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Abstract

When a re-entry vehicle enters the earth’s atmosphere with speed greater than that of sound
a plasma sheath cover the re-entry vehicle which causes communication blackout by either
reflecting or absorbing the electromagnetic waves coming to or from the vehicle. In order to
lessen this blackout region it important to know then characteristics of the plasma sheath region.
Due to shear flow of the plasma sheath, instability within the low-frequency ion acoustic waves
take place. As re-entry vehicle enters the earth’s atmosphere collision of charged particles with
neutrals start to increases. In this thesis the effect of collisions on the growth rate of instability
has been studied. It was observed, that by increasing collision growth rate of the instability
decreases to a point where the instability is completely damped.
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Chapter 1

Introduction

1.1 How can we define Plasma?

In ordinary conditions, the matter presents itself in three fundamental states: solid, liquid and
gas, which are characterized by different level of bonding between them. In general, a phase
transition occur if we increase the temperature (i.e. the average kinetic energy of the molecules)
, by further increasing the temperature the collisional rate and the degree of ionization of the
gas also increases. The ionized gas could then become plasma, if conditions for density, tem-
perature, and characteristic length are met. Plasma is defined as,

“A plasma is a quasineutral gas of charged and neutral particles which exhibits collective
behavior.”[5]

Quasi-neutrality

The term ‘quasi-neutrality’, is just a mathematical way of saying that charge densities of free
electrons and ions cancel each other in equilibrium. So if the number density of electron and
ions is ne and ni respectively with charge state Z then

ne ≈ Zni.

It means that in the absence of extrinsic disturbance, the plasma as a whole is neutral, but
within plasma there are some places where discrepancies within the number densities of the
charge particles takes place.

Collective behavior

The term ‘collective behavior ‘ shows that motions within plasma not only depend on the
local conditions but also on the state of plasma in far regions. Consider the case of air which
consists of neutral molecules, the force of gravity acting on the air is so less that it can be
neglected. The molecules will move undisturbed unless its collision with another molecule
takes place. These collisions control the particle’s motion within plasma. When a macroscopic
force such as sound waves generated from a loudspeaker is applied to the neutral gas, it will be
transmitted to an individual atom through collisions. But in the case of plasma, the situation
is completely different, as plasma contains charge particles they will move around and create
a local concentration of negative and positive charges, which in turn gives rise to an electric
field. As these charges move around current within the plasma is generated and a magnetic
field is formed. These fields also affect the motion of other charged particles which are present
far away. [7]
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1.2 Debye shielding/Debye length

This property of plasma provides the measure of distance, over which the electric field of a
single particle, is felt by other charged particles present in plasma. If there is an electrostatic
field present within the plasma than the charged particles will arrange themselves in such a
way to shield out the potential. The distance over which the shielding occurs is of the order of
debye length, written as

λDe =

√
ε0KBTe
e2ne

,

where Te is the temperature of electron , and ne is the number density of electron.A debye
sphere is a volume over which the field of the charged particle is felt by other charged particles,
it is also known as the sphere of influence, outside the debye sphere the charged particles are
electrically screened. Debye sphere has a radius of debye length, and each charge within the
debye sphere interact collectively with charges that lie inside the debye sphere. ND represents
the number of electrons that lie inside the debye sphere, given by

ND =
4

3

π

n
1
2
e

(
ε0KBTe
e2

) 3
2

.

1.3 Criterion for Plasma

As we have already described the Debye length and plasma oscillations. We can specify the
criterion which must be satisfied by an ionized gas for it to have a plasma nature.[16]

1. The first criterion of the plasma is that the physical length "L" of the plasma should be
greater than its Debye length λD,

λD << L.

If the above condition is violated then there will not be enough space for collective shield-
ing effect to take place.

2. Due to its collective behavior, shielding effect inside the Debye sphere having radius λD
within plasma takes place. The number of particles within the Debye sphere is,

ND =
4π

3
neλD

3,

where the plasma parameter is defined as neλD
3 = Λ, and from here the second criterion

for plasma arises, which states that the average distance between electrons must be very
small compared to the debye length i.e.

Λ >>> 1.

3. Partially ionized plasmas e.g, the earth’s ionosphere has a considerable amount of neutral
particles. If there are too many collisions of the charged particles with the neutral particles
then the electrons will be compelled to form an equilibrium with the neutrals. Hence the
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ionized medium will not behave as plasma but instead will form an electrically conducting
neutral gas. In order to make sure that the electrons are not affected by the neutral
particles, the following condition is needed to be met,

ωτen > 1,

where ω is the plasma frequency, and τen is the mean time between the collision of electrons
with the neutrals.

1.4 Plasma in nature

Having a quantity of more than 99% in the universe, plasma is said to be the most abundant
state of matter. But within the earth’s atmosphere, the quantity of plasma is very less. The
few examples in our daily life, to which plasmas are limited to, are the soft glow of Aurora
Borealis, the ionization in a rocket exhaust, the gas inside neon signs or fluorescent tubes and,
the flash of a lightning bolt. Outside the earth’s atmosphere, we can find plasma in solar winds,
Van Allen radiation belts, magnetosphere, etc [11]

1.4.1 Solar wind

The solar wind is very conducting plasma which is produced by the sun. It travels at a speed of
about 500km/s between the spaces of the planets and is formed due to the supersonic expansion
of the aura of plasma surrounding the sun. The solar wind mostly consist of electrons and
protons with upto 5% of helium also present in them. When the solar wind hits the earth’s
magnetic field, it is deflected around it. As it strikes the earth’s magnetic field with a speed
greater than that of sound a bow shock is created, which causes conversion of some of the
particles kinetic energy into thermal energy. Behind the bow shock, another region of plasma
exists called the magnetosheath region. The density and temperature of the magnetosheath
region are higher than the solar wind plasma.[1]

Figure 1.1: Topography of the solar-terrestrial environment
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1.4.2 Magnetosphere

A magnetosphere is formed when solar wind interact with the earth’s magnetic field. The
separation between the shocked solar wind and the magnetosphere is known as Magnetopause.
The magnetosphere is stretched in a direction opposite to the sun, in such a way that a tail
is formed known as Magnetotail. The stretching of the magnetosphere is caused due to solar
wind’s kinetic pressure, due to which the front side of the magnetosphere is compressed while
the backside is stretched.

Magnetosphere’s plasma mostly have electrons and protons present in it. Due to the solar
winds, He++ ions are also present. In addition to this, due to the terrestrial ionosphere, mag-
netosphere also has a fraction of He+ and O+ ions.The plasma of magnetosphere not evenly
distributed but consists of the different region each of which has different plasma temperature
and density.[31]

1.4.3 Ionosphere

The interaction of the earth’s atmosphere with solar UV light causes ionization of some of the
neutral particles which are present there. Collisions which takes place at a height of 80km are
very less due to which the ionized particles will not recombine, hence an ionized region known
as Ionosphere is formed. Electron density at the mid-latitude of the ionosphere is ne ≈ 105cm−3

and the temperature is Te ≈ 103K.
At high altitudes the electrons from plasma sheet region move in the direction of the earth’s

terrestrial magnetic field lines, and down to the altitude of the ionosphere, where they collide
with the neutral atmosphere and ionizes them, as a result, photons are emitted and these emit-
ted photons form the aurora which are also known as the polar lights.[15]

1.5 Collisional frequency and mean free path

Based on collision, plasma can be of two types collisional or collisionless. In collision less
plasma the collisions are infrequent compared to the particle dynamics hence they can be
neglected, whereas in the case of collisional plasma collisions are so frequent that they dominate
the behavior of the plasma. Collisional plasma can further be classified into two types, partially
ionized or fully ionized plasma.[13]

• Partially-ionized plasma consists of charged particles along with a large number of neu-
tral particles. In partially-ionized plasma, most of the collisions that take place, are
between the charged and the neutral particles, which affect the motion of the charged
particles within the plasma. The number of collision per second is known as the collisional
frequency. Where ναn is the collisional frequency and is written as

ναn = N0nVTασαn,

Where N0n is the equilibrium number density of the neutrals, VTα is the average thermal
speed of the charged particle, and σαn is the crossection of the given event.

The particles are considered to move freely between collisions and distance traveled by
the particles between collisions is known as the free path. When the distance traveled by
the particles between collisions changes in a statistical manner then mean of the distance
traveled by the particles is known as mean free path. The formula for the mean free path
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is

λn =
VTα
ναn

=
1

N0nσαn

• In fully-ionized plasma all the atoms or molecules within the plasma are ionized. In this,
the charged particles interact with each other through their Columb electric fields. These
fields cause deflection of the particles at an interparticle distance, that is much larger than
the atom’s radius. Hence the crossection of the colliding particles is increased through
Columb’s collisions.

1.6 Waves in Plasma

A wave is propagation with periodic motion characterized by, wavelength λ, wave number k,
angular frequency ω and amplitude A. The phase velocity vph = ω

k
characterizes motion of

wave crests, and the group velocity vg = dω
dk

gives the speed at which the full wave package
can propagate. The waves in plasma are an interconnected set of particles and fields that
spread periodically throughout the plasma. Waves in plasma can either be electrostatic or
electromagnetic depending on the presence of an oscillating magnetic field. The electrostatic
waves are purely longitudinal whereas the electromagnetic must have a transverse component
but they may also have a longitudinal component. Further classification of the plasma waves is
due to the oscillating species. The modes of propagation of the oscillating species are classified
by whether they moving ,perpendicular, parallel, or or at and angle to the stationary magnetic
field or if their propagation is in the absence of magnetic field[5] [1]
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Figure 1.2: Waves in Plasma

1.6.1 Plasma oscillations

In a quasineutral plasma, an electric field is build up when an electron is moved away from
its equilibrium position. The electric field’s direction will be such that it will pull the electron
back to its original position to restore the plasma neutrality. When an electric field acts on
electrons, pulling them back to their original position, the inertia of electrons will cause them
to overshoot and move to and fro, oscillating about their position of equilibrium at a frequency
known as the plasma frequency. The ion being massive in size do not have time to respond to
the oscillating electric field due to which they appear fixed at the background. The electron
plasma frequency is given as[2]

ωpe =

(
n0e

2

meε0

)2

,

where n0 is the equilibrium density, and ε0 is the permittivity in free space.

1.6.2 Electromagnetic waves in an unmagnetized plasma

The dispersion relation for na Electromagnetic wave traveling through plasma in the absence
of magnetic field can be written as [27]

ω2 = ω2
pe + k2c2, (1.1)
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where c is the speed of light in vacuum, having value c = 1√
µ0ε0

.

Figure 1.3: Dispersion relation for electromagnetic waves unmagnetized plasma

The fig. 1.3 shows a graph of the dispersion relation for electromagnetic waves in plasma.
For a small wavenumber, the group velocity approaches to zero and plasma oscillations take
place, whereas for a large wave number both the group velocity and phase velocity converges
towards the speed of light. For frequency of waves which are larger than the plasma frequencies
we get light waves a from eq. (1.1) ω = kc, the index of refraction for such waves in this case
will be n = c

vph
= ck

ω
. The index of refraction of a wave having frequency smaller than the

plasma frequency is

n =

(
1−

ω2
p

ω2

) 1
2

.

The waves will propagate through the medium if n2 > 0, hence electromagnetic waves can exist
only if ω > ωpe. When ω < ωpe an imaginary refractive index occurs, such waves would not
propagate through the medium but they will decay.
Electromagnetic waves can be used in plasma diagnostics in space or ionosphere. We can
determine the density of the plasma by sending radio signals to another satellite and detecting
the radio wave coming back from them. As plasma absorbs the incident electromagnetic wave
when its frequency is equal to that of the plasma frequency , hence if we know frequency of the
absorbed wave we can determine the density in the medium.

1.7 Instabilities in Plasma

A Maxwellian distribution is used for the particles in plasma when it is in thermodynamic equi-
librium. When plasma deviates from its thermodynamic equilibrium condition, a free source
of energy is given to the particles, which under certain conditions gives rise to plasma instabil-
ities. Such a deviation can take place both inhomogeneous plasma and homogeneous plasma
systems. In a homogeneous plasma system, the deviation from thermodynamic equilibrium
occurs in velocity space. One of the examples of instabilities which occur due to deviation in
velocity space is the ion-acoustic instability.[28]
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Figure 1.4: Different non equilibrium configurations

The fig. 1.4 shows a simple mechanical analog of how a sphere which is situated in an
external potential field can find itself in different stable and unstable situations.

• In stable equilibrium,the sphere lies at the lowest point inside the potential trough, and
oscillate around its equilibrium position. In the presence of friction, these oscillations will
be damped out and the sphere will come to rest at the bottom of the potential trough.

• In the case of linear instability, a slight linear distortion will let it roll down the hill,
following unstable case sets in spontaneously.

• In the metastable state, the sphere lies on the top of a hill’s plateau and wander around,
until it reaches a point from where it rolls down the plateau.

• In nonlinear instability the sphere is stable for a small amplitude of disturbance, but for
the case of large amplitudes, it becomes unstable.

In the case of plasma, the potential trough/well corresponds to a free energy source, while the
heavy sphere in the potential well corresponds to a wave mode, mostly which are the Eigen-
modes of plasma. A plasma is said to be in a state of stable thermodynamic equilibrium if it
has a Maxwellian velocity distribution and is homogeneous in space. If plasma is not in a state
of thermodynamic equilibrium it means that it has some amount of free energy stored in it,
which can be converted into radiation or violent motion of the plasma. In the case of plasma,
such processes collectively take place. A plasma can move away from its thermodynamic equi-
librium in two ways, first is having velocity distribution other than Maxwellian and the second
one is localization in space with a locally higher or lower temperature, pressure density, or other
thermodynamic quantity.[18]

The dispersion relation is a complex equation and has several solutions, ω = ωr + iγ. For
complex frequency, the behavior of the wave’s amplitude depends on the sign of imaginary part
γ of the frequency. For
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• γ < 0, the real part of the frequency decreases exponentially with time and is damped
out.

• γ > 0, the amplitude of the wave grows with time.

Shear flow instability

When there is a local variation of the velocity vector in a given direction, the fluid flow is called
shear flow. For example, when the fluid is moving along the x-direction and the magnitude
of the fluid velocity is changing along the y-direction, then we can say that the velocity is
shear in the fluid flow[30]. The sketch of this simple linear shear flow is given in fig. 1.5.The
mathematical expression for the velocity components (vx, vy, vz) of shear flow given in the fig. 1.5
can be written as

vx(y) = Cy, with vy = vz = 0.

Where C is the slope of the profile, it is also called the constant gradient of the velocity.

Figure 1.5: A picture of simple shear flow. The fluid is moving along x-direction and velocity
is linearly changing with y

The instability which is caused due to a change in the velocity profile of the plasma which
takes place due to is called Shear flow instability [33], where the change in velocity profile can
occur due to turbulence within Plasma.

1.8 Different theoretical approaches to study the behav-

ior of Plasma

We can describe the dynamics of the plasma by its interaction with external electric and
magnetic fields. When the charged particles move within plasma they create a local charge
concentration, which give rise to internal electric field. Electric current will be generated
by the motion of these particles which also causes internal magnetic fields to be generated.
The response of these internal fields to the motion of particles in plasma and external fields
makes the study of plasma very difficult. Also, plasma shows different characteristics such that
their densities, temperature, and degree of ionization can change. The effect of collisions and
electromagnetic forces also has great importance in the study of plasma dynamics. Hence to
study different behaviors of plasma, different plasma models are used.[12]
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1.8.1 Single particle approach

When an electric or magnetic field is applied to a plasma it affects the motion of the particles.
To describe the motion of a single particle, when it comes under the influence of such fields, the
single-particle approach is used. While describing the motion using single-particle approach
the collective behavior of plasma is neglected. This approach is useful in the study of very-
low-density plasma e.g. while studying the energetic particles or the cosmic rays in Van Allen
radiation belts.

1.8.2 Plasma as a fluid

As plasma consists of a large number of particles where each particle follows a complicated
path, therefore it becomes nearly impossible to deal with each particle separately and observe
the behavior of plasma. Therefore to study the behavior of plasma we use other models like,

Magnetohydrodynamics model (MHD)

The study of electrically conducting fluids is known as Magnetohydrodynamics (MHD). In this
approach, plasma is taken as a single conducting fluid. It is used to describe equilibrium and
Large-scale stability of the magnetized plasma. Drawback of this approach is that the macro-
scopic properties of each specie within the plasma, such as velocity, density and temperature
will be lost, while taking an average of these properties into account. In order to study plasma
behavior using the Magnetohydrodynamic (MHD) model, we use the hydrodynamic equations
coupled with Maxwell’s equations.

Multi-fluid model

In this model, each species of the plasma is treated as a separate fluid element. Advantage of
the multi-fluid model over the MHD is that different behavior of different species within the
plasma can be taken into account. For example at the same spatial point within the plasma
different plasma components can have different velocity, temperature, and pressure.

1.8.3 Kinetic Theory of Plasma

While using the fluid model approach the information regarding the velocity distribution of
the particle is lost, as the fluid variables are function of position and time only. Any physical
properties of the plasma that depend on this microscopic detail can be discovered only by
a description in six-dimensional (r,v) space. Thus, instead of starting with the density of
particles n(r, t) at position r and time t, we begin with the so-called distribution function,
f(r,v, t). The evolution of the distribution function is described by the kinetic theory.∫

f(r,v, t)dv = n(r, t)

1.9 Shear flow instability in a partially ionized plasma

sheath around a re-entry vehicle

Before describing the problem it is important to know about some of the terms, which will be
used during discussion,
Shock-wave
When the speed of the source is equal to that of the sound it produces, the sound waves it
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produces will pileup at a single point in front of the source. Now when the speed of source is
greater than the sound it produces, no wave will be produced in front of it but will pile up
behind and will be confined to a cone known as the shock wave cone.
Mach number
The ratio of speed of aircraft to the speed of sound in gas is known as mach number.
Wake region
This region exists behind the re-entry vehicle. In this region, the recombination of electron-ion
takes place at a significant rate.[22]

The spacecraft re-entering the Earths atmosphere is traveling very much faster than the
speed of sound and is said to be hypersonic. The typical re-entering speed at the lower orbit
of the earth is near 175000 mph having Mach number nearly 25. As the spacecraft enters
the earth’s atmosphere hyper-sonic speed, it possesses a large amount of potential and kinetic
energy. The collision of the gas atoms and molecules with the surface of the vehicle causes a
shock wave to be produced infront of the vehicle, this shock-wave causes the air around the
vehicle to be compressed and heated. This heat increases the air temperature between the
surface of the vehicle and the shock wave . Temperature is sufficient to ionize air around the
vehicle and as the density of air is less in the upper atmosphere, the formation of plasma around
the vehicle takes place. The plasma which envelops the re-entry vehicle is called plasma sheath
[10]. While studying the plasma sheath we consider following four categories. [19].

• The basic physics i.e. study of ionization and recombination process which takes place
during the formation of plasma sheath.

• Calculating how the plasma sheath is flowing, which includes the constituents and geom-
etry of the plasma sheath and wake region.

• Analyzing the interactions between the fields and the plasma sheath.

• Interpreting the radar performance and changes in the data telemetry due to the plasma
sheath.

1.9.1 Interaction of electromagnetic wave with plasma sheath

Plasma as a whole is quasi-neutral i.e., it has an equal number of positive ions and free elec-
trons together with several neutral particles. An average equilibrium separation is maintained
between the charged particles due to an electrostatic field present between them. If one of the
charged particles is kept constant and other is moved from its equilibrium, it will move to and
fro about the equilibrium position.[21] The movement of the particle is similar to a mass-spring
system, where the particle displaced is similar to the mass attached to the spring and electro-
static restoring force of the neighboring charged particle is the spring, and collision with the
neutral particle constitutes the damping. The frequency with which the free charge oscillates
in the plasma is known as plasma frequency. The relation for plasma frequency of electron will
be

ωp =

√
n0e2

meε0
.

An analogous equation for the plasma frequency of ion is used where instead of mass of electron
mass of the ions is used. As the mass of an ion is four orders of magnitude greater than that
of electrons hence the plasma frequency of ions will be less than that of electrons.
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When an electromagnetic wave hits the plasma it acts as a periodic driving force on the elec-
tron. As already discussed, electron within the plasma oscillates at a natural frequency known
as the electron plasma frequency. If the periodic driving force is considerably less than the
electron plasma frequency, and damping due to the collision are also small, than the inertial
effects of the electron will be small and it will oscillate at the driving frequency. The charge
oscillating at driving frequency will act as a dipole radiator, which produces electromagnetic
wave traveling both forward and backward direction. The forward traveling wave is out of
phase with the driving force and will cancel out the driving signal. The process of cancel-
ing out of the driving signal is repeated as the driving signal penetrate the plasma causing
an attenuation of the driving signal increases with the thickness of the plasma. The backward
traveling electromagnetic wave produced by an oscillating charge will appear as a reflected wave.

When the driving frequency is larger than the natural electron plasma frequency. The electrons
will exhibit large inertial effects hence it will weakly oscillate at the driving frequency and if
there are no collisions present then damping will not take place and the electromagnetic wave
will travel through plasma un-attenuated. In the presence of collision, a slight reflection and
attenuation of the electromagnetic waves take place.

When the driving frequency is exactly equal to the electron plasma frequency. The forward
and backward traveling wave produced by the oscillating such that the incident electromag-
netic wave will not penetrate the plasma and is completely reflected from the surface of the
plasma.[23]

Consider an electromagnetic wave having a frequency ω incident upon the plasma medium
having a frequency ωp. In the absence of collision when[9]

• ω > ωp, transmission will take place.

• ω = ωp, absorption takes place.

• ω < ωp, reflection of the incident wave takes place.

Advanced reentry vehicles have an antenna or a sensor present on their heat shield which
provides information about the vehicles instantaneous position, gives navigation information
and serve communication functions . The plasma formed near the vehicle can interfere with
the antenna performance. When there is an instability within the plasma medium, than the
electromagnetic wave will be modulated by turbulent plasma which can cause a change in the
phase and amplitude of the electromagnetic waves.[17, 4]
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Chapter 2

Fluid description of Plasma

There is so much we can do with the single particle approach in plasma. In plasma we come
across large number of particles where each particle follow a complex trajectory. Hence it
is impossible to follow every single particle and observe the behavior of plasma. Therefore
we use the fluid approach to study the behavior of plasma as a whole. In this approach the
plasma is assumed to be a conducting fluid and we use the already established equations of
fluid mechanics in order to find general properties of the plasma. About 80% or so applications
in plasma are sufficiently treated with the fluid approach of plasma, in which electromagnetic
forces are taken into account [32]. The plasma fluid equations are modification of the Naiver-
Strokes equations, and require conservation of charge and mass. In the case of electromagnetic
waves these equations are supplemented by the Maxwell’s equation of electromagnetism.

Consider an infinitesimal volume dV surrounding a point r, at time t. We can write the
mass density of the fluid is the sum of all the masses of the particles within the volume element
dV, divided by the volume dV itself[20]

ρ =

∑
m

dV
.

The hydrodynamic velocity of the volume element dV can be written as

v =

∑
mv

ρdV
.

2.1 The fluid equation of motion

The motion of a single particle in a plasma can be describe by [5]

m
dv

dt
= q(E + v ×B). (2.1)

In the case of plasma fluid, where the thermal motions of the particles within plasma, and
collisions of these particle with other particles within plasma, have not been taken into account,
in such a case all the particles in the fluid moves with an average velocity v(r,t). For such case
we can write the equation of motion of the fluid by multiplying eq. (2.1) with number density
"n". Hence,

mn
d~v

dt
= qn( ~E + ~v × ~B). (2.2)

In eq. (2.2), dv
dt

shows the rate of change of velocity in position and time. To do that we
transform the variables of the fluid into a fixed frame (that moves with the fluid element). In
order to make the transformation, we consider a function A(y,t) which is any property of the

18



fluid in a one dimensional space. The change of function A(y,t) in a frame which is moving
with the fluid, with respect to time can be written as

dA(y, t)

dt
=
∂A

∂t
+ vy

∂A

∂y
, (2.3)

where

• ∂A
∂t

: Change in function A which takes place at a point which is fixed in space,

• vy ∂
∂y

: Change in the property of the fluid as the observer moves with the fluid into the
region where A changes.

For the case of three dimensional flow of the fluid, the convective derivative can be written as

dA(r, t)

dt
=
∂A

∂t
+ (~v · ~∇)A.

For plasma, we take the function A to be the velocity "v(r,t)" of the fluid. The equation of
momentum for the fluid, in absence of collisions and thermal effects, can be written as

mn[
∂~v

∂t
+ (~v · ~∇)~v] = nq( ~E + ~v × ~B). (2.4)

2.1.1 Equation of motion in the presence of thermal effects

If we take the motion of the particles into account, the pressure term will also be added to
eq. (2.4). The pressure gradient force does not appear in the momentum equation for a single
particle approach, as it takes place due to the random motion of the particles within fluid.[5]

Figure 2.1:

In fig. 2.1, consider the fluid to move through the face A and B, along x-direction, of the
fluid element which is centered at (x, 1

2
∆y, 1

2
∆z). The number of particles per second which

are passing through the face A, with velocity vx is

∆nvvx∆y∆z,

where ∆nv is the number of particles per m3 having velocity vx, written as

∆nv = ∆vx

∫∫
f(vx, vy, vz)dvydvz,
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where f(vx, vy, vz) is the distribution function of the particles in velocity space at a particular
spacial location. Each particle within the fluid carries a momentum mvx. Let PA+ be the mo-
mentum of the particle moving into the fluid’s volume element at x0, centered at (x, 1

2
∆y, 1

2
∆z),

through the face A. PA+ can be written as

PA+ = m∆y∆z

∫ ∞
o

vx
2fdvx

+∞∫∫
−∞

dvydvz.

In the case of properly normalized function f

n =

+∞∫∫∫
−∞

fdvxdvydvz.

The average velocity < vx > can be written as

< vx >=

∫∞
o
vx

2fdvx
+∞∫∫
−∞

dvydvz

+∞∫∫∫
−∞

fdvxdvydvz

.

The momentum PA+ in terms of the average velocity < vx > can be written as

PA+ = m∆y∆z
1

2
[n < vx

2 >]x0−∆x,

where the factor 1
2

occurs as half of the particles within the cube at x−∆x0 are moving toward
face A. We can write the momentum of the particles moving out of the cube through face B as

PB+ = m∆y∆z
1

2
[n < vx

2 >]x0 .

The net gain of momentum of the particles is given as

PA+ − PB+ = m∆y∆z
1

2
[(n < vx

2 >)x0−∆x − (n < vx
2 >)x0 ].

Hence

PA+ − PB+ = −1

2
m∆y∆z∆x

∂

∂x
(n < vx

2 >). (2.5)

This result obtained in eq. (2.5) will be doubled due to the contribution of the particles moving
from the left, as they are moving in the opposite direction with respect to the gradient n <
vx

2 >. We can therefore write the total change of momentum of the fluid element at point x0

as
∂

∂t
(nmvx)∆x∆y∆z == m

∂

∂x
(n < vx

2 >)∆x∆y∆z. (2.6)

Let the velocity vx of the particles within the fluid be decomposed into two parts

vx = ux + vxr,
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where ux is the velocity of fluid along x-direction, and vxr is the velocity of random thermal
motion of the particles along x-direction, hence

< vx
2 >= ux

2 +
KBT

m
.

By using this value in eq. (2.6), we get

∂

∂t

(
nmux

)
= −m ∂

∂x

[
n(ux

2 +
KBT

m
)

]
,

mn

(
∂

∂t
ux + ux

∂

∂x
ux

)
+mux

(
∂n

∂t
+
∂(mux)

∂x

)
= − ∂

∂x

(
nKBT

)
.

From equation of continuity ∂(n)
∂t

+ ∂(nux)
∂x

= 0, hence the above equation becomes

mn

(
∂ux
∂t

+ ux
∂ux
∂x

)
= − ∂

∂x

(
nKBT

)
,

where P = nKBT , so

mn

(
∂ux
∂t

+ ux
∂ux
∂x

)
= −∂P

∂x
.

For three dimensional case, we get

mn

(
∂~u

∂t
+ (~u · ~∇)~u

)
= −∇P. (2.7)

The eq. (2.7) gives the pressure gradient force. If we add the electromagnetic force i.e., the
Lorentz Force, then the above equation becomes

mn

(
∂~u

∂t
+ (~u · ~∇)~u

)
= nq( ~E + ~u× ~B)− ~∇P.

2.1.2 Equation of motion in presence of collisions

If within plasma collisions occur between like particles then the total momentum which is
averaged over all the particles will not change. But for a plasma fluid consisting of two or more
species, a collision between them will cause gain or loss of momentum between the species.
Consider a plasma fluid consisting of neutral and charged particles. If a charged particle "c"
collides with the neutral, an exchange of momentum between the charged particle and neutral
will take place. If ~un is the velocity of neutral in fluid and ~uc is the velocity of the charged
specie, then the momentum lost per collision will be proportional to (~uc − ~un). The rate of
momentum density lost by the charged specie "c" upon collision with neutral will be[20]

νcnncmc(~uc − ~un).

The generalized momentum equation for the charged specie can be written as,

mcnc

[
∂ ~uc
∂t

+ (~uc · ~∇)~uc

]
= ncqc( ~E + ~uc × ~B)− ~∇ · ~Pc − νcnncmc(~uc − ~un). (2.8)
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Collision frequency

The two broad classes of collisions are the inelastic collision and the elastic collision. In order
to describe the particle’s motion before and after collision, the laws of conservation of mass,
momentum and energy is applied for both elastic and inelastic collisions. The difference between
both the collisions is that in inelastic collision the internal energy of the particles is changed,
whereas in the case of elastic collision the total energies are conserved. Consider a binary
encounter of species 1 with 2, the collision frequency between both the species is given by

ν12 =< N2VT1σ12 >,

where VT1 is the relative speed, N2 is the number density of the target specie 2 and σ12 is the
cross-section of that given event.[13]

2.2 Equation of continuity

Before deriving the equation of continuity it is necessary to know the meaning of mass flux.

Figure 2.2: Volume element

Consider the volume element shown in fig. 2.2, charge particles are moving to the right
through this volume element. The volume element has length "l", and crossection "A". The
number N of particles within the box will be

N = n× Al,

where n is the number density and Al is the volume of the box. The number of particles that
leave the box in time t is

N

t
=
nAl

t
= nAv,

where v = l
t

is the speed of the volume element. Particle flux is the rate of particles exiting the
box per unit area. Hence dividing the equation by an area "A" of the volume element, we get

Particle flux =
N

At
= nv, (particles/m2s)

and
Mass flux = mnv = ρv. (kg/m2s)

In order to derive the equation of continuity, we consider a fluid which is flowing into and out
of an infinitesimally small box as shown in fig. 2.3.
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Figure 2.3: Infinitesimal volume

Let the rate of change of mass flowing into the cube be given by dmi
dt

, and the rate of change

of mass flowing out of the cube be dm0

dt
, we can write the equation for mass flow rate through

one face of the cube as

dm

dt
=
dm0

dt
− dmi

dt
.

The mass flow rate through all the faces of the cube will be

dm

dt
= (

dmxo

dt
+
dmyo

dt
+
dmzo

dt
)− (

dmxi

dt
+
dmyi

dt
+
dmzi

dt
). (2.9)

The mass flow rate was defined as,

dm

dt
= mass flux× area,

dm

dt
= ρv × dxdz.

Then eq. (2.9) becomes

dρ

dt
dxdydz = (ρxovxo − ρxivxi)dydz + (ρyovyo − ρyivyi)dxdz + (ρzovzo − ρzivzi)dxdy, (2.10)

where each element on the right hand side of the equation can be written, in a more compact
form, as

ρxovxo − ρxivxi = −∆(ρxvx).

The negative sign appears over here because we expect the mass of the particles flowing out
to be less or equal to the mass of the particles flowing in. It would be very odd if the rate
of flow of mass moving out exceeded the rate of mass flow in, since that would defy the law
of conservation of mass. The minus sign will be applicable under those circumstances where
the fluid is compressible i.e. where more mass flows into the cube then out of it, which could
happen in plasma. Considering the cube to become infinitesimally small then we can rewrite
the equation for the change in mass flow rate as

ρxovxo − ρxivxi = −d(ρxvx).
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By making similar substitution and dividing both sides of the eq. (2.10) by dxdydz, we get

∂ρ

∂t
= −∂(ρxvx)

∂x
− ∂(ρyvy)

∂y
− ∂(ρzvz)

∂z
.

We can write the equation of continuity in a more compact form

∂ρ

∂t
+∇.(ρv) = 0.

In terms of number density, the above equation becomes

∂n

∂t
+∇.(nv) = 0. (2.11)

2.3 Equation of state

In order to describe how pressure "P" changes with time we need to add an additional term
called the equation of state, in order to relate the pressure term to the number density "n".
Equation of state can be written as[8]

P = cnγ,

where c is a constant let it equal to 1, and "γ" is the ratio between specific heat at constant
volume and specific heat at constant pressure i.e. Cp

Cv
. It tells us about the amount of increase

in temperature of the plasma as it is compressed. We can write the expression for change in
pressure as

∇P = ∇nγnγ−1 = γ P
∇n
n
,

hence
∇P
P

= γ
∇n
n
.

• For an isothermal compression of the plasma, the ratio between specific heat at constant
volume and specific heat at constant pressure will be equal to 1 i.e. γ = 1, hence the
gradient in pressure can be written as

∇P = ∇nK
B
T.

• The value of T also changes in the case of adiabatic compression, the value of γ in such
case will be

γ =
(2 +N)

N
,

where "N " gives us the number of degree of freedom.

2.4 Maxwell’s equations

1. The first is known as the Poisson’s equation, which is written as [29]

~∇ · ~D = ρ,

~D = ~P + ε0 ~E ' ε0 ~E.
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where above "D" is the displacement vector, ε0 free space permittivity, and "P" is the
polarization of atom. In gaseous plasma, the polarization of atom is very small, hence
the term "P" can be ignored. So we can write the Poisson’s equation for plasma as

~∇ · ~E =
ρ

ε0
. (2.12)

For the case where plasma consists of two fluid e.g. electron and ions, the density term
can be written

ρ = qene + qini = −e(ne − Zni).

2. Another is the divergence of magnetic field, which is an equation showing the absence of
magnetic mono-pole and is written as

~∇ · ~B = 0. (2.13)

3. The third is the equation equivalent of Faraday’s law of electromagnetic induction, ac-
cording to which the variation of the magnetic field in time is accompanied by a spatially-
varying electric field and vice versa

~∇× ~E =
∂ ~B

∂t
. (2.14)

4. The forth Maxwell equation is the generalization of Ampere’s law

~∇× ~H =
∂ ~D

∂t
+ ~J,

~B = µ0( ~H + ~M) ' µ0
~H,

where µ0 is the free space magnetic permeability , J is the current density of the specie
and the magnetization of dipole moment per unit volume is represented by M. As for
plasma M is negligible, hence

~∇× ~B = µ0
~J +

1

c2

∂ ~E

∂t
, (2.15)

For a plasma having ions and electrons the current density J, can be written as

~J = qene~ve + qini~vi = −e(ne~ve − Zni~vi).

2.5 Langmuir waves

In warm plasma, we also consider the thermal motion of electrons. Electrons having the thermal
motion will stream into the layers of the plasma carrying information about the disturbance
occurring in the undisturbed ambient plasma. These disturbances then propagate as a wave
known as the electron plasma waves. The dispersion relation for such waves can be derived
using the linearized equation of motion, given as

mn0
∂v1

∂t
= −en0E1 − 3KBTe

∂n1

∂x
.
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Where v1, E1 and n1 are the perturbed terms and behave sinusoidaly i.e.,

~v1 = v1e
i(kx−ωt)x̂,

~E1 = E1e
i(kx−ωt)x̂,

n1 = n1e
i(kx−ωt),

hence
−imωn0v1 = −en0E1 − 3ikn1KTe.

ω2V1 =

(
n0e

2

ε0m
+

3KTek
2

m

)
v1,

Vth
2 =

2KTe
m

,

so

ω2 = ωp
2 +

3

2
k2Vth

2.

The dispersion relation of Langmuir waves shows that due to the thermal motion of electrons
within the plasma its wave frequency will have a dependence on the wavenumber as well.

2.6 Ion-acoustic waves

Ion waves are low pressure and low-frequency waves that occur in plasma. We get similar
dispersion relation for ions wave as we get for the sound waves therefore we call them the Ion
acoustic waves (IAW). The difference between sound waves and ion-acoustic waves is that when
charges are separated due to ion-acoustic waves, an electric field is induced in the plasma. The
electron component of the ion-acoustic wave tends to move faster than its ion component, but
the electric field produced by the ion-acoustic retards the motions of the electron, forcing both
electrons and ions to propagate together. For ions, the momentum equation in the absence of
the magnetic field will be

Mn

[
∂vi
∂t

+ (vi.∆)vi

]
= −en∆φ− γiKTi∆n.

By linearizing the above equation we get

−iωMn0vi1 = −en0ikφ1 − γiKTiikni1 . (2.16)

The Boltzmann relation for electrons is given as

ne = n = n0exp

(
eφ1

KTe

)
= n0

(
1 +

eφ1

KTe
+ . . .

)
.

ne = n0 + ne1 ,

ne1 = ne − n0 = n0
eφ1

KTe
.
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As we are considering low frequency oscillations so we can use the quasi-neutrality condition
i.e. ni1 = ne1 . Therefore

ni1 = n0
eφ1

KTe
. (2.17)

After linearizing the equation of continuity, we get

iωni1 = n0ikvi1 . (2.18)

By using values of eq. (2.17) and eq. (2.18) in eq. (2.16), we get

ω2 = k2

(
KBTe
M

+
γiKTi
M

)
, (2.19)

ω

k
=

(
KTe + γiKTi

M

) 1
2

= vs. (2.20)

The eq. (2.19) gives dispersion relation for ion-acoustic waves, where vs is the ion-acoustic
speed. For KTi ≈ 0, the ion-acoustic waves still exist and the ion-acoustic velocity is given by

vs =
KTe
M

.

The approximation used over here is that of quasi-neutrality. This assumption is not true for
higher frequencies, closer to ωpi , because the electron and ion motion becomes uncorrelated.
So in the case of high frequency oscillation we will use the Poisson’s equation instead of the
quasi-neutrality condition. Therefore we can write

∇2φ =
e

ε0
(ni1 − ne1),

ε0k
2φ = ni1 − ne1 , (2.21)

where

ne1 = n0
eφ1

KTe
,

and

ni1 =
k

ω
n0vi1 ,

vi1 can be obtained from eq. (2.16). By putting values of ne1 and ni1 in eq. (2.21) we get

ω

k
=

(
KTe
M

1

1 + k2λD
2 +

γiKTi
M

) 1
2

. (2.22)
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Figure 2.4: Dispersion of Langmuir and ion-acoustic waves

The fig. 2.4 shows a graph of two electrostatic waves that exist in an unmagnetized plasma.
The low-frequency ion-acoustic waves start from zero to the ion plasma frequency, whereas
the high-frequency waves start at the electron plasma frequency. No electrostatic mode can
oscillate between the two plasma frequencies ωpi and ωpe in an unmagnetized plasma.

2.7 Electrostatic ion waves ⊥ B0

Two cases will be considered for electrostatic ion waves having propagation "k" perpendicular
to the ambient magnetic field "B0".

2.7.1 Propagation of the wave nearly perpendicular to the ambient
magnetic field "B0"

In such a case following assumptions are made.

• Considering the plasma to be infinite,

• Unperturbed density and magnetic field n0 and B0 are considered to be uniform and have
a constant value,

• v0 = E0 = 0,

• For simplicity let Ti = 0,

• k × E = 0 i.e. E = −∇φ,
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Figure 2.5: Electrostatic ion cyclotron wave nearly perpendicular to magnetic field

The fig. 2.5 gives geometrical description of the low frequency electrostatic waves nearly
perpendicular to magnetic field. Due to a small deviation from exact π

2
the electrons can move

along B0 but ions due to their large inertia will not oscillate along the z-direction i.e. kz ≈ 0
for ions. The linearized equation of motion for ions

M
∂~vi1
∂t

= −e~∇φ1 + e~v1 × ~B0, (2.23)

can be written in component form as

−iωMvix = −eikφ1 + eviyB0,

−iωMviy = −evixB0.

By solving these equations, we get

vix =
ek

Mω
φ1

(
ω2

ω2 − Ωc
2

)
, (2.24)

where Ωc = eB0

M
is the ion cyclotron frequency. From ion equation of continuity, we can write

ni1 = n0
k

ω
vix . (2.25)

As electron can move along B0 therefore we can use the Boltzmann relation for electrons

ne1
n0

=
eφ1

KTe
. (2.26)

By using the plasma approximation, we can write

k

ω
vix =

eφ1

KTe
.

by using the value of vix from eq. (2.24), we get

ek2

Mω2
φ1

(
ω2

ω2 − Ωc
2

)
=

eφ1

KTe
,

ω2 − Ω2
c = k2KTe

M
.

Hence the dispersion relation for ion cyclotron waves is

ω2 = Ω2
c + k2v2

s . (2.27)
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2.7.2 Propagation of the wave perpendicular to the ambient mag-
netic field "B0"(Lower hybrid wave)

Now consider the case in which the propagation of the low-frequency electrostatic wave is exactly
perpendicular to the ambient magnetic. In this case, the electrons will not obey Boltzmann
relation as they will not flow along with the lines force and preserve charge neutrality. So we
write the complete equation of motion for electron to get

vex =
−ek
m

(
ω

ω2 − ω2
c

)
φ1, (2.28)

and electron equation of continuity will give us

ne1 = n0
k

ω
ve1 . (2.29)

From plasma approximation ni1 = ne1 , which for this case can also be written as vex = vix .
Using the values of vex and vix from eq. (2.28) and eq. (2.24) respectively, we get

−1

m

(
1

ω2 − ω2
c

)
=

1

M

(
1

ω2 − Ω2
c

)

(m+M)ω2 = ω2
cm+ Ω2

cM,

(m+M)ω2 = e2B2

(
m+M

Mm

)
,

ω2 =
e2B2

Mm
= Ωcωc = ωl

2,

where ωl is the lower hybrid frequency, defined as

ωl = (Ωcωc)
1
2 . (2.30)

Instead of using plasma approximation, if we use Poisson’s equation then we get the following
dispersion relation for lower hybrid wave

1

ω2
l

=
1

Ωcωc
+

1

Ω2
p

. (2.31)

2.7.3 Electromagnetic waves in plasma with B0

For transverse waves traveling through plasma. We have k ⊥ E

1. ∇ · E = 0.
∇ ·B = 0.

2. E0 = 0.
B0 = 0.

3. ∂E0

∂t
= ∂B0

∂t
= 0.
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Using Maxwell’s equation,

∇× E = −∂B
∂t
, (2.32)

∇×B =
1

c2

∂E

∂t
+ µ0J. (2.33)

By taking cross product of eq. (2.32), we get

∇× (∇× E) = −∂(∇×B)

∂t
,

∇(∇ · E)−∇2E = −∂(∇×B)

∂t
.

By using the value of ∇×B from eq. (2.33), we get

∇2E =
∂

∂t

[
1

c2

∂E

∂t
+ µ0J

]
,

∇2E =

[
1

c2

∂2E

∂t2
+ µ0

∂J

∂t

]
. (2.34)

By linearizing eq. (2.34), we get

∇2E1 =

[
1

c2

∂2E1

∂t

2

+ µ0

∂J1

∂t

]
.

All perturbed quantities behave sinusoidally, therefore replace ∇ = ik and ∂
∂t

= −iω in the
above equation to get

k2E1 =
ω2

c2
E1 + iωµ0J1, (2.35)

where J1 = −n0ev1. The value of v1 can be found from electron equation of motion i.e.,

v1 =
eE1

imω
.

Therefore the current density will become

J1 =
in0e

2E1

mω
. (2.36)

Using this value in equation eq. (2.35) we get

k2E1 =
ω2

c2
E1 −

n0e
2µ0E1

m
,

as ω2
pe = n0e2

mε0
, hence

k2 =
ω2

c2
− µ0ε0ω

2
pe.

The dispersion relation for electromagnetic waves propagating through the plasma in the ab-
sence of magnetic field can be written as

ω2 = ω2
pe + c2k2. (2.37)
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Chapter 3

Shear flow instability in a
partially-ionized plasma sheath around
a fast-moving vehicle

When vehicle re-enters the earth’s atmosphere a plasma sheath is formed around it, which
causes communication blackout either by reflecting or absorbing the Electromagnetic waves
coming to or from the vehicle[14]. An increase in turbulent pulsation within the plasma sheath
can also affect the on-board sensor. The influence of turbulence of low-frequency waves in-
compressible plasma in the absence of collisions has been analyzed by Vladimir Ref [25]. As
the vehicle moves to lower altitudes of earth’s atmosphere the numbers of neutral particles
increase, hence collisions with neutral particles increases, therefore it is necessary to include
collision while deriving the dispersion relation for instability in plasma sheath region[26]. In
this section, the growth rate of low-frequency turbulence (i.e. instability of ion-acoustic wave)
due to the hyper-sonic sheared flow of plasma sheath is studied with the inclusion of collisions
into the model. This allowed us to correctly evaluate the growth rate of instability and to inves-
tigate the role of neutral particles in suppressing such instabilities. This was done by deriving
a second-order differential equation for the electrostatic potential of excited ion-acoustic waves
in the presence of collisions of charged particles with neutrals. The differential equation was
then solved analytically for linear velocity profile of the shear flow, using appropriate boundary
conditions for finite thickness of the plasma sheath. An appropriate scaling relationship for the
instability in case of the linear velocity profile is obtained from analytical calculations. From
different plots of the relationship, the growth rates and eigenfunctions of unstable ion-acoustic
modes are obtained. It was also observed that when the density of neutral particles is increased
to such a value that ion-neutral collisions rate exceeded the peak dimensionless growth rate,
the instability was completely suppressed.

In the present chapter, the typical value of growth rate of the instability of ion-acoustic wave
is investigated and the role of neutral particles in suppressing such instability is found. A
second-order differential equation for the electrostatic potential of the ion-acoustic wave is de-
rived using a system of nonlinear equations, which include, the momentum equation for ions,
electrons and neutral, and the mass conservation equation for these species. These equations
are complemented by Poisson equation for electrostatic potential associated with ion-acoustic
perturbation, due to the presence of flow shear.[13] In this section, the excitation and turbulent
pulsation in a compressible supersonic plasma flow in the two-dimensional case is considered.
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Figure 3.1: Geometry of the sheared plasma flow

fig. 3.1 shows that the plasma sheath is bounded on one side by vehicle’s surface, and on
the other side by the neutral atmosphere.The plasma is flowing with velocity V0y(x) along y
axis, and has velocity shear along x axis.

3.1 Equation of momentum

mn[
d~v

dt
+ (~v · ~∇)~v] = nq( ~E + ~v × ~B)− ~∇P − mn(~v − ~vm)

τ
. (3.1)

As no magnetic field is present therefore v ×B = 0.
where in eq. (3.1) ∇p = KBT∇n,
so

m[
d~v

dt
+ (~v · ~∇)~v] = qE − KBT ~∇n

n
− m(~v − ~vm)

τ
. (3.2)

Linearizing eq. (3.2) i.e. replace
~v = ~v0 + ~v1,

~vm = ~vm0 + ~vm1 ,

and
n = n0 + n1.

By putting values in eq. (3.2), we get

m[
d(~v0 + ~v1)

dt
+ ((~v0 + ~v1) · ~∇)(~v0 + ~v1)] = qE− KBT ~∇(n0 + n1)

(n0 + n1)
−m((~v0 + ~v1)− ( ~vm0 + ~vm1))

τ
.

(3.3)
In equation 3.3,

((~v0 + ~v1) · ~∇)(~v0 + ~v1) = (~v0 · ~∇)~v0 + (~v0 · ~∇)~v1 + (~v1 · ~∇)~v0 + (~v1 · ~∇)~v1.

By ignoring zeroth order and higher order terms, we get

((~v0 + ~v1) · ~∇)(~v0 + ~v1) = (~v0 · ~∇)~v1 + (~v1 · ~∇)~v0.

where,

(~v0 · ~∇)~v1 = (v0
d

dy
)~v1,
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motion of plasma is along y axis, but change in plasma occurs in x.

(~v1 · ~∇)~v0 = (v1x
d

dx
)~v0 + (v1y

d

dy
)~v0 + (v1z

d

dz
)~v0.

As change in unperturbed velocity v0(x) is along x direction,hence

(~v1 · ~∇)~v0 = v1x
d~v0

dx
,

where
~v0 = v0ĵ,

so

(~v1 · ~∇)~v0 = v1x
dv0

dx
ĵ.

((~v0 + ~v1) · ~∇)(~v0 + ~v1) = (v0
d~v1

dy
) + v1x

dv0

dx
ĵ. (3.4)

Another term from eq. (3.3) can be written as

KBT ~∇(n0 + n1)

(n0 + n1)
= KBT

~∇n0 + ~∇n1

n0 + n1

.

Where ∇n0 = 0, also n0 >> n1, so

KBT
~∇n1

n0 + n1

= KBT
~∇n1

n0(1 + n1

n0
)

= KBT
~∇n1

n0

. (3.5)

Given v0 = v0m ,
put eq. (3.4) and eq. (3.5) in equation eq. (3.3), we get

m[
d~v1

dt
+ v0

d~v1

dy
+ v1x

dv0

dx
ĵ] = qE −KBT

~∇n1

n0

+
m(~v1 − ~vm1)

τ
.

KBT

m
= v2

T .

d~v1

dt
+ v0

d~v1

dy
+ v1x

dv0

dx
ĵ =

qE

m
− v2

T

~∇n1

n0

+
(~v1 − ~vm1)

τ
. (3.6)

In eq. (3.6), 1
τ

= ν is the collision frequency. The eq. (3.6) gives us general form of momentum
equation, writing it for electron,ion and neutral.
Momentum equation for electron is,

d ~u1e

dt
+ V0e

d ~u1e

dy
+ u1ex

dV0e

dx
ĵ =
−eE
me

− V 2
Te

~∇n1

N0e

+ νen( ~u1e − ~u1n) + νei( ~u1e − ~u1i),

where E = −~∇φ, so

d ~u1e

dt
+ V0e

d ~u1e

dy
+ u1ex

dV0e

dx
ĵ =

e
~~∇φ
me

− V 2
Te

~∇n1

N0e

+ νen( ~u1e − ~u1n) + νei( ~u1e − ~u1i). (3.7)

Momentum equation for neutral is

d ~u1n

dt
+ V0n

d ~u1n

dy
+ u1nx

dV0n

dx
ĵ = V 2

Tn

~∇n1

N0n

− νne( ~u1n − ~u1e)− νni( ~u1n − ~u1i). (3.8)

Momentum equation for ion is

d ~u1i

dt
+ V0i

d ~u1i

dy
+ u1ix

dV0i

dx
ĵ =
−e~~∇φ
Mi

− V 2
Ti

~∇n1i

N0i

− νie( ~u1i − ~u1e)− νin( ~u1i − ~u1n). (3.9)
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3.2 Equation of continuity

dn

dt
+ ~∇ · (n~v) = 0. (3.10)

dn

dt
+ (~∇n) · ~v + (~∇ · ~v)n = 0.

Linearizing eq. (3.10) i.e. replace
~v = ~v0 + ~v1,

and
n = n0 + n1.

Hence
(~∇n) · ~v = (~∇(n0 + n1)) · (~v0 + ~v1) = ~∇n1 · ~v0 + ~∇n1 · ~v1.

By ignoring the higher order terms, we get

(~∇n) · ~v = ~∇n1 · ~v0 = v0
dn1

dy
.

Similarly
(~∇ · ~v)n = (~∇ · (~v0 + ~v1))(n0 + n1)),

(~∇ · ~v)n = n0(~∇ · ~v1).

By putting values in equation eq. (3.10), we get

dn1

dt
+ v0

dn1

dy
+ n0(~∇ · ~v1) = 0, (3.11)

where eq. (3.11) gives the equation of continuity of plasma when flow is along y direction.

dn1α

dt
+ V0α

dn1α

dy
+ n0α(~∇ · ~u1α) = 0. (3.12)

Where eq. (3.12) gives us the general form of the equation of continuity, the subscript α stands
for electron, ions and neutral particles.

3.3 Poisson’s equation

From Poisson’s euqation

∇ · E =
ρ

εo
,

where ρ = ρe+ρi, ρe = −ene and ρi = Zeni, also in above equation ∇·E = ∇·(−∇φ) = −∇2φ.
By putting values we get

−∇2φ =
e(Zni − ne)

εo
,

where 1
εo

= 4π, so Poisson equation becomes

∇2φ = 4πe(ne − Zni). (3.13)
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3.4 Derivation of second-order differential for electro-

static potential

From electron momentum equation

d~̃u1e

dt̃
+ Ṽ0e

d~̃u1e

dỹ
+ ũ1ex

dṼ0e

dx̃
ĵ =

e~̃∇φ̃
m̃e

− Ṽ 2
Te

~̃∇ñ1

Ñ0e

− ν̃en(~̃u1e − ~̃u1n).

We will ignore the ion velocity ~̃u1n as they appear stationary in front of an electron, hence the
equation of motion will becomes

d~̃u1e

dt̃
+ Ṽ0e

d~̃u1e

dỹ
+ ν̃en~̃u1e =

e~̃∇φ̃
m̃e

− Ṽ 2
Te

~̃∇ñ1e

Ñ0e

− ũ1ex

dṼ0e

dx̃
ĵ. (3.14)

By dropping subscript 1 in all perturbed velocities and densities we can write eq. (3.14) as

d~̃ue

dt̃
+ Ṽ0e

d~̃ue
dỹ

+ ν̃en~̃ue =
KBTe
m̃e

(
e~̃∇φ̃
KBTe

−
~̃∇ñe
Ñ0e

)− ũex
dṼ0e

dx̃
ĵ.

Normalizing the equation of momentum using normalization conditions:

1. φ = eφ̃
KBTe

,

2. ne = ñe
Ñ0e

,

3. m = m̃e
M̃i
, or m̃e = M̃im,

4. ũe = ω̃piλ̃Deue,

5.x̃ = λ̃Dex,

6. ỹ = λ̃Dey,

7. t̃ = t
ω̃pi
,

8. ~̃∇ =
~∇
λ̃De

,

9. Ṽ0e = ω̃piλ̃DeV0e ,

10. ν̃en = ω̃piνen,

d(ω̃piλ̃De~ue)

d( t
ω̃pi

)
+ (ω̃piλ̃DeV0e)

d(ω̃piλ̃De~ue)

d(λ̃Dey)
+ (ω̃piνen)(ω̃piλ̃De~ue) =

KBTe(
~∇
λ̃De

)

(M̃im)
(
eφ̃

KBTe
− ñe

Ñ0e

)− (ω̃piλ̃De~uex)
d(ω̃piλ̃DeV0e)

dλ̃Dex
ĵ,

where in the equation KBTe
M̃i

= ω̃2
piλ̃

2
De,
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d(ω̃piλ̃De~ue)

d( t
ω̃pi

)
+ (ω̃piλ̃DeV0e)

d(ω̃piλ̃De~ue)

d(λ̃Dey)
+ (ω̃piνen)(ω̃piλ̃De~ue) =

ω̃2
piλ̃

2
De
~∇

mλ̃De
(
eφ̃

KBTe
− ñe

Ñ0e

)− (ω̃piλ̃De~uex)
d(ω̃piλ̃DeV0e)

dλ̃Dex
ĵ.

ω̃2
piλ̃De(

d~ue
dt

+ V0e

d~ue
dy

+ νen ~ue) = ω̃2
piλ̃De(

1

m
(~∇φ− ~∇ne)− uex

dV0e

dx
ĵ).

d ~ue
dt

+ V0e

d~ue
dy

+ νen ~ue =
1

m
(~∇φ− ~∇ne)− uex

dV0e

dx
ĵ (3.15)

Separating eq. (3.15) into its x and y component i.e. ~ue = uexî+ uey ĵ and ~∇ = d
dx
î+ d

dy
ĵ

X-component of equation 3.15

duex
dt

+ V0
duex
dy

+ νen ~uex =
1

m
[
dφ

dx
− dne

dx
].

As all perturbed quantities behave sinusoidaly i.e. f(x, y, t) ∼ exp(iky− iωt) therefore replace
d
dt

= −iω and d
dy

= ik.

[ω − kV0 + iνen]uex =
i

m

d

dx
[φ− ne], (3.16)

where in equation eq. (3.16)
Ωe = ω − kV0 + iνen,

and
ψ = φ− ne,

hence

Ωeuex =
i

m

dψ

dx
. (3.17)

Y-component of equation 3.15

duey
dt

+ V0
duey
dy

+ νen ~uey =
1

m
[
dφ

dy
− dne

dy
− uex

dV0e

dx
].

All perturbed quantities behave sinusoidaly, hence

[ω − kV0 + iνen]uey = − k
m

[φ− ne]− iuex
dV0

dx
. (3.18)

The eq. (3.18) becomes

Ωeuey = − k
m
ψ − iuex

dV0

dx
. (3.19)

From equation of continuity

dñe

dt̃
+ Ṽ0e

dñe
dỹ

+ Ñ0e(
~̃∇ · ~̃ue) = 0.
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We will normalize the equation of continuity for electron using following normalization condi-
tions.

1. ñe = neÑ0e

2. ~̃ue = ω̃piλ̃De~ue

3. ỹ = λ̃Dey

4. t̃ = t
ω̃pi

5. ~̃∇ =
~∇
λ̃De

6. Ṽ0e = ω̃piλ̃DeV0e

d(neÑ0e)

d( t
ω̃pi

)
+ (ω̃piλ̃DeV0e)

d(neÑ0e)

d(λ̃Dey)
+ Ñ0e [(

~∇
λ̃De

) · (ω̃piλ̃De ~ue)] = 0.

dne
dt

+ V0e

dne
dy

+N0e(~∇ · ~ue) = 0.

Where above,

∇ · ~ue = [(
d

dx
î+

d

dy
ĵ) · (uexî+ uey ĵ)] = (

duex
dx

+
duey
dy

).

All perturbed quantities behave sinusoidaly

−iωne + ikV0ene = −N0e(ikuey +
duex
dx

).

i(ω − kV0e)ne = N0e(ikuey +
duex
dx

).

Considering the unperturbed velocity of electron, ions and neutrals to be same, hence V0e =
V0n = V0i = V0,

i(ω − kV0)ne = N0e(ikuey +
duex
dx

).

In above equation, let ω − kV0 = Ω, hence

iΩ
ne
N0e

= (ikuey +
duex
dx

).

By applying normalization condition i.e. ne = ne
N0e

, we get

iΩne = ikuey +
duex
dx

. (3.20)

From eq. (3.17),

uex =
i

mΩe

dψ

dx
.
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By taking derivative of the equation with respect to x we get,

duex
dx

=
i

m

[d
2ψ
dx

Ωe − dψ
dx

dΩe
dx

]

Ω2
e

.

As Ωe = ω − kV0 + iνen, so
dΩe

dx
= −kdV0

dx
.

By putting values we get
duex
dx

=
i

m
[

1

Ωe

d2ψ

dx
+

k

Ω2
e

dV0

dx

dψ

dx
]. (3.21)

From eq. (3.20)
duex
dx

= iΩne − ikuey.

By putting value in eq. (3.21) we get,

iΩne = ikuey +
i

m
[

1

Ωe

d2ψ

dx
+

k

Ω2
e

dV0

dx

dψ

dx
]. (3.22)

From eq. (3.19),

uey = − k

Ωem
ψ − iuex

Ωe

dV0

dx
.

By putting value of eq. (3.22) we get,

Ωne = − k2

Ωem
ψ − ikuex

Ωe

dV0

dx
+

1

mΩe

d2ψ

dx
+

k

mΩ2
e

dV0

dx

dψ

dx
,

where uex = i
mΩe

dψ
dx

, so

mΩeΩne = −k2ψ +
d2ψ

dx
+

2k

Ωe

dV0

dx

dψ

dx
. (3.23)

From poisson equation
∇̃2φ̃ = 4πe(ñe − ñi),

we have considered Z = 1 throughout out calculation. By using normalization conditions:

1. φ̃ = KBTeφ
e

,

2. ñe = neÑ0e ,

3. ñi = niÑ0i,

4. ~̃∇2 =
~∇2

λ̃2De
,

we get

(
~∇2

λ̃2
De

)(
KBTeφ

e
) = 4πN0ee(ne − ni).

As unperturbed number density of electron is equal to that of ion i.e. N0i = N0e , hence

~∇2φ =
4πN0ee

2

λ̃2
DeKBTe

(ne − ni).
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where

λ̃2
De =

KBTe
4πN0ee

2
,

so

~∇2φ = (ne − ni).

∇2 = d2

dx2
+ d2

dy2
, where d2

dy2
= −k2, so

ne = −k2φ+
d2φ

dx2
+ ni. (3.24)

As ψ = φ− ne, so

ψ = φ+ k2φ− d2φ

dx2
− ni. (3.25)

From eq. (3.23),

[−k2 +
d2

dx
+

2k

Ωe

dV0

dx

d

dx
]ψ = mΩeΩne,

where −k2 + d2

dx
+ 2k

Ωe
dV0
dx

d
dx

= Le, so

Leψ = mΩeΩne. (3.26)

Put value of eq. (3.24) and eq. (3.25) in eq. (3.26) we get

Le[φ+ k2φ− d2φ

dx2
− ni] =

mΩeΩ

k2
[k2(−k2φ+

d2φ

dx2
+ ni)], (3.27)

as mΩeΩ
k2

<< 1, therefore we we will neglect the left hand side of eq. (3.27), hence

Le[φ+ k2φ− d2φ

dx2
− ni] = 0.

By decoupling equation, we get

φ+ k2φ− d2φ

dx2
− ni = 0. (3.28)

From neutral momentum equation

d~̃u1n

dt̃
+ Ṽ0n

d~̃u1n

dỹ
+ ũ1nx

dṼ0n

dx̃
ĵ = −Ṽ 2

Tn

~̃∇ñ1n

Ñ0n

− ν̃ne(~̃u1n − ~̃u1e)− ν̃ni(~̃u1n − ~̃u1i).

Normalizing above equation we get,

d ~u1n

dt
+ V0n

d ~u1n

dy
+ u1nx

dV0n

dx
ĵ = −V 2

Tn

~∇n1n

N0n

− νne( ~u1n − ~u1e)− νni( ~u1n − ~u1i).

Droping subscript 1 in all perturbed quantities,

d ~un
dt

+ V0n

d ~un
dy

+ unx
dV0n

dx
ĵ = −V 2

Tn

~∇nn
N0n

− νne( ~un − ~ue)− νni( ~un − ~ui).
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Making following assumptions,

1. νne << νni,
2. Ignoring the pressure term in ion and neutral momentum equations.

d ~un
dt

+ V0n

d ~un
dy

+ unx
dV0n

dx
ĵ = −νni( ~un − ~ui).

All perturbed quantities behave sinusoidally, so

−i[ω − kV0n + iνni]~un = −unx
dV0n

dx
ĵ + νni~ui.

−iΩn~un = −unx
dV0n

dx
ĵ + νni~vi. (3.29)

~un =
i

Ωn

[−unx
dV0n

dx
ĵ + νni~ui].

By separating the equation into its x and y component, we get
X component

unx =
iνniuix

Ωn

. (3.30)

Y component

uny =
i

Ωn

[−unx
dV0n

dx
+ νniuiy ]. (3.31)

By putting value of eq. (3.30), in eq. (3.31) we get,

uny =
νniuix

Ω2
n

dV0n

dx
+
iνniuiy

Ωn

. (3.32)

From ion equation of momentum

d~̃u1i

dt̃
+ Ṽ0i

d~̃u1i

dỹ
+ ũ1ix

dṼ0i

dx̃
ĵ =

e~̃∇φ̃
m̃i

− Ṽ 2
Ti

~̃∇ñi1
Ñ0i

− ν̃in(~̃u1i − ~̃u1n).

By normalizing above equation, we get

d~ui
dt

+ V0i

d~ui
dy

+ uix
dV0i

dx
ĵ =
−e~∇φ
Mi

− νin(~ui − ~un). (3.33)

Seperating the x and y components of eq. (3.33).
X component

duix
dt

+ V0i

duix
dy

= −dφ
dx
− νin[uix − unx ].

By putting value eq. (3.30) we get,

duix
dt

+ V0i

duix
dy

+ νinuix [1−
iνni
Ωn

] = −dφ
dx
.

As all perturbed quantities behave sinusoidally, so by replacing d
dt

= −iω and d
dy

= ik we get

−i[ω + kV0 + iνin(1− iνni
Ωn

)]uix = −dφ
dx
,
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where,

Ωi = ω − kV0 + iνin(1− iνni
Ωn

), (3.34)

so

uix =
−i
Ωi

dφ

dx
. (3.35)

Y component
duiy
dt

+ V0i

duiy
dy

+ uix
dV0

dx
= −dφ

dy
− νin[uiy − uny ]. (3.36)

Put value of eq. (3.32), in eq. (3.36) we get,

duiy
dt

+ V0

duiy
dy

+ uix
dV0

dx
= −dφ

dy
− νinuiy [1−

iνni
Ωn

] +
νniνinuix

Ω2
n

dV0n

dx
.

duiy
dt

+ V0

duiy
dy

+ νinuiy [1−
iνni
Ωn

] = −dφ
dy
− uix

dV0

dx
[1− νniνin

Ω2
n

].

−i[ω + kV0 + iνin(1− iνni
Ωn

)]uiy = −ikφ− uix
dV0

dx
[1− νniνin

Ω2
n

].

[ω + kV0 + iνin(1− iνni
Ωn

)]uiy = ikφ− iuix
dV0

dx
[1− νniνin

Ω2
n

].

By putting value of eq. (3.34) we get

Ωiuiy = kφ− iuix
dV0

dx
[1− νniνin

Ω2
n

].

uiy =
kφ

Ωi

− iuix
Ωi

dV0

dx
[1− νniνin

Ω2
n

]. (3.37)

By putting value of eq. (3.35) in eq. (3.37), we get

uiy =
kφ

Ωi

− i

Ω2
i

dV0

dx
[1− νniνin

Ω2
n

]
dφ

dx
. (3.38)

From normalized ion equation of continuity

dni
dt

+ V0
dni
dy

+ (~∇ · ~ui) = 0,

where, ~∇ · ~ui = duix
dx

+
duiy
dy

, hence

dni
dt

+ V0
dni
dy

= −duix
dx
−
duiy
dy

.

All perturbed quantities behave sinusoidally so replace d
dt

= −iω and d
dy

= ik.

−i[ω − kV0]ni = −duix
dx
− ikuiy .

iΩni =
duix
dx

+ ikuiy .

ni =
−i
Ω

duix
dx

+
k

Ω
uiy . (3.39)
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From eq. (3.35)
duix
dx

= −i d
dx

[
1

Ωi

dφ

dx
].

duix
dx

=
−i
Ω2
i

[
d2φ

dx2
Ωi −

dΩi

dx

dφ

dx
].

Where

Ωi = ω − kV0 + iνin(1− iνni
Ωn

),

dΩi

dx
= −kdV0

dx
+
kνinνni

Ω2
n

dV0

dx
.

duix
dx

= − i

Ω2
i

[
d2φ

dx2
Ωi − (−kdV0

dx
+
kνinνni

Ω2
n

dV0

dx
)
dφ

dx
].

Hence,
duix
dx

=
−i
Ωi

d2φ

dx2
+

i

Ω2
i

[−kdV0

dx
+
kνinνni

Ω2
n

dV0

dx
]
dφ

dx
. (3.40)

Put value of eq. (3.40), and eq. (3.38) in eq. (3.39).

ni =
−i
Ω

[
−i
Ωi

d2φ

dx2
+

i

Ω2
i

(−kdV0

dx
+
kνinνni

Ω2
n

dV0

dx
)
dφ

dx
] +

k

Ω
[
kφ

Ωi

− 1

Ω2
i

dV0

dx
[1− νniνin

Ω2
n

]
dφ

dx
].

ni =
−1

ΩΩi

d2φ

dx2
+

1

ΩΩ2
i

(−kdV0

dx
+
kνinνni

Ω2
n

dV0

dx
)
dφ

dx
+
k2φ

ΩΩi

− k

ΩΩ2
iM

dV0

dx

dφ

dx
[1− νniνin

Ω2
n

].

ni =
−1

ΩΩi

d2φ

dx2
− k

ΩΩ2
i

dV0

dx

dφ

dx
+
νinνnik

ΩΩ2
iΩ

2
n

dV0

dx

dφ

dx
+
k2φ

ΩΩi

− k

ΩΩ2
i

dV0

dx

dφ

dx
+
νniνin

Ω2
n

k

ΩΩ2
i

dV0

dx

dφ

dx
.

ni = − 1

ΩΩi

d2φ

dx2
− 2k

ΩΩ2
i

dV0

dx

dφ

dx
+
k2φ

ΩΩi

+
2kνniνin
Ω2
nΩΩ2

i

dV0

dx

dφ

dx
. (3.41)

By putting value of eq. (3.41) in eq. (3.28) i.e. d2φ
dx2
− φ− k2φ+ ni = 0, we get

d2φ

dx2
− φ− k2φ− 1

ΩΩi

d2φ

dx2
+

2kνinνni
ΩΩ2

nΩ2
i

dV0

dx

dφ

dx
+

k2

ΩΩi

φ− 2k

ΩΩ2
i

dV0

dx

dφ

dx
= 0.

d2φ

dx2
− 1

ΩΩi

d2φ

dx2
− 2k

ΩΩ2
i

dV0

dx

dφ

dx
+

2kνinνni
ΩΩ2

nΩ2
i

dV0

dx

dφ

dx
+

k2

ΩΩi

φ− φ− k2φ = 0.

(1− 1

ΩΩi

)
d2φ

dx2
− 2k

ΩΩ2
i

dV0

dx

dφ

dx
(1 +

νinνni
Ω2
n

)− [k2(1− 1

ΩΩi

) + 1]φ = 0. (3.42)

where above εi = 1− 1
ΩΩi

εi
d2φ

dx2
− 2k

ΩΩ2
i

dV0

dx

dφ

dx
(1 +

νinνni
Ω2
n

)− [k2εi + 1]φ = 0. (3.43)
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3.5 Ion-acoustic instability

We are considering low-frequency ion-acoustic oscillation in the presence of velocity shear in
the plasma sheath.

D2
d2φ

dx2
−D1

dφ

dx
−D0φ = 0 (3.44)

where above,

D0 = k2εi + 1

D2 = εi = 1− 1
ΩΩi

D1 = 2k
ΩΩ2

i

dV0
dx

(1 + νinνni
Ω2
n

)

Ω = ω − kV0

Ωn = Ω + iνni = ω − kV0 + iνni

Ωi = ω − kV0 + iνin(1− iνni
Ω+iνni

)

From equation 3.43,

d2φ

dx2
− 2k

ΩΩ2
i

dV0

dx

dφ

dx
(1 +

νinνni
Ω2
n

)− [k2εi + 1]φ = 0. (3.45)

We set x=0 on the conducting surface of the vehicle thus requiring the potential to be equal
to zero.

φ(x = 0) = 0. (3.46)

On surface beyond the sheath edge(x=L) the potential is

φ(x) = φ(L)exp[−k(x− L)].

On the sheath edge, at x = L

dφ
dx

= −kφ,

hence

[
dφ

dx
+ kφ]x=L = 0. (3.47)

eq. (3.44), eq. (3.46) and eq. (3.47) constitutes to the initial and boundary values of potential.
In order to solve eq. (3.45), consider a linear velocity profile

V0(x) = cox.

In eq. (3.45) we ignore terms involving νni
Ωn

,also noting that for normalized frequencies such that

|ω| << 1 we may assume ΩΩi << 1, so εi = 1− 1
ΩΩi
≈ − 1

ΩΩi
.

− 1

ΩΩi

d2φ

dx2
− 2k

ΩΩ2
i

dV0

dx

dφ

dx
− [k2(− 1

ΩΩi

) + 1]φ = 0.

− 1

ΩΩi

[
d2φ

dx2
+

2k

Ωi

dV0

dx

dφ

dx
− (k2 − ΩΩi)φ] = 0.
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Decoupling above equation,

d2φ

dx2
+

2k

Ωi

dV0

dx

dφ

dx
− (k2 − ΩΩi)φ = 0.

d2φ

dx2
+

2k

Ωi

dV0

dx

dφ

dx
− k2(1− ΩΩi

k2
)φ = 0.

Where above dV0
dx

= co,
d2φ

dx2
+

2kco
Ωi

dφ

dx
− k2(1− ΩΩi

k2
)φ = 0. (3.48)

Furthermore making assumptions that for a phase velocity smaller compared to ion speed
the last term in eq. (3.48) maybe dropped, also as ΩΩi << 1 so ΩΩi

k2
<< 1 therefore we can

drop it as well. Hence
d2φ

dx2
+

2kco
Ωi

dφ

dx
− k2φ = 0. (3.49)

Defining X = kx and κ = ω+iνin
co

also we have dropped term involving νni
Ωn

, so

Ωi = ω − kV0 + iνin.

By putting V0 = cox and X = kx in equation we get

Ωi = ω − coX + iνin.

Ωi = co[(
ω + iνin

co
)−X].

Put κ = ω+iνin
co

in above equation.
Ωi = co(κ−X).

d2φ

dx2
+

2kco
co(κ−X)

dφ

dx
− k2φ = 0.

d2φ

dX2
+

2

(κ−X)

dφ

dX
− φ = 0. (3.50)

By solving eq. (3.50) we get

φ(X) = (κ−X − 1)C1e
−X + (κ−X + 1)C2e

X . (3.51)

Using boundary conditions

φ(X = 0) = 0, (3.52)

[
dφ

dX
+ φ]X=kL = 0, (3.53)

to solve eq. (3.51). From boundary condition eq. (3.52),

(κ− 1)C1 + (κ+ 1)C2 = 0. (3.54)

Similarly from boundary condition eq. (3.53)
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dφ

dx
= (X − κ)C1e

−X + (−X + κ)C2e
X .

Put X = kL in equation

−φ(kL) = (kL− κ)C1e
−kL + (−kL+ κ)C2e

kL.

We know
φ(kL) = (κ− kL− 1)C1e

−kL + (κ− kL+ 1)C2e
kL.

So,

−(κ− kL− 1)C1e
−kL − (κ− kL+ 1)C2e

kL = (kL− κ)C1e
−kL + (−kL+ κ)C2e

kL.

C1e
−kL + (−2κ+ 2kL− 1)C2e

kL = 0.

−C1e
−kL + 2(κ− kL− 0.5)C2e

kL = 0 (3.55)

The boundary conditions give two linear equations for the coefficients C1 and C2[
(κ− 1) (κ+ 1)
−e−kL 2(κ− kL− 0.5)ekL

] [
C1

C2

]
= 0 (3.56)

By setting determinants of the coefficients equal to zero we get∣∣∣∣(κ− 1) (κ+ 1)
−e−kL 2(κ− kL− 0.5)ekL

∣∣∣∣ = 0.

m
ekLκ2 + (0.5ekL − 0.5ekL − kLekL)κ+ (0.5e−kL − 0.5ekL + kLekL) = 0.

Let
a = ekL,

b = 0.5ekL − 0.5ekL − kLekL,

c = 0.5e−kL − 0.5ekL + kLekL,

so
aκ2 + bκ+ c = 0.

By solving the quadratic equation for κ we get

κ =
−b± i

√
4ac− b2

2a
,

w5e have also defined κ as

κ =
ω + iνin

co
,

so we can write the dispersion relation as

κ =
ω + iνin

co
=
−b+ i

√
4ac− b2

2a
. (3.57)
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Chapter 4

Shear flow instability in a
partially-ionized plasma sheath around
a fast-moving vehicle in the presence of
Earth’s magnetic field

4.1 Plasma frequency is greater than the ion cyclotron

frequency ωci << ω << ωce

From electron momentum equation.

d~̃u1e

dt̃
+ Ṽey

d~̃u1e

dỹ
+ Ṽez

d~̃u1e

dz̃
+ ũ1ex

d~̃V0e

dx̃
=
e~̃∇φ̃
m̃e

− Ṽ 2
Te

~̃∇ñ1

Ñ0e

− ν̃en(~̃u1e− ~̃u1n)− e

m̃e

(ũ1eyB̃î− ũ1exB̃ĵ).

We will ignore the ion velocity ~̃u1n as they appear stationary in front of electron.Above equation
become.

d~̃u1e

dt̃
+ Ṽey

d~̃u1e

dỹ
+ Ṽez

d~̃u1e

dz̃
+ ν̃en~̃u1e =

e~̃∇φ̃
m̃e

− Ṽ 2
Te

~̃∇ñ1e

Ñ0e

− ũ1ex

d~̃V0e

dx̃
− e

m̃e

(ũ1eyB̃î− ũ1exB̃ĵ). (4.1)

Dropping subscript 1 in all perturbed velocities and densities.Equation 4.1 becomes,

d~̃ue

dt̃
+ Ṽey

d~̃ue
dỹ

+ Ṽez
d~̃ue
dz̃

+ ν̃en~̃ue =
KBTe
m̃e

(
e~̃∇φ̃
KBTe

−
~̃∇ñe
Ñ0e

)− ũex
d~̃Ve
dx̃
− e

m̃e

(ũeyB̃î− ũexB̃ĵ).

By using normalization conditions we will normalize the equation of momentum for electron,
hence

d~ue
dt

+ Vey
d~ue
dy

+ Vez
d~ue
dz

+ νen ~ue =
1

m
(~∇φ− ~∇ne)− uex

d~Ve
dx
− eB

me

(uey î− uexĵ). (4.2)

where eB
mi

= ωce, which is the electron cyclotron frequency of electrons,so equation 4.2 becomes

d~ue
dt

+ Vey
d~ue
dy

+ Vez
d~ue
dz

+ νen ~ue =
1

m
(~∇φ− ~∇ne)− uex

d~Ve
dx
− ωce(uey î− uexĵ). (4.3)
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We will separate eq. (4.3) into its x and y component i.e. ~ue = uexî+ uey ĵ and ~∇ = d
dx
î+ d

dy
ĵ

From X-component of equation 4.3

duex
dt

+ Vey
duex
dy

+ Vez
duex
dz

+ νenuex =
1

m
[
dφ

dx
− dne

dx
]− ωceuey

As all perturbed quantities behave sinusoidaly i.e. f(x, y, t) ∼ exp(ikyy+ ikzz− iωt), therefore
replace d

dt
= −iω, d

dy
= iky and d

dz
= ikz,

also let Vey = Vy and Vez = Vz,

[ω − kyVy − kzVz + iνen]uex =
i

m

d

dx
[φ− ne]− iωceuey. (4.4)

In eq. (4.4) Ωe = ω − kyVy − kzVz + iνen and ψ = φ− ne.

uex =
i

mΩe

dψ

dx
− iωce

Ωe

uey. (4.5)

From Y-component of equation 4.3

duey
dt

+ Vy
duey
dy

+ Vz
duey
dz

+ νenuey =
1

m
[
dφ

dy
− dne

dy
]− uex

dVy
dx

+ ωceuex.

[ω − kyVy − kzVz + iνen]uey = −ky
m

[φ− ne]− uex
idVy
dx

+ iωceuex.

uey = − ky
Ωem

ψ +
iuex
Ωe

[ωce −
dVy
dx

]. (4.6)

By putting value of eq. (4.5) in eq. (4.6), we get

uey = − ky
Ωem

ψ +
i

Ωe

[
i

mΩe

dψ

dx
+
iωce
Ωe

uey][ωce −
dVy
dx

].

uey[Ω
2
e + ωce

dVy
dx
− ω2

ce] = −kyΩe

m
ψ − 1

m

dψ

dx
[ωce −

dVy
dx

].

uey =
−Ωekyψ − dψ

dx
[ωce − dVy

dx
]

m(Ω2
e + ωce

dVy
dx
− ω2

ce)
. (4.7)

Similarly by putting value of eq. (4.6) in eq. (4.5) we get

uex =
i

mΩe

dψ

dx
− iωce

Ωe

(− ky
Ωem

ψ +
iuex
Ωe

[ωce −
dVy
dx

]).

uex
Ω2
e

[Ω2
e + ωce

dVy
dx
− ω2

ce] =
i

mΩe

dψ

dx
+
iωceky
mΩ2

e

ψ.

uex =
iΩe

dψ
dx

+ iωcekyψ

m(Ω2
e + ωce

dVy
dx
− ω2

ce)
. (4.8)
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From Z-component of equation4.3

duez
dt

+ Vy
duez
dy

+ Vz
duez
dz

+ νenuez =
1

m
[
dφ

dz
− dne

dz
]− uex

dVz
dx

.

uez =
−kz
mΩe

ψ − iuex
Ωe

dVz
dx

. (4.9)

By putting value of eq. (4.8) in eq. (4.9) we get

uez =
−kz
mΩe

ψ − i

Ωe

dVz
dx

[
iΩe

dψ
dx

+ iωcekyψ

m(Ω2
e + ωce

dVy
dx
− ω2

ce)
].

uez =
−Ωekzψ + ωce

Ωe
ψ[ky

dVz
dx
− kz dVydx ] + kzω2

ce

Ωe
ψ + dVz

dx
dψ
dx

m(Ω2
e + ωce

dVy
dx
− ω2

ce)
. (4.10)

From electron equation of continuity

dne
dt

+ Vy
dne
dy

+ Vz
dne
dz

= −duey
dy
− duez

dz
− duex

dx
.

−i(ω − kyVy − kzVz)ne = −ikyuey − ikzuez −
duex
dx

.

Let ω − kyVy − kzVz = Ω, hence

iΩne =
duex
dx

+ ikyuey + ikzuez. (4.11)

From eq. (4.8)

duex
dx

=
d

dx
(

iΩe
dψ
dx

+ iωcekyψ

m(Ω2
e + ωce

dVy
dx
− ω2

ce)
)

Let

A = iΩe
dψ

dx
+ iωcekyψ,

and

B = m(Ω2
e + ωce

dVy
dx
− ω2

ce).

hence
duex
dx

=
d

dx
(
A

B
) =

B dA
dx
− AdB

dx

B2
. (4.12)

dA

dx
=

d

dx
(iΩe

dψ

dx
+ iωcekyψ).

Where dΩe
dx

= −ky dVydx − kz
dVz
dx

, hence

dA

dx
= −idψ

dx
(ky

dVy
dx

+ kz
dVz
dx

) + iΩe
d2ψ

dx2
+ iωceky

dψ

dx
.
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dB

dx
=

d

dx
(m(Ω2

e + ωce
dVy
dx
− ω2

ce).

dB

dx
= −2mΩe(ky

dVy
dx

+ kz
dVz
dx

) +mωce
d2Vy
dx2

.

By putting values in eq. (4.12), we get

duex
dx

=
−idψ

dx
(ky

dVy
dx

+ kz
dVz
dx

) + iΩe
d2ψ
dx2

+ iωceky
dψ
dx

m(Ω2
e + ωce

dVy
dx
− ω2

ce)
−

(iΩe
dψ
dx

+ iωcekyψ)(−2mΩe(ky
dVy
dx

+ kz
dVz
dx

) +mωce
d2Vy
dx2

)

m2(Ω2
e + ωce

dVy
dx
− ω2

ce)
2

.

(4.13)

duex
dx

=
−idψ

dx
(ky

dVy
dx

+ kz
dVz
dx

) + iΩe
d2ψ
dx2

+ iωceky
dψ
dx

m(Ω2
e + ωce

dVy
dx
− ω2

ce)

−
(iΩe

dψ
dx

+ iωcekyψ)(−2mΩe(ky
dVy
dx

+ kz
dVz
dx

) +mωce
d2Vy
dx2

)

m2(Ω2
e + ωce

dVy
dx
− ω2

ce)
2

duex
dx

=
−idψ

dx
(ky

dVy
dx

+ kz
dVz
dx

) + iΩe
d2ψ
dx2

+ iωceky
dψ
dx

m(Ω2
e + ωce

dVy
dx
− ω2

ce)

+
(iΩe

dψ
dx

+ iωcekyψ)(2Ωe(ky
dVy
dx

+ kz
dVz
dx

)− ωce d
2Vy
dx2

)

m(Ω2
e + ωce

dVy
dx
− ω2

ce)
2

.

put value of above equation in eq. (4.11)

iΩne =
−idψ

dx
(ky

dVy
dx

+ kz
dVz
dx

) + iΩe
d2ψ
dx2

+ iωceky
dψ
dx

m(Ω2
e + ωce

dVy
dx
− ω2

ce)

+
(iΩe

dψ
dx

+ iωcekyψ)(2Ωe(ky
dVy
dx

+ kz
dVz
dx

)− ωce d
2Vy
dx2

)

m(Ω2
e + ωce

dVy
dx
− ω2

ce)
2

+iky(
−Ωekyψ − dψ

dx
[ωce − dVy

dx
]

m(Ω2
e + ωce

dVy
dx
− ω2

ce)
)

+ikz(
−Ωekzψ + ωce

Ωe
ψ[ky

dVz
dx
− kz dVydx ] + kzω2

ce

Ωe
ψ + dVz

dx
dψ
dx

m(Ω2
e + ωce

dVy
dx
− ω2

ce)
).

Ωne =
−dψ
dx

(ky
dVy
dx

+ kz
dVz
dx

) + iΩe
d2ψ
dx2

+ ωceky
dψ
dx

m(Ω2
e + ωce

dVy
dx
− ω2

ce)

+
(Ωe

dψ
dx

+ ωcekyψ)(2Ωe(ky
dVy
dx

+ kz
dVz
dx

)− ωce d
2Vy
dx2

)

m(Ω2
e + ωce

dVy
dx
− ω2

ce)
2

+(
−Ωek

2
yψ − ky

dψ
dx

[ωce − dVy
dx

]

m(Ω2
e + ωce

dVy
dx
− ω2

ce)
)

+(
−Ωek

2
zψ + ωcekz

Ωe
ψ[ky

dVz
dx
− kz dVydx ] + k2zω

2
ce

Ωe
ψ + kz

dVz
dx

dψ
dx

m(Ω2
e + ωce

dVy
dx
− ω2

ce)
).
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Ωne =
Ωe

d2ψ
dx2
− Ωeψ(k2

y + k2
z) + ωcekz

Ωe
ψ[ky

dVz
dx
− kz dVydx ] + k2zω

2
ce

Ωe
ψ

m(Ω2
e + ωce

dVy
dx
− ω2

ce)
(4.14)

+
(Ωe

dψ
dx

+ ωcekyψ)(2Ωe(ky
dVy
dx

+ kz
dVz
dx

)− ωce d
2Vy
dx2

)

m(Ω2
e + ωce

dVy
dx
− ω2

ce)
2

. (4.15)

A similar result for the density of relectron is obtained in [3]
From normalized neutral equation of momentum

d ~un
dt

+ Vy
d ~un
dy

+ Vz
d ~un
dz

+ νni ~un = −unx
d~V

dx
+ νni~ui (4.16)

X-component of eq. (4.16)

dunx
dt

+ Vy
dunx
dy

+ Vz
dunx
dz

+ νniunx = νniuix.

−i[ω − kyVy − kzVz + iνni]unx = νniuix.

−iΩnunx = νniuix.

unx =
iνniuix

Ωn

. (4.17)

Y-component of eq. (4.16)

duny
dt

+ Vy
duny
dy

+ Vz
duny
dz

+ νniuny = νniuiy − unx
dVy
dx

.

−i[ω − kyVy − kzVz + iνni]uny = νniuiy − unx
dVy
dx

.

−iΩnuny = νniuiy − unx
dVy
dx

.

uny =
iνniuiy

Ωn

− iunx
Ωn

dVy
dx

(4.18)

By putting the value of eq. (4.17) in equation 4.18 we get,

uny =
iνniuiy

Ωn

+
νniuix

Ω2
n

dVy
dx

. (4.19)

Z-component of eq. (4.16)

dunz
dt

+ Vy
dunz
dy

+ Vz
dunz
dz

+ νniunz = νniuiz − unx
dVz
dx

.

−i[ω − kyVy − kzVz + iνni]unz = νniuiz − unx
dVz
dx

.

−iΩnunz = νniuiz − unx
dVz
dx

.
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unz =
iνniuiz

Ωn

+
νniuix

Ω2
n

dVz
dx

(4.20)

From Ions equation of momentum

d~ui
dt

+ Vy
d~ui
dy

+ Vz
d~ui
dz

+ νin~ui − νin ~un = −~∇φ− uix
d~V

dx
+
eB

Mi

(uiy î− uixĵ) (4.21)

X-component of eq. (4.21)

−i[ω − kyVy − kzVz]uix + νinuix − νinunx = −dφ
dx

+ ωciuiy.

−i[ω − kyVy − kzVz]uix + νinuix − νin(
iνniuix

Ωn

) = −dφ
dx

+ ωciuiy.

−i[ω − kyVy − kzVz + iνin(1− iνni
Ωn

)]uix = −dφ
dx

+ ωciuiy.

Let Ωi = ω − kyVy − kzVz + iνin(1− iνni
Ωn

).

uix = − i

Ωi

dφ

dx
+
iωci
Ωi

uiy. (4.22)

Y-component of eq. (4.21)

−i[ω − kyVy − kzVz]uiy + νinuiy − νinuny = −ikyφ− ωciuix − uix
dVy
dx

.

−i[ω − kyVy − kzVz]uiy + νinuiy − νin(
iνniuiy

Ωn

+
νniuix

Ω2
n

dVy
dx

) = −ikyφ− ωciuix − uix
dVy
dx

.

−iΩiuiy =
νinνniuix

Ω2
n

dVy
dx
− ikyφ− ωciuix − uix

dVy
dx

.

uiy =
kyφ

Ωi

+ uix
i

Ωi

[
νinνni

Ω2
n

dVy
dx
− ωci −

dVy
dx

]. (4.23)

By putting value of eq. (4.22) in eq. (4.23) we get,

Ω2
iuiy = kyφΩi + [

dφ

dx
− ωciuiy][

νinνni
Ω2
n

dVy
dx
− ωci −

dVy
dx

].

[Ω2
i + ωci(

νinνni
Ω2
n

dVy
dx
− ωci −

dVy
dx

)]uiy = kyφΩi +
dφ

dx
[
νinνni

Ω2
n

dVy
dx
− ωci −

dVy
dx

].

let C = [Ω2
i + ωci(

νinνni
Ω2
n

dVy
dx
− ωci − dVy

dx
)].

uiy =
kyφΩi + dφ

dx
[νinνni

Ω2
n

dVy
dx
− ωci − dVy

dx
]

C
. (4.24)
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By putting value of eq. (4.23) in eq. (4.22) we get,

Ω2
iuix = −iΩi

dφ

dx
+ iωci[kyφ+ iuix[

νinνni
Ω2
n

dVy
dx
− ωci −

dVy
dx

]].

[Ω2
i + ωci(

νinνni
Ω2
n

dVy
dx
− ωci −

dVy
dx

)]uix = −iΩi
dφ

dx
+ iωcikyφ.

uix =
−iΩi

dφ
dx

+ iωcikyφ

C
. (4.25)

From Z-component of eq. (4.21)

−i[ω − kyVy − kzVz]uiz + νinuiz − νinunz = −ikzφ− uix
dVz
dx

. (4.26)

By putting value of eq. (4.20) in eq. (4.26) we get

−i[ω − kyVy − kzVz]uiz + νinuiz −
iνinνniuiz

Ωn

= −ikzφ− uix
dVz
dx

+
νinνniuix

Ω2
n

dVz
dx

.

−iΩiuiz = −ikzφ− uix
dVz
dx

[1− νinνni
Ω2
n

]. (4.27)

Put value of eq. (4.25) in eq. (4.27)

−iΩiuiz = −ikzφ− [
−iΩi

dφ
dx

+ iωcikyφ

C
]
dVz
dx

[1− νinνni
Ω2
n

].

uiz =
Ckzφ− [Ωi

dφ
dx
− ωcikyφ][1− νinνni

Ω2
n

]dVz
dx

CΩi

. (4.28)

From ion equation of continuity

iΩni =
duix
dx

+ ikyuiy + ikzuiz (4.29)

where

duix
dx

=
−iΩi

d2φ
dx2
− idφ

dx
[ky

dVy
dx

(νinνni
Ω2
n
− 1) + kz

dVz
dx

(νinνni
Ω2
n
− 1)] + iωciky

dφ
dx

C

[iΩi
dφ
dx
− iωcikyφ][2Ωi(ky

dVy
dx

+ kz
dVz
dx

)(νinνni
Ω2
n
− 1)]

C2

+
[iΩi

dφ
dx
− iωcikyφ][ωciνinνni

Ω2
n

d2Vy
dx

+ 2ωciνinνni
Ω3
n

dVy
dx

(ky
dVy
dx

+ kz
dVz
dx

)− ωci d
2Vy
dx2

]

C2
.
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Ωni =
−Ωi

d2φ
dx2
− idφ

dx
[ky

dVy
dx

(νinνni
Ω2
n
− 1) + kz

dVz
dx

(νinνni
Ω2
n
− 1)] + iωciky

dφ
dx

C

[Ωi
dφ
dx
− ωcikyφ][2Ωi(ky

dVy
dx

+ kz
dVz
dx

)(νinνni
Ω2
n
− 1)]

C2

+
[Ωi

dφ
dx
− ωcikyφ][ωciνinνni

Ω2
n

d2Vy
dx

+ 2ωciνinνni
Ω3
n

dVy
dx

(ky
dVy
dx

+ kz
dVz
dx

)− ωci d
2Vy
dx2

]

C2

+[
k2
yφΩi + ky

dφ
dx

[νinνni
Ω2
n

dVy
dx
− ωci − dVy

dx
]

C
]

+[
Ck2

zφ− kz[Ωi
dφ
dx
− ωcikyφ][1− νinνni

Ω2
n

]dVz
dx

CΩi

].

Ωni =
(k2
y + k2

z)Ωiφ+ νinνnikzφ
ΩiΩ2

n

dVz
dx

(kz − ky)− ωcik
2
zφ

Ωi
(ωci + dVy

dx
) + kykzωciφ

dVy
dx
− Ωi

d2φ
dx2

C

[Ωi
dφ
dx
− ωcikyφ][2Ωi(ky

dVy
dx

+ kz
dVz
dx

)(νinνni
Ω2
n
− 1) + ωciνinνni

Ω2
n

d2Vy
dx2

]

C2

+
[Ωi

dφ
dx
− ωcikyφ][2ωciνinνni

Ω3
n

dVy
dx

(ky
dVy
dx

+ kz
dVz
dx

)− ωci d
2Vy
dx2

]

C2
.

ni =
(k2
y + k2

z)Ωiφ+ νinνnikzωciφ
ΩiΩ2

n

dVz
dx

(kz − ky)− ωcik
2
zφ

Ωi
(ωci + dVy

dx
) + kykzωciφ

dVy
dx
− Ωi

d2φ
dx2

ΩC

[Ωi
dφ
dx
− ωcikyφ][2Ωi(ky

dVy
dx

+ kz
dVz
dx

)(νinνni
Ω2
n
− 1) + ωciνinνni

Ω2
n

d2Vy
dx2

]

ΩC2

+
[Ωi

dφ
dx
− ωcikyφ][2ωciνinνni

Ω3
n

dVy
dx

(ky
dVy
dx

+ kz
dVz
dx

)− ωci d
2Vy
dx2

]

ΩC2
.

Consider ion cyclotron frequency to be to be very leass than the plasma frequency,hence.

ni =
(k2
y + k2

z)Ωiφ+ νinνnikzωciφ
ΩiΩ2

n

dVz
dx

(kz − ky)− ωcik
2
zφ

Ωi
(ωci + dVy

dx
) + kykzωciφ

dVy
dx
− Ωi

d2φ
dx2

ΩΩ2
i

[Ωi
dφ
dx
− ωcikyφ][2Ωi(ky

dVy
dx

+ kz
dVz
dx

)(νinνni
Ω2
n
− 1) + ωciνinνni

Ω2
n

d2Vy
dx2

]

ΩΩ4
i

+
[Ωi

dφ
dx
− ωcikyφ][2ωciνinνni

Ω3
n

dVy
dx

(ky
dVy
dx

+ kz
dVz
dx

)− ωci d
2Vy
dx2

]

ΩΩ4
i

.

Ignore terms iovolving νinνni
Ωn

, also as we are dealing with linear velocity profile therefore d2Vy
dx2

= 0.

ΩΩ4
ini = (k2

y + k2
z)Ω

3
iφ− ωciΩik

2
zφ(ωci +

dVy
dx

) + kykzΩ
2
iωciφ

dVy
dx
− Ω3

i

d2φ

dx2 (4.30)

−2Ω2
i

dφ

dx
(ky

dVy
dx

+ kz
dVz
dx

) + 2ωcikyΩiφ(ky
dVy
dx

+ kz
dVz
dx

). (4.31)
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from equation 4.14

Ωne =
Ωe

d2ψ
dx2
− Ωeψ(k2

y + k2
z) + ωcekz

Ωe
ψ[ky

dVz
dx
− kz dVydx ] + k2zω

2
ce

Ωe
ψ

m(Ω2
e + ωce

dVy
dx
− ω2

ce)
(4.32)

+
(Ωe

dψ
dx

+ ωcekyψ)(2Ωe(ky
dVy
dx

+ kz
dVz
dx

)− ωce d
2Vy
dx2

)

m(Ω2
e + ωce

dVy
dx
− ω2

ce)
2

(4.33)

as Ωe << ωce hence above equation becomes

ne =
Ωe

d2ψ
dx2
− Ωeψ(k2

y + k2
z) + ωcekz

Ωe
ψ[ky

dVz
dx
− kz dVydx ] + k2zω

2
ce

Ωe
ψ

mΩ(ωce
dVy
dx
− ω2

ce)

+
(Ωe

dψ
dx

+ ωcekyψ)(2Ωe(ky
dVy
dx

+ kz
dVz
dx

)− ωce d
2Vy
dx2

)

mΩ(ωce
dVy
dx
− ω2

ce)
2

mneΩ(ωce
dVy
dx
− ω2

ce)
2 = (Ωe

d2ψ

dx2
− Ωeψ(k2

y + k2
z) +

ωcekz
Ωe

ψ[ky
dVz
dx
− kz

dVy
dx

])(ωce
dVy
dx
− ω2

ce) +

(
k2
zω

2
ce

Ωe

ψ)(mΩ(ωce
dVy
dx
− ω2

ce)) + (Ωe
dψ

dx
+ ωcekyψ)(2Ωe(ky

dVy
dx

+ kz
dVz
dx

)

−(Ωe
dψ

dx
+ ωcekyψ)(ωce

d2Vy
dx2

)

where d2Vy
dx2

= 0

ne =
Ωe

d2ψ
dx2
− Ωeψ(k2

y + k2
z) + ωcekz

Ωe
ψ[ky

dVz
dx
− kz dVydx ] + k2zω

2
ce

Ωe
ψ

mΩ(ωce
dVy
dx
− ω2

ce)

+
2Ωe(Ωe

dψ
dx

+ ωcekyψ)(ky
dVy
dx

+ kz
dVz
dx

)

mΩ(ωce
dVy
dx
− ω2

ce)
2

(4.34)

mΩ(ωce
dVy
dx
− ω2

ce)
2ne = (ωce

dVy
dx
− ω2

ce)(Ωe
d2ψ

dx2
− Ωeψ(k2

y + k2
z) +

ωcekz
Ωe

ψ[ky
dVz
dx
− kz

dVy
dx

]

+
k2
zω

2
ce

Ωe

ψ) + 2Ωe(Ωe
dψ

dx
+ ωcekyψ)(ky

dVy
dx

+ kz
dVz
dx

) (4.35)

Le = (ωce
dVy
dx
− ω2

ce)(Ωe
d2

dx2
− Ωe(k

2
y + k2

z) +
ωcekz

Ωe

[ky
dVz
dx
− kz

dVy
dx

] +
k2
zω

2
ce

Ωe

)

+2Ωe(Ωe
d

dx
+ ωceky)(ky

dVy
dx

+ kz
dVz
dx

)

mΩ(ωce
dVy
dx
− ω2

ce)
2ne = Leψ

mΩ(ωce
dVy
dx
− ω2

ce)
2ne = Le(φ− ne)
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(mΩ(ωce
dVy
dx
− ω2

ce)
2 + Le)ne = Leφ

Xene = Leφ

from LHS of above equation

Xe = mΩ(ω4
ce + ωce

2dVy
dx

2

− 2ωce
2dVy
dx

) + (ωce
dVy
dx
− ω2

ce)(−Ωe(k
2
y + k2

z)

+
ωcekz

Ωe

[ky
dVz
dx
− kz

dVy
dx

] +
k2
zω

2
ce

Ωe

) + 2Ωeωceky(ky
dVy
dx

+ kz
dVz
dx

) + Ωe
d2

dx2
(ωce

dVy
dx
− ω2

ce)

+2Ω2
e

d

dx
(ky

dVy
dx

+ kz
dVz
dx

)

Xe = mΩω4
ce +mΩωce

2(
dVy
dx

)2 − 2mΩωce
2dVy
dx
− Ωe(k

2
y + k2

z)(ωce
dVy
dx
− ω2

ce)

+
ω2
cekz
Ωe

dVy
dx

[ky
dVz
dx
− kz

dVy
dx

] +
k2
zω

3
ce

Ωe

dVy
dx
− ω3

cekz
Ωe

[ky
dVz
dx
− kz

dVy
dx

]

−k
2
zω

4
ce

Ωe

) + 2Ωeωceky(ky
dVy
dx

+ kz
dVz
dx

) + Ωe
d2

dx2
(ωce

dVy
dx
− ω2

ce) + 2Ω2
e

d

dx
(ky

dVy
dx

+ kz
dVz
dx

)

ne =
Leφ

Xe

(4.36)

Considering case where kz = 0
In this following supposition is made that the strength of magnetic field is so less that there is
no propagation of plasma along z direction and it will propagate along y axis only with velocity
shear along x direction.
From equation equation for the neutral density can be written as.

ni =
k2
yφ

ΩΩi

− 1

ΩiΩ

d2φ

dx2 +
2ky
Ω2
iΩ

dφ

dx

dVy
dx

(4.37)

for such case Xe will become.

Xe = mΩω4
ce +mΩωce

2(
dVy
dx

)2 − 2mΩωce
2dVy
dx
− Ωek

2
y(ωce

dVy
dx
− ω2

ce)

+2Ωeωcek
2
y

dVy
dx

+ Ωe
d2

dx2
(ωce

dVy
dx
− ω2

ce) + 2Ω2
eky

d

dx

dVy
dx

Similarly Le will become.

Le = Ωe
d2

dx2
(ωce

dVy
dx
− ω2

ce)− Ωek
2
y(ωce

dVy
dx
− ω2

ce) + 2Ω2
eky

dVy
dx

d

dx
+ 2ωceΩek

2
y

dVy
dx

From Poisson equation

d2φ

dx2 − k
2
yφ = ne − ni (4.38)

By putting values of equation 4.37 and 4.36 in equation 4.38 we get.
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d2φ

dx2 − k
2
yφ =

Leφ

Xe

−
k2
yφ

ΩΩi

+
1

ΩiΩ

d2φ

dx2 +
2ky
Ω2
iΩ

dφ

dx

dVy
dx

d2φ

dx2 (1− 1

ΩiΩ
)− k2

yφ(1− 1

ΩΩi

) =
Leφ

Xe

+
2ky
Ω2
iΩ

dφ

dx

dVy
dx

where ΩΩi << 1 hence above equation becomes

− 1

ΩiΩ

d2φ

dx2 +
k2
yφ

ΩΩi

=
Leφ

Xe

+
2ky
Ω2
iΩ

dφ

dx

dVy
dx

Xe[−
d2φ

dx2 + k2
yφ−

2ky
Ωi

dVy
dx

dφ

dx
] = ΩiΩLeφ

[mΩω4
ce +mΩωce

2(
dVy
dx

)2 − 2mΩωce
2dVy
dx
− Ωek

2
y(ωce

dVy
dx
− ω2

ce) + 2Ωeωcek
2
y

dVy
dx

+ Ωe
d2

dx2
(ωce

dVy
dx
− ω2

ce) + 2Ω2
eky

d

dx

dVy
dx

][−d
2φ

dx2 + k2
yφ−

2ky
Ωi

dφ

dx

dVy
dx

]

= ΩiΩ[Ωe
d2

dx2
(ωce

dVy
dx
− ω2

ce)− Ωek
2
y(ωce

dVy
dx
− ω2

ce) + 2Ω2
eky

dVy
dx

d

dx
+ 2ωceΩek

2
y

dVy
dx

]φ (4.39)

Solving coefficient of d2φ
dx2

in eq. (4.39)

−[mΩω4
ce +mΩωce

2(
dVy
dx

)2 − 2mΩωce
2dVy
dx
− Ωek

2
y(ωce

dVy
dx
− ω2

ce) + 2Ωeωcek
2
y

dVy
dx

+Ωe
d2

dx2
(ωce

dVy
dx
− ω2

ce) + 2Ω2
eky

d

dx

dVy
dx

]− ΩiΩΩe[(ωce
dVy
dx
− ω2

ce) = 0

−mΩω4
ce −mΩωce

2(
dVy
dx

)2 + 2mΩωce
2dVy
dx

+ Ωek
2
y(ωce

dVy
dx
− ω2

ce)(1−
ΩiΩ

k2
y

)− 2Ωeωcek
2
y

dVy
dx

−Ωe
d2

dx2
(ωce

dVy
dx
− ω2

ce)− 2Ω2
eky

d

dx

dVy
dx

= 0

where ΩiΩ
k2y

<< 1 hence above equation becomes

−[mΩω4
ce +mΩωce

2(
dVy
dx

)2 − 2mΩωce
2dVy
dx
− Ωek

2
y(ωce

dVy
dx
− ω2

ce) + 2Ωeωcek
2
y

dVy
dx

+Ωe
d2

dx2
(ωce

dVy
dx
− ω2

ce) + 2Ω2
eky

d

dx

dVy
dx

] = −Xe

Solving coefficient of dφ
dx

in eq. (4.39)

[mΩω4
ce +mΩωce

2(
dVy
dx

)2 − 2mΩωce
2dVy
dx
− Ωek

2
y(ωce

dVy
dx
− ω2

ce) + 2Ωeωcek
2
y

dVy
dx

+Ωe
d2

dx2
(ωce

dVy
dx
− ω2

ce) + 2Ω2
eky

d

dx

dVy
dx

][
−2ky

Ωi

dVy
dx

]− 2Ω2
eΩiΩky

dVy
dx

= 0.
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[mΩω4
ce +mΩωce

2(
dVy
dx

)2 − 2mΩωce
2dVy
dx
− Ωek

2
yωce

dVy
dx

+ 2Ωeωcek
2
y

dVy
dx

+Ωe
d2

dx2
(ωce

dVy
dx
− ω2

ce) + 2Ω2
eky

d

dx

dVy
dx

][
−2ky

Ωi

dVy
dx

]−
2kyΩek

2
yω

2
ce

Ωi

dVy
dx

[1− ΩeΩ
2
iΩ

k2
yω

2
ce

] = 0.

Where the value of
ΩeΩ2

iΩ

k2yω
2
ce

] << 1 so it can be ignored, hence

[mΩω4
ce +mΩωce

2(
dVy
dx

)2 − 2mΩωce
2dVy
dx
− Ωek

2
y(ωce

dVy
dx
− ω2

ce) + 2Ωeωcek
2
y

dVy
dx

+Ωe
d2

dx2
(ωce

dVy
dx
− ω2

ce) + 2Ω2
eky

d

dx

dVy
dx

][[
−2ky

Ωi

dVy
dx

] =
−2kyXe

Ωi

dVy
dx

.

Solving the coefficient of φ in eq. (4.39)

[mΩω4
ce +mΩωce

2(
dVy
dx

)2 − 2mΩωce
2dVy
dx

+ Ωe
d2

dx2
(ωce

dVy
dx
− ω2

ce) + 2Ω2
eky

d

dx

dVy
dx

][k2
y]

+Ωek
4
yω

2
ce(1−

ΩiΩ

k2
y

) + Ωeωcek
4
y

dVy
dx

(1− ΩiΩ

k2
y

) = 0

where the value of ΩiΩ
k2y

<< 1 therefore it can be ignored, hence

[mΩω4
ce +mΩωce

2(
dVy
dx

)2 − 2mΩωce
2dVy
dx

+ Ωe
d2

dx2
(ωce

dVy
dx
− ω2

ce) + 2Ω2
eky

d

dx

dVy
dx

][k2
y]

+Ωek
4
yω

2
ce + Ωeωcek

4
y

dVy
dx

= k2
yXe.

By putting the values of all the coefficients in eq. (4.39), we get

−Xe
d2φ

dx2 + k2
yXeφ−

2kyXe

Ωi

dVy
dx

= 0. (4.40)

By decoupling eq. (4.40) we get

d2φ

dx2 − k
2
yφ+

2ky
Ωi

dVy
dx

= 0. (4.41)

The second order differential equation obtained in 4.41 is similar to the differential equation
obtained when both electrons and ions are un-magnetized.

4.2 Plasma frequency is less than the ion-cyclotron fre-

quency ω << ωci << ωce

ni =
(k2
y + k2

z)Ωiφ− ωcik
2
zφ

Ωi
(ωci + dVy

dx
) + kykzωciφ

dVy
dx
− Ωi

d2φ
dx2

ΩC

−2Ωi[Ωi
dφ
dx
− ωcikyφ](ky

dVy
dx

+ kz
dVz
dx

]

ΩC2

where C = [Ω2
i + ωci(

νinνni
Ω2
n

dVy
dx
− ωci − dVy

dx
)]
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hence above equation becomes

C = [Ω2
i − ωci(ωci +

dVy
dx

)]

as Ωi << ωci [24],hence

C = ωci(ωci +
dVy
dx

)

ni =
(k2
y + k2

z)Ωiφ− ωcik
2
zφ

Ωi
(ωci + dVy

dx
) + kykzωciφ

dVy
dx
− Ωi

d2φ
dx2

Ωωci(ωci + dVy
dx

)

−2Ωi[Ωi
dφ
dx
− ωcikyφ](ky

dVy
dx

+ kz
dVz
dx

]

Ωω2
ci(ωci + dVy

dx
)2

let

Xi =
(k2
y + k2

z)Ωi − ωcik
2
z

Ωi
(ωci + dVy

dx
) + kykzωci

dVy
dx
− Ωi

d2

dx2

Ωωci(ωci + dVy
dx

)

−2Ωi[Ωi
d
dx
− ωciky](ky dVydx + kz

dVz
dx

]

Ωω2
ci(ωci + dVy

dx
)2

hence
ni = Xiφ (4.42)

put value of ne and ni in equation 4.37

d2φ

dx2 − (k2
z + k2

y)φ =
Leφ

Xe

−Xiφ

Xe(
d2

dx2 − (k2
z + k2

y))φ = Leφ−XeXiφ

Xe(
d2

dx2 − (k2
z + k2

y)−Xi)φ = Leφ (4.43)

We will assume the particles have a sheared drift velocity along the Z direction, which is
parallel to the external magnetic field, hence letting dVy

dx
= 0

hence

Xi =
(k2
y + k2

z)Ωi − ω2
cik

2
z

Ωi
− Ωi

d2

dx2

Ωω2
ci

−
2Ωi[Ωi

d
dx
− ωciky](kz dVzdx ]

Ωω4
ci

Xi =
(k2
y + k2

z)ω
2
ciΩi − ω4

cik
2
z

Ωi
− Ωiω

2
ci
d2

dx2
− 2Ω2

i kz
dVz
dx

d
dx

+ 2Ωiωcikykz
dVz
dx

Ωω4
ci

Xe = mΩω4
ce + Ωeω

2
ce(k

2
y + k2

z)−
ω3
cekzky
Ωe

dVz
dx
− k2

zω
4
ce

Ωe

+ 2Ωeωcekykz
dVz
dx

Le = −ω2
ceΩe

d2

dx2
+ ω2

ceΩe(k
2
y + k2

z)−
ω3
cekzky
Ωe

dVz
dx
− k2

zω
4
ce

Ωe

+ 2Ω2
ekz

dVz
dx

d

dx
+ 2Ωeωcekzky

dVz
dx
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from LHS of equation 4.39

d2

dx2 − (k2
z + k2

y)−Xi =
1

Ωω4
ci

(Ωω4
ci

d2

dx2 − Ωω4
ci(k

2
z + k2

y)− (k2
y + k2

z)ω
2
ciΩi −

ω4
cik

2
z

Ωi

−Ωiω
2
ci

d2

dx2 − 2Ω2
i kz

dVz
dx

d

dx
+ 2Ωiωcikykz

dVz
dx

)

from equation 4.39

Xe(Ωω
4
ci

d2

dx2 − Ωω4
ci(k

2
z + k2

y)− (k2
y + k2

z)ω
2
ciΩi −

ω4
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2
z

Ωi

− Ωiω
2
ci

d2

dx2 − 2Ω2
i kz

dVz
dx

d

dx

+ 2Ωiωcikykz
dVz
dx

)φ = Ωω4
ciLeφ (4.44)

Xe = mΩω4
ce + Ωeω

2
ce(k

2
y + k2

z)−
ω3
cekzky
Ωe

dVz
dx

(1− 2Ω2
e

ω2
ce

)− k2
zω

4
ce

Ωe

as ωce > Ωe

Xe = mΩω4
ce + Ωeω

2
ce(k

2
y + k2

z)−
ω3
cekzky
Ωe

dVz
dx
− k2

zω
4
ce

Ωe

from of equation 4.40
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2
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2
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zω
4
ce

Ωe

)(Ωω4
ci

d2

dx2 − Ωω4
ci(k

2
z + k2

y)− (k2
y + k2

z)ω
2
ciΩi

− ω4
cik

2
z

Ωi

− Ωiω
2
ci

d2

dx2 − 2Ω2
i kz

dVz
dx

d
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dVz
dx
− k2

zω
4
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Ωe
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(4.45)

from coefficient of d2φ
dx2

(mΩω4
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2
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2
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4
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2
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2
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dVz
dx
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zω
4
ce
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ceΩeω
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as ωci >> Ωi hence
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i kz

dVz
dx

)− 2ω4
ciΩ

2
ekz

dVz
dx

= H

from coefficient of φ
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hence equation 4.42 becomes

I
d2φ

dx2 +H
dφ

dx
+ Jφ = 0 (4.47)
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Chapter 5

Results and Discussion

The general form of the dispersion relation for ion acoustic waves wave instability due to hy-
personic sheared flow is of form ω = α+ iγ. Where α and γ are Re(ω) and Im(ω) respectively.
The real part of frequency corresponds to the propagation of wave, whereas imaginary part
of frequency decides the existence or non-existence of the wave in plasma i.e. either the wave
is supported by plasma, it grows and can propagate, or the plasma absorbs and damps the
wave. This is decided by the sign of the imaginary of frequency, the positive imaginary part
of frequency leads into growth of the wave amplitude with time whereas negative sign of the
imaginary part leads to damping of the wave.[6]

In order to correctly evaluate the growth rate of instability and the role of neutral particles
in suppressing such instabilities, a second order differential equation for electrostatic potential
of the ion acoustic waves is derived and solved analytically for linear velocity profile of the
sheared flow, using appropriate boundary conditions for finite thickness of plasma sheath. An
appropriate scaling relationship for the instability in case of linear velocity profile is obtained
through the analytical calculations which is of the form

κ =
ω + iνin

co
=
−b+ i

√
4ac− b2

2a
. (5.1)

In eq. (5.1)
a = ekL,

b = 0.5ekL − 0.5ekL − kLekL,

c = 0.5e−kL − 0.5ekL + kLekL.

Where k = k̃yλ̃De is a dimensionless number for dimensional wave number k̃y, λ̃De =
√

KB T̃e
4πÑ0ee

2

is the electron Debye length, L is the length of sheath normalized to electron Debye length, ω
and νin are the normalized wave frequency and collision frequency with respect to ion plasma

frequency i.e. ω̃pi =
√

4πZ2e2Ñ0imax

M̃i
.

The nominal plasma parameters which we will use are N0n = 1010cm−3, N0i = N0e = 108cm−3,
Te = 0.5eV and Ti = Tn = 0.1eV .

In the absence of collision eq. (5.1) can be written as

ω =
−b+ i

√
4ac− b2

2a
,
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where

Re(ω)

c0

=
−b
2a
,

Im(ω)

c0

=

√
4ac− b2

2a
.

If we plot Re(ω)
c0

and Im(ω)
c0

against kL we will get the following results,
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Figure 5.1: Real part of frequency Re(ω)
c0

as a function kL
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Figure 5.2: The growth rate of frequency Im(ω)
c0

as a function of kL

Through numerical evaluation of fig. 5.1 and fig. 5.2, the values of maximum growth rate
(γmax), the max real frequency (ωr,max) and wavenumber (kmax) at peak growth rate, and the
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wavenumber kc at cutoff wavelength are obtained, where

γmax = Max[Im(ω)] ' 0.247c0,

ωr,max ' 0.842c0,

kmax '
1.23

L
,

and

kc '
1.83

L
.

We have considered linear velocity profile V0(x) = c0x, which is normalized with respect to

ion sound speed Cs =
λ̃Deω̃pi√

Z
=
√

KB T̃e
M̃i

. Considering the value of L >> 1 and value normalized

of peak sheath velocity at the out edge to be c0L ≤ 1. These scaling relationships are made in
order to satisfy our low frequency assumptions.

We will consider two cases, first in which the sheath edge velocity 0.5 times the ion sound
speed i.e. c0 = 0.5

L
and another case in which the edge velocity is equal to ion sound speed i.e

c0 = 1
L

. For both the cases plots are obtained for the real frequency Re(ω)and growth rate
Im(ω) against normalized wavenumber k. In all cases considered we will take value of L = 200.
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Figure 5.3: Plot of normalized real frequency Re(ω) as a function of normalized wavenumber
k for linear velocity shear with c0 = 0.5

L
and c0 = 1

L
in the collisionless limit.
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Figure 5.4: Plot of normalized growth rate Im(ω) as a function of normalized wavenumber k
for linear velocity shear with c0 = 0.5

L
and c0 = 1

L
in the collisionless limit.

From numerical evaluation of fig. 5.4, it was observed that by decreasing the peak sheath
velocity at the outer edge by half, a decrease in the maximum growth of instability is observed.
The value peak growth rate for c0 = 1

L
is γmax ' 0.0012348 and that for c0 = 0.5

L
is γmax '

0.0006174. The value of wavenumber (kmax) at peak growth rate, and the wavenumber kc at
cutoff wavelength are, kmax ' 0.00615 and kc ' 0.00915 respectively.

Till now the calculations we have done are for collionless limit now if we take collision
between ion and neutral into account well get the following dispersion relation

ω = (
−b+ i

√
4ac− b2

2a
)co − iνin. (5.2)

In eq. (5.2), νin is the normalized collision frequency which is equal to

νin =
ν̃in
ω̃pi

=
N0nVT iσin

ω̃pi
,

where VT i =
√

KBTi
Mi

is the thermal velocity of electron and σin is the cross section of ions col-

liding with neutrals having value σin ' 6× 10−14cm2 (approximating potassium ions,liberated
from the outer coating of the vehicle, interacting with nitrogen molecule). By putting values
in equation we get νin = 1.4097× 10−15N0n.

We have observed the effect of ion neutral collision on growth rate of instability, by plot-
ting a graph of growth rate as a function of k for different values of N0n. The value of c0 is
taken to be 1

L
, hence

Im(ω) =

√
4ac− b2

2aL
− νin.

If we plot the growth rate Im(ω) of the wave against normalized wave number k for different
neutral densities we get the following figures.

65



N0 n = 1010

N0 n = 1011

N0 n = 2 ´ 1011

N0 n = 4 ´ 1011

N0 n = 6 ´ 1011

N0 n = 8 ´ 1011

0.000 0.002 0.004 0.006 0.008 0.010

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

k

Im
HΩ

L

Figure 5.5: Plot of growth rate Im(ω) as a function of k for different values of the neutral
density N0n
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Figure 5.6: Plot of growth rate Im(ω) as a function of k for different values of the neutral
density N0n, when c0 = 0.5

L

The fig. 5.5 and fig. 5.6 are plots of growth rate of instability for linear velocity shear as
a function of normalized wavenumber k for different values of neutral number density N0n.
The values of neural density considered are between the range of N0n = 1010cm−3 to N0n =
1012cm−3, where substantial damping of ion-acoustic wave instability occurs. It is observed
that by increasing the neutral density within the plasma sheath a decrease in the peak growth
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rate of instability takes place to a point where it damps out, this occurs due to an increase in
the ion-neutral collision frequency.
For c0 = 1

L
in collisional limit the peak growth rate was Im(ωmax) = 1.22 × 10−3 a complete

damping of wave takes place when neutral density is N0n = 8.76 × 1011 or νin = 1.23 × 10−3,
which is 1% greater than the peak growth rate. For c0 = 0.5

L
in collisional limit the peak growth

rate was Im(ωmax) = 6.03×10−4, a complete damping of wave takes place when neutral density
is N0n = 4.38× 1011 or νin = 6.17× 10−4, which is 3% greater than the peak growth rate.
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