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Abstract

In this dissertation null and timelike geodesic motion in a slowly rotating Hor̆ava-Lifshitz

black hole are studied. First a review of null and timelike geodesics for radial and non-

radial motion of particles in a static or non rotating Hor̆ava-Lifshitz black hole is given. For

this the behaviour of the effective potential is explained with the help of graphs. Then the

timelike and null geodesic motion for radial and non-radial particle are studied for a slowly

rotating Hor̆ava-Lifshitz black hole. The behaviour of the effective potential for the particle

is investigated and plotted. Especially our focus is on the spin parameter, a, of the black

hole in Hor̆ava-Lifshitz gravity. It is observed that in the case of the slowly rotating Hor̆ava-

Lifshitz black hole, the instability of the particle’s effective potential increases by changing

the values of angular momentum ` and the spin term a. There arise different cases due to

energy of the motion of radial particle: (1) when the energy, E, of the particle is equal to

EC the critical energy (maximum value of the effective potential), then orbit of the particle

becomes unstable; (2) if the energy, E, of the particle becomes greater than EC , then the

particle comes from infinity and fall into singularity; (3) when the energy, E, of the particle is

less than E1, then orbit of the particle becomes stable, where E1, corresponds to the energy

range, below which the motion of the particle goes into the bounded region.



Chapter 1

Introduction

General Relativity (GR) is a theory of gravitation. It explains several phenomena such as

the bending of light due to gravity, gravitational redshift and perihelion shift of Mercury

which is in complete agreement with the experimental facts [1]. However the limitations of

the theory are felt at a microscopic level. For fundamental level the quantum description is

required. There is no such theory that completely describes the motion of both microscopic

and macroscopic objects. The problems also arise in dealing with the motion in which

acceleration is due to fields other than gravity. This type of motion can be formally explained

in the relativistic domain, but the argument is not in complete agreement with the philosophy

of relativity [2].

GR is the only theory which explains the astrophysical and cosmological phenomena such

as black hole, pulsars, quasars, density of stars, the big bang and the universe itself. It

deals with the small shift (like perihelion shift) of the orbits of planets and it is also the

essential ingredient in the system of global positioning system [3]. Einstein presented in

1915 the idea of space and geometry as a conceptual revolution of space and time in our

views. Therefore in a gravitational field the falling of all objects with the same acceleration

guided him to understand gravity in terms of curvature of spacetime. The presence of mass

1
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induces curvature in the spacetime surrounding it. In the universe all bodies move along

curved spacetime trajectories as a consequence of gravitation. The spacetime around the

Sun becomes curved due to mass of the Sun and the planets move in the vicinity of curved

trajectories in that spacetime. Gravity is geometry [4].

There are some relativistic phenomena and relativistic stars described below. Stars are

stabilized by outward radiation pressure generated during nuclear reactions inside the star

against the inward gravitational pull. In the star when nuclear fuel vanishes or is not enough,

then gravitational attraction becomes dominant over the radiation pressure generated due

to nuclear reaction within the star. Thus the gravitational collapse inside the star happens

and core of the star becomes remarkably compact like “Neutron Stars” or “Black Holes” and

“White Dwarfs” [5]. When the star’s mass M ≤ 1.44 solar masses (Chandrasekhar limit)

then this turns into a white dwarf. GR also put strict restriction on mass of the neutron up

to the limit 3.2 solar mass [6] while crossing this limit leads to the formation of black hole.

Moreover GR states that a black hole is formed when the gravitational pull on the surface

becomes too large that it compacts the mass to the degree, such that nothing can escape

through this surface, even light. According to Newton’s law of gravity an object with mass

‘m’ can escape from the vicinity of a star having mass ‘M ’, with initial velocity greater than

escape velocity (vesc =
√

2GM
R

). Therefore the object’s velocity exceeds from the velocity

of light when 2GM > c2R. In Newtonian gravitational theory, there are no limitations for

speed. It means that speed of an object can exceed the speed of light classically which is

against the relativistic theory [7,9].

The black hole is described by its surface is known as event horizon. This means the boundary

beyond which events cannot effect the outside observer. Objects may be captured in it but

nothing can go out of it. Such objects was first proposed by Laplace and John Wheeler assign

it with the name “black hole” [10]. For any star having mass (M = 2 × 1030kg), to convert

into a black hole its radius would be about 0.3km [1].

Gravitational waves are also predicted by GR. As mass produces curvature in spacetime,
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Thus the moving mass generates wavelets in spacetime that transmit with the speed of light.

These wavelets are called gravitational waves. The gravitational waves sources are black

holes, binary stars, big bang and supernova explosions. These waves cannot be detected

easily due to weak gravitational pull. But due to these gravitational waves we are able to see

the black hole horizon and other earlier events occurring in the universe more closely.

The dynamics of particle around a black hole is an important problem in black hole As-

trophysics. This helps us in understanding the geometry of spacetime near the black hole.

Motion of the particle might be predicted outside the black hole. In order to study these

dynamics at quantum level, Hor̆ava proposed a theory by using the concept of Lifshitz and

named as Hor̆ava-Lifshitz theory. It is a proposed theory of quantum gravity [11]. GR pre-

dicts that when an isolated spinning star collapses into black hole, gravitational radiations

quickly remove any irregularity in rotation. Although, the typical spinning black hole is not

isolated but it is surrounded by matter which is attracted to it. Moreover a rotating black

hole may give enough energy to the particle that it gets escape to spatial infinity. This

physical effect plays an important role in the ejection of high energy particles from accretion

disks around the black hole [7].

Our main focus in this thesis is to find how a particle behaves when there associate a spin

with slowly rotating black hole in HL gravity. We are interested in the effective potential’s be-

haviour for the particle, that the instability of the particle increases or decreases by changing

the values of angular momentum ` and spin parameter a.

To analyze the motion of a particle around a spinning black hole is a very complicated issue.

Thus before dealing with a complicated problem of dynamics of a particle around a rotating

black hole in HL gravity we start with a simpler case of static black hole in HL gravity.

Generally the dynamical equations obtained through a Lagrangian or some other method for

a particle, are not solvable analytically. In this thesis we assume the motion of particle in a

slowly rotating HL black hole. The motion of a particle around a static black hole with no

spin in HL gravity was studied by [12]. The main features of their study are, the effective
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potential behavior for timelike geodesics motion of the particle and their radial motion in

static black hole of HL gravity. Same problem for rotating case which have spin also, was

studied by [13]. The main purpose is that if the rotating black hole have spin then it effects

the effective potential. In this case, the action of spinning on the effective potential remains

the same as in static black hole.

This dissertation has been divided into 4 chapters. The layout of the study is mentioned

below:

1:- Chapter 1 covers the introduction and basic definitions

2:- Chapter 2 covers literature review of the motion of particle in a static black hole in the

HL gravity.

3:- Chapter 3 covers the study about the motion of particle of slowly rotating black hole in

the HL gravity.

4:- Chapter 4 covers results and conclusions.

We use the sign convention (−,+,+,+) and units c = 1 and G = 1 through out this

dissertation.

1.1 The Metric and Curvature Tensor

The position of a point in the spacetime can be determined by using its coordinates. But

these coordinates do not give us complete information to explain their geometry in space. A

metric tensor is a function which encode such information defined at each point in the space.

It is a bilinear mapping of two vectors into real (R), which means that it gives their inner

product, shown as in [14]

g(~u, ~v) = ~u · ~v. (1.1.1)

The given definition suggests that the metric tensor is a symmetric tensor and their respective

covariant and contravariant components are

gab = g(ea, eb) = ea · eb (1.1.2)
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gab = g(ea, eb) = ea · eb. (1.1.3)

Here gab is a non singular covariant metric tensor. Where non-singular means that its de-

terminant is non-zero in terms of its components. It is a covariant symmetric gab = gba

tensor-field of rank 2. There exists a unique inverse represented by gab which guarantees that

the rank of the inverse metric is also 2.

The metric tensor is used to define the infinitesimal distance ds, between two points on a

curve xa(p) and xa(p+4p). Let V be the tangent vector field of the curve then

ds2 = g(v,v)dp2 = gabv
avbdp2 = gabdx

adxb, (1.1.4)

here va = dxi

dp
. The quantity ds2 is known as the line element associated with the metric

tensor gab. It is now assumed to be a function of several variables. A function may be multi-

linear if it is linear in all of its arguments. Thus a tensor is a multi-linear function that maps

vectors and one form into R.

Riemann Curvature Tensor

The Riemann curvature tensor plays an important role in describing the geometrical proper-

ties of spacetime. It explains the curvature in an invariant way. Let us consider a covariant

derivative of a tensor of rank one [1]

Xa
;c = Xa

,c + ΓabcX
b. (1.1.5)

Taking again the derivative we obtain

(Xa
;c);d = (Xa

;c),d + Γaed(X
e
;c)− Γecd(X

a
;e), (1.1.6)

expanding this equation which gives

Xa
;c;d =

(
Xa
,c + ΓabcX

b
)
,d

+ Γaed
(
Xe
,c + ΓebcX

b
)
− Γecd

(
Xa
,e + ΓabeX

b
)
. (1.1.7)

Now following the same procedure but with change in order of he derivatives implies that

Xa
;d;c =

(
Xa
,d + ΓabdX

b
)
,c

+ Γaec
(
Xe
,d + ΓebdX

b
)
− Γedc

(
Xa
,e + ΓabeX

b
)
. (1.1.8)
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Subtracting equation (1.1.7) from equation (1.1.8) and comparing their dummy indices gives

Xa
;d;c −Xa

;c;d = Ra
bcdX

b +
(
Γecd − Γedc

)
∇eX

a, (1.1.9)

where as

Ra
bcd = Γabd,c − Γabc,d + ΓebdΓ

a
ec − ΓebcΓ

a
ed, (1.1.10)

while Γecd = Γedc, then equation (1.1.9) reduces to

Xa
;d;c −Xa

;c;d = Ra
bcdX

b. (1.1.11)

Thus Ra
bcd is called Riemann tensor and it describes the curvature of space. If Ra

bcd = 0, then

the given space is flat while if Ra
bcd 6= 0, then the space is curved. The Riemann curvature

tensor can also be written as

Rabcd = gaeR
e
bcd. (1.1.12)

Here Rabcd is skew symmetric in the first two indices and last two indices

Rabcd = Rbacd, Rabcd = Rabdc. (1.1.13)

Rabcd is symmetric with respect to the pair of the indices under permutation

Rabcd = Rcdab, (1.1.14)

and Rabcd satisfies the following two Bianchi identities

Ra
bcd +Ra

cdb +Ra
dbc = 0, (1.1.15)

Rabcd;e +Rabde;c +Rabec;d = 0. (1.1.16)

Here semicollon “;” in the given expression represents the covariant derivative. The Riemann

curvature tensor (1.1.12) have n4 independent components while using properties (1.1.13) to

(1.1.15) these components reduces to n2(n2−1)
12

[14].

The Ricci Tensor: This is simply a trace of Rabcd. From equation (1.1.12) applying con-

traction on first and third indices respectively we get [4]

Rbd = Ra
bad. (1.1.17)
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This is a symmetric tensor with rank 2 which is known as Ricci tensor.

The Ricci Scalar: By contracting Rab with gab it gives curvature scalar (Ricci scalar) R [4],

R = gabRab. (1.1.18)

This Ricci scalar is the trace of Ricci tensor.

The Einstein Tensor: To derive the Einstein tensor we are using Bianchi identity as follow

Rabcd;e +Rabde;c +Rabec;d = 0. (1.1.19)

Raising the first index ‘a’ and then contract it with index d implies that

Rbc;e +Ra
bae;c +Ra

bec;a = 0. (1.1.20)

Applying the antisymmetric property on second term yields

Rbc;e +Rbe;c +Ra
bec;a = 0. (1.1.21)

Raise the index b and then contract it with e we obtain

Rb
c;b −R;c +Rab

bc;a = 0. (1.1.22)

By using the symmetry property we get

Rab
bc;a = Rba

cb;a = Ra
c;a = Rb

b;c. (1.1.23)

Thus the first and last terms are same in equation (1.1.22) which becomes

2Rb
c;b −R;c = 0. (1.1.24)

Where

(2Rb
c − δbcR);b = 0. (1.1.25)

By raising the index c we obtain the Einstein tensor(
Rbc − 1

2
gbcR

)
;b

= 0. (1.1.26)

The inner expression in the parenthesis called Einstein tensor usually represented by

Gab ≡ Rab − 1

2
gabR. (1.1.27)

The Einstein tensor is divergence free and symmetric. This is the tensor which describes the

geometric behavior of spacetime in the field equations of GR.
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1.2 The Einstein Field Equations

Now this is the exact time to derive the Einstein field equations (EFE’s). We start from the

variational principle,

δSG = 0, (1.2.1)

here SG is the gravitational action [14]. It is geometrical so its Lagrangian is

SG =
1

2κ

∫
M

LG
(
gab, gab,c

)√
−gd4x. (1.2.2)

Here κ = 8π is a constant and can be calculated according to the required condition. In the

weak field limit the EFE’s reduces into Newton’s law. Also the Lagrangian for the field is as

under

LG
(
gab, gab,c

)
= R− 2Λ, (1.2.3)

here Λ is the cosmological constant. Substitute this value in equation (1.2.2) which becomes

SG =
1

2κ

∫ (
R− 2Λ

)√
−gd4x =

1

2κ

∫ (
gab
√
−gRab − 2Λ

√
−g
)
d4x, (1.2.4)

where

δSG =
1

2κ

∫ (
gab
√
−gδRab +Rabδg

ab
√
−g − 2Λδ

√
−g
)
d4x. (1.2.5)

We consider here a small volume element V with supposition that two conditions are satisfied

on its boundary i.e. variation of the metric and its first derivative becomes zero. Now to

introduce local coordinate system in this region V , we have Γabd = 0 then Ricci tensor is

given by equation (1.1.10) becomes

Rab = Γcab,c − Γcac,b. (1.2.6)

Thus

δRab = δΓcab,c − δΓcac,b. (1.2.7)

While the partial derivative also commute with the variation and it vanishes at the boundary

of V . Then the above expression becomes

gabδRab =
(
gabδΓcab − gacδΓbab

)
,c
. (1.2.8)
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By introducing a vector Xc we have

Xc = gabδΓcab − gacδΓbab. (1.2.9)

Replacing this in equation (1.2.8) it can be written as

gabδRab = Xa
,a, (1.2.10)

this is the total divergence. As said earlier that metric tensor and its differentiation becomes

zero at the boundaries. From stoke’s theorem the first term will disappear and have no

contribution in δSG ∫ (√
−ggabδRab

)
d4x = 0. (1.2.11)

While

δ
√
−g =

[
∂
√
−g

∂gcd

]
δgcd = − 1

2
√
−g

(
∂g

∂gcd

)
δgcd (1.2.12)

δ
√
−g =

1

2

√
−ggcdδgcd. (1.2.13)

Now the second term becomes

δ
[
gab
√
−g
]

=
√
−gδgab + gabδ

√
−g. (1.2.14)

Since we know that gacgcd = δad. We obtain

δ
(
gacgcd

)
= 0. (1.2.15)

Thus it can be written as

δgcd = −gacgbdδgab. (1.2.16)

After substituting this value in equation (1.2.13) and then re arranging we get

δ
[
gab
√
−g
]

=
√
−g
(
δgab − 1

2
gabgcdδg

cd
)
. (1.2.17)

Now put value from equation (1.2.13) and equation (1.2.17) in equation (1.2.5) which leads

δSG =
1

2κ

∫ √
−g
(
Rcd −

1

2
Rgcd + Λgcd

)
δgcdd4x. (1.2.18)
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In general theory of relativity the vacuum filed equations require that the δSG = 0, for any

arbitrary variation in the metric explained by [14]. If the integrant is zero then the variation

in action δSG can be zero. Thus we obtain from the above equation (1.1.10)

Rcd −
1

2
Rgcd + Λgcd = 0. (1.2.19)

This is the required vacuum field equations. Here gcd and Rcd are symmetric. Therefore there

are only ten field equations and having ten independent components.

The Einstein Field Equations in the Presence of Matter

In order to obtain the full version of EFE’s, we consider that there exists other fields rather

than gravitational field. These fields can be explained in terms of Lagrangian density LM ,

where the action is given by [1],

S =
1

2κ

∫
(LG + LM)

√
−gd4x =

1

2κ

∫
LG
√
−gd4x+

1

2κ

∫
LM
√
−gd4x. (1.2.20)

This implies that

S = (SG + SM). (1.2.21)

According to the variational principle

δS = δ(SG + SM) = 0. (1.2.22)

The action integral for matter and energy is

SM =

∫
LM
(
gab, gab,c

)√
−gd4x. (1.2.23)

For variation in argument gives

δ
[√
−gLM

(
gab, gab,c

)]
=
∂[
√
−gLM ]

∂gab
δgab +

∂[
√
−gLM ]

∂gab,c
δgab,c. (1.2.24)

By introducing a vector Xc as

Xc =
∂[
√
−gLM ]

∂gab,c
δgab. (1.2.25)
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The divergence of vector Xc is

Xc
,c =

[
∂[
√
−gLM ]

∂gab,c

]
,c

δgab +
∂[
√
−gLM ]

∂gab,c
δgab,c. (1.2.26)

From equation (1.2.24) and equation (1.2.26)

δ[
√
−gLM ] =

∂[
√
−gLM ]

∂gab
δgab −

[
∂[
√
−gLM ]

∂gab,c

]
,c

δgab +Xc
,c. (1.2.27)

As we supposed that the variation becomes zero at the boundary, so the integral
∫
Xc

,cd
4x =

0. This concludes

δSM =

∫ (
∂
[√
−gLM

]
∂gab

−
[∂[
√
−gLM ]

∂gab,c

]
,c

)
δgabd4x. (1.2.28)

Here the energy momentum tensor LM is defined as

Tab = − 2√
−g

(
∂[
√
−gLM ]

∂gab
−
[∂[
√
−gLM ]

∂gab,c

]
,c

)
. (1.2.29)

simplifying this we arrive

δSM = −1

2

∫
Tab
√
−gδgabd4x. (1.2.30)

From equation (1.2.18) and (1.2.30) we obtain the gravitational field equation in the presence

of matter and energy.

Rab −
1

2
Rgab + Λgab = κTab. (1.2.31)

These are the required Einstein field equations. The stress energy tensor is divergence free

like Einstein tensor and this also assures the conservation of energy and momentum.

1.3 Notation and Terminology

Spacetime

The physical 4-dimensional manifold which has three spatial coordinates and one temporal

coordinate is called spacetime, in which all physical quantities can be located.
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Figure 1.1: Flat Space-time, Courtesy: Google

Asymptotically flat spacetime:- When the geometry of a spacetime becomes flat at large

distances from its sources in the gravitational field. Then it is known as an asymptotically

flat spacetimes [15]. For flat spacetime the the Riemann curvature tensor becomes zero, i.e.

Ra
bcd = 0. Its metric can be read as

ds2 = −dt2 + dr2 = ηabdx
adxb. (1.3.1)

Here ηαβ = diag[−1, 1, 1, 1] often represents flat spacetime metric [15].

Curved Space-time:- Einstein’s geometric theory of gravitation, incorporating and ex-

panding the special relativity to the accelerated frame of reference and by introducing the

principle that gravity is the consequence of matter that causes curvature in spacetime. Rie-

mann curvature tensor is non-zero i.e. Ra
bcd 6= 0, for curved spacetimes.

Spherical Symmetry:- Spherical symmetry means that every point will lie on same surface

of the sphere. It means that one can go from one point to another on the sphere by means

of a rotation. Simply if an object is rotated through any axis it gets the same shape. This is

called spherical symmetry [16].
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Figure 1.2: Curved Space-time, Courtesy: Google

Event Horizon

It is a partition in spacetime beyond which events have no affect on an outside observer.

Event horizon is the boundary between its inside and outside of the black hole spacetime. It

means that the outside observer does not know anything about events happening inside .

Spacetime Singularity

The spacetime singularity or gravitational singularity is a point (location) where the quanti-

ties used for the measurement of gravitational field becomes infinite in such a way that does

not depend on coordinate system. For example in Schwarzschild metric which is given as [17]

ds2 = −(1− 2M

r
)dt2 +

1(
1− 2M

r

)dr2 + r2dΩ2. (1.3.2)

It can be shown that at r = rs and r = 0, the metric become singular. Here dΩ2 =

(dθ2 + sin2 θdφ2) and rs is the Schwarzschild radius which is equal to rs = 2M . Thus at

r = rs, the coefficient of dr2 tends to infinity while at r = 0, the coefficient of dt2 approaches

to infinity [12]. There are three types of singularities which is given as:

(1) Physical Singularity:- It is the location where the curvature becomes infinitely large

[17]. In equation (1.3.3) at r = 0 the singularity becomes physical singularity and the

curvature approaches to infinity.
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(2) Coordinate Singularity :- It is a surface (location) where only one component of the

metric tensor becomes infinitely large, while the spacetime curvature is finite [18].

(3) Naked Singularity:- That gravitational singularity which has no event horizon, simply

means without any boundary.

Doppler Redshift

This term explains the condition that when an astronomical body is observed to move away

from the observer, the light emitted by the body which is going away is increased in wave-

length and it shifted to the red region of the spectrum. We represents this by z = (λ−λ0)
λ0

,

where λ0 is the emitted wavelength while λ is the observed wavelength of the radiation.

Gravitational Redshift:- The frequency of the photon shifts to the lower energy when

the photon jumps out of the gravitational field. It is called gravitational redshift [18]. The

photon red shift z is defined as

1 + z =

(
νR
νE

)−1
. (1.3.3)

Where νE is the frequency of the emitter and νR represents the frequency of the receiver.

Effective Potential

It is a mathematical equation that combines both effects attractive and repulsive in a single

potential energy of a dynamical system. The effective potential contains both positive as well

as negative term in its mathematical expression. e.g

V 2
eff =

(
1− 2M

r

)(
1 +

L2

r2

)
. (1.3.4)

Orbit

It represents a closed path for an object rotating around a central body like a star or a black

hole, under the influence of gravitational field. There are two types of orbits, stable orbit

and unstable orbit.

Stable Orbit:- The minimum value of the effective potential for black holes corresponds to
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Figure 1.3: Stable and Unstable Orbits Graph [7]

the stable orbit. In fig (1.3) the circle on blue line represents the unique circular radius. For

stable circular orbits it is necessary to hold these conditions V ′|r0 = 0 and V ′′|r0 > 0 [19],

where r0 is the coordinate distance of the particle’s closest approach to the black hole [7].

Unstable Orbit:- The maximum value of the effective potential for black holes corresponds

to the unstable orbit of the radial motion of the particle as described in the Figure (1.3).

Here the red circle denotes the unstable circular radius. For unstable orbit the conditions

are V ′|r0 = 0 and V ′′|r0 < 0

1.4 Black Holes

Black holes come as a result of the solution of EFE’s. In fact these are the singular solutions

of the EFE’s. A black hole is a place where gravity becomes too much strong that the escape

velocity is greater than that of light. The birth of a black hole takes place from death of a
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super massive star. A complete description is as under [17]:

The star defends itself against two types of forces, gravitational pull and pushing of the

pressure in outward direction. Enough amount of pressure and energy is produced due to

thermonuclear reactions in stars. In general situations in stars, there is a tug of war game

between gravity and pressure. As for as these two forces (gravity and pressure) balances each

other, then star will remain stable. However, when the nuclear fuel exhausts, as a result

the thermonuclear pressure comes to decrease and the balance between gravity and pressure

disturbs. The star begins to contract when the star becomes massive. The more massive the

star, the more will be its gravity, so gravity gets an upper hand of all the outward forces and

star starts collapsing. The volume of the star gets smaller and smaller while density of the

star increases time by time. The escape velocity within such a packed surface exceeds the

velocity of light, and then the star becomes a black hole.

In case of small stars, when the nuclear fuel in the star gets finished and there is no further

response to gravity and the electronic repulsive force in star creates more gravitational col-

lapse, thus the star becomes cool and vanishes silently, such stars are called “White Dwarf”

[19].

1.4.1 History of Black Holes

Black holes are one of the most mysterious thing in the scientific world. The concept of a

super-dense matter’s sphere that even light can not escape through it, is somewhat incredible

even today. Through this topic it will be tried to flash some light on these strange formations,

and tell about the most accepted and popular theories of scientists as follow:

In 1784 an English geologist John Mitchell started work on Newton’s gravitational theory.

According to Newtonian Physics that a ball strike by the cannon will rotate around the

earth in orbits. The velocity of the ball increases and reaches to particular range called

escape velocity of the planet. This escape velocity depends on mass and radius of the object.
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Mitchell emphasized that a star which is much massive and compact have such a strong

gravitational field that even light can’t escape from it: light emitted from the star’s surface

would be pulled back by the star’s gravitational field [20]. Mitchell suggested that there might

exists a large number of such stars. Although we cannot see them because light cannot reach

us from these stars, but still we feel their gravitational attraction.

A few year later similar suggestion was made by a French mathematician Marquis de

Laplace. In 1796 he said that in fact it is not true to manage light like cannon balls in

Newton’s gravitational theory because speed of light is constant. A regular theory about

gravity affects the light did not come until Einstein’s GR theory [16]. Albert Einstein was

a German physicist, he struggled a lot with his equations to solve but can not get success.

At last in 1915 he published his first paper on GR. Black holes are predicted by GR, but

even himself Einstein did not believe that they exist. The general invariance principle is a

dynamical principle that forces limitations on possible interactions of geometry and matter

[19]. Karl Schwarzschild a German physicist one year later, in 1916 found a solution to

the EFE’s. The Schwarzschild’s solution is for non rotating stationary black holes. If a star

converted to a black hole then there exists a horizon at Schwarzschild radius [14].

In 1930 an Indian-American physicist Subrahmanyan Chandrasekhar found that for

stellar mass M = 1.4M⊙ (M⊙ denotes solar mass), the repulsive force (electron degenerate

pressure) will not be so strong to dominate the gravitational contraction. Stars mass come

under this limit will resist the gravitational collapse by the electron’s fermionic repulsion

becomes white dwarf [19].

In 1939 an American Physicist Julius Robert Oppenheimer and Hartland Synder

founded that in essence, black holes could be formed in nature by the collapse of some heavy

objects (Stars) [20]. In 1963 Roy Kerr presented a theoretical explanation of spinning black

holes [21].

In 1967 an American Physicist named John Archibald Wheeler used the word “black
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hole” in the theory for the first time. According to Wheeler black holes are simply described

by three parameters to specify its picture completely. (1) mass (2) angular momentum

(specifying their rotation) and (3) electric charge.

In 1974 the British theoretical physicist Stephen Hawking come across that quantum

black holes are not too black as like classical ones. Hawking gave the derivation of black

holes radiations. His results have no direct connection to quantum gravity [22].

1.5 Hor̆ava-Lifshitz Gravity

Quantum Gravity (QG) is the theory that seeks to explain gravity according to the principles

of quantum mechanics. The current gravity is based on Einstein’s theory of GR, which is

formulated classically. To solve the problems arising at quantum level in GR there is a need

to make a connection between GR and quantum mechanics. Therefore different theories were

proposed at different times. Peter Hor̆ava suggested a theory of QG in 2009 which is named

Hor̆ava-Lifshitz gravity or HL gravity theory where its action is [23]

Sg =

∫
dtd3x

√
gN
(
Lk + Lv

)
. (1.5.1)

In this equation the kinetic term is given by

Lk =
2

κ2
(
KabK

ab − λK2
)
, (1.5.2)

where the extrinsic curvature becomes

Kab =
1

2N

(
ġab −∇aNb −∇bNa

)
. (1.5.3)

The potential term in the equation is given by

Lv = −κ
2

8
EabGab,cdE

cd, (1.5.4)

here the super-metric Gab,cd depends upon a dimensionless arbitrary coupling constant ‘λ’,

where

Gab;cd =
1

2

(
gacgbd + gadgbc

)
+

λ

1− 3λ
gabgcd. (1.5.5)
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The tensor E is given as

Eab =
2

ω2
Cab − µ

(
Rab − 1

2
Rgab + Λωg

ab
)
, (1.5.6)

where

Cab =
εacd
√
g
∇c

(
Rb

d −
1

4
Rδb d). (1.5.7)

Here κ = [Mass]−1, ω = [Mass]0 and µ = [Mass]1 are constants and Λω is a cosmological

constant. This theory provides solution to different issues of time in quantum field theory

and GR where quantum concept serves as the more fundamental. HL gravity has the 4-

dimensional spacetime in QG. That clearly violates the local Lorentz invariance. QG is a

power counting renormalizable theory. At large distances it reduces to Einstein GR. This

theory provides an ultraviolet completion of GR [21]. In the HL gravity theory the static

and rotating black holes solutions are being studied in recent years. It is a fascinating QG

theory, which has progressive and restoring study on cosmology and black holes solutions

[23,24]. In HL gravity it is expected that the black hole solutions asymptotically become

Einstein gravity solutions e.g. the Kehagious-Sfetsos (KS) solution (will be discussed in the

next section) is one of them [25].

1.6 Black Holes in Hor̆ava-Lifshitz Gravity

The HL gravity theory has a refreshing and advanced work on black hole solutions and

cosmology. This theory provides solutions to black holes. One of the black hole solutions in

HL gravity was obtained by Lu-Mei-Pope (LMP) [26]. This solution is spherically symmetric

with some dynamic parameter‘λ’. An asymptotically flat black hole solution was found by

Kehagias and Sfetsos, using deformed HL gravity [27] and parameter λ = 1. Line element

for these black holes is

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2

(
dθ2 + sin2 θdφ2

)
, (1.6.1)
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where lapse function i.e. f(r), for LMP solution is

fLMP = 1− ∧wr2 −
α√
−∧w

√
r, (1.6.2)

and lapse function f(r), for the KS solution is

fKS(r) = 1 + ωr2 −
√
r
(
ω2r3 + 4ωM

)
. (1.6.3)

HL gravity also provides solution to the slowly rotating black holes [28]. Slowly rotating

means that the rotating parameter (a = J
M

) is considered up to linear order in equations of

motion and in the metric functions. General line element for a slowly rotating black hole is

given by [29]

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dθ2 + r2 sin2 θ[dφ2 − 2aNφ(r)dtdφ]. (1.6.4)

In this line element f(r) represents the lapse function as given by the equation (1.6.3), while

Nφ(r) is called the shift function and it is Nφ(r) = 2M
r3

.

1.7 Particle Dynamics in Black Hole Space-times

The motion of a small particle in the presence of external forces is known as particle dynamics,

e.g. in the presence of gravitational force and electromagnetic force. Science of mechanics

searches to provide a consistent and precise explanation for the dynamics of particles and

systems of particles.

In GR particle dynamics around black hole remained subject of interest for physicists for the

last many years. In this regard many people worked on this subject e.g motion of particle

in the background geometry of Kerr spacetime [30], where W. Han investigated the relation

between orbits chaos and spin magnitudes S, polar angle and Kerr rotation parameter ‘a’

through brand new Fast Lyapunov Indicator (FLI). Motion of the particle in Kerr, Kerr-

Newmann (KN) and Reissner-Nordström (RN) was studied by Pugliese et al [31-34]. They
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found the dynamics of neutral test particle in the gravitational field of mass M with a charge

Q. They concentrated on the study of circular stable and unstable orbits around system

expressing either naked singularities or black holes. Due to existence of repulsive gravity,

they showed that at classical radius described by Q2

M
, there exists zero angular momentum

orbits. The stability of circular orbits analysis indicates that black holes are defined by

a continuous region of stability. They also showed the geometry of stable accretion disk,

made by test particles only, moving along circular orbits around central body allows to

distinguish clearly between black holes and naked singularities. Furthermore they found that

the gravitational acceleration is repulsive in area of the inception of RN and Kerr spacetimes

and at large distances it becomes attractive in the expected Newtonian way. In regular black

hole spacetime, dynamics was studied by Garcia et. al [35]. They discussed the entire set

of orbits for neutral and weakly charged particles, containing for extreme metric. Garcia et.

al also derived the analytical solutions to the equation of motion for neutral test particle in

a parametric form. Similarly it is also important to study these particle dynamics in HL

gravity. Motion of particle around KS black hole immersed in an external magnetic field

was investigated in [36]. In that paper they studied the strong dependence of the removed

energy from special range of the parameters of the HL gravity, where parameters are Λw

and specific angular parameter a. Abdujabbarov discussed the particle acceleration near

the rotating black hole in HL gravity. It is manifest that the fundamental parameter of HL

gravity can impose a limitation on the energy of accelerating particles to restrict them from

infinite value. In [37] charged particles motion in a rotating black hole immersed in uniform

magnetic field has studied. Particle dynamics are also discussed in [13]. In that paper they

calculated the center of mass energy of two colliding particles near the static and rotating

HL black holes. They compare their results of HL black hole with that of the Kerr black

holes. From their study they confirmed the finite value of center of mass energy for static and

infinite value of center of mass energy for rotating black holes. They studied that the center

of mass energy depends on temperature of the black hole horizon. From that they obtained

the critical angular momentum for the particles. They also showed that the energy of the

center of mass of two colliding particles in the vicinity of the rotating HL black hole could be
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arbitrarily high. In [12] J. Chen and Y. Wang analyzed the behaviour of effective potential

for the particle to investigate the timelike geodesic motion of the particle in HL spacetime.

Motion of particle in the background geometry of magnetized schwarzschild black hole has

also been discussed in [38]. M. Jamil et. al analyzed the motion of a charged and neutral

particle around a spherically symmetric and static black hole, in the existence of quintessence

matter and external magnetic field. They inspected the conditions for particle around black

hole when it escape to infinity after the collision with another particle. They discussed in

detail the inner most stable circular orbit (ISCO) for the particle and its dependence on dark

energy, and also on the external magnetic field around the black hole. By using Lyapunov

exponent they compared the stabilities of particles orbits in the presence and absence of dark

energy and magnetic field. They derived the expressions for center of mass energies for the

colliding particles near the black hole horizon.

1.8 Geodesic Equations

Geodesic represents the shortest path between two points in curved spacetime geometry.

There are two types of geodesics.

Timelike Geodesic:- It is defined as the maximum/minimum distance between two points

on the curve and it lies within the light cone [20].

Null Geodesic:- The infinitesimal distance between two points on the curve is equal to zero

is known as null geodesics. It is the path of the light like particles or photons. It represents

the light cone. Geodesics equations are derived below.

The geodesic Lagrangian for a particle of unit mass is

L =
1

2
gcdẋ

cẋd, (1.8.1)

where gcd = gcd(x
e). Now the Euler-Lagrange equations are written in the form

d

dτ

(
∂L
∂ẋb

)
− ∂L
∂xb

= 0. (1.8.2)
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From equation (1.8.1) (
∂L
∂ẋb

)
= gbdẋ

d, (1.8.3)

and
∂L
∂xb

=
1

2
gcd,bẋ

cẋd. (1.8.4)

Differentiating equation (1.8.3) w.r.t ‘τ ’, we have

d

dτ

(
∂L
∂ẋb

)
= gbd,cẋ

cẋd + gbdẍ
d. (1.8.5)

Using equation (1.8.4) and equation (1.8.5) in equation (1.8.2), we obtain

gbd,cẋ
cẋd + gbdẍ

d − 1

2
gcd,bẋ

cẋd = 0, (1.8.6)

where we have

gbd,cẋ
cẋd =

1

2

(
gbd,c + gbc,d

)
ẋcẋd. (1.8.7)

Using equation (1.8.7) in equation (1.8.6), we get

gbdẍ
d +

1

2

(
gbc,d + gbd,c − gcd,b

)
ẋbẋd = 0. (1.8.8)

Multiplying gab on both sides of equation (1.8.8), we arrive at

gab
[
gbdẍ

d +
1

2

(
gbd,c + gbc,d − gcd,b

)
ẋbẋd

]
= 0. (1.8.9)

This gives the geodesics equation of motion [22]

ẍa + Γacdẋ
cẋd = 0, (1.8.10)

where Γacd, is the Christoffel symbol and is defined by

Γacd =
1

2
gab
(
gbd,c + gbc,d − gcd,b

)
. (1.8.11)



Chapter 2

Motion of a Particle in the Vicinity of

Static Hor̆ava-Lifshitz Black Holes

In this chapter the motion of a particle in static HL black holes will be reviewed. Here we

will review timelike geodesic motion of a particle in the back ground geometry of a static

black hole in HL gravity. This study of timelike geodesic motion will be further divided into

subsections, (i) timelike geodesic for radial motion of the particle, (ii) timelike geodesic for

non-radial motion of the particle.

2.1 Geodesic Motion in Spherically Symmetric Static

Spacetime

The general spherical symmetric static spacetime [38] is

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2

(
dθ2 + sin2 θdφ2

)
. (2.1.1)

24
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Consider the motion of a particle in equatorial plane, i.e. θ = π
2
, then the geodesic Lagrangian

is

L =
1

2

[
− f(r)ṫ2 +

ṙ2

f(r)
+ r2(φ̇2)

]
. (2.1.2)

The Euler-Lagrange equations in general form are

d

dτ

(
∂L
∂q̇µ

)
− ∂L
∂qµ

= 0. (µ = 0, 1, 2, 3) (2.1.3)

For µ = 0 i.e. q0 = t, the Euler-Lagrange equations (2.1.3) becomes

d

dτ

(
∂L
∂ṫ

)
− ∂L
∂t

= 0. (2.1.4)

There is no term involving ‘t’ in the equation (2.1.2), so ∂L
∂t

= 0. Thus equation (2.1.4)

becomes
d

dτ
(
∂L
∂ṫ

) = 0. (2.1.5)

Integrating this we get
∂L
∂ṫ

= − ε

m
= −E, (2.1.6)

where ‘E’ denotes the energy of the test particle per unit mass, i.e. E = ε
m

. Differentiating

equation (2.1.2) with respect to ṫ, we get

∂L
∂ṫ

= −f(r)ṫ. (2.1.7)

Comparing equation (2.1.6) with equation (2.1.7) we get

ṫ =
E

f(r)
. (2.1.8)

Similarly ‘φ̇’ can be find from equation (2.1.2) and equation (2.1.3), as

φ̇ =
`

r2
. (2.1.9)

Here ‘`’ represents the angular momentum per unit mass of the particle, i.e. ` = l
m

. Now we

find ‘ṙ’ by using the equation

− 1 = −gttṫ2 + grrṙ
2 + gφφφ̇

2. (2.1.10)
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For the spherically symmetric static spacetime, equation (2.1.1) in equatorial plane becomes

− 1 = −f(r)ṫ2 +
1

f(r)
ṙ2 + r2φ̇2. (2.1.11)

By putting the values of ṫ and φ̇ from equations (2.1.8) and (2.1.9) in equation (2.1.11) we

have

− 1 =
−E2

f(r)
+

1

f(r)
ṙ2 +

`2

r2
. (2.1.12)

Multiplying f(r) on both sides of equation (2.1.12) and then rearranging the equation, we

obtain

ṙ2 = f(r)

(
− 1 +

E2

f(r)
− `2

r2

)
, (2.1.13)

or it can be written as

ṙ = ±

√
f(r)

(
− 1 +

E2

f(r)
− `2

r2

)
. (2.1.14)

All the 4- velocity components are represented by equations (2.1.8), (2.1.9) and (2.1.14) while

θ̇ = 0. In equation (2.1.14) the plus sign indicates the outgoing radial velocity of the particles

while the negative sign indicate the ingoing radial velocity of the particles.

2.2 Timelike Geodesic Motion in Static Hor̆ava-Lifshitz

Black Holes

Consider again equation (2.1.1) and f(r) as given in [39]

f(r) = 1 + (ω − ∧w)r2 −
(
r[ω(ω − 2∧w)r3 + β]

) 1
2

. (2.2.1)

Here f(r) is the lapse function f(r) > 0 which represents the time elapsed between two points

and β is the integration constant, where ω =
16µ2

κ2
is the coupling constant and ∧w is the

cosmological constant [40]. Here we have two special cases for the static or KS HL black

hole.
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Case-I

By putting β = 4ωM and ∧w = 0, equation (2.2.1) reduces to case of KS black hole [38] i.e

fKS(r) = 1 + ωr2 −
(
ω2r4 + 4ωMr

) 1
2 , (2.2.2)

from this we have

fKS(r) = 1 + ωr2 −
√
r
(
ω2r3 + 4ωM

)
. (2.2.3)

Case-II

This case represents solution of Lu-Mei- Pope (LMP) black hole [37]. If β = − α2

∧w and ω = 0,

then equation (2.2.1) gives the case of LMP black hole

fLMP = 1− ∧wr2 +

(
α2r

∧w

) 1
2

. (2.2.4)

Simplifying equation (2.2.4), this gives

fLMP = 1− ∧wr2 −
α√
−∧w

√
r. (2.2.5)

Now we consider equation (2.2.2) which can be written as

f(r) = 1 + ωr2 − ωr2
(

1 +
4M

ωr3

) 1
2

. (2.2.6)

Applying binomial expansion on the last term in equation (2.2.6), we get(
1 +

4M

ωr3

) 1
2

= 1 +
2M

ωr3
+

2M2

ω2r6
+ ............ (2.2.7)

Put this in equation (2.2.6) which becomes

f(r) = 1 + ωr2 − ωr2
(

1 +
2M

ωr3
+

2M2

ω2r6
+ .........

)
. (2.2.8)

By cancelation and neglecting the terms involving r−2 and r−4 equation (2.2.8) becomes

f(r) ≈ 1− 2M

r
. (2.2.9)
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In equation (2.2.9) ‘M ’ is the integration constant, having dimensions of mass. Here r �
(M
ω

)
1
3 [39], which gives the usual behaviour of Schwarzschild black hole.

To find the event horizons equation (2.2.3) becomes

1 + ωr2 −
√
r(ω2r3 + 4ωM) = 0, (2.2.10)

Simplifying equation (2.2.10), which gives a quadratic equation in ‘r’

r2 − 2Mr +
1

2ω
= 0. (2.2.11)

Solving this equation, we get two roots or event horizons which are

r± = M

(
1±

√
1− 1

2ωM2

)
. (2.2.12)

Applying binomial expansion and neglecting square and higher terms of ω involving in the

expansion we arrive at (
1− 1

2ωM2

) 1
2

= 1− 1

4ωM2
, (2.2.13)

putting this in equation (2.2.12) we have

r± = M

(
1±

[
1− 1

4ωM2

])
, (2.2.14)

where the outer horizon becomes

r+ = M

(
1 +

[
1− 1

4ωM2

])
. (2.2.15)

To avoid naked singularity ωM ≥ 1
4
. When ωM � 1, means that according to the conven-

tional GR rule, the horizon reaches to

r+ ≈ 2M − 1

2ωM
+ ... (2.2.16)

Thus the r+ is lower than the usual Schwarzschild horizon, r+Sch=2M, while the inner horizon

tends to zero i.e r− → 0.
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2.3 Timelike Geodesics for Static Black Hole in Hor̆ava-

Lifshitz Gravity

Here we review the timelike geodesics for a particle in the KS black hole spacetime. Here the

equation (2.1.10) becomes

− h = −gttṫ2 + grrṙ
2 + gφφφ̇

2, (2.3.1)

putting values of gtt, grr, gφφ from equation (2.1.11) where ṫ and φ̇ from equation (2.1.8) and

equation (2.1.9)respectively, and simplifying

− h =
−E2

1 + ωr2 −
√
r(ω2r3 + 4ωM)

+
ṙ2

1 + ωr2 −
√
r(ω2r3 + 4ωM)

+
`2

r2
, (2.3.2)

from this equation we have

−
(
h+

`2

r2

)(
1 + ωr2 −

√
r(ω2r3 + 4ωM)

)
= −E2 + ṙ2. (2.3.3)

Equation (2.3.3) implies that

ṙ2 = E2 −
(

1 + ωr2 −
√
r(ω2r3 + 4ωM)

)(
h+

`2

r2

)
, (2.3.4)

or

ṙ2 = E2 − V 2
eff , (2.3.5)

where

V 2
eff =

(
1 + ωr2 −

√
r(ω2r3 + 4ωM)

)(
h+

`2

r2

)
. (2.3.6)

Here V 2
eff is known as effective potential [39].
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In the case of massive particle we put h = 1, then the effective potential for timelike geodesics

becomes

V 2
eff =

(
1 + ωr2 −

√
r(ω2r3 + 4ωM)

)(
1 +

`2

r2

)
. (2.3.7)

Here we discuss two cases i.e radial and non radial motion of the particle.

2.3.1 Timelike Geodesic for Radial Motion of Particles in Static

Black Hole

In this case the particle’s motion in the radial geodesic have no angular momentum, i.e ` = 0.

It means that particle comes from infinity to the center along the radial direction. In this

case equation (2.3.7) becomes

V 2
eff = 1 + ωr2 −

√
r(ω2r3 + 4ωM). (2.3.8)

Figure (2.1) shows two lines, the bold line represents the effective potential of the particle

motion for static black hole in the back ground geometry of HL gravity while the dashed line

denotes schwarzschild effective potential. At large distances HL theory reduces to standard

GR because the higher derivative does not contribute in the equation of motion. Therefore

the effective potential for HL black hole matches to Schwarzschild black hole at large dis-

tances while for short distances it does not match as shown in the figure. From this graph it

is also clear that the particle is pushed towards horizon from large distances which is deter-

mined by the energy ‘E’ of the particle.

The equation for the radial motion (2.3.4) takes the form

ṙ2 = E2 −
(

1 + ωr2 −
√
r(ω2r3 + 4ωM)

)
. (2.3.9)

In the graph (2.2) we see that at constant energy E, the velocity of the particle decreases

and reaches to zero. When the particle comes to a finite distance, then the particle goes back
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Figure 2.1: Plot for the equation (2.3.8) between V 2
eff and r, with parameters ` = 0, ω = 1

and M = 1.
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Figure 2.2: Plot of velocity v and distance r for equation (2.3.9) represents the radial motion

of the particle with parameters E = 0.5, ω = 1 and M = 1.
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Figure 2.3: Plot for V 2
eff vs r for equation (2.3.10) for non radial motion of the particle with

various values of `2 = 80M2, `2 = 40M2and `2 = 10M2 and with parameters M = 1, ω = 1

and h = 1

and drop down into the center.

2.3.2 Timelike Geodesic for Non-radial Motion of Particles in Static

Black Hole

In this case the angular momentum gets involved means that ` 6= 0 and h = 1 then the

equation (2.3.7) can be expressed as

V 2
eff =

(
1 + ωr2 −

√
r(ω2r3 + 4ωM)

)(
1 +

`2

r2

)
. (2.3.10)

The Figure (2.3) shows that by increasing the value of ` the peak of the effective potential

becomes sharper and sharper which means that the orbit of the particle becomes unstable.
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Figure 2.4: Plot between V 2
eff and r for non radial motion of particles, for various values of

`2 = 80M2 and with parameters M = 1, ω = 1 and h = 1

For ` =
√

10 the effective potential represents the unique stable orbit. While dashed lines

represents the schwarzschild effective potential. The difference between effective potentials

occurs at short distance because it does not match to standard GR while for large distance

it becomes same because at large distances the HL theory reduces to standard GR as given

in the figure.

In this case the non-radial equation of motion becomes

ṙ2 = E2 −
(

1 + ωr2 −
√
r(ω2r3 + 4ωM)

)(
1 +

`2

r2

)
. (2.3.11)

The Figure (2.4) represent plot for the equation (2.3.10) with `2 = 80M2. Effective potential

for HL black hole matches at larger distances while it does not matches at shorter distances

with Schwarzschild black hole as mention in the plot. Here are several cases due to different

values of ‘E’ for non-radial case:
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(I) If E2 > E2
C , then the particle have enough energy, will jump directly from infinity into

singularity. Here ‘E’ represents energy range denoted by dashed line while ‘EC ’ is the energy

of the particle at point C, called critical energy as shown in the figure.

(II) If E2 = E2
C , then orbit for non-radial motion of the particle is unstable at r = rC . For

this case the particle will escape to infinity at r = rC , or fall into the singularity. Here rC

represents radial distance of the particle at point C.

(III) If E2
1 < E2 < E2

C , then the non-radial motion of the particle in such orbits will redirected

from r = rD, to infinity, or jump into the singularity from r = rB. Here rB and rD represents

the distance of radial motion of the particle at location B and D respectively given in the

figure.

(IV) If E2 > E2
1 , then the non-radial motion of the particle will go directly into singularity,

here E1 denotes the proper energy range as shown by the lower dashed line in the figure.

Below this range the particle’s motion becomes in the bounded region.



Chapter 3

Motion of a Particle in the Vicinity of

Slowly Rotating Hor̆ava-Lifshitz Black

Hole

In this chapter timelike and null geodesic motion for a slowly rotating HL black hole is

discussed. This is further subdivided into two sections (i) radial motion and (ii) non radial

motion.

3.1 Geodesic Motion in Slowly Rotating Spacetime

Here we have an axisymmetric metric [39] as

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dθ2 + r2 sin2 θ

(
dφ− aNdt

)2
, (3.1.1)

In the given metric (3.1.1) a = J
M

, is the spin parameter. Here J is the spin angular

momentum and M is the mass of the black hole, while N = 2M
r3

is the shift function. Where

f(r) shows the lapse function represented by equation (2.2.3) in chapter 2. In order to get

slowly rotating black hole solution we have to keep equations of motion up to linear order in

35
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a to obtain solution for the slowly rotating black hole. For this simplifying equation (3.1.1),

where the motion is in equatorial plane (discussed in chapter 2), we have

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2

(
dφ2 − 2aNdtdφ

)
. (3.1.2)

Its geodesic Lagrangian becomes

L =
1

2

[
− f(r)ṫ2 +

ṙ2

f(r)
+ r2

(
φ̇2 − 2aNφ̇ṫ

)]
. (3.1.3)

To find ‘ṫ’ we use equation (2.1.5) in chapter 2, which gives

∂L
∂ṫ

= − ε

M
= −E. (3.1.4)

Differentiating equation (3.1.3) with respect to ‘ṫ’ we obtain

∂L
∂ṫ

=
[
− f(r)ṫ2 − aNr2φ̇

]
, (3.1.5)

replace ∂L
∂ṫ

by −E in equation (3.1.5) we get

− E =
[
− f(r)ṫ2 − aNr2φ̇

]
, (3.1.6)

simplifying equation (3.1.6) we arrive at the result

ṫ =
E − aNr2φ̇

f(r)
. (3.1.7)

Following the same procedure for ‘φ̇’ we find

∂L
∂φ̇

=
l

m
= `. (3.1.8)

Differentiating equation (3.1.3) with respect to ‘φ̇’ we obtain

∂L
∂φ̇

= r2φ̇− aNr2ṫ, (3.1.9)
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putting ∂L
∂φ̇

= ` and also value of ‘ṫ’ from equation (3.1.7) into equation (3.1.9) we get

` = r2φ̇− aNr2
[
E − aNr2φ̇

f(r)

]
. (3.1.10)

Simplifying this equation we get

φ̇ =
aNr2E + `f(r)

r2f(r)
. (3.1.11)

Replace equation (3.1.11) in equation (3.1.7), then by linearizing (neglecting higher orders in

a) we get

ṫ =
E − aN`
f(r)

. (3.1.12)

To obtain ṙ, here equation (2.1.10) becomes

− f(r)ṫ2 + f(r)−1ṙ2 + r2φ̇2 − 2ar2Nφ̇ṫ = −1. (3.1.13)

Inserting values from equation (3.1.11) and equation (3.1.12) into equation (3.1.13) and

rearrange we obtain

f(r)−1ṙ2 =

[
− 1 +

(
f(r)

)(
E − aN`
f(r)

)2

− r2
(
aNr2E + `f(r)

r2f(r)

)2]
, (3.1.14)

simplifying this we get

ṙ = ±

√
f(r)

(
− 1 +

E2

f(r)
− `2

r2
− 2aN`E

f(r)

)
. (3.1.15)

So the 4-velocity components are represented by equations (3.1.11), (3.1.12) and (3.1.15),

while θ̇ = 0. Here the (+) sign shows the outgoing radial velocity of the particles, where as

the (-) sign represents the incoming radial velocity of the particles.
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3.2 Timelike Geodesics for Slowly Rotating Black Hole

in Hor̆ava-Lifshitz Gravity

Equation (3.1.13) for timelike geodesics takes the form

− h =
[
− f(r)ṫ2 + f(r)−1ṙ2 + r2φ̇2 + 2aNr2ṫφ̇

]
, (3.2.1)

using values of ṫ and φ̇ from equation (3.1.11) and equation (3.1.12) in equation (3.2.1) we

have

−h = −f(r)

(
E − aN`
f(r)

)2

+f(r)−1ṙ2+r2
(
aNEr2 + `f(r)

f(r)

)2

+2aN

(
E − aN`
f(r)

)(
aNr2E + `f(r)

f(r)

)
,

(3.2.2)

simplifying and rearranging equation (3.2.2) and reducing linear terms in ‘a’ we get

f(r)−1ṙ2 =
E2

f(r)
− 2aN`E

f(r)
−
(
h+

`2

r2

)
, (3.2.3)

for the case of massive particle we put h = 1 and multiplying f(r) on both sides of equation

(3.2.3)

ṙ2 = f(r)
[
− 1 +

E2

f(r)
− `2

r2
− 2aN`E

f(r)

]
, (3.2.4)

which is similar to equation (3.1.15). Consider equation (3.2.3) in the form

ṙ2 = E2 −
(

1 + ωr2 −
√
r(ω2r3 + 4ωM)

)(
h+

`2

r2

)
− 2aN`E. (3.2.5)

Where lapse function f(r) = (1+ωr2−
√
r(ω2r3 + 4ωM)). In this case the effective potential

will be

V 2
eff =

(
1 + ωr2 −

√
r(ω2r3 + 4ωM)

)(
h+

`2

r2

)
− 2aN`E. (3.2.6)

Inserting value of h = 1 in effective potential equation (3.2.6) we get

V 2
eff =

(
1 + ωr2 −

√
r(ω2r3 + 4ωM)

)(
1 +

`2

r2

)
− 2aN`E, (3.2.7)
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Figure 3.1: Graph for equation (3.2.8) of V 2
eff vs r with parameters ω = 1 and M = 1

3.2.1 Timelike Geodesic for Radial Motion of the Particle in Slowly

rotating Black Hole

putting ` = 0 in equation (3.2.7) we obtain

V 2
eff =

(
1 + ωr2 −

√
r(ω2r3 + 4ωM)

)
, (3.2.8)

The Figures (3.1) and (3.2) show two lines, the bold line represents the effective potential

of the particle for rotating black hole in the back ground geometry of HL gravity while the

dashed line denotes schwarzschild effective potential. At large distances HL theory reduces to

standard GR because the higher derivative does not contribute in the equation of motion. The

effective potential for HL black hole matches to Schwarzschild black hole at large distances

while for short distances it does not match as shown in the figure. This figure also shows that

the particle goes towards horizon from an upper range energy E, determined by the energy

of the particle.
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Figure 3.2: Graph for equation (3.2.8) of V 2
eff vs r with parameters ω = 10 and M = 1

Equation of radial motion becomes

ṙ2 = E2 −
(
1 + ωr2 −

√
r(ω2r3 + 4ωM)

)
. (3.2.9)

In the graphs (3.3) and (3.4) we see that at constant energy E, the velocity of the particle

approaches to zero. When the particle reaches to a finite distance, then the particle goes

back and fall into the center.

3.2.2 Timelike Geodesic for Non-radial Motion of Particles in Slowly

Rotating Black Hole

Here ` 6= 0 and replace N = 2M
r3

in equation (3.2.7), i.e. for non radial motion of the particle

case

V 2
eff =

(
1 + ωr2 −

√
r(ω2r3 + 4ωM)

)(
1 +

`2

r2

)
− 4aM`E

r3
. (3.2.10)
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Figure 3.3: Graph of v vs r for equation (3.2.9) with ω = 1,M = 1 and E = 0.5.

2.0 2.1 2.2 2.3 2.4 2.5 2.6

0.1

0.2

0.3

0.4

0.5

V

r

Figure 3.4: Graph of v vs r for equation (3.2.9) with ω = 10,M = 1 and E = 0.5.
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Figure 3.5: Graph for equation (3.2.10) of V 2
eff vs r with parameters ω = 1,M = 1, E = 1

and `2 = 80M2
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Figure 3.6: Graph for equation (3.2.10) of V 2
eff vs r with parameters ω = 10,M = 1, E = 1

and `2 = 80M2
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Figure 3.7: Graph for equation (3.2.10) of V 2
eff vs r with parameters ω = 1,M = 1, E = 1

and `2 = 40M2

The Figures (3.5) and (3.6) shows us the effective potential for HL black hole when `2 = 80M2.

When the peak gets higher and higher, so the particle goes to unstable orbit. This means

that instability of the orbit increases. Here the dashed line shows the Schwarzschild’s effective

potential while bold line shows the HL black hole effective potential. Initially there arises

a difference in effective potential for HL black hole theory and Schwarzschild black hole at

short distances while at end (large distances) it becomes same as shown in the graph. At the

end both theories become equal so therefore the difference vanishes.

The Figures (3.7) and (3.8) shows us the effective potential for HL black holes for `2 = 40M2.

As the peak becomes sharper, it means that the particle goes towards instable regions. Here

the bold line represents the HL black hole effective potential while the dashed line represents

the Schwarzschild’s effective potential. The HL theory becomes equal to local GR in large

distances while they do not match at short distances therefore at first there is a space in the

effective potentials of HL theory and Schwarzschild as shown in the graph.
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Figure 3.8: Graph for equation (3.2.10) of V 2
eff vs r with parameters ω = 10,M = 1, E = 1

and `2 = 40M2
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Figure 3.9: Graph for equation (3.2.10) of V 2
eff vs r with parameters ω = 1,M = 1, E = 1

and `2 = 10M2
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Figure 3.10: Graph for equation (3.2.10) of V 2
eff vs r with parameters ω = 10,M = 1, E = 1

and `2 = 10M2

The Figures (3.9) and (3.10) reflects about the effective potential for HL black hole if `2 =

10M2. In the given graph when the peaks become sharpens which reveals that the particle

goes to unstable orbits. Here Schwarzschild’s effective potential is represented by dashed line

while bold line represents effective potential for the HL black hole. As stated above that

the HL theory incorporates with standard GR at large distances while at shorter distances

it does not, therefore the difference occurs at start as manifest in the figure.

Then for non-radial motion equation for the particle becomes

ṙ2 = E2 −
(

1 + ωr2 −
√
r(ω2r3 + 4ωM)

)(
1 +

`2

r2

)
− 4aM`E

r3
. (3.2.11)
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3.3 Null Geodesics for Slowly Rotating Black Hole in

Hor̆ava-Lifshitz Gravity

Insert h = 0 in equation (3.2.6) then the effective potential becomes

V 2
eff =

(
1 + ωr2 −

√
r(ω2r3 + 4ωM)

)(
`2

r2

)
− 4aM`E

r3
. (3.3.1)

3.3.1 Null Geodesic for Radial Motion of Particles in Slowly Ro-

tating Black Hole

For radial motion of the particle put ` = 0 in equation (3.3.1) we obtain

V 2
eff = 0. (3.3.2)

Where the equation for radial motion of the particle become as

ṙ2 = E2. (3.3.3)

The Figures (3.11) and (3.12) reveal the effective potential for HL black holes where `2 =

80M2. Here the dashed line tells us about the Schwarzschild’s effective potential while bold

line is for the effective potential of HL black hole. The HL theory reduces to standard GR

while at shorter distances it does not reduce, therefore there originate a difference between

Schwarzschild effective potential and HL black hole effective potential as shown in the figure.

For non radial case there arises different cases due to energy of the particle which is as follow:

(I) If E2 > E2
c , then the particle have enough energy and will go directly from infinity and

jump into singularity.

(II) If E2 = E2
c , then orbit of the non-radial motion of the particle becomes unstable at

r = rc. In this case the particle will escape to infinity at r = rc, or to singularity.

(III) If E2
1 < E2 < E2

c , here the non-radial motion of the particle in such orbits will redirected

from r = rD to infinity, or to singularity from r = rB.

(IV) If E2 > E2
1 , then the particle will jump directly into singularity.
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Figure 3.11: Graph of V 2
eff vs r for equation (3.3.1) with parameters ω = 1,M = 1, E = 1

and `2 = 80M2
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Figure 3.12: Graph of V 2
eff vs r for equation (3.3.1) with parameters ω = 10,M = 1, E = 1

and `2 = 80M2
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Figure 3.13: Graph for equation (3.3.4) of V 2
eff vs r with parameters ω = 1,M = 1, E = 1

and `2 = 80M2

3.3.2 Null Geodesic for Non-radial Motion of Particles in Slowly

Rotating Black Hole

Put ` 6= 0 for the non radial motion of the the particle case then equation (3.3.1) becomes

V 2
eff =

(
1 + ωr2 −

√
r(ω2r3 + 4ωM)

)(
`2

r2

)
− 4aM`E

r3
. (3.3.4)

The Figures (3.13) and (3.14) tells us that as the peaks become sharper and sharper, means

that the instability of the orbit increases. Here the Schwarzschild’s effective potential is

denoted by dashed line while the bold line represents the HL black hole effective potential.

In the beginning there is a discrimination between Schwarzschild’s effective potential and HL

black hole effective potential. This discrimination gradually decreases and finally emerges

into a single line, which shows that HL theory matches to standard GR at large distances as

shown in the graph. This graph is for `2 = 80M2.
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Figure 3.14: Graph for equation (3.3.4) of V 2
eff vs r with parameters ω = 10,M = 1, E = 1

and `2 = 80M2
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Figure 3.15: Graph for equation (3.3.4) of V 2
eff vs r with parameters ω = 1,M = 1, E = 1

and `2 = 40M2
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Figure 3.16: Graph for equation (3.3.4) of V 2
eff vs r with parameters ω = 10,M = 1, E = 1

and `2 = 40M2

The Figures (3.15) and (3.16) shows the effective potential for `2 = 40M2 and different

values of a. In these graphs the peaks get sharper which shows that the instability of the

orbit increases. Here the dashed line is for the Schwarzschild’s effective potential while bold

line stands for the HL black hole effective potential. This graph shows that HL theory

deviate from standard GR in the start and then becomes same in the end. This is shown for

`2 = 40M2.

In the Figures (3.17) and (3.18) it is shown in graphs that the peaks become sharpens this

reflects that the orbit instability increases. It means that the particle goes to unstable orbits.

Here the dashed line shows the Schwarzschild’s effective potential while bold line represents

the HL black hole effective potential. At short distances the HL theory diverges from standard

GR while at large distances both theories converges into a single which is shown in the figure.

This plot is for `2 = 10M2.
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Figure 3.17: Graph for equation (3.3.4) of V 2
eff vs r with parameters ω = 1,M = 1, E = 1

and `2 = 10M2
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Figure 3.18: Graph for equation (3.3.4) of V 2
eff vs r with parameters ω = 10,M = 1, E = 1

and `2 = 10M2
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Figure 3.19: Graph of V 2
eff vs r with parameters ω = 1,M = 1, E = 1 and `2 = 80M2

For this case the equation for non-radial motion of the particle becomes

ṙ2 = E2 −
(

1 + ωr2 −
√
r(ω2r3 + 4ωM)

)(
`2

r2

)
− 4aM`E

r3
. (3.3.5)

The Figures (3.19) and (3.20) show us the effective potential for HL black holes when `2 =

80M2. Here the dotted line is for the Schwarzschild’s effective potential while bold line shows

the HL black hole effective potential. The HL theory becomes equal to standard GR at large

distances while they does not match with each other at shorter distances so therefore there

arises a difference which is shown in the graph. Due to energy of the particle for non-radial

case there arises different cases:

(I) If E2 > E2
c , then the particle have enough energy and will jump from infinity and fall

into singularity.

(II) If E2 = E2
c , then orbit becomes unstable for non-radial motion of the particle at r = rc.

Here in these situations the particle will escape to infinity at r = rc, or captured in the

singularity.
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Figure 3.20: Graph of V 2
eff vs r with parameters ω = 10,M = 1, E = 1 and `2 = 80M2

(III) If E2
1 < E2 < E2

c , In such orbits the particle’s non-radial motion will redirected from

r = rD to infinity, or to singularity from r = rB.

(IV) If E2 > E2
1 , thus the particle will go directly and fall into singularity.

3.4 Velocity of the Particle

For velocity we have to divide ṙ by ṫ where

ṙ =

√
f(r)

(
− h+

E2

f(r)
− `2

r2
− 2aN`E

f(r)

)
, (3.4.1)

and second equation becomes as

ṫ =
E − aN`
f(r)

, (3.4.2)

where

v =
ṙ

ṫ
, (3.4.3)
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now putting values of ṙ and ṫ from equation (3.4.1) and equation (3.4.2) into equation (3.4.3)

we have

v =

√
f(r)

(
− h+ E2

f(r)
− `2

r2
− 2aN`E

f(r)

)
E−aN`
f(r)

, (3.4.4)

simplifying this equation we obtain

v = f 2(r)

√
E2 − f(r)

(
`2

r2

)[
1−

(
h

f(r)

(
E2 − f(r)

(
`2

r2

)) +
2aN`E

f 2(r)

(
E2 − f(r)

(
`2

r2

))
)] 1

2

[
E−1

][
1− aN`

E

]−1
. (3.4.5)

Expanding second and last term through binomial expansion and then simplifying we get

v =

[
1− h

2f(r)

(
E2 − f(r)

(
`2

r2

)) − aN`E

f 2(r)

(
E2 − f(r)

(
`2

r2

)) +
aN`

E
− aN`h

2Ef 2(r)

(
E2 − f(r)

(
`2

r2

))
]
×

[E−1]f(r)

√
E2 − f(r)

(
`2

r2

)
(3.4.6)

3.5 Timelike Geodesics

By putting h = 1 in equation (3.4.6) we have

v =

[
1− 1

2f(r)

(
E2 − f(r)

(
`2

r2

)) − aN`E

f 2(r)

(
E2 − f(r)

(
`2

r2

)) +
aN`

E
− aN`

2Ef(r)

(
E2 − f(r)

(
`2

r2

))
]
×

f 2(r)

√
E2 − f(r)

(
`2

r2

)
, (3.5.1)
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replace N = 2M
r3

in the given equation then we have

v =

[
1− 1

2f(r)

(
E2 − f(r)

(
`2

r2

)) − 2aM`E

r3f 2(r)

(
E2 − f(r)

(
`2

r2

)) +

2aM`

r3E
− aM`

r3Ef(r)

(
E2 − f(r)

(
`2

r2

))
]
×

f 2(r)

√
E2 − f(r)

(
`2

r2

)
. (3.5.2)

We have two cases which are

3.5.1 Timelike Geodesic for Radial Motion of the Particle

By putting ` = 0, then equation (3.5.2) becomes

v = f 2(r)

(
1− 1

2f(r)E2

)
, (3.5.3)

putting E = 1 and f(r) value, we get

v =

(
1 + ωr2 −

√
r(ω2r3 + 4ωM)

)2(
1− 1

2
(
1 + ωr2 −

√
r(ω2r3 + 4ωM)

)). (3.5.4)

Figure (3.21) and (3.22): A geodesics sketch for radial motion of the particle bounce back

scenario. These graphs reveal that an ingoing particle comes from infinity with some velocity,

reaches to a limit (dashed line) and then bounces back to infinity. Where dashed line is the

boundary that does not allow the particle to cross that limit.
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Figure 3.21: Graph of v vs r with parameters ω = 1 and M = 1 for equation (3.5.4)
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Figure 3.22: Graph of v vs r with parameters ω = 10 and M = 1 for equation (3.5.4)
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Figure 3.23: Graph of v vs r with parameters ` = 0.5, ω = 1, M = 1 and E = 1 and a = 0.5

for equation (3.5.5)

3.5.2 Timelike Geodesic for Non-radial Motion of the Particle

Put ` 6= 0 in equation (3.5.2) and then simplifying we get

v =

[
1− 1

2f(r)

(
E2 − f(r)

(
`2

r2

)) − 2aM`E

r3f 2(r)

(
E2 − f(r)

(
`2

r2

))
+

2aM`

r3E
− aM`

r3Ef(r)

(
E2 − f(r)

(
`2

r2

))
]
×

f 2(r)

√
E2 − f(r)

(
`2

r2

)
. (3.5.5)

Figure (3.23) and (3.24): Here the geodesics show the path for radial motion of the particle.

In these sketches the particle comes from infinity having some initial velocity, reaching to a

limit (boundary beyond which the particle can not go) denoted by dashed line. And then
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Figure 3.24: Graph of v vs r with parameters ` = 0.5, M = 1 and E = 1, ω = 10 and a = 0.5

for equation (3.5.5)

going back to infinity again as given per figure.

3.6 Null Geodesics

Insert h = 0 and value of shift function in equation (3.4.6) we obtain

v = f 2(r)

√
E2 − f(r)

(
`2

r2

)[
1− 2aM`E

r3f 2(r)

(
E2 − f(r)

(
`2

r2

)) +
2aM`

r3E

][
E−1

]
. (3.6.1)

From here again we have two case
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Figure 3.25: Graph of v vs r with parameters ω = 1, M = 1 for equation (3.6.2)

3.6.1 Null Geodesic for Radial Motion of the Particle

When ` = 0 the expression (3.6.1) becomes v = f(r). In this case the velocity equals to lapse

function which is

v =

(
1 + ωr2 −

√
r(ω2r3 + 4ωM)

)2

. (3.6.2)

Figure (3.25) and (3.26): In the given graphs geodesics represents the trajectory for radial

motion of the particle coming from infinity with some initial velocity and then bounces back

to infinity.
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Figure 3.26: Graph of v vs r with parameters ω = 10, M = 1 for equation (3.6.2)

3.6.2 Null Geodesic for Non-radial Motion of the Particle

Put ` 6= 0 in equation (3.6.1) we get

v = f 2(r)

√
E2 − f(r)

(
`2

r2

)[
1− 2aM`E

r3f 2(r)

(
E2 − f(r)

(
`2

r2

)) +
2aM`

r3E

][
E−1

]
. (3.6.3)

Figure (3.27) and (3.28): These graphs reflects that the particle comes from infinity and

going back to infinity, by making the geodesics path as shown per figure.
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Figure 3.27: Graph of v vs r with parameters ω = 1, M = 1, ` = 0.5 and a = 0.5 for equation

(3.6.3)
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Figure 3.28: Graph of v vs r with parameters ω = 10, M = 1, ` = 0.5, ` = 0.5 and a = 0.5

for equation (3.6.3)



Chapter 4

Conclusion

We have discussed the null and timelike geodesic motion for radial and non-radial motion of

particles in the vicinity of a slowly rotating Hor̆ava Lifshitz Black hole [38]. By examining the

effective potential behaviour for the particle, we worked out the timelike geodesic motion of

particle in static Hor̆ava- Lifshitz spacetime. When energy of the particle is in proper range

then the particle comes from finite distance to the center along timelike geodesics. However

the complexity arises in the case of the radial motion of the particle along timelike geodesics.

Therefore we have the following cases for the energy of the radial motion of the particle: If

‘E’ (energy of the particle) is greater than the critical energy value EC , then the particle

directly jumps from infinity into singularity. If energy of the particle ‘E’ becomes equal to

the critical energy value EC , the particle’s orbit become unstable at r = rC . It means that

the particle goes to infinity or singularity from r = rC . If energy ‘E’ of the particle is in

appropriate range the particle redirect to infinity or goes to singularity from infinity.

When we compared results of timelike geodesic motion for radial and non-radial motion

of the particle in slowly rotating Hor̆ava-Lifshitz black hole spacetime with that of static

Hor̆ava-Lifshitz black hole spacetime we deduce that the dynamics of the particles affects.

Similarly the behaviour of effective potential for radial and non-radial motion of the particle

62
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was also studied graphically in slowly rotating Hor̆ava-Lifshitz spacetime. We arrived at the

fact that by involving the spin term in the static Hor̆ava Lifshitz spacetime metric there is

no such difference occur between static Hor̆ava-Lifshitz spacetime [28] and slowly rotating

Hor̆ava-Lifshitz black hole. The difference occurs only in maxima of the effective potential,

it means that only instability of the orbit of the particle changes. From this research work

we proved that if we introduce the spin term in the static Hor̆ava-Lifshitz spacetime metric,

the instability of the particle increases.
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