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ABSTRACT 

Nanoindentation is often utilized to examine the mechanical properties of materials and 

the interactions between grain boundaries (GBs) and dislocations. During the nano-

indentation, Load-Displacement (LD) curves usually display the load or displacement 

burst, which is known as the “Pop-in”. If the indentations are conducted in close 

proximity to a GB, in addition to the first pop-in, a second distinctive displacement event 

could be seen on the LD curve under higher loads, often referred to as the "GB pop-in". 

The transmission of dislocations to the adjacent grains is one of the causes of these 

secondary GB pop-in occurrences. The present study introduces a novel strategy that 

differs from traditional advanced characterization methods by using machine learning 

techniques to predict GB pop-in events. Genetic algorithm (GA) and particle swarm 

optimization (PSO)-based machine learning models, including Gaussian process 

regression (GPR), ensemble learning tree (ELT), support vector machine (SVM), and 

decision tree (DT), are developed. Model selection is based on coefficient of 

determination (R²) value. For GA the GPR, ELT, SVM, and DT, R2 values were found to 

be 0.9999, 0.9264, 0.9711 and 0.9811, respectively, whereas for PSO, GPR, ELT, SVM 

and DT were found to be 0.9999, 0.9976, 0.9611, and 0.9682, respectively. It is evident 

from the aforementioned R2 value that the GPR shows a value close to 1 as compared to 

the other three models, hence showing the best performance. Partial dependence plot 

(PDP) analysis underscores the significance of load and displacement parameters for 

precise prediction. Lastly, a user-friendly graphical interface (GUI) is meticulously 

designed based on the GA-GPR model. The integration of these novel methods enhances 

both their accuracy of predictions and the researchers' ability to detect the GB pop-in 

events, resulting in improving the fields of predictive modeling and materials science. 

Keywords: 

Nanoindentation, Machine Learning, Genetic Algorithm, Particle Swarm Optimization, 

Pop-in, Grain Boundaries 
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CHAPTER 1: INTRODUCTION 

1.1 Mechanical Properties of Materials 

The mechanical behavior of materials refers to how the material responds to 

external forces or loads [1]. The response of a material to applied forces is determined 

by its mechanical properties, which include strength, rigidity, ductility, hardness, 

toughness, resistance to fatigue and creep, and elasticity [2] as depicted in figure 1.1. 

These properties are critical to evaluate via impact, tensile, and hardness evaluations to 

determine a material's suitability for use in industries such as construction, aerospace, 

and automotive [3]. 

 

Figure 1.1: Mechanical Properties of Materials 

Mechanical characteristics at the nanoscale exhibit unique behaviors in contrast to those 

that exist at the macroscopic level [4]. The grain boundaries impede the movement of 

dislocations, thereby increasing the strength of the material. Furthermore, ductility can 

be enhanced through the regulation of dislocation motion, which facilitates plastic 

deformation [5]. The restricted particle size in nanocrystalline materials induces 
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modifications in dislocation behavior, thereby generating unique deformation 

mechanisms that may impact the material's overall mechanical response [6]. 

The Hall-Petch relationship in materials science states that there is a direct correlation 

between the decrease in grain size of a metal and the rise in its yield strength [7]. 

𝜎𝑦 =  𝜎𝜃 + 𝐾. 𝑑
1

2⁄  

The term "𝜎𝑦" represents the yield strength of the material. The symbol "𝜎𝜃" is a 

constant that signifies the friction stress, which is the intrinsic opposition to the 

movement of dislocations, the Hall-Petch constant, denoted as "k", quantifies the 

phenomenon of grain boundary strengthening and d represents the mean size of the 

grains [8]. This relationship tells us about the average grain size. More grain boundaries 

in a material with smaller grain sizes limit the movement of dislocations and increase the 

material's strength. However, at very small grain sizes, other variables such as grain 

boundary sliding or changes in the underlying deformation process might change the 

material's characteristics, thus this link may not last forever.  

 

Figure 1.2: Hall-Petch Relation between Strength and Grain Size [7] 
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The relationship between grain size and material strength is perfectly proportional; 

furthermore, a larger grain size corresponds to a lower strength of the material; 

conversely, a smaller grain size corresponds to a higher strength of the material as 

shown in figure 1.2. 

1.2 Slip transfer and dislocation interaction mechanisms in adjacent grains. 

A critical aspect in understanding material deformation is the correlation 

between slip transfer and dislocation interaction at grain boundaries [9]. The 

compatibility of dislocations across grain boundaries is critical for slip transfer, which 

involves the movement of dislocations. The behaviors of dislocations—transmitting, 

reflecting, or bowing out at boundaries—have an impact on the deformation of materials 

[10]. Slip transfer is dependent on the alignment of slip systems and dislocation 

interactions, which can either facilitate or impede movement. The mechanical response 

of polycrystalline materials is substantially shaped by this interaction, which in turn 

affects their deformation mechanisms and material properties [11]. 

 

Figure 1.3: Mechanisms involving dislocation interaction and slip transmission in 

neighboring grains (a), (b), (c), (d) [12] 

Furthermore, figure 1.3 depicts several modes of slip transmission and dislocation 

contact between grains A and B, which are separated by a grain boundary with normal n. 
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The orientations of slip plane normal are denoted as nA
a, nB

b, and the orientations of slip 

directions as dA
a, dB

b. There are N slip systems inside grain A, labelled from a=1 to N, 

and N slip systems within grain B, labelled from b=1 to N. The illustration presents 

many situations: At the grain boundary, dislocations may initially accumulate (Fig. 

1.3a). As a result, dislocation sources may become active, which would cause 

dislocations to be emitted from grain B as well as from the grain boundary itself (Fig. 

1.3b). On the other hand, dislocations might separate into the grain boundary without 

first releasing dislocations into grain B (Fig. 1.3c). Nonetheless, grain B may experience 

a re-emission of resolved dislocations in the future (Fig. 1.3d) [12]. 

1.3 First Pop-in 

In nanoindentation testing, pop-in events represent a sudden burst in the load 

displacement curve, while keeping the load constant. These events provide information 

about the material’s behavior, which changes based on alterations in the material or its 

characteristics. Pop-in events in the load-displacement curve represent the material's 

response at different applied loads. Several factors contribute to these pop-in 

occurrences. As schematized in figure 1.4, the initial pop-in occurrence generally arises 

from the transition from elastic to plastic transition.  

 

Figure 1.4: First Pop-in event Occurrence within the Load-Displacement Curve 

When the nanoindentation experiment is load-controlled, a horizontal plateau can be 

observed on the load-displacement curve. This plateau arises when a pop-in event takes 

place at the critical load and critical displacement as depicted in figure 1.5. 
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Figure 1.5: Pop-in Occurrence within the Load-Displacement Curve with critical load 

and critical displacement 

1.4 Secondary Pop-ins 

Secondary or Multiple pop-in events can be caused by various factors such as phase 

transformations, cracking, and the transmission of dislocations from one grain to an 

adjacent grain. Figure 1.6 visually represents the occurrence of multiple pop-in events 

due to cracking in the strontium titanate single crystal. 
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Figure 1.6: Pop-in Events on the LD curve due to cracking in strontium titanate[13] 

 

Figure 1.7: Pop-ins due to Phase transformation in Ni-Mn-Ga Films[14] 

Figure 1.7 shows the multiple pop-ins due to phase transformation in Ni-Mn-Ga films 

[14]. These events serve as significant sources of information regarding the mechanical 

characteristics of materials, including hardness, fracture toughness, and incipient 

plasticity. The transmission of dislocations from one grain to an adjacent grain which is 

Grain Boundary Pop-in (GB) details are given in proceeding section. 
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1.5 Grain Boundary Pop-in 

During nanoindentation testing, grain boundary pop-ins are observed on the load-

displacement graph, identified as displacement bursts as shown in figure 1.8. [15] 

 

Figure 1.8: A load–displacement curve displaying the prominence of the grain boundary 

[16]. 

Dislocations exhibit a progressive displacement within the grains in response to applied 

stress; however, their motion is impeded at the GB until a critical stress is achieved. 

Subsequently, strain and stress undergo an abrupt increase, because of which a multitude 

of dislocations abruptly overcome the boundary barrier and achieve a constrained yet 

rapid traversal across the grain boundary as shown in figure 1.9. 
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Figure 1.9: Illustration showing dislocation pile-up and transmission at point [16] 

Kalidindi et al. [5], reported that sharp indenters are exceptionally efficient in inducing 

extremely localized plastic deformation. As a result, when fully annealed, well-prepared 

materials were tested by indentation using sharp tips, the elastic to plastic transition as 

explained earlier is called Pop-in or dislocation burst. When these tests were performed, 

the dislocation activation sources and occurrence of Pop-ins were very difficult, and the 

values of load and displacement reported are greater. However, when these tests are 

performed near the (GB) with the use of indenters having sharp tip, the pop-ins can 

occur on small loads and depth as depicted in figure 1.10 compared to values reported 

for load and displacement in grain interior [5]. 
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Figure 1.10: The LD curves showing the pop-in events in interstitial free steel using a 

Berkovich tip [5] 

Wang et al. [16], performed the nanoindentation testing in niobium and proposed a c/d 

criteria for the occurrence of the GB pop-in events, where c is the radius of elasto-plastic 

boundary and d is the distance of indenter tip from the GB. They find a narrow range 

(between 1.5 to 5) of c/d ratio for different GBs (figure 1.11)[16]. 
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Figure 1.11: The distribution of statistics of the c/d ratio and number of GB pop-in 

events [16] 

Figure 1.12 shows the exemplary image of the SEM indents from the same work [16], 

which shows that out of three indents, the GB pop-in was observed only in indent 1. It is 

also evident from the image that indent 1 was closer to GB as compared to indent 2 and 

3, thus no slip transmission was observed.  

 

Figure 1.12: A scanning electron microscope (SEM) image showing three closely 

spaced indents created next to a grain boundary [8] 
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Britton et al. [8], conducted nanoindentation experiments in iron 0.01 weight percentage 

carbon and found the GB pop-in events, which were also associated with the 

transmission of dislocation in the adjacent grain (figure 1.13). They also studied the c/d 

ratio for the various GBs and observed a narrower range [8]. 

 

Figure 1.13: Transmission of screw dislocations directly across a grain boundary[8] 

Figure 1.14 shows the three indentations performed at various distances from a GB. 

Britton et al. observed the GB pop-in for indent 2 and 3 (figure 1.15) and reported that 

c/d =1.2, critical value was between 1.5 to 5 [8].  
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Figure 1.14: Optical micrograph shows indentations in the vicinity of a GB [8]. 

 

Figure 1.15: The LD curves for three indents shown in figure 1.14 [8] 
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1.6 Research problem and hypothesis 

In the different literature, [5], [8], [16], GB pop-ins were not always likely to 

occur when indentation was performed near the GB. One potential hypothesis regarding 

the GB pop-in phenomenon suggests that as the indenter tip penetrates, dislocations 

nucleate in the plastic zone and move towards the GB, eventually forming a pile-up of 

dislocations. Once a critical shear stress is reached on the slip system of the neighboring 

grain, the dislocations are expected to transfer across the grain, resulting in the GB pop-

in event observed on the LD curve. The absorption of dislocations at the GB and their 

subsequent re-emission from the GB are suggested to be the underlying process 

responsible for the grain boundary pop-in occurrences, but to observe this kind of 

phenomenon, a comprehensive tool is required. Due to their high cost, nanoindentation 

devices are not widely available. It takes expertise and training to carry out and interpret 

nanoindentation tests correctly. To address this issue, an artificial intelligence (AI)-

based machine learning (ML) approach is used to predict the occurrence of the GB pop-

in phenomenon using nanoindentation data.  

1.7 Proposed Methodology  

Factors such as applied stress, indenter geometry, and misorientation 

significantly contribute to the formation of multiple GB pop-ins[17]. Due to the 

influence of these factors, the GB pop-ins were not observed on the load-displacement 

curves, even for similar GB conditions [4]. Therefore, in the present work, machine 

learning (ML) will be used to predict the grain boundary pop-in events. For this purpose, 

four machine learning (ML) models, were developed, which include Ensemble Learning 

Tree (ELT), Gaussian Process Regression (GPR), Support Vector Machine (SVM), and 

Decision Tree (DT), to forecast the GB pop-in by using nanoindentation data. A 

comprehensive visual representation of building ML models with the help of 

nanoindentation data for the Pop-in prediction is shown in figure 1.16. These machine 

learning models essentially use depth (µm) and load (mN) data as input parameters [4]. 

Data-driven modelling approaches were used to create models that were optimal for 

process prediction and validation. Using nanoindentation data, the next step was 

developing machine learning models based on genetic algorithms (GA) and particle  
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Figure 1.16: Schematic of the Workflow for Pop-in Prediction Utilizing Machine 

Learning 

swarm optimization (PSO) to optimize parameters that accurately predict and assess 

Pop-in occurrences. This integrated strategy's combining of ML models with GA and 

PSO modification has a lot of potential for using ML models in experimental Pop-in 

prediction research. In the end, MATLAB was used to develop a graphical user interface 

that combines machine learning techniques with ideal features to enable Pop-in 

formation predictions using nanoindentation. Researchers will find this study convenient 

as it reduces the time necessary to use resources efficiently by using a trained machine 

learning model based on nanoindentation data. 
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1.8 Objectives  

• Development of Machine Learning models (SVM, GPR, ELT, DT) to predict the 

GB pop-in event.  

• Optimization of ML models’ hyperparameters using PSO and GA.  

• Development of Graphical User Interface (GUI).  
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CHAPTER 2: LITERATURE REVIEW 

2.1 Nanoindentation  

Nanoindentation is a characterization technique to measure the different mechanical 

properties of materials at both the small and bulk scales [18] which include hardness, 

yield stress, complex modulus, strain rate sensitivity, fracture, toughness etc. A typical 

nano indenter G200 and its cross-sectional representation are depicted in Figure 2.1. The 

G200 nano indenter comprises various components, including an indenter, an optical 

microscope, and a workbench or sample stage. The indenter and optical microscope are 

interconnected through a capacitance gauge, set at a specific angled distance.  

Figure 2.1 (b) presents a cross-sectional view of the G200 nanoindenter. In the 

experimental setup, a sample is positioned on the workbench, and the load is applied to 

the sample. Following the experimentation, the indenter's impression is meticulously 

analyzed. The microscope is carefully positioned over the indented region for detailed 

examination and assessment. This is significant in disciplines such as microelectronics, 

where comprehension of the efficiency and durability of thin layers is essential [19]. In 

addition to these characteristics, it is also possible to determine the viscoelasticity, 

creeping, phase transition, dislocation movement, strain hardening effect, and residual 

stress [18]. It studies the effects of surface modifications including chemical doping and 

ion implantation. Additionally, it has several uses in the biomedical sector, such as the 

study of dental materials and bone [20]. The nano indenters are also capable of precisely 

recording small loads and movements in the form of load vs. displacement data, as shown 

in figure 2.2 [21].  
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Figure 2.1: (a) Nano-indenter G200, (b) Cross-sectional View of G200 Nano-indenter 

[22] 

 

Figure 2.2: Load-Displacement Curve during Nanoindentation [21] 
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2.2 Types of Indenters Tips: 

A range of indenters are used in nanoindentation, although wedge-, spherical-, 

and pyramid-shaped indenters are the most common types. The cubic-angled indenter, 

triangle pyramidal Berkovich indenter, rectangle pyramidal Vickers indenter, and Knoop 

indenter are examples of common pyramidal indenters [23]. Every indenter has unique 

uses and constraints of its own. For example, the Berkovich indenter's well-defined 

geometry and three-sided pyramidal form serve as an appropriate tool for measuring 

hardness and elastic modulus [24]. As a result of its conical form, the conical indenter is 

useful in circumstances where materials display non-linear behavior. The spherical 

indenter has very little initial contact stress since it is made in the form of sphero-cones to 

make installation easier [24]. They are thus suitable for testing flexible materials and 

modelling contact damage that might happen during operation. However, achieving the 

higher quality of submicron-scale spherical diamond indenters is a major challenge to 

their broader use. Furthermore, cube-edge indenters are utilized for the micro-indentation 

of soft materials. They feature a pyramidal form with a minutely split corner [25].  The 

different indenter tips are illustrated in figure 2.3. 

 

Figure 2.3: Different Schematics of indenter tips [26] 
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2.3 Indentation Methods  

Nanoindentation, an experimental technique that investigates mechanical 

properties at the nanoscale, employs a variety of indentation methodologies to precisely 

evaluate material properties. There are two modes of operation for the nano-indenter: 

quasi-static loading and continuous stiffness measurement (CSM) [27]. The quasi-static 

loading method is a useful tool for determining the hardness and elastic modulus of 

materials under static conditions. It also sheds light on how materials behave when 

subjected to gradual and consistent force application. This critical phase is reached by 

substances that are consistently under sustained stress. The CSM mode from MTS 

Systems Corporation offers an additional technique for dynamic nanoindentation. The 

indenter receives a low-amplitude signal as it passes through the material. This method 

enables the simultaneous assessment of hardness and elastic modulus at various depths in 

a single indentation [23]. For examining gradient changes in the mechanical properties of 

coatings, thin films, or layered materials, this function is very useful. Moreover, the CSM 

mode is especially helpful for studying the viscoelastic properties of materials that, when 

deformed, display both elastic and viscous properties. Because CSM is dynamic, studying 

how these materials respond to changing pressures over time may help researchers 

understand how these materials perform under real-world conditions. The CSM mode 

may also adjust the strain rate indefinitely, allowing for consistent evaluation of materials 

under comparable strain rate settings and research into strain rate sensitivity in sectors 

such as aerospace and automotive. Furthermore, the CSM mode makes it easier to adjust 

the area function of the indenter, which is essential for accurately determining material 

properties [28]. Overall, the nano-indenter provides extensive material characterization 

capabilities, with the quasi-static loading mode giving critical data on material reactions 

under constant load and the CSM mode providing dynamic testing capabilities [29]. 

2.4 Oliver-Pharr method 

The Oliver-Pharr method is used to determine the hardness and elastic modulus during 

the nanoindentation testing[30]. Researchers derive vital information regarding a 

material's resistance to deformation and its intrinsic elasticity by evaluating this data 
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using specialized equations that take into account parameters such as indenter shape and 

material behavior [31]. 

This standardized process has a broad range of applications across many materials such 

as metals, ceramics, and thin films. The precision and standardized procedures of this tool 

make it a great instrument for comparing findings across different investigations [32]. 

Nevertheless, the use of specialized equipment and experience is essential, and there are 

certain constraints to consider, such as the need for meticulous surface preparation and 

the reliance on assumptions about material behavior. The Oliver-Pharr approach 

continues to be a very effective method for uncovering the complex nature of material 

mechanics at the micro and nano levels [33] as depicted in figure 2.4 

The hardness is extracted out by using following equation.  

𝑯 =  
𝐋𝐨𝐚𝐝 (𝐏)

𝐀𝐫𝐞𝐚(𝐀)
 

Whereas 𝐴 = 24.56 ℎ𝑐
2   when the depth of indentation is greater than 2 microns 

𝐴 = 24.56 ℎ𝑐
2 + 𝐶1ℎ𝑐

1 + 𝐶2ℎ𝑐
1/2 + 𝐶3ℎ𝑐

1/4 + … … … … … … … … … + 𝐶8ℎ𝑐
1/128, when 

There is less than 2 microns of indentation depth, while here c1 to c8 are constants, 

This method is known as “Area Function Calibration”.  

Contact depth hc is measured by using the following Equation. 

𝒉𝒄 =  𝒉𝒎𝒂𝒙 −  𝜺
𝑷𝒎𝒂𝒙

𝑺
 

whereas ε = 0.75 for Berkovich Geometry. 

Here S is called Sneddon’s relation, and it can be extracted by following equation. 

𝑬𝒓 =
√𝝅

𝟐
 

𝑺

√𝑨
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Now Reduced Modulus Er can be extracted using the following formula. 

𝟏

𝑬𝒓
=

𝟏 − 𝝂𝒔
𝟐

𝑬𝒔
+

𝟏 − 𝝂𝒊
𝟐

𝑬𝒊
 

𝐸𝑟 denotes the elastic deformation that occurs in both the sample and the indenter tip. 

 

Figure 2.4: The illustration of section of nanoindentation showing various quantities 

used in analysis [34] 

2.5 Factors affecting Nanoindentation Data:   

Analyzing the nanoindentation data is not as simple as it seems. A complex domain of 

variables impacts the results, perhaps leading researchers into misleading directions [35]. 

The material itself plays a starring role. The complex arrangement of grains, limits, and 

defects inside its microstructure determines its response to the force applied by the 

indenter[24]. The measured hardness, modulus, and occurrence of pop-ins are all 

influenced by initial penetration depth, Poisson’s ratio, thermal drift, piling-up, and 

surface roughness, grain size, residual stress, size effect, indenter geometry, and the 

presence of impurities [36]. The surface state, regardless of its pristine or oxidized, and 

whether it is smooth or rough, may impact the outcomes due to variables such as friction 
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and adhesion. For materials that showcase different properties depending on direction, 

the chosen indentation direction can significantly impact the data obtained[37]. Figure 

2.5 depicted the effect of effect of initial penetration depth on load-displacement data for a 

depth-sensing indentation test. 

 

Figure 2.5: Illustration demonstrating the impact of the initial depth of penetration on the 

load-displacement data obtained from a depth-sensing indentation test. The first contact 

load, denoted as Pi, leads to an initial penetration depth, referred to as hi. Depth 

measurements at loads P need to be adjusted for the influence of hi. [38]. 

The area of contact in nanoindentation is essential for precise determination of material 

parameters such as hardness and elastic modulus. Beyond numerical parameters other 

parameters that affect[39]. The material next to the indentation point may pile up (pile-

up) or sink inwards (sink-in). The real contact area is distorted by these effects, hence 

accurate measurement is essential. Pile-up might result in an underestimating of the 

contact area, while sink-in can lead to an overestimation, depending on the material and 

loading circumstances[40] as shown in figure 2.6. 
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Figure 2.6: Figure demonstrating the contrast in contact areas between an ideal conical 

indenter and a non-ideal indenter[36]. 

2.6 Artificial Intelligence (AI) 

AI pertains to the advancement of algorithmic tools that exhibit intelligent 

behavior and simulate human intelligence [41]. To achieve optimal efficiency, the 

discipline places emphasis on three fundamental abilities: learning, reasoning, and self-

correction. AI may pertain to computer programmes that are either trained through 

machine learning or are explicitly programmed [42].  
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Figure 2.7: The illustration of the interconnections of data science, machine learning, 

artificial intelligence, deep learning, and data mining [43].  

ML is a subfield of AI that focuses on the creation of models that enable machines to 

gradually enhance their performance. Deep Learning, a significant machine learning 

methodology, employs multilayered neural networks that demonstrate remarkable 

efficacy in both areas of speech and image recognition [44]. In contrast to machine 

vision, which interprets visual data, Natural Language Processing enables computers to 

comprehend and generate human language. AI and its subfields are represented  in the 

figure 2.7 [45]. Artificial intelligence (AI) has applications in a wide range of domains, 

including robotics, natural language generation, and expert systems. The fundamental 

objective of general AI is to more closely resemble human intelligence, whereas narrow 

AI is purposefully designed to carry out particular responsibilities [46]. Its significance 

extends across industries, including finance and healthcare, and is crucial for the 

advancement of intelligent systems and automation. Our data is based on numerical 

values, and ML is particularly well-suited for handling numerical data, often excels in 

tasks that involve quantitative information. Therefore, it is better to use the ML approach 

to develop a model for the prediction of Pop-in phenomenon. Moreover, ML is a 

purposeful endeavor rooted in the acknowledgment of its capacity for revolutionization. 

It acts as a catalyst to facilitate the disclosure of valuable insights, the automation of 

intricate processes, and the improvement of decision-making capabilities in a data-rich 
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environment. Gaining knowledge in the field of machine learning equips individuals with 

the essential abilities to proficiently adjustments through the complexities of data 

analytics, forecast forthcoming trends, and extract functional insights [47]. A detailed 

overview of machine learning is addressed in the subsequent section.  

2.6.1 Machine Learning  

 Machine learning (ML) is an artificial intelligence (AI) subfield that 

focuses on the construction of algorithms and statistical models. Operating without 

explicit programming, these models empower computers to independently acquire 

knowledge and produce predictions or decisions [43]. ML techniques are utilized for data 

interpretation and analysis, pattern discovery, and data-driven decision-making [48]. 

Here’s an overview of ML and its methods. It operates on the principle that computers 

can learn from data and improve their performance over time [49]. The key components 

of ML are as follow: 

Data: ML algorithms require data to self-train and generate predictions by recognizing 

patterns. Relevant and high-quality data are essential for effective machine learning. 

Features: Predictions are generated by the ML algorithm using features, which are 

columns or specific characteristics of the input variables in the data. Feature engineering 

or selection is a crucial phase in ML. 

Model: The primary objective of a model is to provide a mathematical representation of 

the relationships that exist between the objective variable and the data features [50]. By 

developing the model through training on historical data, it gains the ability to produce 

predictions on new, unobserved data. 

Training: ML models alter their internal parameters to minimize prediction errors as 

they learn from historical data during the training phase. 

Testing and Evaluation: After training, the model is tested on new data to assess its 

performance and accuracy. Various evaluation metrics are used, depending on the 

problem type (e.g., classification, regression) [51].  
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Figure 2.8: The Machine Learning Workflow 

2.6.2 ML Models 

 ML comprises an extensive array of methodologies and strategies. The 

method selection is determined by the nature of the data available and the issues at hand. 

A total of four ML models SVM, GPR, ELT, and DT were used to train and forecast the 

Pop-ins using load vs displacement data in MATLAB. Detailed descriptions of each of 

these models are presented in the subsequent sections: 

2.6.2.1 Decision Tree 

In discriminant analysis, decision trees are regarded as a basic method for 

information discovery. The system’s enhanced standing is attributed to its efficiency, 

promptness of operation, and simple installation. Using this method, a large configuration 

of nodes and branches forms a structure like a tree. The process of categorizing 

individuals into groups is accomplished by employing function-specific mechanisms for 

classification or regression via internal nodes that possess outgoing edges. Furthermore, 

values may be computed or maintained at the terminal nodes or leaves, contingent on the 

model type [52]. Regression trees are fundamentally represented by a constant value at 

the root level, which is typically the target attribute’s mean value. To further develop this 

concept, model trees replace these constants with linear or nonlinear regression functions. 
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To make a prediction, a model advances from the root to a leaf, where the attributes of 

the instance direct the path at each internal node. The prediction is subsequently produced 

by the leaf's regression model [53]. The decision tree’s functionality is predicated on the 

algorithm, which is constructed using the samples provided. This algorithm uses the 

minimization of a fitness function to identify the optimal tree. In situations where classes 

are not predefined, independent variables are utilized to apply a regression model to the 

objective variable. The dataset is partitioned into distinct positions for each variable. The 

algorithm assesses the discrepancy between the values reported and those predicted for 

each division, employing the fitness function as its foundation. The procedure proceeds 

recursively, selecting the division point that minimizes the error, as mentioned earlier 

[54]. In various domains such as finance, healthcare, and machine learning, decision trees 

are widely utilized due to their efficacy in handling intricate datasets and producing 

comprehensible outcomes. Figure 2.9 presents a graphical representation of the 

comprehensive operational process of the DT algorithm, which demonstrates its capacity 

to streamline decision-making processes and deliver satisfactory predictions [55]. 

 

Figure 2.9: Graphical Representation of Decision Tree [56] 
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2.6.2.2 Support Vector Machine 

Support Vector Machines (SVM) is a supervised machine learning method that 

excels at both classification and regression [57]. As a further development of the SVM 

algorithm, it regulates the connection between an output variable and one or more 

predictors. By posing an optimization problem, the SVR algorithm gains understanding 

of a regression function that establishes a correlation between observed response values 

and input variables [58]. Support Vector Regression (SVR) is widely recognized for its 

unique capability of effectively managing high-dimensional data by precisely balancing 

model complexity and prediction accuracy [59]. To preserve this equilibrium, a number 

of foundational principles derived from SVM and modified for regression are 

implemented. (a) The separating hyperplane; (b) The kernel function; (c) The maximum-

margin hyperplane; and (d) The soft margin. A critical concept in SVM, the separating 

hyperplane establishes a boundary for differentiating classes in classification tasks. As 

illustrated in Figure 2.10, the maximum-margin hyperplane improves the robustness of 

classification by maximizing the distance between the boundary and the nearest data 

points belonging to different classes. By incorporating imperfections present in real-

world data and striking a balance between margin width and misclassification levels, the 

soft margin approach enhances the generalizability of support vector machines (SVMs). 

Furthermore, support vector machines (SVM) and support vector regions (SVR) rely 

significantly on the kernel function, an essential instrument that facilitates linear solutions 

to nonlinear issues by expanding the input variables to a higher dimensional space. As 

opposed to SVM, which optimizes class margins, this approach utilizes a hyperplane to 

determine the majority of data points fall within a designated distance (ε-tube) so as to 

minimize error. While support vectors play a crucial role in establishing the hyperplane’s 

position, points that fail to adhere to this tolerance are penalized [60]. SVR is an effective 

predictive analytics tool that can extract valuable insights from large, complex datasets in 

numerous industries, including environmental modeling, healthcare, and finance, due to 

its methodology [61].  
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Figure 2.10: Graphical Representation of SVM Structure [62] 

2.6.2.3 Gaussian Process Regression 

Figure 2.11 illustrates how GPR, an exceptionally versatile supervised learning 

approach, can be applied to both classification tasks requiring discrete outputs and 

regression tasks requiring continuous outputs. Its practicality extends to a wide array of 

scenarios, encompassing the examination of datasets and incorporation into more 

intricate problem-solving processes [63]. The Gaussian process, which is a collection of 

random variables of any finite number that share a jointly consistent Gaussian 

distribution, serves as the foundation for GPR. By employing this statistical framework, 

imperfect predictions of continuous values via GPR are possible [64]. GPR is an 

exceptional technique due to the fact that it is neither parametric nor linear. Connecting 

data elements in complex, high-dimensional spaces is facilitated by this. GPR is built 

upon the principles of Bayesian probability theory, which enables the smooth 

amalgamation of observed data and  
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Figure 2.11: Representation of GPR Structure 

pre-existing knowledge for the purpose of generating predictions. GPR exhibits strong 

compatibility with alternative Bayesian framework regression techniques, notably Kernel 

Ridge Regression (KRR) and radial basis function-based linear regression. This serves as 

a demonstration of the framework’s capability to adjust and endure in the face of diverse 

predictive modeling scenarios [65]. In the realm of neural networks, the Bayesian 

approach employs a prior distribution over weights that bears resemblance to a 

distribution over functions. A posterior is generated for prediction functions through the 

integration of a noise model with this initial assumption. Nevertheless, practical 

implementations frequently require approximations as a result of the complex 

characteristics inherent in the distribution of this function within neural networks [66]. 

The Bayesian framework of GPR oversees uncertainty and model complexity in a manner 

distinct from that of methods such as KRR. A comprehensive understanding of these 

differentiations is crucial for the selection of the most suitable tool for specific ML tasks, 

especially those that require precise interpolation and quantification of uncertainty [67]. 

2.6.2.4 Ensemble Learning Tree 

ELT methods are characterized by the integration of a substantial number of 

learners in a particular way so as to improve the accuracy of predictions [68]. Tree-based 

machine learning models are distinguished from earlier, obfuscator-oriented algorithms 
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by virtue of their simplicity and transparency [69]. These models demonstrate exceptional 

efficacy in addressing linear as well as nonlinear problems. The approach being evaluated 

is founded upon two fundamental model classifications: meta-learners and base learners. 

It is the responsibility of base learners to predict the posterior class probabilities of a 

given sample. On the other hand, the meta-learner determines the final class designation 

by combining these predictions as visualized in figure 2.12. The utilization of a dual-

model approach facilitates the processing of more intricate data, leading to the generation 

of more accurate predictions. One distinguishing feature of this methodology is its 

comprehensive implementation of multi-objective optimization throughout the model 

development stage, with an emphasis on model selection and combination. By employing 

this approach, ensemble complexity can be optimized while accuracy is minimized, 

precision maintained, and interpretability ensured. An additional hill-climbing algorithm 

is incorporated into the ensemble method in order to generate a stable collection of 

diagnostic principles. By selecting rules and prioritizing them strategically, the 

aforementioned method guarantees that the ensemble will produce satisfactory outcomes 

and provide insightful observations. A significant advancement in the field of machine 

learning (ML) is this ensemble learning approach, which strategically employs base and 

meta-learners in addition to multi-objective optimization. It is particularly advantageous 

in the development of diagnostic instruments that possess a high degree of 

comprehensibility [70]. 
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Figure 2.12: Representation of ELT Structure[56] 

2.7 Overview of Optimization Algorithm   

A comparative analysis was carried out to identify significant features and optimize the 

hyperparameters with the help of two distinct optimization algorithms. The Genetic 

algorithm comes first, followed by Particle Swarm Optimization. 

2.7.1 Genetic Algorithm 

The process of generating computational algorithms is a methodology that is influenced 

by natural evolution. It determines the optimal solution to a given problem from a set of 

potential solutions. This approach entails the conceptualization of each conceivable 

resolution as a “chromosome” and assess its quality by employing a specialized metric 

known as the “fitness function” [71]. GA utilizes this fitness function to quantify the 

effectiveness of each proposed solution. The algorithm evaluates these solutions 

iteratively and terminates execution when a sufficient solution is identified [72].  
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It fulfills the pre-established criteria. Should the intended solution remain unattainable, 

GA will generate alternative solution candidates via selection, crossover, and mutation; 

these processes constitute the subsequent generation of possibilities as a whole [73]. 

Throughout this iterative process, solutions that demonstrate outstanding performance are 

retained, while those that fail to meet the criteria for precision are discarded. As this 

process goes on, solutions that work well are kept, and the others are discarded. This 

way, over time, GA helps in finding ever-improving solutions to that problem. The key is 

to use these operations wisely to improve the solutions until the best one is found. Figure 

2.13 visually describe the whole process effectively [74]. 

 

Figure 2.13: Flowchart of Genetic Algorithm [75] 
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2.7.2 Particle Swarm Optimization 

As illustrated in Figure 2.14, PSO is an advanced optimization technique 

distinguished by its stochastic, self-adaptive, and population-based characteristics [76]. In 

this methodology, particles are employed to represent potential solutions within a 

designated search space. An individual particle determines its function value and optimal 

position by considering both its current velocity and the optimal positions of its 

neighbors. 

 

Figure 2.14: Nature-inspired Technique (PSO) 

This evaluation provides guidance to the particles as they modify their velocities and 

positions, ensuring that they approach the most efficient solutions. Constraints regarding 

the whereabouts, velocities, and neighboring interactions of particles can be established 

through the implementation of periodic modifications [77].  PSO functions are based on 

the underlying principle of traversing extensive solution spaces with the objective of 

identifying optimal values for diverse system characteristics, while simultaneously 

considering cost constraints [78]. This methodology is extensively utilized in a variety of 

scientific disciplines to address problems that demand optimal resolutions while 

efficiently managing costs. Each solution in PSO is comparable to an aerial particle or 

bird that traverses the search space. These particles collectively ascertain the most 
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advantageous positions. Particles are associated with position and velocity vectors in this 

multivariate space. Understanding the correlation between the position and motion 

pattern of a particle is critical, as this correlation establishes the boundaries that particles 

are capable of traversing. By employing this methodology, intricate motion patterns have 

been elucidated and our understanding of optimization challenges across numerous 

scientific fields has been enhanced. It is crucial to recognize that the versatile and 

cooperative characteristics of PSO among particles make it an exceptional tool for 

addressing practical issues, ensuring successful resolutions while accommodating the 

complexities inherent in numerous scientific inquiries. Figure 2.15 illustrates the 

comprehensive visual representation of the PSO algorithm's operation [79].  

 

Figure 2.15: Workflow of PSO [79].
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CHAPTER 3: METHODOLOGY 

3.1 Data Collection: 

The load displacement data of different indents of our previously published work 

was used for the present ML based study [4]. The rationale for choosing this specific 

article stems from its reliability and authenticity, which are attributed to its use of real-

time analysis. Four indent’s data were utilized I1, I2, I3, I4 and the I1 indent was fully 

loaded, and its data points are 544 whereas I2, I3, I4 were stopped immediately after GB 

pop-in, and their data points were 380, 356, 363 respectively as depicted in Table 3.1.  

Table 3.1: Data Collection Using Published Paper 

Indents Total data Points 

I1 544 

I2 380 

I3 356 

I4 363 

These data points were used for simulation purposes, and these were obtained through 

nanoindentation testing.  I1, I2, I3 and I4 are also named as the first set of indentation as 

depicted in figure 3.1 and their Load Displacement curves are shown in figure 3.2.  
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Figure 3.1: Berkovich indentations performed near GB in tungsten [4]. 

 

Figure 3.2: Load Displacement curves of indent I1 to I4 [4]. 
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The dislocation structures and hardening Figure 3.3 during grain boundary (GB) pop-ins 

were studied using electron channeling contrast imaging (ECCI). For studying of 

dislocations under the surface, sequential polishing was done. The second set 

indentations I5, I6, I7 were also used to check the precision of prepared models and GPR 

model also showed the best result as compared to the other three models.  

 

Figure 3.3: ECCI images of indent I4 at the surface and various polishing depths [4]. 

These data points were categorized using Python by importing the data file in CSV 

format, as seen in Figure 3.4. A variety of techniques were used on the given data to get 

data insights in the form of box plots, pair plots, and Pearson correlation. 
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Figure 3.4: Data Collection Using Google Collaboratory (Python Programming 

Language) 

3.1.1 Overview of Python Plotting  

Python charts have a major impact on data exploration and analysis because they 

can transform unstructured information into relevant tales. Python plots make it easier to 

see correlations, trends, and patterns in data by using visualization capabilities; they give 

a dynamic lens through which information is brought to life. This feature not only 

increases our understanding of complicated information, but also allows us to 

communicate results compellingly and understandably. Various plots, such as box plots, 

pair plots, and Pearson correlation, can be obtained from the Python language [80].  

3.1.1.1 Box Plots 

Box plots in Python, also known as box-and-whisker plots, are very effective 

graphical representations used to demonstrate critical statistical information about the 

distribution of a given dataset. Box plots provide essential insights on outliers, skewness, 
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symmetry, variation, and central tendency. The following algorithm in figure 3.5 is 

required to attain the box plots based on provided data sets. 

 

Figure 3.5: Representation of Box Plots 

3.1.1.2 Pair Plots: 

Pair plots, which are often constructed in Python using tools like Seaborn, allow 

you to visually investigate the connections between variables in a dataset. The histograms 

depict the distribution of each variable independently, allowing us to better comprehend 

their distinct properties. Scatter plots depict bivariate connections, making it easy to 

discover correlations, clusters, and probable outliers. These graphics help you understand 

how variables interact and how their distributions are formed. They ease the examination 

of datasets and provide direction for future research. The process for generating these 

plots is illustrated in figure 3.6. 
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Figure 3.6: Representation of Pair Plots 

3.1.1.3 Pearson Correlation Coefficient 

The Pearson correlation coefficient, abbreviated as "r," determines the direction 

and strength of a linear connection between dependent and independent variables [81]. A 

correlation of +1 represents an ideal positive linear connection on a scale of -1 to +1, 

while a correlation of -1 suggests an ideal negative linear link, and a correlation of 0 

indicates the lack of any linear association. The Pearson correlation technique, 

represented in figure 3.7, is used to analyze the level of linkage between variables. It 

provides useful insights into the correspondence between changes in one variable and 

another. 

It is critical to understand that correlation does not always indicate a link, and the 

measure's validity assumes of a linear relationship between the variables under analysis; 

additionally, it may be associated with data outliers. 
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Figure 3.7: Representation of Pearson correlation coefficient 

3.1.2 Overview of MATLAB  

3.1.2.1 Pre-Processing Algorithm 

Figure 3.8 depicts algorithm loads data from a specified directory and then 

conducts several tasks, including detecting and eliminating outliers, smoothing the data, 

and normalizing it. 

 

Figure 3.8: Representation of Pre-Processing Algorithm. 
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3.1.2.2 Features Selection using GA and PSO 

Feature selection is a method used to choose the most ideally suited collection of 

features for developing an effective recognition model [82]. The use of genetic algorithm 

(GA) and particle swarm optimization (PSO) in Feature Selection is significant. Figure 

3.9 depicts the algorithm used for feature selection for GA-GPR.  

 

Figure 3.9: Representation of Feature Selection in GA-GPR. 

3.1.2.3 Hyperparameters tunning using GA and PSO 

The optimization or tuning of hyper-parameters involves selecting a suitable range of 

hyper-parameters for a learning algorithm. A hyper-parameter is a parameter that 

regulates the learning process by controlling its value[83]. Figure 3.10 depicts the 

algorithm used for Hyperparameters tunning for GA-GPR. 
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Figure 3.10: Representation of Feature Selection in GA-GPR. 

3.1.2.4 Graphical User Interface (GUI) 

A graphical user interface (GUI) is a user interface that enables people to interact with 

electronic devices using visual representations as indicators [84]. Graphical user 

interfaces have emerged as the prevailing approach to user-centered design in software 

application programming. They enable users to operate computers and electronic devices 

intuitively by directly manipulating graphical icons, including buttons, scroll bars, 

windows, tabs, menus, cursors, and the mouse pointing device. Modern graphical user 

interfaces often include touchscreen and voice-command functionalities[85]. Figure 3.11 

represents the component library for developing GUI in MATLAB and also the algorithm 

used for developing the GUI. 



45 

 

Figure 3.11: Representation of Feature Selection in GA-GPR. 

Different ML models were created by combining (1) GA and (2) PSO for Pop-in 

Prediction. Operational characteristics include load, depth, and Distance. Prior to being 

imported from an Excel sheet into MATLAB R2021, the data was properly categorized in 

Python and the relevance of each characteristic with the independent variables was 

determined. ML models were used with optimization methods such as GA and PSO to 

anticipate pop-ins and select features. In addition, a machine learning model was 

developed utilizing the data set to forecast the commencement of Pop-ins by using 

nanoindentation data under hypothetical settings. In this study, a GPR-GA-based model 

was selected over all other models to predict. Therefore, the workspace of the GA-based 

GPR model was used for building the GUI that fulfills the main objective of this study.  

3.2 Data Pre-processing  

After successfully classifying and visualizing the retrieved data using Python, it is 

assured that it is suitable for the next ML stages. To begin, all data points have been 

standardized to preserve logical values and avoid any attribute from having too much 

impact. To ensure forecast accuracy, care was taken to exclude any unusual data points. 

The dataset was then divided into two parts: 80% for training our models and 20% for 

accuracy testing, to ensure fairness via random selection. Missing data was handled 

thoughtfully, which included filling up gaps or eliminating undesirable areas. ML 
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models, including SVM, GPR, DT, and ELT, were trained and assessed using metrics 

like coefficient of determination (R²) using specialized applications. We fine-tuned our 

models using advanced approaches such as GA and PSO, which significantly improved 

their prediction capabilities. Our forecasts were quite accurate, as shown by high R² 

values. This rigorous technique not only assured correctness, but also improved the 

overall performance of our models. Figure 3.12 depicts the complete procedure, from 

data collection to pop-in prediction. 

 

Figure 3.12: Machine Learning Workflow 
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CHAPTER 4: RESULTS AND DISCUSSION 

4.1 Box plot, Pair plot, Correlation heatmap 

A rigorous classification approach applying the Python programming language in 

the Google Colab environment is carried out for the categorization of a comprehensive 

exploratory data analysis employs a range of visualization approaches to get a thorough 

understanding of the dataset's complicated properties. Furthermore, box graphs, as seen 

in figure 4.1, were very useful for graphically describing the distribution of data across 

various categories or attributes. These plots helped identify median points, likely outliers, 

skewness, clusters, and a dispersion in the load, depth, distance, and dh data sets, 

improving our comprehension of the dataset's complexities. 

 

 

Figure 4.1: (a) Depth (µm), Load (mN), Distance, dh Box Plot representation (b) 

Distance, dh Box Plot 
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The use of pair graphs, as shown in figure 4.2, was essential to thorough analysis because 

plots provide a graphic representation of data dispersion, recognizable patterns, 

histograms for individual variables, and an overall understanding of the interconnections 

between numerous factors.  

 

Figure 4.2: Depth (µm), Load (mN), Distance, dh Pair Plot representation 

It is observed that the component's depth and load have a strong relationship with each 

other, and that depth and distance also have a significant relationship with each other. By 

carefully examining these diagrams, we may be able to identify potential connections, 

clusters, and correlations among the data points. The linear correlations between the 
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variables in the data were then determined using Pearson correlation analysis, which 

provides the correlation coefficient and important details about the connections between 

variables such as load, depth, and distance, dh measures the strength and direction of 

linear correlations. It identifies significant connections through this technique, which may 

be used to direct future modeling or research efforts. It is observed that the component's 

depth and load have a strong relationship with each other, and depth and distance also 

have significant relationship with each other illustrated in figure 4.3. 

 

Figure 4.3: Depth (µm), Load (mN), Distance, dh Pearson Correlation representation 

Sorting the data into groups, examining it using box plots and pair plots, and ultimately 

taking a close look at the associations between variables using the Pearson correlation 

coefficient were all steps in the data analysis process in Google Colab with Python. 

Together, these initiatives sought to improve our comprehension of the dataset's 

properties and open the possibility for improved decision-making in tasks using data in 

the future. 
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4.2 Performance Criterion of ML models 

One of the most important measures used to evaluate the performance of different 

models, particularly in regression tasks, is the coefficient of determination (R²). R² 

indicates how much of the variability in the output variable can be accounted for by the 

independent variables. A greater correlation between the variables and a more precise 

model fit are indicated by a higher R² value [86]. The R² measure is often used to assess 

how well a model's characteristics account for data variability. It is common practice to 

use metric since a model with a high R² value strikes a balance between explaining 

variation and producing accurate predictions. However, choosing between these 

possibilities should be based on the specific goals of the study, considering whether to 

emphasize the model's sufficiency or the accuracy of the predictions, or possibly both, 

depending on the situation [87]. Four machine learning models, such as SVM, GPR, DT, 

and ELT, were used in this investigation. MATLAB R2021b's regression toolbox was 

used to train these models. The development of prediction skills for detecting Pop-ins 

was the aim of the training. To assess the prediction precision of these machine learning 

models, the graphs that show the relationship between actual and observed Pop-in events 

were examined. The ML models used a mix of hyperparameter optimization and GA and 

PSO-based feature selection methods to precisely forecast the pop-ins. This was 

accomplished by using a training dataset, which made up 80% of the whole dataset, 

which included over 1157 data points, and a testing dataset, which made up the remaining 

20% which included over 258 data points. 

As shown in Table 4.1, the features obtained by using the GA and PSO were used to train 

the machine learning models. In addition, the process of feature selection and 

hyperparameter tuning resulted in the establishment of ideal hyperparameters that were 

used to train the machine learning models. The data points obtained from the location of 

horizontal straight line along the line x = y for each of the Pop-ins, indicating a high level 

of prediction accuracy. However, it is important to recognize that machine learning 

models often show greater predictive accuracy on training datasets than on testing 

datasets.  
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Table 4.1: GA and PSO parameters 

4.3 Features Selection 

In certain cases, while building and training a model, the number of input 

parameters might be large. However, not all these characteristics contribute significantly 

to the result. In such instances, designing a user interface with many input parameters is 

impracticable and overwhelming. To solve this issue, feature selection emerges as a 

critical technique for finding and prioritizing the input characteristics that really impact 

Algorithm Parameters 

Genetic Algorithm  Value 

Particle Swarm 

Optimization  

Value 

Number of generations 100 Max. Iterations 100 

Crossover Scattered Max. Velocity -1 to 1 

Crossover Probability 0.8 Inertia weight 0.4 to 0.9 

Elite Count 3.95 

Cognitive 

Coefficient  

2.0 

Population Size 50 Swarm Size 25 

Population Type Bitstring Social Coefficient  2.0 

Mutation Uniform 

Mutation Probability 0.1 
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output predictions. GA and PSO are especially helpful in this respect, since they help to 

remove duplicate or less impacting characteristics from the input dataset. Essentially, the 

GA examines the relevance of each input parameter and the effectiveness of it in 

delivering meaningful outcomes. For example, in our investigation, both GA and PSO 

consistently chose load depth and distance as critical input parameters for all models, as 

shown in Table 4.2. This conclusion was made based on the importance of these elements 

in properly anticipating the outcome. This type of approach is very useful when dealing 

with a large number of input parameters, as it improves model performance and allows 

for the design of a user-friendly interface. 

Table 4.2: GA and PSO based Features Selection 

4.4 GA and PSO based hyperparameters tuning. 

Utilizing the regression model toolbox, tuning parameters for many machine 

learning models were found. The tuning process consisted of a 5-fold cross-validation 

using standardized data. Table 4.3 provides parameters on the chosen hyperparameters, 

their respective ranges, and the optimal values. Using the GA and PSO techniques, the 

hyperparameters for the DT, SVM, GPR, and ELT models were adjusted and optimized. 

GA and PSO based features selection 

Models Selected Features 

SVM Load, Depth, Distance 

GPR Load, Depth, Distance 

DT Load, Depth, Distance 

ELT Load, Depth, Distance 
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In this work, GA and PSO were used to optimize the SVM model with certain 

parameters. The box constraint of 0.0368, the kernel scale of 1.7066, the Gaussian kernel 

function, and the epsilon value of 0.4354 were the optimal parameters for GA. The box 

constraint of 973.7567, the kernel function of Gaussian, the kernel scale of 3.4755, and 

the epsilon value of 1.0007 were the settings used in PSO. The hyperparameters of the 

ensemble model were adjusted with the aid of PSO and GA. 

Table 4.3: Parameter Ranges and Optimized Values in Selection Process. 

Models Hyperparameters Ranges 

Selected Range 

GA PSO 

 

SVM 

Box Constraint 0.001-1000 0.0368 973.7567 

Kernel Scale 0.001-1000 1.7066 3.4755 

Kernel Function 

Gaussian, Linear, 

Quadratic, Cubic 

Linear Gaussian 

Epsilon 0.00311-311.415 0.4354 1.0007 

GPR Sigma 0.0001-58.5453 45.3625 53.9366 
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Kernel Function 

Non/iso-tropic 

Exponential, 

Non/iso-tropic 

Matern 3/2, 

Non/iso-tropic 

Matern 5/2 

Non/iso-tropic 

Rational Quadratic, 

Non/iso-tropic 

Squared 

Exponential, 

 

Squared  

Exponential 

Basic Function 

Constant, Zero, 

Linear 

Kernel Scale 1.794-1793.95 324.950 320.9508 

DT Leaf Size 1-597 67 50 

ELT 

No. of Learners  10-500 10 409.2146 

Learning Rates 0.001-1 0.1 0.7579 

Methods Bag, LSBoost Bag LSBoost 
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4.5 Models’ performance 

The models (GPR, DT, SVM, and ELT) were chosen using a feature selection 

strategy based on GA and PSO approaches, and they all generated effective predictions 

using the input variables load versus displacement. Table 4.4 illustrates a comparison of 

these models, indicating that overall GPR exhibited the R2 value of 0.9999, which is close 

to one and shows the best performance as compared to the other three models. For GA 

the GPR, ELT, SVM and DT R2 values were found to be 0.9999, 0.9264, 0.9711 and 

0.9811, whereas for PSO, GPR, ELT, SVM and DT were found to be 0.9999, 0.9976, 

0.9611, 0.9682. 

Table 4.4: Comparison of ML methods using PSO and GA 

Models 

Training R² Testing R² 

GA PSO GA PSO 

ELT 0.9607 0.9999 0.9264 0.9976 

GPR 0.9858 0.9858 0.9999 0.9999 

SVM 0.9867 0.9767 0.9711 0.9611 

DT 0.9197 0.8456 0.9811 0.9682 

4.6 Partial dependence plots 

Partial Dependence Plots (PDPs) in the figure 4.4, are used in machine learning to 

show the relationship visually between predictor variables and the expected result [88]. 

Distinct non-linear correlations with the goal variable 'Y' are shown by the two PDPs that 

are provided, one for 'Load' and the other for ' Depth'. The 'Load' PDP has complicated 

effects on 'Y', with a steep early increase, a plateau, and a continuing decrease. On the 

other hand, the connection between 'Y' and the 'Depth' PDP is smoother. Y rises to a peak 
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and then gently declines, indicating a different but equally significant effect on the result. 

These charts emphasize the complex dynamics at work in predictive models, which also 

emphasize how important it is to understand feature interactions to enhance and interpret 

models. 

 

 

Figure 4.4: PDP’S Demonstrating the Influence of Inputs on Pop-in Prediction 

4.7 Graphical representation between actual and predicted Pop-ins. 

The graphical representations presented in below figure 4.5 offer a comprehensive 

overview of both the actual and predicted performance of Gaussian Process Regression 

(GPR) within the framework of Genetic Algorithm (GA) and Particle Swarm 
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Optimization (PSO). Additionally, a clear observation emerges, indicating minimal 

deviation between the predicted and actual outcomes of pop-in events. This visual 

analysis contributes to a significance understanding of the effectiveness of GPR in 

conjunction with GA and PSO methodologies, showcasing its capability to accurately 

forecast pop-in events while maintaining a close alignment with observed results.  

 

Figure 4.5: (a) GPR-GA predicted vs actual Pop-in (b) GPR-PSO (predicted Pop-in 

against actual Pop-in 

The graphical representations presented in figure 4.6 below offer a comprehensive 

overview of both the actual and predicted performance of Ensembled Learning Tree 

(ELT) within the framework of Genetic Algorithm (GA) and Particle Swarm 



58 

Optimization (PSO). Additionally, a clear observation emerges, indicating maximal 

deviation between the predicted and actual outcomes of pop-in events. This visual 

analysis contributes to a significant understanding of the effectiveness of ELT in 

conjunction with GA and PSO methodologies. 

 

Figure 4.6: (a) ELT- GPR predicted vs actual Pop-in (b) PSO-ELT (predicted Pop-in against 

actual Pop-in 
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4.8 Graphical User Interface (GUI) 

A Graphical User Interface (GUI) utilizes symbols, graphical icons, and user-friendly 

applications to facilitate user interaction with electronic equipment. The GUI developed 

in this research, allowed researchers to put input data of depth, load and distance. The 

model prediction function used by GUI in this study to predict Pop-in events is GA-GPR. 

MATLAB 2021b was used to develop GUI. Figure 4.7 depicts the picture of the GUI. 

 

Figure 4.7: Graphical User Interface (GUI) to predict pop-in 

In figure 4.8, the prediction of Pop-in events was checked by putting values of depth, 

load and distance of indents figure 4.8 (a) indent I5 and figure 32 (b) indent I6. The GUI 

was predicting the probability of pop-in events. 
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Figure 4.8: Graphical User Interface (GUI) to predict pop-in (a) indent I5, (b) indent I6. 
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

In the present work, four machine learning models, Gaussian process regression 

(GPR), ensemble learning tree (ELT), support vector machine (SVM), and decision tree 

(DT), were developed to predict the Pop-in events. These models’ criteria were assessed 

by Genetic algorithm (GA) and particle swarm optimization (PSO) in terms of the co-

efficient of determination, also known as R2. If it is close to 1, the ML model will show 

the best optimization. For GA, the GPR, ELT, SVM, and DT R2 values were found to be 

0.9999, 0.9264, 0.9711, and 0.9811, whereas for PSO, the GPR, ELT, SVM, and DT 

were found to be 0.9999, 0.9976, 0.9611, and 0.9682. It is evident from the 

aforementioned R2 value that the GPR shows a value close to 1 as compared to the other 

three models, hence showing the best performance.  Additionally, the partial dependency 

plot analysis showed that the proportion of dh in the output is significantly influenced by 

the optimum parameters selected using the GA-based approach. Lastly, a user-friendly 

graphical interface (GUI) is designed based on the GA-GPR model. The prediction of 

Pop-in events was checked by putting values of depth, load, and distance of indents, and 

the GUI predicted the GB Pop-in events, thus confirming the accuracy of the developed 

model. 
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5.2 Recommendations 

For Future these recommendations can be used to predict Grain boundary Pop-ins 

events 

• Additional Experimental: The current work is done using load, depth, dh. Model 

should be trained for G.B orientation and G.B character. 

• Uncertainty quantification: Quantify the uncertainty associated with the model 

predictions. This can provide valuable insights into the limitations of the model 

and guide future research directions. 

• Feature importance analysis: Investigate which features have the most 

significant     impact on the model's predictions. This can help understand the 

underlying mechanisms of grain boundary pop-in events and identify critical 

material properties. 
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