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Abstract

Wave packet quantum dynamics in bounded one-dimensional systems manifests a

lot of phenomena which have no analogue in classical dynamics, such as, the phe-

nomena of quantum revivals and fractional revivals. In this thesis we explore these

phenomena in the context of position-dependent effective mass systems (PDEM).

Such systems have great importance in many areas of physics and have attracted

a lot of attention most recently due to the possibility of fabricating them in labo-

ratory. Nonetheless, the work presented in this thesis is focused on the theoretical

investigations of wave packet revivals and fractional revivals in PDEM systems.

The quantization of position dependent effective mass systems and finding their

solutions experience some mathematical and conceptual difficulties. In the first

part we review various techniques of quantization and finding their solutions. We

then apply the general formalism to find the solutions of a particle with position-

dependent effective mass trapped in infinitely deep potential well. The Gaussian

wave packet is then constructed by linear super-position of eigenfunctions of the

PDEM system and its time evolution is studied.

The study of wave packet dynamics is of great interest due to occurrence of quan-

tum revivals. An initially well localized wave packet follows the classical periodicity

during short term time evolution. But after completing many classical periods phase

difference among constituent waves lead to destructive interference which results in

collapse when the phase difference is maximum. After that constructive interference

takes place which becomes the cause of occurrence of quantum revivals.

We explore the wave packet dynamics by means of autocorrelation and temporal

evolution of probability density of spatial wave packet−spatio-temporal dynamics.

The image plots of temporal evolution of position-space probability density, known

as quantum carpets, are presented to explore the structure of quantum revivals and

fractional revivals. It is found that structure of fractional revivals is modified due to

the spatially varying mass. In order to understand the effects of spatial-dependence

on wave packet evolution, we have compared the results with corresponding constant

mass systems. This leads us to conclude that spatial-dependence of mass modifies

the design of quantum carpets and hence the structure of fractional revivals.
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Chapter 1

Introduction

The quantum world shows very fascinating phenomenon which do not have corre-

sponding analogue in classical world. Therefore the unambiguous distinction be-

tween these two theories is one of the philosophical question from the beginning of

quantum theory. In this context, Erwin Schrödinger formulated wave mechanics as

a possible analogue to classical mechanics. In this formalism, the dynamical state

of a system is expressed by a mathematical function, known as wave function and

the physical information about dynamical variables can be obtained from this func-

tion by specific operators. Moreover, he tried to build one-to one correspondence

between classical-quantum dynamics of a system. He could succeeded to do so only

for the harmonic oscillator and failed to generalized the notion. However, later it

has been pointed out that there are several phenomena in quantum dynamics which

do not have corresponding description in classical mechanics, known as non-classical

phenomena.

In this thesis, we study the dynamics of a class of quantum mechanical systems

whose mass is varying with position, named as, position-dependent effective mass

systems (PDEM) and explore the non-classical phenomena namely, quantum revivals

and fractional revivals. In the following we present a brief introduction about the

main content covered in this thesis.
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1.1 Position dependent effective mass systems

The concept of position dependent effective mass comes from many body systems in

condensed matter physics [1–3]. Firstly, effective mass is needed to be understand.

An electron in a crystal may behaves as if it has a mass different from the free electron

mass m0. This altered mass is known as effective mass. There exists some crystals

in which the effective mass of the charge carrier is much larger or smaller than m0.

The effective mass may be anisotropic (which has different values when measured

in different directions). The effective mass approach is also observed in the study

of electronic properties of semiconductor [1, 2], quantum liquids, compositionally

graded crystals [4], quantum dots [5–7], semiconductor heterostructures [8–14]. Due

to advent in growing ultra thin semiconductor structure, position dependent effective

mass theory has attracted attention.

Heterostructures are the building blocks of many semiconductor devices. The

edge of heterostructures is that we can precisely control over the states and motion of

charge carriers in semiconductors. A heterostructure is defined as a semiconductor

structure in which the chemical composition changes with position. The simplest

heterostructure has a single heterojunction, which is an interface within a semicon-

ductor crystal across which the chemical composition changes. Most devices and

experimental samples contain more than one heterojunctions as well.

Electron in a crystal (such as in semiconductors) is not completely free, but

interacts with the potential of the lattice as this electron is in influence of other

atoms present in the crystal as well. The quantum dynamics of such electrons can

be modeled by considering position dependent effective mass system.

Classically, to write the Hamiltonian for position dependent effective mass sys-

tems, kinetic energy term involves both variables that are position and momentum

in contrast to constant mass systems. An important point in this frame work is

quantization of the spatially dependent mass systems. Main question is the transi-

tion of kinetic energy term T (x, p) to the quantum one T̂ (x̂, p̂). This is done just

by replacing the position and momentum observables by their corresponding quan-

tum operators. Now, kinetic energy term in Hamiltonian involves both position

and momentum operators, that do not commute with each other. Due to incom-
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patible nature of position and momentum operators, kinetic energy term faces the

ambiguity in ordering of m(x̂) and p̂.

To solve the ordering ambiguity, different ordering schemes are present in liter-

ature, that generate Hermitian Hamiltonians, such as Weyl ordering [15, 16], von

Ross ordering [17, 18], Ki and Kuhn ordering [19] and Zhu and Kroemer ordering

[20]. These ordering schemes give rise to non equivalent Hermitian Hamiltonians

which are same at classical level. The most general one is the von Ross [17, 18]

ordering in which position and momentum operators follow the constraint param-

eter. Several choices for these parameters are available but the most commonly

used is given by Levy-Leblond [21]. This issue of ordering has been inscribed by

several authors [22–26]. More specifically it has been discussed in the illustration

of impurities in crystals [27, 28]. Finding solutions of any quantum mechanical sys-

tem is an important task for the physical understanding of that system. One of

the well known method is solving Schrödinger equation of that system. Some other

methods are present in literature for finding the exact solutions of quantum system,

such as shape invariance [29], potential algebras [30,31], method of point canonical

transformation [32, 33] and the path integral approach [34]. These all above men-

tion methods have been used to solve constant mass system and as well as position

dependent effective mass systems.

1.2 Solution of Schrödinger equation with PDM

Much attention has recently been paid to obtain exact solutions to quantum mechan-

ical systems with PDEM due to the fact that they are useful in physical applications.

Different methods have been used for quantum system with constant mass. However

these methods need to be modified in order to incorporate the spatial dependence

of mass. Same as the constant mass systems, the traditional way of obtaining the

exact solutions to PDEM systems is to solve the corresponding Schrödinger equa-

tion. Several authors have added valuable contributions in this context [35–39].

Schrödinger equation of the corresponding system can be solved by using transfor-

mation technique, known as Coordinate transformation method [40]. When position

dependent effective mass system is under consideration, the kinetic energy term has
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several definitions due to incompatible nature of position and momentum opera-

tors. By following von Ross ordering [17, 18], position dependent effective mass

Schrödinger equation becomes,

d2ψ

dx2
− m′(x)

m(x)

dψ(x)

dx
+ 2m[E − V (x)]ψ(x) = 0. (1.2.1)

The coordinate transformation method transforms the position coordinate x into

new coordinate y i.e., x −→ y. By using Sturm Liouville approach, following coor-

dinate transformation is performed

ψ(x) = 4
√
m(x)φ(y), (1.2.2)

and

y(x) =

∫ √
m(x)dx, (1.2.3)

The edge of using coordinate transformation method is that first derivative term dis-

appears so Schrödinger equation becomes simplified whose solutions are well known.

1.3 Construction of Wave Packet

In classical mechanics equation of motion is used to describe the position and mo-

mentum variables and these variables are used to determine the state of the system.

But in quantum mechanics to study the dynamical behavior of a wave packet, there

is need to construct its wave packet, which describes the position and momentum

of a particle. A localized wave packet can be produced in many physical systems.

A well localized wave packet is a linear superposition of its eigenfunctions at some

initial time t = 0,

ψ(x, 0) =
∑
n

cnun(x). (1.3.1)

The wave packet displays a variety of non-classical effects. These effects can be

observed through several interesting phenomena like fractional revivals, quantum

revivals and super revivals of the wave packet at some particular instant of time.

Moreover, the physical interpretation of wave packet lies in its modulus square that
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provides us with probability density of finding the particle at position x at time t.

This wave function is representing a particle which is equally probable to be found

anywhere on the x-axis at all times.

1.4 Quantum dynamics of wave packet

The dynamics of wave packets of highly excited states of atoms and molecules and

discussion of quantum revivals and fractional revivals of wave packet including ex-

perimental observations have been studied in twentieth century i-e in 1991. After

progressing in this field many quantum concepts which were hidden behind quantum

revivals start to appear. So the study of revival behavior become more interesting

to get a review of short and long term quantum revivals of wave packets. The

study of revival phenomena [41] can be understand by transition from quantum to

classical dynamics and the departure from classical prognostications that are pre-

sented during the long term time evolution of wave packet [42]. According to Bohr

correspondence principal, for high quantum numbers n→ ∞ the quantum theory

regenerates classical mechanics. Quantum to classical transition can be knowing

purposeful by decoherence in quantum wave packet. The time evolution of a wave

packet and its interactions with boundaries destroy the coherence of wave packet

and quantum system gets collapse. The Rydberg wave packets are also used to

investigate the correlation between classical and quantum mechanics [43], for the

reason that initially the wave packet is moving periodically with classical period

same as the charged particle is moving in coulomb field.

The study of localized, time dependent solutions to bound state problems in

quantum mechanics is attracting a lot of interest. Schrödinger [44] and others [45]

have discussed the wave packet solutions to many familiar problems.

Despite Schrödinger’s hope that “wave groups can be constructed which move

round highly quantized Kepler ellipses and are the representations by wave me-

chanics of the hydrogen electron...... ” [46] (without spreading,as with the constant

width harmonic oscillator packet he derived). From the early exploration it is found

that such dispersion [47] was a natural characteristic of wave packet for coulomb

potential. On Schrödinger’s suggestions, trials for the semi-classical solutions of the
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Coulomb problem were continued. Advanced experimental technique such as laser

induced excitation of Rydberg wave packets, and other techniques to produce and

monitor the time development of such states which developed more interest in wave

packets. This interest became the path to new features in the long term time devel-

opment in such bound state systems, such as quantum wave packet revivals. Parker

and Stroud [48–51] were the first to observe this behavior in Rydberg atoms.

The phenomenon of wave packet revivals arises when a well localized wave packet

is produced, which travels with time evolution with almost classical periodicity (Tcl)

and then spreads significantly, different waves travel with different phase, after a

number of orbits entering the so called collapsed phase. The initial wave packet, on

a large time scale re-localizes it self in the form of quantum revivals, this time is called

revival time (Trev >> Tcl). Additional temporal structures with smaller periodicities

are observed. These “mini-packets” are found at times equal to rational fractional

of revival time p/q(Trev). These “mini-fractions” or “clones” are called fractional

revivals [52]. Fractional revivals have been observed in many atomic and molecular

systems [53].

1.5 Outline of thesis

In second chapter, we study the quantization of position dependent mass system

by replacing the classical observables with their corresponding operators. Then

discuss the order ambiguity which appears in kinetic energy term due to presence of

incompatible operators and formulate the Schrödinger equation for PDEM quantum

Hamiltonian.

In chapter three, we solve the Schrödinger equation of position dependent mass

in infinite square well with differnt choices of mass functions. Then further three

cases are discussed in which mass increases linearly and abruptly. In the last section

of this chapter general expression for increasing mass is derived.

In fourth chapter, We explore the wave packet dynamics by means of autocorre-

lation and temporal evolution of probability density of spatial wave packet−spatio-

temporal dynamics. The image plots of temporal evolution of position-space prob-

ability density, known as quantum carpets, are presented to explore the structure
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of quantum revivals and fractional revivals. It is found that structure of fractional

revivals is modified due the spatially varying mass.

Finally, we present the summary and conclusions of our work in chapter 5.
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Chapter 2

Quantization of Position

Dependent Effective Mass System

As discussed in introductory chapter, the position dependent effective mass system

(PDEM) has vast applications in various areas of physics which have attracted in-

terdisciplinary interests of researchers. However, quantum mechanical description

of such systems encounter several mathematical and conceptual difficulties of fun-

damental nature. In this chapter we will discuss the quantization of PDEM systems

and associated issues.

The chapter is organized as follow. In section (2.1), we present classical Hamilto-

nian that governs the dynamics of classical PDEM system as pre-requisite of quan-

tum dynamics. In section (2.1), various quantization techniques are reviewed which

leads to non-equaivalent quantum Hamiltonians with same classical analogue. In

section (2.3), we present the resulting Schrödinger equation for general PDEM sys-

tems. Finally in section (2.4), we present the conclusion of the chapter.

2.1 Classical dynamics of PDEM systems

The classical dynamics of a system can be described by either of the three equivalent

formalisms, namely, Newtonian mechanics, Lagrangian mechanics and Hamiltonian

mechanics. As a pre-requisite to the analogous quantum description, discussed in
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next section, we present here the derivation of classical Hamiltonian from Lagrangian

of the PDEM system.

The Lagrangian of a particle with spatially varying mass m(x) moving in a one-

dimensional bounded potential V (x) can be expressed as

L(x, ẋ) =
m(x)ẋ2

2
− V (x). (2.1.1)

From the Lagrangian (2.1.1), we can define the momentum of the dynamical system

as

p =
∂L
∂ẋ

= m(x)ẋ. (2.1.2)

Now the classical Hamiltonian of the system can be obtained as

H(x, p) = pẋ− L =
p2

2m(x)
+ V (x), (2.1.3)

where we have substituted the value of ẋ from Eq. (2.1.2) to obtain the Hamiltonian

(2.1.3) in terms of momentum. It is well known fact that in constant mass systems,

the kinetic energy term in classical Hamiltonian is only a function of momentum

variable. However, it is important to note that in the case of PDEM systems, the

kinetic energy term of Hamiltonian (2.1.3) also depends on position in addition

to momentum variable. This fundamental difference in the structure of classical

Hamiltonian plays an important role in the analogous quantum description of the

PDEM systems.

2.2 Quantization of PDEM Hamiltonian

It is well known that generically the classical Hamiltonian is a function of position

and momentum variables. As discussed above in section (2.1), in the case of con-

stant mass systems, the kinetic and potential energy terms are respectively the func-

tions of momentum p and position x variables only. While quantizing such classical

Hamiltonians, the variables x, p are replaced by their corresponding non-commuting

quantum operators x̂, p̂, such that [x̂, p̂] = i~.

As given in Eq. (2.1.3), the kinetic energy term

T (x, p) =
p2

2m(x)
, (2.2.1)
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is a function of both potential and momentum variables, in contrast to the con-

stant mass systems. Therefore, the quantization of position-dependent effective

mass systems encounter an ordering ambiguity in placing position-dependent mass

m(x̂) operator and momentum operator p̂ due to incompatible nature of position

and momentum operators x̂, p̂. In other words, for a generic PDEM system the

quantizations of kinetic energy term, given in Eq. (2.2.1), using different orderings

is non-equivalent, i.e.,

p̂2
1

m(x̂)
6= 1

m(x̂)
p̂2, (2.2.2)

which leads to non-equivalent quantum Hamiltonians. In order to circumvent this

issue, several specific ordering methods exist in literature which provide us with

non-equivalent quantum Hamiltonian (but same at classical level) of the position

dependent effective mass system. In the following we review the most commonly

used ordering methods and their resulting quantum Hamiltonians.

The most general and commonly used approach is introduced by Oldwig von

Roos [17,18] which is given as

T̂ =
1

4
(mαp̂mβ p̂mγ +mγ p̂mβ p̂mα), (2.2.3)

where α, β and γ are arbitrary real constants which satisfy α+ β+ γ = −1. Several

choices for the parameters are suggested in the literature. Among the most famous

are given by the Gora and Williams (β = γ = 0, α = −1), Zhu and Kroemer

(α = γ = −1
2
, β = 0) [20] and Li and Kuhn(β = γ = −1

2
, α = 0) [19]. Different

choices of parameters α, β and γ generate different Hamiltonians.

Keeping in view the invariant Galilean transformations and Hermiticity of the

resulting Hamiltonian, Levy-Leblond [21] suggested that a particular choice of these

ambiguity parameters with values given as (α = β = 0) and γ = −1 gives rise a

symmetric ordering

T (x̂, p̂) =
1

2
p̂

1

m(x̂)
p̂, (2.2.4)

which leads to a Hermitian quantum Hamiltonian. In our later discussion we will

follow this symmetric ordering approach to obtain the quantum Hamiltonian for our

position-dependent effective mass systems.

10



2.3 Schrödinger Equation for PDEM system

Following the Levy-Leblond approach [21], the quantum Hamiltonian of the PDEM

system is expressed as

H(x̂, p̂) =
1

2
p̂

1

m(x̂)
p̂+ V (x̂). (2.3.1)

Using position representation of momentum operator, the Schrödinger equation in

the configuration space, corresponding to Hamiltonian (2.3.1), is given as

−1

2

d

dx
[

1

m(x)

dψ(x)

dx
] + V (x)ψ(x) = Eψ(x). (2.3.2)

The solutions of this equation depends on the particular choices of m(x) and V (x).

However, if m(x) is a bounded but possibly discontinuous function then the wave

function ψ(x) should be continuous across the mass discontinuity and at the interface

such that
1

m(x)
ψ′(x)|+ =

1

m(x)
ψ′(x)|−, (2.3.3)

where the prime denotes a derivative with respect to the position variable x. In the

next chapter we will discuss the solutions of this Schrödinger equation for various

choices of consider m(x) and V (x).

2.4 Conclusions

In this short chapter, we have reviewed various quantization techniques for position-

dependent effective mass systems. It is found that various orderings of momentum

operator and spatially varying mass operator lead to non-equivalent quantum Hamil-

tonian for the same classical Hamiltonian. In our analysis, we choose Levy-Leblond’s

[21] symmetric ordering approach which results in the Hermitian Hamiltonian. Fi-

nally write the Schrödinger equation for general m(x) and V (x).

11



Chapter 3

Solutions of Position Dependent

Effective Mass Schrödinger

Equation

Finding the solutions of Schrödinger equation corresponding to a quantum mechan-

ical system is one of the most important tasks in wave mechanics. For constant

mass systems, the solutions of this equation depend on the nature of the bounding

potential of the system. The analytical solutions can only be obtained for a limited

number of systems and generally it is not possible to solve it for arbitrary potentials.

Although numerical techniques are available to obtain the solutions up to very high

accuracy, even then analytic solutions are advantageous in many accounts. On the

other hand, finding the solutions of position-dependent effective mass systems ex-

hibit greater mathematical difficulty because it depends on the bounding potential

as well profile of position-dependence of mass. In this chapter, we present solutions

of PDEM system with different variations of mass with position.

Earlier one dimensional Schrödinger equation with position-dependent mass has

been solved by several authors [54, 55]. Through point canonical transformation

method, Schrdinger equation was written as usual one, which has constant mass.

Then for position dependent mass i-e m = m(x) eigenfunctions and eigenvalues can

be found analytically by solving Schrödinger equation. Such systems are motivated
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by their applications. In both sections, different mass values are considered and their

respective Schrödinger equations are solved. The usefulness of coordinate transfor-

mation method lies in the fact that in this way first order derivative term vanishes

and equation becomes more simplified.

3.1 PDEM particle in infinite square well

The quantum Hamiltonian of a particle with position-dependent effective mass

trapped in an infinite square well can be written as

H(x̂, p̂) =
1

2
p̂

1

m(x̂)
p̂+ V (x̂). (3.1.1)

By using this Hamiltonian the Schrödinger equation can be expressed in the following

way

−1

2

d

dx
[

1

m(x)

dψ(x)

dx
] + V (x̂)ψ(x) = Eψ(x). (3.1.2)

This equation cannot be solved without specifying m(x) and V (x). In infinite square

well, V (x̂) = 0 for 0 < x < L and V (x̂) =∞ otherwise.

−1

2

d

dx
[

1

m(x)

dψ(x)

dx
] = Eψ(x). (3.1.3)

For the qualitative understanding of any quantum system, we need to find its exact

solutions, i.e., its eigenfunctions and eigenenergies. The exact solutions can be find

out by solving the Eq.(3.1.3). We reparameterize the equation by using the following

transformation,

ψ(x) = m(x)
1
4φ(y(x)),

dy

dx
= m(x)

1
2 , (3.1.4)

which simplifies the above differential equation. However, in order to get the

solutions we first need to specify the position dependence of m(x). As a preliminary

case, we consider the following form of mass i.e.,

m(x) =
m0

(τx+ a)2
, (3.1.5)

where m0 is a constant mass, which we consider to be 1, τ is a parameter which

measures the extent to which mass is depending on position. In this case mass is
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inversely related with position. The resulting transformations, given in Eq. (3.1.4)

take the form as,

ψ(x) =
1

(τx+ a)
1
2

φ(y(x)),
dy

dx
= m(x)

1
2 =

1

(τx+ a)
. (3.1.6)

Using transformations, we get the following differential equation

−1

2

d2φ(y)

dy2
+
τ 2φ(y)

8
= Eφ(y). (3.1.7)

This is ordinary second order differential equation whose solutions are well rec-

ognized. By solving this equation and applying boundary conditions we get the

normalized eigenfunctions and eigen energies,

ψn(x) =

√
2τ

(1 + τx) ln(1 + τL)
sin(

nπ ln(1 + τx)

ln(1 + τL)
), (3.1.8)

and the corresponding energy eigenvalues are given as

En =
τ 2

8
+

n2π2τ 2

2 ln2(1 + τL)
. (3.1.9)

The details of this solution are given in Appendix A at the end of this thesis.

3.1.1 Probability density of eigenstates

By knowing the eigenfunctions of a system, probability density ρ(x) = |ψ(x)|2 of

the particle inside the square well can be determined. Comparison between prob-

ability densities of position dependent effective mass and constant mass systems

explains the unique behavior of PDEM system. In Fig. 3.2, we present the com-

parison between constant mass and position dependent effective mass by plotting

their probability densities versus X = x
L

for the first four eigenstates for τ = 5. The

purpose of using the larger value of position dependence strength parameter τ is to

observe the consequence of spatial dependence on PDEM system. By increasing the

strength of position dependence, probability density peaks get more shifted towards

higher values of mass and this time shift in the peaks is more prominent.
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3.2 Increasing mass with position

In this section taking the same system, namely position dependent effective mass

system and the particle confined inside an infinite potential well we consider the

interesting case of position dependent effective mass which is increasing with posi-

tion. The increasing mass case can be interesting in the light of new materials and

in abrupt heterostructures.

Let’s consider the general case where mass is increasing with position, repre-

senting the order of position as xα. In this case, position dependent mass can be

represented in a general form as,

m(x) =
xα

τ 2
, (3.2.1)

where α 6= −2, by using the same transformation method, we can write

ψ(x) = m(x)
1
4φ(y(x)) =

x
α
4

τ
1
2

φ(y(x)), (3.2.2)

dy

dx
= m(x)

1
2 =

x
α
2

τ
, (3.2.3)

by re-parameterizing and doing some mathematical steps the differential equation

becomes,

−1

2

d2φ

dy2
+

α(3α + 4)

8(α + 2)2y2
φ(y) = Eφ(y), (3.2.4)

and the solutions of this equation are find out to be,

φ(y) = Bn

√
y(x)Jβ(

√
2Eny(x)). (3.2.5)

where Bn is a normalization constant and β = (1+α)
(2+α)

. Eigenvalues are given

in zeros, zn, of Bessel functions, despite the fact we do not know about an exact

expression of zeros, zn, of Bessel function. Such dependence m(x) ∝ xn can model

Heterostructures, both abrupt and smooth one. For abrupt ones, the value of α = 2

and α = 4 while for smooth ones α = 1. For the value of α = 1, we can write the

solutions by using general solution.

φ(y) = Bn

√
y(x) Jβ(

√
2Eny(x)), (3.2.6)
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where Bn is a normalization constant and β = 2
3
, and eigen energies comes out to

be,

En =
9z2n

8m0L3
. (3.2.7)

Similarly for the other two values of α we can find the solutions as well. Detailed

steps for the solution of general case of increasing mass systems is provided in

Appendix B at the end of thesis.

3.3 Conclusions

In this chapter we have solved the Schrödinger equation for a PDEM particle trapped

in an infinitely deep square well for two type of masses i.e., one type where mass

is inversely related with position and the second one where mass is directly related

with position. We obtained the analytic expressions for eigenfunctions and energy

eigenvalues. These solutions will be used to explore the wave packet dynamics in

PDEM infinite square well in the next chapter. We also explored the comparison

between the constant mass system and position dependent effective mass system

with the help of probability density plots.
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Figure 3.1: Probability density P (x) = |ϕn(x)|2 for first four eigenstates vs

X = x/L: τ = m0 = ~ = 1; dashed line for constant mass and solid line for

PDEM.

In Fig. 3.1, we present the comparison between constant mass and position depen-

dent effective mass systems by considering their probability densities for first four

eigenfunctions i.e., for n = 1, 2, 3 and 4. As from the plots, we can observe that

probability densities for constant mass system are symmetric while for position de-

pendent effective mass system, they are asymmetric. Moreover, we observe that for

position dependent effective mass case, the probability densities are shifted towards

higher values of mass (towards lower values of x).
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Figure 3.2: Probability density P (x) = |ϕn(x)|2 for first four eigenstates vs

X = x/L: m0 = ~ = 1; and τ = 5, dashed line for constant mass and solid

line for PDEM.
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Chapter 4

Wave Packet Dynamics and

Quantum Revivals

In bounded dynamical systems, the wave packet evolution manifests recurrences at

different time scales, such as, classical periodicity, quantum revivals, super-revivals

and fractional revivals. The phenomena was predicted in many physical systems

with nonlinear energy spectrum and have been observed experimentally in many

systems such as Rydberg wave packets in atomic systems. This phenomenon occurs

when an initially well localized wave packet evolves in time in a bounded system.

In its early short term time evolution, it follows classical trajectory with periodicity

Tcl equivalent to its classical time period. Later on it spreads due to dephasing

between constituent eigenstates of the superposition and observes a collapse when

destructive interference dominates. After a particular period of time the wave packet

re-localizes itself when constituent eigenstates attain the initial phase and construc-

tive interference dominates. This time required for re-localization is called quantum

revival time Trev. In addition to the full revivals, fractional copies of the original

wave packet appears at various fractions of revival time, i.e., p/q(Trev) where p, q

are relative prime numbers.

In this chapter, we study wave packet dynamics for a particle with spatially

varying mass, such that mass is inversely related with position as given by Eq.(3.1.5),

trapped in an infinitely deep potential well. We explore the phenomena of quantum

revivals and fractional revivals by means of autocorrelation function and temporal
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evolution of position-space probability density. It is found that structure of fractional

revivals is modified due to the spatially varying mass.

4.1 Time evolution of a wave packet

The dynamics of a quantum mechanical system is governed by its corresponding

Hamiltonian

Ĥ =
p̂2

2m
+ V (x̂). (4.1.1)

More explicitly, a wave packet is constructed by a linear superposition of the eigen-

states of Hamiltonian (4.1.1) given as,

ψ(x, 0) =
∞∑
n=0

cnun(x), (4.1.2)

where un(x) is the nth eigenstate of Hamiltonian (4.1.1) and cn is the corresponding

probability amplitude in superposition (4.1.2). For a given initial wave packet in

position space and known eigenstates of a given system, the probability amplitudes

can be calculated as,

cn =

∫ ∞
−∞

ψ(x, 0)u∗n(x)dx, (4.1.3)

where u∗n(x) is complex conjugate of un(x). In our later discussion we will consider

the initial wave packet ψ(x, 0) as a Gaussian centered at x0, defined as,

ψ(x, 0) =
1

(σπ2)
1
4

exp(
−(x− x0)2

2σ2
) exp(

ip0x

~
), (4.1.4)

where p0 is the initial momentum and σ is the spread of the wave packet at FWHM.

The time evolution of the initial wave packet is governed by the time evolution

operator U(t) = exp(−iHt/~) such that

ψ(x, t) = U(t)ψ(x, 0) =
∞∑
n=1

cnun(x) exp(
−iEnt

~
), (4.1.5)

where En is the energy eigenvalue corresponding Hamiltonian (4.1.1). It is important

to note that the temporal evolution of a wave packet explicitly depends on the

structure of the energy spectrum of the system. This dependence is discussed in the

next section.
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4.2 Quantum revivals and fractional revivals

The time development of the wave packet ψ(x, t), given in Eq. (4.1.5), depends

on the phases exp(−iEnt/~) which in turn depends on the structure of the energy

spectrum En of the system. It is well known fact that wave packet follows classical-

like evolution if energy spectrum En is linear in quantum number n, as in the case

of harmonic oscillator. However, if the energy spectrum is nonlinear in n, the wave

packet undergoes classical-like evolution only for a few classical periods after which

nonlinear dephasing dominates and wave packet observes the phenomena of collapse

and revivals.

For a well localized wave packet excited with spread 4n around a large central

quantum number n0, such that n0 >> 4n >> 1, we can expand En by Taylor series

about n0 as,

En = En0 +
∞∑
r=1

1

r!

drEn
dnr

∣∣∣∣
n=n0

(n− n0)
r . (4.2.1)

Substituting the expansion (4.2.1) in the phase factor exp(−iEnt~ ), we get

exp

(
−iEnt

~

)
= exp

(
−it
~

[
E(n0) + (n− n0)E

′(n0) +
(n− n0)

2

2
E ′′(n0) + ...

])
,

(4.2.2)

where E ′(n0) is derivative of En with respect to n at n = n0. It is important to

note that the first term of the expansion produces a universal phase factor and do

not contribute to the dynamics of the wave packet. However, each of the successive

terms define a characteristic time scale of periodicity given as

T(r) = 2π

(
1

r!

∂rEn
∂nr

∣∣∣∣
n=n0

)−1
, (4.2.3)

such that T1 < T2 < T3, where, T(1) = Tc is the classical period, T(2) = Trev is the

quantum revival and T(3) = Tsup is the super-revival time.

In our following discussion we will consider the wave packet evolution in the

infinite square well. Since its energy spectrum is quadratic in quantum number,

therefore the wave packet evolutions exhibit only the classical periodicity and quan-

tum revivals and all the higher order recurrences would be absent. Using the value of

En from Eq.(4.2.2), in Eq. (4.2.3) and taking the derivatives, the values of classical
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period Tcl = 2mL2/n0~π and quantum revival time Trev = 4mL2/~π for constant

mass system.

In addition to the complete revival of the wave packet, fractional revivals of

various order appear at times t = Trevp/q, where p, q are mutually prime num-

bers. Complete mirror symmetry exists in the structure of fractional revivals about

t = Trev/2. Therefore, in order to analyze the fractional revivals we consider a time

period equal to Trev/2. If the eigen energy of a system is known, then classical

time period and quantum time period can be determined by using Eq.(4.2.3). For

constant mass system classical and quantum revival time comes out to be

Tcl = 2mL2

n0π~ and Trev = 4mL2

π~ .

Similarly eigen energy for PDEM provided in Eq.(3.1.9) helps out to find classical

and revival time for this system,

Tcl = 2 ln2(1+L)

n0π~τ2
and Trev = 4 ln2(1+L)

π~τ2 .

Tcl and Trev of PDEM system is less than Tcl and Trev of constant mass respec-

tively. But Trev
Tcl

= 2n0 is same in both systems because Trev and Tcl reduces with the

same rate. The quantum revival occurs after the same number of classical periods

in PDEM as in constant mass system.

4.3 Measures on quantum revivals and fractional

revivals

In order to characterize the temporal evolution of the wave packets, some quantita-

tive measures are required. In this section, we explore various analytic methods to

characterize the structure of quantum revivals and fractional revivals during wave

packet evolution.

4.3.1 Autocorrelation function

The most commonly used criterion for characterization of wave packet evolution is

the autocorrelation function which is an overlap between an initial wave packet and
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time-evolved one, that is

A(t) = 〈ψ(t)|ψ0〉 =

∫ ∞
−∞

ψ∗(x, t)ψ(x, 0)dx, (4.3.1)

where ψ∗(x, t) is the complex conjugate of the time evolved wave packet. Using Eqs.

(4.1.2) and (4.1.5) in Eq. (4.3.1), we get a simple useful form of autocorrelation

function as,

A(t) =
∞∑
n=1

|cn|2 exp[
iEnt

~
]. (4.3.2)

The autocorrelation function is important in the study of revival behavior in the

pump probe type experiment [56]. Other than theoretical value, autocorrelation

function is important in pump probe type experiment, where it is observed ex-

perimentally that autocorrelation function is related to the observable ionization

signal [57, 58].

The plots of autocorrelation function for the constant mass and position depen-

dent effective mass systems are the same. The Fig. 4.1, represents the modulus

square of autocorrelation function versus T where the horizontal axis is rescaled by

classical period such that T = t
Tcl

. In this figure plots are shown for p0 = 5π, 10π,

15π and 20π from top to bottom respectively. The plots show that initially the wave

packet was well localized, with time evolution spread in wave packet increases and

the constituent waves travel with different phases which results in collapse. After

long time evolution, constructive interference takes place and the wave packet re-

localizes itself. It is obvious from the plots that the wave packet revival occurs after a

smaller (larger) number of classical periods as the value of p0 is decreased(increased).

This is due to the fact that Trev
Tcl

= 2n0 and pn = nπ~
L

such that p0 = n0π~
L

. For a

wave packet with initial momentum, quantum revival occurs after 2n(since~L = 1)

classical periods.

In addition to complete revival phenomenon, we also observe some fractional revivals

at times t = p
q
Trev. It is obvious from Fig. 4.1, that a complete mirror symmetry

exists in the structure of fractional revivals about t = Trev
2

. Therefore, in order to

analyze the fractional revivals, we consider a time period equal to Trev
2

.
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Figure 4.1: The initial evolution of C(t) = |A(t)|2 for an initial Gaussian wave packet

of width σ = 0.1 centered at the middle of the well x0 = L
2

for different values of

the initial momentum p0 = 5π, 10π, 15π and 20π from top to bottom respectively.

The C(t) = |A(t)|2 is plotted for one revival time Trev, where the horizontal axis is

rescaled by classical period such that T = t
Tcl

.
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4.3.2 Spatio-temporal evolution of probability density

Alternatively, the time evolution of a wave packet can be characterized by means

of temporal evolution of position-space probability density ρ(x, t) = |ψ(x, t)|2. The

dynamics of an initially well localized wave packet undergoes a series of constructive

and destructive interferences which leads to the formation of regular interference

patterns known as quantum carpets. Quantum carpets appear in many fields of

wave physics ranging from quantum mechanics, with application in Bose-Einstein

condensation and nuclear physics to electromagnetic waves and wave guide. Quan-

tum carpet is a useful tool for the study of quantum revivals and fractional revivals.

In this subsection we present the formation of quantum carpets which can serve as

a tool to analyze the structure of fractional revivals.

Using Eq. (4.1.5), we calculate the time evolution of probability density in

position space which is as

ρ(x, t) = |ψ(x, t)|2 =
∞∑

n,m=0

cnc
∗
mun(x)u∗m(x)e−i(En−Em)t/~. (4.3.3)

For our explicit discussion, we will use the energy eigenfunctions and eigenvalues for

position-dependent effective mass particle trapped in infinite square well, obtained

in previous chapter. Moreover we will compare the results with analogous constant

mass system. The resulting quantum carpets are presented in the next section.

Fig. 4.2 shows the probability density of the Gaussian wave packet centered

at x0 = L
2

with initial momentum p0 = 5π for constant mass system and position

dependent effective mass system for τ = 1 at different values of time: at t = 0,

t = Trev/4, t = Trev/2, t = 3Trev/4 respectively from top left to bottom right. The

probability density for constant mass is represented by dotted line and for position

dependent effective mass by solid line. This figure shows that in position dependent

case peaks are shifted towards higher values of mass or we can conclude that particle

would like to be in those areas of well where mass has higher values.

Fig. 4.3 shows the probability density peaks for constant mass and position de-

pendent effective mass particle at t = Trev
4

for different values of position dependence

strength parameter τ = 0.5, τ = 1.3, τ = 5, τ = 10 respectively from top left to

bottom right to observe the effect of position dependence strength parameter. Due
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to position dependence effect, peaks are shifted towards higher values of mass and

by increasing the position dependence strength shift in peaks is more prominent.

Fig. 4.4 represents the comparison between probability densities of constant mass

particle and position dependent mass particle and effect of increasing the position

dependence strength parameter at t = Trev
2

. It can been seen from the figure that

peaks of PDEM particle are shifted towards lower values of x where the mass has

larger values and for larger values of position dependence strength parameter the

shifting in peaks is more prominent.

In Fig. 4.5, we represent the comparison between quantum carpets of constant

mass case and position dependent effective mass case with τ = 1.3 from left to

right respectively. These quantum carpets are woven by the Gaussian wave packet

centered at x0 = L
2

with initial momentum p0 = 5π. This Fig. 4.5 shows the time

evolution of the position space probability density for a Gaussian wave packet for

full revival time, which explains the formation of quantum carpets in the position

space. It is obvious from the carpet that a well localized single peaked probability

density of the wave packet evolves quasi-classically during its early time evolution

and splits into multiple sub-peaks after successive bounces with the walls of the

deep square well, where a self-interference of the wave packet takes place. These

multiple sub-peaks then evolve in time with their own phases and undergo a series of

constructive and destructive interferences. This results in the formation of regular

arrangement of maximum probability regions–bright fringes known as ridges and

minimum probability regions–dark fringes known as canals. During this course of

the time evolution, fractional copies of the original wave packet appear at times

t = p
q
Trev with p,q being mutually prime numbers. In these plots fractional revivals

can easily be observed. Moreover the quantum carpet for the constant mass case

(left carpet) is symmetric, that is, probability densities are equally distributed while

the quantum carpet for position dependent effective mass case is asymmetric, that

is, probability densities are not equally distributed in the well but they are shifted

towards left part of the well where the mass has larger values.

In Fig. 4.6, we present the quantum carpets of position dependent effective mass

system with τ = 5 and τ = 10 from left to right respectively. These quantum carpets

are woven by the Gaussian eave packet centered at x0 = L
2

with initial momentum
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p0 = 5π. These carpets show the time evolution of the position space probability

density for a Gaussian wave packet for full revival time, which explains the formation

of quantum carpets in the position space. These carpets show that by increasing

the position dependent strength, probability densities of particles shifted towards

greater values of mass and it is obvious from these two plots that for larger position

dependent strength, shift in the probability density becomes more prominent.

4.4 Conclusions

In this chapter we have studied the autocorrelation function and quantum carpets

for initially well localized wave packet evolving in spatially varying mass in infinite

square well. It is found that the autocorrelation function can not determine the

effect of spatially varying mass. However, by means of quantum carpets it is found

that structure of fractional revivals is modified due to the spatially varying mass.

In order to understand the effects of spatial-dependence on wave packet evolution,

we have compared the results with corresponding constant mass systems and also

observe the effect of position dependence strength. This leads us to conclude that

spatial-dependence of mass modifies the design of quantum carpets and hence the

structure of fractional revivals.

.
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Figure 4.2: Probability density P (x) = |ψ(x, t)|2 of the Gaussian WP cen-

tered at x0 = L/2 with initial momentum p0 = 5π vs X = x/L for τ = 1:

at t = 0, t = Trev/4, t = Trev/2, t = 3Trev/4 from top left to bottom right

respectively.
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Figure 4.3: Probability density P (x) = |ψ(x, t)|2 of the same WP vs X =

x/L at t = Trev/4 for different values of τ : τ = 0.5, τ = 1.3, τ = 5, τ = 10

respectively from top left to bottom right.
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Figure 4.4: Probability density P (x) = |ψ(x, t)|2 of the same WP vs X =

x/L at t = Trev/2 for different values of τ : τ = 0.5, τ = 1.3,τ = 5,τ = 10

respectively from top left to bottom right.
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Figure 4.5: Quantum carpets woven by the same Gaussian WP: (from left to right)

for constant mass system and PDEM system with τ = 1.3.
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Figure 4.6: Quantum carpets woven by the same Gaussian WP: (from left to right)

for PDEM system with τ = 5 and τ = 10 respectively.
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Chapter 5

Summary and Conclusion

In this thesis we have studied the position dependent effective mass system. In our

work, we discussed the order ambiguity that arises in writing the kinetic Hamiltonian

of position dependent effective mass system due to non-commuting nature of position

and momentum operators as both are appearing in kinetic term.

We studied the case of position dependent mass particle in infinite square well.

We studied its Schrödinger equation and solved it by using coordinate transformation

method and boundary conditions to determine its eigen functions and eigen energies.

We studied the solutions of another case of position dependent effective mass in

which mass is directly increasing with respect to position.

Further we studied the dynamics of wave packet in context of quantum revival. In

our work, we studied the general construction of well localized wave packet, which

is constructed by superposition of its all possible eigenstates of that system. We

studied the time evolution of wave packet and different periodicities. Time evolved

state is formed in the result of interaction of an initial state of the system with

time evolution operator. We studied the quantum revival behavior by means of

considering initially localized wave packet exhibits short term time evolution. With

time evolution, wave packet spreads, collapses, reverses and re-localizes. The re-

localization of wave packet is called the revival of wave packet. We constructed

the probability density as a function of space. We also compared the constant and

position dependent mass systems with the help of probability density for different

time revivals and the effect of position dependence strength on probability density

33



peaks. We observed that probability peaks are more shifted towards larger values

of mass.

We explored the wave packet dynamics by means of autocorrelation and temporal

evolution of probability density of spatial wave packet, spatio-temporal dynamics.

We found that revival time for PDM system is less than that for constant mass

system. Moreover, we came across the fact that plots of autocorrelation are same

for both systems. The image plots of temporal evolution of position-space prob-

ability density, known as quantum carpets, are presented to explore the structure

of quantum revivals and fractional revivals. In order to understand the effects of

spatial-dependence on wave packet evolution, we have compared the results with cor-

responding constant mass systems. It is found that structure of fractional revivals is

modified due to the spatially varying mass such that fractional revivals are shifted

towards larger values of mass. This leads us to conclude that spatial-dependence of

mass modifies the design of quantum carpets and hence the structure of fractional

revivals.
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Appendix A

Appendix

Solution of PDEM system for m(x) = 1
(τx+a)2

In this case, mass is inversely related with position. By using the von Ross ordering,

quantum Hamiltonian of the PDEM system finds out to be,

H(x̂, p̂) =
1

2
p̂

1

m(x̂)
p̂+ V (x̂). (A.0.1)

−1

2

d

dx
[

1

m(x)

dψ(x)

dx
] = Eψ(x). (A.0.2)

The exact solutions can be find out by solving the Eq.(3.1.3). We re-parameterize

the equation by using the following transformation,

ψ(x) = m(x)
1
4φ(y(x)),

dy

dx
= m(x)

1
2 , (A.0.3)

and the resulting transformations, given in Eq. (3.1.4) take the form as,

ψ(x) =
1

(τx+ a)
1
2

φ(y(x)),
dy

dx
= m(x)

1
2 =

1

(τx+ a)
, (A.0.4)

Using transformations, given in Eq. (A.0.4), in to Eq. (3.1.3) we get differential

equation
dψ

dx
=
−1

2

τ

(τx+ a)
3
2

φ(y(x)) +
1

(τx+ a)
3
2

dφ

dy
, (A.0.5)

−1

2

d

dx
[

1

m(x)

dψ(x)

dx
] = Eψ(x), (A.0.6)
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substitute the values of m(x) and dψ
dx

from Eq.(A.0.5), then equation will be trans-

formed into new coordinates

−1

2

d

dx
[(τx+ a)2{−1

2

τ

(τx+ a)
3
2

φ(y(x)) +
1

(τx+ a)
3
2

dφ

dy
}] = E

1

(τx+ a)
1
2

φ(y(x)),

(A.0.7)

doing multiplication to simplify the equation,

−1

2

d

dx
[
−τ(τx+ a)

1
2

2
φ(y(x)) + (τx+ a)

1
2
dφ

dy
] = E

1

(τx+ a)
1
2

φ(y(x)), (A.0.8)

solving the second derivative and we get, simplifying the equation and substitute

the value of dy
dx

,

−1

2
[
−τ 2

4

1

(τx+ a)
1
2

φ(y(x))− τ

2

1

(τx+ a)
1
2

dφ

dy
+
τ

2

1

(τx+ a)
1
2

dφ

dy
+

1

(τx+ a)
1
2

d2φ

dy2
],

(A.0.9)

just rearranging the equation and resultant equation will be like,

−1

2(τx+ a)
1
2

d2φ

dy2
+
τ 2

8

1

(τx+ a)
1
2

φ(y(x)) = E
1

(τx+ a)
1
2

φ(y(x)), (A.0.10)

canceling 1

(τx+a)
1
2

from both sides,

−1

2

d2φ

dy2
+
τ 2

8
φ(y(x)) = Eφ(y(x)), (A.0.11)

simplifying the equation,

d2φ

dy2
= −(2E − τ 2

4
)φ(y(x)), (A.0.12)

for the ease of solution we consider the term 2E − τ2

4
equal to some constant k2.

d2φ

dy2
= −k2φ(y(x)), (A.0.13)

this is second order differential equation and solution of this equation is,

φ(y) = A cos(ky) +B sin(ky), (A.0.14)

to find the value of y, use equation (A.0.4)

dy

dx
=

1

(τx+ a)
, (A.0.15)
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and by solving the integral, we obtain y in terms of x,

y =
1

τ
ln(τx+ a), (A.0.16)

putting this value of yin A.0.14,

ψ(x)

m(x)
1
4

= A cos(k
ln(τx+ a)

τ
) +B sin(k

ln(τx+ a)

τ
). (A.0.17)

Boundary conditions are,

ψ(o) = ψ(L) = 0, (A.0.18)

apply first boundary condition i-e, ψ(o) = 0. With the purpose of having an exact

solution of the eigen value equation, we choose a=1.

ψ(o) = m(x)
1
4A cos(k

ln(0 + 1)

τ
) +m(x)

1
4B sin(k

ln(0 + 1)

τ
), (A.0.19)

after using first boundary condition we come to know that A should be 0 to satisfy

the boundary condition. So, we put

A = 0, (A.0.20)

remaining part of equation is,

ψ(x) = m(x)
1
4B sin(k

ln(1 + τx)

τ
), (A.0.21)

now using second boundary condition i-e, Ψ(L) = 0

ψ(L) = m(L)
1
4B sin(k

ln(1 + τL)

τ
) = 0, (A.0.22)

as it is obvious that

m(L)
1
4B 6= 0, (A.0.23)

so,

sin(k
ln(1 + τL)

τ
) = 0, (A.0.24)

finding the value of K,

k =
nπτ

ln(1 + τL)
, (A.0.25)

38



substitute this value of k in Eq.(A.0.21),

ψn(x) = m(x)
1
4B sin(

nπτ ln(1 + τx)

ln(1 + τL)τ
). (A.0.26)

Here B is normalization constant, need to be determined. We use normalization

condition to find the value of B. Normalization condition is defined as,∫ L

0

|ψ(x)|2dx = 1, (A.0.27)

∫ L

0

1

(τx+ a)
B2 sin2(

nπ ln(1 + τx)

ln(1 + τL)
) = 1, (A.0.28)

B2

∫ L

0

1

(τx+ a)
sin2(

nπ ln(1 + τx)

ln(1 + τL)
) = 1, (A.0.29)

from Eq.(A.0.16)

y = ln(1 + τx), (A.0.30)

taking exp on both sides, in order to replace dx by dy,

exp(y) = (1 + τx), (A.0.31)

exp(y)dy = τdx, (A.0.32)

Let b = nπ
ln(1+τL)

Limits of integration will be changed according to new coordinate,

when x = 0 then y = 0,

when x = L then y = ln(1 + τL),

now we will use these new integration limits,∫ L

0

1

(τx+ 1)
sin2(

nπ ln(1 + τx)

ln(1 + τL)
) =

∫ ln(1+τL)

0

1

τ exp(y)
sin2(by) exp(y)dy, (A.0.33)

∫ L

0

1

τ(τx+ 1)
sin2(

nπ ln(1 + τx)

ln(1 + τL)
) =

1

τ

∫ ln(1+τL)

0

sin2(by)dy, (A.0.34)

using the half angle formula,∫ L

0

1

(τx+ 1)
sin2(

nπ ln(1 + τx)

ln(1 + τL)
) =

1

τ

∫ ln(1+τL)

0

(
1− cos(2by)

2
)dy, (A.0.35)
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∫ L

0

1

(τx+ 1)
sin2(

nπ ln(1 + τx)

ln(1 + τL)
) =

1

τ
[

∫ ln(1+τL)

0

1

2
dy − 1

2

∫ ln(1+τL)

0

cos(2by)dy],

(A.0.36)

after solving the integration with limits,∫ L

0

1

(τx+ 1)
sin2(

nπ ln(1 + τx)

ln(1 + τL)
) =

1

τ
[
1

2
(ln(1+τL)−0)− 1

4b
(sin(

2nπ ln(1 + τL)

ln(1 + τL)
)−0)],

(A.0.37)∫ L

0

1

τ(τx+ 1)
sin2(

nπ ln(1 + τx)

ln(1 + τL)
) =

1

τ
[
1

2
ln(1 + τL)], (A.0.38)

putting this value of integration back in A.0.29,

B2 1

τ

ln(1 + τL)

2
= 1, (A.0.39)

with this, we can easily find the value of B,

B =

√
2τ

ln(1 + τL)
, (A.0.40)

consequently by substituting the value of m(x)
1
4 and B in A.0.26,

ψn(x) =
1

(τx+ a)
1
2

√
2τ

ln(1 + τL)
sin(

nπ ln(1 + τx)

ln(1 + τL)
), (A.0.41)

as a=1, so

ψn(x) =

√
2τ

(1 + τx) ln(1 + τL)
sin(

nπ ln(1 + τx)

ln(1 + τL)
). (A.0.42)

Comparing A.0.12 and A.0.13 with the purpose to find the eigen energies of this

position dependent effective mass system.

k2 = 2E − τ 2

4
, (A.0.43)

(
nπτ

ln(1 + τL)
)2 = 2En −

τ 2

4
, (A.0.44)

n2π2τ 2

ln2(1 + τL)
= 2En −

τ 2

4
, (A.0.45)

2En =
τ 2

4
+

n2π2τ 2

ln2(1 + τL)
, (A.0.46)

the eigen values,

En =
τ 2

8
+

n2π2τ 2

2 ln2(1 + τL)
. (A.0.47)
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Appendix B

Appendix

Increasing mass with position

m(x) =
xα

τ 2
, (B.0.1)

where α 6= −2, by using the same transformation method, we can write

ψ(x) = m(x)
1
4φ(y(x)) =

x
α
4

τ
1
2

φ(y(x)), (B.0.2)

dy

dx
= m(x)

1
2 =

x
α
2

τ
, (B.0.3)

Taking the derivative of ψ with respect to x,

dψ

dx
=

α

4τ
1
2

x
α
4
−1φ(y(x)) +

x
3α
4

τ
3
2

dφ

dy
, (B.0.4)

Schrödinger equation is

−1

2

d

dx
[

1

m(x)

dψ

dx
] + V (x)ψ(x) = Eψ(x), (B.0.5)

putting the respective values in above equation from B.0.1 and B.0.4,

−1

2

d

dx
[
τ 2

xα
(
α

4τ
1
2

x
α
4
−1φ(y) +

x
3α
4

τ
3
2

dφ

dy
)] = E

x
α
4

τ
1
2

φ(y(x)), (B.0.6)

simplifying the equation,

−1

2

d

dx
[
α

4

τ
3
2

x
3α
4
+1
φ(y) +

τ
1
2

x
α
4

dφ

dy
] = E

x
α
4

τ
1
2

φ(y(x)), (B.0.7)
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again taking the derivative,

−1

2
[−(

3α

4
+ 1)

α

4

τ
3
2

x
3α
4
+2
φ(y) +

α

4

τ
1
2

x
α
4
+1

dφ

dy
− α

4

τ
1
2

x
α
4
+1

dφ

dy
+
x
α
4

τ
1
2

d2φ

dy2
] = E

x
α
4

τ
1
2

φ(y(x)),

(B.0.8)

simplifying the equation so that the first derivative terms vanish.

−1

2
[(

3α + 4

4
)
α

4

τ
3
2

x
3α
4
+2
φ(y) +

x
α
4

τ
1
2

d2φ

dy2
] = E

x
α
4

τ
1
2

φ(y(x)), (B.0.9)

canceling x
α
4

τ2
from both sides,

−1

2

d2φ

dy2
+
α(3α + 4)

8

1

4x(α + 2)
φ(y) = Eφ(y), (B.0.10)

from B.0.3, and let τ = 1,
dy

dx
= x

α
2 , (B.0.11)∫

dy =

∫
x
α
2 dx, (B.0.12)

y =
x
α
2
+1

(α
2

+ 1)
, (B.0.13)

then

x(α+2) =
(α + 2)2

4
y2, (B.0.14)

−1

2

d2φ

dy2
+

α(3α + 4)

8(α + 2)2y2
φ(y) = Eφ(y), (B.0.15)

solution of this equation is,

φ(y) =
√
y(x)BesselJ [

(1 + α)

2 + α
,
√

2Eny(x)]C[1]+√
y(x)BesselY [

(1 + α)

2 + α
,
√

2Eny(x)]C[2],

(B.0.16)

φ(y) = Bn

√
y(x)Jβ(

√
2Eny(x)). (B.0.17)

where Bn is a normalization constant and β = (1+α)
(2+α)

. Eigenvalues are given in

zeros, zn, of Bessel functions,

despite the fact we do not know about an exact expression of zeros, zn, of Bessel

function.
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