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Abstract

When a re-entry vehicle enters the earth’s atmosphere with speed greater than that of sound
a plasma sheath cover the re-entry vehicle which causes communication blackout by either
reflecting or absorbing the electromagnetic waves coming to or from the vehicle. In order to
lessen this blackout region it important to know then characteristics of the plasma sheath region.
Due to shear flow of the plasma sheath, instability within the low-frequency ion acoustic waves
take place. As re-entry vehicle enters the earth’s atmosphere collision of charged particles with
neutrals start to increases. In this thesis the effect of collisions on the growth rate of instability
has been studied. It was observed, that by increasing collision growth rate of the instability
decreases to a point where the instability is completely damped.
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Chapter 1

Introduction

1.1 How can we define Plasma?

In ordinary conditions, the matter presents itself in three fundamental states: solid, liquid and
gas, which are characterized by different level of bonding between them. In general, a phase
transition occur if we increase the temperature (i.e. the average kinetic energy of the molecules)
, by further increasing the temperature the collisional rate and the degree of ionization of the
gas also increases. The ionized gas could then become plasma, if conditions for density, tem-
perature, and characteristic length are met. Plasma is defined as,

“A plasma is a quasineutral gas of charged and neutral particles which exhibits collective
behavior.” [5]

Quasi-neutrality

The term ‘quasi-neutrality’, is just a mathematical way of saying that charge densities of free
electrons and ions cancel each other in equilibrium. So if the number density of electron and
ions is n. and n; respectively with charge state Z then

Ne & Zn;.
It means that in the absence of extrinsic disturbance, the plasma as a whole is neutral, but

within plasma there are some places where discrepancies within the number densities of the
charge particles takes place.

Collective behavior

4

The term ‘collective behavior ‘ shows that motions within plasma not only depend on the
local conditions but also on the state of plasma in far regions. Consider the case of air which
consists of neutral molecules, the force of gravity acting on the air is so less that it can be
neglected. The molecules will move undisturbed unless its collision with another molecule
takes place. These collisions control the particle’s motion within plasma. When a macroscopic
force such as sound waves generated from a loudspeaker is applied to the neutral gas, it will be
transmitted to an individual atom through collisions. But in the case of plasma, the situation
is completely different, as plasma contains charge particles they will move around and create
a local concentration of negative and positive charges, which in turn gives rise to an electric
field. As these charges move around current within the plasma is generated and a magnetic
field is formed. These fields also affect the motion of other charged particles which are present
far away. [7]



1.2 Debye shielding/Debye length

This property of plasma provides the measure of distance, over which the electric field of a
single particle, is felt by other charged particles present in plasma. If there is an electrostatic
field present within the plasma than the charged particles will arrange themselves in such a
way to shield out the potential. The distance over which the shielding occurs is of the order of

debye length, written as
[eoKpT,
)\De = 2 Y
e’n,

where T, is the temperature of electron , and n, is the number density of electron.A debye
sphere is a volume over which the field of the charged particle is felt by other charged particles,
it is also known as the sphere of influence, outside the debye sphere the charged particles are
electrically screened. Debye sphere has a radius of debye length, and each charge within the
debye sphere interact collectively with charges that lie inside the debye sphere. Np represents
the number of electrons that lie inside the debye sphere, given by

3
Ny = fll<€0KBTe) g

ks 2
3n€2 (&

1.3 Criterion for Plasma

As we have already described the Debye length and plasma oscillations. We can specify the
criterion which must be satisfied by an ionized gas for it to have a plasma nature.[16]

1. The first criterion of the plasma is that the physical length "L" of the plasma should be
greater than its Debye length Ap,
Ap << L.

If the above condition is violated then there will not be enough space for collective shield-
ing effect to take place.

2. Due to its collective behavior, shielding effect inside the Debye sphere having radius Ap
within plasma takes place. The number of particles within the Debye sphere is,

Np = ?neADg,

where the plasma parameter is defined as n.A\p® = A, and from here the second criterion
for plasma arises, which states that the average distance between electrons must be very
small compared to the debye length i.e.

A>>>1.

3. Partially ionized plasmas e.g, the earth’s ionosphere has a considerable amount of neutral
particles. If there are too many collisions of the charged particles with the neutral particles
then the electrons will be compelled to form an equilibrium with the neutrals. Hence the



ionized medium will not behave as plasma but instead will form an electrically conducting
neutral gas. In order to make sure that the electrons are not affected by the neutral
particles, the following condition is needed to be met,

WTen > 1,

where w is the plasma frequency, and 7., is the mean time between the collision of electrons
with the neutrals.

1.4 Plasma in nature

Having a quantity of more than 99% in the universe, plasma is said to be the most abundant
state of matter. But within the earth’s atmosphere, the quantity of plasma is very less. The
few examples in our daily life, to which plasmas are limited to, are the soft glow of Aurora
Borealis, the ionization in a rocket exhaust, the gas inside neon signs or fluorescent tubes and,
the flash of a lightning bolt. Outside the earth’s atmosphere, we can find plasma in solar winds,
Van Allen radiation belts, magnetosphere, etc [11]

1.4.1 Solar wind

The solar wind is very conducting plasma which is produced by the sun. It travels at a speed of
about 500km /s between the spaces of the planets and is formed due to the supersonic expansion
of the aura of plasma surrounding the sun. The solar wind mostly consist of electrons and
protons with upto 5% of helium also present in them. When the solar wind hits the earth’s
magnetic field, it is deflected around it. As it strikes the earth’s magnetic field with a speed
greater than that of sound a bow shock is created, which causes conversion of some of the
particles kinetic energy into thermal energy. Behind the bow shock, another region of plasma
exists called the magnetosheath region. The density and temperature of the magnetosheath
region are higher than the solar wind plasma.[1]
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Figure 1.1: Topography of the solar-terrestrial environment



1.4.2 Magnetosphere

A magnetosphere is formed when solar wind interact with the earth’s magnetic field. The
separation between the shocked solar wind and the magnetosphere is known as Magnetopause.
The magnetosphere is stretched in a direction opposite to the sun, in such a way that a tail
is formed known as Magnetotail. The stretching of the magnetosphere is caused due to solar
wind’s kinetic pressure, due to which the front side of the magnetosphere is compressed while
the backside is stretched.

Magnetosphere’s plasma mostly have electrons and protons present in it. Due to the solar
winds, He™™" ions are also present. In addition to this, due to the terrestrial ionosphere, mag-
netosphere also has a fraction of Het and O% ions.The plasma of magnetosphere not evenly
distributed but consists of the different region each of which has different plasma temperature
and density.[31]

1.4.3 Ionosphere

The interaction of the earth’s atmosphere with solar UV light causes ionization of some of the
neutral particles which are present there. Collisions which takes place at a height of 80km are
very less due to which the ionized particles will not recombine, hence an ionized region known
as Tonosphere is formed. Electron density at the mid-latitude of the ionosphere is n, ~ 10°cm =3
and the temperature is T, ~ 103K.

At high altitudes the electrons from plasma sheet region move in the direction of the earth’s
terrestrial magnetic field lines, and down to the altitude of the ionosphere, where they collide
with the neutral atmosphere and ionizes them, as a result, photons are emitted and these emit-
ted photons form the aurora which are also known as the polar lights.[15]

1.5 Collisional frequency and mean free path

Based on collision, plasma can be of two types collisional or collisionless. In collision less
plasma the collisions are infrequent compared to the particle dynamics hence they can be
neglected, whereas in the case of collisional plasma collisions are so frequent that they dominate
the behavior of the plasma. Collisional plasma can further be classified into two types, partially
ionized or fully ionized plasma.[13]

e Partially-ionized plasma consists of charged particles along with a large number of neu-
tral particles. In partially-ionized plasma, most of the collisions that take place, are
between the charged and the neutral particles, which affect the motion of the charged
particles within the plasma. The number of collision per second is known as the collisional
frequency. Where v,,, is the collisional frequency and is written as

Van = NOnVTaUan>

Where Ny, is the equilibrium number density of the neutrals, Vr, is the average thermal
speed of the charged particle, and o, is the crossection of the given event.

The particles are considered to move freely between collisions and distance traveled by
the particles between collisions is known as the free path. When the distance traveled by
the particles between collisions changes in a statistical manner then mean of the distance
traveled by the particles is known as mean free path. The formula for the mean free path



is

Vr, 1
Van NOn Oan

An

e In fully-ionized plasma all the atoms or molecules within the plasma are ionized. In this,
the charged particles interact with each other through their Columb electric fields. These
fields cause deflection of the particles at an interparticle distance, that is much larger than
the atom’s radius. Hence the crossection of the colliding particles is increased through
Columb’s collisions.

1.6 Waves in Plasma

A wave is propagation with periodic motion characterized by, wavelength A, wave number £k,
angular frequency w and amplitude A. The phase velocity v,, = 7 characterizes motion of
wave crests, and the group velocity v, = Z—“,; gives the speed at which the full wave package
can propagate. The waves in plasma are an interconnected set of particles and fields that
spread periodically throughout the plasma. Waves in plasma can either be electrostatic or
electromagnetic depending on the presence of an oscillating magnetic field. The electrostatic
waves are purely longitudinal whereas the electromagnetic must have a transverse component
but they may also have a longitudinal component. Further classification of the plasma waves is
due to the oscillating species. The modes of propagation of the oscillating species are classified
by whether they moving ,perpendicular, parallel, or or at and angle to the stationary magnetic
field or if their propagation is in the absence of magnetic field[5] [1]
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Waves in Plasma
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Figure 1.2: Waves in Plasma

1.6.1 Plasma oscillations

In a quasineutral plasma, an electric field is build up when an electron is moved away from
its equilibrium position. The electric field’s direction will be such that it will pull the electron
back to its original position to restore the plasma neutrality. When an electric field acts on
electrons, pulling them back to their original position, the inertia of electrons will cause them
to overshoot and move to and fro, oscillating about their position of equilibrium at a frequency
known as the plasma frequency. The ion being massive in size do not have time to respond to
the oscillating electric field due to which they appear fixed at the background. The electron

plasma frequency is given as|2]
n0€2 2
Wy, = :
be Me€o

where ng is the equilibrium density, and ¢y is the permittivity in free space.

1.6.2 Electromagnetic waves in an unmagnetized plasma

The dispersion relation for na Electromagnetic wave traveling through plasma in the absence
of magnetic field can be written as [27]

w? = wl, + k*c, (1.1)

11
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where ¢ is the speed of light in vacuum, having value ¢ =

Figure 1.3: Dispersion relation for electromagnetic waves unmagnetized plasma

The fig. 1.3 shows a graph of the dispersion relation for electromagnetic waves in plasma.
For a small wavenumber, the group velocity approaches to zero and plasma oscillations take
place, whereas for a large wave number both the group velocity and phase velocity converges
towards the speed of light. For frequency of waves which are larger than the plasma frequencies
we get light waves a from eq. (1.1) w = ke, the index of refraction for such waves in this case

will be n = -~ = <% The index of refraction of a wave having frequency smaller than the

Uph w
¥
n = — —2
w

plasma frequency is

The waves will propagate through the medium if n? > 0, hence electromagnetic waves can exist
only if w > wp.. When w < wy, an imaginary refractive index occurs, such waves would not
propagate through the medium but they will decay.

Electromagnetic waves can be used in plasma diagnostics in space or ionosphere. We can
determine the density of the plasma by sending radio signals to another satellite and detecting
the radio wave coming back from them. As plasma absorbs the incident electromagnetic wave
when its frequency is equal to that of the plasma frequency , hence if we know frequency of the
absorbed wave we can determine the density in the medium.

N|=

1.7 Instabilities in Plasma

A Maxwellian distribution is used for the particles in plasma when it is in thermodynamic equi-
librium. When plasma deviates from its thermodynamic equilibrium condition, a free source
of energy is given to the particles, which under certain conditions gives rise to plasma instabil-
ities. Such a deviation can take place both inhomogeneous plasma and homogeneous plasma
systems. In a homogeneous plasma system, the deviation from thermodynamic equilibrium
occurs in velocity space. One of the examples of instabilities which occur due to deviation in
velocity space is the ion-acoustic instability.[28]

12
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The fig. 1.4 shows a simple mechanical analog of how a sphere which is situated in an
external potential field can find itself in different stable and unstable situations.

e In stable equilibrium,the sphere lies at the lowest point inside the potential trough, and
oscillate around its equilibrium position. In the presence of friction, these oscillations will
be damped out and the sphere will come to rest at the bottom of the potential trough.

e In the case of linear instability, a slight linear distortion will let it roll down the hill,
following unstable case sets in spontaneously.

e In the metastable state, the sphere lies on the top of a hill’s plateau and wander around,
until it reaches a point from where it rolls down the plateau.

e In nonlinear instability the sphere is stable for a small amplitude of disturbance, but for
the case of large amplitudes, it becomes unstable.

In the case of plasma, the potential trough/well corresponds to a free energy source, while the
heavy sphere in the potential well corresponds to a wave mode, mostly which are the Eigen-
modes of plasma. A plasma is said to be in a state of stable thermodynamic equilibrium if it
has a Maxwellian velocity distribution and is homogeneous in space. If plasma is not in a state
of thermodynamic equilibrium it means that it has some amount of free energy stored in it,
which can be converted into radiation or violent motion of the plasma. In the case of plasma,
such processes collectively take place. A plasma can move away from its thermodynamic equi-
librium in two ways, first is having velocity distribution other than Maxwellian and the second
one is localization in space with a locally higher or lower temperature, pressure density, or other
thermodynamic quantity.[18]

The dispersion relation is a complex equation and has several solutions, w = w, + iy. For

complex frequency, the behavior of the wave’s amplitude depends on the sign of imaginary part
~ of the frequency. For

13



e 7 < 0, the real part of the frequency decreases exponentially with time and is damped
out.

e v > 0, the amplitude of the wave grows with time.

Shear flow instability

When there is a local variation of the velocity vector in a given direction, the fluid flow is called
shear flow. For example, when the fluid is moving along the x-direction and the magnitude
of the fluid velocity is changing along the y-direction, then we can say that the velocity is
shear in the fluid flow[30]. The sketch of this simple linear shear flow is given in fig. 1.5.The
mathematical expression for the velocity components (v,, vy, v,) of shear flow given in the fig. 1.5
can be written as

v, (y) = Cy, with v, = v, = 0.

Where C is the slope of the profile, it is also called the constant gradient of the velocity.

y

:7/ "
Figure 1.5: A picture of simple shear flow. The fluid is moving along x-direction and velocity
is linearly changing with y

The instability which is caused due to a change in the velocity profile of the plasma which
takes place due to is called Shear flow instability [33], where the change in velocity profile can
occur due to turbulence within Plasma.

1.8 Different theoretical approaches to study the behav-
ior of Plasma

We can describe the dynamics of the plasma by its interaction with external electric and
magnetic fields. When the charged particles move within plasma they create a local charge
concentration, which give rise to internal electric field. Electric current will be generated
by the motion of these particles which also causes internal magnetic fields to be generated.
The response of these internal fields to the motion of particles in plasma and external fields
makes the study of plasma very difficult. Also, plasma shows different characteristics such that
their densities, temperature, and degree of ionization can change. The effect of collisions and
electromagnetic forces also has great importance in the study of plasma dynamics. Hence to
study different behaviors of plasma, different plasma models are used.[12]

14



1.8.1 Single particle approach

When an electric or magnetic field is applied to a plasma it affects the motion of the particles.
To describe the motion of a single particle, when it comes under the influence of such fields, the
single-particle approach is used. While describing the motion using single-particle approach
the collective behavior of plasma is neglected. This approach is useful in the study of very-
low-density plasma e.g. while studying the energetic particles or the cosmic rays in Van Allen
radiation belts.

1.8.2 Plasma as a fluid

As plasma consists of a large number of particles where each particle follows a complicated
path, therefore it becomes nearly impossible to deal with each particle separately and observe
the behavior of plasma. Therefore to study the behavior of plasma we use other models like,

Magnetohydrodynamics model (MHD)

The study of electrically conducting fluids is known as Magnetohydrodynamics (MHD). In this
approach, plasma is taken as a single conducting fluid. It is used to describe equilibrium and
Large-scale stability of the magnetized plasma. Drawback of this approach is that the macro-
scopic properties of each specie within the plasma, such as velocity, density and temperature
will be lost, while taking an average of these properties into account. In order to study plasma
behavior using the Magnetohydrodynamic (MHD) model, we use the hydrodynamic equations
coupled with Maxwell’s equations.

Multi-fluid model

In this model, each species of the plasma is treated as a separate fluid element. Advantage of
the multi-fluid model over the MHD is that different behavior of different species within the
plasma can be taken into account. For example at the same spatial point within the plasma
different plasma components can have different velocity, temperature, and pressure.

1.8.3 Kinetic Theory of Plasma

While using the fluid model approach the information regarding the velocity distribution of
the particle is lost, as the fluid variables are function of position and time only. Any physical
properties of the plasma that depend on this microscopic detail can be discovered only by
a description in six-dimensional (r,v) space. Thus, instead of starting with the density of
particles n(r,t) at position r and time ¢, we begin with the so-called distribution function,
f(r,v,t). The evolution of the distribution function is described by the kinetic theory.

/f(r,v, t)dv = n(r,t)

1.9 Shear flow instability in a partially ionized plasma
sheath around a re-entry vehicle

Before describing the problem it is important to know about some of the terms, which will be
used during discussion,

Shock-wave
When the speed of the source is equal to that of the sound it produces, the sound waves it

15



produces will pileup at a single point in front of the source. Now when the speed of source is
greater than the sound it produces, no wave will be produced in front of it but will pile up
behind and will be confined to a cone known as the shock wave cone.

Mach number

The ratio of speed of aircraft to the speed of sound in gas is known as mach number.

Wake region

This region exists behind the re-entry vehicle. In this region, the recombination of electron-ion
takes place at a significant rate.[22]

The spacecraft re-entering the Earths atmosphere is traveling very much faster than the
speed of sound and is said to be hypersonic. The typical re-entering speed at the lower orbit
of the earth is near 175000 mph having Mach number nearly 25. As the spacecraft enters
the earth’s atmosphere hyper-sonic speed, it possesses a large amount of potential and kinetic
energy. The collision of the gas atoms and molecules with the surface of the vehicle causes a
shock wave to be produced infront of the vehicle, this shock-wave causes the air around the
vehicle to be compressed and heated. This heat increases the air temperature between the
surface of the vehicle and the shock wave . Temperature is sufficient to ionize air around the
vehicle and as the density of air is less in the upper atmosphere, the formation of plasma around
the vehicle takes place. The plasma which envelops the re-entry vehicle is called plasma sheath
[10]. While studying the plasma sheath we consider following four categories. [19].

e The basic physics i.e. study of ionization and recombination process which takes place
during the formation of plasma sheath.

e Calculating how the plasma sheath is flowing, which includes the constituents and geom-
etry of the plasma sheath and wake region.

e Analyzing the interactions between the fields and the plasma sheath.

e Interpreting the radar performance and changes in the data telemetry due to the plasma
sheath.

1.9.1 Interaction of electromagnetic wave with plasma sheath

Plasma as a whole is quasi-neutral i.e., it has an equal number of positive ions and free elec-
trons together with several neutral particles. An average equilibrium separation is maintained
between the charged particles due to an electrostatic field present between them. If one of the
charged particles is kept constant and other is moved from its equilibrium, it will move to and
fro about the equilibrium position.[21] The movement of the particle is similar to a mass-spring
system, where the particle displaced is similar to the mass attached to the spring and electro-
static restoring force of the neighboring charged particle is the spring, and collision with the
neutral particle constitutes the damping. The frequency with which the free charge oscillates
in the plasma is known as plasma frequency. The relation for plasma frequency of electron will

be
npe?
W, = )
b Me€o

An analogous equation for the plasma frequency of ion is used where instead of mass of electron
mass of the ions is used. As the mass of an ion is four orders of magnitude greater than that
of electrons hence the plasma frequency of ions will be less than that of electrons.
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When an electromagnetic wave hits the plasma it acts as a periodic driving force on the elec-
tron. As already discussed, electron within the plasma oscillates at a natural frequency known
as the electron plasma frequency. If the periodic driving force is considerably less than the
electron plasma frequency, and damping due to the collision are also small, than the inertial
effects of the electron will be small and it will oscillate at the driving frequency. The charge
oscillating at driving frequency will act as a dipole radiator, which produces electromagnetic
wave traveling both forward and backward direction. The forward traveling wave is out of
phase with the driving force and will cancel out the driving signal. The process of cancel-
ing out of the driving signal is repeated as the driving signal penetrate the plasma causing
an attenuation of the driving signal increases with the thickness of the plasma. The backward
traveling electromagnetic wave produced by an oscillating charge will appear as a reflected wave.

When the driving frequency is larger than the natural electron plasma frequency. The electrons
will exhibit large inertial effects hence it will weakly oscillate at the driving frequency and if
there are no collisions present then damping will not take place and the electromagnetic wave
will travel through plasma un-attenuated. In the presence of collision, a slight reflection and
attenuation of the electromagnetic waves take place.

When the driving frequency is exactly equal to the electron plasma frequency. The forward
and backward traveling wave produced by the oscillating such that the incident electromag-
netic wave will not penetrate the plasma and is completely reflected from the surface of the
plasma.[23]

Consider an electromagnetic wave having a frequency w incident upon the plasma medium
having a frequency w,. In the absence of collision when[9]

® w > w,, transmission will take place.
® w = wp, absorption takes place.
® w < wy, reflection of the incident wave takes place.

Advanced reentry vehicles have an antenna or a sensor present on their heat shield which
provides information about the vehicles instantaneous position, gives navigation information
and serve communication functions . The plasma formed near the vehicle can interfere with
the antenna performance. When there is an instability within the plasma medium, than the
electromagnetic wave will be modulated by turbulent plasma which can cause a change in the
phase and amplitude of the electromagnetic waves.[17, 4]
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Chapter 2

Fluid description of Plasma

There is so much we can do with the single particle approach in plasma. In plasma we come
across large number of particles where each particle follow a complex trajectory. Hence it
is impossible to follow every single particle and observe the behavior of plasma. Therefore
we use the fluid approach to study the behavior of plasma as a whole. In this approach the
plasma is assumed to be a conducting fluid and we use the already established equations of
fluid mechanics in order to find general properties of the plasma. About 80% or so applications
in plasma are sufficiently treated with the fluid approach of plasma, in which electromagnetic
forces are taken into account [32]. The plasma fluid equations are modification of the Naiver-
Strokes equations, and require conservation of charge and mass. In the case of electromagnetic
waves these equations are supplemented by the Maxwell’s equation of electromagnetism.

Consider an infinitesimal volume dV surrounding a point r, at time ¢. We can write the
mass density of the fluid is the sum of all the masses of the particles within the volume element
dV, divided by the volume dV itself[20]

m
_Zm
av
The hydrodynamic velocity of the volume element dV can be written as

U_va
~ pdV

2.1 The fluid equation of motion

The motion of a single particle in a plasma can be describe by [5]

md—v =q(E +v x B). (2.1)
dt

In the case of plasma fluid, where the thermal motions of the particles within plasma, and

collisions of these particle with other particles within plasma, have not been taken into account,

in such a case all the particles in the fluid moves with an average velocity v(r,t). For such case

we can write the equation of motion of the fluid by multiplying eq. (2.1) with number density

"n". Hence,

—

mn% = qn(E + ¥ x B). (2.2)

In eq. (2.2), ‘;—7; shows the rate of change of velocity in position and time. To do that we
transform the variables of the fluid into a fixed frame (that moves with the fluid element). In

order to make the transformation, we consider a function A(y,t) which is any property of the
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fluid in a one dimensional space. The change of function A(y,t) in a frame which is moving
with the fluid, with respect to time can be written as

dA(y,t) 0A DA

where

° %—’? : Change in function A which takes place at a point which is fixed in space,

° Uya% : Change in the property of the fluid as the observer moves with the fluid into the
region where A changes.

For the case of three dimensional flow of the fluid, the convective derivative can be written as

dA(r,t) 0A . -
=~ 25 A
dt o TWV)

For plasma, we take the function A to be the velocity "uv(r,t)" of the fluid. The equation of
momentum for the fluid, in absence of collisions and thermal effects, can be written as

o B B B
mn[a—: + (V- V)u] =ng(E+ v x B). (2.4)

2.1.1 Equation of motion in the presence of thermal effects

If we take the motion of the particles into account, the pressure term will also be added to
eq. (2.4). The pressure gradient force does not appear in the momentum equation for a single
particle approach, as it takes place due to the random motion of the particles within fluid.[5]

Y A B

S

Xy~ AX X, x,tAx
Figure 2.1:
In fig. 2.1, consider the fluid to move through the face A and B, along x-direction, of the

fluid element which is centered at (z, %Ay, %Az) The number of particles per second which
are passing through the face A, with velocity v, is

An, v, AyAz,

where An, is the number of particles per m? having velocity v,, written as

An, = Av, //f(vw,vy,vz)dvydvz,
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where f(v,, vy, v,) is the distribution function of the particles in velocity space at a particular
spacial location. Each particle within the fluid carries a momentum muv,. Let P4+ be the mo-
mentum of the particle moving into the fluid’s volume element at z, centered at (z, %Ay, %Az),
through the face A. P4+ can be written as

+00
P+ = mAyAz/ V2 fdvy // dvydv,.

o

In the case of properly normalized function f

—+o00
n= // fdvgdv,dv,.

The average velocity < v, > can be written as

+0o0
fooo V2 fduy ff dvydv,
< vy >= >

+oo
f f f fdvgydv,duv,

The momentum P4+ in terms of the average velocity < v, > can be written as
1 2
Py = mAyAza[n < V" >leo— Az

where the factor % occurs as half of the particles within the cube at x — Axg are moving toward
face A. We can write the momentum of the particles moving out of the cube through face B as

1
P+ = mAyAza[n < 07 >ay

The net gain of momentum of the particles is given as

1
Py+ — Pg+ = mAyAzﬁ[(n < V% >)agene — (< U2 >) g
Hence
Py — Pgt+ = —§mAyAzAxa—(n < v >). (2.5)
x

This result obtained in eq. (2.5) will be doubled due to the contribution of the particles moving
from the left, as they are moving in the opposite direction with respect to the gradient n <
v,2 >. We can therefore write the total change of momentum of the fluid element at point
as

%(nmvx)AxAyAz == m%(n < v,” >)ArAyAz. (2.6)

Let the velocity v, of the particles within the fluid be decomposed into two parts

Vp = Uz + Vgr,
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where u, is the velocity of fluid along x-direction, and v,, is the velocity of random thermal
motion of the particles along x-direction, hence

KgT

<2 >=uy,2+ 280

By using this value in eq. (2.6), we get

9 nmu ——mg n(u,” +
ot ) Ox ‘ m

0 0 on  Od(mu,)\ 0
mn (EUQE + um£u1> + mu, (E + o7 > = "o (nKBT).

From equation of continuity % + % = 0, hence the above equation becomes

ou,, ouz\ 0

Ouz Oua) 0P
T o T ) T T ox

where P = nKgT, so

For three dimensional case, we get

mn(% + (- 6)@) — VP, (2.7)

The eq. (2.7) gives the pressure gradient force. If we add the electromagnetic force i.e., the
Lorentz Force, then the above equation becomes
ou -

mn<§+(ﬁ§)ﬁ) —ng(E + @ x B) — VP.

2.1.2 Equation of motion in presence of collisions

If within plasma collisions occur between like particles then the total momentum which is
averaged over all the particles will not change. But for a plasma fluid consisting of two or more
species, a collision between them will cause gain or loss of momentum between the species.
Consider a plasma fluid consisting of neutral and charged particles. If a charged particle "¢"
collides with the neutral, an exchange of momentum between the charged particle and neutral
will take place. If u, is the velocity of neutral in fluid and . is the velocity of the charged
specie, then the momentum lost per collision will be proportional to (@, — ,). The rate of
momentum density lost by the charged specie "¢" upon collision with neutral will be[20]

VenMeMe(Ue — Uy).
The generalized momentum equation for the charged specie can be written as,
Ou

ot

— — - —

mcnc[ + (ue. - ﬁ)u}] =neqe(E + 1, X B) =V + P. — vganeme (e — iy,). (2.8)
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Collision frequency

The two broad classes of collisions are the inelastic collision and the elastic collision. In order
to describe the particle’s motion before and after collision, the laws of conservation of mass,
momentum and energy is applied for both elastic and inelastic collisions. The difference between
both the collisions is that in inelastic collision the internal energy of the particles is changed,
whereas in the case of elastic collision the total energies are conserved. Consider a binary
encounter of species 1 with 2, the collision frequency between both the species is given by

v, =< N2VT1012 >,

where V7, is the relative speed, Ny is the number density of the target specie 2 and oy is the
cross-section of that given event.[13]

2.2 Equation of continuity

Before deriving the equation of continuity it is necessary to know the meaning of mass flux.

<€ [ >
A (m*)
(1

Figure 2.2: Volume element

Consider the volume element shown in fig. 2.2, charge particles are moving to the right
through this volume element. The volume element has length "I", and crossection "A". The
number N of particles within the box will be

N =n x Al,

where n is the number density and Al is the volume of the box. The number of particles that

leave the box in time ¢ is
N  nAl
— = — = nAv,
t t

where v = % is the speed of the volume element. Particle flux is the rate of particles exiting the
box per unit area. Hence dividing the equation by an area "A" of the volume element, we get

Particle flur = — = nw, (particles/m?s)

At

and
Mass flux = mnv = pv. (kg/m?s)

In order to derive the equation of continuity, we consider a fluid which is flowing into and out
of an infinitesimally small box as shown in fig. 2.3.
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dmg
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dy x/

dm; |
_— —
dt

Figure 2.3: Infinitesimal volume

Let the rate of change of mass flowing into the cube be given by 2

dt
of mass flowing out of the cube be %0 we can write the equation for mass flow rate through

dt
one face of the cube as

, and the rate of change

dm dmg dm;

dt  dt dt

The mass flow rate through all the faces of the cube will be

d_m_(
dt

dmg, — dmy, . dm, dmy, N dm,, . dm,,

dt dt dt )= dt dt dt ) (2.9)

The mass flow rate was defined as,

dm fluz x
— =mass flux X area
dt ’
d
d—? = pv X dxdz.
Then eq. (2.9) becomes
dp
%dwdydz = (ProVzo = Pr;V2,)AYdz + (py, vy, — Py, vy, )dxdz + (p2,vz, — p2yvz,)dxdy,  (2.10)

where each element on the right hand side of the equation can be written, in a more compact
form, as

ProVzo = Pa;Va; = _A(vaa:)-

The negative sign appears over here because we expect the mass of the particles flowing out
to be less or equal to the mass of the particles flowing in. It would be very odd if the rate
of flow of mass moving out exceeded the rate of mass flow in, since that would defy the law
of conservation of mass. The minus sign will be applicable under those circumstances where
the fluid is compressible i.e. where more mass flows into the cube then out of it, which could
happen in plasma. Considering the cube to become infinitesimally small then we can rewrite
the equation for the change in mass flow rate as

PrVzp = Pa;Vz; = —d(p2Vz).
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By making similar substitution and dividing both sides of the eq. (2.10) by dzdydz, we get

@ — a(vax) _ a(pyvy) . a(pzvz)

ot ox y 0z

We can write the equation of continuity in a more compact form

dp B
a5 + V.(pv) = 0.

In terms of number density, the above equation becomes

on
e + V.(nv) = 0. (2.11)

2.3 Equation of state

In order to describe how pressure "P" changes with time we need to add an additional term
called the equation of state, in order to relate the pressure term to the number density "n".
Equation of state can be written as|§]
P=cn",

where c¢ is a constant let it equal to 1, and "~" is the ratio between specific heat at constant
volume and specific heat at constant pressure i.e. % . It tells us about the amount of increase
in temperature of the plasma as it is compressed. We can write the expression for change in
pressure as

VP =Vnyn' ! =4 P@,
n
hence
VP  Vn
P

e For an isothermal compression of the plasma, the ratio between specific heat at constant
volume and specific heat at constant pressure will be equal to 1 i.e. v = 1, hence the
gradient in pressure can be written as

VP =VnK,T.

e The value of T also changes in the case of adiabatic compression, the value of v in such

case will be
(2+N)

VZNa

where "N" gives us the number of degree of freedom.

2.4 Maxwell’s equations

1. The first is known as the Poisson’s equation, which is written as [29]

V-D=p,
5:ﬁ+6gﬁzeoﬁ



where above "D" is the displacement vector, ¢, free space permittivity, and "P" is the
polarization of atom. In gaseous plasma, the polarization of atom is very small, hence
the term " P" can be ignored. So we can write the Poisson’s equation for plasma as

v E="L. (2.12)

€0
For the case where plasma consists of two fluid e.g. electron and ions, the density term
can be written
P = (elle + qin; = _€<ne - ZTLZ)

2. Another is the divergence of magnetic field, which is an equation showing the absence of
magnetic mono-pole and is written as

V-B=0. (2.13)

3. The third is the equation equivalent of Faraday’s law of electromagnetic induction, ac-
cording to which the variation of the magnetic field in time is accompanied by a spatially-
varying electric field and vice versa

. - 0B
VXE=— (2.14)

4. The forth Maxwell equation is the generalization of Ampere’s law

where i is the free space magnetic permeability , J is the current density of the specie
and the magnetization of dipole moment per unit volume is represented by M. As for
plasma M is negligible, hence

- - 10E
B =+ ==

For a plasma having ions and electrons the current density J, can be written as

(2.15)

J = genevy + qiniv; = —e(nevy — Zn;v;).

2.5 Langmuir waves

In warm plasma, we also consider the thermal motion of electrons. Electrons having the thermal
motion will stream into the layers of the plasma carrying information about the disturbance
occurring in the undisturbed ambient plasma. These disturbances then propagate as a wave
known as the electron plasma waves. The dispersion relation for such waves can be derived
using the linearized equation of motion, given as



Where v1, F4 and n, are the perturbed terms and behave sinusoidaly i.e.,

U_i _ 1ez(ka:—wt) A

v z,

El _ Elei(kx_Wt)fi'

Y

ny = nlei(kxfwt)’
hence
—imwnou; = —engk] — 3ikn  KT,.
2 3KT,k?
WV = <n06 + >v1,
€om m
2KT,
‘/thz = )
m
SO

3
w2 = wp2 + 51{?2%}12.

The dispersion relation of Langmuir waves shows that due to the thermal motion of electrons
within the plasma its wave frequency will have a dependence on the wavenumber as well.

2.6 Ion-acoustic waves

Ion waves are low pressure and low-frequency waves that occur in plasma. We get similar
dispersion relation for ions wave as we get for the sound waves therefore we call them the Ion
acoustic waves (IAW). The difference between sound waves and ion-acoustic waves is that when
charges are separated due to ion-acoustic waves, an electric field is induced in the plasma. The
electron component of the ion-acoustic wave tends to move faster than its ion component, but
the electric field produced by the ion-acoustic retards the motions of the electron, forcing both
electrons and ions to propagate together. For ions, the momentum equation in the absence of
the magnetic field will be

3 V;
ot

Mn[ + (vi.A)vi] = —enlA¢ — v, KT;An.

By linearizing the above equation we get
—Z'CL)MTL()U“ = —engik¢1 - %KTzzkn“ . (216)

The Boltzmann relation for electrons is given as

nezn:noexp(;(q;> :n0<1+[egg{ —i—>

Ne = Nyo +n817

Ney = Ne — N =N

KT,
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As we are considering low frequency oscillations so we can use the quasi-neutrality condition
i.e. n; =n.,. Therefore

epr
n;, = No KT@. (217)
After linearizing the equation of continuity, we get
iwng, = notkv;,. (2.18)
By using values of eq. (2.17) and eq. (2.18) in eq. (2.16), we get
KpT, KT,
2= p e 2.19
w T ) (2.19)
w _ (KT, +%KT;\*
w_(fletmBL 2.20
() (2.20)

The eq. (2.19) gives dispersion relation for ion-acoustic waves, where v, is the ion-acoustic
speed. For KT; ~ 0, the ion-acoustic waves still exist and the ion-acoustic velocity is given by

KT,

=

The approximation used over here is that of quasi-neutrality. This assumption is not true for
higher frequencies, closer to w,,, because the electron and ion motion becomes uncorrelated.
So in the case of high frequency oscillation we will use the Poisson’s equation instead of the
quasi-neutrality condition. Therefore we can write

Vs

e
V2¢ = a(nu - n61)7

eok‘2¢ =Ny, — Ne,, (2.21)
where
Ne, =T —6¢1
el OKTev
and
k

nil — _novip
w

v;, can be obtained from eq. (2.16). By putting values of n., and n;, in eq. (2.21) we get

k

(2.22)

w (KT. 1 +7,;KTZ»%
M 1+kXp> M )~
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Figure 2.4: Dispersion of Langmuir and ion-acoustic waves

The fig. 2.4 shows a graph of two electrostatic waves that exist in an unmagnetized plasma.
The low-frequency ion-acoustic waves start from zero to the ion plasma frequency, whereas
the high-frequency waves start at the electron plasma frequency. No electrostatic mode can
oscillate between the two plasma frequencies w,, and w,, in an unmagnetized plasma.

2.7 Electrostatic ion waves | B

Two cases will be considered for electrostatic ion waves having propagation "k" perpendicular
to the ambient magnetic field "By".

2.7.1 Propagation of the wave nearly perpendicular to the ambient
magnetic field "B;"

In such a case following assumptions are made.

e Considering the plasma to be infinite,

Unperturbed density and magnetic field ng and By are considered to be uniform and have
a constant value,

e vy = Ep=0,

For simplicity let T; = 0,
e kx E=0ie E=-Vo,
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Figure 2.5: Electrostatic ion cyclotron wave nearly perpendicular to magnetic field

The fig. 2.5 gives geometrical description of the low frequency electrostatic waves nearly
perpendicular to magnetic field. Due to a small deviation from exact  the electrons can move
along By but ions due to their large inertia will not oscillate along the z-direction i.e. k, ~ 0
for ions. The linearized equation of motion for ions
v,

ot

can be written in component form as

—twMuv;, = —eik¢y + ev;, By,

M = —eﬁ@ -+ 6171 X go, (223)

—twMuv;, = —ev;, By.

By solving these equations, we get

v ek@( o ) (2.24)

z MUJ wg o QCQ
where €2, = % is the ion cyclotron frequency. From ion equation of continuity, we can write
k
ng, = Tloa'l}iz. (225)
As electron can move along By therefore we can use the Boltzmann relation for electrons
Ne, ey
= ) 2.26
Un) KTB ( )
By using the plasma approximation, we can write
k edr
—V;., = .
w KT,

by using the value of v;, from eq. (2.24), we get

ek? s w? _ epq
M2 '\w2-Q2) KT,

KT,
T
Hence the dispersion relation for ion cyclotron waves is

w? = O + k%2 (2.27)

w2_92:k2
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2.7.2 Propagation of the wave perpendicular to the ambient mag-
netic field "By"(Lower hybrid wave)

Now consider the case in which the propagation of the low-frequency electrostatic wave is exactly
perpendicular to the ambient magnetic. In this case, the electrons will not obey Boltzmann
relation as they will not flow along with the lines force and preserve charge neutrality. So we
write the complete equation of motion for electron to get

Ve, = _€k< “ w2)¢1’ (2.28)

m w2 —

and electron equation of continuity will give us

k
Ne, = No— Ve, - (2.29)
w

From plasma approximation n;, = n.,, which for this case can also be written as v., = v;,.
Using the values of v., and v;, from eq. (2.28) and eq. (2.24) respectively, we get

1/ 1\ 1/ 1
m\w2—w?)  M\w?—-Q2

(m+ M)w? = w>m + Q2M,

+ M
Mw? = 2B2 m
(m+ M)? = e (Mm |
2B2
w? ¢ = Quw, = w>,

:Mm

where wy is the lower hybrid frequency, defined as

N

w; = (Qewe) 2. (2.30)

Instead of using plasma approximation, if we use Poisson’s equation then we get the following
dispersion relation for lower hybrid wave

1 1 1
—_ =+ —. 2.31
w}  Quwe * Q2 ( )

2.7.3 Electromagnetic waves in plasma with B

For transverse waves traveling through plasma. We have k£ 1. F

1. V-E=0.
V-B=0.

2. Ey=0.
By = 0.

3. 2 — 9 — ),
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Using Maxwell’s equation,

0B
VXFE=—— 2.32
1 0F
VXxB=—-— J. 2.33
X 02 8t + MO ( )
By taking cross product of eq. (2.32), we get
J(V x B)
Vx(VXxFE)=———=
X (Vx B) ==,
Jd(V x B
V(V-E)—V’E = _g'
ot
By using the value of V x B from eq. (2.33), we get
0|10F 1
2E — | =
v ot c28t+“"‘]_’
1 0°F 0J ]
E=|S—> —1. 2.34
v o T Mar (2:34)
By linearizing eq. (2.34), we get
1B aJ,
’F1 = |5 —= — .
Vih 2 Ot T ho ot
All perturbed quantities behave sinusoidally, therefore replace V = ik and % = —iw in the
above equation to get
W2
KBy = =By + iwp, Jy, (2.35)
c
where J; = —ngev;. The value of vy can be found from electron equation of motion i.e.,
6E1
V1 = = .
mw
Therefore the current density will become
. 2E
J, = e (2.36)
mw

Using this value in equation eq. (2.35) we get

2 2
w noe” i, £y
K E, = —2E1 -

c m

as w2 = ™ hence
pe T meg’
2
w 2

2 _
k* = 5~ HofoWpe-

The dispersion relation for electromagnetic waves propagating through the plasma in the ab-
sence of magnetic field can be written as

w? = w2, + k. (2.37)
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Chapter 3

Shear flow instability in a
partially-ionized plasma sheath around
a fast-moving vehicle

When vehicle re-enters the earth’s atmosphere a plasma sheath is formed around it, which
causes communication blackout either by reflecting or absorbing the Electromagnetic waves
coming to or from the vehicle[14]. An increase in turbulent pulsation within the plasma sheath
can also affect the on-board sensor. The influence of turbulence of low-frequency waves in-
compressible plasma in the absence of collisions has been analyzed by Vladimir Ref [25]. As
the vehicle moves to lower altitudes of earth’s atmosphere the numbers of neutral particles
increase, hence collisions with neutral particles increases, therefore it is necessary to include
collision while deriving the dispersion relation for instability in plasma sheath region[26]. In
this section, the growth rate of low-frequency turbulence (i.e. instability of ion-acoustic wave)
due to the hyper-sonic sheared flow of plasma sheath is studied with the inclusion of collisions
into the model. This allowed us to correctly evaluate the growth rate of instability and to inves-
tigate the role of neutral particles in suppressing such instabilities. This was done by deriving
a second-order differential equation for the electrostatic potential of excited ion-acoustic waves
in the presence of collisions of charged particles with neutrals. The differential equation was
then solved analytically for linear velocity profile of the shear flow, using appropriate boundary
conditions for finite thickness of the plasma sheath. An appropriate scaling relationship for the
instability in case of the linear velocity profile is obtained from analytical calculations. From
different plots of the relationship, the growth rates and eigenfunctions of unstable ion-acoustic
modes are obtained. It was also observed that when the density of neutral particles is increased
to such a value that ion-neutral collisions rate exceeded the peak dimensionless growth rate,
the instability was completely suppressed.

In the present chapter, the typical value of growth rate of the instability of ion-acoustic wave
is investigated and the role of neutral particles in suppressing such instability is found. A
second-order differential equation for the electrostatic potential of the ion-acoustic wave is de-
rived using a system of nonlinear equations, which include, the momentum equation for ions,
electrons and neutral, and the mass conservation equation for these species. These equations
are complemented by Poisson equation for electrostatic potential associated with ion-acoustic
perturbation, due to the presence of flow shear.[13] In this section, the excitation and turbulent
pulsation in a compressible supersonic plasma flow in the two-dimensional case is considered.
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Figure 3.1: Geometry of the sheared plasma flow
fig. 3.1 shows that the plasma sheath is bounded on one side by vehicle’s surface, and on

the other side by the neutral atmosphere.The plasma is flowing with velocity V;,(z) along y
axis, and has velocity shear along z axis.

3.1 Equation of momentum

& s 5 i
mn[d—:—l-(??-V)ﬂ =ng(E + U x B)—VP—M. (3.1)
T
As no magnetic field is present therefore v x B = 0.
where in eq. (3.1) Vp = KgT'Vn,
SO
v . = ., KzTVn m(v — vp,)
— . =qF — — : 2
ml %+ (@ V)] = gB ~ 22 - (32

Linearizing eq. (3.2) i.e. replace

and

By putting values in eq. (3.2), we get

d(vp + v1)

KTV (ng+ny)  m((5+01) — (vmg +vimy))
m| dt N - :

+ (0 +1) - V)(W5+01)] = ¢F T -

In equation 3.3,
(0% + 1) - V) (06 + 61) = (55 - V)i + (55 - V)i + (41 - V)G + (47 - V).
By ignoring zeroth order and higher order terms, we get
() +07) - V(05 +v1) = (0 - V)oi + (07 - V).

where,

d
Uod—y

—

(4% - V)i = (vo—- )i,
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motion of plasma is along y axis, but change in plasma occurs in x.
> d. d d

(U_i . V)U_E) = (le%)vo + (’Ulyd—y)v_é + (Ulz%)'ll_(').
As change in unperturbed velocity vg(x) is along x direction,hence
- dz?o
-V P
(v1 - V) T
where R
Vo = UUj)
SO p
S S - Vo
V)vg = v1p——
(01 )00 = v d J
oy S dvy dvg ~
-V = (vo— e—J- 3.4
((vo +01) - V)(vo + v1) = (vo dy)+vl I’ (3.4)
Another term from eq. (3.3) can be written as
KBT6<'HO + n1> 6710 + ﬁnl
= Kgl———.
(no —+ nl) Un) + nq
Where Vng = 0, also ng >> nq, so
ﬁnl 677,1 ﬁnl
KgT =Kgl——— = KgT—. 3.5
B S B no(l-l-z—é) B " (3.5)

Given vy = vy,,,
put eq. (3.4) and eq. (3.5) in equation eq. (3.3), we get

=

v, du; dug - Vn, m(v? — V)
— > =qgF — KgT L.
mlSy o, T Uy Al = aB - KeT—r .
KsT
= V7.
= T
dvy duy dvg~ qFE 9 Vn, (V1 — Umy)
S -1 — == — ) 3.6
dt +Uody o dar:‘7 m T ng + T (36)

In eq. (3.6), % = v is the collision frequency. The eq. (3.6) gives us general form of momentum
equation, writing it for electron,ion and neutral.
Momentum equation for electron is,

duy, duy, dVp, ~ —elE Y vn
—_— u =
dy e J Me Te N,

where F = —ﬁ¢, SO

! + Ven(“le Uln) + Vez(ule ui’z)’

dut, duy, dVp, ~ eV Vny . . . .
o T 0 T zgm + Ven (U1, — U1, ) + Vei(ut, — ui,). (3.7)
Momentum equation for neutral is
dut, dut, Vi, - Vi,
prina i o, = Vﬁ”N_% = Vne(UT, — ui,) — vni(ur, — ui,) (3.8)
Momentum equation for ion is
duis, dui, dVi, -~ —eVo Vi,
dt ‘/07, d U’ Liz d -] - ]\4Z - 721 NOZ- - Vw(ulz Ul ) Vln(u uln) (3 9)
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3.2 Equation of continuity

d -
d—? LV (nd) = 0. (3.10)
dn = .
a—l—(Vn) 7+ (V-U)n=0
Linearizing eq. (3.10) i.e. replace
7 =4+
and
n =ng+ ni.
Hence

(Vn) -7 = (V(ng+mn1)) - (0 +01) = Vg - 0 4+ Vg - 01
By ignoring the higher order terms, we get

Similarly

dn dn >
d_tl—i_vod_yl_'_n()(v. 1) :07 (311)

where eq. (3.11) gives the equation of continuity of plasma when flow is along y direction.

dn1 dn1 =
<+ Vo, —= V-ui, )=0. 3.12
TR dy + no, (V - ut,) (3.12)
Where eq. (3.12) gives us the general form of the equation of continuity, the subscript « stands

for electron, ions and neutral particles.

3.3 Poisson’s equation

From Poisson’s euqation

v.E="
€o

Y

where p = p.+p;i, pe = —en. and p; = Zen,, also in above equation V-E = V- (=V¢) = —V2¢.
By putting values we get

—V2p = e(Zni = ne)

€o

where El = 4, so Poisson equation becomes
o

V3¢ = dme(n. — Zn;). (3.13)
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3.4 Derivation of second-order differential for electro-
static potential

From electron momentum equation

dﬁle ~ dﬁle i - df/oe ~ 6@& ~9 @ﬁl - (:» = )
= Ui, . — = —-— — —=— — Vepl\U1, — Uy, )-
7i 0e dj les ™7 J e T. Mo, 1 1

We will ignore the ion velocity ﬁln as they appear stationary in front of an electron, hence the
equation of motion will becomes

A, ~ di L NG Vi, Vi
e e en — — J— V _— ¢ _~e . 314
Y dy + Venlis, Me Te No, Uleo dz J ( )

By dropping subscript 1 in all perturbed velocities and densities we can write eq. (3.14) as

dvy, -

di, -~ di, - KgT, eVé Vi
- )_uea‘%]'

me KBTe Noe

— 4+ V — 4 Denue =
dt e dy

Normalizing the equation of momentum using normalization conditions:

_ <
1. gb—KBTe,
— e
2. Ne = T
3 m:ﬁj,orme:Mim,

5.2 = Ape,
6. § = Apey,
7. 0=,
-
8.V =,

d(a}piS\Deﬁe) ~ X d(@piS\Deﬁe) ~ o~ .
_ z/\ eV — = iVen l)‘ elle) —
d(&;) + (@piApeVo.) dOpey) + (WpiVen) (WpiApetle)
KpTo(5o), ed e ) _ (5o )d(@p,&mv()e)A,
(Mm) KT, N, PO per
where in the equation £2% = G232 |

3
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d(@piS\Deﬁe)
A=)
(Diz:\QDeﬁ GQNS 77Le

mip.  KsT. N,

d(a)pz 5\Deﬁe)

= + ((IJ il/en)((z) iS\Deﬁe) =
d<)‘Dey) ! !

+ (CDpiS‘DeVOE)

d(@piS‘DeVOe)j

- (Dzj\ eﬁe:c N
) = @ppeter) SE22

d'LZ; du_; d%e A

~ ~ 1 — —
~9 - ~92
wpz)\De(E + Vbe dy + Venue) = pz‘)\De(E(vqS - vne) — Ueg d.ﬁlf J)
du, du, . 1 = - dVy, ~
1% enle — —— - e) = Uex . 3.15
i + V. a0 + Ventl m(V¢ Vne) —u o ( )

Separating eq. (3.15) into its x and y component i.e. u, = Ueyl + ueyj and V = %% + d%j’

X-component of equation 3.15

AUy AUey 1 d_q5 _ dn.

1 Venlles = E[dx dz J

As all perturbed quantities behave sinusoidaly i.e. f(x,y,t) ~ exp(iky — iwt) therefore replace

d . d _
= —w and dy—zk:.

(W — KV + iWentter = %%[gb —n, (3.16)

where in equation eq. (3.16)
Qe = w — kVh + iVen,

and
1/] - ¢ — Ne,
hence
v dy
Qulpy = ——. 3.17
Y m dx ( )

Y-component of equation 3.15

duey + Venl Uey—
dt dy Comidy  dy “ dx

All perturbed quantities behave sinusoidaly, hence

k _dV

[w—kVy + ilen]ttey = —E[qb —ne) — zuw% (3.18)
The eq. (3.18) becomes
k AT
Qetley = —— Y — (Uep—— 3.19
Uey mw s dr ( )
From equation of continuity
dn. ~ dn. -~ 2 =
—— V = + N V cUe ) — 0
7 Ve di 0.(V - e)
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We will normalize the equation of continuity for electron using following normalization condi-
tions.

1. ﬁe = neN()e

2. ?]e = d)pi)\Deue

3. @:S\Dey

4 f= L
5 v

5.V = .

-

d(neNo ) . T d(neNo ) ~ \V4 ~ % 5
—_— + ((JJ i)\De%e)N—e + Noe[(~—) . ((JJ Z-)\Deue)] =0.
diz) d(Apey) Ape”
d e d e — —
e Vo, 2 Ny, (Vi) = 0.

Where above,
d. d-

2 “ d ET d €
Vo= (g ) (el e ])] = (o

dx dy

).

All perturbed quantities behave sinusoidaly

d exr
—iwne + 1kVy,ne = —No, (1ktey + Y ).
dx
: : AUy
i(w— kVo,)ne = No, (tkue, + %)

Considering the unperturbed velocity of electron, ions and neutrals to be same, hence V;, =
Vo, = Vo, = Vo,

i(w — kVo)ne = No, (ikue, + %).

In above equation, let w — kVy = €2, hence

Ne . AUy
ZQN—Oe = (Zk’uey + d )
By applying normalization condition i.e. n. = 3=, we get
du
Qne = iku, = 3.20
180n 1R Uey + I ( )
From eq. (3.17),
v dy
Uey = —.
mSe dx
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By taking derivative of the equation with respect to x we get,

. rd? dy dQ.
duex:i[ dJQ _di)dx]
de —m Q0?2 '
As Q. = w — kVy + ive,, so
. __d
de —  dx’
By putting values we get
due, i .1 d* k dVydy
SN i STl Uk 3.21
om0, de T2 dr do (3:21)
From eq. (3.20)
due, . ,
Frai 1ne — 1kiey.

By putting value in eq. (3.21) we get,

: : 1L kdVpdy
On, =ik ———. 22
PRie = Uitley m[Q dx * 022 dx da:] (322)

From eq. (3.19), . -
LUey 0

Q. dr’

By putting value of eq. (3.22) we get,

k2 po e dVo 1 2y k dVydy

Q e — — - )
T TomY T T, de | om, dr | om$2 dr do
where u., = mﬁ ‘éﬁ SO
2
2
mQeOne = —k*) + dd¢ + Q—k%% (3.23)

From poisson equation o
V29 = 4me(fe — ),

we have considered Z = 1 throughout out calculation. By using normalization conditions:

gg KBTe¢>
2. ne = neNy_,
3 nZ»]\N/OI.,
1. V2 fg
we get

() Kl

2
)\De €

) = 4w Ny e(ne —n;).

As unperturbed number density of electron is equal to that of ion i.e. Ny, = Ny_, hence

47 Ny, €

V2 = — 08
¢ X2, KpT,

(ne — ny).
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where

5\2 o KBTe
De 47TN0€€2
SO
v2¢ = (ne nz)
V2 = Cgi—zz + %, where % = —k% so
d*¢
2
Ne = —k? Qﬁ—’—@—f—nz

As Y =¢ —n,, so
0,
Y=0¢+k ¢—@—ni-
From eq. (3.23),

d?>  2kdVy d
_kz - -~ 5 5 == QCQ e
[ +dac+Qe dx dx]w m "
where —k? + % + %%% =L, so
L.y = mQ.On,.

Put value of eq. (3.24) and eq. (3.25) in eq. (3.26) we get

mS2.£2 d>
L2

d2
Lo+ K¢ — prc n;) =

[B*(—K%¢ + — +ny)],

dx?

as m;zzn << 1, therefore we we will neglect the left hand side of eq. (3.27), hence

2 d?
Le[¢+k (b—@—nl] = 0.
By decoupling equation, we get
d*¢
From neutral momentum equation
di, | o di,  dV. oo Vi = = -
=+ Vo, ==+, ——7) = Vi —=— — Upe(lly, — Uy Upi(t1,, — U1,)
dt dy dx No,,
Normalizing above equation we get,
du? duy dVy, ~ A . . - -
d;" + Vond—;n + Ulmd—inﬂ = qgn N o Vne(ut, — ui,) — vpi(ut, — ui,).
Droping subscript 1 in all perturbed quantities,
ine dii;, dVy, - Vi, . .
E + Vbnd_y + unx%] - _ngnw - Vne(un Ue) Vni(“n uz)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)



Making following assumptions,

1. Vpe << Uy,
2. Ignoring the pressure term in ion and neutral momentum equations.

du,, du,, dVp, -
dt+0"dy +u dr Vni (Un — ;)
All perturbed quantities behave sinusoidally, so
: o dV, ~ .
—ilw — kVh, + i), = U —2 § 4 Uit
dx
- Qn _)n = - ngcﬁq ni _; 3.29
iQnu U= =] + Up0 (3.29)
. 1 [ Vo, ~ -
Up = — | —Une——7 + Vnil;|.
Qn nT d:]j .] (el
By separating the equation into its x and y component, we get
X component .
Wil
o = ——=, 3.30
n, = (3.30)
Y component
7 dVy
= [ 4 v ] 3.31
tn, = Gt g v (331)
By putting value of eq. (3.30), in eq. (3.31) we get,
ViU, dVE) iyniuiy
L= z 27 0n 3.32
T T Tdr T, (3:32)
From ion equation of momentum
din, - di, _ dVe,. eVé ,Vin . - =
d%" + 0; d:& + ulix di’ - mz T; NOi Vln(uli uln)
By normalizing above equation, we get
da, . di; o dVp,.  —eVo
g Vg Tl = g vl i) (3:33)
Seperating the x and y components of eq. (3.33).
X component
i - T Vin|U4 Un,
d % dy dx v e
By putting value eq. (3.30) we get,
- 5+ Vin, |1 — = -
g Ve el - ool ==
As all perturbed quantities behave sinusoidally, so by replacing % = —iw and d% =ik we get
Z'Vni d¢
—ilw + kVo + ivin(1 = T, =~
ilw+ kVy + twin( Qn)]um -
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where,

iVni

SO 4o
—1
.= ——. 3.35
Y = O (3.35)
Y component
du; duy; dVy do
. i . x5 5 Vip|UWi, — Unp,|- 3.36
gt Yoy Ty = gy vl ] (3.36)
Put value of eq. (3.32), in eq. (3.36) we get,
-+ Vo—+ i = — 7 — Vinl, |1 — .
g TV ey =g Tl ol T
du; du; Wi do dVo VniVin
g T Vg Tyl =gl = =g —ue - —o
. . Wh; . d% VniVin
—iw + EVh + v (1 — 0 N, = =ik — wiy o 11— 02 ].
. Z‘l/ni d% UniVin
[w~+ EVh + v, (1 — Q—n)]uzy = 1k¢ — iuy, o 11— 02 ]
By putting value of eq. (3.34) we get
. d% UniVin
kd) Zuzw d‘/b VniVin
== — — ) 3.37
YT T 0, de T (3:37)
By putting value of eq. (3.35) in eq. (3.37), we get
== — = 1— —. .
G, T T (3:38)
From normalized ion equation of continuity
dni dnl =
V U ) = O,
7 + Vo 0y + (V- ;)
where, V - 7, = ds;”’ + dZ;y, hence
dat ' Ydy dr  dy
All perturbed quantities behave sinusoidally so replace % = —jw and d% =ik.
du;, .
—iflw — kVp|n; = — Yie _ iku;,.
x
1Qn,; = du; + 1ku;,



From eq. (3.35) ; 41 do
Uiy

N ol
o, _ o, i9,do
dr — 2'de? " dr dx

).

Where .
Qi = W — k‘Vb —|— ZVZn(l — ZVnZ),
Qn
ds2; _ _deo 1 kVinUn; dVo.
dz dx Q2 dx
du; i d*¢ dVy  kvpv,; dVo do
— = ——|—0;, — (—k— —)—].
dx Qf[de ( i ' Q02 dx >dx]
Hence,
) —7 2 i ) )
%_ 1d°¢ ) [_kd%+kuznynzd% @ (3.40)

dx _E@+Q_? dx 02 d:c]d:c'
Put value of eq. (3.40), and eq. (3.38) in eq. (3.39).
i —id

gl e e T W Taln T e e T e i)

VniVin

—1 d?¢ 1 dVy k?Vme‘% @ k2 k dVO@ 1

= oode T M T T @ e T oo T 0 dn det T a2
oLk dVeds | vk dVedo K6k dVodd  vave k dVode
T OO de? T Q2 dr dr | Q22 dr dr | Q0 Q2 dr de | 2 Q2 dr de
1 @p 2% dVodd k26 kv, dVe do
n; = — - - (3.41)
QQde? Q2 de dx QQ;  Q2Q02 dx dx
By putting value of eq. (3.41) in eq. (3.28) i.e. % — ¢ —k?>¢p+n; =0, we get
d2_¢_ T 1 d2¢+2kyinymdvo@+ k2 2k dVO@_O
dx? QQ; da? - Q0202 dx dx QQ; Q02 dr dov
d> 1 d? 2k dVyd 2kVinVp; AV d k2
gb_ Qb_ 5 0_¢ Vyz 0_¢+ ¢—¢—k2¢:0
dz?  QQ;dz?  QQF dx dv  QQ2Q7 dv de  QQ,
1 26 2 dVidd, v 1
1— - —— ) — KA1 - 1]¢ = 0. 3.42
o0 a "o g ar Tz ) T IF (- + 1 (342)
where above ¢; = 1 — Qi)
d? 2k dVyd inVni
o B0 2k dWodd ) | Vibuiy 2o e — (3.43)

dr? Q2 dx dx 02
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3.5 Ion-acoustic instability

We are considering low-frequency ion-acoustic oscillation in the presence of velocity shear in

the plasma sheath.

d*¢ do
Dy = Dim = Dog =0 (3.44)

where above,

DO = kzé?i—i‘l

D2:€i:1_ L

— 2k % VinVni
Dy = 002 dx (1+ 2 )

Q=w-—EkV,
Q,=Q+iv,, =w—kVy +ivy,

From equation 3.43,

d2¢ B 2k d‘/o d¢( VinVni
dz? Q02 dx dx 02
We set x=0 on the conducting surface of the vehicle thus requiring the potential to be equal
to zero.

) = [Kei + 1]¢ = 0. (3.45)

¢(x=0)=0. (3.46)
On surface beyond the sheath edge(x=L) the potential is
¢(z) = ¢(L)exp[—k(z — L)].
On the sheath edge, at x = L

hence
[ + k¢lo—r = 0. (3.47)

eq. (3.44), eq. (3.46) and eq. (3.47) constitutes to the initial and boundary values of potential.
In order to solve eq. (3.45), consider a linear velocity profile

Vo(z) = com.
In eq. (3.45) we ignore terms involving o also noting that for normalized frequencies such that
w] << 1 we may assume QQ; << 1,50 &; = 1 — o= ~ —ge-.
1 d?¢ 2k dVyde 1
- — = — [K*(— 1]¢ = 0.
o0 a2 o2 dv do (g, T

1 2¢ 2kdVody
“a0, e T ap BT II=0
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Decoupling above equation,

Lo 2kdVodd

GO LA (k2 —00,)é = 0.
02 o dedr )¢ =0
Lo 2kdVods . QO
wrto e TR0
Where above %l = Cy,

Q€

d*¢ N 2kc, do
dx? Q, dx
Furthermore making assumptions that for a phase velocity smaller compared to ion speed

the last term in eq. (3.48) maybe dropped, also as Q€; << 1 so f;g << 1 therefore we can
drop it as well. Hence

k(1 —

d*¢  2kc,do

- = — k¢ =0. 4

gzt Fes (3.49)
Defining X = kz and xk = % also we have dropped term involving ls%f’ SO

Qi =W — k’% + Zl/m
By putting Vi = ¢,z and X = kx in equation we get
QO =w —c, X + 1y,

w + Wy,

Co

Qi = c(

) — X].

Put xk = “F¥= in above equation.
0

22 %ec, do

— — k¢ =0.
dx? +CO(K—X) dx ¢
d%¢ 2 do
dX2+(f<;—X)d_X_¢_O' (3.50)
By solving eq. (3.50) we get
H(X)=(k—X-1)Cre ™ + (k — X +1)Coe™. (3.51)
Using boundary conditions
(X =0)=0, (3.52)
d
[d_;? + @lx=rr =0, (3.53)

to solve eq. (3.51). From boundary condition eq. (3.52),
(Ii — 1)01 + (Ii + 1)02 =0. (354)

Similarly from boundary condition eq. (3.53)
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o _

o= (X — K)Cre ™ + (=X + k) Cae™.

Put X = kL in equation
—¢(kL) = (kL — k)Cre " + (=KL + k) Cye™.

We know
¢(kL) = (k — kL — 1)Cre ™ + (k — kL + 1)Cye™™.

So,

—(k— kL —1)Cre™™ — (k — kL + 1)Coe* = (kL — k)Cre ™ + (kL + k)Cye™.

Cre ™™ 4+ (=2k + 2k L — 1)Cye* = 0.
—Cre ™ 4 2(k — kL — 0.5)Coeft =0 (3.55)
The boundary conditions give two linear equations for the coefficients C and Cj

[(fetle) 2(n—(/:L+—1()).5)ekL} [gj =0 (3.56)

By setting determinants of the coefficients equal to zero we get

(k—1) (k+1)

—e % 9(k — kL — 0.5)ek| 0

. e" k2 + (0.5eF — 0.5e" — kLe* )k + (0.5e ™ — 0.5¢F + kLeM) = 0.
Let
a4 — ekL7
b= 0.5¢" — 0.5¢" — kLer,
c=0.5e"" — 0.5e" + kLeM,
SO

ark® + bk +c=0.
By solving the quadratic equation for k we get

. —b =+ iv4ac — b?

2a ’

wbe have also defined k as ,
W + Wiy,
Kk = ,

Co

so we can write the dispersion relation as

w+ vy,  —b+iv4ac — b?
K = = .
Co 2a

(3.57)
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Chapter 4

Shear flow instability in a
partially-ionized plasma sheath around
a fast-moving vehicle in the presence of
Earth’s magnetic field

4.1 Plasma frequency is greater than the ion cyclotron
frequency w, << w << Wee

From electron momentum equation.

d’lile ~ dﬁle ~ dﬁle d%e 66&5 ~0 @ﬁl - - - e . ~ A - ~ A
pr +Ve, i +,, el . -V Noe _]/en<u1e_u1n)_m78(u1eyBl_U1exBj).

We will ignore the ion velocity ﬁln as they appear stationary in front of electron.Above equation

become.

dﬁl - df_[:l ind df_[:]_ ~ - 66&5 =0 éﬁl ~ d‘% e - ~ A - ~ A
~5 ‘/e ~e ‘/;i ~e en — ~ _V ~ < — NE - e B — e‘B . 41
+ y dy + z dZ +v ule e Te NOE uleac dx Me (Ul y t Uy x j) ( )

Dropping subscript 1 in all perturbed velocities and densities.Equation 4.1 becomes,

dit, - dii. - di. - KgT. eVd Vi, _ dV. e . = _ .
= ‘/e_~ ‘/e_~ enlle = T2 - = — Uex—< — < eB_eB .
dt + ydy+ de+V Y m. KgT, Noe) Y dz me(uy ¢ = te, Bj)
By using normalization conditions we will normalize the equation of momentum for electron,
hence
iz, dii, dui, 1o = dV, eB, . .
T ‘/e_ ‘/ez_ en_;:_v _ve_ ex 7 \Ueyl — Uez])- 4.2
dt+ ydy+ dz—l—u U m( o Ne) — U o me(uyz Uez]) (4.2)
where %B_ = Wee, which is the electron cyclotron frequency of electrons,so equation 4.2 becomes
du, du;, du, I R dv, . .
dt + Vveyd_y + Vvez% + Venlle = E(Vﬂs - vne) - uew% - ch(ueyZ - ue$.]>' (43)

47



We will separate eq. (4.3) into its x and y component i.e. @, = e, + uey} and V diA + diﬁ
From X-component of equation 4.3

AUy AUy AUy 1 .do dn.
Ve - ‘/ez_ enUex —
at Ve gy T Ve T Vent [

As all perturbed quantities behave sinusoidaly i.e. f(x,y,t) ~ exp(ik,y+ik,z —iwt), therefore
replace 4 &= —zw,d = ik, and d% =1k,,
also let V., =V}, and V.=V,

‘ 1 d
[Cx.) - ky‘/;,/ - kz‘/z + Zl/en]uex - E%[¢ - ne]

— (Weelley- (4.4)
Ineq. (4.4) Qe =w — k,V, — k. V, + ive, and ¢ = ¢ — ne.
T dY W
= — = ———Ugy. 4.
Hew mQ. dx Q. Hey (45)
From Y-component of equation 4.3
dute, du du 1 .do dn, dv,
. Vﬁ ‘/z Y enley = — |75 — ;7 | — ex_y celex
dt+ydy+ P + VepUey m[dy dy] Uew + Weelt
k 1dV,
[W - ky‘/y - kz‘/tz + Z.Ven]uey = __ykb - ne] - uexz_y + iwceuem
m d
k, T dv,
= — e — —2]. 4.6
Hey Qemw Q. w dx ] (4.6)
By putting value of eq. (4.5) in eq. (4.6), we get
Ky T 0 dY W av,
e = 0m T o ey de g, el T g
dV, k, 2 1 dy dV,
02 y 21 Pydle 1 OY _ Wy
Uey [ + Wee dr W] m (0 m dr [wWee dx]
_Q k. 1/} [ Wee — %]
Uey = v o de - (4.7)
m (22 + wee T wZ)

Similarly by putting value of eq. (4.6) in eq. (4.5) we get

) dw Wee

by it dY,
Hea = mQ. dr €, (- Q. m¢ Q. [ee dz )
U dV 1 dw w
exr QQ Yy 2 — ce y
0+ g — k] = y Ly

ms. dr m?

. d .
1€, —|— 1Weekyt) (4.8)
M2 + wee D2 —w2) '

Uex =
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From Z-component of equation4.3

dtte, dite, dtte, 1 .dop dn. dV.,
V, ‘/;_ enlez = — |75 — 5 | — Uex— -
dt * ydy+ dz * Ventt m[dz dz] “ dx
k., ey AV,
ez — - 4.9
Y erw Q. dx (4.9)
By putting value of eq. (4.8) in eq. (4.9) we get
_ ke, iV Q0% + iweekyt) |
Uez = me Qe dz m(02 +wce% Ze2) .
Wee z dVy kzwze ' d
" — _Qekzw + Q_ew[kydd‘; - kz%] + Qe ¢ + %ﬁ (4 10)
- m($2 + wce% —w2,)
From electron equation of continuity
dn dn dn du du du
_8 V _E ‘/Z_e - _ ey o €z o 6(13.
i Ty T iy  d:  dr
. : : dtiey
—i(w — k,V, — k. Vo) ne = —ikyuey — ik e, — T
Let w — k,V, — k.V, = ), hence
: dle, | . :
1n, = o + ikyUey + ik, Ue,. (4.11)
From eq. (4.8)
duez _ i iQe% + iwcekyw )
dz dz "m(Q2 + ch% - wZ,)
Let )
A= 2'96% + iWeeky?,
and qV
B =m(Q? 4+ wee—2 — w?
m( e —"_ w d.,L_ wce)
hence a1 _ i
A B2 — A2
e _ 4 Ay By = iy (4.12)
dx dx B?
dA d dv)
> = 'Qe_ . cek .
der  dx (i dx ek )
Where % = —ky% —k, dd\;;, hence
dA dy . dVy v, d*y dyp

ad q &Y
dx qu;< Y dx ks dx)+z ¢ da? ek

y%-
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dB  d s, W
dr dx( (Q % ch)

dB v, . dv. &2V,

2 ok, z i’y

dz m€e(kyp "+ kegn) e

By putting values in eq. (4.12), we get

duex _ _Z%(k dV?J + k dVZ) + ZSzed 2 —’_chek % (ZQ b +Z(Uce y¢)<_2mQ (k dVy -+ k de) +mwcedd‘£ )

Y dx
dx m(Q2 4 Wee - dVy — w2) m2(Q2 + we, W2 dVy — )
(4.13)
dttey _ Zfl’ﬁ(kyd;;y + k. de) +zQed L+ iweeky ‘Cil_iﬁ
o (2 + wee T — w2,)
(96 + iy ) (20 u« +hA) s, B
M2 + ey — w2)?
duea: _ lelaﬁ(ky dd‘;y -+ kz dd‘;z) + 7;96% + iwceky%
e m(Q2 + wee g — w2)
+(ZQ 1 ek, ) (292 (kydd‘f + A —wce%)

M(Q2 + wee D2 — w2 ))2

put value of above equation in eq. (4.11)

av;
Q) - (cilzi(ky o Tk dd‘;z) +iQ. 08 da:2 + 1Wweeky ﬁ
iQn, = ——

m(Q2 + wee 72 — W)

—I—( i dw -+ lwee yw)(ZQ (k s + k. de)_w %)

Y dx ce dx?

M2 + wee B2 — w2)?

—{ k?ﬂ/’__[ ce_%]

ik &
ol m+%%—%ﬂ
_Qekz _|_ wce k de o k dVy + kzwce _|_ dv, M
+Zkz( w w[ Y dz ] 1/) dx dx).

m(QZ + Wee gz dVy - wge)

av, : d
On, = (ky o Tk dv)+ QEd2 cekyﬁ
m(Q2 + wee Bt — w2)

L W1 kg 1) (200 (hy B 4 |, D2y — g, 1)

edr ? dzx dx?
m(Q2 + wcedVy —w2)?
- ka_k d_¢[ ce_ddﬁ]
( m(Q2 + wce% —wZ) )
ch 2 z av; knge z d
(_Qek§¢ + . ¢[ky dd‘; kz dzy] Q_ew + kz dd‘; d_qi:))

m(Q2 4+ wcedﬁ — w?)

ce

20



Q58 — Qg (k2 + k2) + b=y b, 25 — k. G2] +

vz Nz
On, = < z

2,2
kzwce

Qe

¢

(Qz +wcedVy w2)

2
(O ek ) (200 (ky g + k) — o)

M2 + wee D2 — 02,)?

A similar result for the density of relectron is obtained in [3]
From normalized neutral equation of momentum

iz, dui; dui, dv
at vy Ty TVnitn = Tlnatgn o Vnit
X-component of eq. (4.16)
dunw dun:c dun:r

it gy TV

_Z[W - ky‘/y - kz‘/tz + lem]una: = VniUig.

_ZQnunz = Vnilig.-

Z‘Vm'uia:
Ung = .
Qn
Y-component of eq. (4.16)
dty + V d Y sz dZy + Vnillny = Vnilsy — unxd_y
dv,
—ilw — k,V, — k,V, + iV Uy = Vnitliy — Unz——.
dx
. dv,
_'LQnuny = Vnilliy — unacd_;
Whillyy WUy dV,
Upy = —
4 Q, Q, dz
By putting the value of eq. (4.17) in equation 4.18 we get,
2.Vniuz'y Vnilig d‘/y
Upy = )
4 Q, Q2 dz
Z-component of eq. (4.16)
duy,, duy,, dtiy,, dV,
V ‘/z nilnz = Vniliz — Unz—F—
a Ty gz Unitins = Vnithis = Une g
dv,

_i[w - ky‘/;; - kz‘[z + iVni]unz = Vniliz — unm%

av.
dx

_ZQnunz = Vnilliz — Upg
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(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)



Wil Vniliz d‘/z

nz = 4.2
" Q, 02 dr (420)
From Ions equation of momentum
da; — dw; dd B B - v eB, . .
% + %d_y + VZE + VinUi — VipUp = —V¢ — um% + M(Uiyl — inj) (421)
X-component of eq. (4.21)
4 dg
_Z[w - ky‘/y - kz‘/z]uz:c + VinUiz — VinUpz = _d_ + Weiliy -
x
_Z[w — k‘y% — szZ]um + VinWiyz — Vin(ZVQ: ) = —d—i + wciuiy.
Let @, =w — k,V, — k. V, +iv;, (1 — %—2)
t do W
=———— 4.22
ST (4.22)
Y-component of eq. (4.21)
. : vy
_Z[w - ky‘/y - kz‘/z]uiy + VinUiy — VinUny = _Zky(b — Weilljz — umd_
x
. Whilliy | Vniliz AV . dv,
—ilw — k,Vy, — k. V. wiy + vintiy — Vin( 0 Y 0z d:zcy) = —iky ¢ — Weilliy — umd_xy
. VinVnilWix dV, . dV,
—i§diugy = Q—%d_xy — tky¢ — Weilliz — uwd_xy
ky¢ U Viplp; dV, dv,
iy = i — — —We — ——|. 4.2
=g e o g T T ) (423)
By putting value of eq. (4.22) in eq. (4.23) we get,
do VinVni AV, v,
2 o intni Yy Yy
Qz‘ uiy - ky¢Qz + [% - wciuiy” Q% % ci %]
VinVp; dV, dav, do VipVpi AV, av,
Q7 ei( g =2 — Wei — =)ty = kydh + — [ = — we — ——].
[0+ wail e gy — Wi = g iy = R0+ rl=aem 5 — e =
let C = [Q? + wci(—"ig’z’gm% — Wei — %)]
@ + (L G — wer — ]
Uy = Y del Q2 dx dx . (424)

C
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By putting value of eq. (4.23) in eq. (4.22) we get,

]

do VinVn; AV, dV,
2 o . . . mbPna y Yy
Qiug, = —zQi% + twei[kyd + 1| 02 dr Wei — %]]
2 VinVni d‘/y d‘/y o . dgb .
[Qz —+ wci(Q—%% — Wei — %)]UJ” = —ZQz% + chikygb.
. —i% + iwekyd
1r T C .
From Z-component of eq. (4.21)
dV,
_Z[w - ky‘/y - kz‘/z]uiz + VipUiz — Viplpy = _Zkz¢ - umd_
T
By putting value of eq. (4.20) in eq. (4.26) we get
. iVinVniuiz o . thz VinVniUWig d‘/z
—ilw — kyVy — k. V. ug, 4 vinug, — Q—n = =tk — Uiy I 2 dr
d‘/z VinVni
_Qz iz:_‘kz — Uy 1— .
iQu ik, —u o [ 02 ]
Put value of eq. (4.25) in eq. (4.27)
0 ik [—Z'Qi% + Z'wcikygb]d‘/;;[ Vme']
Pithis = T C dz oz
Okt — [ — weiky @)1 — L] 4
Uiy = .
C<;
From ion equation of continuity
Zan = dL + Zkyuiy + 2]fzuiz
T
where
y 2 y dVy VinVni z ((YinlVni )
dum B —291% — Z%UQJ%<Q—% — 1) + kzdd‘g (Q_% — 1)] + chiky%
de C
y y dVy z VinVni
[ZQZ% — Zwm'ky¢] [QQz(kyH + kz dd‘; )(Q—% — 1)]
2
y y WeilinVni 2 Yy WeilinVni Yy Yy z 2 Y
(192 — iweiky¢]] oz Tt 9%} T (ke k) — ci%
2
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(4.25)

(4.26)

(4.27)

(4.28)

(4.29)



2 . v Vi .
o — 58 — %[k, T (e — 1) + kG (Mgt — 1)] + ik, G
n;, = 8
d VinVni
(52 — waik, @[22k, G2 + k. %G5 ) (U — 1)]
02
928 — wnkyg)[2atigtns S 4 2ot 2, B 4 5 — B
+ o2
VinVni Vi dv,
k5¢9i+kyfili[ [97] dzy = Wa T d_f]
+] & ]
H0@¢—@m£-ﬂ%aﬂu—%%¢%]
cQ, '
N (y + K2)Qud + g G (k. — k) — “4% (we + ) + hybowaid gt — 28
n; =
' C
inVni WeilinVni &
(452 — weikyd[202 (y G2 + b ) (Mgges — 1) + Setigton T
02
(92 — ik @) [2eeitipins Do (o Do g dVey BV
+ o2 .
VinV, 2zWei z wcig 2
o B R0+ gt G (e — k) — 520 (wei + T2) + kyhowad G — 4TS
o QC
d av, z VinVni WeilVinVni d2V
(5% — weiky0][260 (k, G2 + k. G2 ) (Vg — 1) + “eigprai Ty
QC?
WeilVinVni d d 2 d2
+[QZ% - wcikyqb][QQ—% s (ky d‘;y + kz(fi_‘;) — Wei dx‘gy]

QC?

Consider ion cyclotron frequency to be to be very leass than the plasma frequency,hence.

(4 + 2) 60+ Bt 8, — k) — 220 1 9) 1y s — 0129
n 002
(452 — ek, $11200 (o, 2 + b 20) (s — 1) + gt T
QQ;1
wLZVZTLVTLZ dV dV z d2V
[dex Wei y¢”2—3 T (kyd_xy + kZ%) - cz#]

Q0!

Ignore terms iovolving %, also as we are dealing with linear velocity profile therefore d

d¢ dv,
o 2
QQZd (ky d “dx ")

d d?
Wei + %) + kyk, Q7w m¢— — Q3d ¢ (4.30)
dV dvz
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from equation 4.14

QoG — Qup(k2 + k2) + =gl 9 — k. G2] + ey

_ ed? o Rdol T O
Q?’Le o m(Qg + wce% - wge) (432)
2
(8 + k) 20 B+ k) — o ) (4:33)
m(Qg + ch% - w§e>2 |

as ), << we hence above equation becomes

QLY — Qup(k? + k2) + ke o, Lo — k, D] 4 Kot

n., — edn? Y do ?do {2
€ mQ(wce% - wge)
+<Qe% + chky¢)(296(ky% + ks dd‘;;> _ wce%)
mQ(wce% - wge)Q
v 24 weeko o dV. . dV, dv,
0 Ce_y_ 2y2 Q—" —Q, k2 4+ k2 cellz ]{;—Z—kz—y ce—y_ 2
mn (CL) dx wce) ( dIQ 'Lp( Yy + Z) + Qe ,l/}[ Yy dx dx ])(CL) dx wce) +

k22 dv, dy dv, dv;
z%ce 0 ZY )2 Q.— k 2Qe(ky—> + k -

(o, NSt = L)) + (g + k) 20y g + by

i d*V,
—(96% + wcekyw)(wCGWQy)

d?V,
where d_2y =0
x

2 d 2w2
O TE — Qp(R2 4 k2) + ek, O — k] + B

Ne
mQ<ch% - wge)
20, (0, % ok WYy Jo, 4V
Qg Feky0) by g ¥ R00) gy
mQ<wced_xy - (")026)2
0 aVy 942 _ Uvy 2 0O—7 _0 2 2 celvz z Y
m (wce dz wce) Ne (ch dr wce)( € dx2? e¢(ky +k’Z) T Qe ¢[ky dzx kz dilf]
2,2 di dV, dv,
_Z_ce 2Qe Qe— cek ky——= kz_z 4.
+ 0. Y) + ( dx+w y¢>(ydx+ dx) (4.35)
v, 2 weekz , dVe o dVy, | KR
Le _ Ce_y_ 2 Qe__Qek_2 k2 cezk Z—kz Yy z77ce
(w I w2 )( 72 (y-i- 2)+ Q. [ydm dx]+ Q, )
d dv, dv,
200 (Q— — -
+ e( edx +chky)(ky dx + kz dl')
d
mQ(chd_‘;;! - wge>2ne = Lew
d




Xene = Legb
from LHS of above equation
dv,? d dv,
4
Xe = mQw,, + wceQd_; — 2%6261_;) + (wced—; — wfe)(—Qe(kj + k?)
Week dV, dv, k2w? dV, dv, d? dV,
<= - _kz Y =< 296 cek k —2 kz_z Qe_ ce_y_ 2
Q. [kydx dx]+ Q. )+ v y(yda:+ d:c)+ dx2(w dx Wee)
d dv, dv,
2 7 -y 'z
+2Q€dx(ky . + k. dx)
dv, dv,
X, = mefe + meCGQ(%)Q _ 2meceQd_xy — Qe(k;; + kg)(wced—xy — wfe)
w2k, d%[ dV, B dVy] k2w? dV, B w3k, s dV, B %]
Q. dr "V dx * dx Q. dr Q. " Vdx * dx
k2w dV, dV, d? dV, d dV, dV,
— =) 4 20 weky (ky =2 + ko) 4 Qe (Wee 2 — wi) + 292 — (ky— 2 + ko ——
q, )+ 2y (ky " 4 ke )+ Qg (e ™ = wee) + 200 (hy o m 4 b
Led
. = 4.36
n= (4.30

Considering case where k, =0

In this following supposition is made that the strength of magnetic field is so less that there is
no propagation of plasma along z direction and it will propagate along y axis only with velocity
shear along x direction.

From equation equation for the neutral density can be written as.

_ ko 1 P 2k, dody,

; 4.37
T 00, T Qde? T 0 de dr (437)
for such case X, will become.
dv, dv, dv,
X, = mQul + mecf(d—;’)Q - 2mQ%€2d_xy — Qeki(wced—; —w?)
dv, d? dv, d dv,
2Qweek? =2 + Qp—— (Wee—2 — W2 202k, — —~
ety dx + de(w dx Wee) A0 Ydr dx
Similarly L. will become.
d? dv, v, av, d dv,
L = Qe—=(Wee—2 — %) — Qok?(Wee—2 — W2 202k, —2 — + 2w Qe k2 —2
¢ ed:ﬁ(w dx Wee) s dx Wee) £ 20k dr dz e Y dx
From Poisson equation
d*¢
i kl¢ =ne —n; (4.38)

By putting values of equation 4.37 and 4.36 in equation 4.38 we get.
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Py Ko Lo kjo 1 d% | 2k, dodV,
de YT Xe Q0 Qde? | Q2Qdz dx
d?¢ 1 1 Lep 2k, dodV,
— (1 = —k2p(1 = _ e y 2¥ 2y
2T TR T a0) T Xt adr da

where €2€); << 1 hence above equation becomes

R kg _ Lo 2k, dodV,
OQd? O X, | Q2Qdr da

2 2%, dV,, do
X [-L9 p g2 - w880 qop,
[ dz? v Q; dx dx] ¢
dv, dv, dv, dv,
4 2 2 2 2 2 2
(MmQw.., + mQuwee <d_xy) — 2mQWee d_xy — Qck; (wced_xy —w2) + QQewcekyd—;
d? dV, d dV, ¢ 2k, do dV,
Qo (e =Y — w2 ) 202k = T2y g2 - TP
+ de(w dx Wee) + 240, Ydx d:v][ dx? Ry Q; dz dx]
d? dv, dV, av, d dv,
= QiQ[Qe@(wced_; - wze) - Qekz(wced—xy - wfe) + Zng’yd—;% + 2wceQek;d_;]¢ (439)
Solving coefficient of % in eq. (4.39)
dv, dv, dv, dv,
—[mQuw?, + mecf(d—;)Q — 2meC€2d_; — Qeki(wced—; —w2) + 2Qewcek’§d—xy
E AV, o, ddy, v,
e (Wee - — W) + 20k = 7] = Qile[(wee " — wee) = 0
dv, dv, dV, Q2,02 dV,
—mQuw;, — mQch2(d_;)2 + 2meceQd—xy + Qe/ff,(wced—; —wg)(1 - ) 2Qewcek§d_;
y
d? dV, d dV,
Qe (Wee—2 — w?2) = 20%k,——2 =0
dz? (e dx Wee) “Vdx dx
where %52 << 1 hence above equation becomes
V, dv, dv, dV,
—[mQuw? + mQOJCEQ(d—;)2 - QmeCGQd—xy — Qekz(wced—; —w2) + 2Q€wcek§d—;’
d? dV, d dV,
Qoo (et — W2 ) + 202k, ) = — X,
+ dz? ( dx Wee) £ 2% Ydx dx )
Solving coefficient of % in eq. (4.39)
dv, dv, dv, dv,
[mQuw?, + meceZ(d_;>2 - 2meC€2d_xy - Qeks(wced—xy —w2) + QQewcekid—xy
& dv, d dv,, —2k,dV, v,

Qe (Wee—2 — W2 202k —202Q,Qk,—2 = 0.
+ d.TQ (w dr <"Jce> + [ ] e Y dr 0

Vde dr I Q, dx
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dv, dav, dv,, av,
0 4 0 2 Yy\2 _ 210 2 Yy _ 0 2 20w 2
[, +mQwee™(—-7)" = 2mQwee” " — Qekywee = + 2eweeky — -
d? dv, d dv, —2k,dV, — 2k,Q.k2w?, dV, Q.02Q
Qp— (Wee—2 — + 20%k Y y_ce = 0.
O ey — i) H 20k T s o e
Where the value of ] << 1 so it can be ignored, hence
dav, A dv, av,,
4 2 AV 29%Vy 2 y 2
[mQw., + mQwee (_dx ) — 2mQwee — Qeky(wce T w2) + 2Qewecky, —— v
d? dav, d dVy, . —2k,dV, -2k, X, dV,
Q. Juad 2Q2k3— y YVy, _ ylelly
e g (oot — i) + 20k g = —
Solving the coefficient of ¢ in eq. (4.39)
dv, ,dVy, d? dV, d dv,
Qu? Qe (—2)? — 2mQwe2—2 + Q. —2 W)+ 202k, — —Y][k2
[m wce+m w (dl') d + d2( dl’ ) yd d ][ }
0,0 dv, 0,0
4 4
+Qekyw? ( k2)+Qe Cekd ( k2):0
Y y
where the value of Q
dV, dV, d? dV, d dv,
4 2 2 2 2 2
[mQw., + mQwee (_dzz:y) —2mQwee T Y+ Q. e —— (Wee d:z:y —w?) + 20 k‘yd——d 1[k,]
av,
4 2 4 2
+Qekywee + Qeweek, —— v gy =k, Xe.
By putting the values of all the coefficients in eq. (4.39), we get
ng 2k, X, dV,
—Xe—— + kX p— 2=~ = 4.4
By decoupling eq. (4.40) we get
d*¢ 2k, dV,
— — k2 Y Y —. 4.41

The second order differential equation obtained in 4.41 is similar to the differential equation

obtained when both electrons and ions are un-magnetized.

4.2 Plasma frequency is less than the ion-cyclotron fre-

wmk q‘) dv, dV, d2¢>
(k§+k2) z¢ (cz+ y)+kkwcz¢ y_ zd2

QC
_QQi[Qi% — wWeiky ) ( ydd‘;y + k.
QC?

where C' = [Q? + wcz(l’zﬁgm dd‘;y = Wei — %)]
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hence above equation becomes

dV,
C:QZ_ ci\Wci —L
(8 — weilwer + —-7)]

as ; << we [24],hence
dV,

C = ci\Wei —
Wei (W +dac)

n, = dx dx T dz?
' chi(wci + dd%)
—20[ 0% — weiky @] (hy T + K, D2
Quw? (wei + %)2
let
(B2 D) — S () + kB — iy
o chi(wci + %)
—20 [ L — weik,) (kD + ke, 4]
hence
n; = X;0 (4.42)
put value of n, and n; in equation 4.37
d*¢ 2 | ;2 Le
—r_ - _ X,
dl’2 (kz + ky)¢ Xe z(b
d’ 2 2
Xe(@ — (k; + k)¢ = Leop — X Xigp
d? 2 2
Xe(omy = (k2 + ky) = Xi)o = Leg (4.43)

We will assume the particles have a sheared drift velocity along the Z direction, which is
parallel to the external magnetic field, hence letting % =0

hence
(/{:2—{—]62)90—“)‘2”']62 _Q'ﬁ QQ.[Q.i_ k](k‘ de]
— Y z/7T Q; vdx® il30i gy — Weikiy](Rz7g,
! Qu? Qg
(R4 R0 — 0l — 202k e 4+ 20k kB
’ Qul.
3 2 4
_ 4 2 (1.2 2 Weekzky AV, klwg, dv,
X, = mece + Qewce(ky + /{:Z) — o, Y - _ 0 + QQewcek'ykZ%
I 2 d? RO (k2+k2) wfekzk:y dv, k2wt 202k dV, d 490 I e dV,
e — —W e 7 5 T W e - T A 3. T A z 7 7. eWeelz Ny ——
T dr? e Y z Q. dx Q. ¢ dr dx Y dx
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from LHS of equation 4.39

2

d 2 2 d2 2 2 2 2y, 2 élzkg
@ — (kz -+ ky) — X@ = Q(,u (Qw % — QCL) (kz + k'y> — (/fy + kz)wciQi — Q.
2
—O0u? d——2§22k av, d dv,

AT Yo HE o
e dr do T Y i)

from equation 4.39

d> wi k2 , d? dv, d
X (0 4 = 0 4 (1.2 2\ _ (1.2 2 2‘9' oz Q el 292
6( wcl de wcz(kz + ky) (ky + kz)wcz 1 Qz CU dfﬁ k d d.ﬁE

+ 20 wczkk )qb QuiL.p (4.44)

w3 k. ky del 20)? k2wl

)_ z o ce

Q. dx( w2 Q.

Xe = mQu, + Quw?, (k) + k2) —

as Wee > e

3 2 4
X —me _|_Qew (k2+k2) Wik ky dV, k;Z wh

Q. dox Qe

from of equation 4.40

Wik, dV, K &

(me + Qews (k2 + k:2) O p ZQ <) (Quwy,; 4 i3 Qw (kg + k:;) — (ks + k:g)wlez
wrk? d2 dV, d dV,
— 28z Qut— —292 Weikyk =
0 Wi g2 T de 2 )?
d? w3 k,k, dV, k:2 4 dV, d dV,
¢ Qe— + W2 (k2 + K2 ce =Y 2Cee o2 T2 DL 90wk k,
Werl ~weelle g+ weeldelly + KZ) — == R = =0 ke gy g T 2k )0
(4.45)
from coeflicient of %
3 k.k, dV. k2wt
0 9) 2 2 wcezy_z_ z"ce Q4_Q -0 2Q
(m w + Bw (k +k) Qe dl’ Qe )( wcz Zw ) wczwce
2 2 Wgekzky dV, kiWé Q 2 4
[me +Qew (k + k) — Q—e i Q—e][ﬂ— w_i] = —Quw? Qw.;
as wey >> §); hence
3k k,dV. k20t
Q Q Q 2 2 chzy 2 Vzce Q2Q 4-21
W, [m w .+ ew (k: +kI) — QO . | + Qw2 Qews;
.. . . d
similarly comparing coefficients of d—‘f’
4k k, dV, k23 dV, dV,
Ol 4 Quw? (k2 4 k2) — Leelzly 82 Beleey og2p 72y g 1g2p 72
(mfhl, + Qs ( + K2) = Lo T By (02, T8 — 2wt 02
4 2 3
(mQuwy, + Qew?, (k2 + k2) — Weckshy Vs kzw“)(—mf avs ) — 2wi 2k, Vi _ g

Q. dx Q. “dx Weit e dx

from coefficient of ¢
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2 2

(mQuwy, + Qewly (k2 + kZ) — 0 d Q)

dv,
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9) 4 QQ 2 2 _wce zvy 2Wee 20 4.4
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4kzk d /{32 3 4]{52
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L A Q . Wik
Q Q k’2 k’2 wce z'vy z ce Q 4‘ k’2 k2 1 ? ci'Vz
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hence equation 4.42 becomes
P | do
Id2+Hd +Jp=0 (4.47)
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Chapter 5

Results and Discussion

The general form of the dispersion relation for ion acoustic waves wave instability due to hy-
personic sheared flow is of form w = a+iy. Where « and v are Re(w) and Im(w) respectively.
The real part of frequency corresponds to the propagation of wave, whereas imaginary part
of frequency decides the existence or non-existence of the wave in plasma i.e. either the wave
is supported by plasma, it grows and can propagate, or the plasma absorbs and damps the
wave. This is decided by the sign of the imaginary of frequency, the positive imaginary part
of frequency leads into growth of the wave amplitude with time whereas negative sign of the
imaginary part leads to damping of the wave.|6]

In order to correctly evaluate the growth rate of instability and the role of neutral particles
in suppressing such instabilities, a second order differential equation for electrostatic potential
of the ion acoustic waves is derived and solved analytically for linear velocity profile of the
sheared flow, using appropriate boundary conditions for finite thickness of plasma sheath. An
appropriate scaling relationship for the instability in case of linear velocity profile is obtained
through the analytical calculations which is of the form

Wiy, —b+iv4ac — b? (5.1)
o, 2a ' '
In eq. (5.1)
a=el,
b=0.5e" — 0.5¢" — kLerE,
c=0.5e* —0.5e" + kLeM.
Where k = l;:yj\ De 1s a dimensionless number for dimensional wave number /%y, A De = 45\%%2

is the electron Debye length, L is the length of sheath normalized to electron Debye length, w
and v;, are the normalized wave frequency and collision frequency with respect to ion plasma
47rZ2€2]§f()%,nmI

frequency i.e. @, = i

The nominal plasma parameters which we will use are Ny, = 10'%cm =3, Ny; = Ny, = 10%em =3,
T,=05eV and T, =T, = 0.1eV.

In the absence of collision eq. (5.1) can be written as

_ —b+ividac — b2

w = )

2a
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where

Re(w) — —b

o 2a’
Im(w)  V4ac —b?
o 2

If we plot Recg”) and I”Z(()‘“) against kL we will get the following results,

3
(4}
@
0.0 0.5 1.0 1.5 2.0
kL
Figure 5.1: Real part of frequency Rec—(ow) as a function kL
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Figure 5.2: The growth rate of frequency

Through numerical evaluation of fig. 5.1 and fig. 5.2, the values of maximum growth rate
(Vimaz), the max real frequency (wymaz) and wavenumber (kq..) at peak growth rate, and the
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wavenumber k. at cutoff wavelength are obtained, where

Ymaz = Mafl'[jm(UJ)] ~ 0.24700,

Wrmaz = 0.842c¢,

1.23
kmaw T
L
and 1 83
ke~ ——.
L

We have considered linear velocity profile Vy(x) = coz, which is normalized with respect to
ion sound speed C, = ’\L\’/eg’” =/ feke
of peak sheath velocity at the out edge to be ¢oL < 1. These scaling relationships are made in

order to satisfy our low frequency assumptions.

. Considering the value of L >> 1 and value normalized

We will consider two cases, first in which the sheath edge velocity 0.5 times the ion sound
speed i.e. ¢y = %5 and another case in which the edge velocity is equal to ion sound speed i.e
co = % For both the cases plots are obtained for the real frequency Re(w)and growth rate
Im(w) against normalized wavenumber k. In all cases considered we will take value of L = 200.

1.0
0.8

0.6

Re(w)

0.4

0.2

0.0

x -

Figure 5.3: Plot of normalized real frequency Re(w) as a function of normalized wavenumber
1
L

k for linear velocity shear with ¢y = L;) and ¢y = + in the collisionless limit.
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Figure 5.4: Plot of normalized growth rate Im(w) as a function of normalized wavenumber k
1
L L
From numerical evaluation of fig. 5.4, it was observed that by decreasing the peak sheath
velocity at the outer edge by half, a decrease in the maximum growth of instability is observed.
The value peak growth rate for ¢y = % iS Ymaz = 0.0012348 and that for ¢y = % 1S Yimaz =2
0.0006174. The value of wavenumber (k,,..) at peak growth rate, and the wavenumber k. at

cutoff wavelength are, k,,,, >~ 0.00615 and k. =~ 0.00915 respectively.

Till now the calculations we have done are for collionless limit now if we take collision
between ion and neutral into account well get the following dispersion relation

—b + iv/4ac — b?

2a )CO - iVin- (52)

w=(

In eq. (5.2), vy, is the normalized collision frequency which is equal to

_ Vin NowVrioin
Vin = = - ~ )
wpz- Cdpi

where Vp; = ,/% is the thermal velocity of electron and oy, is the cross section of ions col-

liding with neutrals having value o, ~ 6 x 107 cm? (approximating potassium ions,liberated
from the outer coating of the vehicle, interacting with nitrogen molecule). By putting values
in equation we get v, = 1.4097 x 10715 Ny,,.

We have observed the effect of ion neutral collision on growth rate of instability, by plot-
ting a graph of growth rate as a function of k for different values of Ny,. The value of ¢ is

taken to be %, hence
Vidac — b?
Im(w) = —— — vip.
2aL

If we plot the growth rate I'm(w) of the wave against normalized wave number k for different
neutral densities we get the following figures.
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Figure 5.5: Plot of growth rate I'm(w) as a function of k for different values of the neutral
density Ny,
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Figure 5.6: Plot of growth rate I'm(w) as a function of k for different values of the neutral
density Ny,, when ¢y = %

The fig. 5.5 and fig. 5.6 are plots of growth rate of instability for linear velocity shear as
a function of normalized wavenumber £ for different values of neutral number density Nj,.
The values of neural density considered are between the range of Ny, = 10%m =3 to Ny, =
10'2em =3, where substantial damping of ion-acoustic wave instability occurs. It is observed
that by increasing the neutral density within the plasma sheath a decrease in the peak growth
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rate of instability takes place to a point where it damps out, this occurs due to an increase in
the ion-neutral collision frequency.

For ¢y = 1 in collisional limit the peak growth rate was Im(wmqs) = 1.22 x 107% a complete

damping of wave takes place when neutral density is No, = 8.76 x 10! or v, = 1.23 x 1073,
which is 1% greater than the peak growth rate. For ¢y = % in collisional limit the peak growth

rate was Im(wpmaez) = 6.03 x 107*, a complete damping of wave takes place when neutral density
is Non, = 4.38 x 10 or v, = 6.17 x 10~%, which is 3% greater than the peak growth rate.
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