrals

A conservation law states that a certain physical property of a closed system
remains conserved as the system evolves in time. Conservation laws refer to the
conservation of energy-mass, linear momentum, angular momentum and electric
charge. Mathematically, a conservation law is expressed in the form a continuity
equation. In Electrodynamics, the conservation of electric charge is expressed as,

Jα,α = 0 , (2.53)

where Jα = (cρ,~j) is the electric 4-current. Alternatively, the total charge can be
written in integral form [9] and using the Maxwell’s equations Fαβ

,β = 4πJµ we can
write,

Q =

∫
J0d3x =

1

4π

∫
F 0β

,βd
3x =

1

4π

∫
F 0j

,jd
3x =

1

4π

∮
F 0jd2Sj . (2.54)

In the last part, we have used Gauss’ divergence theorem to change volume integral
into surface integral. This type of integral is called a Gaussian flux integral as it
gives us the flux of a a field F oj out of a closed surface S. The flux integrals work
because of the fact that the charge and mass of the source have significant effect
on the field that envelop the source.

This idea can also be extended to GR as the external gravitational field is
also affected by the energy-momentum of the source. Therefore we can think of
developing a similar kind of flux integral for the energy-momentum of a system.
The conservation law that gives the conservation of energy-momentum in a flat
spacetime is given as,

Tαβ,β = 0 . (2.55)

where Tαβ is the energy-momentum tensor. Using the knowledge of Electrodynamics
as a guide (eqs. 2.53 and 2.54) the total 4-momentum of a system must be of the
form,

Pα =
1

c

∫
Tα0d3x . (2.56)
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where dx3 is the volume element of the spacelike hypersurface corresponding to
the observer measuring the momentum. In order to write a flux integral for 4-
momentum of a system, we need a quantity analogous to Fαβ which have crucial
symmetries. This quantity comes out to be,

Hαµβν = −(h̄αβηµν + ηαβh̄µν − h̄µβηαν − h̄ανηµβ) . (2.57)

We shall discuss this quantity Hαµβν in detail in chapter 3. However we can look
upon some important things for now. First of all the quantity Hαµβν possesses the
same symmetries as the Riemann curvature tensor. i.e

Hαµβν = Hβναµ ,

Hαµβν = −Hαµνβ = −Hµαβν ,

Hα[µβν] = 0 .

This quantity Hαµβν is related to the stress-energy tensor Tαβ by the equation,

Hαµβν
,µν =

16πG

c4
(−g)Tαβ , (2.58)

A complete derivation of eq. (2.58) is given in section 3.1. Comparing equations
(2.56) and (2.58) we can write,

Pα =

∫
Tα0d3x =

c3

16πG(−g)

∫
Hαµ0ν

,µνd
3x =

c3

16πG(−g)

∫
Hαµ0j

,µjd
3x

=
c3

16πG(−g)

∮
S

Hαµ0j
,µd

2Sj . (2.59)

Here the closed 2-surface S completely surrounds the source and lies in 3-surface
of constant time x0. This is a flux integral for the 4-momentum of a system. It can
be broken into zeroth and jth components. The zeroth component of 4-momentum
gives us the flux for energy whereas the jth component gives us the flux for linear
momentum. A similar kind of calculation lead us to a flux integral for angular
momentum,

Jαβ =
c3

16πG(−g)

∮
(xαHβµ0j

,µ − xβHαµ0j
,µ +Hαj0β −Hβj0α) . (2.60)

These flux integrals are in fact a very useful tool. In order to evaluate a flux
integrals, we only need to utilize the gravitational field far outside the source. Flux
integrals can be used to calculate the 4-momentum and angular momentum for any
isolated system when the closed integral is over the surface S in the asymptotically
flat region surrounding the source. Although the integrands of flux integrals
are not gauge-invariant , the total integrals are and they have physical meaning
independent of any coordinate system or gauge. These total integrals are tensors
in asymptotically flat region surrounding the source.
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2.7 Exact Gravitational Wave Solutions

By linearizing the EFEs, we have reached to a wave equation for gravity. In
principle, the solutions of the wave equation could be the exact solutions of the
vacuum EFEs. There could be trivial, static solutions which satisfy the Laplace
equation. However, they do not represent moving waves. We are interested in
the non-static exact solutions to the EFEs. The exact solution for cylindrical
gravitational waves was given in 1937 [10] whereas the plane wave solution was
given in 1957 [11].

2.7.1 Exact Solution of the Cylindrical Gravitational Waves

Einstein and Rosen came up with the cylindrical gravitational wave solution in
1937 [10]. A cylinderically symmetric metric can be written as,

ds2 = e2(γ−ψ)(c2dt2 − dρ2)− e−2ψρ2dφ2 − e2ψdz2 . (2.61)

where γ and ψ are two arbitrary functions of time t and ρ is the cylindrical radial
coordinate. The non-zero Christoffel symbols for this metric are:

Γ0
00 = Γ0

11 = Γ1
10 = Γ1

01 = γ̇ − ψ̇ ,

Γ0
01 = Γ0

10 = Γ1
00 = Γ1

11 = γ′ − ψ′ ,
Γ0
22 = −ρ2ψ̇e−2γ ,

Γ0
33 = ψ̇e2(2ψ−γ) ,

Γ1
22 = ρ(ρψ′ − 1)e−2γ ,

Γ1
33 = −ψ′e2(2ψ−γ) ,

Γ2
02 = Γ2

20 = −ψ̇ ,

Γ2
12 = Γ1

21 = −(ψ′ − 1/ρ) ,

Γ3
03 = Γ3

30 = ψ̇ ,

Γ3
13 = Γ3

31 = ψ′ ,

Γµµ0 = Γµ0µ =
(

ln
√
|g|
)
,0

= 2(γ̇ − ψ̇) ,

Γµµ1 = Γµ1µ =
(

ln
√
|g|
)
,1

= 2(γ′ − ψ′) + 1/ρ ,



(2.62)

where the prime refers to the derivative with respect to ρ and the dot represents
the derivative with respect to ct. The components of Ricci tensor can be obtained
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using eq. (1.42). The non-zero components of Ricci tensor are:

R00 = −(γ̈ − ψ̈) + (γ′′ − ψ′′) +
1

ρ
(γ′ − ψ′)− 2ψ̇2 ,

R11 = (γ̈ − ψ̈)− (γ′′ − ψ′′) +
1

ρ
(γ′ + ψ′)− 2ψ′

2
,

R22 = ρ2e−2γ(−ψ̈ + ψ′′ +
1

ρ
ψ′) ,

R01 =
1

ρ
γ̇ − 2ψ̇ψ′ .


(2.63)

We are interested in finding the exact solution of the EFEs. Since the exact
solutions of the EFEs satisfy,

Rµν = 0 ,

therefore we have,

−(γ̈ − ψ̈) + (γ′′ − ψ′′) +
1

ρ
(γ′ − ψ′)− 2ψ̇2 = 0 , (2.64)

(γ̈ − ψ̈)− (γ′′ − ψ′′) +
1

ρ
(γ′ + ψ′)− 2ψ′

2
= 0 , (2.65)

ρ2e−2γ(−ψ̈ + ψ′′ +
1

ρ
ψ′) = 0 , (2.66)

1

ρ
γ̇ − 2ψ̇ψ′ = 0 . (2.67)

Eq. (2.66) is a second order linear differential equation representing the con-
ventional form of the cylindrical wave equation. The solution of this equations
includes two arbitrary constants. One corresponds to the ingoing cylindrical wave
and the other to the outgoing cylindrical wave. We Retain only to the outgoing
waves which have the amplitude A and frequency ω, and thus we get the solution,

ψ(t, ρ) = A[J0(x) cosωt+N0(x) sinωt] , (2.68)

where x = ωρ/c and J0 and N0 are the zeroth order Bessel and Neumann functions
respectively. To solve the other equations we can add eq. (2.64) and eq. (2.65).
Thus we get,

γ′ = ρ(ψ̇2 + ψ′
2
) . (2.69)

Equations (2.69) and (2.67) give the space and the time derivatives of γ(t, ρ) in
terms of functions that are known through eq. (2.60). To get the required solution
we need to integrate with respect to space and time using the standard formulas
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for the integrals of the Bessel’s and the Neumann’s functions. The final solution
for γ then comes out to be [7],

γ(ρ, t) =
1

2
A2x{J0(x)J ′0(x) +N0(x)N ′0(x)

+ x[J0(x)2 +N0(x)2 + J ′0(x)2 +N ′0(x)2]

+ [J0(x)J ′0(x)−N0(x)N ′0(x)] cos 2ωt

+ [J0(x)J ′0(x)−N0(x)N ′0(x)] sin 2ωt}

− 2

π
A2ωt . (2.70)

The prime now refers to the derivative with respect to x, not ρ.

2.7.2 Exact Solution of Plane Gravitational Waves

In 1957 Bondi and Robinson obtained the plane wave solution for gravitational
waves [11]. In order to reach the plane wave solution, we consider a line element
which possesses the symmetries of a plane and represents a wave going in the
x-direction. All the coefficients are the functions of (ct− x), which is represented
by u,

ds2 = e2α(u)(c2dt2 − dx2)− u2(e2β(u)dy2 + e−2β(u)dz2) . (2.71)

Here x, y and z are not the usual Cartesian coordinates but are rectangular coordi-
nates in a curved spacetime. The non-zero Christoffel symbols are:

Γ0
00 = Γ0

11 = Γ1
01 = Γ1

10 = α′(u) ,

Γ0
01 = Γ0

10 = Γ1
00 = Γ1

11 = −α′(u) ,

Γ0
22 = Γ1

22 = u(uβ′ + 1)e2(β−α) ,

Γ0
33 = Γ1

33 = u(−uβ′ + 1)e−2(β+α) ,

Γ2
02 = Γ2

20 = −Γ2
12 = Γ2

21 = (β′ − 1/u) ,

Γ3
03 = Γ3

30 = Γ3
13 = Γ3

31 = (β′ + 1/u) .


(2.72)

where prime indicates the derivative with respect to u. We can make use of eq.
(1.42) again to obtain the components of the Ricci tensor. The non-zero components
of the Ricci tensor are:

R00 = 4
α′(u)

u
− 2β′(u)

2
,

R11 = 4
α′(u)

u
− 2β′(u)

2
,

R01 = −4
α′(u)

u
+ 2β′(u)

2
.


(2.73)
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We see that R00 = R11 = −R01. Therefore we have only one Einstein equation,

4
α′(u)

u
− 2β′(u)

2
= 0 . (2.74)

From this we get the exact plane gravitational wave solution,

α′(u) =
1

2
uβ′(u)

2
. (2.75)

Thus any α(u) and β(u) are the exact plane gravitational wave solutions if they
satisfy eq. (2.67). Moreover, eq. (2.63) describes a linearly polarized plane
gravitational wave. The more general, circularly polarized plane gravitational wave
is given by the line element,

ds2 = e2α(dt2 − dx2)− u2[(dy2 + dz2) cosh 2β

+ (dy2 − dz2) sinh 2β cos 2θ − 2 sinh 2β sin 2θdydz] , (2.76)

where α, β and θ are arbitrary functions of u. The condition for the exact solution
in vacuum in that case comes out to be,

2α′(u) = u[β′(u)
2

+ θ′(u)
2
sinh22β(u)] . (2.77)

It can be easily verified that for θ = 0, eq. (2.69) reduces to eq. (2.67) and eq.
(2.68) reduces to eq. (2.63).
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Post-Newtonian Approximation

In section 2.5 we have seen that the linearization of the EFEs leads us to a wave
equation (2.52) for gravity. The gravitational waves are exact solutions of the
vacuum EFEs (section 2.7). However, there is a conceptual problem with eq.
(2.52). The source of gravitational waves is matter (which is equivalent to energy).
Therefore, being solutions of the vacuum EFEs, gravitational waves appear to carry
no energy. However, it has been shown that gravitational waves impart momentum
on a test particle placed in their path. Weber and Wheeler [12] showed that the
cylinderical gravitational waves impart momentum on a test particle placed in
their path. Later Ehler and Kundt [13] extended the demonstration for a test
particle placed in the path of plane gravitational waves. The general formula for
momentum imparted on a test particle in an arbitrary spacetime was given by
Qadir and Sharif [14].

Though it is obvious that gravitational waves do carry energy in order to impart
momentum to a test particle, no clear measure was available for the energy they
carried. The problem is that energy is not generally conserved in GR, it is only
conserved in a spacetime that possesses a time-like isometry. Another problem is
that the equation (2.52) comes out as a result of the linearization of the EFEs.
Thus it is correct only up to the terms linear in h̄. Therefore, in order to define
energy associated with the gravitational waves, we can think of re-inserting the
non-linear terms back into the eq. (2.52). The method used for this purpose is
called the post-Newtonian approximation.

The post-Newtonian (PN) approximation is a method that gives approximate
solutions of the EFEs. The approximations are given in the form of expansions in
small parameters which give orders of deviation from Newton’s theory of gravity
(thus the name “post-Newtonian”).

53
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3.1 Landau-Lifshitz Formalism

Lev Landau and Evgeny Lifshitz [15] provided a method by which we can reintroduce
the non-linear terms into the EFEs. They started not with the idea of linearizing
the EFEs but with the idea of conservation of energy and momentum.

The conservation of a physical quantity is given by the equation of continuity in
a flat spacetime. We have encountered the example for the conservation of electric
charge many times in electrodynamics. In the 4-vector notation, the conservation of
electric charge can simply be written as the four divergence of current density (i.e.
Jα,α = 0). In GR the spacetime is not always flat. Therefore the four divergence
must be replaced by the covariant divergence in order to give pure physical meaning
in a curved spacetime. Thus the conservation of energy-momentum in a curved
spacetime is given by,

Tαβ;β = 0 . (3.1)

However, this does not generally express the conservation of energy-momentum of
the matter distribution. It rather expresses the conservation of energy-momentum
of the matter distribution plus that of the gravitational field. In order to determine
the conserved 4-momentum of the matter plus that of the gravitational field we
make use of Riemann normal coordinates once again which we have previously used
in the section 2.4. We have seen that using the Riemann normal coordinates, all
the Christoffel symbols vanish in a given locality but their 1st derivatives survive,
therefore eq. (3.1) reduce to,

Tαβ,β = 0 . (3.2)

Since the 4-divergence of the stress-energy tensor is zero, therefore we can write it
in terms of an antisymmetric quantity Aαβν as,

Tαβ = Aαβν,ν , (3.3)

the quantity Aαβν is antisymmetric in the last pair of indices, i.e. in β and ν.
This condition is analogous to the idea of the introduction of the magnetic vector
potential in Electrodynamics1. Since the curl of a vector potential yields magnetic
field (which is a flux density) therefore we can use this analogy in eq. (3.3), where

1From Maxwell’s equation we know that the divergence of magnetic field is zero, i.e.

∇.B = Bi
,i = 0 .

Therefore we can write the magnetic field as the curl of a vector potential (i.e. the magnetic
vector potential),

B = ∇×A = εijkA
j
,k î ,

such that the divergence of the curl of the magnetic vector potential vanishes, satisfying the
Maxwell’s equation. This idea can be generalized to quantities with n indices.
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the 4-divergence of an antisynnmetric potential term yields the stress-energy tensor
(which contains the density and flux of the energy and momentum in spacetime).
We can reach to this form of equation by applying the Riemann normal coordinate
condition to the EFEs. We make use of the EFEs of the form,

Tαβ =
c4

8πG

[
Rαβ − 1

2
gαβR

]
. (3.4)

Under the choice of Riemann normal coordinates, only the first two terms, in
the definition of Ricci tensor (eq. (1.41)), will survive. Thus we have,

Rαβ =
1

2
gαµgβνgλρ {gλρ,µν + gµν,λρ − gλν,µρ − gµρ,λν} . (3.5)

Reducing this to get Ricci scalar and putting both of these in eq. (3.4) we get,

Tαβ =

{
c4

16πG

1

(−g)

[
(−g)(gαβgµν − gανgβµ)

]
,µ

}
,ν

. (3.6)

The quantity
[
(−g)(gαβgµν − gανgβµ)

]
,µ

is the antisymmetric quantity which comes

in place for Aαβν . The terms within the square brackets can be represented by
an antisymmetric quantity having four indices (let Hαµβν). Since all the first
derivatives of gαβ vanish at the point under consideration, the factor 1/(−g) can
be taken out of the derivative w.r.t ν. Therefore,

Hαµβν
,µν =

16πG

c4
(−g)Tαβ , (3.7)

where,
Hαµβν = (−g)(gαβgµν − gανgβµ) . (3.8)

We can also write it in the form,

Hαµβν = gαβgµν − gανgβµ , (3.9)

where,
gαβ =

√
−ggαβ . (3.10)

We denote g by gothic font style in order to differentiate it from the regular inverse
metric tensor and we call it the gothic inverse. It is Eq. (3.7), derived under the
local coordinate condition (gαβ,γ), is not valid for any arbitrary choice of coordinates.
In general the equality does not hold and the difference between the quantities on
both the right and the left hand sides is different from zero. Thus we can modify
the eq. (3.7) for any arbitrary choice of coordinates as,

Hαµβν
,µν =

16πG

c4
(−g)

[
Tαβ + tαβLL

]
. (3.11)
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This is an alternative form of the EFEs. On the right hand side of the equation
we have a quantity tαβLL adding up to the energy-momentum Tαβ of the matter
distribution as a source term. This quantity represents the energy-momentum of
the gravitational field and it is called the gravitational energy-momentum pseu-
dotensor or the Landau-Lifshitz pseudotensor. Thus the advantage of using this
representation is that now we can see the effects due to gravity coming in our
equation. The exact expression for tαβLL can be obtained by using the regular full
form of the EFEs for the value of Tαβ and eq. (3.9) for the value of Hαµβν .

16πG

c4
(−g)tαβLL =gαβ,λg

λµ
,µ − gαλ,λg

βµ
,µ +

1

2
gαβgλµg

λν
,ρg

ρµ
,ν

− (gαλgµνg
βν
,ρg

µρ
,λ + gβλg µνg

αν
,ρg

µρ
,λ) + gλµg

νρgαλ,νg
βµ
,ρ

+
1

8
(2gαλgβµ − gαβgλµ)(2gνρgστ − gρσgντ )gντ,λgρσ,µ . (3.12)

Since Hαµβν is antisymmetric in β and ν, therefore the equation

Hαµβν
,µνβ = 0 , (3.13)

holds an identity [16]. Comparing this with eq. (3.11) we can write,[
(−g)(Tαβ + tαβLL)

]
,β

= 0 . (3.14)

This expression is equivalent to the conservation law represented in eq. (3.1).
We can use the idea of Gaussian flux integrals, introduced in section 2.6, to find
out the total 4-momentum of matter plus that of the fields of a system and can
eventually obtain a formula for the energy radiated out of a system via emission of
gravitational waves.

3.1.1 Integral Conservation Identities

Since it includes a partial derivative, eq. (3.14) can be converted into an integral
identity. We consider a 3-dimensional region V with a fixed (time-independent)
domain of the spatial component xj, bounded by a 2-dimensional surface S. We
assume that V contains atleast some of the matter (so that Tαβ is non-zero
somewhere within V ). However the surface S does not intersect any of the matter
(so that Tαβ is zero everywhere on S). From eq. (3.14) in comparison with eq.
(2.56) we can write the total 4-momentum Pα[V ] of the system within the volume
V as,

Pα[V ] =
1

c

∫
V

(−g)(Tα0 + tα0LL)d3x . (3.15)
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This total 4-momentum can be decomposed into its temporal and spatial compo-
nents. The zeroth component gives us the energy as E[V ] = cP 0[V ]. Therefore we
can write the expression for energy as,

E[V ] =

∫
V

(−g)(T 00 + t00LL)d3x . (3.16)

The linear momentum is given by,

P j[V ] =
1

c

∫
V

(−g)(T j0 + tj0LL)d3x . (3.17)

Similarly we can define the total angular momentum Jαβ[V ] associated with the
region V as,

Jαβ[V ] =
1

c

∫
V

[
xα(−g)(T β0 + tβ0LL)− xβ(−g)(Tα0 + tα0LL)

]
d3x . (3.18)

In the flat spacetime, using the Lorentzian coordinates, Pα defined by eq. (3.15)
would have a firm interpretation as the total momentum vector associated with
the energy-momentum tensor Tαβ. However in the curved spacetime and in the
non-Lorentzian coordinate system it does not have any direct physical meaning,
since the pseudotensor cannot be defined at every point in V . We can think of
a method to convert the volume integral into surface integral in order to extract
some physical meaning out of it. Taking the time derivative on both sides of eq.
(3.15) we have,

Ṗα[V ] =
1

c

∫
V

[
(−g)(Tα0 + tα0LL)

]
,0
d3x . (3.19)

From eq. (3.14) we can write,

1

c

[
(−g)(Tα0 + tα0LL)

]
,0

= −
[
(−g)(Tαj + tαjLL)

]
,j
. (3.20)

Thus we can write,

Ṗα[V ] = −
∫
V

[(−g)(Tαj + tαjLL)],jd
3x . (3.21)

Using Gauss’s divergence theorem this reduces to,

Ṗα[V ] = −
∮
S

(−g)(Tαj + tαjLL)dSj . (3.22)

Since S does not intersect any of the matter, therefore the integration of Tαj over
dSj would be zero. Therefore,

Ṗα[V ] = −
∮
S

(−g)tαjLLdSj . (3.23)
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This is a Gaussian flux integral which gives the flux of the total 4-momentum of a
system out of the surface S. We can separate out the zeroth component of Ṗα[V ]
again and that gives us the flux of the energy radiating out of a system.

Ė[V ] = −c
∮
S

(−g)t0jLLdSj . (3.24)

Discussion About the Pseudotensor

A significant property of tαβLL is that it does not represent a tensor as it depends, for
its definition, on the choice of coordinates. It can vanish in one coordinate system
and survive in another (In fact it does vanish in Riemann normal coordinates). It
is rather called a “pseudotensor”.

The energy of the gravitational field cannot be defined locally. There is no local
gravitational energy-momentum. The energy-momentum, in principle, has weight.
It curves spacetime. It comes as a source term on the right hand side of the EFEs.
It produces a relative geodesic deviation between two neighboring geodesics in
a spacetime. None of this property is satisfied by the local gravitational energy-
momentum. The reason is that in a given locality one can always choose a frame
of reference in which all the local gravitational fields disappear. No gravitational
field means no gravitational energy-momentum. This highlights the strength of
Einstein’s principle of equivalence.

However the contribution of gravitational forces to a system cannot be denied.
There always is an influence on massive bodies in a concentration of gravitational
waves. We can deduce from all this that there is no issue over the existence gravita-
tional energy but over its localization. One can therefore look for the global effects
due to tαβLL and not for the local effects. This is the lesson for the non-uniqueness
of tαβLL [9].

It is worth mentioning that the Landau-Lifshitz pseudotensor is not a gen-
eralization of the concept of a pseudo-vector2 to the tensor fields. It is named
pseudo-tensor just to emphasize the fact that it does not represent a physical
tensor.

3.2 Relaxed Field Equations

We have seen that the antisymmetric quantity Hαµβν which builds the left hand
side of the field equations (eq. (3.11)) is defined in terms of the gothic inverse gαβ.

2A pseudo-vector is a quantity that transforms like a vector under a proper rotation, but in 3
dimensions it gains an additional sign flip under improper rotations like reflection. Examples of
pseudo-vectors are magnetic field, torque, angular velocity and angular momentum.
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We now take this gothic inverse to serve as our main variable on part of the metric
tensor gαβ. We can define a potential as,

hαβ = ηαβ − gαβ . (3.25)

Moreover we can impose the harmonic coordinate conditions,

gαβ,β = 0 , (3.26)

on the gothic inverse and on the potential hαβ as,

hαβ,β = 0 . (3.27)

Using these coordinate conditions we can simplify the field equations. Putting gαβ

from eq. (3.25) into the definition of Hαµβν and taking the derivative one-by-one
with respect to xµ and xν and using the harmonic coordinate conditions we get,

Hαµβν
,µν = −�hαβ + hµνhαβ,µν − hαν,µhβµ,ν , (3.28)

where � = ηµν∂µν . The right hand side of the of eq. (3.11) remains almost the
same. However, the use of harmonic coordinate conditions make a slight difference
to the definition of tαβLL, since the first two terms on the right hand side of the eq.
(3.12) vanish. Using eq. (3.28) with eq. (3.11) and isolating the d’Alembertian
operator on the left hand side we finally get to the expression,

�hαβ = −16πG

c4
ταβ , (3.29)

where,
ταβ = (−g)(Tαβ + tαβLL + tαβH ) , (3.30)

in which,
16πG

c4
(−g)tαβH = hαν,µh

βµ
,ν − hµνhαβ,µν . (3.31)

Equation (3.29) is a wave equation for gravity similar to eq. (2.51) which we
got through linearization of the EFEs. The difference is that now it includes
the non-linear terms in tαβLL and tαβH and thus includes the effects due to gravity.
Since the wave eq. (3.29) is derived under the use harmonic coordinate conditions
(3.27), therefore both these equations together give the complete description of the
EFEs. The solutions of the wave eq. (3.29) must satisfy the harmonic coordinate
conditions (3.27) in order to be called the solutions of the EFEs. Equation (3.29)
taken independently does not give the full description of the EFEs, it is therefore
called the relaxed Einstein field equations.
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3.3 Formal Solution of the Relaxed Field

Equations

The formal solution of the wave eq. (3.29) is of the form,

hαβ(x) =
4G

c4

∫
G(x, x′)ταβ(x′)d4x′ , (3.32)

where x = (ct,x) is the position 4-vector of the field point of the observer and
x′ = (ct′,x′) is the position 4-vector of the source point. G(x, x′) is the retarded
Green’s function of the wave operator which satisfies the relation,

�G(x, x′) = −4πδ(x− x′) = −4πδ(ct− ct′)(x− x′) . (3.33)

The retarded Green’s function has a property that it vanishes when x is in the
past of x′. Since an event cannot be observed before it has happened, therefore the
retarded Green’s function preserves causality. Green’s function is given explicitly
by,

G(x, x′) =
δ(ct− ct′ − |x− x′|)

|x− x′|
, (3.34)

where |x− x′| =
√

(x− x′)2 + (y− y′)2 + (z− z′)2 is the Euclidean distance be-
tween the field and the source point. The solution of the wave equation now takes
the form,

hαβ(x) =
4G

c4

∫
δ(ct− ct′ − |x− x′|)

|x− x′|
ταβ(x′)d4x′ . (3.35)

The integration over d4x′ can also be written as cdt′d3x′. Performing the integration
over cdt′ and using the property of the delta function we have,

hαβ(t,x) =
4G

c4

∫
ταβ(t− |x− x′|/c,x′)

|x− x′|
d3x′ . (3.36)

This is the retarded solution of the wave equation and the integration extends over
the past light cone C(x) of the field point x = (ct,x).

3.3.1 Iteration of the Relaxed Field Equations

The exact solution of the relaxed field equations is very difficult to obtain. Therefore,
we try to obtain its solution by successive approximations. We have a formal
solution in the form of eq. (3.36) which needs to be integrated to obtain a complete
solution. Moreover, the variable ταβ on the right hand side contains hαβ itself in the
definitions of tαβLL and tαβH , therefore the solution must be an iterative one. We base
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our approximation on the very same idea that we used during the linearization of the
field equations. We treat flat spacetime as the background metric (initial condition
for the zeroth iteration) that varies slightly from being flat. The perturbed metric
is then treated as the background metric for the next iteration and the deviation
of spacetime from being flat increases with the increase in the strength of the field.
To construct the metric we recall eq. (2.36), i.e,

gαβ = ηαβ + hαβ . (3.37)

The inverse of this perturbed metric tensor can be written as an inverse binomial
expansion,

gαβ = ηαβ − hαβ + hαγh
βγ + ... . (3.38)

One can also consider the inverse metric tensor to be the inverse Minkowski metric
plus some inverse perturbative term fαβ, i.e,

gαβ = ηαβ + fαβ . (3.39)

Comparing equations (3.38) and (3.39), the inverse perturbative term fαβ can be
written in the form,

fαβ = hαβ − hαγhβγ + hαγhγδh
βδ + ... . (3.40)

Therefore, the gravitational wave potential hαβ can also be written in the form of
a formal expansion,

hαβ = Gkαβ1 +G2kαβ2 +G3kαβ3 ... . (3.41)

of the fields. This type of expansion in powers of G is known as post-Minkowskian ex-
pansion as it gives the orders of deviation of the spacetime from being Minkowskian
spacetime. Since the approximation needs to be an iterative one therefore hαβ

meets the following solutions,

hαβ0 = 0 ,

hαβ1 = Gkαβ1 ,

hαβ2 = Gkαβ1 +G2kαβ2 ,

and so on. The post-Minkowskian approximation works parallel with the PN
approximation. In principle we can solve by putting eq. (3.41) on the right hand
side of the eq. (3.36) and then plucking out the same powers. However, it is easier
to solve it through iterations. In the zeroth iteration we take hαβ0 = 0 and doing
so we get gαβ = ηαβ which is the Minkowskian spacetime metric. Also we get
tαβLL = tαβH = 0 and thus ταβ0 = Tαβ. The solution of eq. (3.36) then gives hαβ1 ,
which can then be used in the definitions of tαβLL and tαβH to obtain the value of ταβ1 .
This ταβ1 is used on the right hand side of the eq. (3.36), the solution of which
gives us hαβ2 . In the second iteration hαβ2 is used on the right hand side and the
process continues to the nth iteration. To simplify our calculations we can impose
the condition (hαβn ),β = 0 on the iterated solutions of the relaxed field equations.
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3.4 Integration Domains

In the previous section we saw that the formal solution of the relaxed field equations
leads us to eq. (3.36), in which integration is to be carried out over the past light
cone C(x). Other than integrating over the entire past light cone, we can partition
the domain C(x) into the near-zone domain N (x) and the wave-zone domainW(x).
In order to differentiate between both these domains we first consider the following
scaling quantities:

r′c = characteristic length scale of the source , (3.42a)

t′c = characteristic timescale of the source , (3.42b)

ω′c = characteristic frequency of the source , (3.42c)

λ′c = characteristic wavelength of the radiation . (3.42d)

The near and the wave zones are defined as,

near-zone = r′c < λ′c =
2πc

ω′c
= ct′c , (3.43a)

wave-zone = r′c > λ′c =
2πc

ω′c
= ct′c . (3.43b)

Thus, the near-zone is the region of space in which r′c = |x′| is smaller than the
characteristic wavelength of the radiations emitted by the source whereas the
wave-zone is the region in which r′c is large compared to the wavelength of the
radiation. In order to differentiate both these regions we consider the past light
cone C(x) as shown in Figure (3.1). Let a 3-dimensional ball of radius R sweep
a world tube D through the light cone such that the magnitude of R is of the
order of the magnitude of λ′c. Any point within this world tube is considered to
be in the near-zone and the rest of the lightcone is the wave-zone. The near-zone
and the wave-zone join together to complete the light cone of the field point x, i.e.
N (x) +W(x) = C(x). The complete solution of eq. (3.36) is then given as,

hαβ(t,x) = hαβN (t,x) + hαβW (t,x) . (3.44)

A slow-motion condition also comes in handy when the characteristic velocity
of the source is very small in comparison to the speed of light. i.e,

v′c << c . (3.45)

The characteristic velocity can be defined as v′c = r′c/t
′
c. Putting this in the above

equation and comparing it with eq. (3.43) we get the slow-motion condition. i.e,

r′c << λ′c . (3.46)

This equation states that the source must be situated deep within the near-zone
when the slow-motion condition is in effect. We can therefore carry out the
integration over the near-zone alone.
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3.4.1 Integration Over the Near-Zone

The slow-motion condition allows us to calculate the effect due to near-zone
contribution of the source. Since the integration is to be carried over the near-zone
domain, therefore we can write eq. (3.36) as,

hαβN (t,x) =
4G

c4

∫
N

ταβ(t− |x− x′|/c,x′)
|x− x′|

d3x′ . (3.47)

The near-zone domain can be further subdivided into two parts depending upon
the location of the field point.

Figure 3.1: Near-zone integration domain for the retarded solution of the relaxed
field equations. C is the past light cone of the field point x, D is the world tube
swept out by the ball of radius R. N is the near-zone region of spacetime and W
is the wave-zone region. Figure (a) shows the integration domain when the field
point lies in the wave-zone whereas figure (b) shows the domain when field point
lies in the near-zone along with the source point. [17].

Wave-Zone Field Point

In order to evaluate eq. (3.47), when the field point x is situated in the wave-zone
such that r = |x| > R, we introduce a modified integrand,

ταβ(t− |x− x′|/c,x′)
|x− x′|

=

∫
ταβ(t− |x− x′|/c,y)

|x− x′|
δ(y− x′)d3y

=

∫
g(x,x′,y)δ(y− x′)d3y , (3.48)
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in which we treat x′ and y as independent variables. Since the source point x′ lies
within the near-zone, it is considered to be a very small vector. We can therefore
express g as a Taylor expansion about x′ = 0.

g(x,x′,y) = g(x, 0,y) +
∂g

∂x′j
x′
j

+
1

2

∂2g

∂x′jx′k
x′
j
x′
k

+ ... . (3.49)

All the derivatives are evaluated over x′ = 0. The dependence of g on x′ is only
through |x− x′|, thus ∂g/∂x′j = −∂g/∂xj. Our Taylor expansion then takes the
form,

g(x,x′,y) = g(x, 0,y)− ∂g

∂xj
x′
j

+
1

2

∂2g

∂xjxk
x′
j
x′
k

+ ... . (3.50)

The derivatives are still carried out over x′ = 0 but because the differentiation is
with respect to x, we can set x′ = 0 in g before taking the derivatives. Then g
becomes the function of |x− x′| → |x| = r, then we have

g(x,x′,y) = g(r, 0,y)− ∂g(r, 0,y)

∂xj
x′
j

+
1

2

∂2g(r, 0,y)

∂xjxk
x′
j
x′
k

+ ... . (3.51)

Keeping all the terms of the Taylor expansion we can write,

y =
∞∑
l=0

(−1)l

l!
x′
L
∂Lg(r, 0,y) , (3.52)

where x′L = x′jx′kx′l... and ∂L = ∂j∂k∂l.... Putting the value of g(x,x′,y) back in
eq. (3.48) and using the property of delta function we have,

ταβ(t− |x− x′|/c,x′)
|x− x′|

=
∞∑
l=0

(−1)l

l!
x′
L
∂L
ταβ(t− r/c,x′)

r
. (3.53)

Putting back into eq. (3.47) we arrive to the result,

hαβN (t,x) =
4G

c4

{
∞∑
l=0

(−1)l

l!
∂L

[
1

r

∫
M
ταβ(tr,x

′)x′
L
d3x′

]}
, (3.54)

where tr = t− r/c is the retarded time variable. Since the temporal dependence of
the source function no longer involves x′ (the variable of integration), the domain
of integration has therefore become the surface of constant time bounded by the
sphere r′ = R. We denote this domain by M. This relation is valid everywhere
within the wave-zone. However it simplifies when r → 0, that is when hαβN is
evaluated in the far-away wave-zone. In that case we keep only the dominant r−1

terms.

hαβN (t,x′) =
4G

c4r

∞∑
l=0

(−1)l

l!

∫
M
∂Lτ

αβ(tr,x
′)x′

L
d3x′ +O(r−2) . (3.55)
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The dependence of ταβ on xj is contained in tr, so that ∂jτ
αβ(tr,x

′) = −c−1ταβ(1)∂jr =
−c−1ταβ(1)nj , where ταβ(1) denotes the first derivative of ταβ with respect to tr and
nj = ∂jr. Taking the multiple derivatives of ταβ we get a relation,

∂Lτ
αβ(tr,x

′) = (−1)lc−lταβ(l)nL +O(r−1) .

Inserting into the previous equation we finally get,

hαβN (t,x) =
4G

c4r

∞∑
l=0

1

l!cl
nL

(
d

dtr

)l ∫
M
ταβ(tr,x

′)x′
L
d3x′ +O(r−2) . (3.56)

We can see in this expression that each successive term comes with an additional
factor vc/c, this signifies that each term is smaller than its preceeding term by a
factor vc/c << 1. This is where the PN expansion appears in our calculations for
the first time. The PN expansion parameter is the square of ratio of the magnitude
of the velocity of the source to the speed of light (which in this case can also be
called the “speed of gravity”), i.e, (v/c)2. For the magnitude of the velocity of
the source to be very small compared to the speed of gravity it can be written
as (1/|c|)2. The PN numbers are assigned accordingly. The lowest term happens
to be the Newtonian term, which is a given a 0th order. The next term, which is
1/|c| times smaller than the Newtonian term, is of the order of 0.5 PN. The further
next term, which is 1/|c|2 times smaller than the Newtonian term, is of the order
of 1 PN and the numbering goes on. Moreover the integrals involved denote the
multipole moments, defined as,

IL(tr) =

∫
M
c−2τ 00xLd3x, (3.57)

where L is a multi-index which contains a series of individual indices j, i.e, xL =
xj1xj2 ...xjl . We can thus say that the PN expansion is a kind of multipole expansion.

Near-Zone Field Point

Now we consider the case when both the field and the source points are situated
within the near-zone. In that case |x− x′| can be treated as a small quantity and
we can Taylor expand the time dependence of the source function,

ταβ(t− |x− x′|/c) = ταβ(t)− 1

c

∂ταβ

∂t
|x− x′|+ 1

2

1

c2
∂2ταβ

∂t2
|x− x′|2 + ... , (3.58)

where all the derivatives are carried out at time t. Substituting in eq. (3.47) we
have,

hαβN (t,x′) =
4G

c4

{
∞∑
l=0

(−1)l

l!cl

(
d

dt

)l ∫
M
ταβ(t,x′)|x− x′|l−1d3x′

}
. (3.59)
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The domain of integration is againM, a surface of constant time bounded externally
by sphere r′c = R. However, the differentiation is now carried out at time t rather
than retarded time tr.

3.4.2 Integration Over the Wave-Zone

In the previous section we developed a method to evaluate the near-zone contribution
to the solution of eq. (3.36). Now we wish to develop a method to evaluate the
wave-zone contribution of the source to the solution.

The integration overW must reflect the nature of the integrand in the wave-zone.
Since the wave-zone correspond to the entire region of the past light cone except
D, therefore it must be taken into consideration that integration must be carried
out over a null-cone rather than a surface of constant time. For the slow motion
condition, the source term must lie deep within the near-zone and therefore it has
no contribution in the wave-zone. However the wave-zone contribution comes from
the potentials that are themselves the solutions of the wave equation, i.e, the waves
from the source serve as a source in the wave-zone to give wave-zone contribution.
Any point on W is therefore a function of the retarded time variable and hence the
integration carried out over retarded time as variable of integration. The strategy is
to express the integral of eq. (3.36) in terms of spherical coordinates (r′, θ′, φ′) and
then switch the variables from r′ to u′ = ct′− r′ in order to perform the integration
over retarded time variable.

This strategy leads us to a nice geometrical representation. A surface u′ =
constant is a future directed null cone F that emerges from r′ = 0. It intersects
C(x) on a two dimensional surface S(u′) parameterized by the angular variables
θ′ and φ′. Integration on C(x) can therefore be achieved by integrating over S(u′)
and then adding the contributions from each relevant F . The limits of integration
range from u′ = −∞ to u′ = u = ct− r, whereas θ′ and φ′ are integrated over all
allowed range.

Since ct′ = ct− |x− x′| on C(x) and ct′ = u′ + r′ on F , therefore,

u′ = ct− r′ − |x− x′| , (3.60)

where u′ and t are constant. This equation can be solved for r′ and expressing it
as a function of θ′ and φ′ we can write,

r′(u′, θ′, φ′) =
(ct− u′)2 − r2

2(ct− u′ − n′.x)
, (3.61)

where n′ = x′/r′. Next, we change the variables in eq. (3.36) from r′ to u′ using,

∂u′

∂r′
= n′.∇′u′ = u′ − ct+ n′.x

|x− x′|
. (3.62)
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Now the wave-zone contribution to the integral of eq.(3.36) takes the form,

hαβW (t,x) =
4G

c4

∫ u

−∞
du′
∮
S

ταβ((u′ + r′)/c,x′)

ct− u′ − n′.x
r′(u′, θ′, φ′)2dΩ′ . (3.63)

To proceed further, we restrict our attention to the source function of the form,

ταβ(x′) =
1

4π

fαβ(t′r)

r′n
n′〈L〉 , (3.64)

where fαβ is an arbitrary function of retarded time t′r = t′ − r′/c, n is an arbitrary
integer and n′〈L〉 is the symmetric trace free product of l radial vectors n′j = x′j/r.
These are related closely to the spherical-harmonic functions as Ylm(θ′, φ′) as,

n′〈L〉 = Nl

l∑
m=−l

Y〈L〉lm Ylm(θ′, φ′) , (3.65)

where Y〈L〉lm is a constant STF tensor which satisfies the identity Y〈L〉l,−m = (−1)mY∗〈L〉lm

and Nl is a normalization constant defined as [16],

Nl =
4πl!

(2l + 1)!!
.

Substituting eq. (3.64) in eq. (3.63) we get,

hαβW (t,x) =
G

c4π

∫ u

−∞
du′fαβ(u′/c)

∮
S

n′〈L〉

r′(u′, θ′, φ′)n−2
dΩ′

ct− u′ − n′.x
. (3.66)

The angular integration can be simplified by orienting the coordinate axes such
as the selected field point is aligned with the z-direction, so that n = êz. Using
eq. (3.65) in eq. (3.66) and integrating over φ′, we observe that the rest of the
integrand is independent of φ′ and the only surviving term in the sum is m = 0.
Inserting Yl0 = [(2l + 1)/4π]1/2Pl(cos θ′) and Y〈L〉l0 = [4π/(2l + 1)]1/2N−1l e

〈L〉
z within

the integral we obtain,

hαβW (t,x) =
2G

c4
n〈L〉

∫ u

−∞
du′fαβ(u′/c)

∫
S

Pl(ξ)

r′(u′, ξ)n−2(ct− u′ − rξ)
dξ . (3.67)

where ξ = cos θ′ and,

r′(u′, ξ) = r(u′, θ′, φ′) =
(ct− u′)2 − r2

2(ct− u′ − rξ)
. (3.68)
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Switching integration variables back to r′ from ξ, we get,

hαβW (t,x) =
2G

c4r
n〈L〉

∫ u

−∞
du′fαβ(u′/c)

∫
S

Pl(ξ)

r′(n−1)
dr′ . (3.69)

In this equation ξ is function of r′. Now we can see that when we remove the
restriction of n to aligned with the z-direction, the angular dependence of hαβW
is contained in n〈L〉. But since the remaining integral is now independent of all
angles, therefore the orientation of coordinate axis has become irrelevant. We may
now take n to a point in any arbitrary direction specified by the polar angles θ
and φ. The potential hαβW will then become a function of (t, r, θ, φ) in which the
dependence of t is contained in u = ct− r.

To complete the wave-zone integration, we must give the explicit description of
the surface S(u′) and specify the limits of integration over r′. The specific limits
depend upon whether the field point is in near-zone or in wave-zone.

Wave-Zone Field Point

We first consider the case when the field point lies within the wave-zone, so that
r > R. From figure (3.2a) we see that when u′ < u− 2R, S(u′) does not encounter
the boundary of the near-zone and in this case ξ ranges from ξ = −1, at which
r′ = 1

2
(ct−u′− r) = 1

2
(u−u′), to ξ = 1, at which r′ = 1

2
(ct−u′+ r) = 1

2
(u−u′) + r.

When u′ > u− 2R, S(u′) runs into the boundary of the near-zone and in this case
the lower bound on r′ must be r′ = R and ξ must be greater than −1. The upper
bound on r′ is still r′ = 1

2
(u− u′) + r. In part (c), the integration terminates at

u = u′. Let us define s = 1
2
(u− u′) and these functions,

A(s, r) =

∫ r+s

R

Pl(ξ)

r′(n−1)
dr′ , (3.70a)

B(s, r) =

∫ r+s

s

Pl(ξ)

r′(n−1)
dr′ . (3.70b)

We finally get to the expression,

hαβW (t, r, θ, φ) =
n〈L〉

r

{∫ R

0

dsfαβ(tr − 2s/c)A(s, r)

+

∫ ∞
R

dsfαβ(tr − 2s/c)B(s, r)

}
, (3.71)

for the wave-zone contribution to the potential hαβ when the field point lies within
the wave-zone. The quantity ξ can be determined by using eq. (3.68) and inserting
u = ct− r and s = 1

2
(u− u′). It comes out to be,

ξ =
r + 2s

r
− 2s(r + s)

rr′
. (3.72)
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Figure 3.2: Wave-zone integration domain for the retarded solution of the EFEs.
Part (a) corresponds to u′ < u− 2R; the integration runs from ξ = −1 to ξ = 1.
Part (b) corresponds to u′ > u− 2R; the intersection S(u′) terminates at A’, the
boundary of the near-zone. Part (c) corresponds to u′ = u; the cones are tangent
and S(c) runs from the edge of the near-zone to x.

This yeilds ξ = −1 when r′ = r + s and ξ = 1 when r′ = s.

Near-Zone Field Point

Now we consider the case when the field point lies in the near-zone, so that r < R.
This is the case shown in figure (3.2b) where u′ > u − 2R. Now the integration
terminates at the point where the surface S(u′) runs into the boundary of the
near-zone. In this case the minimum value of s = 1

2
(u − u′) is R − r. Thus we

obtain the final expression for the wave-zone contribution to the potential hαβ

when the field point lies in the near-zone as,

hαβW (t, r, θ, φ) =
n〈L〉

r

{∫ R

R−r
dsfαβ(tr − 2s/c)A(s, r) +

∫ ∞
R

dsfαβ(tr − 2s/c)B(s, r)

}
,

(3.73)

3.5 Einstein’s Quadrupole Formula

In the previous section we have obtained a general form for the approximate solution
of the relaxed field equations in different regions of the past light cone. Moreover,
eq. (3.56) shows that the PN expansion is a kind of multipole expansion. We
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can proceed further on the same footings and do the iteration of the relaxed field
equations for all the cases discussed in the previous section but we restrict our
attention to the case when the field point lies in the wave-zone. The reason is
that our primary motive is to calculate the energy radiated out of a system via
emission of gravitational waves, and we wish to use Gaussian flux integrals for
that purpose. We have already discussed in the section 2.6 that Gaussian flux
integrals give physical meaning in an asymptotically flat region surrounding the
source. Therefore, we consider only the case when the source is hidden deep within
the near-zone and the field point lies in the far-away wave-zone. Moreover, we shall
see in this section that the dominant term for gravitational wave potential in the
multipole expansion is the quadrupole term.

3.5.1 General Structure of Potentials

Before going towards the iteration of the field equations we look at the general
structure of the potentials developed in the previous section. From eq. (3.54) we
can see that the near-zone contribution to the gravitational potential, when the
field point lies in the wave-zone is given by,

hαβN (t,x) =
4G

c4

{
∞∑
l=0

(−1)l

l!
∂L

[
1

r

∫
M
ταβ(tr,x

′)x′
L
d3x′

]}
,

Expanding few terms and after some manipulations we can simplify the components
of the gravitational potentials as,

h00N =
4GM0

c2r
+

4G

c2

∞∑
l=2

(−1)l

l!
∂L

[
IL(tr)

r

]
, (3.74a)

h0jN =− 2G

c3
(n× J0)j

r2
− 2G

c3
∂k

[
İjk(tr)
r

]
4G

c4

∞∑
l=2

(−1)l

l!
∂l

[
1

r

∫
M
τ 0j(tr,x

′)x′
L
d3x′

]
, (3.74b)

hjkN =
2G

c4
Ïjk(tr)
r

+
4G

c4

∞∑
l=1

(−1)l

l!
∂L

[
1

r

∫
M
τ jk(tr,x

′)x′
L
d3x′

]
, (3.74c)

in which the over dots indicate differetiation with respect to tr = t − r/c. The
wave-zone contribution to the gravitational potential is given by eq. 3.71,

hαβW (t, r, θ, φ) =
n〈L〉

r

{∫ R

0

dsfαβ(tr − 2s/c)A(s, r) +

∫ ∞
R

dsfαβ(tr − 2s/c)B(s, r)

}
.

These contributions shall be evaluated in later up to the requirement.
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3.5.2 First Iteration

As discussed earlier, the iteration of the field equations is carried out using post-
Minkowskian approximation. Also the post-Minkowskian approximation works
parallel with the PN approximation. Therefore, we take the fact that the 0th

iteration gives us the solution of the relaxed field equations correct up to Newtonian
order. The 1st iteration gives solution correct up to 0.5 PN and the 2nd iteration
gives the solution correct up to 1 PN.

To perform the first iteration of the relaxed field equations, we put hαβ0 = 0 on
the right hand side of the eq. (3.54). In that case we have ταβ = Tαβ. We can
make this substitution in eq. (3.54) and evaluate the multipole moments explicitly,
but we don’t need to do that right now. We just keep the multipole moments as it
is and go for the second iteration. We will see later that only h00N component of
the near-zone contribution to the potential is required for the preparation of the
second iteration. Therefore, after the first iteration, we can write the near-zone
contribution to the gravitational potential when the field point lies in the wave-zone
as,

h00N =
4G

c2

{
I(tr)

r
−
[
Ij(tr)
r

]
,j

+
1

2

[
Ijk(tr)
r

]
,jk

...

}
. (3.75)

The PN numbering is very subtle in this case. The first term on the right hand side
of the eq. (3.75) is the monopole term and we naturally assign it 0 PN order to
this term. The second (dipole) term is of 0.5 PN order and the third (quadrupole)
term is of 1 PN order.

Since ταβ = Tαβ for hαβ = 0, it does not extend beyond the near-zone. The
wave-zone contribution hαβW to the gravitational potential vanishes in the first
iteration.

3.5.3 Second Iteration

Knowing the fact that the multipole moments bring an additional factor of vc/c to
the PN ordering we can write the different components of the near-zone contribution
to the gravitational potential,

h00N =
4GM

c2r
+

2G

c2

[
Ijk(tr)
r

]
,jk

− 2G

3c2

[
Ijkn(tr)

r

]
,jkn

+ ... , (3.76a)

h0jN =− 2G

c3
(n× J)j

r2
− 2G

c3

[
İjk(tr)
r

]
,k

− G

3c3

[
İjkn(tr)− 2εmjkJmn(tr)

r

]
,kn

+ ... , (3.76b)
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hjkN =
2G

c4
Ïjk(tr)
r

+
2G

3c4

[
Ïjkn(tr) + 4εmn(jJ̇m|k)(tr)

r

]
,n

+ ... , (3.76c)

The 1st term in the expression of h00N is of 0 PN, the 2nd term is of 1 PN and the
3rd term is of 1.5 PN order. In the expression of h0jN , the 1st and the 2nd terms
are of 1 PN and the 3rd term is of 1.5 PN order. In hjkN , the 1st term is of 1 PN
and the 2nd term is of 1.5 PN order. The multipole moments involved in here are
functions of retarded time. Formally, the expression should have been evaluated by
putting ταβ1 (obtained after the first iteration) in the relaxed field equations and
performing the second iteration. However, the multipole moments appear at 1 and
1.5 PN orders. Therefore, any correction to the multipole moments will appear in
the higher order PN approximation. We can truncate ταβ to its leading order only.
Then the multipole moments can be defined as,

IL(tr) =

∫
M
c−2τ 00(tr,x)xLd3x +O(c−4) , (3.77a)

J jL(tr) =εjab
∫
M
c−1τ 0b(tr,x)xaLd3x +O(c−3) . (3.77b)

Now we move towards the computation of wave-zone contribution to the gravi-
tational potential. In the first iteration we saw that the wave-zone contribution
vanishes. To perform the second iteration we use the solution of the first iteration
in the definition of ταβ1 and solve the relaxed field equations. To the required degree
of accuracy, the components of the Landau-Lifshitz pseudotensor come out to be,

16πG

c4
(−g)t00LL =− 7

8
∂jh

00∂jh00 +O(c−6) , (3.78a)

16πG

c4
(−g)t0jLL =

3

4
∂jh00∂0h

00 + (∂jhok − ∂kh0j)∂kh00 +O(c−7) , (3.78b)

16πG

c4
(−g)tjkLL =

1

4
∂jh00∂kh00 − 1

8
δjk∂nh

00∂nh00 +O(c−6) , (3.78c)

whereas the components of tαβH are,

16πG

c4
(−g)t00H =O(c−6) , (3.79a)

16πG

c4
(−g)t0jH =O(c−7) , (3.79b)

16πG

c4
(−g)tjkH =O(c−6) . (3.79c)

By virtue of the requirement of 1.5 PN accuracy, the only relevant piece of first
iterated potential is the Newtonian term in h00W , i.e,

h00W =
4GM

c2r
+O(c−4) . (3.80)
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Putting this in eq. (3.78) we get the components of ταβ1 ,

τ 001 =− 7GM2

8πr4
+O(c−2) , (3.81a)

τ 0j1 =O(c−3) , (3.81b)

τ 001 =
GM2

4πr4

(
njnk − 1

2
δjk
)
, (3.81c)

where nj = xj/r.
In order to calculate hαβW we first decompose the effective stress tensor of eq.

(3.81 c) in terms of STF angular tensors. We invoke the identity njnk = n〈jk〉+ 1
3
δjk.

Then,

τ jk1 =
GM2

4πr4

(
n〈jk〉 − 1

6
δjk
)
. (3.82)

Now this is of the form of eq. (3.64), and we identify f 00
l=0 with −7

2
GM2, f jkl=2 with

GM2 and f jkl=0 with −1
6
GM2δjk. In each case we have n = 4. Using eq. (3.70) we

can write the components of hαβW for l = 0,

h00W =7

(
GM

c2r

)2 (
1− 2

r

R

)
, (3.83a)

hjkW =
1

3

(
GM

c2r

)2

δjk
(

1− 2
r

R

)
, (3.83b)

and for l = 2,

h00W =

(
GM

c2r

)2

n〈jk〉
(

1− 4R

5r

)
. (3.84)

Discarding all terms includingR we can write the final expression for the components
of wave-zone contribution to the gravitational potential when the field point lies in
the wave-zone as,

h00W =7

(
GM

c2r

)2

, (3.85a)

hjkW =
1

3

(
GM

c2r

)2

njnk . (3.85b)

Combining the results of near-zone contribution in eq. (3.76) and wave-zone
contribution in eq. (3.85) using eq. (3.44) we get the final expression for the
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components gravitational potential,

h00 =
4G

c2

[
M

r
+

1

2

(
Ijk

r

)
,jk

− 1

6

(
Ijkn

r

)
,jkn

+
7

4

GM2

c2r2
+ ...

]
, (3.86a)

h0j =
4G

c3

−1

2

(n× J)j

r2
− 1

2

(
İjk

r

)
,k

− 1

12

(
˙Ijkn − 2εmjkJmn

r

)
,kn

+ ...

 ,

(3.86b)

hjk =
4G

c4

1

2

Ïjk

r
− 1

6

(
Ïjkn + 2εmnjJ̇mk + 2εmnkJ̇mj

r

)
,n

+
GM2

4r2
njnk + ...

 .

(3.86c)

So far we have obtained the structure of gravitational potential, correct upto the
order of 1.5 PN, when the field point is situated in the wave-zone. Before going
further we make use of a specific gauge in order to remove ambiguities with the
degrees of freedom of gravitational waves.

3.5.4 Transverse-Traceless Gauge

The simplest solution of the gravitational wave-equation (2.52) is the monochromatic
plane-wave solution [9],

h̄αβ = <[Aαβexp(ιkµx
µ)] , (3.87)

where Aαβ represents the amplitude along with the wave polarization and kµ is
the wave-vector, whereas < stands for the real part. Both Aαβ and kµ satisfy the
conditions,

kµk
µ = 0, (3.88a)

Aαµk
µ = 0. (3.88b)

The amplitude of this plane-wave appears to have six independent components
(ten minus four orthogonality constraints). But the gravitational field has two
degrees of freedom, not six. Therefore, we need to reduce the degrees of freedom by
introducing a specific gauge. The gauge chosen for this purpose is the transverse-
traceless gauge or TT-gauge.

In order to understand the imposition of this gauge, let us select a 4-velocity
u defined throughout the spacetime under consideration. By a specific gauge
transformation, we can impose the condition,

Aαβu
β = 0 . (3.89)
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This adds three constraints to Aαβ as the fourth constraint is already contained in
the orthogonality condition. For the last constraint we have,

Aαα = 0 . (3.90)

Now we have eight constraints in total, i.e. Aαβu
β = Aαβk

β = Aαα = 0. Thus the
two remaining components of Aαβ give the two degrees of freedom of gravitational
waves. We can restate these contraints in the Lorentz frame (where u0 = 1 and
uj = 0) and in a form where kµ does not appear explicitly as,

hα0 =0 , i.e. only spatial components survive; (3.91a)

hkj,j =0 , i.e. spatial components are divergence-free; (3.91b)

hkk =0 , i.e. spatial components are trace-free. (3.91c)

It must be noted that under the TT-gauge, there is no difference in hαβ and h̄αβ
since the trace of hαβ is zero. Applying these contraints to eq. (3.86) and the fact
that we are interested in the result correct upto the order of 1 PN, we can write
the final expression for gravitational potential as,

hjk =
2G

c4r
Ïjk . (3.92)

This is known as the Einstein’s quadrupole formula. It is the solution of the EFEs
correct upto the order of 1 PN.

3.6 Hulse-Taylor Binary and the Indirect

Detection of Gravitational Waves

In 1974, Russel Alan Hulse and Joseph Hooton Taylor observed pulsed radio wave
emissions from a source using the Arecibo 305m antenna [18]. The source was
identified to be a pulsar 3. After timing the pulses from the pulsar, Hulse and
Taylor observed that there was a systematic variation in the arrival time of pulses.
From the timing observation of the pulses it was realized that the pulsar was
actually in a binary orbit along with an other companion, this other companion
was later confirmed to be a neutron star [1]. Observing the systematic variation in
the pulse timing it was also realized that the orbit of the binary system shrunk
gradually. The only thing responsible for shrinking the orbit of a binary system

3A pulsar in actual is a neutron star, which is highly magnetized and is rotating about its axis
at a very high rate. It emits electromagnetic radiations from its poles, which can be observed in
the form of pulses every time the pole of the rotating neutron star comes in the line of sight of
the observer. Therefore, it is called a pulsar.
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was the emission of gravitational waves, which were predicted way back by Albert
Einstein [19] [20]. Therefore, this binary system served as a fantastic example to
detect the emission of gravitational waves out of a system by observing the orbital
decay of the system. We are going to develop a formula for orbital decay of a
binary system using the approximate solution of the EFEs upto 1 PN order (i.e.
using the Einstein quadrupole formula).

3.6.1 Energy Radiated Out of a System Via Emission of
Gravitational Waves

In the section 3.1.1 we have seen that we can define the energy radiated out of
a system, via emmision of gravitational waves in an asymptotically flat region
surrounding the source, in the form of Gaussian flux integrals. Eq. (3.24) shows
that the flux of energy is defined in terms of the Landau-Lifshitz pseudotensor,
whereas the pseudotensor itself depends on hαβ for its definition. Therefore, we can
use the Einstein’s quadrupole formula (eq. (3.92)) to find the values of different
components of tαβLL and that can be used in eq. (3.24) to obtain the amount of
energy radiated out of a system.

Stress-Energy Pseudotensor for a Wave Propagating in Positive z-direction

Let us consider a plane gravitational wave propagating in positive z-direction.
Then according to the constraints of TT-gauge (eq. (3.91)), the only non-zero
components of hαβ will be,

hxx = −hyy ,
hxy = hyx .

}
(3.93)

Therefore we can write the components of hαβ in the form,

hαβ =


0 0 0 0
0 hxx hxy 0
0 hxy −hxx 0
0 0 0 0

 . (3.94)

We know that hαβ = h̄αβ under the TT-gauge, therefore the metric tensor is defined
as,

gαβ = ηαβ + hαβ . (3.95)

In the matrix form, we can write the metric tensor components as,

gαβ =


1 0 0 0
0 −1 + hxx hxy 0
0 hxy −1− hxx 0
0 0 0 −1

 . (3.96)
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We can see that the only non-zero components of the metric tensor are,

g00 = 1 ,

g11 = −1 + hxx ,

g12 = hxy ,

g21 = hxy ,

g22 = −1− hxx,
g33 = −1 .


(3.97)

Another thing that must be taken into account is that hαβ is function of t and z
alone as from eq. (3.92) we have,

hjk(t, r) =
2G

c4r
Ïjk(tr) , (3.98)

where tr = t−r/c is the retarded time. For the wave travelling in positive z-direction
we have tr = t − z/c. Thus, the only non-zero derivatives of the components of
metric tensor are,

g11,0 =
1

c
hxx,t ,

g12,0 =
1

c
hxy,t ,

g21,0 =
1

c
hxy,t ,

g22,0 = −1

c
hxx,t ,

g11,3 = hxx,z ,

g12,3 = hxy,z ,

g21,3 = hxy,z ,

g22,3 = −hxx,z .



(3.99)

We can use the identity gαβg
αβ = δαβ to find the components of inverse metric

tensor. The matrix form of the inverse metric tensor is,

gαβ =


1 0 0 0

0 −1−hxx
1−h2xx−h2xy

−hxy
1−h2xx−h2xy

0

0 −hxy
1−h2xx−h2xy

−1+hxx
1−h2xx−h2xy

0

0 0 0 −1

 . (3.100)
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Non-zero components of inverse metric tensor, correct upto second order of hαβ,
are,

g00 = 1,

g11 = −1− hxx + h2xx + h2xy ,

g12 = −hxy ,
g21 = −hxy ,
g22 = −1 + hxx + h2xx + h2xy ,

g33 = −1 .


(3.101)

Now the non-zero Christoffel symbols are,

Γ0
11 = − 1

2c
hxx,t ,

Γ0
12 = − 1

2c
hxy,t ,

Γ0
22 =

1

2c
hxx,t ,

Γ3
11 =

1

2
hxx,z ,

Γ3
12 =

1

2
hxy,z ,

Γ3
22 = −1

2
hxx,z ,

Γ1
10 = − 1

2c
hxx,t −

1

2c
hxxhxx,t −

1

2c
hxyhxy,t ,

Γ1
20 = − 1

2c
hxy,t −

1

2c
hxxhxy,t +

1

2c
hxyhxx,t ,

Γ2
10 = − 1

2c
hxy,t +

1

2c
hxxhxy,t −

1

2c
hxyhxx,t ,

Γ2
20 =

1

2c
hxx,t −

1

2c
hxxhxx,t −

1

2c
hxyhxy,t ,

Γ1
13 = −1

2
hxx,z −

1

2
hxxhxx,z −

1

2
hxyhxy,z ,

Γ1
23 = −1

2
hxy,z −

1

2
hxxhxy,z +

1

2
hxyhxx,z ,

Γ2
13 = −1

2
hxy,z +

1

2
hxxhxy,z −

1

2
hxyhxx,z ,

Γ2
23 =

1

2
hxx,z −

1

2
hxxhxx,z −

1

2
hxyhxx,z .



(3.102)

The rest of the Christoffel symbols are zero. We are considering a wave propagating
in positive z-direction, therefore t03 component of the Landau-Lifshitz pseudotensor
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is our interest. Thus, we try to calculate R03 component of the Ricci tensor. From
the definition of Ricci tensor we can write,

R03 = Γα03,α − Γα0α,3 + ΓαβαΓβ03 − Γαβ3Γ
β
α0 . (3.103)

From eq. (3.103) we know that,

Γα03 = 0 =⇒ Γα03,α = 0 . (3.104)

Then,
R03 = −Γα0α,3 − Γαβ3Γ

β
α0 . (3.105)

Expanding over all possible values of the indices α and β we can write R03 in terms
of non-zero Christoffel symbols as,

R03 = −Γ1
01,3 − Γ2

02,3 − Γ1
13Γ

1
10 − Γ1

23Γ
2
10 − Γ2

13Γ
1
20 − Γ2

23Γ
2
20 . (3.106)

Putting values of the Christoffel symbols from eq. (3.102) in eq. (3.106) and after
simplification we get the value of R03 correct up to the 2nd order in hαβ,

R03 =
1

c

[
hxxhxx,tz + hxyhxy,tz +

1

2
hxx,thxx,z +

1

2
hxy,thxy,z

]
. (3.107)

Knowing the fact that hαβ depends upton ‘z′ only through t− z/c we can write
hαβ,z = −1

c
hαβ,t. Hence,

R03 =
1

c2

[
−hxxḧxx − hxyḧxy −

1

2
ḣ2xx −

1

2
ḣ2xy

]
. (3.108)

Similarly we can find the other components of Ricci tensor correct upto the 2nd

order in hαβ. Other components of Ricci tensor come out to be,

R00 = R33 = −R03 , (3.109a)

R01 = R02 = R31 = R32 = R11 = R12 = R22 = 0 . (3.109b)

Then the Ricci scalar becomes,

R = gαβRαβ = 0 . (3.110)

Therefore the Einstein tensor can be written equal to Ricci tensor i.e. Rαβ = Gαβ.
Raising the indices we can write the components of Einstein tensor as [21],

G00 = G33 = −G03 =
1

c2

[
hxxḧxx + hxyḧxy +

1

2
ḣ2xx +

1

2
ḣ2xy

]
. (3.111)
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Now we are in a position to find out the components of the pseudotensor tαβLL. From
eq. (3.11) and eq. (2.6) we can write,

Hαµβν
,µν = 2(−g)Gαβ +

16πG

c4
(−g)tαβLL . (3.112)

Talking of plane gravitational waves, we have Hαµβν
,µν = 0. Then,

tαβLL =
−c4

8πG
Gαβ , (3.113)

where Gαβ is the Einstein tensor and G is the gravitational constant. From eq.
(3.111) we can write,

t00 = t33 = −t03 =
−c2

8πG

[
hxxḧxx + hxyḧxy +

1

2
ḣ2xx +

1

2
ḣ2xy

]
. (3.114)

We can average out the values of tαβLL over a wave-period. It gives no meaning if
averaged over a fraction of wave-period, since the result is then gauge dependent.
Moreover, we cannot perform operations to measure mass (or correspondingly
energy) in far field wave-zone for less than a wave-period. This is because locally
spacetime does not posses energy. Averaging out over a wave-period, the values of
tαβLL come out to be,〈

t00
〉

=
〈
t33
〉

= −
〈
t03
〉

=
−c2

8πG

〈
−ḣ2xx − ḣ2xy +

1

2
ḣ2xx +

1

2
ḣ2xy

〉
=

c2

16πG

〈
ḣ2xx + ḣ2xy

〉
, (3.115)

or,

c(−g)
〈
t03
〉

=
c3

16πG
(−g)

〈
ḣ2xx + ḣ2xy

〉
, (3.116)

where g is the metric determinant and the value of (−g) = 1−ḣ2xx−ḣ2xy. Multiplying
these terms inside the averaged value and keeping only the quadratic terms we get,

c(−g)
〈
t03
〉

=
c3

16πG

〈
ḣ2xx + ḣ2xy

〉
. (3.117)

Now using the Einstein quadrupole formula (eq. (3.92)) we can write,

c(−g)
〈
t03
〉

=
G

4πc5r2

〈...
I 2
xx +

...
I 2
xy

〉
. (3.118)

The flux of energy is then given by eq. (3.24) as,

−
〈
Ė
〉

= −〈P 〉 = c

∮
(−g)

〈
t03
〉
dS3 . (3.119)
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3.6.2 Power Radiated Out in a Solid Angle

Using eq. (3.119) and eq. (3.118) we can write the power radiated out of a system
in a solid angle Ω. i.e,

dP

dΩ
= − G

4πc5

〈...
I 2
xx +

...
I 2
xy

〉
, (3.120)

where Ijk is the mass quadrupole moment defined as,

Ijk = c−2
∫
T 00xjxkd

3x ,

for continuous distribution of matter. If we consider discrete matter distribution
than we can replace Ijk by Qjk, which is defined as,

Qjk =
∑
α

mαxαjxαk . (3.121)

Then we can write the formula for power radiated out in a solid angle Ω as,

dP

dΩ
= − G

8πc5

(
d3Qij
d3t

eij

)
, (3.122)

where eij is the unit polarization tensor which obeys the following conditions,

eij = eji , eii = 0 , kieij = 0 , eijeij = 1 . (3.123)

The sum is running over masses mα in our system. It must be noted that the
result is independent of all kinds of stresses present. Summing eq. (3.122) over two
allowed polarizations we get,

∑
pol

dP

dΩ
= − G

8πc5

[
d3Qij
d3t

d3Qij
d3t

− 2ni
d3Qij
d3t

nk
d3Qkj
d3t

− 1

2

(
d3Qii
d3t

)2

+
1

2

(
ninj

d3Qij
d3t

)2

+
d3Qii
d3t

njnk
d3Qjk
d3t

]
, (3.124)

or, ∑
pol

dP

dΩ
= − G

8πc5

[
d3Qij
d3t

d3Qij
d3t

− 2ni
d3Qij
d3t

nk
d3Qkj
d3t

− 1

2

d3Qii
d3t

d3Qjj
d3t

+
1

2
ninjnknl

d3Qij
d3t

d3Qlk
d3t

+
d3Qii
d3t

njnk
d3Qjk
d3t

]
, (3.125)
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where n̂ is the unit vector in the direction of radiation. The total rate of radiation
is obtained after integrating over all directions of emission. To do so we integrate
over d2n using the following identities,∫

S2

d2n =4π , (3.126a)∫
S2

njnkd
2n =

4π

3
δjk , (3.126b)∫

S2

ninjnlnkd
2n =

4π

15
(δijδkl + δilδjk + δikδjl) . (3.126c)

Finally we get the formula for the total amount of power radiated out by a system
Via Emission of gravitational waves, i.e,

P = − G

5c5

[
d3Qij
d3t

d3Qij
d3t

− 1

3

d3Qii
d3t

d3Qjj
d3t

]
. (3.127)

3.6.3 Gravitational Radiation From Two Point Masses in
a Keplerian Orbit

Let us consider two masses m1 and m2 having coordinates (d1 cosψ, d1 sinψ) and
(−d2 cosψ,−d2 sinψ) respectively in the xy-plane as shown in figure (3.3). The

Figure 3.3: Coordinate system for two point masses in a Keplerian orbit [22].

origin is taken as the center of mass. Therefore,

d1 =

(
m2

m1 +m2

)
d , d2 =

(
m1

m1 +m2

)
d . (3.128)
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The non-zero components of Qij are,

Qxx =µd2 cos2 ψ , (3.129a)

Qyy =µd2 sin2 ψ , (3.129b)

Qxy =Qyx = µd2 sinψ cosψ , (3.129c)

where µ is the reduced mass (m1m2)/(m1 +m2). For Kepler motion, the equation
of orbit is,

d =
a(1− e2)

1 + e cosψ
, (3.130)

where a is the semi-major axis and e is the eccentricity of the orbit. Also the
angular velocity for Kepler motion is given by,

ψ̇ =
[G(m1 +m2)a(1− e2)]1/2

d2
. (3.131)

Using these equations we can find out the values of 3rd order derivatives,

d3Qxx
dt3

=β(1 + e cosψ)2(2 sin 2ψ + 3e sinψ cos2 ψ) , (3.132a)

d3Qyy
dt3

=− β(1 + e cosψ)2
[
2 sin 2ψ + e sinψ(1 + 3 cos2 ψ)

]
, (3.132b)

d3Qxy
dt3

=
d3Qyx
dt3

= −β(1 + e cosψ)2
[
2 sin 2ψ − e sinψ(1− 3 cos2 ψ)

]
, (3.132c)

where β is defined as,

β2 =
4G3m2

1m
2
2(m1 +m2)

a5(1− e2)5
. (3.133)

The total power radiated out by this system in form of gravitational waves is,

P = − 8

15

G4

c5
m2

1m
2
2(m1 +m2)

a5(1− e2)5
(1+e cosψ)4

[
12(1 + e cosψ)2 + e2 sin2 ψ

]
. (3.134)

Averaging this equation over one period of elliptical motion we get the average rate
at which the system radiates energy. i.e,

〈P 〉 = −32

5

G4

c5
m2

1m
2
2(m1 +m2)

a5(1− e2)7/2

(
1 +

73

24
e2 +

37

96
e4
)
. (3.135)

If we consider the motion in a circular orbit, then the equation reduces to,

〈P 〉 = −32

5

G4

c5
m2

1m
2
2(m1 +m2)

a5
, (3.136)
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here a represents the radius of the circular orbit rather than the semi-major axis of
an ellipse. Thus the average power radiated out two masses orbiting a common
center of mass in an elliptical orbit is equal to the power radiated from two masses
in a circular orbit (which has the same radius as the semi-major axis of the elliptical
orbit) times an enhanced factor,

f(e) =
1 + (73/24)e2 + (37/96)e4

(1− e2)7/2
. (3.137)

3.6.4 Orbital Decay for Two Point Masses in Keplerian
Orbit Via Emission of Gravitational Waves

In the previous section we have seen that the emission of gravitational waves from
a system takes energy out of the system at a rate given by eq. (3.135). Therefore
the emission of gravitational waves results in the reduction of orbital period for
two point masses in Keplerian orbit. To find the formula for the rate at which the
orbital period reduces we make use of Kepler’s 3rd law of planetary motion, i.e,

P 2
b =

4π2

G(m1 +m2)
a3 , (3.138)

where Pb is the orbital period. We can see that the orbital time period depends upon
the semi-major axis a, so we can find out the formula for reduction of semi-major
axis first. We know from classical two-body problem that the semi-major axis is
related to energy by the formula [23],

a = −Gm1m2

2E
. (3.139)

Using eq. (3.119), eq. (3.135) and eq. (3.139) we can write the formula for reduction
of semi-major axis [24],〈

da

dt

〉
= −64

5

G3m1m2(m1 +m2)

c5a3(1− e2)7/2

(
1 +

73

24
e2 +

37

96
e4
)
. (3.140)

Now using Kepler’s 3rd law, we can write the formula for orbital period decay rate,〈
dPb
dt

〉
= −192

5

G5/3m1m2(m1 +m2)
−1/3

5c2(1− e2)7/2

(
1 +

73

24
e2 +

37

96
e4
)(

Pb
2π

)−5/3
.

(3.141)
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3.6.5 Orbital Decay of Hulse Taylor Binary PSR B1913+16

Having developed a general formula for the orbital decay of a binary system via
emission of gravitational waves, we are now in a position to study the example of
the Hulse-Taylor binary PSR B1913+16. The orbitals parameters involved in eq.
(3.141) are given by [1],

m1 =2.86311× 1030kg ,

m2 =2.7613× 1030kg ,

e =0.6171334 ,

Pb =27906.979585910402s .

Knowing these values and the values of the constants G and c, we can plot the
solution of eq. (3.141), Figure (3.4).

Figure 3.4: The commulative period shift of the Hulse-Taylor binary system, which
shows the orbital decay as a result of emission of gravitational waves [25].



4

Gravitational Waves from
Inspiralling Compact Binaries

Inspiralling compact binaries,
containing neutron stars and/or
black holes, are likely to become
the bread-and-butter sources of
gravitational waves for the
detectors LIGO, VIRGO, GEO
and KARGA on ground, and
also eLISA in space [26].

Luc Blanchet

In the previous chapter we have developed a general formalism for studying
gravitational waves (i.e. the PN approximation) and used the lowest-order PN
results to reproduce the Hulse-Taylor binary (section 3.6). Now we wish to study
gravitational waves at successive PN orders to higher degree of accuracy. Since
inspiralling compact binaries are considered to be an ideal source for the generation
of detectable gravitational waves, therefore we wish to use the PN results at each
successive order to study gravitational waves produced by inspiralling compact
binaries. In this chapter I shall discuss the behavior of gravitational waves at
successive PN orders starting from 0PN upto 3PN order. I have recalculated
explicitly the relation for the gravitational wave potential correct upto 1.5PN order,
whereas the higher order relations (i.e. 2PN, 2.5PN and 3PN) have been imported
directly from literature.

86
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4.1 Gravitational Waves at 0PN Order

In the previous chapter we have discussed the convention of PN counting according
to which the quadrupole term in gravitational wave potential is the 1PN term. The
reason for this is that the general expression for the gravitational wave potential
hαβ (eq. (3.86)) contains a mass term at the lowest order, which is taken to be
Newtonian term (or 0PN). The quadrupole term is greater than this term by a
factor (v/c)2, and hence it is assigned the rank of 1PN. However, in the upcoming
sections the PN counting differs from the convention adopted previously. Now we
are interested only in the spatial components of the gravitational wave potential,
since only the spatial components survive under the TT-gauge. The leading term
in the spatial components of the gravitational wave potential is the quadrupole
term, hence it is convenient to reset the PN counting to assign 0PN rank to the
quadrupole term. The higher terms will then be assigned a rank of 0.5PN, 1PN,
1.5PN and so on, correspondingly. Under this new convention of PN ordering, the
lowest order gravitational wave potential is given by,

hjk =
2G

c4r
Ïjk . (4.1)

When the internal structure of each body in the system can be ignored, we can
adopt the point-mass description (first used in section 3.6), in which,

ρ =
∑
A

MAδ(x− rA) , (4.2)

where MA is the total mass-energy of the body identified by the label A and rA is
the position vector of the body A evaluated at retarded time tr. In this case the
quadrupole moment becomes,

Ijk =
∑
A

MAr
j
Ar

k
A . (4.3)

The dynamics of the system are governed by Newton’s equations of motion. i.e,

aA = −
∑
B 6=A

GMB

r2AB
nAB , (4.4)

where rAB = rA − rB, rAB = |rA − rB| and nAB = rAB/rAB. Differentiating eq.
(4.3) twice with respect to retarded time tr and using the equation of motion (eq.
(4.4)) we get,

1

2
Ïjk = −1

2

∑
A

∑
B 6=A

GMAMB

rAB
njABn

k
AB +

∑
A

MAv
j
Av

k
A , (4.5)

where vjA = drjA/dtr is the velocity vector of the body A.
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4.1.1 Binary System

We consider the gravitational waves emitted by a binary system of orbiting bodies
using the lowest order PN approximation. The position of the first body of mass
m1 is r1 with respect to system’s center of mass, and its velocity is v1. Similarly,
the position of the second body with mass m2 is given by the position vector r2
and its velocity is given as v2. We can write the position vectors in terms of the
separation vector r = r12 = r1 − r2 as,

r1 =
m2

m
r , r2 =

m1

m
r , (4.6)

where m = m1 + m2 is the total mass of the system. Similarly we can write the
velocities as,

v1 =
m2

m
v , v2 =

m1

m
v , (4.7)

where v = v1 − v2 is the relative velocity of m1 with respect to m2. We introduce
another quantity, for later use, i.e,

η =
m1m2

(m1 +m2)2
. (4.8)

This is called the symmetric mass ratio of the system. Making all these substitutions
in eq. (4.5) we get,

1

2
Ïjk = ηm[vjvk − (Gm/r)njnk] , (4.9)

and using this in the quadrupole formula (eq. (4.1)) we obtain,

hjk =
4Gηm

c4r

(
vjvk − Gm

r
njnk

)
. (4.10)

Now we need expressions for vj and rj. To describe the orbital parameter, we
introduce an orbit-adapted coordinates system (x, y, z) which possesses the following
properties. Firstly, the origin of the coordinate system coincides with the system’s
center of mass. Secondly, the orbital plane coincides with the xy-plane and the
angular momentum points in the z-direction. Thirdly, the major axis of the system
coincides with the x-axis and the minor axis of the system coincides with the y-axis.
The relative orbit is described by Kepler’s equations,

r =
p

1 + e cosφ
, φ̇ =

√
Gm

p3
(1 + e cosφ)2 , (4.11)

where φ is the angle from the x-axis (also known as the true-anomaly), p is the
system’s semi-latus rectum and e is eccentricity of the orbit. In the orbit-adapted
frame, we have the unit vector n and λ defined as,

n = [cosφ, sinφ, 0] , λ = [− sinφ, cosφ, 0] , (4.12)
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which form the basis of the frame. The position and the velocity vectors are defined
in terms of these basis vectors as,

r = rn , v = ṙn + rφ̇λ . (4.13)

Using eq. (4.11) and eq. (4.13) in eq. (4.10) we finally get the expression of
gravitational wave potential for a binary system,

hjk =
4η(Gm)2

c4rp

[
−(1 + e cosφ− e2sin2φ)njnk

+e sinφ(1 + e cosφ)(njλk + λjnk) + (1 + e cosφ)2λjλk
]
. (4.14)

4.1.2 Polarizations

The geodesic deviation in the transverse direction provides a way to study the
polarization of gravitational waves. Since gravitational waves are tensorial in nature
and they have two degrees of freedom, therefore gravitational waves can have two
independent modes of polarization, represented as “+” or “×” polarizations. Let
us consider the case of a plane gravitational wave first. From eq. (3.87) we can
write the tranverse-traceless components of the hµν for a monochromatic plane
gravitational wave propagating in positive z-direction as,

hxx =− hyy = <[A+exp(−ιω(t− z))] , (4.15a)

hxy =hyx = <[A×exp(−ιω(t− z))] . (4.15b)

The amplitudes A+ and A× are two independent modes of gravitational wave
polarizations. Just as electromagnetic waves, gravitational waves can also be
resolved into linearly or circularly polarized components.

For linearly polarized waves, the unit polarization vectors of electromagnetic
theory are ex and ey. A test charge hit by a plane wave with x-polarization
oscillates in the x-direction and the one hit by a plane wave with y-polarization
oscillates in the y-direction. Using the analogy of electromagnetic waves, the unit
polarization tensors for gravitational waves are,

e+ = ex ⊗ ex − ey ⊗ ey , (4.16a)

e× = ex ⊗ ey + ey ⊗ ex , (4.16b)

The plane gravitational wave having A× = 0 has e+ polarization and it can be
written as,

hjk = <[A+exp(−ιω(t− z)e+jk)] . (4.17)

The effect of geodesic deviation produced by a linearly ‘+’ polarized plane grav-
itational wave between two test particles depends upon the direction of their
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separation. In order to see the effect in all directions at one we can consider a
circular ring of test particles in the transverse xy−plane surrounding a center
particle. As the plane wave, with a polarization ex, passes through this geometry
in the positive z-direction, it deforms the ring into an ellipse with axes in the x
and y directions that pulsate in and out. On the other hand when a wave with e×
passes, it deforms the ring at an angle of 45 degrees from the x and y axes.

For circularly polarized waves, the unit polarization vectors of electromagnetic
theory are,

eR =
1√
2

(ex + ιey) , (4.18a)

eL =
1√
2

(ex − ιey) . (4.18b)

Using this analogy, the unit polarization tensors for circularly polarized plane
gravitational waves can be written as,

eR =
1√
2

(e+ + ιe×) , (4.19a)

eL =
1√
2

(e+ − ιe×) . (4.19b)

The geodesic deviation produced in a ring of test particles surrounding a center
particle by linearly and circularly polarized plane gravitational waves can be
visualized in figure (4.1),

Figure 4.1: The geodesic deviation visualized as the deformation in the shape of a
ring of test particles placed in the path of plane gravitational waves for different
polarizations [9].

Now we wish to consider the polarizations of gravitational waves produced by
compact binaries at 0PN order. In order to do so we define a “detector-adapted”
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frame (X, Y, Z) in addition to the “orbit-adapted frame” (x, y, z). This detector-
adapted frame possesses the following properties. First is that the origin of these
coordinates system co-incide with the origin of the frame (x, y, z). Second is that
the Z−axis points in the direction of the the gravitational-wave detector, at which
these polarizations are to be measured. Third is that the XY−plane is orthogonal
to the Z−axis and coincides with the plane of the sky from the detector’s point
of view, and the X−axis is aligned with the line of nodes (the line at which the
orbital plane cuts the reference plane). We use the convention that the X−axis
points towards the ascending node (the point at which the orbit cuts the plane
from below). The entire construction is demonstrated in the figure (4.2). The new

Figure 4.2: Orbit-adapted frame as viewed in the detector-adapted frame. The
angle Ω between the line of nodes and the X−direction is the logitude of ascending
node. The angle ω is the angle between the direction of pericenter and the line of
nodes, as measured in the orbital plane. The angle ι is the inclination of xy−plane
from the XY−plane. Finally, angle f is the angle between the direction of the
system’s center of mass and the separation vector r [16].

coordinate directions are described by,

eX =[cosω, sinω, 0] , (4.20a)

eY =[cos ι sinω, cos ι cosω,− sin ι] , (4.20b)

eZ =[sin ι sinω, sin ι cosω, cos ι] , (4.20c)

We can take the condition that the X−axis of the detector-adapted frame be
aligned with the ascending node (figure 4.2), so that we can take the angle Ω to be
equal to 0. The unit vectors n and λ, when observed from the detector-adapted
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coordinates (X, Y, Z), are given by,

n =[cos(ω + φ), cos ι sin(ω + φ), sin ι sin(ω + φ)] , (4.21a)

λ =[− sin(ω + φ), cos ι cos(ω + φ), sin ι cos(ω + φ)] . (4.21b)

Considering that the gravitational waves travel from binary system to the detector
along Z−axis, eX and eY can be taken as the vectorial basis in transverse subspace.
Under these considerations the h+ and h× polarizations can be computed as,

h+ =
1

2
(e
jXe

kX − e
jY e

kY )hjk , (4.22a)

h× =
1

2
(e
jXe

kY − e
jY e

kX)hjk , (4.22b)

Combining equations (4.14), (4.20), (4.21) and (4.22) we can finally write the
gravitational wave polarizations at 0PN order as,

h+ = −h0(1 + cos2ι)

[
cos(2φ+ 2ω) +

5

4
e cos(φ+ 2ω) +

1

4
e cos(3φ+ 2ω)

+
1

2
e2 cos 2ω

]
+

1

2
esin2ι(cosφ+ e) , (4.23a)

h× = −2h0 cos ι

[
sin(2φ+ 2ω) +

5

4
e sin(φ+ 2ω) +

1

4
e sin(3φ+ 2ω)

+
1

2
e2 sin 2ω

]
, (4.23b)

where e is the eccentricity of the orbit and,

h0 =
2η(Gm)2

c4rp
, (4.24)

is the gravitational wave amplitude. We can further consider the case when the
orbit of binary system is circular, i.e, e = 0 and φ increases linearly with time.
Then the gravitational wave polarizations reduce to,

h+ =− h0(1 + cos2ι) cos 2(φt+ ω) , (4.25a)

h× =− 2h0 cos ι sin 2(φt+ ω) . (4.25b)

4.1.3 Gravitational Waves Detection by Interferometer
Detectors

As discussed earlier, the first ever direct detection of a gravitational wave signal
was made my LIGO in September 2015 [2]. The hype got paid when Rainer Weiss,
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Barry C. Barish and Kip S. Thorne were awarded the Nobel prize in Physics
(2017) for “for decisive contributions to the LIGO detector and the observation of
gravitational waves” [27]. A point of interest in here is that LIGO, in actual, has
a geometry similar to Michelson’s interferometer. It is therefore advantageous to
discuss the method by which an interferometer detector detects a gravitational
wave signal.

A laser interferometer consists of a laser source, a beam splitter, two highly
reflective end mirrors mounted on test masses imagined to be freely moving in
spacetime and a light detector 4.3. A light ray coming from the source is splitted
into two beams after passing through the beam splitter. These splitted light beams
travel a sufficient distance of 4km (in the case of LIGO) going forward in their
specified direction, and after reflecting from the end mirror cover the same amount
of distance backwards. The reflected beams then combine together and interfere
constructively or destructively, depending upon the difference of phase between
them. Initially, the interferometer is set in a configuration that the reflected beams
interfere destructively (phase difference is zero), and there is no signal received on
the light detector. When a gravitational wave passes, it stretches and/or squeezes
the arms lengths of the interferometer, thus altering the amount of distance traveled
by the light beams. In that case, the phase difference does not remains zero when
the interference occurs, and a signal will be received at the light detector.

Let us assume the length of the arms of the interferometer be L1 and L1. The

Figure 4.3: Schematic representation of laser interferometer gravitational wave
detector.

light ray traveling along L1 covers a total distance of 2L1 and similarly the light
ray traveling along L2 covers a total distance of 2L2. The time taken by both light
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rays to come back to the beam splitter after getting reflected back from the end
mirrors is given respectively as, 2Lx/c and 2Ly/c. Then the phase difference is
given by,

∆Φ = 2πν(2L1/c− 2L2/c) , (4.26)

where ν is the frequency of laser light. When no gravitational wave is passing, the
length of both the arms is constant Lx = Ly = L0 and hence the phase difference is
zero. However, when a gravitational wave passes through the detector, it changes
the lengths of arms of the detector. In order to find out the change in length, we
assume that the position of the end mirror M1 from the test mass is specified
by a coordinate ~ax, whereas that of M2 is specified by ~ay. In the absence of any
gravitational wave we can write the coordinates as ~ax = L0e1 and ~ay = L0e2, e1

and e2 are the unit vectors in the directions of L1 and L2 respectively. We say that
when a gravitational wave passes it perturbs the length of the arms. Then the new
coordinates can be written as,

aj1 = L0

(
ej1 +

1

2
hjkTT e

k1

)
, (4.27a)

aj2 = L0

(
ej2 +

1

2
hjkTT e

k2

)
. (4.27b)

Then perturbed length of each can be written as,

L1 = L0

(
1 +

1

2
hjkTT e

j1ek1

)
, (4.28a)

L2 = L0

(
1 +

1

2
hjkTT e

j2ek2

)
. (4.28b)

The phase difference can be given by putting these in eq. (4.26) as,

∆Φ =
2πνL0

c
(e
j1ek1 − e

j2ek2)h
jk
TT . (4.29)

The output of the interferometer detector is given in the form of gravitational
wave-strain as a difference in lengths of its original arms [2], i.e, ∆L = L1 −
Ly2h(t)L0. We can write down the formula for strain by the use of eq. (4.28) as,

h(t) =
1

2
(e
j1ek1 − e

j2ek2)h
jk
TT . (4.30)

In order to calculate h(t), we decompose hjkTT in transverse basis of the detector-
adapted frame (eX , eY , eZ). It can be easily proved from eq. (4.22) that,

hjkTT = (ejXekX − ejY ekY )h+ + (ejXekY + ejY ekX)h× . (4.31)
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Putting in eq. (4.30) we can write,

h(t) = F+A+(t) + F×A×(t) , (4.32)

where,

F+ =
1

2
(e
j1ek1 − e

j2ek2)(e
j
XekX − ejY ekY ) , (4.33a)

and F× =
1

2
(e
j1ek1 − e

j2ek2)(e
j
XekY + ejY ekX) . (4.33b)

In order to find out the exact expressions for F+ and F× we need to correlate
the detector basis (e1, e2, e3) with the transverse basis (eX , eY , eZ). We start by
assuming that the two sets of basis are not aligned in any dimension, and the
direction of the source of incoming gravitational waves is in the direction −N = eX .
In order to align the detector basis with the we perform 3 euler rotations one-by-one.
The First rotation by an angle α around the e3 axis to align the e1 axis with in
the direction of projection of −N in e1 − e2 plane. This angle α is known as the
right ascension. The Second rotation by an angle δ around the new e2 axis to align
e3 in the direction of −N. This angle δ is known as the declination. The third
rotation is then performed by an angle χ around the axis of N to align new e1

with eX . This rotation is specified by the incoming gravitational wave polarization.
Performing all these transformations, the relation between these basis is given as,

e1 =(cosα cos δ cosχ− sinα sinχ)eX + (cosα cos δ sinχ

+ sin δ cosχ)eY − (sinα cos δ)eZ , (4.34a)

e1 =(cosα sin δ cosχ+ cos δ sinχ)eX + (cosα sin δ sinχ

− cos δ cosχ)eY − (sinα sin δ)eZ , (4.34b)

e3 =(− sinα cosχ)eX − (sinα sinχ)eY − (cosα)eZ . (4.34c)

Putting back in eq. (4.33) we get the final expression for F+,×,

F+ =
1

2
(1 + cos2 α) cos 2δ cos 2χ− cosα sin 2δ sin 2χ , (4.35a)

F× =
1

2
(1 + cos2 α) cos 2δ sin 2χ+ cosα sin 2δ cos 2χ . (4.35b)

Using eq. (4.25) and eq. (4.35) in eq. (4.32), we can find out a relation for the
strain produced in the length of the arms of the detector when a gravitational wave
passes through it. Since the strain h(t) is dependent upon time, therefore we are
interested in plotting a strain-time graph.
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Strain Plot for GW150914 Signal at 0PN

We use the data provided by LIGO for the first gravitational wave discovery, the
source of which happens to be a binary black hole merger. This detection is named
“GW150914”, in which GW is an acronym of gravitational waves and the numbers
specify the date of detection (i.e, September 14, 2015). According to published
data [28], we can write the masses of the black holes as m1 = 7.1604×1031kg and
m2 = 5.7681×1031 kg. The luminosity distance as r = 1.35784×1025 m. The
orbital plane of the binary is found to strongly misaligned to the line of sight, the
maximum probability of inclination angle is at ι = 155 deg. The angles α and
δ can be found by viewing the location of the event in the sky. The sky map of
GW150914 corresponds to a projected region of two-dimensional credible region
of 150deg2 (with a 50 % probability) and 610deg2 (with a probability of 90 %).
Viewing the sky map, we have a lot of possible values for α and δ. However, we
choose values from the most colored regions, then α = −70 deg and δ = 0.15 deg.
Assuming the linear polarization of the incoming gravitational waves we can write
χ = 90 deg. Using all these values in eq. (4.32), we can plot a strain-time graph
(Fig4.4) as,

Figure 4.4: The strain versus time plot for the gravitational wave signal GW150914
correct up to the lowest (0PN) order.
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4.2 Gravitational Waves at 1.5PN Order

We have seen in the previous chapter that the Einstein quadrupole formula serves
well to describe the motion of compact binaries at the early stage of the inspiral
phase (section 3.6). Now we extend our approach from the quadrupole formula
and study the behavior of gravitational waves at 1.5PN order. The approach is
the same that we need to integrate the relaxed field equations (3.29) within the
near-zone and the wave-zone domains.

4.2.1 Near-Zone Contribution

From eq. (3.56) we can see that the general form of spatial components of the
near-zone wave potential can be written as,

hjkN (t,x) =
4G

c4r

∞∑
l=0

(−1)l

l!cl
nL

(
d

dtr

)l ∫
M
τ jk(tr,x

′)x′
L
d3x′ +O(r−2) . (4.36)

Expanding the first few terms we can write,

hjkN =
4G

c4r

[∫
M
τ jkd3x′ − 1

c
Na

d

dtr

∫
M
τ jkx′ad3x′ +

1

2c2
NaNb

d2

dt2r

∫
M
τ jkx′ax′bd3x′

− 1

6c3
NaNbNc

d3

dt3r

∫
M
τ jkx′ax′bx′cd3x′...

]
. (4.37)

In order to simplify the integrals involved we can make use of the following identities
which come as a consequence of the harmonic gauge conditions,

τ jk =
1

2c2
∂2

∂t2r
(τ 00xjxk) +

1

2
[τ jpxk + τ kpxj − (τ pqxjxk),q],p , (4.38a)

τ jkxa =
1

2c

∂

∂tr
(τ 0jxkxa + τ 0kxjxa − τ 0axjxk)

1

2
(τ jpxkxa + τ kpxjxa − τapxjxk),p . (4.38b)

Making these substitutions in eq. (4.37) and introducing some new notations we
get,

hjkN =
2G

c4R

∂2

∂t2r

[
Qjk +QjkaNa +QjkabNaNb +

1

3
QjkabcNaNbNc + ...

]
2G

c4r
[P jk + P jkaNa] . (4.39)



98 4. GRAVITATIONALWAVES FROM INSPIRALLING COMPACT BINARIES

where the relative multipole moments are defined as,

Qjk =
1

c2

∫
M
τ 00x′jx′kd3x′ , (4.40a)

Qjka =
1

c

∫
M

(c−1τ 0jx′kx′a + c−1τ 0kx′jx′a − c−1τ 0ax′jx′k)d3x′ , (4.40b)

Qjkab =
1

c2

∫
M
τ jkx′ax′bd3x′ , (4.40c)

Qjkabc =
1

c3
d

dtr

∫
M
τ jkx′ax′bx′cd3x′ , (4.40d)

P jk =

∮
∂M

[τ jpx′k + τ kpx′j − (τ pqx′jx′k),q′ ]dSp , (4.40e)

P jka =
1

c

d

dtr

∮
∂M

(τ jpx′kx′a + τ kpx′jx′a − τapx′jx′k)dSp . (4.40f)

In order to find out the values of these multipole moments, we make use of the
idea of matter distribution that consists of a perfect fluid. The components of the
stress-energy tensor for a perfect fluid correct upto 1.5PN order are given as [16],

c−2(−g)T 00
1 =ρ[1 +

1

c2
(
1

2
v2 + 3U + Π) +O(c−4)] , (4.41a)

c−1(−g)T 0j
1 =ρvj[1 +

1

c2
(
1

2
v2 + 3U + Π +

P

ρ
) +O(c−4)] , (4.41b)

(−g)T jk1 =ρvjvk + Pδjk +O(c−4) . (4.41c)

where the number 1 in the subscript denotes that these values are obtained after
the first iteration of the Einstein field equations, Π is the internal energy per unit
mass of the fluid and U is the Newtonian gravitational potential defined as,

U(t,x) = G

∫
ρ(t,x′)

|x− x′|
d3x′ . (4.42)

The components of the Landau-Lifshitz pseudotensor are given as,

c−2(−g)t00LL =
−1

4πGc2

(
7

2
∂jU∂

jU

)
+O(c−4) , (4.43a)

c−1(−g)t0jLL =
1

4πGc2
[
3∂tU∂

jU + 4(∂jUk − ∂kU j)∂kU
]

+O(c−4) , (4.43b)

(−g)tjkLL =
1

4πG
(∂jU∂kU − 1

2
δjk∂nU∂

nU) +O(c−2) , (4.43c)

where,

U j(t,x) = G

∫
ρvj(t,x′)

|x− x′|
d3x′ . (4.44)
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The harmonic gauge conditions, however, do not make significant contributions
upto 1.5PN order. The components of tαβH can therefore be written as,

16πG

c4
(−g)t00H = O(c−6) , (4.45a)

16πG

c4
(−g)t0jH = O(c−7) , (4.45b)

16πG

c4
(−g)tjkH = O(c−6) , (4.45c)

Finally we can write the components of ταβ using equations (4.41), (4.43) and
(4.45) and using them in eq. (3.30),

c−2τ 001 =ρ[1 +
1

c2
(
1

2
v2 + 3U + Π)]− 1

4πGc2

(
7

2
∂jU∂

jU

)
+O(c−4) , (4.46a)

c−1τ 0j1 =ρvj[1 +
1

c2
(
1

2
v2 + 3U + Π +

P

ρ
)]

+
1

4πGc2
[
3∂tU∂

jU + 4(∂jUk − ∂kU j)∂kU
]

+O(c−4) , (4.46b)

τ jk1 =ρvjvk + Pδjk +
1

4πG
(∂jU∂kU − 1

2
δjk∂nU∂

nU) +O(c−2) . (4.46c)

Radiative Quadrupole Moment

Now we turn our attention to the radiative multipole moments defined in eq. (4.40).
The first one being the radiative quadrupole moment. In order to find out the
value of Qjk we can put the value of τ 00 from eq. (4.46) into eq. (4.40). Also to
find out the value of τ 00, we need to know the potentials involved in its definition.
For that reason we consider a system of point particles, such that,

ρ =
∑
A

MAδ(x− rA) , (4.47a)

Π =0 , (4.47b)

U =
∑
B

GMB|x− rB|−1 . (4.47c)

Then we can write,

c−2τ 00 =
∑
A

MA

[
1 +

v2A
2c2

+
3UA
c2

]
δ(x− rA)− 7

8πGc2
∂pU∂

pU +O(c−4) . (4.48)

We can divide the radiative quadrupole moment into a matter part and a field
contribution part as,

Qjk = Qjk[M ] +Qjk[F ] +O(c−4) . (4.49)
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Both the matter part and the field contribution part after integration come out to
be,

Qjk[M ] =
∑
A

MA

(
1 +

v2A
2c2

+
3UA
c2

)
rjAr

k
A , (4.50a)

Qjk[F ] =
−7

2c2

∑
A

MAUAr
j
Ar

k
A . (4.50b)

Using equations (4.50) in eq. (4.49) we get the final expression for the radiative
quadrupole moment,

Qjk =
∑
A

MA

[
1 +

v2A
2c2
− UA

2c2

]
rjAr

k
A . (4.51)

We can proceed further on the same footings to find out the values of higher
radiative multipole moments.

Radiative Octopole Moment

The value of radiative octopole moment is given by the expression,

Qjka = Ajka + Akja − Aajk , (4.52)

where,

Ajka =
1

c

∑
A

MA

[
1 +

v2A
2c2

]
vjAr

k
Ar

a
A −

1

2c3

∑
A

∑
B 6=A

GMAMB

rAB
[(nAB.vA)

×njABr
k
Ar

a
A + vjAr

k
Ar

a
A] +

1

2c3

∑
A

∑
B 6=A

GMAMB[(nAB.vB)njABn
(k
ABr

a)
A

− 7njABv
(k
A r

a)
A + 7vjAn

(k
ABr

a)
A ]− 1

6c3

∑
A

∑
B 6=A

GMAMBrAB[(nAB.vA)

×njABn
k
ABn

a
AB − 11njABn

(k
ABv

a)
A + 11vjAn

k
ABn

a
AB] +O(c−5) . (4.53)

Radiative 4-pole and 5-pole Moments

The values of radiative 4-pole and 5-pole moments are given as,

Qjkab =
1

c2

∑
A

MAv
j
Av

k
Ar

a
Ar

b
A −

1

2c2

∑
A

∑
B 6=A

GMAMB

rAB
njABn

k
ABr

a
Ar

b
A

1

12c2

∑
A

∑
B 6=A

GMAMBrABn
j
ABn

k
AB(naABn

b
AB − δab) +O(c−4) (4.54)
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Qjkabc =
1

c3
∂

∂tr
[
∑
A

MAv
j
Av

k
Ar

a
Ar

b
Ar

c
A −

1

2

∑
a

∑
B 6=A

GMAMB

rAB
njABn

k
ABr

a
Ar

b
Ar

c
A

+
1

4

∑
A

∑
B 6=A

GMAMBrABn
j
ABn

k
ABr

(a
A {n

b
ABn

c)
AB − δ

bc)}] +O(c−5) . (4.55)

All the multipole moments are expressed in terms of mass-energy MA of each
body in a system of bodies, its position rA and velocity vA evaluated over the
retarded time tr. Therefore, the radiative multipole moments are functions of
retarded time tr, rAB = |rA − rB| is the distance between bodies A and B and
nAB = (rA − rB)/rAB is the unit vector that points from body B to body A.
However, the contributions due to P jk and P jka vanish upto 1.5PN order.

4.2.2 Wave-Zone Contribution

We have seen in the previous chapter that the wave-zone contribution to hjk can
be obtained by considering τ jk as the sum of the terms of the form,

τ jk[l,m] =
1

4π

f jk(tr)

rm
n〈L〉 . (4.56)

where f is an arbitrary function of retarted time tr, m is an arbitrary integer and
n〈L〉 is an angular STF tensor of degree l, which satisfies the following identities,

n〈jk〉 =njnk − 1

3
δjk , (4.57a)

n〈jka〉 =njnkna − 1

5
(δjkna + δjankδkanj) , (4.57b)

n〈jkab〉 =njnknanb − 1

7
(δjknanb + δjanknb + δjbnkna + δkanjnb + δkbnjna + δabnjnk)

1

35
(δjkδab + δjaδkb + δjbδka) . (4.57c)

A general form for wave-zone contribution hWjk is given by eq. (3.70) as,

hjkW [l,m] =
4G

c4r
n〈L〉

[∫ r

0

dsf jk(tr − 2s/c)A(s, r) +

∫ ∞
r

dSf jk(tr − 2s/c)B(s, r)

]
.

(4.58)
where A(s, r) and B(s, r) are both defined in terms of Legendre polynomials given
in eq. (3.70) as,

A(s, r) =

∫ r+s

R

Pl(ξ)

pm−1
dp ; B(s, r) =

∫ r+s

S

Pl(ξ)

pm−1
dp . (4.59)
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where the argument of Legendre polynomial ξ is defined as,

ξ =
r + 2s

r
− 2s(r + s)

rp
. (4.60)

Now we can attempt to reach such forms of equations using the source terms.

4.2.3 Construction of the Source Terms

Since the wave-zone doesn’t contain any source interaction, therefore we expect to
get only the contributions due to the fields from the wave-zone field. Therefore, τ jk

can be defined only in terms of tjkLL and tjkH with no trace of T jk. The Landau-Lifshitz
pseudotensor is given as,

(−g)tjkLL =
c4

16πG

[
1

4
∂jh00∂kh00 + ∂jh00∂0h

0k + ∂kh00∂0h
0j +

1

4
∂jh00∂khpp

1

4
∂kh00∂jhpp + ...

]
, (4.61)

and the contribution due to the harmonic gauge conditions is,

(−g)tjkH =
c4

16πG
[−h00∂00hjk + ...] . (4.62)

We can use the identity ∂00 = c−2∂tt, in order to simplify our expressions. Using
equations (4.61) and (4.62) we can write the value of τ jk.

τ jk =
c4

16πG

[
1

4
∂jh00∂kh00 + ∂jh00∂0h

0k + ∂kh00∂0h
0j +

1

4
∂jh00∂khpp

1

4
∂kh00∂jhpp −

1

c2
h00∂tth

jk...

]
. (4.63)

In order to find the derivatives involved, we have previously calculated (eq. 3.86)
that the components of hjk in the wave-zone, correct upto 1PN order come out to
be

h00 =
4G

c2

[
M

r
+

1

2

(
Ijk

r

)
jk

+ ...

]
, (4.64a)

h0j =
4G

c3

[
−1

2
J jkn

k

r
− 1

2

(
İjk

r

)
+ ...

]
, (4.64b)

hjk =
4G

c4

[
1

2

...
I jk

r
+ ...

]
. (4.64c)
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The respective derivatives can then be written as,

∂jh00 =
4G

c2

[
−M
r2

nj +
1

2
∂jpq

(
Ipq

r

)
+ ...

]
, (4.65a)

∂th
0j =

4G

c3

[
−1

2
∂p

(
Ïjp

r
+ ...

)]
, (4.65b)

∂jhpp =
4G

c4

[
−1

2

Ï
r2
nj + ...

]
, (4.65c)

∂tth
jk =

4G

c4

[
1

2
I(4)jk + ...

]
. (4.65d)

where I(4)jk represents the 4th time derivative of Ijk and Ï = Ïpp. Using these
values in eq. (4.63) we get,

τ jk =
GM

4πr2

[
M

r2
njnk − n(j∂k)pq

(
Ipq

r

)
+

4

c2
n(j∂p

(
Ïk)p

r

)
1

c2

(
Ï
r2

+
1

c

...
I
r

)
njnk − 2

c4
I(4)jk + ...

]
(4.66)

We still got some derivatives to deal with. In order to calculate them, we recall
that ∂jr = nj and ∂jnk = r−1(δjk − njnk). We know that Ijk depends upon the
spatial components through tr = t− r/c, so that ∂pIjk = −c−1İjknp. Using these
rules we can find out the derivatives,

∂p

(
Ïjk

r

)
=−

(
Ïjk

r2
+

1

c

...
I jk

r

)
np , (4.67a)

∂jpq

(
Ipq

r

)
=−

(
15
Ipq

r4
+

15

c

İpq

r3
+

6

c2
Ïpq

r2
+

1

c3

...
I pq

r

)
njnpnq

+

(
3
Ipq

r4
+

3

c

İpq

r3
+

1

c2
Ïpq

r4

)
(njδpq + δjpnq + δjqnp) . (4.67b)

Using these results eq. (4.66) becomes,

τ jk =
GM2

4πr4
njnk +

GM

4πr2

[(
15
Ipq

r4
+

15

c

İpq

r3
+

6

c2
Ïpq

r2
+

1

c3

...
I pq
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)
njnknpnq

−

(
3
I
r4

+
3

c

İ
r3

+
1

c3

...
I
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)
njnk −

(
3
Ijp

r4
+

3

c

İjp

r3
+

3

c2
Ïjp

r2
+

2

c3

...
I jp

r

)
nknp
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−

(
3
Ikp

r4
+

3

c

İkp

r3
+

3

c2
Ïkp

r2
+

2

c3

...
I kp

r

)
njnp −

2

c4
I(4)jk + ...

]
. (4.68)

The final step is to express the angular dependence of τ jk in terms of the STF
tensor n〈L〉. We make use of the identities introduced in eq. (4.57) and discard the
terms proportional to δjk, thus arriving to the expression,

τ jk =
GM2

4πr4
n〈jk〉 +

GM

4πr2

[(
15
Ipq
r4

+
15

c

İpq
r3

+
6

c2
Ïpq
r2

+
1

c3

...
I pq
r

)
n〈jkpq〉

−

(
6

7

I
r4

+
6

7c

İ
r3
− 6

7c2
Ï
r2
− 8

7c3

...
I
r

)
n〈jk〉 +

(
9

7

I(jp
r4

+
9

7c

İ(jp
r3
− 9

7c2
Ï(jp
r2

− 12

7c3

...
I (j
p

r

)
n〈k)p〉 − 6

5c2
Ï〈jk〉

r2
− 6

5c3

...
I 〈jk〉

r
− 2

c4
I(4)jk + ...

]
. (4.69)

This expression is the sum of terms that have a structure similar to eq. (4.56).
Therefore, from this expression we can find out the appropriate function ‘f ’ for
each value of l and m.

Each term of τ jk makes contribution to the gravitational wave field hjk through
eq. (4.58). To see how the integrals are evaluated we look at the case where l = 0
and m = 3. We begin by extracting the relevant piece of τ jk, i.e,

GM

4πr2

(
−6

5c3

...
I 〈jk〉

r

)
.

In this case the function f can be written as,

f(tr) =
−6GM

5c3
...
I 〈jk〉 . (4.70)

Next, we get the functions A(s, r) and B(s, r) for l = 0 and m = 3,

A(s, r) =
1

R
− 1

r + s
, B(s, r) =

1

s
− 1

r + s
. (4.71)

We now calculate the integrals of these functions as,

FA =
1

r

∫ R
0

f(tr − 2s/c)ds−
∫ R
0

f(tr − 2s/c)d ln(r + s) ,

=− f(tr − 2R/c) ln(r +R) + f(tr) ln r +
1

R

∫ R
0

f(tr − 2s/c)ds

− 2

c

∫ R
0

ḟ(tr − 2s/c) ln(
r + s

s
)ds− 2

c

∫ R
0

ḟ(tr − 2s/c) ln ds , (4.72)
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and,

FB =−
∫ ∞
R

f(tr − 2s/c)d ln
r + s

s
,

=f(tr − 2R/c) ln
r +R
R

− 2

c

∫ ∞
R

ḟ(tr − 2s/c) ln
r + s

s
ds , (4.73)

assuming that f(tr − 2s/c) goes to zero fast enough as s→∞ such that it ensures
that there is no boundary term as s =∞. The sum of FA and FB then comes out
to be,

F =− f(tr − 2R/c) lnR+ f(tr) ln r +
1

R

∫ R
0

f(tr − 2s/c)ds

− 2

c

∫ R
0

ḟ(tr − 2s/c) ln sds− 2

c

∫ ∞
0

ḟ(tr − 2s/c) ln
r + s

s
ds . (4.74)

In order to simplify this result, we can exploit the fact that we may remove
all the R−dependent terms and its derivatives as an infinite Taylor series in the
power of s and evaluate the two integrals from s = 0 to s = R. They combine to
give f(tr), plus the terms that can be neglected because they come with explicit
factors of R. After expanding f(tr − 2R/c) in powers of R, we also find out that,

F = f(tr)[1 + ln(r/R)]− 2

c

∫ ∞
0

ḟ(tr − 2s/c) ln
r + s

s
ds . (4.75)

The final expression for hjkW [0, 3] is,

hjkW [0, 3] =
4GM

c4r

[
−6G

5c3
{1 + ln(r/R)}

...
I 〈jk〉 +

12

5
Kjk

]
, (4.76)

where,

Kjk(tr, r) =
G

c4

∫ ∞
o

I(4)jk(tr − 2s/c) ln
r + s

s
ds , (4.77)

is the tail integral which involves the entire past history of the system from infinite
past (at s =∞) to the current retarded time (at s = 0). The same technique can
be used to find the other contributions to hjkW . These contributions come out to be,
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hjkW [0, 2] =
4GM

c4r

[
−2Kjk

]
, (4.78a)

hjkW [0, 4] =
4GM

c4r

[
6G

5c3

{
3

2
+ ln(r/R)

}
...
I 〈jk〉 −

12

5
Kjk

]
, (4.78b)

hjkW [2, 3] =
4GM

c4r

[{
−2G

7c3
...
I jp
}
n〈pk〉 +

{
−2G

7c3
...
I kp
}
n〈pj〉

]
, (4.78c)

hjkW [2, 4] =
4GM

c4r

[{
− 3G

28c3
...
I jp
}
n〈pk〉 +

{
− 3G

28c3
...
I kp
}
n〈pj〉

]
, (4.78d)

hjkW [2, 5] =
4GM

c4r

[
G

c3

{
47

700
+

3

35
ln(r/R)

}
...
I jp −

6

35
Kj
p

]
n〈pk〉

4GM

c4r

[
G

c3

{
47

700
+

3

35
ln(r/R)

}
...
I kp −

6

35
Kk
p

]
n〈pj〉 , (4.78e)

hjkW [2, 6] =
4GM

c4r

[
G

c3

{
−97

700
− 3

35
ln(r/R)

}
...
I jp +

6

35
Kj
p

]
n〈pk〉

4GM

c4r

[
G

c3

{
−97

700
− 3

35
ln(r/R)

}
...
I kp +

6

35
Kk
p

]
n〈pj〉 , (4.78f)

hjkW [4, 3] =
4GM

c4r

[
G

20c3
...
I pq
]
n〈jkpq〉 , (4.78g)

hjkW [4, 4] =
4GM

c4r

[
G

30c3
...
I pq
]
n〈jkpq〉 , (4.78h)

hjkW [4, 5] =
4GM

c4r

[
G

42c3
...
I pq
]
n〈jkpq〉 , (4.78i)

hjkW [4, 6] =
4GM

c4r

[
G

56c3
...
I pq
]
n〈jkpq〉 . (4.78j)

Adding all these contributions we get the final result as,

hjkW =
4GM

c4r

[
3G

5c3
...
I 〈jk〉 − 2Kjk − 13G

28c3

(...
I jpn〈pk〉 +

...
I kpn〈pj〉

)
G

8c3
n〈jkpq〉

]
. (4.79)

We can further remove the terms which won’t survive the TT-projection. For
example, we can write,

...
I pn〈pk〉 =

...
I jp(npnk −

1

3
δpk)

TT
= − 1

3

...
I 〈jk〉 , (4.80a)

...
I pqn〈jkpq〉

TT
=

2

35

...
I 〈jk〉 . (4.80b)
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Using this condition we get the final expression for the wave-zone contribution to
the gravitational wave field as,

hjkW =
4GM

c4r

[
11

12

G

c3
...
I 〈jk〉 − 2Kjk

]
. (4.81)

Gravitational Wave-Tails

In eq. (4.77), we encountered the tail-integral for the first time. This gives us
the insight that gravitational wave-tail effects find their appearance in the total
contribution of the gravitational wave potential at 1.5PN order.

The gravitational wave-tails are basically the memory of the waves that have
already passed through the wave-zone and have distorted the spacetime (i.e. the
former post-Minkowskian contributions), such that this distorted spacetime serves
as the background curvature for the latter wave. These wave-tails are produced as
a result of back-scattering1 of the outgoing gravitational radiations off the curved
spacetime associated with the total mass of the system [29].

4.2.4 Binary System

Now we wish to study the case of the binary system again, this time the degree of
accuracy is 1.5PN rather 0PN in the previous section 4.1. The description of the
binary system is the same as before, i.e, both the masses m1 and m2 have position
vectors r1 and r2 and velocities v1 and v2 respectively. We make use of the center
of mass frame as well.

To the required degree of accuracy, the position vectors are given as,

r1 =
m2

m
r +

η∆

2c2

(
v2 − Gm

r

)
r +O(c−4) , (4.82a)

r2 =− m1

m
r +

η∆

2c2

(
v2 − Gm

r

)
r +O(c−4) . (4.82b)

whereas the velocities of both the objects are given as,

v1 =
m2

m
v +

η∆

2c2

[(
v2 − Gm

r

)
r− Gm

r
ṙn

]
+O(c−4) , (4.83a)

v2 =− m1

m
v +

η∆

2c2

[(
v2 − Gm

r

)
r− Gm

r
ṙn

]
+O(c−4) , (4.83b)

1Back-scattering of a wave is similar to the reflection of a wave, i.e, the wave get reflected
back into the same medium from where it comes. However, the difference is that back-scattering
is a kind of diffused reflection due to scattering, and not a pure reflection.
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where ṙ = n.v is the radial component of the velocity vector and n = r/r is the
unit radial vector that points from body 2 to 1. The relative acceleration vector
a = a1 − a2 is given as [16],

a =
−Gm
r2

n− Gm

c2r2
{
[
(1 + 3η)v2 − 3

2
ηṙ2 − 2(2 + η)

Gm

r

]
n

− 2(2− η)ṙv}+O(c−4) . (4.84)

We can express radiative multipole moments defined in equations (4.51), (4.52),
(4.54) and (4.55) for binary system as,

Qjk = ηm

[
1 +

1

2
(1− 3η)

v2

c2
− 1

2
(1− 2η)

Gm

c2r
+O(c−4)

]
rjrk , (4.85a)

Qjka =
ηm∆

c

[
rjrkva − (vjrk + rjvk)ra −

{
1

2
(1− 5η)

v2

c2

+
1

6
(7 + 12η)

Gm

c2r

}
(vjrk + rjvk)ra +

{
1

2
(1− 5η)

v2

c2

+
1

6
(17 + 12η)

Gm

c2r

}
rjrkva +

1

6
(1− 6η)

Gm

c2r
ṙnjrkra

+O(c−4)
]
, (4.85b)

Qjkab =
ηm

c2

[
(1− 3η)vjvkrarb − 1

3
(1− 3η)

Gm

r
njnkrarb

−1

6

Gm

r
rjrkδab +O(c−2)

]
. (4.85c)

Qjkabc =
ηm∆

c3
∂

∂tr

[
−(1− 2η)vjvkrarbrc +

1

4
(1− 2η)

Gm

r
njnkrarbrc

1

4

Gm

r
rjrkr(aδbc) +O(c−2)

]
. (4.85d)

From eq. (4.39) we can see that in order to find out the near-zone contribution
to the gravitational wave potential we have to calculate the 2nd time derivatives of
the radiative multipole moments. These derivatives when by the identities,

vv̇ = −Gm
r2

ṙ +O(c−2) , rr̈ = v2 − ṙ2 − Gm

r
+O(c−2) , (4.86)

come out to be,

Q̈jk =2ηm(vjvk − Gm

r
njnk) +

ηm

c2

[{
−1

2
(7 + 2η)v2 +

3

2
(1− 2η)ṙ2
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+
19

2

Gm

r

}
Gm

r
njnk +

{
(1− 3η)v2 − (1− 2η)

Gm

r

}
vjvk

+ (3 + 2η)
Gm

r
ṙ(vjnk + njvk)

]
+O(c−4) , (4.87a)

Q̈jka =
ηm∆

c

[
−3

Gm

r
ṙnjnkna +

3Gm

r
(vjnk + njvk)na +

Gm

r
njnkva

−2vjvkva
]

+
ηm∆

c3

[{
3

2
(2− η)v2 +

9

2
(1 + η)ṙ2 − 1

3
(31− 9η)

×Gm
r

}
Gm

r
(vjnk + njvk)na − (15 + 2η)

Gm

r
ṙvjvkna

+

{
−3

2
(4− 3η)v2 +

5

2
(1− 3η)ṙ2

2

3
(29− 3η)

Gm

r

}
Gm

r
ṙnjnkna

+

{
1

2
(4− η)v2 − 3

2
(1− η)ṙ2 − 1

3
(25− 3η)

Gm

r

}
Gm

r
njnkva

−(3 + 2η)
Gm

r
ṙ(vjnk + njvk)va

{
−(1− 5η)v2 + (1− 4η)

Gm

r

}
vjvkva

]
+O(c−5) , (4.87b)

Q̈jkab =
ηm

c2

[
5(1− 3η)

Gm

r
ṙ(vjnk + njvk)nanb + (1− 3η)

(
v2 − 5ṙ2

+
7

3

Gm

r

)
Gm

r
njnknanb − 14

3
(1− 3η)

Gm

r
vjvknanb + 2(1− 3η)

×Gm
r

(vjnk + njvk)(vanb + navb) + 2(1− 3η)vjvkvavb +
1

6

×Gm
r

(
v2 − 3ṙ2 +

Gm

r

)
njnkδab +

1

3

Gm

r
ṙ(vjnk + njvk)δab

−1

3

Gm

r
vjvkδab

]
+O(c−4) , (4.87c)

Q̈jkabc =
ηm∆

c3

[
−1

4
(1− 2η)

(
21v2 − 105ṙ2 + 44

Gm

r

)
Gm

r
(vjnk + njvk)

×nanbnc +
1

4
(1− 2η)

(
45v2 − 105ṙ2 + 90

Gm

r

)
Gm

r
ṙnjnknanbnc

− 51

2
(1− 2η)

Gm

r
ṙvjvknanbnc − 27

2
(1− 2η)

Gm

r
ṙ(vjnk + njvk)

×(vanbnc + navbnc + nanbvc)− 1

4
(1− 2η)

(
9v2 − 45ṙ2 + 28

Gm

r

)
×Gm

r
njnk(vanbnc + navbnc + nanbvc) +

29

2
(1− 2η)

Gm

r
vjvk
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(vanbnc + navbnc + nanbvc)− 15

2
(1− 2η)

Gm

r
(vanbnc + navbnc + nanbvc)

− 6(1− 2η)vjvkvavbvc − 9

2
(1− 2η)

Gm

r
ṙnjnk(vavbnc + vanbvc

+ navbvc) +
3

2
(1− 2η)

Gm

r
njnkvavbvc +

1

4

(
9v2 − 15ṙ2 + 10

Gm

r

)
×
(
Gm

r
ṙnjnkn(aδbc)

)
− 1

4

(
3v2 − 9ṙ2 + 4

Gm

r

)
Gm

r
(vjnk + njvk)n(aδbc)

− 1

4

(
3v2 − 9ṙ2 + 4

Gm

r

)
Gm

r
njnkv(aδbc) − 3

2

Gm

r
ṙvjvkn(aδbc)

−3

2

Gm

r
ṙ(vjnk + njvk)v(aδbc) +

3

2

Gm

r
ṙvjvkv(aδbc)

]
+O(c−5) . (4.87d)

In addition we have that,

I(4)jk =2ηm
Gm

r3

[(
3v2 − 15ṙ2 +

Gm

r

)
njnk + 9ṙ(vjnk + njvk)

−4vjvk
]

+O(c−2) . (4.88)

Now using all these derivatives back in eq. (4.39) and eq. (4.81) and then
adding the results for near-zone and the wave-zone contributions we finally get the
value of gravitational wave potential hjk correct upto 1.5PN order,

hjk(t,x) =
2ηGm

c4r
[Ajk[0PN ] + Ajk[0.5PN ] + Ajk[1PN ] + Ajk[1.5PN ]

+ Ajk[tail] +O(c−4)] , (4.89)

where we have separated out all the terms corresponding to their PN order under
the same argument. These separated terms are,

Ajk[0PN ] = 2

[
vjvk − Gm

r
njnk

]
, (4.90a)

Ajk[0.5PN ] =
∆

c

[
3Gm

r
(n.N)(vjnk + njvk − ṙnjnk) + (v.N)(−2vjvk

+
Gm

r
njnk)

]
, (4.90b)

Ajk[1PN ] =
1

c2

[
1

3

{
3(1− 3η)v2 − 2(2− 3η)

Gm

r

}
vjvk +

2

3
(5 + 3η)

×Gm
r
ṙ(vjnk + njvk) +

1

3

Gm

r

{
−(10 + 3η)v2 + 3(1− 3η)ṙ2

+29
Gm

r

}
njnk +

2

3
(1− 3η)(v.N)2

(
3vjvk − Gm

r
njnk

)
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+
4

3
(1− 3η)(v.N)(n.N)

Gm

r
{−4(vjnk + njvk) + 3ṙnjnk}

+
1

3
(1− 3η)(n.N)2

Gm

r
{−14vjvk + 15ṙ(vjnk + njvk)

+

(
3v2 − 15ṙ2 + 7

Gm

r

)
njnk}

]
, (4.90c)

Ajk[1.5PN ] =
∆

c3

[
1

12
(v.N)

{
−6[2(1− 5η)v2 − (3− 8η)

Gm

r
]vjvk

− 6(7 + 4η)
Gm

r
ṙ(vjnk + njvk) +

Gm

r
[3(7− 2η)v2

−9(1− 2η)ṙ2 − 4(26− 3η)
Gm

r
]njnk

}
+

1

2
(1− 2η)(v.N)3

{
−4vjvk +

Gm

r
njnk

}
+

3

2
(1− 2η)(v.N)2(n.N)

Gm

r

{
5(vjnk + njvk − 3ṙnjnk)

}
+

1

4
(1− 2η)(v.N)(n.N)2

Gm

r
{58vjvk − 54ṙ(vjnk + njvk)

− [9v2 − 45ṙ2 + 28
Gm

r
]njnk}+

1

12
(1− 2η)(n.N)3

×Gm
r
{−102ṙvjvk − [21v2 − 105ṙ2 + 44

Gm

r
](vjnk + njvk)

+15ṙ[3v2 − 7ṙ2 + 6
Gm

r
]}
]
, (4.90d)

Ajk[tail] =
4Gm

c3

∫ ∞
0

[
Gm

r

{(
3v2 − 15ṙ2 +

Gm

r

)
njnk + 9ṙ(vjnknjvk)

−4vjvk
}]

(tr−2s/c)

[
ln(

r + s

s
) +

11

2

]
ds . (4.90e)

4.2.5 Polarizations

In order to find out the ‘+’ and ‘×’ polarizations of gravitational wave potential
hjk correct upto 1.5PN order, we make use of the detector-adapted frame once
again. The polarizations of gravitational wave potential can then be given by,

h+,× =
2ηGm

c4r
[A+,×[0PN ] + A+,×[0.5PN ] + A+,×[1PN ]

+ A+,×[1.5PN ] + A+,×[tail] +O(c−4)] . (4.91)
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The values of [0PN ] and [tail] contributions are given as,

A+[0PN ] =
1

2

[
ṙ2 + (rφ̇)2 − Gm

r

]
sin2ι+

1

2

[
ṙ2 − (rφ̇)2 − Gm

r

]
×(1 + cos2ι) cos 2ψ − ṙ2(rφ)(1 + cos2ι) sin 2ψ , (4.92a)

A×[0PN ] =

[
ṙ2 − (rφ̇)2 − Gm

r

]
cos ι sin 2ψ + 2ṙ(rφ̇) cos ι cos 2ψ , (4.92b)

and,

A+[tail] =
Gm

c3
sin2

∫ ∞
0

[
Gm

r3

{
2ṙ2 − (rφ̇)2 − Gm

r

}]
tr−2s/c

χds

Gm

c3
(1 + cos2ι)

∫ ∞
0

[
Gm

r3

{
2ṙ2 + 7(rφ̇)2 − Gm

r

}
cos 2ψ

]
tr−2s/c

χds

− 10
Gm

c3
(1 + cos2ι)

∫ ∞
0

[
Gm

r3
ṙ(rφ̇) sin 2ψ

]
tr−2s/c

χds , (4.93a)

A×[tail] =
2Gm

c3
cos ι

∫ ∞
0

[
Gm

r3

{
2ṙ2 + 7(rφ̇)2 +

Gm

r

}
sin 2ψ

]
tr−2s/c

χds

+ 20
Gm

c3
cos ι

∫ ∞
0

[
Gm

r3
ṙ(rφ̇) cos 2ψ

]
tr−2s/c

χds . (4.93b)

where ψ = φ(tr)+ω and χ = ln
(
r+s
s

+ 11
12

)
. The other contributions are too lengthy

to be presented here. In order to reduce them, we directly go to the circular orbits
approximation, where ṙ = 0.

The circular orbit approximation is sufficiently valid for inspiralling compact
binaries. The reason is that as the binary system evolves, it loses energy as a result
of emission of gravitational waves. The orbit separation decreases slowly and the
orbit tends to get circular. The angular velocity of an orbit of constant radius is
given by,

Ω2 = φ2 =
Gm

r3

[
1− (3− η)

Gm

c2r
+O(c−4)

]
. (4.94)

This is just a PN generalization of the usual Keplerian relation Ω2 = Gm/r3. The
orbital velocity v = rΩ is given as,

v2 =
Gm

r

[
1− (3− η)

Gm

c2r
+O(c−4)

]
. (4.95)

Moreover we can think of an alternative PN expansion parameter other than (v/c)2.
We choose this parameter to be,

β =

(
GmΩ

c3

)1/3

.



4.2. GRAVITATIONAL WAVES AT 1.5PN ORDER 113

It has several advantages, as out calculations are dependent on Ω. In terms of
expansion parameter β, the polarizations of gravitational wave potential are given
as,

h+,× =
2ηGm

c2r

(
GmΩ

c3

)
[H+,×[0PN ] + βH+,×[0.5PN ] + β2H+,×[1PN ]

+ β3H+,×[1.5PN ] + β3H+,×[tail] +O(β4)] . (4.96)

where H+,× represent the scale free polarizations of the gravitational wave potential.
These polarizations are given as,

H+[0PN ] =− (1 + cos2 ι) cos 2ψ , (4.97a)

H+[0.5PN ] =−∆

[
1

8
sin ι(5 + cos2 ι) cosψ +

9

8
sin ι(1 + cos2 ι) cos 3ψ

]
, (4.97b)

H+[1PN ] =
1

6

[
(19 + 9 cos2 ι− 2 cos4 ι)− (19− 11 cos2 ι− 6 cos4 ι)η

]
× cos 2ψ − 4

3
(1− 3η) sin2 ι(1 + cos2 ι) cos 4ψ , (4.97c)

H+[1.5PN ] =∆

[
1

192
sin ι

[
(57 + 60 cos2 ι− cos4 ι)− 2(49− 12 cos2 ι

− cos4 ι)η
]

cosψ − 9

128
sin ι

[
(73 + 40 cos2 ι− 9 cos4 ι)

−2(25− 8 cos2 ι− 9 cos4 ι)η
]

cos 3ψ +
625

384
(1− 2η) sin3 ι

(1 + cos2 ι) cos 5ψ
]
, (4.97d)

H+[tail] =− 4(1 + cos2 ι)

[
π

2
cos 2ψ

{
γ + ln

(
4Ωr

c

)}
sin 2ψ

]
. (4.97e)

and,

H×[0PN ] =− 2 cos ι sin 2ψ , (4.98a)

H×[0.5PN ] =−∆

[
3

4
sin ι cos ι sinψ +

9

4
sin ι cos ι sin 3ψ

]
, (4.98b)

H×[1PN ] =
1

3
cos ι

[
(17− 4 cos2 ι)− (13− 12 cos2 ι)η

]
sin 2ψ

− 8

3
(1− 3η) sin2 ι cos ι sin 4ψ , (4.98c)

H×[1.5PN ] =∆

[
1

96
sin ι cos ι

[
(63− 5 cos2 ι)− 2(23− 5 cos2 ι)η

]
sinψ

− 9

64
sin ι cos ι

[
(67− 15 cos2 ι)− 2(19− 15 cos2 ι)η

]
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× sin 3ψ +
625

192
(1− 2η) sin3 ι cos ι sin 5ψ

]
, (4.98d)

H×[tail] =− 8c

[
π

2
sin 2ψ −

{
γ + ln

(
4Ωr

c

)}
cos 2ψ

]
. (4.98e)

4.2.6 Strain Plot for GW150914 Signal at 1.5PN

Using the above results into eq. (4.32) and using the data of GW150914 again, we
can plot a strain-time graph at 1.5PN order,

Figure 4.5: The strain versus time plot for the gravitational wave signal GW150914
where the PN degree of accuracy is 1.5PN.

4.3 Beyond 1.5PN Order

In order to go at higher degrees of PN accuracy, we extend our results beyond
1.5PN order. Further calculations are extremely lengthy and complex to be solved
here therefore I would present only the end results at each PN order above 1.5PN.

4.3.1 Gravitational Waves at 2PN Order

The scale free ‘+’ and ‘×’ polarizations of the gravitational wave potential correct
upto 2PN order can be written in the same way as eq. (4.97) and eq. (4.98). The
lower order contributions are the same as before, only the 1.5PN contribution can
be written alternatively absorbing within the wave-tail contribution. Therefore I
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take the liberty to write only the 1.5PN and 2PN contributions here [30], i.e,

H+[1.5PN ] =∆

[
1

192
sin ι

[
(57 + 60 cos2 ι− cos4 ι)− 2(49− 12 cos2 ι

− cos4 ι)η
]

cosψ − 9

128
sin ι

[
(73 + 40 cos2 ι− 9 cos4 ι)

−2(25− 8 cos2 ι− 9 cos4 ι)η
]

cos 3ψ +
625

384
(1− 2η) sin3 ι

×(1 + cos2 ι) cos 5ψ
]
− 2π(1 + cos2 ι) cos 2ψ , (4.99a)

H+[2PN ] =
1

120
[(22 + 396 cos2 ι+ 145 cos4 ι− 5 cos6 ι) +

5

3
(706

− 216 cos2 ι− 251 cos4 ι+ 15 cos6 ι)η − 5(98− 108 cos2 ι

+7 cos4 ι+ 5 cos2 ι)η2
]

cos 2ψ +
2

15
sin2 ι

[
(59 + 35 cos2 ι

−8 cos4 ι)− 5

3
(131 + 59 cos2 ι− 24 cos4 ι)η + 5(21− 3 cos2 ι

−8 cos4 ι)η2
]

cos 4ψ − 81

40
(1− 5η + 5η2) sin4 ι(1 + cos2 ι)

+× cos 6ψ
∆

40
sin ι

[
{11 + 7 cos2 ι+ 10(5 + cos2 ι) ln 2} sinψ

− 5π(5 + cos2 ι) cosψ − 27{7− 10 ln(3/2)}(1 + cos2 ι)

× sin 3ψ + 135π(1 + cos2 ι) cos 3ψ] , (4.99b)

and,

H×[1.5PN ] =∆

[
1

96
sin ι cos ι

[
(63− 5 cos2 ι)− 2(23− 5 cos2 ι)η

]
sinψ

− 9

64
sin ι cos ι

[
(67− 15 cos2 ι)− 2(19− 15 cos2 ι)η

]
sin 3ψ

+
625

192
(1− 2η) sin3 ι cos ι sin 5ψ

]
− 4π cos ι sin 2ψ , (4.100a)

H×[2PN ] =
1

60
cos ι[(68 + 226 cos2 ι− 15 cos4 ι) +

5

3
(572− 490 cos2 ι

+ 45 cos4 ι)η − 5(56− 70 cos2 ι+ 15 cos4 ι)] sin 2ψ

+
4

15
cos ι sin2 ι[(55− 12 cos2 ι)− 5

3
(119− 36 cos2 ι)η

+ 5(17− 12 cos2 ι)η2] sin 4ψ − 81

20
(1− 5η + 5η2) cos ι sin4 ι

× sin 6ψ − 3

20
sin ι cos ι∆[{3 + 10 ln 2} cosψ + 5π sinψ

− 9{7− 10 ln(3/2)} cos 3ψ − 45π sin 3ψ] . (4.100b)
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The gravitational wave polarizations can then be given as,

h+,× =
2ηGm

cr

(
GmΩ

c3

)2/3

[H+,×[0PN ] + βH+,×[0.5PN ] + β2H+,×[1PN ]

+ β3H+,×[1.5PN ] + β4H+,×[2PN ] +O(β5)] .
(4.101)

4.3.2 Strain Plot for GW150914 Signal at 2PN

The plot of strain produced per unit length in the arms of the detector correct
upto 2PN order for gravitational wave signal GW150914 is given in Figure (4.6).

Figure 4.6: The strain versus time plot for the gravitational wave signal GW150914,
where the PN degree of accuracy is 2PN.
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4.3.3 Gravitational Waves at 2.5PN Order

The 2.5PN contribution of the scale free ‘+’ and ‘×’ polarizations of the gravitational
wave potential are given as [31],

H+[2.5PN ] =∆ sin ι cosψ

[
1771

5120
− 1671

5120
cos2 ι+

217

9216
cos4 ι− 1

9216
cos6 ι

+

(
681

256
+

13

768
cos2 ι− 35

768
cos4 ι+

1

2304
cos6

)
η

+

(
−3451

9216
+

673

3072
cos2 ι− 5

9216
cos4 ι− 1

3072
cos6

)
η2
]

+ π cos 2ψ

[
19

3
+ 3 cos2 ι− 2

3
cos4 ι+

(
−19

3
+

11

3
cos2 ι

+2 cos4 ι
)]

+ ∆ sin ι cos 3ψ

[
3537

1024
− 22977

5120
cos2 ι

− 15309

5120
cos4 ι+

729

5120
cos6 ι+

(
−23829

1280
+

5529

1280
cos2 ι

+
7749

1280
cos4 ι− 729

1280
cos6 ι

)
η +

(
29127

5120
− 27267

5120
cos2 ι

−1647

5120
cos4 ι+

2187

5120
cos6 ι

)
η2 + cos 4ψ

[
−16π

3
(1 + cos2 ι)

sin2 ι(1− 3η)
]

+ ∆ sin ι cos 5ψ

[
−108125

9216
+

40625

9216
cos2 ι

+
83125

9216
cos4 ι− 15625

9216
cos6 ι+

(
8125

256
− 40625

2304
cos2 ι

+ −48125

2304
cos4 ι+

15625

2304
cos6 ι

)
η

(
−119375

9216
+

40625

3072
cos2 ι

+
44375

9216
cos4 ι− 15625

3072
cos6 ι

)
η2
]

+ ∆ cos 7ψ

[
117649

46080
sin5 ι

×(1 + cos2 ι)(1− 4η + 3η2)
]

+ sin 2ψ

[
−9

5
+

14

5
cos2 ι

+
7

5
cos4 ι+

(
96

5
− 8

5
cos2 ι− 28

5
cos4 ι

)]
+ sin2 ι(1 + cos2 ι)

× sin 4ψ

[
56

5
− 32 ln 2

3
−
(

1193

30
− 32 ln 2

)
η

]
, (4.102a)

H×[2.5PN ] =
6

5
cos ι sin2 ιη + cos ι cos 2ψ

[
2− 22

5
cos2 ι+

(
−154

5
+

94

5

)
η

]
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+ cos ι sin2 ι cos 4ψ

[
−112

5
+

64

3
ln 2 +

(
1193

15
− 64 ln 2

)
η

]
+ ∆ sin ι cos ι sinψ

[
− 913

7680
+

1891

11520
cos2 ι− 7

4608
cos4 ι

+

(
1165

384
− 235

576
cos2 ι+

7

1152
cos4 ι

)
η +

(
−1301

4608
+

301

2304
cos2 ι

− 7

1536
cos4 ι

)]
+ π cos ι sin 2ψ

[
34

3
− 8

3
cos2 ι−

(
26

3
− 8 cos2 ι

)
η

]
+ ∆ sin ι cos ι sin 3ψ

[
12501

2560
− 12069

1280
cos2 ι+

1701

2560
cos4 ι

+

(
−19581

640
+

7821

320
cos2 ι− 1701

640
cos4 ι

)
η +

(
18903

2560
− 11403

1280
cos2 ι

+
5103

2560
cos4 ι

)]
+ cos ι sin2 ι sin 4ψ

[
−32π

3
(1− 3η)

]
+ ∆ sin ι cos ι sin 5ψ

[
−101875

4608
+

6875

256
cos2 ι− 21875

4608
cos4 ι

+

(
66875

1152
− 44375

576
cos2 ι+

21875

1152
cos4 ι

)
η +

(
−100625

4608

+
83125

2304
cos2 ι− 21875

1536
cos4 ι

)]
+ ∆ sin5 ι cos ι sin 7ψ

×
[

117649

23040
(1− 4η + 3η2)

]
. (4.102b)

The gravitational waves polarizations correct upto 2.5PN order can then be given
as,

h+,× =
2ηGm

cr

(
GmΩ

c3

)2/3

[H+,×[0PN ] + βH+,×[0.5PN ] + β2H+,×[1PN ]

+ β3H+,×[1.5PN ] + β4H+,×[2PN ] + β5H+,×[2.5PN ] +O(β6)] . (4.103)

4.3.4 Strain Plot for GW150914 Signal at 2.5PN

The strain per unit length plot correct upto 2.5PN order is shown in Figure (4.7),
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Figure 4.7: The strain versus time plot for the gravitational wave signal GW150914,
where the PN degree of accuracy is 2.5PN.

4.3.5 Gravitational Waves at 3PN Order

The 3PN contribution to the scale free polarizations of gravitational wave potential
are given as [32] ,

H+[3PN ] =∆π sin ι cosψ

[
19

64
+

5

16
cos2 ι− 1

192
cos4 ι+

(
−19

96
+

3

16
cos2 ι

+
1

96
cos4 ι

)]
+ cos 2ψ

[
−465497

11025
+

(
865

105
− 2π2

3

+
428

105
ln(16β2)

)
(1 + cos2 ι)− 3561541

88200
cos2 ι− 943

720
cos4 ι

+
169

720
cos6 ι− 1

360
cos8 ι+

(
2209

360
− 41π2

96
(1 + cos2 ι) η

+
2039

180
cos2 ι+

3311

720
cos4 ι− 853

720
cos6 ι+

7

360
cos8 ι

)
+

(
12871

540
− 1583

60
cos2 ι− 145

108
cos4 ι+

56

45
cos6 ι− 7

180
cos8 ι

)
η2

+

(
−3277

810
+

19661

3240
cos2 ι− 281

144
cos4 ι− 73

720
cos6 ι+

7

360
cos8 ι

)
×η3

]
+ ∆π sin ι cos 3ψ

[
−1971

128
− 135

16
cos2 ι+

243

128
cos4 ι+

(
567

65

−81

16
cos2 ι− 243

64
cos4 ι

)
η

]
+ sin2 ι cos 4ψ

[
−2189

210
+

1123

210
cos2 ι

+
56

9
cos4 ι− 16

45
cos6 ι+

(
6271

90
− 1969

90
cos2 ι− 1432

45
cos4 ι
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+
112

45
cos6 ι

)
η +

(
−3007

27
+

3493

135
cos2 ι+

1568

45
cos4 ι− 224

45

× cos6 ι
)
η2 +

(
161

6
− 1921

90
cos2 ι− 184

45
cos4 ι+

112

45
cos6 ι

)
η3
]

+ ∆ cos 5ψ

[
3125π

384
sin3 ι(1 + cos2 ι)(1− 2η)

]
+ sin4 ι cos 6ψ

×
[

1377

80
+

891

80
cos2 ι− 729

280
cos4 ι+

(
−7857

80
− 891

16
cos2 ι

+
729

40
cos4 ι

)
η +

(
567

4
+

567

10
cos2 ι− 729

20
cos4 ι

)
η2

+

(
−729

16
− 243

80
cos2 ι+

729

40
cos4 ι

)
η3
]

+ cos 8ψ

[
−1024

315
sin6 ι(1 + cos2 ι)(1− 7η + 14η2 − 7η3)

]
+ ∆ sin ι sinψ

[
− 2159

40320
− 19 ln 2

32
+

(
− 95

244
− 5 ln 2

8

)
cos2 ι

+

(
181

13440
+

ln 2

96

)
cos4 ι+

{
81127

10080
+

19 ln 2

48
+

(
−41

48
− 3 ln 2

8

)
× cos2 ι+

(
−313

480
− ln 2

48

)
cos4 ι

}]
+ sin 2ψ

[
−428π

105
(1 + cos2 ι)

]
+ ∆ sin ι sin 3ψ

[
205119

8960
− 1971

64
ln(3/2) +

(
1917

224
− 135

8
ln(3/2)

)
× cos2 ι+

(
−43983

8960
+

243

64
ln(3/2)

)
cos4 ι+

{
−54869

960
+

567

32
ln(3/2)

+

(
−923

80
− 81

8
ln(3/2)

)
cos2 ι+

(
41851

2880
− 243

32
ln(3/2)

)
cos4 ι

}]
+ ∆ sin3 ι(1 + cos2 ι) sin 5ψ

[
113125

5376
− 3125

192
ln(5/2)

+

(
17639

320
− 3125

96
ln(5/2)

)
η

]
, (4.104a)

H×[3PN ] =∆ sin ι cos ι cosψ

[
11617

20160
+

21

16
ln 2 +

(
− 251

2240
− 5

48
ln 2

)
cos2 ι

+

(
−48239

5040
− 5

24
ln 2 +

(
727

240
+

5

24
ln 2

)
cos2 ι

)]
+ cos ι cos 2ψ

[
856π

105

]
+ ∆ sin ι cos ι cos 3ψ

[
36801

896
+

1809

32
ln(3/2)
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+

(
−65097

4480
− 405

32
ln(3/2)

)
cos2 ι+

(
28445

892886
− 405

16
ln(3/2)

+

(
−7137

160
+

3125

48
ln(3/2)

)
cos2 ιη

)]
+ ∆ sin2 ι cos ι cos 5ψ

×
[

113125

2688
− 3125

96
ln(5/2) +

(
−17639

160
+

3125

48
ln(5/2)

)
cos2 ι

]
+ ∆π sin ι cos ι sinψ

[
21

32
+

5

96
cos2 ι+

(
− 5

48
− 5

48
cos2 ι

)
η

]
+ cos ι sin 2ψ

[
−3620761

44100
+

1712C

105
− 41π2

48

+
856

105
ln(16β2)− 3413

1260
cos2 ι+

2909

2520
cos4 ι− 1

45
cos6 ι

+

(
743

90
− 41π2

48
+

3391

180
cos2 ι− 2287

360
cos4 ι+

7

45
cos6 ι

)
η

+

(
+

7919

270
− 5426

135
cos2 ι+

382

45
cos4 ι− 14

45
cos6 ι

)
η2

+

(
−6457

1620
+

1109

180
cos2 ι− 281

120
cos4 ι+

7

45
cos6 ι

)
η3
]

+ ∆ sin ι cos ι sin 3ψ

[
−1809

64
+

405

64
cos2 ι+

(
405

32

−405

32
cos2 ι

)
η

]
+ sin2 ι cos ι sin 4ψ

[
−1781

105
+

1208

63
cos2 ι

− 64

45
cos4 ι+

(
5207

45
− 536

5
cos2 ι+

448

45
cos4 ι

)
η

+

(
−24838

135
+

2224

15
cos2 ι− 64

45
cos4 ι

)
η2 +

(
1703

45
− 1976

45
cos2 ι

+
448

45
cos4 ι

)
η3
]

+ ∆ sin 5ψ

[
3125π

192
sin3 ι cos ι(1− 2η)

]
+ sin4 ι cos ι sin 6ψ

[
9153

280
− 243

35
cos2 ι+

(
−7371

40
+

243

5
cos2 ι

)
η

+

(
1296

5
− 486

5
cos2 ι

)
η2 +

(
−3159

40
+

243

5
cos2 ι

)
η3
]

+ sin 8ψ

[
−2048

315
sin6 ι cos ι(1− 7η + 14η2 − 7η3)

]
. (4.104b)
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Strain Plot for GW150914 at 3PN

The plot of strain produced per unit length in the arms of a detector correct up
to 3PN order is given in Figure (4.8). We have considered the behavior of

Figure 4.8: The strain versus time plot for gravitational wave signal GW150914,
where the PN degree of accuracy is 2.5PN.

gravitational waves emitted by a system of compact binaries, in a detector-adapted
frame of reference correct upto 3PN orders. Moreover, we have seen the strain
plots for each successive PN order. Now we can compare these different results
with each other and study the trend which the PN orders follow as they go to
higher and higher degree of accuracy. This would be the part of the conclusion of
this dissertation.
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Conclusion

In chapter 4, we have seen the plots of gravitational wave potential at different PN
orders, ranging from 0PN up to 3PN. We can now plot all these contributions in a
single plot and see how the gravitational waves potential at one PN order differ
from the others (Figure 5.1).

Figure 5.1: The strain versus time plot for GW150914 signal. The PN degree of
accuracy ranging from 0PN up to 3PN.

A crest and a trough of the complete waveform in (Figure 5.1) have been
maximized in order to have a closer look. These maximized portions of the actual
plot are shown in (Figure 5.2) and (Figure 5.3),

Looking closely at the start of the crest (Figure 5.2) we can see that the
gravitational wave potential amplitude is high at 0PN order, then it drops at

123
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Figure 5.2: Zoomed in image of the first crest from Figure 5.1.

0.5PN and has the minimum value at 1PN. Again at 1.5PN order, the amplitude
goes higher and comes down for 2PN and 2.5PN. Finally at 3PN, the amplitude
experiences a rise again.

Similarly, when we look at the trough (Figure 5.3), we can see that 0PN has a
maximum amplitude. It drops at 0.5PN and goes to a minimum value at 1PN. At
1.5PN, the amplitude rises again and falls when going to 2PN and 2.5PN. At 3PN,
the amplitude rises again.

Figure 5.3: Zoomed in image of the second trough from Fig 5.1.
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5.1 Visible Trend

Looking closer at the combined plot of gravitational wave potential at different
PN orders (Figure 5.1) we can look for a trend, according to which the amplitude
increases or decreases. We see that the amplitude of the gravitational wave potential
has a high value at the lowest (0) PN order. It decreases as we go up to 0.5PN
and 1PN orders. However as we reach 1.5PN PN order, there is an increase in
the amplitude. We have seen in section 4.2 that 1.5PN is the order at which the
gravitational wave-tails effects appear. Therefore, we can say that the increase in
amplitude is due to the effects of gravitational wave-tails. This makes sense as
L. Blanchet and G. Schafer have shown that the effect of wave-tails is that they
increase the amplitude of the Fourier components the waves [29].

Going beyond 1.5PN order, the amplitude decreases again as we go to 2PN and
further up to 2.5PN order. At 3PN order, there is an increase in the amplitude
once again. This is the point at which the tails-of-tails come in place to contribute
to the gravitational wave potential. The so-called tails-of-tails are the contributions
to the gravitational wave potential which act as memory of gravitational wave-tails
(thus the name “tails-of-tails”). We can thus say that the increase in amplitude
once again is due to the effects of tails-of-tails.

Following this trend we can say that if we go to the higher PN orders, further
increase in amplitude might occur at 4.5PN, 6PN, 7.5PN and so on (up to the point
where the iteration terminates (if it does)). These increase in amplitudes might
arise due to effects of something like tails of the tails-of-tails (i.e, the memory of
tails-of-tails) and so on.
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Appendix A

Christoffel Symbols

Mathematica codes for finding the Christoffel symbols.

ClearAll[coord, metric, inversemetric, listaffine, affine, t, r,

\[Theta], \[Phi], z, i, j, k, l, s, n, a, b, c, u, v, w, x, ha, hb];

n = 4;

coord = {t, x, y, z};

ha = hx[t, x, y, z];

hb = hy[t, x, y, z];

Displaying metric tensor:

metric = {{1, 0, 0, 0}, {0, -1 + ha, hb, 0}, {0, hb, -1 - ha, 0}, {0,

0, 0, -1}};

MatrixForm[metric]

Displaying inverse metric tensor:

inversemetric = {{1, 0, 0, 0}, {0, -1 - ha + ha^2 + hb^2, -hb,

0}, {0, -hb, -1 + ha + ha^2 + hb^2, 0}, {0, 0, 0, -1}};

MatrixForm[inversemetric]

Calculating and displaying Christoffel symbols:

affine := affine = With[{n = 4}, Simplify[Table[1/2 \!\(

\*UnderoverscriptBox[\(\[Sum]\), \(s = 1\), \(n\)]\(inversemetric[[i,

s]]\ \((\(-

\*SubscriptBox[\(\[PartialD]\), \({coord[[s]]}\)]metric[[j, k]]\) +

\*SubscriptBox[\(\[PartialD]\), \({coord[[k]]}\)]metric[[s, j]] +

\*SubscriptBox[\(\[PartialD]\), \({coord[[j]]}\)]metric[[s,

k]])\)\)\), {i, 1, n}, {j, 1, n}, {k, 1, n}]]];
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listaffine :=

With[{n = 4},

Table[If[affine[[i, j, k]] =!=

0, {ToString[\[CapitalGamma][

coord[[i]] \[LowerRightArrow] coord[[j]], coord[[k]]]],

affine[[i, j, k]]}], {i, 1, n}, {j, 1, n}, {k, 1, n}]]

TableForm[Partition[DeleteCases[Flatten[listaffine], Null], 2],

TableSpacing -> {2, 2}]



Appendix B

Radiative Multipole Moments

ClearAll[\[Rho], Pjj, Ptj, Pjkk, Pkjk, Pnn, Pjk, U, MA, MB, x,

G, c, Uj, Uk, Qjk, Qjka, Qjkab, Qjkabc, rA, rB, Ajka, Akja,

Aajk, T00, T0j, Tjk, nAB, rAB, vAB];

\[Rho] = MA*DiracDelta[x - rA];

Pjj = 4*\[Pi]*G*MA*U*DiracDelta[x - rA];

T00 = \[Rho]*(1 + v^2/(2*c^2) + 3*U/c^2) - 1/(4*\[Pi]*G*c^2)

*(7/2*Pjj);

Radiative Quadrupole Moment:

Qjk = Integrate[T00*Subscript[x, j]*Subscript[x, k], {x, -Infinity,

Infinity}]

Ptj = 2/3*\[Pi]*G*MA*

MB*((nAB.vAB)*Subscript[nAB, j]*(Subscript[nAB, k]*Subscript[rA,

a] + Subscript[nAB, a]*Subscript[rA, k]) - 7*Subscript[nAB, j]

*(Subscript[vAB, k]*Subscript[rA, a] +Subscript[vAB, a]

*Subscript[rA, k]) +7*Subscript[vA, j]*(Subscript[nAB, k]

Subscript[rA, a] + Subscript[nAB, a] Subscript[rA, k]));

Pjkk = 2/3*\[Pi]*G*MA*

MB*((nAB.vAB)*Subscript[nAB, j]*Subscript[nAB, k]*Subscript[nAB,

a] - 11*Subscript[nAB, j]*(Subscript[nAB, k]*Subscript[vA, a]

+ nABa*Subscript[vA, k]) + 11*Subscript[vA, j]*Subscript

[nAB, k]*Subscript[nAB, a]);

T0j = \[Rho]*Subscript[v, j]*(1 + v^2/(2*c^2) + 3*U/c^2) + 1/(4*

\[Pi]*G*c^2) *(3*Ptj + 4*Pjkk);

Radiative Octopole Moment:
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Ajka = Integrate[T0j*Subscript[x, k]*Subscript[x, a], {x, -Infinity,

Infinity}]

Pjk = 2*\[Pi]*G^2*MA*MB/rAB*Subscript[nAB, j]*Subscript[nAB, k]*

Subscript[rA, a]*Subscript[rA, b];

Pnn = 1/3*\[Pi]*G^2*MA*MB*rAB*Subscript[nAB, j]*Subscript[nAB,

k] (Subscript[nAB, a] Subscript[nAB, b] - KroneckerDelta[a, b]);

Tjk = \[Rho]*Subscript[v, j]*Subscript[v, k] + 1/(4*\[Pi]*G)*(Pjk

- 1/2*Pnn);

Radiative 4-pole and 5-pole Moments:

Qjkab = Integrate[

Tjk*Subscript[x, a]*Subscript[x, b], {x, -Infinity, Infinity}]

Qjkabc = Integrate[

Tjk*Subscript[x, a]*Subscript[x, b]*Subscript[x, c], {x, -Infinity,

Infinity}]



Appendix C

Wave Zone Terms

Mathematica codes to find out the terms A(s, r) and B(s, r) as used in the definition
of hjkW .

ClearAll[A, B, Fa, Fb, fx, ft, fs, l, \[Xi], t, p, s, R];

A= Integrate[LegendreP[l, \[Xi]]/p^(n - 1), {p, r, R + s}];

B = Integrate[LegendreP[l, \[Xi]]/p^(n - 1), {p, s, R + s}];

Do[Print[A], {l, 0, 0}, {n, {3, 4}}]

Do[Print[A], {l, 2, 2}, {n, 3, 6}]

Do[Print[A], {l, 4, 4}, {n, 3, 6}]

Do[Print[B], {l, 0, 0}, {n, {3, 4}}]

Do[Print[B], {l, 2, 2}, {n, 3, 6}]

Do[Print[B], {l, 4, 4}, {n, 3, 6}]
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