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Abstract

Entanglement is the building block of different processes in quantum commu-
nication and quantum computation. We develop a theory to teleport an unknown
quantum state using entanglement between two distant parties Aalia and Babar.
Our theory takes into account experimental deficiencies due to contribution of multi-
photon pair production of parametric down conversion source, inefficiency and dark
counts of detectors and channel losses. We use a linear optics setup for teleportation
of an unknown quantum state by performing Bell state measurement by the sender.
Our theory successfully provides a model for experimentalists to optimize the fidelity
by adjusting the experimental parameters. We apply our model to an experimental
paper on quantum teleportation and the results obtained by our model using the
parameters used in the experiment are perfectly in agreement with the experiment
results.
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Chapter 1

Introduction

In quantum information (QI), quantum mechanics manifest itself in a most profound way.
Although basic principles of quantum mechanics were developed in the early twentieth
century, yet it was only in the last two decades of twentieth century that quantum in-
formation protocols were developed based on these principles. These protocols involved
quantum key distribution [1], quantum dense coding [2], quantum teleportation [3] and
quantum error correction [4]. Various experiments have been performed to demonstrate
these protocols using simple linear optics setups [5, 6, 7, 8]. The practical limitations of
the resources effect the success of these experiments. There is a need to develop efficient
model for these experiments so that optimal parameters of the resources can be predifined
for an experiment. In this thesis we model quantum teleportation experiment taking into
account various practical inefficiencies of the resources used.

In this chapter we cover some fundamentals mathematical concepts underlying our
analysis of quantum teleportation. Section 1.1 explains some linear algebra underlying the
quantum mechanical description of states. Then we discuss quantum states and quantum
gates in Sec. 1.2. We explain the no-cloning theorem in Sec. 1.3. Section 1.4 is dedicated
to sample spaces and probabilities. In Sec. 1.5 we provide a naive explanation of the
quantum teleportation protocol. Finally in Sec. 1.6 we provide an outline of this thesis.

This experiment is performed with many different kinds of particles such as photons
[10], neutrons [11], and atoms [12], and the same behavior as that of electrons [13], as
discussed above, is observed.

Now we develop mathematical formulation and the underlying linear algebra of quan-
tum systems in Sec. 1.1.

7



8 CHAPTER 1. INTRODUCTION

1.1 Quantum Systems and Linear Algebra

Quantum systems are physical systems which can be represented by Hilbert space. The
dimensionality of the Hilbert space is decided by the ways in which that quantum system
may be projected. i.e. in case of spin quantum system when we measured it gives either
spin ‘up’ or ‘down’ . So this quantum system has two allowed paths, therefore this system
belongs to two dimensional Hilbert space. Here we briefly discuss some important linear
algebra with some emphasis on Hermitian matrices. Suppose a Hilbert Space (H) of finite
dimensionality ‘k’ such that vector |a〉, |b〉 ∈ H. Then the inner (Hermitian) product of
these two vectors

|a〉 =


a1
a2
.
.
ak

 , |b〉 =


b1
b2
.
.
bk

 , 〈a| = (|a〉)† =
(
ā1 ā2.. āk

)
, (1.1)

is given as

〈a|b〉 = ā1b1 + ā2b2 + ....+ ākbk :=
k∑
i=1

āibi ∈ C, (1.2)

where z̄ is the complex conjugate of a complex number ‘z’. In order to normalize any
vector, we generally divide it by its norm, ||z|| :=

√
〈z|z〉. It should be noted that the

Cauchy-Schwarz inequality (‖a‖‖b‖ ≥ ‖〈a|b〉‖) must be satisfied by the inner product.
Consider the following matrix A

A =


a1,1 a1,2 . . . a1,k
a2,1 a2,2 . . . a2,k

...
... . . . ...

ak,1 ak,2 . . . ak,k

 . (1.3)

We then define the transpose (AT ) and the complex conjugate (Ā) of matrix as

AT =


a1,1 a2,1 . . . ak,1
a1,2 a2,2 . . . ak,2

...
... . . . ...

a1,k a2,k . . . ak,k

 , Ā =


ā1,1 ā1,2 . . . ā1,k
ā2,1 ā2,2 . . . ā2,k

...
... . . . ...

āk,1 āk,2 . . . āk,k

 . (1.4)
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Now for any matrix to be Hermitian it must satisfies the following condition,

A = A† =


ā1,1 ā2,1 . . . āk,1
ā1,2 ā2,2 . . . āk,2

...
... . . . ...

ā1,k ā2,k . . . āk,k

 , (1.5)

where A† = ĀT . Also this Hermitian matrix A is called positive semidefinite denoted by
A ≥ 0 if for an arbitrary vector c ∈ H, it satisfies the relation 〈c|Ac〉 ≥ 0. For non zero
vector ‘c’ , if 〈c|Ac〉 > 0, then A is positive definite. If we first diagonalize matrix A, then
the condition of positive semi-definiteness tells us that eigen values of matrix A are either
zero or positive.

Hermitian inner product can also be obtained as the matrix multiplication of 〈c| and
|c〉. Working in Bra-Ket notation for any matrix A, |Ac〉 = A|c〉, 〈Ac| = 〈c|A†. For
Hermitian matrix A we get 〈a|Ab〉 = 〈Aa|b〉 also equals Tr|b〉〈a|A. We also define for some
matrices A and B, the symmetrized and commutator relation.

{A,B} := 1
2(AB +BA), (1.6)

[A,B] := 1
2(AB −BA). (1.7)

A vector space is called a Jordan or Lie algebra if it is closed under Eq. (1.6) or (1.7)
respectively.

1.2 Quantum States and Quantum Gates

We now explain various aspects of quantum states. In Sec. 1.2.1 we give a description of
quantum bit. Section 1.2.2 explains composite systems and its tensor products. Then
we discuss quantum gates in Sec. 1.2.3. In Sec. 1.2.4 we covers two particle states and its
different types and behavior.

1.2.1 Qubit

The basic unit for information science is bit, which can take one of the two possible values
‘0’ and ‘1’. Classical realization of a bit, may be imagined as a mechanical switch, which is
designed to have two distinct states, with sufficient large energy barrier between them so
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that no spontaneous transition can occur between the two states. In QI theory the basic
unit of information is qubit, short for quantum bit, which is two state quantum system,
where the two states are |0〉 and |1〉. So any quantum system with at least two states
can serve as qubit, many of which have already been experimentally realized, i.e. spin of
electron, polarization of photon etc.

According to quantum mechanics qubit can also be in the superposition of these states,
so generally qubit can be written in Dirac or Bra-Ket notation as

|ϕ〉 = α|0〉+ β|1〉, (1.8)

where α and β are complex numbers. For a normalized state these complex numbers must
obey |α|2+|β|2 = 1. These complex numbers are also known as probability amplitudes and
the square of probability amplitude is called probability. Since we know that probability of
certain events always sum up to 1, thats why the sum of |α|2 and |β|2 gives one. It should
be noted that Eq. (1.8), does not mean that the state of qubit is somewhere between ‘0’
and ‘1’, but it shows that qubit is in superposition of both states, and if we measure it,
we will find out qubit in state |0〉 with probability |α|2 and in state |1〉 with probability
|β|2.

To specify any qubit, we just need two complex variable α and β. On the other hand
using coordinate representation qubit state (1.8) is written as.

|ϕ〉 =
(
α
β

)
, (1.9)

with |0〉 =
(

1
0

)
and |1〉 =

(
0
1

)
. Bra-Ket notation and coordinate representation are

the two sides of a same coin, means that sometimes it is easy to solve a problem by using
coordinate representation than the Bra-Ket notation and vise versa. In quantum systems,
the description of the current condition of that system, such as the polarization, is known
as state. So we can also equally describe any state by a Hermitian matrix ρ known as
density operator or density matrix, and mathematically given as

ρ =
∑
i

pi|ψi〉〈ψi|, (1.10)

if one of the all probabilities is one i.e., if pi = δij , then the above density operator reduces
to simple form ρ = |ψi〉〈ψi|. Such operator for which the state vector is known are called
pure states or pure state density operators. These operators are obtained by taking outer
product of state vector with it self. On the other hand the density matrix in Eq. (1.10)
with any probability not equal to one generally represents a statistical mixture of states
or mixed state.
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1.2.2 Composite Systems and Tensor Products

Suppose we have two quantum systems belonging to Hilbert spaces HA and HB with
orthogonal basis {a1, a2, a3, ...., ad} and {b1, b2, b3, ...., bd} respectively. Then any combined
system of HA and HB is called composite system. The Hilbert space of composite system
is given by the tensor product of Hilbert spaces HA and HB as HA⊗HB with orthonormal
basis {a1⊗b1, a1⊗b2, a1⊗b3, ...., a1⊗bd, a2⊗b1, a2⊗b2, a2⊗b3, ...., a2⊗bd, ...., ad⊗b1, ad⊗
b2, ad ⊗ b3, ...., ad ⊗ bd}. This composite system has dimension d× d. The tensor product
of two vectors x =

∑
i c
i|ai〉 and y =

∑
j c
′j |bj〉 is given as

|x⊗ y〉 =
∑
i,j

cic
′j |ai〉 ⊗ |bj〉, (1.11)

or we can simply omit ‘⊗ ’ from the above equation,

|xy〉 =
∑
i,j

cic
′j |aibj〉. (1.12)

Now if we have two operators in the form of matrices, i.e. XA on HA and XB on HB then
the tensor product XA ⊗XB on combine Hilbert space is defined as

XA ⊗XB(|ai〉 ⊗ |bj〉) = XA|ai〉 ⊗XB|bj〉, (1.13)

where, |ai〉(|bj〉) are orthonormal basis of Hilbert spaces HA(HB), respectively. Further-
more trace of tensor product XA ⊗XB satisfies the relation

Tr(XA ⊗XB) = TrXATrXB.

For any number of Hermitian matrices for instant XA, Y A and ZA on Hilbert space HA,
and XB, Y B and ZB on Hilbert space HB, we have

(XA ⊗XB)(Y A ⊗ Y B)(ZA ⊗ ZB) = (XAY AZA)⊗ (XBY BZB),

it follows from above equation

Tr(XA ⊗XB)(Y A ⊗ Y B)(ZA ⊗ ZB) = Tr(XAY AZA)⊗ Tr(XBY BZB).

After we have basic knowledge of quantum state, its time to discuss how states evolve. In
following section we explain quantum gates which transform state of a system from some
initial to final state.
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Figure 1.1: General one qubit gate.

0 1

01
I=

Identity(I)

[      ]

[      ]

[      ]

[      ]

[      ]

I

Figure 1.2: Fundamental one qubit gates, with there unitary transformation matrices.

1.2.3 Quantum Gates

In QI, the orthogonal qubit states |0〉 and |1〉 are substituted in place of classical logical
values 0 and 1. Thus we have a large number of allowed states in the form of superposition
of |0〉 and |1〉. Since action of any unitary transformation on a qubit is allowed by quantum
mechanics, therefore a device which unitary transform qubit in a controlled manner is
called qubit gate. Left hand side of Fig. 1.1 shows the initial state (|φ〉), which then
transformed into (U |φ〉) shown on right side by one qubit gate ‘U ’. Among the throng
of all possible one qubit quantum gate, there are some one qubit quantum gates, which
are of fundamental importance. These single qubit gates are building blocks of all other
quantum gates. Fig. 1.2 shows the most fundamental gates, the Hadamard, Pauli (X,Y,Z)
and phase along with their unitary transformation in matrix form. In Dirac notation
(Bra-Ket), these one qubit quantum gates can be written as

H = 1√
2

(|0〉+ |1〉)〈0|+ 1√
2

(|0〉 − |1〉)〈1|, (1.14)

I = |0〉〈0|+ |1〉〈1|, (1.15)
X = |1〉〈0|+ |0〉〈1|, (1.16)
Y = i|1〉〈0| − i|0〉〈1|, (1.17)
Z = |0〉〈0| − |1〉〈1|. (1.18)
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Figure 1.3: Hydrogen atom as Qubit

The Paul (X) gate is also known as NOT gate or flip gate because this gate converts
quantum states |0〉 and |1〉 into |1〉 and |0〉 respectively. In Dirac notation we can write
CNOT gate transformation as

CNOT = |00〉〈00|+ |01〉〈01|+ |11〉〈10|+ |10〉〈11|. (1.19)

CNOT gate when act on two particle quantum states, it takes state of first qubit as control
qubit and change the state of second qubit from |0〉 to |1〉 and vice versa, if the first qubit
is in state |1〉. On the other hand if the first qubit state is |0〉 then it does not change the
state of second qubit.

1.2.4 Separable and Entangled States

Suppose we have two qubits A and B which are represented by hydrogen atom, whose
ground state represents |0〉 and excited state represents |1〉 as shown in Fig. 1.3. Lets take
first and the second qubit in the states

φA = a0|0〉+ a1|1〉, (1.20)
φB = b0|0〉+ b1|1〉. (1.21)

We are going to find out the composite state of above two states which is obtained simply
by taking tensor product of Eqs. (1.20) and (1.21)

φA ⊗ φB = (a0|0〉+ a1|1〉)⊗ (b0|0〉+ b1|1〉,
= a0b0|00〉+ a1b0|10〉+ a0b1|01〉+ a1b1|11〉. (1.22)

Any quantum state which can be written as a product of individual systems is separable
and one which cannot be written in product form is entangled.
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Now suppose we have a composite system which is in equal superposition of |00〉 and |11〉
given in Eq. (1.29)

|φ+〉AB = 1√
2

(|00〉+ |11〉)AB. (1.23)

Above quantum state is entangled state and it is impossible to factor it out as product
of individual quantum state of particles. Using the method of proof, known as proof by
contradiction, we suppose that it is possible to factor the above equation as product of
quantum states of individual quantum systems.

|φ+〉AB = (a0|0〉+ a1|1〉)A(b0|0〉+ b1|1〉)B,
= a0b0|00〉+ a1b0|10〉+ a0b1|01〉+ a1b1|11〉. (1.24)

Comparing coefficient of Eqs. (1.23) and (1.24) we get

a0b0 = 1√
2
, a1b0 = 0, a0b1 = 0, a1b1 = 1√

2
, (1.25)

which is impossible, because if a1b0 = 0 which shows that either a1 = 0 or b0 = 0 or
both be zero. Let us take, for instance, that a1 = 0 and b0 6= 0, then a1b1 must equals to
zero, but in entangled state given above this product of amplitudes is a1b1 = 1√

2 , which
is contradictory. In short, the first and fourth term of Eq. (1.25) suggest that a0, a1, b0,
b1 6= 0, where the second and third term suggest that either all amplitude a0, a1, b0, b1 = 0
or at least some of them must be zero, which is impossible. Therefore Eq. (1.23) is the
state of two qubits which cannot be written as the tensor product of states of individual
qubits A and B, and the two qubits are inherently entangled with each other.

In order to further explain the difference between separable and entangled state; sup-
pose we have two quantum systems from Hilbert spaces HA and HB, whose states are
represented by ρA and ρB, which are totally independent of each other. Then the tensor
product ρA⊗ρB of density matrices represents the state of composite system. Such a state
is called tensor product state. On the composite system HA⊗HB, there are some density
matrices ρ which can be written as a probabilistic mixture of tensor product states known
as decomposable or separable states

ρ =
∑
j

λjρ
j
A ⊗ ρ

j
B, λj ≥ 0,

∑
j

λj = 1. (1.26)

Quantum states represented by Eq. (1.26) lack very interesting property known as en-
tanglement. Interesting thing about the behavior of entangled quantum systems is that
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when we measure one quantum system the other quantum system always project on sub-
space which entanglement predicts. In case of two particle quantum system HA and HB

represented as tensor product HA ⊗HB. In two particle system we have four maximally
entangled states,

|e1〉AB = |ψ+〉AB = 1√
2

(|01〉+ |10〉)AB, (1.27)

|e2〉AB = |ψ−〉AB = 1√
2

(|01〉 − |10〉)AB, (1.28)

|e3〉AB = |φ+〉AB = 1√
2

(|00〉+ |11〉)AB, (1.29)

|e4〉AB = |φ−〉AB = 1√
2

(|00〉 − |11〉)AB. (1.30)

Above four states are also known as Bell states. It is important to note that above states
also span the four dimensional Hilbert space of two quantum system because they are
orthonormal states i.e.,

〈ei|ej〉AB = δi,j . (1.31)

It means that we can represent any two particles quantum state in terms of basis
{|00〉, |01〉, |10〉, |11〉} and {|e1〉, |e2〉, |e3〉, |e4〉} equally likely.

Entanglement Generation and Some Properties of Bell States

Bell states which are maximally entangled two particle quantum states can be generated
by first using Hadamard quantum operator on first qubit and then CNOT-gate taking
first qubit as control bit of some initial state |ij〉AB, where i,j ∈ {0,1}.

To generate |φ+〉AB we take both i = j = 0 ,and then apply the above procedure i.e.,

|00〉AB
HA−−→ 1√

2
(|00〉+ |10〉)AB

CNOT
A=control bit−−−−−−−−−−−−−−→ 1√

2
(|00〉+ |11〉)AB = |φ+〉AB.(1.32)

Similarly for other three Bell state follow the same procedure but with different values
of ‘i’ and ‘j’ in initial state |ij〉 shown in Fig. 1.4. For |φ−〉AB we took initial value i = 1
and j = 0 as

|10〉AB
HA−−→ 1√

2
(|00〉 − |10〉)AB

CNOT
A=control bit−−−−−−−−−−−−−−→ 1√

2
(|00〉 − |11〉)AB = |φ−〉AB.(1.33)
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H
|0>

|1>

2( |01> + |11> )1

|1>
2( |01> - |11> )1 2( |01> - |10> )1

2( |01> + |10> )1

(b)

H
|0>

|0>

2( |00> + |10> ) 2( |00> + |11> )

|1>
2( |00> - |10> ) 2( |00> - |11> )

11

11

(a)

Figure 1.4: Bell state Generation

To generate |ψ+〉AB, i = 0 and j = 1

|01〉AB
HA−−→ 1√

2
(|01〉+ |11〉)AB

CNOT
A=control bit−−−−−−−−−−−−−−→ 1√

2
(|01〉+ |10〉)AB = |ψ+〉AB.(1.34)

Similarly for |ψ−〉AB we have

|11〉AB
HA−−→ 1√

2
(|01〉 − |11〉)AB

CNOT
A=control bit−−−−−−−−−−−−−−→ 1√

2
(|01〉 − |10〉)AB = |ψ−〉AB.(1.35)

Rotational Invariance of Bell State

Here we want to discuss the very important property of Bell states. Their rotational
invariance, which means that either using {|0〉, |1〉} or any other orthonormal basis, the
shape of Bell state can’t change. For example take |φ+〉 in {|0〉, |1〉} basis,

|φ+〉 = 1√
2

(|00〉+ |11〉). (1.36)

Now rotating above state by 45 degree angle, which means that {|0〉, |1〉} changes to sign
basis {|+〉, |−〉} as follow

|0〉 = 1√
2

(|+〉+ |−〉),

|1〉 = 1√
2

(|+〉 − |−〉), (1.37)

putting values of |0〉 and |1〉 from Eq. (1.37) in Eq. (1.36)
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|φ+〉 = 1√
2

( 1√
2

(|+〉+ |−〉) 1√
2

(|+〉+ |−〉) + 1√
2

(|+〉 − |−〉) 1√
2

(|+〉 − |−〉)),

|φ+〉 = 1√
2

(1
2(|+ +〉+ | −+〉) + |+−〉+ | − −〉) + 1

2(|+ +〉 − | −+〉+ | − −〉 − |+−〉),

|φ+〉 = 1√
2

(|+ +〉+ | − −〉). (1.38)

Now taking any general orthonormal basis as
|w〉 = a0|0〉+ a1|1〉 and |w⊥〉 = a1|0〉 − a0|1〉, (1.39)

with |a0|2 + |a1|2 = 1. To show rotational invariance of Bell state, we finally suppose that
Bell state (1.36), in basis {|w〉, w⊥〉} can be written as

|φ+〉 = 1√
2

(|ww〉+ |w⊥w⊥〉). (1.40)

To show that Eq. (1.40) is equal to Eq. (1.36), we simply put values of |w〉/|w⊥〉 from
Eq. (1.39) into Eq. (1.40)

|φ+〉 = 1√
2

((a0|0〉+ a1|1〉)(a0|0〉+ a1|1〉) + (a1|0〉 − a0|1〉)(a1|0〉 − a0|1〉)),

|φ+〉 = 1√
2

(|a0|2|00〉+ a0a1|10〉+ a0a1|01〉+ |a1|2|11〉)

+(|a1|2|00〉 − a0a1|10〉 − a0a1|01〉+ |a0|2|11〉),

|φ+〉 = 1√
2

((|a0|2 + |a1|2)|00〉+ (|a0|2 + |a1|2)|11〉).

Using condition from Eq. (1.39),

|φ+〉 = 1√
2

(|00〉+ |11〉). (1.41)

So Bell state can be written in any orthonormal basis which spans 2 dimensional Hilbert
space.

|φ+〉 = 1√
2

(|00〉+ |11〉) = 1√
2

(|+ +〉+ | − −〉) = 1√
2

(|ww〉+ |w⊥w⊥〉).

(1.42)
Rotational invariance of Bell states is very important to study the non-classical correlation
in quantum systems.
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1.3 No-Cloning Theorem
In 1982 Wootters and Zurek [23] published a theorem known as no-cloning theorem which
state that it is impossible to perfectly clone non-orthonormal quantum states. To explain
this theorem suppose we have some unitary operator as a copying machine which copies
orthogonal states |0〉/|1〉 on some state |a〉 as

U |0〉|a〉 = |0〉|0〉, (1.43)
U |1〉|a〉 = |1〉|1〉. (1.44)

Now we want to use this unitary machine to copy a superposition state of the form α|0〉+
β|1〉

U(α|0〉+ β|1〉)|a〉 = αU |0〉|a〉+ βU |1〉|a〉 = α|0〉|0〉+ β|1〉|1〉
6= (α|0〉+ β|1〉)(α|0〉+ β|1〉). (1.45)

So it is clear from above calculation that it is impossible to copy or clone non orthonormal
quantum states. This theorem suggests that if one wants to send quantum state from one
place to another, the quantum particle whose state we want to teleport must be destroyed
completely in order to get exactly the same replica at the receiver lab. Therefore any
quantum teleportation scheme must satisfy this theorem.

1.4 Sample Space, Probability and Baye’s Theorem
Sample space is the set of all possible out comes of an experiment which may be discrete
or continuous and finite. For example we take two dies each has six sides and we roll them
performing a probabilistic experiment. The sample space of this experiment is shown
in Fig. 1.5. So each time we roll both dies, we get a pair of numbers and each one of
the possible pair of numbers corresponds to the little square of sample space shown in
Fig. 1.5. In this case we have total 36 outcomes. Since we define that sample space as a
set of outcomes of an experiment, then any subset of this sample space is called an event.
It should be noted that probabilities are assigned to the events of a finite sample space
and defined as

Probability of an event happening in an experiment = Number of ways the event can happen
Total number of outcomes of an experiment .

Consider an unbiased coin, which has sample space given by set {H,T} which has total
number of outcomes two, then the probability of event head (tail) represented as p(H)
(p(T )) respectively given as
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Figure 1.5: Sample space

Figure 1.6: Sample space ‘ω’ with subsets ‘A’ and ‘B’

Probability of head (tail)= Number of ways head (tail) can happen
Total number of outcomes = 1

2 .
Now we are going to discuss some fundamental axioms of probability, for this purpose

let us take a sample space ‘ω’ with subset ‘A’ and ‘B’ with probabilities p(A) and p(B)
respectively as shown in Fig. 1.6. Then we have following axioms of probability

• Non− negativity : p(A) ≥ 0,

• Normalization condition : p(ω) = 1,

• For any two disjoint events A and B i.e. A ∩B = ∅ then :
p(AUB) = P (A) + P (B).

Above axioms suggest that probability of any event can never be negative and that the
probability of any event of probabilistic experiment must belong from the sample space of
that experiment.
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Figure 1.7: Sample space with subsets ‘A’, ‘B’ and ‘C’

Bayesian inference is a type of inference which is used to update probabilities. Consider
two events with probability p(A) and p(B), then we can update our probability of event
A such that event B has already occurred as

p(A|B) = p(A ∩B)
p(B) = p(B|A)p(A)

p(B) . (1.46)

We explain Bayesian inference with the following examples.

• Example :: 1

Consider a sample space consisting of three subset ‘A’, ‘B’ and ‘C’ with probabilities p(A),
p(B) and p(C) respectively as shown in Fig. 1.7. There are twelve equally likely outcomes,
each with probability ‘ 1

12 ’ . Probabilities that events ‘A’ and ‘C’ will happen are given as

p(A) = 6
12 = 1

2 , (1.47)

p(C) = 5
12 . (1.48)

If we are given that already event ‘A’ has happened then what will be the probability that
event ‘C’ will happen. To find probability such that we are given some prior probability
we use Bayesian inference

p(C|A) = p(A ∩ C)
p(A) =

2
12
6
12

= 1
3 . (1.49)

So by using Bayesian inference we update our previous probability of event ‘C’ .



1.4. SAMPLE SPACE, PROBABILITY AND BAYE’S THEOREM 21

p

1-p

p

p

p

p

1-p

1-p

1-p1-p

1-p

1-p

p
p

TTT
TTH
THT
THH
HTT
HTH
HHT

HHH

Figure 1.8: Sample space of a biased coin tossed three times, with probability of having head,
p(H) = p and probability of having tail is p(T ) = 1− p

• Example :: 2

In this example we take a biased coin with probability of having head p(H) = p and prob-
ability of having tail is p(T ) = 1−p as shown in the Fig. 1.8. Now tossing this biased coin
three times, we note that the combine outcome must belong to the sample space consist
of eight outcomes as shown in Fig. 1.8, i.e. {TTT, TTH, THT, THH,HTT,HTH,HHT,
HHH}. First finding out some prior probabilities and then using Bayesian rule, we will
find out conditional probability of certain event.

p(1 head) = p(HTT ) + p(THT ) + p(TTH)
= p(1− p)(1− p) + (1− p)p(1− p) + (1− p)(1− p)p = 3p(1− p)2.

(1.50)

Using Bayesian inference to find out what will be the probability of outcome having first
toss head such that events with only one head already have happened i.e.

p(first toss is head|1 head) = p(1 head ∩ first toss is head)
p(1 head ) = p(1− p)2

3p(1− p)2 = 1
3 .

(1.51)

• Example :: 3

Consider a six sided die with each side having equal probability i.e., p(each side) = 1
6 . If

we throw the die, the probability of coming side 4 is p(4) = 1
6 . Now the probability of

event other than four p̄(4) is just obtained by subtracting p(4) from one as

p̄(4) = 1− p(4) = 1− 1
6 = 5

6 (1.52)
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Well, now throw the same die twice, then what will be the probability that at least 4, will
happen. To find this probability, we have two methods, first one is to count the outcome
pair which consist of at least 4, and then divide this number by total number of out come
pairs, looking at the Fig. (1.5), we can write

p(atleast one 4 happens) = total number of outcome having atleast one 4
total number of outcome = 11

36 . (1.53)

Second method is to use the formula given below

p(any side of die at least once) = 1
−(1− p(that side to happen when we throw die first time))i,
where i= number times the die thrown. (1.54)

So for a die to throw it twice , i = 2, now to find the probability for 4 at least happen, we
use above equation

p(4 least once) = 1− (1− p(4))2 = 1− (1− 1
6)2 = 1− (5

6)2 = 1− 25
36 = 11

36 (1.55)

In our theory of measurement by detectors, we first find out ideal probabilities along
with actual probabilities for detection of photons in certain modes, then using Bayesian
approach, we update our ideal conditional probabilities. In the following section we are
going to naively discuss the teleportation scheme, which are very important to intuitively
understand the concept of quantum teleportation.

1.5 Quantum Teleportation

Quantum teleportation is the process of transmitting an unknown quantum state of a
particle from one place to another with the help of previously shared entangled particle
between the sending and receiving locations and classical communication. Since teleporta-
tion depends on classical communication therefore it cannot be used to transport classical
bits faster than light. It also obeys the no-cloning theorem, means that quantum system
whose state we want to teleport do not traverse the distance between two location rather
we destroy that particle by measuring it . Consider we have two parties Aalia and Babar
separated in space. Aalia prepares an unknown qubit in quantum state |ϕ〉 = α|0〉+ β|1〉
and wants to send it to Babar.We now explain quantum teleportation process, where we
use one of the Bell states to carry out teleportation.
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{
{

Figure 1.9: Quantum teleportation scheme, Bell state is used instead of stretched CNOT
gate between both labs as a quantum channel.

1.5.1 Quantum Teleportation Using Bell State and Bell State Analyzer

In quantum teleportation scheme, the main challenge is to create quantum state α|00〉+
β|11〉 without using CNOT gate extending from Aalia to Babar’s lab. In order to achieve
this target we are going to discuss Bell states which are known to be maximally entangled
two particle quantum states. These Bell states are given in Eqs. (1.27) - (1.30).

Assume that now Aalia and Babar share an entangled pair |φ+〉. Using this Bell state
Aalia wants to teleport an unknown quantum state α|0〉 + β|1〉 from her lab to Babar’s
lab. First Aalia performs CNOT gate on her entangled qubit of pair and unknown qubit
using later as control bit, so combined state will be

|ψ〉123 = (α|0〉+ β|1〉)1( 1√
2

(|00〉+ |11〉)23) = α√
2
|000〉+ α√

2
|011〉+ β√

2
|100〉+ β√

2
|111〉.

(1.56)

Apply CNOT on first two qubits of above equation using second qubit as target qubit

|ψ〉123
CNOT12−−−−−→ α√

2
|000〉+ α√

2
|011〉+ β√

2
|110〉

+ β√
2
|101〉 = |ψ′〉123. (1.57)
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Combining first and third term and second with fourth term we have

|ψ′〉123 = |0〉2√
2

(α|00〉+ β|11〉)13 + |1〉2√
2

(α|01〉+ β|10〉)13. (1.58)

Aalia performs measurement on her second qubit in {|0〉, |1〉} basis. If Aalia’s measurement
results in state |0〉 then Aalia and Babar have remaining combine state (α|00〉+β|11〉)13 but
in case if measurement outcome is state |1〉, then combined state will be (α|01〉+β|10〉)13.

So in first case of above measurements, Aalia and Babar achieve their target of getting
state (α|00〉+β|11〉)13, but in second case they get combined state (α|01〉+β|10〉)13. Now
Babar just performs flip operator to his qubit to get required target,

(α|01〉+ β|10〉)13
X3−−→ (α|00〉+ β|11〉)13. (1.59)

Aalia will perform Hadamard operator on her qubit and then measure it in |0〉/|1〉
basis.

(α|00〉+ β|11〉)13
H1 α√

2
|00〉+ α√

2
|10〉+ β√

2
|01〉 − β√

2
|11〉

= |0〉1√
2

(α|0〉+ β|1〉)3 + |1〉1√
2

(α|0〉 − β|1〉)3. (1.60)

If measurement on first qubit in basis {|0〉, |1〉} after Hadamard operator results in state
|0〉, then Babar’s ends up with exactly the same qubit that Aalia wants to teleport, but
if measurement results in state |1〉, Babar then applies phase operator to his qubit to get
the teleported state. For summary see Fig. 1.9.

1.6 Thesis Outline
The thesis is organized as follows: In second chapter, we present the resources used for any
quantum communication scheme, like quantum dense coding, entanglement swapping and
quantum teleportation. Sections 2.1 to 2.3 represent the theory for entangled photons
pair sources, then Sec. 2.4 briefly explain Bell state measurement and in Sec. 2.5 we
show how to model different variety of photon detectors including ideal and actual photon
detectors.

In the third chapter, we develop a model for practical quantum teleportation using
the ingredients we developed in the second chapter. In Sec. 3.1 we explain teleportation
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process in context of its origin. Section 3.2.1 and Sec. 3.2.2 covers Bell state measurement
and projective measurement of photons in modes a and b, respectively. In Sec. 3.2.3 we
find out probability of obtaining pure state at Babar mode. We then introduce the effect of
detector inefficiencies on teleported state in Sec. 3.2.4. Finally Sec. 3.2.5 gives expression
for fidelity in terms of detectors inefficiencies (η), dark counts probability (ρdc) and photon
pair production rate.

Fourth chapter includes conclusion and graphs of fidelity versus photon pair genera-
tion rate χ, keeping dark count probability ℘dc constant and changing photon detectors
efficiencies. Also we draw graphs of fidelity versus photon pair generation rate χ, keeping
detectors efficiencies constant and changing dark count probabilities ℘dc. Then we com-
pared our theory with experimental paper and our simulated results are in good agreement
with the experiment. We conclude in fifth chapter.
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Chapter 2

Modeling Sources and Detectors

Different quantum communication processes such as quantum cryptography, quantum tele-
portation, quantum dense coding and linear optics quantum computing [3] use entangled
photon pair sources. Most of these processes require bright, controlled and efficient sources
of entanglement photon generation. Due to imperfect entangled photon pair sources and
imperfect detectors, the theoretical realization of these processes involves extensive treat-
ment of these resources . In this chapter; in Sec. 2.1 we describe experimental realization of
entangled photon sources, then we explained mathematical formalism of practical sources
in Sec. 2.2. In Sec. 2.3 we model resources for our practical quantum teleportation. Sec-
tion 2.4 covers the detection of Bell states and finally in Sec. 2.5, we explained different
kinds of detectors.

2.1 Spontaneous Parametric Down Conversion (SPDC)

The quantum correlation, entanglement, was first noticed between spatially separated
quanta during measurement process of positron annihilation. Soon after Bohm’s [14]
proposal for observing EPR phenomenon in spin half systems and Bell’s discovery that
contradictory predictions between quantum theories can actually be observed, a series
of experiments were performed, mostly using a polarization entangled photons from a
two photon cascade emission from calcium . Using these techniques, it was noticed that
the two photons were in the visible region, and could be controlled by using standard
optical instruments. However the photons emitted are not in the opposite direction to
conserve momentum, since the emitted atom carries away some randomly determined
momentum. This makes it experimentally difficult to handle. On the other hand the
process of parametric down conversion (PDC) can easily be handled and is more efficient

27
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Figure 2.1: Spontaneous Parametric Down Conversion, a pump pulse with frequency
ωp after passing through nonlinear crystal like BBO, down converted into two entangled
photons with frequencies ωs and ωi. The entangled photons lie, where both cones intersect
each other given by dotted lines.

to produce entangled photon pair [15].
Spontaneous parametric down-conversion (also called SPDC, parametric scattering, or

parametric fluorescence) is a fundamental process in quantum optics used as single photon
source and entangle photons pair source. In this process photons from some source are
bombarded on a nonlinear material which splits pump photon into two other photons
satisfying the law of conservation of momentum and energy. The down converted photons
are given names as signal and idler respectively. Now suppose that pump photon has
frequency ωp and momentum kp, which after passing through nonlinear crystal e.g Beta-
Barium Oxide (BBO) converted into two photons as signal with ωs and momentum ks
and idler ωi and momentum ki, then according to the law of conservation of energy and
momentum

ωp = ωs + ωi, (2.1)
kp = ks + ki, (2.2)

as shown in Fig. 2.1. Photons from a pump laser beam down-converted in a nonlinear
crystal, BBO, emerged pairwise, to the right, each in one of two cones, one as “signal” and
other as “idler”, with frequencies obeying phase-matching conditions corresponding to the
conservation of momentum Note that this process is totally random, i.e., entangled pair of
photons are produced randomly. When one photon (signal) is detected it guarantied that
there must be its partner photon (idler). The SPDC is generally divided into two types,
depending on the the polarization of entangled photon pair in our case (we will stick to
the polarization property of photon through out our this study).
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2.1.1 SPDC-TYPE-I

In SPDC TYPE-I, the pump laser beam converts into entangled photons having same
polarization. Lets suppose that the incident pump laser has extraordinary polarization,
then the entangled photons produced from this pulse after passing through the nonlinear
medium have ordinary polarization. In perfect conditions such type of SPDC produces
following Bell states.

|φ±〉 = 1√
2

(|HH〉 ± |V V 〉). (2.3)

Using linear optics, it is impossible to detect which Bell state photons are between above
two Bell states.

2.1.2 SPDC-TYPE-II

SPDC TYPE-II- results into entangled photons pair with different polarization, i.e., that
both entangled photon have orthogonal polarization. Such type of effect is observed in
materials with two different refractive indexes in two different directions such as calcite.
If the pump laser beam has extraordinary polarization then after passing through such
material like calcite it is down converted into two photons with ordinary and extra-ordinary
polarization. SPDC TYPE-II with ideal conditions generally prepares the Bell states

|ψ±〉 = 1√
2

(|HV 〉 ± |V H〉). (2.4)

In reality the entangled state produced by these sources has less entanglement than Bell
state.

2.2 Modeling Practical Sources
Quantum information (QI) processing and quantum communication are carried out by
using practical sources. In this section we will model practical or imperfect sources which
we can use in different QI process such as practical entanglement swapping, dense coding
and especially in our case quantum teleportation. It is of great interest to have ideal
entangled photon sources which on demand creates a single entangled-photons pair in
Bell states, but such sources do not exist yet. On the other hand practical sources have
probabilistic nature. Therefore such sources sometimes produces no entangled pair and
the pump pulse goes without splitting and sometimes produces only one pair of entangled
photons and some times produces more than one pair of entangled photons but all these
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process are totally random and we do not know about specific phenomenon to happen
at some particular time. In SPDC sources the rate of entangled photons generation is
proportional to the nonlinearity χ(2) of the material, the strength of pump laser and time
of interaction of pump beam with material.

Lie Algebra SU(1,1) is used to describe SPDC transformation mathematically [16, 17].
Any set {Nx, Ny, Nz} makes the basis of SU(1,1) algebra, if this set satisfies the following
relations

[Nx, Ny] = −iNz, [Ny, Nz] = iNx, [Nz, Nx] = iNy. (2.5)

SU(1,1) realization for degenerate PDC or SPDC TYPE-I (i.e. two photons in entangled
pair are identical) is a single mode realizations given by the generators

N (j)
x = 1

4(d†jd
†
j + djdj), (2.6)

N (j)
y = 1

4i(d
†
jd
†
j − djdj), (2.7)

N (j)
z = 1

4(d†jdj + djd
†
j), (2.8)

where, dj refers to any of annihilation operators aH , aV , bH and bV .
On the other hand for SPDC TYPE-II or non-degenerate PDC, in which entangled

photon are different, the appropriate SU(1,1) realizations are two mode realization given
by the generators

N (ij)
x = 1

2(d†id
†
j + didj), (2.9)

N (ij)
y = 1

2i(d
†
id
†
j − didj), (2.10)

N (ij)
z = 1

4(d†idj − did
†
j). (2.11)

In SPDC TYPE-I both entangled photons have same polarization there for di = aH and
dj = bH , where as in SPDC TYPE-II which creates entangled photons with different
polarization thus we can use di = aH and dj = bV in this situation. Finally SPDC process
is mathematically represented and described by one parameter SU(1,1) transformation of
the vacuum state as [18]

Z(γ) = exp(iγKx)|vac〉, γ ∈ R, |vac〉 = |0H0V 0H0V 〉, (2.12)

with Kx, one of generator from {Kx,Ky,Kz} of SU(1,1) group satisfying following condi-
tions

[Kx,Ky] = −iKz, [Ky,Kz] = iKx, [Kz,Kx] = iKy. (2.13)
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Suppose the case of SPDC TYPE-I in which entangle photons pair have same polarization,
the generator for such PDC is

Kx = 1
2(a†Hb

†
H + aHbH), (2.14)

where aH , bH and a†H , b
†
H are annihilation and creation operators corresponding to hori-

zontal polarization of some spatial mode ‘a’ and ‘b’ respectively.
The resultant quantum state generated by practical source is not just a pair of photons

but is in superposition of number states. It includes vacuum and pairs of pairs and even
higher order terms. For some small value of ‘γ’, Eq. (2.12) can be written as

Z(γ) = |vac〉+ iγ

2 |1010〉, γ ∈ R (2.15)

where, the Fock notation |ijkl〉 of the state represents a state with i, j, k, and l photons
in aH , aV , bH and bV modes respectively with chosen order (HVHV). In Eq. (2.15), the
vacuum part suggest that with high probability pump pulse will not convert into entangled
photons.

2.3 Modeling of Practical Sources for Practical Quantum
Teleportation

In our theory of quantum teleportation we need only one SPDC TYPE-II source. Such
sources emits polarization entangled photons in some spatial modes, which are labeled as
‘b’ and ‘c’ . These photons have orthogonal polarization labeled as horizontal (H) and
vertical (V ). Basically we want to find out state generated by SPDC TYPE-II, which is
similar to the following Bell state,

|ψ−〉bc = 1√
2

(|HV 〉 − |V H〉)bc,

= 1√
2

(|1001〉 − |0110〉)bHbV cHcV
. (2.16)

To create quantum state of the form |ψ−〉, we use following generator of SU(1,1) group
[18] in modes ‘b’ and ‘c’

Kx = 1
2(b†Hc

†
V − b

†
V c
†
H + bHcV − bV cH), (2.17)

Ky = 1
2i(b

†
Hc
†
V − b

†
V c
†
H − bHcV + bV cH), (2.18)

Kz = 1
2(b†HbH + cV c

†
V + b†V bV + cHc

†
H), (2.19)



32 CHAPTER 2. MODELING SOURCES AND DETECTORS

such that {Kx, Ky, Kz} satisfies the conditions of SU(1,1) algebra given in Eq. (2.5).
Therefore complete quantum state preprepared by such PDC is given as

|χ〉 = exp[iχ(b†Hc
†
V − b

†
V c
†
H + bHcV − bV cH)]|vac〉, (2.20)

where, parameter χ is considered as the efficiency of the source, such that χ = γ
2 ∈ R. As

we know that

[ai, a†j ] = δij , [bi, b†j ] = δij , (2.21)

[ai, b†j ] = 0, [bi, a†j ] = 0, (2.22)

where, i, j ∈ {H,V }. Using above commutation relations in Eq. (2.20), we get after
simplification

|χ〉 = exp[iχ(b†Hc
†
V + bHcV )] exp[−iχ(b†V c

†
H + bV cH)]|vac〉, (2.23)

as we know that above equation is not in normal order form in which creation operators
lies on left side from annihilation operators and we know that working with normal order
form is much easier, therefore Eq. (2.23) is rewritten in normal order form by selecting
generators for SU(1,1) algebra as

J+ = b†c†, J− = bc, J◦ = 1
2(b†b+ c†c+ 1). (2.24)

where {J◦, J+, J−} are new generators of SU(1,1) algebra satisfying the following condi-
tions

[J−, J+] = 2J◦, [J◦, J∓] = ∓J∓. (2.25)

The normal order form for such generators is [19]

exp[α+J+ + α◦J◦ + α−J−] = exp[B+J+] exp[ln(B◦)J◦] exp[B−J−], (2.26)

where B∓, B◦ are given as

B∓ = (α∓/ϑ) sinhϑ
coshϑ− (α◦2ϑ ) sinhϑ,

B◦ = [coshϑ− (α◦2ϑ) sinhϑ]−1,

ϑ = [(α◦2 )2 − α+α−]
1
2 . (2.27)
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Using Eq. (2.26), the normal order decomposition transformation, we can write

exp[iχ(b†Hc
†
V + bHcV )] = exp[iχb†Hc

†
V + iχbHcV ]

= exp[φ(χ)b†Hc
†
V ] exp[ω(χ)(b†HbH + c†V cV + 1)] exp[φ(χ)bHcV ],

(2.28)

in this case α+ = α− = iχ and α◦ = 0, therefore using Eq. (2.27), we calculate values of
φ(χ) and ω(χ) as follows

φ(χ) := i tanh(χ), ω(χ) := − ln[cosh(χ), ϑ = χ. (2.29)

Following the same method used for (2.28), we can write

exp[−iχ(b†V c
†
H + bV cH)] = exp[−iχb†V c

†
H − iχbV cH ]

= exp[φ′(χ)b†V c
†
H ] exp[ω′(χ)(b†V bV + c†HcH + 1)] exp[φ′(χ)bV cH ],

(2.30)

with parameters

φ
′(χ) := −i tanh(χ), ω

′(χ) := − ln[cosh(χ), ϑ
′ = χ. (2.31)

Comparing Eqs. (2.29) and (2.31), we concluded that

φ
′(χ) = −φ(χ), ω

′(χ) = ω(χ), and ϑ
′ = ϑ. (2.32)

Using above conditions, Eq. (2.30) can be written in following form

exp[−iχ(b†V c
†
H + bV cH)] = exp[−φ(χ)b†V c

†
H ] exp[ω(χ)(b†V bV + c†HcH + 1)] exp[φ(χ)bV cH ].

(2.33)

To obtain normal order form of quantum state produced by PDC source, we simply put
Eqs. (2.28) and (2.33) into Eq. (2.23) and after rearranging terms, we get

|χ〉 = exp[φ(χ)(b†Hc
†
V − b

†
V c
†
H)] exp[ω(χ)(b†HbH + b†V bV + c†HcH + c†V cV + 2)]

× exp[φ(χ)(bHcV − bV cH)]|vac〉. (2.34)

Note that |vac〉 = |0bH
0bV

0cH 0cV 〉. Now looking at the above equation, it is straight
forward that the last two exponential terms leave the vacuum state unchanged and thus
simplifies to

|χ〉 = exp[2ω(χ)] exp[φ(χ)(b†Hc
†
V − b

†
V c
†
H)]|vac〉. (2.35)

In our theory of quantum teleportation we used Eq. (2.35), the normal order form of
quantum state produced by SPDC TYPE-II source.
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Figure 2.2: Bell state measurement setup, di(Hi) for i ∈ (1,2,3,4), means ith detector which can
detect horizontal photon in ith mode and beam splitter, polarization beam splitters are shown by
BS, PBS respectively. The clicking detector shows that photon has been detected in certain mode
by that detector.

2.4 Bell State Measurement

Generally QI can be encoded onto a quantum system by selecting the quantum state in
which it is prepared. This information resides within the quantum system as long as system
does not interact with the environment and we can retrieve this information whenever we
want. The information retrieving is achieved by making measurements on the quantum
system. In between preparation of quantum system and measurement, the information
in quantum state, evolves in a manner determined by the Hamiltonian of the system. So
in short measurement is a process through which we get information about any quantum
system. In this section we will discuss how to measure Bell states.

Bell states are maximally entangled two particle quantum states, which are the main
ingredient of many QI processes such as entanglement swapping [19], long distance quan-
tum key distribution protocols [20], quantum dense coding [2], and in our case quantum
teleportation [3]. Bell state measurement gives us two classical bits. It is observed that
the interference of entangled particle in Bells state and the photon statistic behind the
beam splitter shows in which Bell state the pair was [15].

Bell state measurement setup based on linear optics consists of a 50:50 beam splitter
(BS), two polarization beam splitters (PBS) and four detectors as shown in the Fig. 2.2.
It should be noted that clicking detectors shows that photons are detected in those modes.

In this setup we have two spatial modes ‘a’ and ‘b’ having polarized photons, incident
on a 50:50 beam splitter (BS), which unitarily evolves these modes, and then interact
with polarization beam splitter (PBS), which transmits horizontal polarized and reflects
vertical polarized photons. Finally these photons are detected with the spatially separated
detectors. Thus different polarization modes are detected by simple photo detectors in
different spatial modes of photons. The clicking detectors shows that some photons are
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detected in that specific mode where non clicking detector shows no photon detected. First
we write Bell states in our representation

|ψ±〉ab = 1√
2

(|1001〉 ± |0110〉)aHaV bHbV
, (2.36)

|Φ±〉ab = 1√
2

(|1010〉 ± |0101〉)aHaV bHbV
, (2.37)

|ψ±〉ab = 1√
2

(a†Ha
b†Vb
|0000〉 ± a†Va

b†Hb
|0000〉), (2.38)

|Φ±〉ab = 1√
2

(a†Ha
b†Hb
|0000〉 ± a†Va

b†Vb
|0000〉). (2.39)

Now any modes either ‘a’ or ‘b’ with horizontal or vertical polarized photon when passes
through the beam splitter (BS), changes according to following beam splitter transforma-
tions

a†H
UBS−−→ 1√

2
(a†H1

+ ib†H4
), a†V

UBS−−→ 1√
2(a†V2

+ ib†V3
), (2.40)

b†H
UBS−−→ 1√

2
(ia†H1

+ b†H4
), b†V

UBS−−→ 1√
2(ia†V2

+ b†V3
). (2.41)

Applying these transformation to Eqs. (2.38) and (2.39)

|ψ−〉ab
UBS−−→ 1√

2
( 1√

2
(a†H1

+ ib†H4
). 1√

2
(ia†V2

+ b†V3
)|0000〉

− 1√
2

(a†V2
+ ib†V3

). 1√
2

(ia†H1
+ b†H4

)|0000〉),

|ψ−〉ab = 1
2
√

2
((ia†H1

a†V2
− b†H4

a†V2
+ a†H1

b†V3
+ ib†H4

b†V3
)

−(ia†V2
a†H1
− b†V3

a†H1
+ a†V2

b†H4
+ ib†V3

b†H4
))|0000〉,

|ψ−〉ab = 1
2
√

2
((i|1100〉 − |0110〉+ |1001〉+ i|0011〉

−i|1100〉+ |1001〉 − |0110〉 − i|0011〉)H1V2H4V3 ,

= 1
2
√

2
(2|1001〉 − 2|0110〉)H1V2H4V3 ,

|ψ−〉ab = 1√
2

(|1001〉 − |0110〉)H1V2H4V3 . (2.42)
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Similarly we transform other Bell state in the same manner

|ψ+〉ab
UBS−−→ 1√

2
( 1√

2
(a†H1

+ ib†H4
). 1√

2
(ia†V2

+ b†V3
)|0000〉

+ 1√
2

(a†V2
+ ib†V3

). 1√
2

(ia†H1
+ b†H4

)|0000〉),

|ψ+〉ab = 1
2
√

2
((ia†H1

a†V2
− b†H4

a†V2
+ a†H1

b†V3
+ ib†H4

b†V3
)

+(ia†V2
a†H1
− b†V3

a†H1
+ a†V2

b†H4
+ ib†V3

b†H4
))|0000〉,

|ψ+〉ab = 1
2
√

2
((i|1100〉 − |0110〉+ |1001〉+ i|0011〉

+i|1100〉 − |1001〉+ |0110〉+ i|0011〉)H1V2H4V3 ,

|ψ+〉ab = i√
2

(|1100〉+ |0011〉)H1V2H4V3 . (2.43)

Now for |Φ+〉ab, we have

|Φ+〉ab
UBS−−→ 1√

2
( 1√

2
(a†H1

+ ib†H4
). 1√

2
(ia†H1

+ b†H4
)|0000〉

+ 1√
2

(a†V2
+ ib†V3

). 1√
2

(ia†V2
+ b†V3

)|0000〉),

= 1
2
√

2
[(ia†H1

a†H1
+ ib†H4

b†H4
+ a†H1

b†H4
− a†H1

b†H4
)

+(ia†V2
a†V2

+ ib†V3
b†V3

+ a†V2
b†V3
− a†V2

b†V3
)]|0000〉,

|Φ+〉 = 1
2
√

2
[(ia†H1

a†H1
+ ib†H4

b†H4
)|0000〉+ (ia†V2

a†V2
+ ib†V3

b†V3
)|0000〉],

|Φ+〉 = i

2
√

2
(
√

2|2000〉+
√

2|0020〉+
√

2|0200〉+
√

2|0002〉)H1V2H4V3 ,

|Φ+〉 = i

2(|2000〉+ |0200〉+ |0020〉+ |0002〉)H1V2H4V3 . (2.44)
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Figure 2.3: When detectors d1 and d3 (OR) d2 and d4 clicks, |ψ−〉 state is detected.

Figure 2.4: When detectors d1 and d2 (OR) d3 and d4 clicks, |ψ+〉 state is detected, where
symbols for clicking and non clicking detectors are given in Fig. 2.2.

Figure 2.5: When detectors d1 (OR) d2 (OR) d3 (OR) d4 clicks, one of |Φ±〉 state is
detected, it means to detect such type of Bell state only one of the four threshold detectors
clicks, where symbols for clicking and non clicking detectors are given in Fig. 2.2.
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Similarly after passing |Φ−〉 through beam splitter we get

|Φ−〉 = i

2(|2000〉 − |0200〉+ |0020〉 − |0002〉)H1V2H4V3 . (2.45)

H1, V2, H4, and V3 represents the polarization of photons after beam splitter (BS) and
polarization beam splitters (PBS) detected by detectors d1, d2, d4, and d3 respectively. So
after passing through beam splitters and polarization beam splitters Bells states we got,
are

|ψ−〉 = 1√
2

(|1001〉 − |0110〉)H1V2H4V3 , (2.46)

|ψ+〉 = i√
2

(|1100〉+ |0011〉)H1V2H4V3 , (2.47)

|Φ±〉 = i

2(|2000〉 ± |0200〉+ |0020〉 ± |0002〉)H1V2H4V3 , (2.48)

Eq. (2.46) shows that |ψ−〉 is detected when detectors d1 and d3 or d2 and d4 clicks as
shown in Fig. 2.3. On the other hand Eq. (2.47) shows that |ψ+〉 is detected when detectors
d1 and d2 or d3 and d4 click as depicted in Fig. 2.4. Equation (2.48) suggests that we
cannot discriminate between |Φ+〉 and |Φ−〉 because in both these cases detector d1 or d2
or d3 or d4 detects two photons. Since we used threshold detectors, thus for both |Φ±〉
only one of the four detectors will clicks as shown in Fig. 2.5.

2.5 Detectors
Detectors are optical devices used in different QI process such as quantum teleportation,
dense coding and entanglement swapping. In this section we discuss different kinds of
detector model. Semiconductor based photon detector namely Indium-Gallium-Arsenide
(InGaAs) avalanche photo-diodes detectors (APDs) [21], are able to detect single photons
close to room temperature. These detectors use strong electric field within the semi-
conductor to accelerate electrons, and when a photon strikes the detectors an avalanche
of electrons is generated, which triggers a click. There are some other detectors which
have been prototyped. Superconducting transition-edge sensors (TES) are most notable
of them, which are photon-number-resolving with detection efficiency up to 88 percent at
1550 nm and benefit from negligible dark count rates [20].

Generally detectors exhibit dark count which means that detector sometimes clicks
even if there is no photon striking on it. So in reality it is still technological challenge to
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invent ideal detectors. In following sections we are going to presents a brief theoretical
description of imperfect detectors. To model such detectors we place a beam splitter in
front of ideal detector which interfere the coherent input state with some thermal state
representing dark counts and the other random errors.

2.5.1 Ideal Photon Number Discriminating Detectors

As clear from the name that such detectors always clicks when there are photons present
in certain mode and never register a click when there are no photons. Information about
the number of incident photons are provided by the strength of the click. Such detectors
are mathematically represented by projective valued measurement (PVM)∏̃

i
= |i〉〈i|, where i = 0, 1, 2..... (2.49)

in some fock basis state |i〉, i ∈ N of certain mode. Now consider that we have more than
one mode |ijkl〉 then the PVM for these modes will be of the form∏̃

ijkl
= |i〉〈i| ⊗ |j〉〈j| ⊗ |k〉〈k| ⊗ |l〉〈l|, where i, j, k, l = 0, 1, 2..... (2.50)

2.5.2 Inefficient Photon Number Discriminating Detectors with no Dark
Counts

In our theory, we represent the efficiency of detectors with η. Now inefficient photon
number discriminating detectors are detectors having efficiency less than unity i.e., 0 <
η < 1, which means that there is finite probability that detector does not trigger a click if
there are photons incident into the detector. To model such imperfect detectors, a beam
splitter (BS) with transmittance η is placed in front of an ideal detector [22]. It should
be noted that η is used for both transmittance and efficiency of detectors. Since in this
case we have no dark counts which means that dark counts are zero. Therefore we take
vacuum state together with photon signal state incident into the beam splitter as shown
in the Fig. 2.6. Now the probability that such detectors measured ‘q’ photons when some
signal with state ρsig incident into the detector is given as

p(q|ρsig) = Trtran[
∏̃

q
Trref{UBS(η)(ρsig ⊗ |vac〉〈vac|)U

†
BS(η)}

∏̃
q
], (2.51)

where UBS(η) represents the unitary transformation of beam splitter. Since we know that
input signal state is in fock state such that ρsig = |i〉〈i|, then conditional probability to
detect ‘q’ photons with ‘i’ photons incident into the detector is

p(q|i) = Trtran[
∏̃

q
Trref{UBS(η)(|i〉〈i| ⊗ |vac〉〈 vac|)U †BS(η)}

∏̃
q
], (2.52)
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BS

D(id)
signal state

vacuum state

Figure 2.6: Inefficient Photon number Discriminating Detectors with no Dark Counts.

p(q|i) =


(
i
q

)
ηq(1− η)i−q if i≥ q

0 if i< q,
(2.53)

Eq. (2.53) shows that in order to detect ‘q’ photons, the number of incident photons
‘i’ must be greater than ‘q’, because in this model we do not include dark counts.

2.5.3 Inefficient Photon Number Discriminating Detectors with Dark
Counts

In this model, together with detectors inefficiency ‘η’ , we take into account the dark
counts possibility ℘dc. Therefore we combine signal photons input state from one port of
beam splitter with thermal state ρT [19] of the following form

ρT = 1
cosh2(r)

∞∑
n=0

tanh2n(r)|n〉〈n|, (2.54)

from the other input port of the beam splitter. These fictitious photons correspond to
dark counts of the detector. Now we will find out conditional probability using such type
of detector with efficiency η and dark count probability ℘dc as

pη,℘dc
(q|i) = Trtran[

∏̃
q
Trref{UBS(η)(|i〉〈i| ⊗ ρT |)U †BS(η)}

∏̃
q
], (2.55)

where pη,℘dc
(q|i) is the probability of detecting ‘q’ photons in a mode given that ‘i’ photons

are incident on the detector with efficiency η and dark counts probability ℘dc. In this case
due to dark counts probability, it is possible that the detected photons ‘q’ may be greater
than ‘i’ . The dark counts probability ℘dc is given as [19]

℘dc = (1− η) tanh2 r

1− η tanh2 r
. (2.56)
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Consider d, d† (e, e†) are the annihilation and creation operators of signal (fictitious
thermal) modes, respectively. Then the initial quantum state of both modes before beam
splitter in the form of above operators will be

ρinitsig,T = ρsig ⊗ ρT = 1
cosh2(r)

∞∑
n=0

tanh2n(r)|i, n〉〈i, n|,

= 1
cosh2(r)

∞∑
n=0

tanh2n(r)
i!n! di†en†|0, 0〉〈0, 0|dien. (2.57)

We pass above quantum state through a beam splitter with transformation matrix con-
sisting of transmission coefficient √η and reflection coefficient

√
1− η

UBS(η) =
( √

η
√

1− η
−
√

1− η √
η

)
. (2.58)

The operators d, d†(e, e†) transformed by beam splitter as

(
d
e

)
−→ U †BS(η)

(
d
e

)
,

(
d†

e†

)
−→ UBS(η)

(
d†

e†

)
. (2.59)

Thus after applying beam splitter transformation, ρinitsig,T changes to ρoutsig,T as

ρoutsig,T = UBS(η)ρinitsig,TU
†
BS(η), (2.60)

ρoutsig,T = 1
cosh2(r)

∞∑
n=0

tanh2n(r)
i!n! (√ηd† −

√
1− ηe†)i(

√
1− ηd† +√ηe†)n

×|0, 0〉〈0, 0|(√ηd−
√

1− ηe)i(
√

1− ηd+√ηe)n, (2.61)

ρoutsig,T = 1
cosh2(r)

∞∑
n=0

tanh2n(r)
i!n!

i∑
λ=0

i∑
λ′=0

n∑
κ=0

n∑
κ′=0

(
i
λ

)(
i

λ
′

)(
n
κ

)(
n

κ
′

)
(−1)κ+κ′

(√η)2n+λ+λ′−κ−κ′ (
√

1− η)2i−λ−λ′+κ+κ′ (d†)λ+κ(e†)i+n−λ−κ|0, 0〉

⊗〈0, 0|(d)λ
′+κ′ (e)i+n−λ

′−κ′ ,

(2.62)
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ρoutsig,T = 1
cosh2(r)

∞∑
n=0

tanh2n(r)
i!n!

i∑
λ=0

i∑
λ′=0

n∑
κ=0

n∑
κ′=0

(
i
λ

)(
i

λ
′

)(
n
κ

)(
n

κ
′

)
(−1)κ+κ′

(√η)2n+λ+λ′−κ−κ′ (
√

1− η)2i−λ−λ′+κ+κ′

×|λ+ κ, i+ n− λ− κ〉〈λ′ + κ
′
, i+ n− λ′ − κ′ |. (2.63)

To find out conditional probability Eq. (2.55) suggests that first trace out reflection
mode, then project the remaining state on fock state |q〉 and finally trace out the trans-
mitted mode of above equation

pη,℘dc
(q|i) = (1− η)i

cosh2 r

(
η

1−η

)q ∞∑
n=0

[η tanh2(r)]n(q!(i+ n− q)!
i!n! )[Ω(i, q, η, n)]2, (2.64)

with

Ω(i, q, η, n) :=
n∑
υ=0

(
i

q − υ

)(
n
υ

)(
η−1
η

)υ
. (2.65)

Since we know that number of detected photons by detector cannot be greater than sum
of signal photon and thermal photons therefore Ω(i, q, η, n) = 0 for q > i + n. Eq. (2.65)
in factorial form can be written as following. First we take the case in which q ≥ i

Ω(i, q, η, n) :=
n∑
υ=0

i!n!
(q − υ)!(i− q + υ)!υ!(n− υ)!

(
η−1
η

)υ
. (2.66)

To make above equation more compact, we introduce the concept of Hypergeometric
function define as

F (α, β, γ, x) = 1 +
∞∑
i=1

(α)i(β)ixi

i!(γ)i
, (2.67)

where (z)n is the Pochhammer symbol such that (z)n = Γ(z + n)/Γ(z) with Γ is the
gamma function. Using properties of gamma functions we make q and n both negative,
to get finite solution of Eq. (2.66)

q!
(q − υ)! = Γ(q + 1)

Γ(q − υ + 1) = Γ(−q + υ)
Γ(−q) (−1)υ. (2.68)
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Similarly

n!
(n− υ)! = Γ(n+ 1)

Γ(n− υ + 1) = Γ(−n+ υ)
Γ(−n) (−1)υ, (2.69)

multiply and divide Eq. (2.66) by q!(q − i)! we get

Ω(i, q, η, n) :=
n∑
υ=0

i!q!n
(q − υ)!(q − i)!(i− q + υ)(q − i)!υ!(n− υ)!

(
η−1
η

)υ
. (2.70)

Thus

Ω(i, q, η, n) =
(
i
q

)
2F1(−n,−q; i− q + 1; η−1

η ). (2.71)

Now for i < q, we have

Ω(i, q, η, n) =
n∑
υ=0

i!n!
(q − υ)!(i− q + υ)!υ!(n− υ)!

(
η−1
η

)υ
. (2.72)

putting l = υ − q + i in above equation.

Ω(i, q, η, n) =
n−i+q∑
l=0

i!n!
l!(i− l)!(l + q − i)!(n+ i− q − l)!

(
η−1
η

)l+q−i
. (2.73)

Multiply and divide above equation by (n− q − i)!(q − i)!, and then simplifying we get

Ω(i, q, η, n) =
n−i+q∑
l=0

(
η−1
η

)q−i( n
q − i

)
2F1(−i, n− q + i; q − i+ 1; η−1

η ). (2.74)

Putting Eqs. (2.71) and (2.74) in Eq. (2.66) for finding conditional probability of detecting
photons greater than or equal to incident signal photon and less than incident signal photon
respectively with using following parameters

b(η, ℘dc) := η tanh2 r = η℘dc
1− η(1− ℘dc)

, (2.75)

and

1
cosh2 r

= (1− η)(1− ℘dc)
1− η(1− ℘dc)

. (2.76)



44 CHAPTER 2. MODELING SOURCES AND DETECTORS

We get

pη,℘dc
(q|i) =


(1−η)(1−℘dc)
1−η(1−℘dc) (1− η)i

(
η

1−η

)q
Ω(i, q, η, ℘dc) if i ≥ q,

(1−η)(1−℘dc)
1−η(1−℘dc) η

i
{

1−η
η b(η, ℘dc)

}q−i
Ω(q, i, η, ℘dc) if i < q,

(2.77)

where

Ω(x, y, η, ℘dc) =
∞∑
n=0

(
x
y

)(
n+ x− y
x− y

)
(b(η, r))n

×{2F1(−n,−y;x− y + 1, η − 1
η

)}2, (2.78)

and

Ω(y, x, η, ℘dc) =
∞∑
n=0

(
y
x

)(
n+ y − x
y − x

)
(b(η, r))n

×{2F1(−n,−x; y − x+ 1, η − 1
η

)}2. (2.79)

Equation (2.77), thus gives the probability of detecting ‘q’ photons such that ‘i’ photons
are incident on inefficient photon number discriminating detector.

2.5.4 Threshold Detectors

Threshold detectors are easily available than photon number discriminating detectors. We
have modeled threshold detectors in our Bell state measurement process. Ideal or unit
efficiency threshold detectors with no dark counts are those which measure whether the
incoming mode is vacuum state or has at least one photon. Mathematically ideal threshold
detectors (ITD) are represented using following operators∏̃

◦
= |0〉〈0|,

∏̃⊥
◦ = I− |0〉〈0|. (2.80)

To realize practical threshold detector, we use same model as used in photon number dis-
criminating detectors but replacing vacuum state with thermal state as shown in Fig. 2.7.
To find out conditional probabilities we follow same method as we did for photon number
discriminating detectors but in this case ‘q’ can take two values either click or no click
corresponding to PVM’s

∏̃⊥
◦ or

∏̃
◦ respectively. In our case of Bell state measurement

the signal mode state is given as ρsig = |i〉〈i|. We now just put ‘q = 0’ for no click in
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BS

ITD
signal state

vacuum state

Figure 2.7: Threshold detector with efficiency η, signal and vacuum state of two different
modes are incident on beam splitter with transmittance η, ITD represents ideal threshold
detector.

Eq. (2.77) to get conditional probability for no-click. Where conditional probability for
click is obtained by subtracting no-click probability from unity.

p℘dc,η(no click|i) = p℘dc,η(q = 0|i) = (1− ℘dc){1− η(1− ℘dc)}i, (2.81)

and thus the conditional probability of a click, when ‘i’ signal photons are incident is

p℘dc,η(click|i) = 1− p℘dc,η(no click|i) = 1− (1− ℘dc){1− η(1− ℘dc)}i. (2.82)

In our theory of teleportation, we used Eqs. (2.81) and (2.82), for no photon and some
photons detection in Bell state measurement process.

We now develop model for quantum teleportation experiment using above mentioned
practical resources in next chapter.
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Chapter 3

Teleporting an Unknown Quantum
State Using Practical Limitations

3.1 Introduction

Quantum teleportation is the process of sending quantum state of any physical quantum
system from one place to another place without sending the original particle itself. Suppose
we have sender and receiver named as Aalia and Babar respectively. Aalia wants to send
an unknown polarization quantum state of a photon α|0〉 + β|1〉 to Babar’s lab. One
method is that Aalia measures her qubit and then send information to Babar through
some classical channel. Since we know that measurement destroys the quantum state,
therefore for Babar it will be impossible to get the exact replica of quantum state Aalia
wants to teleport by using the measurement information sent by Aalia. In 1992 a group
of six scientists [2] came up with a very fascinating idea that an unknown quantum state
can be disassembled into purely classical information and quantum (EPR) correlations
and then later reconstruct the same quantum state by using this information. To do so
Aalia and Babar prearrange the sharing of entangled particle having Bell state. Aalia then
performs a joint measurement (Bell state measurement) on the unknown quantum system
and on her entangled particle of already shared entangled pair of particles. Knowing
this classical information obtained by Aalia through Bell state measurement, Babar can
convert the state of his particle of entangled pair into exact replica of the state Aalia wants
to teleport by performing some unitary transformation on his qubit depending on the Bell
state measurement performed by Aalia.

In 1997 quantum teleportation was for the first time, experimentally demonstrated with
entangled photons [7]. Later, in laboratory different developments have been achieved in-
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cluding open destination teleportation [24], entanglement swapping demonstration [25] and
two-bit composite system teleportation [26]. In addition practical quantum teleportation
through fiber link have been realized in [27, 28] and limited to one kilometer. Entangled
photon pairs have been experimentally demonstrated over distance of 600m [29] and 13 km
[30]. Later, over 144 km entangled photons were transmitted [31, 32]. Recently quantum
teleportation over 16 km is demonstrated via free space links [33] using single entangled
photons pair.

Teleportation is a kind of communication; it provides a way of of transporting a quan-
tum state from one place to another, without having to move a physical system of that
quantum state along with it. In our theory we used SPDC TYPE-II source to create
entangled photons, laser pulses are pumped into BBO crystal which after passing through
crystal convert into entangled photon pairs. Thus, in our calculations, we include multi-
pair as well as vacuum state because to date no single pair photon pair producing sources
exist. Actual sources used in the experiments are probabilistic which means that such
sources randomly produce photon pairs in those instances in which laser pulse passes
through the crystal.

This chapter is arranged as follows. Section 3.2.1 and Sec. 3.2.2 covers Bell state
measurement and projective measurement of photons in modes a and b, respectively. In
Sec. 3.2.3 we find out probability of obtaining pure state at Babar mode. We then introduce
the effect of detector inefficiencies on teleported state in Sec. 3.2.4. Finally Sec. 3.2.5 gives
expression for fidelity in terms of detectors inefficiencies (η), dark counts probability (ρdc)
and photon pair production rate χ.

3.2 Practical Quantum Teleportation

Assume in our setup we have two parties, Aalia and Babar. Aalia wants to transmit an
unknown quantum state to Babar. To do so, Aalia and Babar first need to share entangled
photons. Therefore using practical PDC TYPE-II source, Aalia generate entanglement
and sends one of entangled photons to Babar. Then passing her photon of entangled
pair along with photon whose state is unknown, through Bell state analyzer. Bell state
analyzer detects the entangled state of two photons. Beam splitter (BS) and polarization
beam splitter (PBS) used in our practical model are perfect but photon detectors are
faulty i.e., detector efficiency η, is less than one. We also include dark counts probability
in our model. In pratical teleportation scheme, we have three spatial modes ‘a’, ‘b’ and
‘c’ . Photons in mode ‘b’ and ‘c’ are entangled. Modes ‘a’ and ‘b’ are then pass through
BSM. Aalia then sends result of BSM to Babar through some classical channel. Babar
apllies some unitary operator ‘U ’ to his qubit depending upon results Aalia sent, as shown
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PBS PBS

a  b c

Aaliya's lab PDC Babar's lab

BS

DH DV DV DH

U

BSM

Perfect

PerfectPerfect

Figure 3.1: Practical quantum teleportation. BSM represents Bell state measurement
setup. Where beam splitter and polarization beam splitter are shown by BS and PBS,
respectively.

in Fig. 3.2. In folowing sections we explain practical teleportation in more detail.

3.2.1 Bell State Measurement

Aalia has PDC source which produces entangled photon pairs randomly. One photon from
entangled pair in spatial mode ‘b’ is kept by Aalia and the second photon of pair in spatial
mode ‘c’ is directed towards Babar. Quantum state prepared by single PDC-TYPE-II in
normalized form given in Eq. (2.35) is

|χ〉bc = exp[2ω(χ)] exp[φ(χ)(b†Hc
†
V − b

†
V c
†
H ]|vac〉, (3.1)

with ω(χ) = − ln[coshχ] and φ(χ) = i tanhχ. Using Baker-Campbell-Hausdorff (BCH)
formula

exp(A+B) = exp(A) exp(B) exp(−1
2[A,B]). (3.2)

exp[φ(χ)(b†Hc
†
V − b

†
V c
†
H)] = exp[φ(χ)(b†Hc

†
V )] exp[−φ(χ)(b†V c

†
H)], (3.3)

therefore (3.1) can be written as

|χ〉bc = exp[2ω(χ)] exp[φ(χ)(b†Hc
†
V )] exp[−φ(χ)(b†V c

†
H)]|vac〉. (3.4)
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After Aalia has generated entangled photons using SPDC TYPE-II source, one photon of
entangled pair is sent to the place where Aalia wants to teleport the unknown quantum
state, for instance Babar’s lab. The second partner of entangled pair and unknown quan-
tum state of photon, is then subjected to Bell state measurement in Aalia’s Lab. In our
theory we take following unknown quantum state of photon that she wants to teleport

|ϕ〉a = α|H0〉+ β|0V 〉 = α|10〉+ β|01〉,
|ϕ〉a = αa†H |00〉+ βa†V |00〉,
|ϕ〉a = αa†H |vac〉+ βa†V |vac〉. (3.5)

It is important to note that mode ‘a’ is used for unknown state to be teleported and ‘b’
and ‘c’ are used for entangled photons pair. Then the composite state |ψ〉abc = |ϕ〉a⊗|χ〉bc
of above three photons is obtained by combining unknown quantum state in Eq. (3.5) and
PDC state |χ〉 of Eq. (3.4)

|ψ〉abc = α exp[2ω(χ)] exp[φ(χ)(b†Hc
†
V )] exp[−φ(χ)(b†V c

†
H)]a†H |vac〉

+β exp[2ω(χ)] exp[φ(χ)(b†Hc
†
V )] exp[−φ(χ)(b†V c

†
H)]a†V |vac〉, (3.6)

where |vac〉 = |000000〉 = |HVHVHV 〉 or more generally
|vac〉 = |0aH 0aV 0bH

0bV
0cH 0cV 〉

To perform Bell state measurement Aalia first applies balanced beam splitter trans-
formation to her modes ‘a’ and ‘b’ such that

a†H
UBS−−→ 1√

2
(a†H − b

†
H), b†H

UBS−−→ 1√
2

(a†H + b†H), (3.7)

a†V
UBS−−→ 1√

2
(a†V − b

†
V ), b†V

UBS−−→ 1√
2

(a†V + b†V ). (3.8)

It should be noted that photons in mode ‘a’ and ‘b’ are in the Aalia’s lab. Above trans-
formation on modes ‘a’ and ‘b’ which are initially in decomposable states yields

U ab
BS|ψ〉abc = α exp[2ω(χ)] exp[φ(χ)( 1√

2
(a†H + b†H)c†V )] exp[−φ(χ)( 1√

2
(a†V + b†V )c†H)]

× 1√
2

(a†H − b
†
H)|vac〉+ β exp[2ω(χ)] exp[φ(χ)( 1√

2
(a†H + b†H)c†V )]

× exp[−φ(χ)( 1√
2

(a†V + b†V )c†H)] 1√
2

(a†V − b
†
V )|vac〉. (3.9)
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After further simplification using exponential expansion we get

U ab
BS|ψ〉abc = exp[2ω(χ)]

∑
i′j′k′ l′

(−1)k
′+l′ [φ(χ)]i

′+j′+k′+l′ c†k
′+l′

H c†i
′+j′

V
√

2i
′+j′+k′+l′+1

i′ !j′ !k′ !l′ !

×[α(a†i
′+1

H b†j
′

H a†k
′

V b†l
′

V − a
†i′

H b†j
′+1

H a†k
′

V b†l
′

V )

+β(a†i
′

H b†j
′

H a†k
′+1

V b†l
′

V − a
†i′

H b†j
′

H a†k
′

V b†l
′+1

V )]|vac〉.

Applying all creation operators of modes ‘a’ and ‘b’ on its vacuum state

U ab
BS|ψ〉abc = exp[2ω(χ)]

∑
i′j′k′ l′

(−1)k
′+l′ [φ(χ)]i

′+j′+k′+l′ c†k
′+l′

H c†i
′+j′

V
√

2i
′+j′+k′+l′+1

i′ !j′ !k′ !l′ !

×[α(
√

(i′ + 1)!j′ !k′ !l′ !|i′ + 1, k′ , j′ , l′ , 00〉 −
√
i′ !(j′ + 1)!k′ !l′ !|i′ , k′ , j′ + 1, l′ , 00〉)

+β(
√
i′ !j′ !(k′ + 1)!l′ !|i′ , k′ + 1, j′ , l′ , 00〉 −

√
i′ !j′ !k′ !(l′ + 1)!|i′ , k′ , j′ , l′ + 1, 00〉)].

Finally we get

U ab
BS|ψ〉abc = exp[2ω(χ)]

∑
i′j′k′ l′

(−1)k
′+l′ [φ(χ)]i

′+j′+k′+l′ c†k
′+l′

H c†i
′+j′

V
√

2i
′+j′+k′+l′+1√

i′ !j′ !k′ !l′ !

×[α(
√
i′ + 1|i′ + 1, k′ , j′ , l′ , 00〉 −

√
j′ + 1|i′ , k′ , j′ + 1, l′ , 00〉)

+β(
√
k′ + 1|i′ , k′ + 1, j′ , l′ , 00〉 −

√
l′ + 1|i′ , k′ , j′ , l′ + 1, 00〉)].

(3.10)

Equation (3.10) is the composite state of all three modes photons after passing modes ‘a’
and ‘b’ through a beam splitter (BS). In the following section we project this state on
subspace.

3.2.2 Projective Measurement of two Particles at Sender

Now according to no-cloning theorem we cannot copy an unknown quantum state. In
order to teleport state to Babar’s lab, Aalia measures and hence destroys the quantum
system which she wants to teleport, and hence does not violate no-cloning theorem. Aalia
measures particle ‘a’ and ‘b’ in one of the four Bell states. This measurement projects
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the total state in Eq.(3.10) to a subspace, where ‘c’ acquires the state of particle ‘a’. This
projective measurement is given as

Πikjl
aHaV bHbV

= (|i〉〈i|)aH ⊗ (|k〉〈k|)aV ⊗ (|j〉〈j|)bH
× (|l〉〈l|)bV

⊗ IcH ⊗ IcV . (3.11)

Πikjl
aHaV bHbV

(U ab
BS|ψ〉abc) = exp[2ω(χ)]

∑
i
′
j
′
k
′
l
′

(−1)k
′+l′ [φ(χ)]i

′+j′+k′+l′ c†k
′+l′

H c†i
′+j′

V
√

2i
′+j′+k′+l′+1√

i′ !j′ !k′ !l′ !

×[α(
√
i′ + 1δi,i′+1δk,k′ δj,j′ δl,l′ −

√
j′ + 1δi,i′ δk,k′ δj,j′+1δl,l′ )

+β(
√
k′ + 1δi,i′ δk,k′+1δj,j′ δl,l′ −

√
l′ + 1δi,i′ δk,k′ δj,j′ δl,l′+1)]

×|i, k, j, l〉aH ,aV ,bH ,bV
⊗ |00〉cH ,cV . (3.12)

Now apply corresponding creation operators on the mode ‘c’ we have

Πikjl
aHaV bHbV

(U ab
BS|ψ〉abc) = exp[2ω(χ)]

∑
i′j′k′ l′

(−1)k
′+l′ [φ(χ)]i

′+j′+k′+l′
√

(k′ + l′)!(i′ + j′)!
√

2i
′+j′+k′+l′+1√

i′ !j′ !k′ !l′ !

×[α(
√
i′ + 1δi,i′+1δk,k′ δj,j′ δl,l′ −

√
j′ + 1δi,i′ δk,k′ δj,j′+1δl,l′ )

+β(
√
k′ + 1δi,i′ δk,k′+1δj,j′ δl,l′ −

√
l′ + 1δi,i′ δk,k′ δj,j′ δl,l′+1)]

×|i, k, j, l〉aH ,aV ,bH ,bV
⊗ |k′ + l

′
, i
′ + j

′〉cH ,cV .
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Πikjl
aHaV bHbV

(U ab
BS|ψ〉abc) = exp[2ω(χ)]

×[α
∑

i′j′k′ l′

(−1)k
′+l′ [φ(χ)]i

′+j′+k′+l′
√

(k′ + l′)!(i′ + j′)!
√

2i
′+j′+k′+l′+1√

i′ !j′ !k′ !l′ !

×
√
i′ + 1δi,i′+1δk,k′ δj,j′ δl,l′

−α
∑

i′j′k′ l′

(−1)k
′+l′ [φ(χ)]i

′+j′+k′+l′
√

(k′ + l′)!(i′ + j′)!
√

2i
′+j′+k′+l′+1√

i′ !j′ !k′ !l′ !

×
√
j′ + 1δi,i′ δk,k′ δj,j′+1δl,l′

+β
∑

i′j′k′ l′

(−1)k
′+l′ [φ(χ)]i

′+j′+k′+l′
√

(k′ + l′)!(i′ + j′)!
√

2i
′+j′+k′+l′+1√

i′ !j′ !k′ !l′ !

×
√
k′ + 1δi,i′ δk,k′+1δj,j′ δl,l′

−β
∑

i′j′k′ l′

(−1)k
′+l′ [φ(χ)]i

′+j′+k′+l′
√

(k′ + l′)!(i′ + j′)!
√

2i
′+j′+k′+l′+1√

i′ !j′ !k′ !l′ !

×
√
l′ + 1δi,i′ δk,k′ δj,j′ δl,l′+1]

×|i, k, j, l〉aH ,aV ,bH ,bV
⊗ |k′ + l

′
, i
′ + j

′〉cH ,cV .

To get fruitfull equation by using property of Kronecker deltas, we must put i′ = i − 1,
k
′ = k, j′ = j, l′ = l in first ‘α’term , i′ = i, k′ = k, j′ = j − 1, l′ = l in second ‘α’ term

, i′ = i, k′ = k − 1, j′ = j, l′ = l in first ‘β’ term and i′ = i, k′ = k, j′ = j, l′ = l − 1
in second ‘β’ term of Eq. (3.13).
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Πikjl
aHaV bHbV

(U ab
BS|ψ〉abc) = exp[2ω(χ)][α(−1)k+l( [φ(χ)]i+j+k+l−1√(i+ j − 1)!(k + l)!

√
2i+j+k+l√(i− 1)!j!k!l!

√
i

− [φ(χ)]i+j+k+l−1√(i+ j − 1)!(k + l)!
√

2i+j+k+l√
i!(j − 1)!k!l!

√
j)

×|ikjl〉aH ,aV ,bH ,bV
⊗ |k + l, i+ j − 1〉cH ,cV

+β(−1)k+l−1( [φ(χ)]i+j+k+l−1√(i+ j)!(k + l − 1)!
√

2i+j+k+l√
i!j!(k − 1)!l!

√
k

− [φ(χ)]i+j+k+l−1√(i+ j)!(k + l − 1)!
√

2i+j+k+l√
i!j!k!(l − 1)!

√
l)

×|ikjl〉aH ,aV ,bH ,bV
⊗ |k + l − 1, i+ j〉cH ,cV ]. (3.13)

Further simplification gives

Πikjl
aHaV bHbV

(U ab
BS|ψ〉abc) = |ikjl〉aH ,aV ,bH ,bV

⊗ exp[2ω(χ)] (−1)k+l[φ(χ)]i+j+k+l−1
√

2i+j+k+l

×[α
√

(i+ j − 1)!(k + l)!√
k!l!

(
√
i√

(i− 1)!j!
−

√
j√

i!(j − 1)!
)

×|k + l, i+ j − 1〉cH ,cV + β

√
(i+ j)!(k + l − 1)!√

i!j!

×(−
√
k√

(k − 1)!l!
+

√
l√

k!(l − 1)!
)|k + l − 1, i+ j〉cH ,cV ].

Since n! = n(n − 1)! ⇒ (n − 1)! = n!
n ⇒

1
(n−1)! = n

n! . Using this identity in above
equation.

Πikjl
aHaV bHbV

(U ab
BS|ψ〉abc) = |ikjl〉aH ,aV ,bH ,bV

⊗ exp[2ω(χ)] (−1)k+l[φ(χ)]i+j+k+l−1
√

2i+j+k+l√
i!j!k!l!

×[α
√

(i+ j − 1)!(k + l)!(i− j)|k + l, i+ j − 1〉cH ,cV

+β
√

(i+ j)!(k + l − 1)!(l − k)|k + l − 1, i+ j〉cH ,cV ].
(3.14)

Since we project our state onto subspace, which means that we measured photons in
modes ‘a’ and ‘b’ and hence measurement destroys modes ‘a’ and ‘b’, therefore we discard
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|ikjl〉aH ,aV ,bH ,bV
from Eq. (3.14), thus remaining state will be the state of Babar’s photon

which is in mode ‘c’ given below

Πikjl
aHaV bHbV

(U ab
BS|ψ〉abc) = exp[2ω(χ)] (−1)k+l[φ(χ)]i+j+k+l−1

√
2i+j+k+l√

i!j!k!l!

×[α
√

(i+ j − 1)!(k + l)!(i− j)|k + l, i+ j − 1〉cH ,cV

+β
√

(i+ j)!(k + l − 1)!(l − k)|k + l − 1, i+ j〉cH ,cV ].
(3.15)

Since Eq. (3.15) is not normalized quantum state, therefore in Sec. 3.2.3 we normalize
state at the Babar mode.

3.2.3 Probability of Obtaining Pure State at Receiver after Projective
Measurement of Two Particles at Sender

We find the probability of resultant state at Babar after projecting the state to ikjl
photons in four modes at Aaliya’s perfect detectors as p(ikjl). This probability is given
by normalizing quantum state in Eq. (3.15), such that

〈ψ|(Πikjl
aHaV bHbV

U ab
BS)†Πikjl

aHaV bHbV
(U ab

BS|ψ〉) = p(ikjl). (3.16)

p(ikjl) = ( exp[2ω(χ)] (−1)k+l[φ(χ)]i+j+k+l−1
√

2i+j+k+l√
i!j!k!l!

)2

×[(α∗
√

(i+ j − 1)!(k + l)!(i− j)〈k + l, i+ j − 1|

+β∗
√

(i+ j)!(k + l − 1)!(l − k)〈k + l − 1, i+ j|)

×(α
√

(i+ j − 1)!(k + l)!(i− j)|k + l, i+ j − 1〉

+β
√

(i+ j)!(k + l − 1)!(l − k)|k + l − 1, i+ j〉)].
After straight forward calculation

p(ikjl) = ( exp[2ω(χ)] (−1)k+l[φ(χ)]i+j+k+l−1
√

2i+j+k+l√
i!j!k!l!

)2

×[α2(i+ j − 1)!(k + l)!(i− j)2 + β2(i+ j)!(k + l − 1)!(l − k)2].
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p(ikjl) = exp[4ω(χ)] [φ(χ)]2(i+j+k+l−1)

2i+j+k+li!j!k!l!
×[α2(i+ j − 1)!(k + l)!(i− j)2 + β2(i+ j)!(k + l − 1)!(l − k)2].

(3.17)

Putting values ω(χ) and φ(χ) in above equation we get

p(ikjl) = [tanhχ]2(i+j+k+l−1)

cosh4 χ(2i+j+k+li!j!k!l!)
×[α2(i+ j − 1)!(k + l)!(i− j)2 + β2(i+ j)!(k + l − 1)!(k − l)2].

(3.18)

Now first taking square root of (3.17) and then dividing (3.15) by it, we find the normalized
state at Babar as

|Φ〉ikjlcH ,cV
=

Πikjl
aHaV bHbV

(U ab
BS|ψ〉abc)√

p(ikjl)

= 1
[α2(i+ j − 1)!(k + l)!(i− j)2 + β2(i+ j)!(k + l − 1)!(l − k)2]

1
2

×[α
√

(i+ j − 1)!(k + l)!(i− j)|k + l, i+ j − 1〉cH ,cV

+β
√

(i+ j)!(k + l − 1)!(l − k)|k + l − 1, i+ j〉cH ,cV ],
(3.19)

where (ikjl) is readout of using ideal detectors.

3.2.4 Effect of Detector Inefficiencies on State at Receiver

Since we cannot have ideal detectors, therefore we use inefficient detectors and find actual
readout (qrst), then quantum state of the remaining mode is of the form

%qrst =
∑
ijkl

P qrstikjl |Φ〉
ikjl
cH ,cV

〈Φ|, (3.20)
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with P qrstikjl , using Bayesian inference in Eq. (1.46), we can write

P qrstikjl = P (ikjl|qrst)

= p(qrst|ikjl)p(ikjl)
p(qrst)

P qrstikjl = p(qrst|ikjl)p(ikjl)∑
i1j1k1l1 p(qrst|i1k1j1l1)p(i1k1j1l1) . (3.21)

As by Eq. (3.18)

p(ikjl) = [tanhχ]2(i+j+k+l−1)

cosh4 χ(2i+j+k+li!j!k!l!)
×[α2(i+ j − 1)!(k + l)!(i− j)2 + β2(i+ j)!(k + l − 1)!(k − l)2].

(3.22)

In order to find out p(i1k1j1l1), we simply put i = i1, k = k1, j = j1, l = l1 in above
equation.

Thus Eq. (3.21) after simplification leads us to the following equation.

P qrstikjl = p(qrst|ikjl)[tanhχ]2(i+j+k+l)

Zqrst × (2i+j+k+li!j!k!l!)
×[α2(i+ j − 1)!(k + l)!(i− j)2 + β2(i+ j)!(k + l − 1)!(l − k)2],

(3.23)

with

Zqrst =
∑

i1j1k1l1

p(qrst|i1k1j1l1)[tanhχ]2(i1+k1+j1+l1).E(i1k1j1l1)

2i1+j1+k1+l1i1!j1!k1!l1! ,

(3.24)

where

E(i1k1j1l1) = [α2(i1 + j1 − 1)!(k1 + l1)!(i1 − j1)2 + β2(i1 + j1)!(k1 + l1 − 1)!(l1 − k1)2].
(3.25)

Now we find quantum fidelity of mixed state %qrst with respect to state |ϕ〉 in following
section.
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3.2.5 Fidelity of Final State at Receiver

We can find overlap of the actual state obtained at Babar with the state |ϕ〉 = α|10〉+β|01〉.
This overlap is known as fidelity(F ) with 0 ≤ F ≤ 1. For F = 0, no overlap, where as for
F = 1, the overlap is maximum. We use following formula

F qrst =
√
〈ϕ|%qrst|ϕ〉

F qrst =
√∑
ijkl

P qrstikjl 〈ϕ|Φ〉
ikjl
cH ,cV 〈Φ|ϕ〉. (3.26)

Lets find out (|Φ〉ikjlcH ,cV
〈Φ|) first.

For simplicity suppose (|Φ〉ikjlcH ,cV
〈Φ|) = |Φ〉〈Φ|. So we have to take outer product of

Eq. (3.19) with it self

|Φ〉〈Φ| = 1
(α2(i+ j − 1)!(k + l)!(i− j)2 + β2(i+ j)!(k + l − 1)!(l − k)2)
×[α2(i+ j − 1)!(k + l)!(i− j)2|k + l, i+ j − 1〉〈k + l, i+ j − 1|
+β2(i+ j)!(k + l − 1)!(l − k)2|k + l − 1, i+ j〉〈k + l − 1, i+ j|

+αβ
√

(i+ j)!(i+ j − 1)!(k + l)!(k + l − 1)!(i− j)(l − k)
×(|k + l, i+ j − 1〉〈k + l − 1, i+ j|+ |k + l − 1, i+ j〉〈k + l, i+ j − 1|)].

(3.27)

Considering

a = α2(i+ j − 1)!(k + l)!(i− j)2, (3.28)
b = β2(i+ j)!(k + l − 1)!(l − k)2, (3.29)

c = αβ
√

(i+ j)!(i+ j − 1)!(k + l)!(k + l − 1)!(i− j)(l − k), (3.30)

d = α2(i+ j − 1)!(k + l)!(i− j)2 + β2(i+ j)!(k + l − 1)!(l − k)2, (3.31)
⇒ d = a+ b. (3.32)

Eq. (3.27) becomes

|Φ〉〈Φ| = 1
d
[a|k + l, i+ j − 1〉〈k + l, i+ j − 1|+ b|k + l − 1, i+ j〉〈k + l − 1, i+ j|

+c(|k + l, i+ j − 1〉〈k + l − 1, i+ j|+ |k + l − 1, i+ j〉〈k + l, i+ j − 1|)].
(3.33)
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Next step is to find out expression for 〈ϕ|Φ〉cH ,cV 〈Φ|ϕ〉 = 〈ϕ|Φ〉〈Φ|ϕ〉

〈ϕ|Φ〉〈Φ|ϕ〉 = (α∗〈10|+ β∗〈01|)

×(1
d
[a|k + l, i+ j − 1〉〈k + l, i+ j − 1|+ b|k + l − 1, i+ j〉〈k + l − 1, i+ j|

+c(|k + l, i+ j − 1〉〈k + l − 1, i+ j|+ |k + l − 1, i+ j〉〈k + l, i+ j − 1|)])
×(α|10〉+ β|01〉). (3.34)

〈ϕ|Φ〉〈Φ|ϕ〉 = 1
d
[aα2δ1,k+lδ0,i+j−1δk+l,1δi+j−1,0 + bα2δ1,k+l−1δ0,i+jδk+l−1,1δi+j,0

+cα2δ1,k+lδ0,i+j−1δk+l−1,1δi+j,0 + cα2δ1,k+l−1δ0,i+jδk+l,1δi+j−1,0

+aαβδ1,k+lδ0,i+j−1δk+l,0δi+j−1,1 + bαβδ1,k+l−1δ0,i+jδk+l−1,0δi+j,1

+cαβδ1,k+lδ0,i+j−1δk+l−1,0δi+j,1 + cαβδ1,k+l−1δ0,i+jδk+l,0δi+j−1,1

+aαβδ0,k+lδ1,i+j−1δk+l,1δi+j−1,0 + bαβδ0,k+l−1δ1,i+jδk+l−1,1δi+j,0

+cαβδ0,k+lδ1,i+j−1δk+l−1,1δi+j,0 + cαβδ0,k+l−1δ1,i+jδk+l,1δi+j−1,0

+aβ2δ0,k+lδ1,i+j−1δk+l,0δi+j−1,1 + bβ2δ0,k+l−1δ1,i+jδk+l−1,0δi+j,1

+cβ2δ0,k+lδ1,i+j−1δk+l−1,0δi+j,1 + cβ2δ0,k+l−1δ1,i+jδk+l,0δi+j−1,1].
(3.35)

Using property of Kronecker delta

δij =
{

1 if i = j
0 otherwise, (3.36)

Consider Kronecker delta δi,1, this means that only at i =1 it gives 1, otherwise delta gives
zero i.e., for any value of ‘i’ except ‘1’. So if we have multiplication of two Kronecker deltas
for instant δi,1δi,2, its multiplication always results into ‘0’, because if Kronecker delta at
i =1 gives ‘1’ then at i =2, definitely gives ‘0’, which implies that δi,1δi,2 = (1)(0) = 0.
Using this property of Kronecker deltas, Eq. (3.35) reduces into following equation. It
should be noted that only underline terms of above equation survives.

〈ϕ|Φ〉〈Φ|ϕ〉 = 1
d
[aα2δ1,k+lδ0,i+j−1δk+l,1δi+j−1,0 + bα2δ1,k+l−1δ0,i+jδk+l−1,1δi+j,0

+cαβδ1,k+lδ0,i+j−1δk+l−1,0δi+j,1 + cαβδ0,k+l−1δ1,i+jδk+l,1δi+j−1,0

+aβ2δ0,k+lδ1,i+j−1δk+l,0δi+j−1,1 + bβ2δ0,k+l−1δ1,i+jδk+l−1,0δi+j,1].



60CHAPTER 3. TELEPORTING AN UNKNOWN QUANTUM STATE USING PRACTICAL LIMITATIONS

Rearranging above equation.

〈ϕ|Φ〉〈Φ|ϕ〉 = 1
d
[aβ2δk+l,0δi+j,2 + bα2δk+l,2δi+j,0 + (aα2 + bβ2 + 2cαβ)δk+l,1δi+j,1].

(3.37)

Putting value of Eq. (3.37) into Eq. (3.26)

F qrst = (
∑
ikjl

P qrstikjl

aβ2

d
δk+l,0δi+j,2 +

∑
ikjl

P qrstikjl

bα2

d
δk+l,2δi+j,0

+
∑
ikjl

P qrstikjl

(aα2 + bβ2 + 2cαβ)
d

δi+j,1δk+l,1)
1
2 .

(3.38)

Now looking at Eq. (3.38), we have three terms with different Kronecker deltas ‘δ’. In fol-
lowing calculation a, b, c and d are the coefficient which we calculated by using Eqs. (3.28),
(3.29), (3.30), and (3.32) respectively.

First term: When i + j = 2 and k + l = 0, then the first term of Eq. (3.38) survived.
Therefore first term gives us

First term = β2(P qrst2000 + P qrst0020). (3.39)

Second term: When i+ j = 0 and k + l = 2, then the second term of Eq. (3.38) survived
. Thus second term gives

Second term = α2(P qrst0200 + P qrst0002). (3.40)

Similarly for
Third term: When i+ j = 1 and k+ l = 1, then the third term of Eq. (3.38) survived.

So third term is given as

Third term = (α2 + β2)2P qrst1100 + (α2 + β2)2P qrst0011 + (α2 − β2)2P qrst1001 + (α2 − β2)2P qrst0110.

Since we know that α2 + β2 = 1, therefore

Third term = P qrst1100 + P qrst0011 + (α2 − β2)2(P qrst1001 + P qrst0110). (3.41)

Finally putting values from Eqs. (3.39), (3.40), and (3.41) into Eq. (3.38)
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F qrst = [β2(P qrst2000 + P qrst0020) + α2(P qrst0200 + P qrst0002) + P qrst1100 + P qrst0011

+(α2 − β2)2(P qrst1001 + P qrst0110)]
1
2 . (3.42)

We are going to use Eq. (3.23) to find out different P qrstikjl ,
Therefore

P qrst2000 + P qrst0020 = α2[tanh4 χ]
2× Zqrst (p(qrst|2000) + p(qrst|0020)), (3.43)

P qrst0200 + P qrst0002 = β2[tanh4 χ]
2× Zqrst (p(qrst|0200) + p(qrst|0002)), (3.44)

P qrst1100 + P qrst0011 = [tanh4 χ]
4× Zqrst (p(qrst|1100) + p(qrst|0011)), (3.45)

P qrst0110 + P qrst1001 = [tanh4 χ]
4× Zqrst (p(qrst|0110) + p(qrst|1001)). (3.46)

Thus Eq. (3.42) becomes

F qrst = [ tanh4 χ

2× Zqrst {α
2β2(p(qrst|2000) + p(qrst|0020) + p(qrst|0200) + p(qrst|0002)

+1
2(p(qrst|1100) + p(qrst|0011) + (α2 − β2)2(p(qrst|1001) + p(qrst|0110)}]

1
2
.

(3.47)

It should be noted that p(qrst|ikjl) are conditional probabilities of detecting photons
by four threshold detectors and value of ‘Zqrst’ is given by Eq. (3.24). Since all four
detectors used in our theory of Bell state measurement are independent of each other, so
p(qrst|ikjl) can be written as

p(qrst|ikjl) = p(q|i)p(r|k)p(s|j)p(t|l). (3.48)

Conditional probabilities p(q|i), are given by Eq. (2.81) if q = 0 and Eq. (2.82) for q 6= 0.
We use Eq. (3.47) to evaluate fidelity and present our results in the next chapter.
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Chapter 4

Discussion of Results

We have developed a mathematical formalism for practical quantum teleportation in chap-
ter 3 using non perturbative approach. We derived an equation for fidelity (It is the over-
lap or inner product of teleported mixed state and the state we want to teleport) given in
Eq. (3.47), which shows the dependence of fidelity on different practical parameters like
photon pair generation rate of source (χ), detectors efficiency (η) and dark counts proba-
bility (℘dc). In ideal scenario where the channel loss and all other losses are zero, then the
fidelity will be equal to 1 because in this case the teleported state and the initial state we
want to teleport will be exactly same. Thus the according to quantum mechanics the the
inner product of any normalized state with itself yield one. Since we used entangled pho-
tons as a quantum channel, which were shared between Aalia and Babar before teleporting
an unknown quantum state. Therefore maximum the correlation between entangled pho-
tons, higher is the probability of teleporting unknown quantum state, means that if we
draw fidelity versus photon pair generation rate χ, then fidelity must be maximum in the
region of χ, where entangled state is generated with very low probability of having higher
order terms. It should be noted that to have maximum success of teleportation, Babar
must have the photon which is entangled with Aalia’s photon. Furthermore for higher
values of χ, where our source generated higher order entangled states, the fidelity must
decreases because in case, if two or more entangled photon pairs were generated in spatial
modes i.e., ‘b’, ‘c’ and ‘e’, ‘f ’, in which photons in modes ‘b’ and ‘e’ were in Aalia’s lab
and ‘c’ and ‘f ’ were in Babar’s lab, then we don’t know for sure that which particle of
entangled photon pair were passes through beam splitter with unknown quantum state
in Bell state analyzer. Suppose that photon in mode ‘b’ and unknown quantum state
in Aalia’s lab are detected through Bell state analyzer. Since Babar has two photons in
mode ‘c’ and ‘f ’, if Babar measures photon in mode ‘c’, then teleportation is successful but

63
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if he measures photon in mode ‘f ’, teleportation fails because photons in spatial modes
‘b’ and ‘f ’ were not entangled and we know that entanglement is the unique feature by
which teleportation is possible. So for two multi pair there is half probability of success
of teleportation, therefore higher the multi pair contribution the lower will be the success
probability of teleportation. We present our results of effect of various parameters on
fidelity in Sec. 4.1. In Sec. 4.2 we compare the fidelity obtained by our model with a a
recently performed experiment [8] of quantum teleportation and find close agreement with
it.

4.1 Variation of Fidelity with Various Parameters

We present our simulation of fidelity and effect of varying experimental parameters on
fidelity. The source brightness or efficiency has most profound effect on fidelity. It is
important to note that by increasing value of χ, the entangled photon pair generation rate,
thus increase generation of entangled photon pairs and thus decreasing the probability of
success of quantum teleportation, leads to low fidelity value of teleported state. Also dark
counts are the fictitious photons, so some time instead of original photons, detectors detects
these fictitious photons, thus leads to decreasing the success of quantum teleportation. So
by increasing dark counts probability fidelity must decreases. Finally to achieve quantum
teleportation with higher success, photon detectors must be highly efficient. So in our
case fidelity of quantum state must increase with increasing efficiency of detectors. We
present in this chapter, different graphs of fidelity versus photon pair production rate
keeping one practical parameter constant between detector efficiency (η) and dark counts
probability (℘dc) and vary the second one. Putting values from Eqs. (2.81) and (2.82)
into above Eq. (3.48) to find out values of different p(qrst|ikjl). Then using these values
obtained from Eq. (3.48) together with Eq. (3.24) in Eq. (3.47) to find out fidelity of
teleported quantum state in terms of detectors efficiency (η), dark count probability (℘dc)
and entangled photon pair production probability (χ).

Figs. 4.1-4.8 reveal the behavior of the fidelity as a function of the photon-pair pro-
duction rate χ for varying detector efficiencies and dark-count probabilities.

Fig. 4.1 shows that fidelity of telported quantum state with respect to state |ϕ〉 = |±〉
versus photon pair production rate (χ) for different values of detector efficiencies and
fixed dark count probability ℘dc = 1 × 10−6. Which shows that fidelity first increases
and then decreases with increasing pair production rate (χ). Also fidelity at small value
of χ, increases prominently for increasing value of detectors efficiency. At higher values
of pair production rate, the fidelity has approximately same values for different detectors
efficiencies because at this range the effect of higher order pair production of entangled
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Figure 4.1: Fidelity F versus the photon-pair production rate for different detector effi-
ciencies η for (a) Small values of χ and (b) Large values of χ. The dark-count probability
is ℘dc = 1 × 10−6 and α = 0.707, β = 0.707. The function F is plotted for six different
detectors efficiency values: η =0.025, 0.05, 0.1, 0.2, 0.3, 0.4, corresponding, respectively,
to the curves of lowest to highest fidelity.

photons dominated all other factors.
Fig. 4.2 shows that fidelity of telported quantum state with respect to state |ϕ〉 = |0〉

versus photon pair production rate (χ) for different values of dark count probability ℘dc
and fixed detector efficiency η = 0.2, which shows that fidelity first increases and then
decreases with increasing pair production rate (χ). In addition, fidelity at small value of
χ, decreased prominently for increasing value of dark counts probabilities. This is because
with high dark count probability most of the detected events are of dark counts. At higher
values of pair production rate, the fidelity has approximately same values for different
detectors efficiencies because at this range the effect of higher order pair production of
entangled photons dominated all other factors.

Figs. 4.3 and 4.4 represents the behavior of fidelity of teleported state |ϕ〉 = 1√
2(|0〉+

|1〉), with α = β = 0.707. In Fig. 4.3 and Fig. 4.4, we plot fidelity against photons pair
production rate (χ) with fixed value of detector efficiency η = 0.1 and η = 0.3 , and
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Figure 4.2: Fidelity F versus the photon-pair production rate χ for various detector dark-
count probabilities and the fixed efficiency η = 0.2 and α = 1, β = 0. Plots of the function
F are shown for five different dark-count probabilities of detector: ℘dc = 1 × 10−2, 1 ×
10−3, 1 × 10−4, 1 × 10−5, 1 × 10−6, corresponding, respectively, to the curves of lowest to
highest Fidelity .
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Figure 4.3: Fidelity F versus the photon-pair production rate χ for various detector dark-
count probabilities and the fixed efficiency η = 0.1 and α = 0.707, β = 0.707. Plots
of the function F are shown for five different detector dark-count probabilities: ℘dc =
1× 10−2, 1× 10−3, 1× 10−4, 1× 10−5, 1× 10−6, corresponding, respectively, to the curves
of lowest to highest Fidelity .
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Figure 4.4: Fidelity F versus the photon-pair production rate χ for various detector dark-
count probabilities and the fixed efficiency η = 0.3 and α = 0.707, β = 0.707. Plots
of the function F are shown for five different detector dark-count probabilities: ℘dc =
1× 10−2, 1× 10−3, 1× 10−4, 1× 10−5, 1× 10−6, corresponding, respectively, to the curves
of lowest to highest Fidelity .
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Figure 4.5: Fidelity F versus the photon-pair production rate for various detector efficien-
cies η and the fixed dark-count probability ℘dc = 1 × 10−6 and α = 0.0, β = 1.0. The
function F is plotted for seven different detectors efficiency values: η =0.025, 0.05, 0.1,
0.2, 0.3, 0.4, 0.5 corresponding, respectively, to the curves of lowest to highest fidelity.

different dark counts probabilities respectively. In Fig. 4.5 we draw fidelity of same state
used in Figs. 4.3 and 4.4 with constant dark counts probability ℘dc = 1×10−6 and varying
photon detectors efficiencies against photon pair production rate (χ).

It should be noted from Figs. 4.1 and 4.5 that we can teleport both quantum state
|ϕ〉 = |0〉 and |ϕ〉 = 1√

2(|0〉 + |1〉) with equal fidelity. So for both quantum states we got
round about 82 % fidelity using detector efficienciy (η = 0.2) and dark counts probability
(℘dc = 1× 10−6).

Figs. 4.7 and 4.8 shows that for increasing dark counts probability ℘dc, no matter how
efficient our detectors were, the telportation scheme fails because for higher dark counts
probability, the fidelity we got in Fig. 4.8 is far less than the classical limit 0.66 [34].
Therefore to perform quantum teleportation process with high success probability, we
have to keep the dark counts probability less than approximately 1× 10−4.
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Figure 4.6: Fidelity F versus the photon-pair production rate χ for various detector dark-
count probabilities for (a) Small values of χ and (b) Large values of χ. The detector
efficiency is η = 0.1 and α = 0.707, β = 0.707. Plots of the function F are shown for five
different detector dark-count probabilities: ℘dc = 1×10−2, 1×10−3, 1×10−4, 1×10−5, 1×
10−8, 1× 10−10, corresponding, respectively, to the curves of lowest to highest Fidelity .
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Figure 4.7: Fidelity F versus the photon-pair production rate for various detector efficien-
cies η and the fixed dark-count probability ℘dc = 1× 10−5 and α = 0.707, β = 0.707. The
function F is plotted for seven different detectors efficiency values: η =0.025, 0.05, 0.1,
0.2, 0.3, 0.4, 0.5 corresponding, respectively, to the curves of lowest to highest fidelity.
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cies η and the fixed dark-count probability ℘dc = 1× 10−3 and α = 0.707, β = 0.707. The
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4.2 Applying Our Model to a Quantum Teleportation Ex-
periment:

In order to test the validity of our theory of quantum teleportation with experimental
quantum teleportation, we have to use the same values of practical parameter such as
photon pair production rate, χ, detectors efficiency η and dark counts as used in exper-
iment. It is important to note that in our theory transmission efficiency is included in
detection efficiency.

We compare the predictions of our theory with a recent experiment of quantum tele-
portation using polarization property of photons [8], in which all required parameters
related to dark counts, photon pair production rate and loss of transmission as well as
detectors, are given explicitly. The conditions of this experiment are given by approxi-
mate values: detectors efficiency η ≈ 0.236, transmission line has loss coefficient 45 dB,
χ ≈
√

0.1 ≈ 0.316 and dark counts 200s−1. Fig. 4.9 demonstrate, our numerical simulation
result of fidelity using parameters, used in experimental quantum teleportation paper [8].
In our case the average fidelity amounts to be 82%, where the average fidelity obtained by
experiment is 81.35% with ±1 standard deviation.

Fig. 4.9 shows the behavior of the fidelity as a function of the square root of the
photon-pair production rate χ for detector efficiencies and dark-count probabilities chosen
as according to experiment [8]. It is interesting to observe that the photon-pair production
rate of the PDC sources used in this experiment, χ ≈ 0.316, lies far beyond its optimal
value. The small difference in both average fidelities, we believe is that the detectors
inefficiency and multi-photon pair production are not the only practical limitation that
effect the fidelity. Other limitations includes the imperfect entanglement generated by
source, even in the scenario where only one single pair is created.

We now want to check the main limiting parameter in our teleportation theory, there-
fore we plot fidelity against square root of photon pair production rate χ, for fixed and
small value of dark counts probability ℘dc = 0.6×10−10 and different detectors efficiencies
as shown in Fig. 4.11. From Fig. 4.11 it is clear that above the classical limit, fidelity does
not change prominently with changing detectors efficiencies. It should be noted that there
is region for some small value of χ, shows that we can achieve unit fidelity irrespective
of detectors efficiencies. Fig. 4.10, shows how fidelity varies for fixed ℘dc and different
detectors efficiencies in region of very small values of χ.



74 CHAPTER 4. DISCUSSION OF RESULTS
Fi
de

lit
y

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

(α=0,β=1)
(α=β=0.707)
(α=1,β=0)

χ

.. .=81.35%

=82%
.Experimental

value

Theoretical
value

χ

Figure 4.9: Fidelity F versus the square root of photon-pair production rate with fixed
dark-count probability ℘dc = 0.6×10−10 and same detectors efficiency value: η = 0.7463×
10−5 includes transmission losses, for different initial quantum states: |0〉, |±〉, and |1〉
corresponding, respectively, to the curves of lowest to highest fidelity. We obtained average
fidelity 82%.
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Figure 4.10: Plot of fidelity F against the photon-pair production rate χ for the fixed
dark-count probability ℘dc = 0.6 × 10−10 and different detectors efficiency value: η =
0.025, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, for quantum states: |±〉, having α = β = 0.707 corre-
sponding, respectively, to the curves of lowest to highest fidelity.
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Figure 4.11: Plot of fidelity F against the photon-pair production rate for χ the fixed
dark-count probability ℘dc = 0.6 × 10−10 and different detectors efficiency value: η =
0.025, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, for quantum states: |±〉, having α = β = 0.707 corre-
sponding, respectively, to the curves of lowest to highest fidelity.



Chapter 5

Conclusion

5.1 Sources and Detectors

In this dissertation we studied perfect sources of generation of entangled photons pair as
well as ideal detectors for detecting these photons. In addition, in our theory we focused on
non-ideal sources and photons detectors because technological it is impossible to produce
a single entangle photon pair on demand and to detect single photons. We used PDC
source to produce entangled photon pair which are completely probabilistic in nature.
This probabilistic nature or randomness of production of entangled photon pair is shown
in Eq. (2.15) by vacuum part as

Z(γ) = |vac〉+ iγ

2 |1010〉, γ ∈ R. (5.1)

which, shows that when laser pulse is allowed to pass through a BBO crystal, it well either
be converted into entangled photon pair or pass without converting into entangle pair.
Thus the vacuum component in above equation shows that there is maximum possibility
that PDC will not take place. It should be noted that the rate of generation of entangled
photon pair is proportional to nonlinearity χ(2) of the crystal, the interaction time and the
strength of the pump laser. Now to over come the problem of randomness of generation
of entangled photon pair we can either use crystal with high nonlinearity χ(2) or stronger
laser pump pulses. But by doing so we come across with a consequence of generation of
multi-pairs of entangled photons, which must be avoided as far as possible because such
events effects the experiments. It should be kept in mind that we cannot exclude the
probability of multi pair emission. On the other hand if we take crystal with small value
of nonlinearity χ(2), gives strong component of vacuum which show that most of time PDC
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did not happened. So taking crystal either with larger or small value of nonlinearity χ(2)

will effect experiment.
Then we discuss the theoretical model of different detectors. In our theory we have

used detectors which click when there is at least one photon and do not click if there is
no photon present in the incoming mode. These detectors do not differentiate between
one photon or more. Such detectors are called threshold detectors. We also discussed
the model of photon number discriminating detectors which can effectively differentiate
between one photon and more. Then for both type of detectors we calculated conditional
probabilities of detecting photons.

5.2 Practical Quantum Teleportation

We have developed the theory of practical quantum teleportation. We have first calculated
the quantum state produced by SPDC TYPE-II source given in Eq. (2.35). Then we find
out the quantum state of teleported photon. Using ideal photon number discriminating
detectors we find out hypothetical probability given in Eq. (3.18). Taking advantage
of Bayesian inference we then calculate the probability of detecting photons for faulty
detectors. At last we have calculated fidelity, a very important property of quantum
states which shows how much two quantum state are similar, in terms of nonlinearity,
χ(2), of BBO crystal, detectors efficiency η and dark counts probability ℘dc. We then
show the variation of fidelity with the photon pair production rate, χ, while fixing either
dark counts, ℘dc, and varying detectors efficiency, η, or vise versa. Our theory gives
very good results, which tells us that fidelity increases when we increase the efficiency η
of detectors while keeping dark counts probability constant. On the other hand fidelity
decreases when we increase the probability of dark counts ℘dc while keeping the detector
efficiency η fixed. Also by increasing photon pair production rate χ, fidelity first increasing
and then decreasing as shown in Figs. 4.1-4.11. This dependence is due to that for small
value of χ the probability of photon pair generation is small and thus fidelity obtained is
small because we do not have entangled photon pair due to vacuum component, but as
soon χ reached certain value which generate entangled photon pair with very less multi
pair photons generation our fidelity reaches certain maximum value which is far greater
than classical value 0.66 [34]. A very valuable conclusion we get from our investigation
that the high photon pair production rate is counterproductive. If we exceed value of χ,
after certain value of χ = 6 × 10−2, fidelity starts decreasing After further increasing χ
the fidelity decreased because of the events due multi pair photon generation.

We test our theory against experimental quantum teleortation [8], i.e., using same
practical parameters given in [8], we obtained average fidelity of 82%. Our calculated
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fidelity is in good agreement with the experimental value. Thus our model fits very well
to the real world experimental conditions. Our model can be used to predict the optimal
parameters for the resources used to get the desired fidelity.
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