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Abstract

When a bosonic gas is cooled to a temperature very close to absolute zero, large number

of bosons suddenly condense into the lowest energy state. This phenomenon is known

as Bose-Einstein condensation (BEC). In this thesis, we investigate the phenomenon of

BEC for identical composite bosons (cobosons) composed of either two distinguishable

fermions or bosons. We characterize the BEC by counting the e�ective number 〈n〉 of
cobosons in ground state. In this regard, �rst we study the internal structure of coboson

and investigate the bosonic quality of coboson. We show that the bosonic behavior of

coboson is correlated to the degree of entanglement between its constituent particles.

More the constituents of coboson are entangled, the better coboson behave like a pure

boson. Furthermore, we derive boundaries on a quantity that governs the bosonic

character of a coboson. These boundaries depend on the purity of the single-particle

density matrix and manifest that if the entanglement is su�ciently strong, the quantity

approaches its ideal bosonic value. We see that the e�ective number of cobosons is also

depending on the degree of entanglement. Thus, �rst we analyze the phenomenon

of BEC for cobosons, made of two fermions, by means of entanglement between the

constituents. We found that for the pair of fermions, the e�ective number of cobosons

in lowest energy state increases with an increase in the degree of entanglement between

constituent fermions. Secondly we have also discussed cobosons comprised of a pair

of bosons brie�y. We see that pair of bosons in BEC behaves oppositely, that is,

with the increase in entanglement between constituent bosons the e�ective number of

ground state cobosons decreases. At maximum entanglement, the e�ective number
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of composite bosons is equal to the total number of cobosons in the system which

constitute the BEC as expected in the case of ideal bosons.
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Chapter 1
Introduction

All particles that exist in nature can be classi�ed into two categories. This classi�cation

is based on their spin di�erence, particles with half-integral spin are known as fermions

and particles with integral spin are bosons. Fermions repel each other, while bosons

prefer to stay in the same state. For this reason, when a gas consist of bosonic particles

cooled to extremely low temperature nearly absolute zero, all bosons condense into the

lowest energy state, a Bose-Einstein condensate (BEC). In Bose-Einstein condensation,

the phase transition in gas do not require interaction between particles, this is totally

a statistical phenomena.

The idea of BEC was �rst given by Bose in 1924 [1]. He published an article on quantum

statistics of light quanta (now we call them photons). Later Einstein modi�ed it for

material particles. In these articles, it was suggested that if we have diluted bosonic

gas that is trapped in some potential, at very low temperature a large number of

bosons will fall into the lowest energy quantum state and the quantum e�ects become

visible on a macroscopic level. First gaseous condensate were produced by Eric Cornell

and Carl Wieman at University of Colorado Boulder, on June 5, 1995 [2-4]. They

cooled rubidium atoms to 170 nanoKelvin (nK). That was a signi�cant achievement in

physics, scientists were amazed to see that how fundamental laws of quantum mechanics

could be proven to be correct experimentally. Some other great achievements were the

observation of giant matter-wave interference [5], and Mott insulator transition [6].
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BCS Theory and Bi-fermionic Condensation

Bose-Einstein condensation is not speci�ed for bosons only. A pair of fermions can also

form BEC when they act as a boson. In 1957, three scientists Bardeen, Cooper and

Schrie�er proposed a theory known as BCS theory [7]. According to this theory, e�ect

of superconductivity at a microscopic level is due to the condensation of electron's

pair which behave like bosons. BCS theory says that electrons become inter-correlated

to each other and below critical temperature they form Cooper pair and thus behave

like a BEC. In 1972, it was also shown that helium-3 fermion reveals super-�uidity

below 0.0027 K [8]. BCS theory gave a hint that strongly correlated fermions can act

as bosons and they condense to form the state of BEC under the right experimental

condition.

With the help of the concepts of quantum information, it was proved in 2005 by

C.K. Law that the inter-correlation of fermions can be explained by the entanglement

between fermions [9].

In this thesis, we have studied the Bose-Einstein condensation of composite bosons.

We have seen that how much BEC of cobosons di�er from ideal BEC and what are

the factors on which behavior of cobosons depends. It has also been observed that the

correlation between constituent particles of the composite boson is playing fundamental

role. Therefore, before discussing in detail about BEC of cobosons, one should know

the basics about bosons and the di�erence between elementary particles and composite

particles. Also understanding the concept of entanglement is mandatory. The following

sections have detailed discussion about these concepts.

1.1 Elementry Particles

In every day life, most of the particles that we deal with are composite in nature.

The term composite means that particle is made up of two or more than two sub-

particles. In the Periodic Table its member elements, for example, are not strictly

elemental. These are actually lists of atoms, and each atom is composed of further

smaller and even more basic particles. Thus the atoms are composite in nature. As
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molecules are made up of atoms, so molecules are composites of a composite. In our

daily life, every object we deal with is in turn combination of molecules, and so each

object is composite in nature too. Thus understanding the properties of composite

systems is an important aspect. It is the basic inspiration behind the interest to study

composite particles. A question that may then be raised is what are the e�ects this

composite nature of particles adds to the physics of the system. In this thesis, we

follow the following ideas and discuss their connection with each other. That is when

we introduce constituent particles of a system, we must have to introduce quantum

correlations between them. And understanding of these non-classical correlations is

mandatory to understand composite particles. As in this thesis mainly we will deal with

pure states, for which we need to consider only one type of correlation: Entanglement.

Before introducing appropriately the topic of composite particles and correlations, it

is bene�cial to discuss about the basic objects that these particles are made of, that

are bosons and fermions.

1.2 Bosons and Fermions

1.2.1 Symmetrical and Anti-symmetrical States

Consider the simple example of two identical particles a and b. We consider that for

a single particle, there exist a complete set of orthogonal basis. Let us denote these

states using Dirac notation |n〉 where n is quantum number such that n = 1, 2, 3, ....

The quantum state of a system ( that is made up of two particles in this example)

is some superposition of the state |n〉a ⊗ |m〉b . In case of two-particle system, we

drop the subscript for simplicity and the order of quantum mode will show the label

of particle, |n〉a⊗ |m〉b ≡ |n〉 ⊗ |m〉 ≡ |n,m〉. For the system of two identical particles,

as the particles are indistinguishable, every possible superposition of |n,m〉 is not

allowed. For example, if we consider state |n,m〉 where n 6= m, after a measurement

if we get the resultant state |n〉, then it is for sure related to particle a and if the

resultant state is |m〉 then it is related to particle b, therefore it allows both particles

to be distinguished from one another. Thus measurement will di�erentiate between
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two particles for such type of states. If the two particles get exchanged with each

other then we get |〈n,m|m,n〉|2 = 0. But it is not possible as it contradicts the

concept of indistinguishability. In other words, reasoning forces us to arrive at a result

that all possible superposition of |n,m〉 for indistinguishable particles are not allowed.
Following are the states that do not contradict the properties of indistinguishable

particles:

|n, n〉, (1.1)

1√
2

(|n,m〉+ |m,n〉), (1.2)

1√
2

(|n,m〉 − |m,n〉). (1.3)

where m 6= n. In Eq. (1.1) and Eq. (1.2), we can see that if we exchange quantum

numbers of particles with each other, the state will remain invariant. While in case

of Eq. (1.3), if we replace n with m, there will be a change and resulting state is

anti-symmetric in nature. It is important to note here that overall, physical state is

preserved when particles get exchange. For example, for the state (|n,m〉+eιθ|m,n〉) 1√
2

where 0 ≤ θ ≤ π, by exchanging particle we obtain (|n,m〉 + e−ιθ|m,n〉) 1√
2
. For both

states, before and after swapping the particle, inner product is not equal to one except

when θ = 0 or π. When θ = 0, the state is symmetric and for θ = π we get an anti-

symmetric state. The classi�cation of elementary particles is based on these symmetric

and anti-symmetric states

1.2.2 Quantum Statistics followed by Indistinguishable Parti-

cles

Superposition principle has an important place in quantum mechanics. It states that

two quantum states can be superposed to form a new state that is also valid in the

system we are observing. An important question arises that " Is it possible to describe

some system (here we are considering a system of two indistinguishable particles) with

both symmetric and antisymmetric states?". This means that we need to check that
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both states |ψ〉 = (|n,m〉 + |m,n〉) 1√
2
and |φ〉 = (|n,m〉 − |m,n〉) 1√

2
are valid for the

system or not. The superposition of both states is given as:

(|ψ〉+ |φ〉)√
2

= |n,m〉.

We already know that the state |n,m〉 is not valid for identical particles. Thus, to

preserve the superposition principle we conclude that there is no system for which

both states are valid simultaneously. This means that identical particles are either

symmetric or anti-symmetric in nature and can be described by only one type of state.

Conventionally, we name the particles having a symmetric state as bosons and particles

with anti-symmetric state are known as fermions. Bosons are integral spin particles

and comply with Bose-Einstein statistics while fermions are half-integral spin particles

with Fermi-Dirac statistics. Now for fermions, antisymmetric property also leads us to

Pauli exclusion principle. For example, in Eq. (1.3), when n = m, we have

(|n, n〉 − |n, n〉)√
2

= 0. (1.4)

Presence of null vector on the right hand side of above equation indicates non-existence

of two fermions in a single state. This is known as Pauli Exclusion Principle. For more

details about symmetrical and anti-symmetrical states for the system made up of more

than two particles, one can refer to books on quantum mechanics, for example [10].

1.3 Composite Particle

A composite particle can be de�ned as a particle that is composed of two or more

than two elementary particles. The composite particle can be either boson or fermion

depending on its constituent particles. For example, proton and neutron both are com-

posite particle. Proton is composed of three fermions (one up quark, two down quarks).

It is well known by Spin-Statistic theorem that fermions have half-integral spin while

bosons have integral spin. In case of composite particle we need to extend the Pauli

exclusion principle. If a particle is composed of two sub-particles having half-integral

spin, we get either zero spin or one for a whole particle. In either case, the particle
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we get is a boson known as composite boson. Now if we combine an odd number of

fermions we get half-integer spin and more precisely a composite fermion, for instance

a proton or a neutron.

The study of composite particle is owned by the �eld of many-body theories [11]. An

adequate amount of literature is available related to this subject but unfortunately

complexity in a system arises when we increase the number of the particles of the sys-

tem. There are various ways to deal with this problem but among these bosonization

is considered to be the best technique. Bosonization is a process to transform interact-

ing fermions into low dimensional non-interacting bosons. This is a useful method to

simplify the problem and have applications in particle physics and condensed matter

physics. For the present work, our interest is to explore that how the connection be-

tween constituent particles is responsible for several physical properties of the system.

Moreover, comparison of the pure elementary particles (speci�cally composite boson)

is part of this thesis.

In order to study the properties of composite boson we need to understand the quantum

correlation between constituent particles.

1.4 Non-Classical Correlation

Correlation is a statistic's term. If two systems are correlated that means they are

connected in such a way that we can predict a result of the second system if we knew

the result of the �rst one with some uncertainty. If a measurement of one system gives

the result A then a measurement on the second system will give the result B with some

probability.

For example, if we have a bag �lled of pieces of paper, with 00 or 11 printed on each

paper having equal probability of occurence. If we randomly pick a piece of paper and

only look at one of the two numbers, then automatically we will know the other number

entirely. While if we don't look at any number printed at that piece of paper, there is

only �fty percent chance that we guessed correctly. That is how knowing part of the

system helps to understand the other one. Above example is an example of classical
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correlation. The only property we were interested was a number. Let us take another

example, consider we have two balls, one is blue and other is red. We give these balls

to two di�erent observers A and B with closed eyes, let say red to observer A and blue

ball to observer B. The observers only know the probability of having either color but

are unaware of the exact state (color) of their balls. Now If the observer A looks at his

ball and notice that his ball is red, immediately he get to know that the color of the

second ball is blue. Concerning the spin of particles consider the products of the spin

state of the particles 1 and 2 of the form

|ψ〉 =
1√
2

(| ↑〉1| ↓〉2 + | ↓〉1| ↑〉2).

When spin of the �rst particle is up then spin of the second particle will be down

and vice-versa. Suppose we want to �nd the spin of a particle along x-direction, from

measurement of the spin of particle 1 along Sx we can also determine the x-component

of the spin of a second particle. Thus, the state of a particle is correlated and this

is a classically correlated state with the probability of �fty percent outcome in this

case. But what if we want to measure the spin along two directions like along x and

y direction both. Suppose we have two observers Alice and Bob and the spin of a

particle along x-direction is measured by Alice and that is up. Bob measures spin of

that particle along y-direction and obtains spin down. Alice can never say that she has

managed to measure two complementary properties simultaneously because of Bob's

measurement. Imagine her surprise, then, when she tries to con�rm her conclusion

by measuring spin along y-direction and obtain herself spin up. Thus each of these

properties is individually anti-correlated with each other. But the Bell states formed

for quantum system have quantum correlation between them. This is a quantum

phenomena which we cannot explain classically.

Quantum entanglement is a special kind of correlation in which connection between

two systems cannot be explained by local cause.
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1.4.1 Entanglement

Quantum entanglement is a physical phenomenon in which we describe quantum state

of two or more particles with reference to each other. For entangled particles, quantum

state associated with each particle cannot be expressed independently but, we can de-

�ne the quantum state for a whole system that contains complete information of that

system. These particles are connected in such a way that action operated on any one

of them in�uences the whole system and this connection can be explained in terms

of entanglement. In terms of Schrödinger's famous paradox, entangled state can be

written as:

|ψatom−cat〉 = 1√
2
[|atom not decayed〉|cat alive〉+ |atom decayed〉|cat dead〉].

Preparation of Entangled States:

Let us we consider a simple example to become familiar with the production of entan-

gle states. Entangled state is produced when a single photon passes through a calcite

crystal. There are two degrees of freedom related to a photon, location of the track

that photon follows and its polarization. In spite of the fact that both degrees of free-

dom are associated with the same photon, we can treat them as two constituents of

a composite system. Because of the crystal orientation photon can be polarize either

along x-direction or y-direction denoted by x and y, respectively. Let u denote the

location of an ordinary path (rays) that photon follows and v denote extraordinary

rays. Thus, for a state of a photon, complete basis could be: x⊗ v, x⊗ u, y ⊗ v, and
y ⊗ u. For example, if we say that a photon state is y ⊗ u, the meaning of having this

state is, we can guess that photon will pass the test if it is subject to test polarization

y, and if that test is located in the ordinary ray u. Besides that photon will not pass

a test for polarization x (for any location) or excite a detector located in v (for any

polarization). Suppose that before passing through calcite crystal, initial state of the

photon is (ax + by)⊗ w, where a and b are complex numbers satisfying the condition

| a |2 + | b |2= 1 and w denotes the location of the path that photon follows before

passing through crystal. As our crystal only tests the polarization along x and y axis,

8



Figure 1.1: Preparation of a photon in an entangled state [10].

therefore we can only predict the state of photon statistically. When the photon pass

through a crystal there is probability | a |2 and | b |2 of �nding the photon in ordinary

ray v with polarization x, or in track u with polarization y, respectively. Thus, after

passing through the calcite crystal, the state of the photon can be written as

| ψ〉 = a(x⊗ v) + b(y ⊗ u)

which is an entangled state. The sketch of the corresponding process is given in Fig.

(1.1).

Historical Background of Entanglement

Interest in entanglement began because of the famous experiment known as Einsten-

Podolsky-Rosen (EPR) paradox. In their research paper [12], Einstein et al gave

an intuitive argument using the theory of quantum mechanics and theory of special

relativity. They exploited the unique properties of an "EPR pair" which nowadays

is known as entangled states and raised a question on the completeness of quantum

mechanics. At that time, Einstein, Podolsky, and Rosen were arguing for an objective

reality that was about local-realism, which quantum mechanics with its postulate of

uncertainty appear to contradict. John S. Bell was the one who worked on the EPR
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argument further in 1960s and showed that local-realism based theories are out of scope

for the correlations between measurements of entangle state predicted by quantum

mechanics [13, 14]. The inequalities derived by Bell and others were tested for entangled

photons and these experiments proved the predictions of quantum mechanics [15, 17]

Although explanations given by Einstein and his fellows were not satisfactory and

their conclusion is now proven to be invalid. However, it drew attention towards

most important phenomena of entanglement and raised the possibility that there exist

special kind of particles (entangled particles) in quantum mechanics. Even though,

entangled states were identi�ed since the beginning of quantum mechanics but recent

concept of entanglement has modi�ed and our understanding is very di�erent from

what Einstein and his fellows had in mind. Most of the present day entanglement

theory is motivated by discoveries in the 1990s that use the strangeness of entanglement

in various applications like in quantum teleportation [18], quantum cryptography [19]

and quantum dense coding [20]. All these discoveries are experimentally demonstrated,

that shows entanglement is completely quantum mechanical phenomena that have no

classical replacement.

1.4.2 Entanglement and Composite nature of particles

We relate entanglement and compositeness of a particle with each other and study the

properties of a composite particle. Speci�cally, we study composite boson that is made

up of a pair of distinguishable fermions(or bosons). With the help of entanglement, we

can �nd out compositeness of particle and can tell how much the behavior of composite

boson is close to pure boson.

1.5 Outline

The organization of this thesis is as under:

Chapter 2 deals with preliminary concepts which provide us the necessary background

for the later work. This chapter includes basics of Bose-Einstein condensation, tech-

niques we can use to achieve BEC experimentally. Also, we discuss the factors on
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which the phenomena of BEC depends.

In Chapter 3, We built a formalism for a composite boson to understand its internal

structure and composite behavior. We discuss the brief description of entanglement

in a composite system in terms of Schmidt decomposition and relate the composite

behavior of boson to quantum entanglement. We �nd out that bosonic character of

coboson depends on the strength of entanglement of its constituent particles.

Chapter 4 is dedicated to the detailed description of Bose-Einstein condensation of

indistinguishable cobosons and its properties. We present a systematic analysis of

Bose-Einstein condensation of composite bosons where each coboson is made up of

two distinguishable particles. With the help of e�ective number operator of composite

boson, we study, in what way variation in entanglement between constituent particles

can e�ect Bose-Einstein condensation.

We close this discussion by presenting concluding remarks in Chapter 5.
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Chapter 2
Bose-Einstein Condensation

The range of temperature we are most familiar with is the room temperature which is

300 to 400K. If we observe the ideal gas of identical particles at this temperature, we

see that particles behave classically and follow the Maxwell-Boltzmann distribution.

When the gas is cooled down, particles no longer act like billiard balls. The world is

entirely strange place at extremely low temperature where our everyday rules do not

work. At that level, rules of quantum physics dominates its mysterious laws. One of

the important aspects of quantum mechanics is wave-particle duality. Wave nature

of particles gets apparent at low temperature (range of few nano-Kelvin) and atoms

behave as waves. We can detect matter wave associated with particles by average

thermal de Broglie wavelength λth that is given by

λth =

√
2π}2
mkBT

,

where T is a temperature of an ideal gas. When a cooled gas reaches to transition

temperature, thermal de Broglie wavelength become comparable to inter-spacing dis-

tance between particles and quantum nature of particles become dominant. At the

quantum degeneracy, fermionic and bosonic nature of particles gets apparent. This

phenomena is illustrated in Fig 2.1. Fermions start to �ll the lowest vacant state of the

trap but only single fermion exists in a single energy state. As there is no restriction for

bosons, they quickly gets condensed into the lowest energy state of the trap, forming

a Bose-Einstein condensation.
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Figure 2.1: A gas of identical particles at di�erent temperatures. a) At high tempera-
tures, the particles behave classically . b) At low temperature, the wave nature of the
particles gets apparent. c) When λth ≈ inter-particle spacing, bosons start to condense
into lowest energy state of the trap, while fermions start to �ll the lowest vacant state
of the trap but only single fermion exist in single energy state. d) At absolute zero
temperature, the bosons are fully condensed, fermions form a Fermi sea [21].
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Figure 2.2: An illustration of the transition of ultra-cold particles from an ordinary
gas to a BEC. i) The plot (a) shows broad velocity distribution of particles above the
transition temperature. ii) The plot (b) illustrates a change in the velocity distribution
of particles when the temperature reaches the transition temperature. (iii) The plot (c)
corresponds to the absolute zero temperature where all particles condensate themselves
in the ground state [22].

Bose-Einstein condensation (BEC) is a phenomenon in which gas of particles with

integral spin is cooled to nearly absolute zero temperature will suddenly condense into

the lowest energy state. The temperature at which particles start to condense is known

as critical temperature.

Figure (2.2) illustrates the transition of a gas particles from an ordinary gas to a

Bose-Einstein condensate when temperature is decreased. These �gures are showing

the velocity distribution of particles along two dimensions, at three di�erent tempera-

tures. The blue color is showing that there are very few particles having corresponding

low velocity and the red color is representing that comparatively large number of par-

ticles have the corresponding high velocity. The color in the center is representing the

particles with zero velocity. The plot (a) corresponds to the temperature higher than
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the transition temperature. Here particles have broad velocity distribution from maxi-

mum to zero velocity. The middle plot illustrates the change in velocity distribution of

particles when the temperature reaches the transition temperature. The velocity distri-

bution comprises now two di�erent contributions, sharply peaked one and a broad one.

That corresponds to the point when particles start to condense in the lowest energy

state. The plot (c) corresponds to the absolute zero temperature where all particles

condensate themselves in the ground state.

BEC is usually achieved by laser cooling method. We use the counter propagating

diode lasers with a frequency tuned to the desired resonance frequency of the atomic

levels of optical lattice. The atoms in the vapor absorb the photons from the laser

and get recoil momentum. Hence the velocity of the atoms drop down resulting in the

decrease of kinetic energy. Since the energy is proportional to the temperature of the

atomic vapor, therefore, as the energy drops down the corresponding vapor phase tem-

perature also drops down. Eventually, the temperature drops down nearly to absolute

zero Kelvin, where the BEC state exists.

Another successful technique used for cooling mechanisms is evaporative cooling.

In this technique, we reduce the depth of the trap gradually. This process is illustrated

in Figure (2.3). In this phenomena high velocity particles escape from the magnetic

traps, leaving the mean squared velocity of the remaining system low. This results

in the decrease of temperature of having sample as well of the remaining sample also

cools down. The primary applications of atomic BEC system are in basic research ar-

eas presently. One of the current research area these days are simulation of condensed

matter systems by using Bose-Einstein condensate. Optical lattice systems have sig-

ni�cant advantage over real condensed matter systems because they are more �exible.

We can easily vary the space of lattice, the strength of the interaction between atoms,

and the number density of atoms in the lattice. It allows us to look into a range of

various parameters with essentially the same sample. While for real condensed matter

systems it is very di�cult because for every new set of values we want to inquire, we

need to grow all new samples [23]. Another latest area of research is the use of BEC

in quantum information processing and precision measurement.
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Figure 2.3: Schematic diagram of evaporative cooling. a) Releasing the high energy
particles. b) Collision thermalize remaining particle at the new temperature. c) Again
releasing high energy particles by lowering the hole [24].

2.1 Bose-Einstein Distribution

Generally, we use Boltzmann distribution to �nd a distribution of non-interacting par-

ticles of gas among various states. But at su�ciently low temperature of a gas, the

behavior of molecules get change and Boltzmann distribution becomes inappropriate.

At very low temperature, we replace Boltzmann statistics by quantum statistics.

Suppose we have a system of N particles and these particles follows two di�erent

statistics depending on their nature. The two categories of particles are based on their

di�erence in a wave function. Bose-Einstein statistics apply to the particles with sym-

metrical wave-function (bosons). While particles with anti-symmetrical wave function

(fermions) obey Fermi-Dirac statistic. Since our concern is speci�cally with bosons, we

discuss Bose-Einstein distribution in detail here.

For bosons there is no restriction and more than one particle can occupy quantum

states. Mean occupation number of bosons in any quantum state m is de�ne as

〈nm〉 =
1

e(εm−µ)/kT − 1
, (2.1)

where εm is the energy of mth state while µ is the chemical potential. Chemical poten-

tial is the function of temperature T and the number of particles present in the system.

Total number of particles in a system is the sum of mean occupation number of indi-
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vidual states, mathematically written as

N =
∑
m

〈nm〉 =
∑
m

1

e(εm−µ)/kT − 1
. (2.2)

2.1.1 Ideal Bose Gas

When the number of particles in excited state are less than total number of particles N

remaining particles must be condensed in a ground state. Thus the occupation number

of ground state has larger values and the system under observation has Bose-Einstein

condensate. The temperature at which particles condensate is known as transition

temperature. Generally we describe Bose gas in grand canonical ensemble where for-

malism becomes simple. In quantum mechanics, statistical ensemble is represented by

density operator ρ, de�ned as

ρ =
∑
m

Pm|nm〉〈nm|. (2.3)

In grand canonical ensemble, the probability of occupation of N particles in mth state

with energy εm is

Pm =
e(µN−εm)/kT

Z(T, µ)
. (2.4)

Here Z(T, µ) is a partition function and it is equal to
∑
m

e(µN−εm)/kT . As here we are

considering non-interacting particles so in this case N =
∑
i

ni and εm =
∑
i

εini where

εi is the energy of single-particle. Thus the grand partition function can be written as

Z =
∑
n0

(
e(µ−ε0)n0

)∑
n1

(
e(µ−ε1)n1

)
..... (2.5)

Chemical potential "µ" is always less than ground state energy at high tempera-

ture. When temperature decreases T −→ 0, chemical potential increases and tends to

zero µ −→ 0. But µ can never increase more than lowest state energy εmin because for

µ � εmin, Bose-Einstein distribution function gives the negative value of energy for

a ground state which will be unphysical. Consequently, for any excited single-particle
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state, its mean occupation number cannot be greater than the mean occupation number

of its lowest energy state, i.e.
1

e(εm−εmin)/kT − 1
.

2.2 Gas trapped in Harmonic Potential

Let us consider a gas in harmonic trap, where the harmonic potential is

V =
1

2
ω1

2x2 +
1

2
ω2

2y2 +
1

2
ω3

2z2,

where ω1, ω2 and ω3 are the three oscillator frequencies in three directions.

Hamiltonian of the single particle of mass m is

Hsp =
p2

2m
+ V.

Energy eigenvalues of single particle are

ε(n1,n2,n3) =

(
n1 +

1

2

)
}ω1 +

(
n2 +

1

2

)
}ω2 +

(
n3 +

1

2

)
}ω3, (2.6)

where n1, n2, n3 have non-negative integral values. We can �nd lowest energy state of

a system for bosons trapped in harmonic potential by taking values of n1, n2, n3 equal

to zero. Thus the energy of ground state will be ε = } (ω1 + ω2 + ω3)/2.

2.2.1 Density of States for Bosons

Let us �rst discuss the number of states G(ε) and density of states for a free particle

in peculiar internal state. In three dimensional case, on average there exist a single

quantum state per volume of phase space. In momentum space, particle of momentum

p has energy ε equals ε = p2/2m. And volume of the region where magnitude of

momentum is less than p is 4πp3/3 (that is equal to the volume of sphere of radius p).
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Total number of states G within the energy less than ε is

G(ε) =
V

(2π~)3
4πp3

3
, (2.7)

=
4π(2mε)3/2V

3(2π~)3
,

=

√
2(mε)3V

3π2~3
, (2.8)

where V is the volume of the system under observation.

Total number of states exist between energy ε and ε+ dε is g(ε)dε de�ned as

g(ε) =
dG

dε
,

where g(ε) is the density of states. By taking derivative of Eq. (2.8 ), we get a density

of state as

g(ε) =
m3/2V ε1/2√

2π2~3
. (2.9)

In general, for N -dimensions we can write density of states as g(ε) ∝ ε(n/2−1). As

density of state g(ε) changes with the variation of power of energy, we can write g(ε)

generally in terms of Cαε
(α−1),

g(ε) = Cαε
(α−1). (2.10)

This generalized formula for density of state helps us to �nd thermodynamic properties

for di�erent systems like for gas con�ned in 3D rigid walls, or the particle trapped in

harmonic oscillator potential.

Now we determine number of states G(ε) for the particle trapped in harmonic potential.

For large values of energy we treat ni as continuous variable and neglect zero-point

motion. Therefore we can consider coordinate system having three variables εi = }ωini,
for which energy in Eq. (2.6 ) is the plane ε = ε1 + ε2 + ε3. Thus the number of states

G(ε) is proportional to the volume in �rst octant bounded by the plane,

G =
1

}3ω1ω2ω3

ε∫
0

dε1

ε−ε1∫
0

dε2

ε−ε1−ε2∫
0

dε3. (2.11)
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As density of state is g(ε) = dG/dε, we obtain

g(ε) =
ε2

2}3ω1ω2ω3

. (2.12)

From Eq. (2.10) we can see that, Cα in this case is

C3 =
1

2}3ω1ω2ω3

.

2.2.2 Transition Temperature for Ideal Bose Gas to Condensate

The maximum temperature at which N number of particles in a system settles down at

lowest energy level and large occupation of particles in ground state appears is known

as transition temperature Tc.

Number of particles in phase space in volume element dpxdpydpzdV can be �nd out

by multiplying distribution number with Eq. (2.1). These are the particles that are in

excited state,

Nex =

∞∫
0

f(ε)g(ε)dε. (2.13)

Putting values from Eq. (2.1) and Eq. (2.10) in above equation, we get

Nex = Cα

∞∫
0

(ε)α−1

exp(ε−µ)/kTc −1
dε.

Greatest value of N can be achieve at chemical potential µ = 0. We �nd transition

temperature Tc by assuming the condition that all particles are present in excited state.

So the total number of particles N at transition temperature Tc and chemical potential

µ = 0 are

N = Nex = Cα

∞∫
0

(ε)α−1

exp(ε)/kTc −1
dε. (2.14)

By substituting y = ε/T in above equation, we get

N = Cα(kTc)
α

∞∫
0

yα−1

exp(y)−1
dy. (2.15)
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Integral in above equation is equal to

∞∫
0

yα−1

exp(y)−1
dy = Γ(α)ζ(α). (2.16)

Here Γ(α) is gamma function while ζ(α) is Riemann zeta function. Putting Eq. (2.16)

in above Eq. (2.15), we �nd N equal to

N = Cα(kTc)
αΓ(α)ζ(α), (2.17)

or

kTc =
N1/α

[CαΓ(α)ζ(α)]1/α
. (2.18)

In case of 3D harmonic oscillator potential, putting α = 3 in Eq. (2.18), we can

calculate transition temperature as

kTc =
N1/3

[C3Γ(3)ζ(3)]1/3
. (2.19)

Putting the value of C3 in above equation,

kTc =
}(ω1ω2ω3)

1/3N
1
3

[ζ(3)]
1
3

. (2.20)

Thus the transition temperature Tc for three dimension harmonic potential is equal to

Tc =
(

0.94}(ω1ω2ω3)
1/3N1/3

)
/k. (2.21)

2.2.3 Condensate Fraction for Ideal Bose Gas

Condensate fraction is the ratio of number of particles in lowest energy state (con-

densate) to the total number of particles [25]. At temperature less than transition

temperature Tc, number of particles in excited state are

Nex = Cα(kT )αΓ(α)ζ(α). (2.22)

Putting the value from Eq. (2.18) in Eq. (2.22), we get

Nex = N

(
T

Tc

)α
. (2.23)
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The number of particles that condensate to ground level can be found by following

equation:

N0 = N −Nex. (2.24)

Putting the value of Nex from Eq. (2.23) in above equation, we �nd that

N0 = N

[
1−

(
T

Tc

)α]
. (2.25)

For a particle trapped in harmonic potential number of particles that condensates are

given by

N0 = N

[
1−

(
T

Tc

)3
]
. (2.26)

Thus for T even a little less than Tc a large number of particles are in the ground state,

whereas for T > Tc there are practically no particles in the ground state. We call Tc

the degeneracy temperature or the condensation temperature.
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Chapter 3
Composite Boson: Quantum

Information Approach

3.1 Introduction

Present chapter is dedicated to the discussion of composite particles particularly a

bi-constituent boson. We will use the tools of quantum information to develop the

formalism that helps to understand the internal structure of composite boson. We

will mainly focus on the coboson made up of pair of fermions in detail, however, we

also discuss coboson comprised of pair of bosons brie�y. In this chapter we will see

that with the help of entanglement we can get all information about the composite

behavior of composite boson . It is being observed that measurement of the degree

of entanglement between the sub-particles explains the deviation of the composite

character of a composite particle from a pure bosonic character. In other words it

explains, how closely composite boson is behaving like a pure boson. This phenomena

entails some interesting ideas about the constituent particles that these particles are

somehow bound by quantum entanglement. For the discussion of a composite particle

and its behavior in a bipartite system the mechanical binding forces are actually not

necessary when we try to apply the quantum correlations. Since the representation

of a composite system is not con�ned to position or momentum space, therefore, the

correlations between the constituent particles can be �nd out in several ways. In rest of

the chapter, the underlying role of entanglement will be discussed by using the concept
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of second quantization, on the basis of properties of ladder operators associated with

composite particles.

3.2 Fundamental Concepts of Quantum Information

Quantum information is encoded in terms of the state of any quantum system. Quan-

tum mechanics allows a quantum system to be in superposition. Superposition is the

property of a quantum system to be in two states at the same time. However, when

we observe a system, the system has to decide where to be, and we can only see it in

one of those two states. Quantum information is the e�ort to both understand and

use the properties of the quantum world. We use the concepts of quantum information

to understand the internal structure of composite system and its properties. In this

section, we describe the basic concepts and mathematical methods that will help us

to understand a later subject. We discuss the state of a composite quantum system,

speci�cally, bipartite quantum system and construct the formalism to express the states

of the composite quantum system in terms of states of subsystems. We also explain

the concept of entanglement and relate it with Schmidt decomposition.

3.2.1 Multipartite Quantum System

A composite quantum system is one that includes a number of quantum objects. A

composite quantum system can decompose naturally into its subsystems, where every

subsystem is proper quantum system. Usually, we distinguish the subsystems from

each other on the basis of the distance between them which must be larger than the

individual subsystem's size. For example, hydrogen atom is composite in nature since

it consists of an electron and proton. Another common example of a composite system

is the string of ions in which every ion acts as a subsystem.

In quantum mechanics, we often associate a Hilbert space denoted byH, with a physical

system. If we have some system that is made up of two or more than two subsystems

(known as multipartite system), Hilbert space H associated with that system is given
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by tensor product of all Hilbert spaces of subsystems.

H = H1 ⊗H2 ⊗H3 ⊗H4...

Here H1 is the Hilbert space associated with �rst subsystem, H2 with second subsystem

and so on. For a bipartite quantum system (system which have only two subsystems),

the associated Hilbert space H of a system is the tensor product of a Hilbert space of

individual subsystems. Let A and B represent the subsystems then the tensor product

of corresponding Hilbert spaces is given as

H = HA ⊗HB. (3.1)

The physical state of a quantum system is represented by a state vector in a Hilbert

space. This state vector contains all the information about that physical state of the

system. Suppose the system has state ψ, then the state vector is denoted by |ψ〉.
There are two types of states of a quantum system based on either there is enough

information to specify the state |ψ〉 of a system or not. These two types are classi�ed

as:

Pure State: The state of a quantum system |ψ〉 is said to be pure when the system

is in de�ned state. In other words, system is in known state |ψ〉. We always get the

same result when we measure the state by some well de�ned observable.

Mixed State: Mix state is de�ne as a linear combination of di�erent pure states.

In real life experiments, instead of single quantum system often there are collection of

quantum systems (ensemble). Also each member of ensemble can be found in more

than one quantum states. Thus most of the time we encounter mix states instead of

pure states. For example, let us consider 2D Hilbert space with the basis {|a〉 and |b〉}.
Suppose we have an ensemble containing N number of quantum systems, where each

individual system is prepared in one of two state vectors |x〉 and |y〉.

|x〉 = δ|a〉+ γ|b〉, (3.2)
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|y〉 = α|a〉+ β|b〉. (3.3)

Suppose n systems are prepared in state |x〉 and m systems are prepared in state |y〉.
As total number of systems are N , then n+m should be equal to N , i.e,

n

N
+
m

N
= 1.

The above equation shows that, for a random selected system in ensemble, probability

that system will be in state |x〉 is p = n/N and probability of �nding system in state

|y〉 is 1− p. Thus we can write state |ψ〉 as

|ψ〉 = p|x〉+ (1− p)|y〉. (3.4)

This is an example of a mixed state. To deal with a statistical mixture of quantum

states like the example we have discussed above, we have to �nd the probability of

di�erent pure states inside ensemble. Convenient method to explain pure state and

specially mix state is the density matrix formalism.

3.2.2 Density Matrix Formalism

"Density matrix" is a very powerful formalism in which we describe quantum state

by its density matrix. It is the alternative formalism to describe a quantum state

by Dirac notations (bra-ket notation). Density operator is an average operator and

basically useful in describing statistical mixture. It is denoted by ρ.

For pure states where the state of a system is de�nite, ρ can be constructed by the

outer product of state |ψ〉. To see this, let us consider some operator Q̂ and we �nd

the average value (expectation value) of this operator. The expectation value 〈Q̂〉 can
be written as

〈Q̂〉 = 〈ψ|Q|ψ〉.
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Expanding |ψ〉 in its orthonormal basis, we obtain:

〈Q̂〉 = (γ∗1〈u1|+ γ∗2〈u2|+ γ∗3〈u3|.........γ∗m〈um|)Q(γ1|u1〉+ γ2|u2〉+ γ3|u3〉.........γm|um〉)

=
n∑

k,l=1

γ∗kγl〈uk|Q|ul〉

=
n∑

k,l=1

γ∗kγlQk,l. (3.5)

As the expansion coe�cient can be written as

γl = 〈ul|ψ〉,

and the complex conjugate is

γ∗k = 〈ψ|uk〉,

this means that γ∗kγl = 〈ul(|ψ〉〈ψ|)uk〉. Thus the average value of operator Q̂ becomes

〈Q̂〉 =
n∑

k,l=1

〈ul|ψ〉〈ψ|uk〉Qkl.

We call this outer product |ψ〉〈ψ|, a density operator ρ. And the expectation value of

operator Q̂ with respect to the state |ψ〉 is

〈Q̂〉 =
n∑

k,l=1

〈ul|ρ|uk〉Qkl.

In terms of trace, we can write expectation value as

〈Q̂〉 = Tr (ρQ) .

For pure states, we see that

ρ2 = (|ψ〉〈ψ|)(|ψ〉〈ψ|) = (|ψ〉〈ψ|) = ρ.

Since Tr(ρ) = 1, this means

Tr(ρ2) = 1,

indicating that if trace of a square of density operator is equal to one then state of a

system is pure.
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For mixed states, let us suppose that there are N number of possible states. For state

|ψn〉, density operator can be written as ρn = |ψn〉〈ψn|. If probability that system in

ensemble has been prepared in state |ψn〉 is pn, then the density operator for ensemble

is

ρ =
N∑
n=1

pn|ψn〉|〈ψn|.

We can characterize that given state of system is a mixed state, if square of density

operator Tr(ρ2) < 1.

3.2.3 Separable States and Entangled States

For composite quantum systems, we can further divide the pure and mixed state into

separable and entangled state.

Pure Product State

A state is known as separable state or product state if we can write it in terms of product

of subsystem's state. For a bipartite system, state of composite system, |ψ〉 ∈ HA⊗HB

is a separable state if

|ψs〉 = |ψA〉 ⊗ |ψB〉. (3.6)

where |ψA〉 ∈ HA, |ψB〉 ∈ HB are states of subsystems A, B respectively and these are

prepared in pure states. In terms of the density operator, it can be written as

ρs = ρA ⊗ ρB.

A simple example of a separable state is

|ψ〉 =
1

2
(|00〉+ |01〉+ |10〉+ |11〉).

We can easily see that it is the tensor product of the following states,

|0〉+ |1〉√
2
⊗ |0〉+ |1〉√

2
. (3.7)
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There is a simple test to check that given state is separable or not [26]. We write a

state in the form of column vector, 
a
b
c
d

 ,
If ad = bc then the state is separable. In the above example Eq. (3.7), column vector

of a state is

1

2


1
1
1
1

.
In this example, we can see ad is equal to bc , showing that the state is separable.

But this method has its own limitations. This is useful only for the states in four-

dimensional vector space. We will discuss general criteria to distinguish separable

state from the one which is not separable. But �rst we check a property of state when

some observable acts on it.

Consider a product state

|ψs〉 = |ψA〉 ⊗ |ψB〉.

In terms of a density operator, it will be

ρ = |ψs〉〈ψs|.

Suppose an observable Â ⊗ Î can execute any local measurement. Here Â is an Her-

mitian operator acts on states in HA and Î is an identity operator operating on states

in HB. After measurements the state of the �rst subsystem stands out in terms of

the eigenstate of operator Â but there will be no change in the state of the second

subsystem as identity operator brings no change. Mathematically, it is given as

〈Â〉 = 〈ψs|Â⊗ Î|ψs〉,

= Tr(Â⊗ Î|ψs〉〈ψs|),

= TrA(ÂTrB|ψs〉〈ψs|),

= TrA(ÂρA). (3.8)
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where TrA is a partial trace associated with subsystem A and ρA is equal to |ψA〉〈ψA|.
Similarly, if we execute another local measurement on the second subsystem, its out-

come appears independent to the result of the other measurement. And we can �nd

ρB = |ψB〉〈ψB|.
Therefore, we can conclude that the results after measurements for the di�erent subsys-

tems are lacking the mutual correlation, it only depends on the states of the respective

subsystem. From density matrix ρA and ρB, we can �nd density matrix ρ of state by

tensor product i.e ρ = ρA ⊗ ρB.

Pure Entangle states

As from the above discussion of pure product states, one can assume that states that

can be written as a product of pure states, as in Eq. (3.6), are called separable or

product states. On the other hand, if no local states |ψA〉 and |ψB〉 belonging to HA

and HB exists, then we cannot write the state of a system |ψ〉 as a product of both,

@ |ψA〉 ∈ HA , |ψB〉 ∈ HB,

such that

|ψ〉 = |ψA〉 ⊗ |ψB〉,

then |ψ〉 is said to be an entangled state.

Generally, a pure state in the Hilbert space is the superposition of a pure states of the

form Eq. (3.6).

|ψe〉 =
1√
2

(|φA〉 ⊗ |φB〉+ |ϕA〉 ⊗ |ϕB〉), (3.9)

where |φi〉 6= |ϕi〉 while (i = A,B).

A simple example of an entangled state are:

|α〉 =
|00〉+ |11〉√

2
,

|β〉 =
|01〉+ |10〉√

2
,
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|γ〉 =
|00〉 − |11〉√

2
,

|ϕ〉 =
|01〉 − |10〉√

2
,

Let us write the state |ϕ〉 as

ρ = |ϕ〉〈ϕ| =


0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

 .
Reduced density matrix of subsystem A can be written as

ρA = TrB(ρ) =
1

2

[
0 1
1 0

]
.

Since the trace of a density matrix Tr(ρA
2) < 1 , thus the state of subsystems are

mixed. But as the state of a whole system was pure, this is quite strange. This shows

that for the entangled states, states of a subsystems can only be described with respect

to one another.

In both examples, if we test them by the method we discussed above, we can see

that ad 6= bc. These are entangled states. We can also check how the state of the

composite system |ψe〉 looks like when we try to measure its subsystems individually.

Therefore applying local measurement Â ⊗ Î where Â is the operator related to the

�rst subsystem, then the result of expectation value in this experiment appears as

〈Â〉 = 〈ψe|Â⊗ 1|ψe〉.

We can write above equation in terms of a trace as

〈Â〉 = TrA(ÂρA), (3.10)

where TrA is the partial trace associated to subsystem A. The density operator of

a subsystem A is ρA = TrB|ψe〉〈ψe|. The state of the subsystems independently can

easily be given in terms of reduce density operators ρA and ρB for subsystems A and B,

respectively. However, we cannot say that the state representing the composite system

is equal to the tensor product of the states of two subsystems, i.e,

ρ = |ψe〉〈ψe| 6= ρA ⊗ ρB.
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Also if we execute any local measurement on any of the subsystems individually, the

state of the overall composite system gets reduced completely. Thus, the outcome

possibly we get as a result of measurement on any subsystem get a�ected by earlier

measurements which have been done on the other subsystem. This shows that the

measurement for the non-interacting and possibly distant subsystems are completely

correlated.

Criteria to distinguish Separable and Entangled States

The above criteria to distinguish separable states and entangled states seems very

simple on �rst sight. But if we check di�erent states, we observe that in some cases

checking separability of state gets complicated. As for pure states, we have de�ned

the criteria of separability which is the existence of the decomposition of a state into

product states, or for mixed states by a convex sum of tensor products. Therefore, when

we look at the given state to check the separability, we have to �nd such decomposition.

Once we �nd the decomposition, it gets clear that the state is separable. But in case

of failure, there are two possible reasons: either the state is actually separable but

reasonable decomposition could not be identi�ed, or the state is entangled so there is

no decomposition.

Due to this reason, there is a need for a standard but straightforward criterion to

distinguish separable and entangled states which do not require an explicit search. In

the following section, we discuss the criterion to di�erentiate separable and entangled

states unambiguously.

Schmidt Decomposition

Let us consider a bipartite system consist of two subsystems A and B. Let the system

has a pure state |ψ〉 in the Hilbert space H which is given by the direct product of the

Hilbert spaces of subsystems as mentioned in the Eq. (3.1), that is

H = HA ⊗HB,

32



where HA and HB are the Hilbert spaces belonged to subsystems. For each subsystem,

there exist orthonormal basis |ß〉A and |æ〉B, respectively.
In terms of above mentioned basis, the state |ψ〉 of a system can be expressed as

|ψ〉 =
∑
i,j

αij(|i〉A ⊗ |j〉B), (3.11)

where αij is the expansion coe�cient, which represents the overlap of a state of system

with the basis vectors,

αi,j = 〈iA| ⊗ 〈jB|ψ〉,

= 〈iA|ψ〉〈jB|ψ〉. (3.12)

Now , let us write matrix formed by expansion coe�cient αij as dA × dB matrix C

where dA and dB are equal to dimensions of Hilbert space HA and HB, respectively.

[C]i,j = αi,j. (3.13)

As every matrix has singular value decomposition (SVD), with the help SVD we will

solve this matrix to �nd Schmidt eigenvalues.

Singular Value Decomposition

Singular value decomposition (SVD) is the factorization of any m× n matrix (let say

we name it matrix A) into three matrices UDV T . Where U and V are the orthogonal

matrices of size m × m and n × n, respectively. While D is diagonal matrix of size

m× n and these diagonal entries are called singular values of matrix A.

To understand this concept physically, for any vector, when matrix A multiply with a

column vector, it rotates the vector and also stretch it. In case of circle (two dimen-

sional case of sphere), when the matrix A apply on sphere, it rotates the circle and

also stretch it, so that it becomes ellipse. Here let us denote the orthogonal vectors of

circle by v1 and v2, while major and minor axis of ellipse are denoted by u1 and u2,
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respectively. So, when matrix A applies to vector v1, it gives

Av1 = σ1u1

Similarly, when matrix A applies to vector v2, it gives

Av2 = σ2u2,

where σ1 and σ2 are stretching factors. In case of N -dimensional sphere (hyper sphere),

after the operation we get a hyper ellipse,

Avj = σjuj. (3.14)

We can see Eq. (3.14) is like a eigen-value problem. In the matrix form, we can write

it as

[A]
[
v1 v2 . . vn

]
=
[
u1 u2 . . un

]

σ1 0 0 0 0
0 σ2 0 0 0
0 0 . 0 0
0 0 0 . 0
0 0 0 0 σn

 ,
Here A is a matrix of order m× n. Generally, it can be written as, AV = UD, where

D is a diagonal matrix while V and U are the unitary matrices as the vectors belong

to them are orthonormal.

A = UDV T .

This is a singular value decomposition.

Now writing a matrix C from Eq. (3.13) in SVD as UΛV , where U is a unitary

matrix of dimensions dA × dA, V is unitary matrix of dimensions dB × dB and Λ is a

dA × dB diagonal matrix. The diagonal matrix has strictly positive numbers cn along

the diagonal which are known as singular values. Let us write the matrix elements of

U as ui,n and V as vn,j. Then the above matrix C is equal to∑
i,j,n

αi,j =
∑
n

ui,ncnvn,j. (3.15)
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Substituting equation (3.15) in (3.11), we will get

|ψ〉 =
∑
i,j,n

ui,ncnvn,j(|i〉A ⊗ |j〉B),

|ψ〉 =
∑
n

cn(|n〉A ⊗ |n〉B),

|ψ〉 =
∑
n

√
λn(|n〉A ⊗ |n〉B). (3.16)

We have de�ned the orthonormal bases on the system A as |n〉A =
∑
i

ui,n|i〉A, on

system B as |n〉B =
∑
j

vn,j|j〉B. These orthonormal bases are known as Schmidt bases

while λn = c2n is known as Schmidt coe�cient. The Schmidt coe�cients λn are like

eigenvalues of a matrix and unique for any state |ψ〉. We can extract the information

related to the entanglement of state in quantum system from the factor of Schmidt

coe�cient.

The standard criteria to check separability of any state |ψ〉 is that if decomposed

state contains one non-zero Schmidt coe�cient, then we can say that the state must

be separable. On the other hand, if there exists more than one non-zero Schmidt

coe�cients, then the state |ψ〉 is not separable and we cannot write it in terms of Eq.

(3.6). Hence, we can conclude that the pure state is separable if there exists only one

non-zero Schmidt coe�cient.

As discussed above the Schmidt coe�cients are very helpful in di�erentiating between

entangled and separable states, therefore our main focus is how we can evaluate them.

We can do this with the help of reduce density matrices, so then reduced density

matrices are explicitly useful.

3.3 Purity

Schmidt decomposition can help us to �nd out whether the state of a system is sep-

arable or entangled [27, 30]. For checking the degree of entanglement of a state (how

much state is entangled) we use the concept of purity. We can characterize the degree

of entanglement by the degree of purity of either of the subsystems. Purity of any nor-

malized quantum state can be de�ned as the trace of the squared value of its density
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operator.

P = Tr(ρ2), (3.17)

where the range of purity is

0 < P ≤ 1.

For a subsystem, let's say for a subsystem A, purity is de�ned as: P = Tr(ρ2A) =
∑
n

λ2n.

When purity is equal to one, this means that our state of system is separable, and when

purity is less than one, the state of a system is entangled.

Measurement of the entanglement can be de�ne in terms of the Schmidt number κ as

κ ≡ 1

PA
=
∞∑
n=0

1

λ2n
. (3.18)

If κ = 1, this means that the state will be separable. For all other values of κ the state

of a composite system will be entangled.

3.4 Composite Boson

In this section, we comprehensively take a look at the bipartite coboson from the

perspective of quantum information. We take a look at the fermionic and bosonic

algebra for ideal fermions and bosons and modify it for the composite boson.

Let us consider a composite boson C in Hilbert space H comprised of two fermions

(or bosons). Let us denote individual fermions with A and B. Hilbert space HA be

the Hilbert space associated with particle A and HB be the Hilbert space related with

particle B. The Hilbert space H of the composite boson C is given by the tensor

product of Hilbert spaces of subsystems.

H = HA ⊗HB. (3.19)

Both constituent particles are distinguishable and can be either bosons or fermions.

Collectively, both particles behave as coboson. We will �nd that how much the nature
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of coboson is deviating from ideal boson. The state of the composite system can be

written in terms of Schmidt decomposition and we can write it in terms of the basis of

its constituent particles as

|ψ〉C =
∞∑

i,j=0

αij|i〉A ⊗ |j〉B. (3.20)

where |i〉A and |j〉B are the states of the subsystems.

3.4.1 Fock Space

Fock Space is important because we use it to study many particle system, as well as

the system where number of particles may not be conserved. For example, in non-ideal

optical cavity there is possibility of leakage of photons. Another example is excited

atoms, these atoms emit a photon. Formalism that allows us to describe such type of

systems in a good way is explained below. This formalism is actually build up using

concept of creation and annihilation operators that we use to describe harmonic os-

cillator in quantum mechanics. Let us consider a system having single particle. First

we describe this basic system and later we can easily generalize it for more than one

particle. As we are observing quantum mechanically, we cannot forget importance of

vacuum state. In a system, there must be state that represent zero of particle. We

denote vacuum state by |0〉 and its inner product with itself 〈0|0〉 equal to one. Now

just like harmonic oscillator, we de�ne the creation and annihilation operator as â†n

and âm, respectively. It important to keep in mind that here harmonic oscillator is

not involved, its just that we are de�ning operators in ad hoc. Now the state of single

particle is |1〉 = â†|0〉, thus creation operator is adding one particle in system. And

annihilation operator just remove a particle from the system.

〈0|ââ†|0〉 = 〈0|0〉 = 1.

In Fock space, orthonormal basis consists of the vacuum state |0〉, the complete set of

single particle state {|ϕα〉 : α = 1, 2, 3, 4.....}, the complete set of bipartite system's

state, the complete set of tripartite system's state and so on. The formalism for Fock

Space is di�erent for bosons and fermions and thus we discuss them separately here.
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Fermionic Algebra

The creation and annihilation operator of fermions has following properties :

â†n|0〉 = |ϕn〉, (3.21)

â†m|ϕn〉 = â†mâ
†
n|0〉 = |ϕmϕn〉 = −|ϕnϕm〉, (3.22)

ân|ϕn〉 = |0〉, (3.23)

ân|0〉 = 0. (3.24)

Here n is quantum number of fermions. From Eq. (3.22), we can de�ne that vector

states are anti-symmetric when two fermions gets interchange. Also the fermionic

operators follows the anti-commutation relations :

{â†n, â†m} = {ân, âm} = 0, {ân, â†m} = δnm, (3.25)

{â†n, b̂†m} = {ân, b̂m} = {â†n, b̂m} = {ân, b̂†m} = 0. (3.26)

In Eq. (3.26), these are the anti-commutation relation while â and b̂ are operators

belongs to two distinguishable fermions [31].

Bosonic Algebra

The creation and annihilation operator for bosons in mode β are ĉ†β and ĉβ, respectively.

Following are the properties that creation and annihilation operator have:

ĉ†β = |0, 0, 0....,mβ = 0, ....〉 = |ϕβ〉 = |0, 0, .....,mβ = 1, 0, .....〉, (3.27)

ĉβ|m1,m2, ....,mβ = 0, ....〉 = 0, (3.28)

ĉ†β|m1,m2, ....,mβ, ....〉 =
√

(mβ + 1)|m1,m2, .....,mβ + 1, ...〉, (3.29)

ĉβ|m1,m2, ....,mβ, ....〉 =
√

(mβ)|m1,m2, .....,mβ − 1, ...〉. (3.30)

Bosons follow the commutation relation,

[ĉn, ĉ
†
m] = δnm. (3.31)
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If all bosons are present in the same state then above relations can be written as

ĉ†|0〉 = 0, (3.32)

ĉ|0〉 = 0, (3.33)

ĉ†|m〉 =
√

(m+ 1)|m+ 1〉, (3.34)

ĉ|m〉 =
√
m|m− 1〉, (3.35)[

ĉ, ĉ†
]

= 1. (3.36)

3.5 Composite Bosonic Operator and its Properties

Now for the composite two-particle system, using the vision of second quantization we

can write the state in terms of ladder operators as

|ψc〉 = ĉ†|0〉. (3.37)

Hence, by comparing it with the equation (3.20) we can say that this creation operator

which is creating a particle in a composite system can also be the combination of

two other creation operators which can create sub-particle in the relevant subsystem

therefore,

ĉ† =
∞∑
ij

αij â
†
i b̂
†
j, (3.38)

where αij is the probability amplitude of having particle A in |i〉 basis and particle B

in |j〉 basis. â†i and b̂
†
j are the creation operators of particle A and particle B in the

mode of |i〉 and |j〉. In the perspective of entanglement theory we use the process of

decomposition to calculate the probability amplitude therefore we can rewrite the state

expressed above as

|ψc〉 = ĉ†|0〉 =
∞∑
n=0

√
λnâ

†
nb̂
†
n|0〉, (3.39)

where basis n is the superposition of i and j and
√
n is the Schmidt coe�cient which

tells us about the probability of having both particles in the same basis n. The value

of λn also provides the measure of entanglement as we have discussed previously. In
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terms of the Schmidt number κ it is

κ =
1

∞∑
n=0

λ2n

. (3.40)

Thus the operator for composite particle in terms of the Schmidt coe�cient is written

as

ĉ† =
∞∑
n=0

√
λnâ

†
nb̂
†
n. (3.41)

The operator c† can be treated as the ladder operator for the composite particle and

we can discuss its properties as well [32, 35].

Being ladder operator ĉ and ĉ† satis�es the Bosonic algebra. If constituent particles A

and B both are bosons then the commutation relation results as

[ĉ, ĉ†] = 1 +
∞∑
n=0

λn(â†nân + b̂†nb̂n). (3.42)

If constituent particles are fermions than

[ĉ, ĉ†] = 1−
∞∑
n=0

[λn(â†nân + b̂†nb̂n)]. (3.43)

Collectively, we can write the above relation as

[ĉ, ĉ†] = 1 + s∆, (3.44)

where s = +1 when both A and B are bosonic particles and s = −1 if both are

fermionc.

The operator ∆ is de�ned as

∆ =
∞∑
n=0

[λn(â†nân + b̂†nb̂n)]. (3.45)

Here the operator ∆ appears as it shows how much composite bosonic operator deviates

from pure bosonic operator [36, 38]. It should be minimum so that ĉ and ĉ† will operate

similar as pure bosonic operator. Therefore N particle state for composite particle is

|N〉 =
1
√
χ
N

(ĉ†)N√
N !
|0〉, (3.46)
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|N〉 is a normalized state. χN is the normalization constant and it is must as ĉ† is

not a perfect bosonic creation operator [39]. Also χN measures the quality of bosonic

character for entire system of N composite bosons. When χN = 1 this means that

our composite system is like a pure bosonic system while when χN = 0 means system

is least bosonic and any intermediate value represents sub-bosonic quality. We can

calculate this normalization constant by considering 〈N |N〉 = 1. By taking projection

of state 〈N | with itself, Eq. (3.46), we can write χN in the following form:

〈0|ĉN(ĉ†)N |0〉 = N !χN . (3.47)

In order to understand that how well ĉ behaves as a bosonic annihilation operator, we

check its action on the composite particle state |N〉. This is de�ned as

ĉ|N〉 = αN
√
N |N − 1〉+ |ξN〉, (3.48)

where αN is constant and ξN is another term which appears to be orthogonal to |N−1〉.
It is basically correction term which should appear here because the state of composite

particle |N〉 is only subset itself of the whole Hilbert space associated with composite

system. The value of αN can be �nd out by using following equation:

〈N − 1|ĉ|N〉 = αN
√
N〈N − 1|N − 1〉+ 〈N − 1|ξN〉, (3.49)

〈N − 1|ĉ|N〉 = αN
√
N. (3.50)

Also;

〈N − 1|ĉ|N〉 =
√
N
〈0|ĉN(ĉ†)N |0〉
√
χ
N

√
χN−1N !

. (3.51)

Putting the value from Eq. (3.47) in Eq. (3.51),

〈N − 1|ĉ|N〉 =

√
χN
√
N

√
χN−1

. (3.52)

Comparing Eq. (3.50) and Eq. (3.52), we �nd the value of α,
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αN =

√
χN
χN−1

. (3.53)

In Eq. (3.48), we can see, bosonic operator will be pure bosonic, if it satis�ed the

following two conditions:

αN −→ 1,

〈ξN |ξN〉 −→ 0,

where 〈εN |εN〉 can be derive using Eq. (3.48). We can write Eq. (3.48) as

|ξN〉 = ĉ|N〉 − αN
√
N |N − 1〉.

Also;

〈ξN | = 〈N |ĉ† − αN
√
N〈N − 1|.

Thus we get

〈ξN |ξN〉 = 〈N |ĉ†ĉ|N〉+ αN
2N − αN

√
N〈N |ĉ†|N − 1〉 − αN

√
N〈N − 1|ĉ|N〉. (3.54)

By solving Eq. (3.54), we get (for detailed calculation, see Appendix A ),

〈ξN |ξN〉 = N − (N − 1)

(
1− χN+1

χN

)
+N

χN
χN−1

−N + (N)

(
1− χN

χN−1

)
−N

(
χN
χN−1

)
.

〈ξN |ξN〉 = 1 + (N − 1)

(
χN+1

χN

)
−N

(
χN
χN−1

)
. (3.55)

Thus from Eq. (3.53) and Eq. (3.55), we can see that both conditions depends on ratio

of normalization constant. Composite bosonic operator will act like a pure bosonic

operator when χN±1

χN
→ 1.

3.6 Bosonic Quality of Single Coboson

As normalization constant is given as

χN =
1

N !
〈0|ĉN(ĉ†)N |0〉. (3.56)
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χN is derived to be (see Appendix B)

χFN = N !
∑

p1<p2...<pN

λp1λp2λp3 ....λpN , (3.57)

and

χBN = N !
∑

p1≤p2...≤pN

λp1λp2λp3 ....λpN , (3.58)

Here χFN refers to the normalization constant, when our composite particle is made up

of pair of fermions. While χBN is the normalization constant, when constituent particles

are pair of bosons.

For the case of two particle wave function we can consider χN in terms of some spec-

i�ed Schmidt eigenvalues, which allows the very close and exact form to our system.

Therefore we choose Schmidt eigenvalue

λn = (1− z)zn, n = 0, 1, 2, 3, 4.... (3.59)

Here z has de�ned in the range of 0 < z < 1. To �nd normalization constant, we make

some assumptions. let us take

p1 = rN ,

p2 = rN + rN−1,

p3 = rN + rN−1 + rN−2,

.

.

.

pN = rN + rN−1 + .....+ r1.
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Substituting above values in Eq. (3.58), normalization constant for pair of bosons

become

χBN = N !(1− z)N
∞∑
r1=0

∞∑
r2=0

∞∑
r3=0

......

∞∑
rN=0

zr1+2r2+3r3+.....NrN . (3.60)

⇒ χBN = N !(1− z)N
∞∑
r1=0

zr1
∞∑
r2=0

(z2)
r2
∞∑
r3=0

(z3)
r3 + ...... (3.61)

For Geometric series when it converges for |r| < 1

s =
∞∑
k=0

rk = 1/(1− r).

By solving series in Eq. (3.61), equation become

χBN =
N !(1− z)N

(1− z1)(1− z2)(1− z3)......(1− zN)
. (3.62)

Similarly, for normalization constant of composite boson made of pair of fermions

Eq.(3.57) become

χN
F = N !

∑
pN>p>....p2>p1

λp1λp2 ....λpN . (3.63)

After few mathematical steps we reaches at equation below, that is

χFN = N !(1− z)N
∞∑
r1=1

∞∑
r2=1

∞∑
r3=1

......
∞∑

rN=1

zr1+2r2+3r3+.....NrN , (3.64)

χFN =
N !(1− z)N

(1− z1)(1− z2)(1− z3)......(1− zN)
zN(N−1)/2. (3.65)

Now we can �nd normalization ratio ,that are

χBN+1

χBN
=

(N + 1)(1− z)

1− zN+1
, (3.66)

χFN+1

χFN
=

zN(N + 1)(1− z)

1− zN+1
. (3.67)

This normalization ratio shows modi�cation in a system when we add new composite

particle to N -particle state. Result shows that the ratio of normalization constant for
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pair of boson is
χB
N+1

χB
N

> 1 and for pair of fermions it is
χF
N+1

χF
N

< 1. Here the di�erence seen

between the normalization ratios of fermions and bosons is because of their di�erence in

nature. Bosons are the particles that can stay together in the same state but fermions

behave opposite to them as fermions follows Pauli- exclusion principle.

As the value of integer z is between zero and one. We can see from our result that

when z approaches to one, ratio of normalization constants approaches to one and

composite boson will behave like pure boson. For z less than one, composite will show

deviation depending on the value of normalization ratio. In other words χN+1/χN is

interconnected to the strength of correlation in composite boson. As particle behaves

as a pure boson when z approaches to one, thus the quantum statistics associated to

the constituent particles appears to be less important at that point.

3.6.1 Entanglement and Degree of Compositeness of a Com-

posite Boson

Now we can relate quantum entanglement with the normalization constant by using

the de�nition of quantum number κ. As for the Schmidt eigenvalues given by equation

(3.59), Schmidt number κ de�ned in equation (3.40) becomes

κ =
1 + z

1− z

κ increases monotonically in the range of 0 < z < 1. Degree of entanglement can be

related to bose enhancement factor
χB
N+1

χB
N

and
χF
N+1

χF
N

when we express them in terms of

z because of the relation κ = 1+z
1−z . We notice that by increasing Schmidt number κ,

χB
N+1

χB
N

and
χF
N+1

χF
N

approaches to one. Speci�cally, we can show for κ� N

χN+1

χN
≈ 1 +

sN

κ
, (3.68)

where s = 1 for pair of bosons and s = −1 for pair of fermions inside composite particle.

In this section, we have discussed two-particle wave function and provided the ba-

sic information about the composite system. It tells us that the composite character
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is directly related to the correlation between the constituent element. Therefore, we

can apply a composite representation to those particles which are strongly entangled.

The ratio χN+1/χN is consider as the quanti�er of the bosonic character where χN is

basically a normalization factor which appears here due to the presence of composite

behavior which is di�erent from the ideal case. Ideally for pure bosons, χN = 1 for all

N .

3.7 Boundry for Bosonic Quality in Composite Boson

For further understanding of the bosonic nature of composite particle, we can compare

how much the resultant N + 1 particle state will deviate from an ideal bosonic state

of N + 1 particles when we add one composite boson in N state. When composite

creation operator acts on N state of ideal bosons, we get |N + 1〉 state.

ĉ†|N〉 = αN+1

√
N + 1|N + 1〉, (3.69)

where αN+1 =
√

χN+1

χN
.

In Eq. (3.69), αN+1 or in other words the normalization ratio tells the bosonic quality

of created composite boson. In research article [40], it is shown that the normalization

ratio χN

χN−1
is non-increasing as number of composite bosons N increases. That simply

means χN+2

χN+1
≤ χN+1

χN
where N ∈ 1, 2, 3, 4, ..........

Besides, in [41, 42], it is also shown that ratio χN

χN−1
is bounded by the purity from above

and below. As purity of reduced density matrix ρA(B) for a particle A(B) is de�ned as

P = Tr{ρ2A(B)}. As the state of our composite system is pure state, the purity of both

constituent particles are guaranteed to be equal. The relationship between purity and

composite particles was �rst proven as

1−NP ≤ χN+1

χN
≤ 1− P (3.70)

As we know purity P physically quanti�es the amount of entanglement between the

pair of constituent particles. As range of purity P is 0 to 1, when P increases from

zero to one, the strength of entanglement between pair of fermions (bosons) decreases
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from in�nity to zero.

From previous discussion, as we already know that, χN+1

χN
quanti�es how much the an-

nihilation operator and creation operator of the composite particle is similar to ideal

one. Thus closer the normalization ratio is to one, the more creation and annihilation

operators behave like ideal bosonic operator. So when purity goes to zero, χN+1

χN
→ 1

and the composite boson behaves like an ideal boson. As we have seen that, for com-

posite bosons, quantity that how much it is bosonic, is related to the entanglement.

Afterwards, we present the proof of the inequality, but �rst we need to �nd out the

amount of entanglement for single composite particle, that is

ĉ†|0〉 =
∑
n

√
λnâ

†
nb̂
†
n|0〉. (3.71)

The reduced density matrix of the subsystem B is

ρB = TrA(ĉ†|0〉〈0|ĉ),

=
∑
n

λn|n〉〈n|. (3.72)

Thus the purity of subsystem B is

Tr(ρ2B) =
∑
n

λ2n. (3.73)

Now as normalization constant is

χN =
1

N !
〈0|ĉN(ĉ†)N |0, 〉

χN =
1

N !
(N !)2

∑
p1<p2...<pN

λp1λp2λp3 ....λpN ,

χN = N !
∑

p1<p2...<pN

λp1λp2λp3 ....λpN ,

χN =
∑

p1 6=p2... 6=pN

λp1λp2λp3 ....λpN ,

χN =
∑

p1 6=p2... 6=pN

N∏
j=1

λpj . (3.74)
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And after some steps of calculation, required inequality is proven to be

χN+1 − χN(1−NP ) =
∑

p1 6=p2... 6=pN+1

N+1∏
j=1

λpj − (1−N
∑
p

λ2p)
∑

p1 6=p2... 6=pN

N∏
j=1

λpj . (3.75)

In above equation many terms are identical, by canceling similar terms with each other

we have

χN+1 − χN(1−NP ) =
N(N − 1)

2

∑
p1 6=p2... 6=pN

N∏
j=1

λpj(λp1 − λp2)2 > 0. (3.76)

This proves lower bound as χN+1

χN
> 1 − NP . Similarly, we can prove upper bound,

that is

(1− P )χN − χN+1 > 0.

Thus, the required inequality is 1−NP ≤ χN+1
χN
≤ 1−P . These relations show the

connection between an entanglement and compositeness of coboson.
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Chapter 4
BEC of Identical Cobosons

The concept of Bose-Einstein condensation was initially presented for a gas of pure

bosons. But experimentalists often use to observe Bose-Einstein condensation for com-

posite particles, like atomic hydrogen or alkali atoms. These are the composite bosons

made up of even number of fermions. While studying the composite particles often we

ignore the internal structure of a particle but sometimes the internal structure plays

an important role.

In this chapter, we consider a simple model of identical composite bosons and observe

the phenomena of Bose-Einstein condensation. We consider the internal structure of

coboson and study how the internal structure of composite bosonic particle could a�ect

the phenomena of BEC. Also, we observe that how much the BEC of coboson has vari-

ations or similarities with respect to the BEC of elementary bosons. We assume that

cobosonic particles are not interacting with each other, also their constituent particles

are stable and temperature independent. These simpli�cations helps us to focus that

how Bose-Einstein condensation depends on the internal structure of composite boson.

4.1 E�ective Number of Cobosons

We observe the phenomenon of BEC by counting the number of particles in lowest

energy state, larger the number of particles in ground state as compared to excited

states of the system more the system experiencing BEC phenomenon. Here we use the
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cobosonic number operator to count the number of cobosons in a ground state [43].

Speci�cally, we take an e�ective mean number of 〈N̂m〉 cobosons on speci�c state |N〉
which is

〈N |N̂m|N〉 = 1 + (N − 1)
χN+1

χN
. (4.1)

The normalization ratio χN+1/χN shows the variation in properties of composite boson

with respect to ideal boson and it depends on a degree of entanglement of constituent

particles. Therefore, e�ective number is related to the internal structure of a composite

particle and it helps to study the behavior of cobosons in BEC. In the following sections,

we deal with the two main cases, when the coboson is comprised of a pair of fermions

and when coboson is comprised of a pair of bosons and observe the phenomenon of

BEC.

4.2 Bi-fermionic Cobosons

Let us consider a composite boson made up of two distinguishable fermions. Normal-

ization ratio for a pair of fermions [χN+1/χN ]F from Eq. (3.67) is

χFN+1

χFN
=
zN(N + 1)(1− z)

1− zN+1
. (4.2)

We use this expression to study the e�ects on BEC due to the variation in the degree

of entanglement. First, we consider a simple case of a two-level system and discuss the

e�ective number of cobosons at di�erent degrees of entanglement. Later we consider a

more realistic model and discuss the behavior of ultracold cobosns at a minimum and

a maximum value of entanglement.

4.2.1 Two-Level System

Let suppose we have N number of composite bosons in a two level-system shown in

�gure (4.1). If n number of cobosons are in one state of energy, then N − n particles

will be in the second state. Thus the state of a system is |n,N−n〉, that can be written
as
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Figure 4.1: BEC using indistinguishable cobosons in (a) a two-level system and (b) a
multi-level system [48].

|n,N − n〉 =
1

√
χnχN−n

(ĉ†)N√
n!

(ĉ†)N−n√
(N − n)!

|0, 0〉. (4.3)

Density operator of state |n,N − n〉 can be written as

ρ̂ =
1

Z

(
N∑
n=0

e−nε0/kT e−(N−n)ε1/kT

)
|n,N − n〉〈n,N − n|, (4.4)

where Z is the partition function that is equal to

Z =
N∑
n=0

e−nε0/kT e−(N−n)ε1/kT . (4.5)

In the above equation, ε0 and ε1 are representing two energy levels in a system, k is

Boltzmann constant and T is the temperature of the system.

The general expression for the e�ective number of composite bosons in any state is

〈n̂〉 = Tr
[
ĉ†ĉρ

]
, (4.6)
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The e�ective number of coboson in ground state can be derived as

〈n̂0〉 =
N∑
n=0

Pn〈ĉ†0ĉ0〉. (4.7)

As we know that expectation value of N cobosons in vth energy level is

〈N |ĉ†v ĉv|N〉 =

[
1 + (N − 1)

χN+1

χN

]
. (4.8)

Putting the values from Eq. (4.8) in Eq. (4.7),

〈n̂0〉 =
1

Z

N∑
n=0

e−nε0/kT e−(N−n)ε1/kT
[
1 + (n− 1)

χn+1

χn

]
. (4.9)

We assume that energy of ground state ε0 is equal to zero and ε1 = 1, then Eq. (4.9 )

becomes

〈n̂0〉 =
1

Z

N∑
n=0

e−(N−n)/kT
[
1 + (n− 1)

χn+1

χn

]
. (4.10)

The partition function Z at ε0 = 0 ans ε1 = 1 becomes

Z =
1− e−(N+1)/kT

1− e−1/kT
.

Now we consider the role of constituent particles of cobosons and see what happens

when constituent particles are maximally entangled, nearly maximal entangled and not

entangled at all. In the case of composite boson made up of a pair of fermions, we

already know the ratio of the normalization constant for a pair of fermions [χn+1/χn]F ,

thus the e�ective number of cobosons at ground state can be written as

〈n̂0〉 =
1

Z

N∑
n=0

e−(N−n)/kT
[
1 + (n− 1)

zn(n+ 1)(1− z)

1− zn+1

]
.

Minimum Entanglement

When the pair of fermions is not entangled at all (the parameter z = 0), the normal-

ization ratio approach to zero. The e�ective number of cobosons in a ground state can

be found by putting z = 0 in Eq. (3.67), thus 〈n̂0〉 will be

〈n̂0〉z=0 =
1

Z

N∑
n=0

e−(N−n)/kT . (4.11)
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The e�ective number 〈n̂0〉z=0 becomes equal to one. Here it is important to notice that

our result is not depending on the temperature. Physically, we can understand this as

when the pair of fermions are separable their fermionic nature becomes apparent. Thus

only two pairs of fermions can exist in two levels even at absolute zero temperature, as

fermions obey the Pauli exclusion principle [44, 47].

Maximum Entanglement

When the constituent fermions of a particle are maximally entangled (the parameter z

approach to 1), the normalization ratio of fermions also approach to one. By putting

z = 1 in Eq. (3.67), the e�ective number of composite boson in the ground state

becomes

〈n̂0〉z=1 =
1

Z

N∑
n=0

e−(N−n)/kT [1 + (n− 1)] , (4.12)

〈n̂0〉z=1 =

(
1− e−1/kT

)
1− e−(N+1)/kT

N∑
n=0

ne−(N−n)/kT . (4.13)

Solving the series in the above equation, the end result of 〈n̂0〉z=1 is

〈n̂0〉z=1 =
1

1− e−(N+1)/kT

[
N −

e−1/kT
(
1− e−N/kT

)
1− e−1/kT

]
. (4.14)

From above equation, we can see that when temperature T goes to zero, number of

composite bosons in ground state approach to N . Physical meaning of the Eq. (4.14)

is that all cobosons are behaving like ideal bosons and at absolute zero temperature,

all condensed in a ground state.

Moderate entanglement

The case when constituent fermions have entanglement slightly less than maximum

entanglement (κ � N), we use the approximation χn+1/χn ≈ 1− (n/κ) to derive the

result. E�ective number of cobosons in the ground state at nearly maximal entangle-

ment is

〈n̂0〉 =
1

Z

N∑
n=0

ne−(N−n)/kT
[
n− n(n− 1)

κ

]
, (4.15)
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〈n̂0〉 = 〈n0〉z=1 −
1

Z

N∑
n=0

n(n− 1)

κ
e−(N−n)/kT , (4.16)

By solving the series we �nd that

〈n̂0〉 = 〈n̂0〉z=1 −
N

κ (1− e−(1+N)/kT )

[
N − 1− 2e−1/kT

1− e−1/kT
+

2e−1/kT
(
1− e−N/kT

)
N (1− e−1/kT )

2

]
.

(4.17)

At absolute zero temperature T −→ 0, above expression become

〈n̂0〉 = N − N(N − 1)

κ
(4.18)

From the above equation, we can understand that at absolute zero temperature, con-

densation of cobosons are depending on the degree of entanglement. With the increase

in value of κ, Eq. (4.18) shows that the e�ective value of 〈n0〉 will also increase. When

Schmidt number κ is in�nitely large then normalization ratio goes to one. This means

that cobosons will behave like pure bosons and all composite bosons will condense in

lowest energy level ε0.

4.2.2 Realistic Model for Bi-fermions

Let us examine more realistic problem by considering N number of identical cobosons

trapped in three-dimensional harmonic trap [48]. We �x the average number of co-

bosons in system equal to total number of cobosons considering the system in grand

canonical ensemble. This makes a problem simple to solve. The e�ective number of

particles in any particular state are de�ned as

〈N̂m〉 =
∞∑
n=0

Pm〈N̂m〉. (4.19)

Here Pm is the probability of n number of particles in some particular statem. Number

operator N̂m = ĉ†mĉm is

〈N̂m〉 =
1

Zm

∞∑
n=0

e−(εm−µ)n/kT
[
1 + (n− 1)

χn+1

χn

]
, (4.20)
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where Zm is partition function of that speci�c state and it is equal to
(
1− e−(εm−µ)n/kT

)−1
.

We �x an average number of particles equal to the total number of particles 〈N̂〉 = N ,

such that

N =
∞∑
m=0

〈N̂m〉.

Minimum Entanglement

Now for the case when a pair of fermions in coboson are not entangled, we see how co-

bosons will behave inside a harmonic trap. For harmonic oscillator general expression

of energy is Em = }ω(mx +my +mz + 3/2), where mx,my,mz = 0, 1, ... . We consider

the energy of a ground state ε0 equal to zero and �nd out the number of cobosons in

the ground state. By substituting the values of normalization ratio from Eq. (3.67) in

Eq. (4.20 ) and solving further, we �nd the e�ective number of cobosons 〈N̂0〉 equal to
one . This shows that only one coboson can occupy energy level ε0 when constituent

fermions are disentangled.

Maximum Entanglement

When we consider a pair of fermions maximally entangled by putting the value of z

in Eq. (3.67) equal to one, normalization ratio also goes to one. E�ective number of

cobosons at ground state gives the value

〈N̂0〉 =
1

e−µ/kT − 1
. (4.21)

This is Bose-Einstein distribution for the ground state, thus the composite bosons are

also behaving like ideal bosons, when their constituents have maximum entanglement.

Moderate Entanglement

Let us consider that pair of fermions have slightly less entanglement (z = (1−δ), δ � 1).

We approximate normalization ratio of fermion to χn+1/χn ∼ zn, thus χn+1/χn ≈
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(1− nδ). The e�ective number for any speci�c energy level m is

〈N̂m〉 =
1

Zm

∞∑
n=0

e−(εm−µ)n/kT [n− n(n− 1)δ] ,

〈N̂m〉 =
1

e(εm−µ)/kT − 1
+ 2δ

[
1

e(εm−µ)/kT − 1
− e(εm−µ)/kT

(e(εm−µ)/kT − 1)
2

]
. (4.22)

Thus the e�ective number of cobosons at lowest energy state will be

〈N̂0〉 =
1 + 2δ

e−µ/kT − 1
− 2δe(−µ)/kT

(e−µ/kT − 1)
2 . (4.23)

The total e�ective number of composite bosons is N =
∑

m〈N̂m〉, therefore

N =
∞∑
m

1

e(εm−µ)/kT − 1
+ 2δ

[
1

e(εm−µ)/kT − 1
− e(εm−µ)/kT

(e(εm−µ)/kT − 1)
2

]
,

where m = mx,my,mz and εm = }ω (mx +my +mz + 3/2) or εm = }ω (p+ 3/2) by

supposing a parameter p = mx+my +mz. The reference temperature for 3D potential

is }ω/kT = T0/(TN
1/3). Thus we get

N =
∞∑
p=0

[
(1 + 2δ)

1
2
p2 + 3

2
p+ 1

e(T0/TN1/3)p+α − 1
− 2δ

(
1
2
p2 + 3

2
p+ 1

)
e(T0/TN

1/3)p+α

(e(T0/TN1/3)p+α − 1)2

]
,

where α = 3T0/2TN
1/3 − µ/kT . By solving this equation, the end result we get is the

sum of cobosons present in the ground state plus the number of cobosons present in

all other excited states [48] . This generalized equation depends on two main things,

temperature and entanglement. By variation in the temperature T with respect to

transition temperature T0, the number of cobosons in the ground state will vary. Also

the variation in the degree of entanglement e�ects the behavior of cobosons in the

phenomenon of BEC.

4.3 Bi-fermionic Cobosons

We consider a composite boson made up of two distinguishable bosons. Normalization

ratio for a pair of bosons [χN+1/χN ]B from Eq. (3.66) is

χBN+1

χBN
=

(N + 1)(1− z)

1− zN+1
. (4.24)
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First we consider a simple case of a two-level system and then multi-level system and

we check the e�ective number of cobosons at di�erent degrees of entanglement.

4.3.1 Two-Level System

Let us consider that we have N number of cobosons in a two-level system. If one level

of a system let say ground level has n number of particles then the other one will have

N − n cobosons. Density operator of state |n,N − n〉 can be written as

ρ̂ =
1

Z

(
N∑
n=0

e−nε0/kT e−(N−n)ε1/kT

)
|n,N − n〉〈n,N − n|, (4.25)

where Z is the partition function that is equal to

Z =
N∑
n=0

e−nε0/kT e−(N−n)ε1/kT . (4.26)

The e�ective number of bosons in the ground state 〈n̂0〉 is

〈n̂0〉 =
1

Z

N∑
n=0

e−nε0/kT e−(N−n)ε1/kT
[
1 + (n− 1)

[
χn+1

χn

]
B

]
. (4.27)

Minimum Entanglement

When the pair of bosons have minimum entanglement (the parameter z = 0), normal-

ization ratio of bosons approach to n + 1. We consider that ground state energy ε0 is

equal to zero and energy of �rst level ε1 equal to one. E�ective number 〈n̂0〉 is

〈n̂0〉 =
1

Z

N∑
n=0

n2e−(N−n)/kT . (4.28)

After solving the above series , the result we obtain is

〈n̂0〉 =
N

1− e−(1+N)/kT

[
N − 2e−1/kT

1− e−1/kT
+
e−1/kT

(
1 + e−1/kT

) (
1− e−N/kT

)
N (1− e−1/kT )

2

]
. (4.29)

At temperature T → 0 e�ective number 〈n̂0〉z=0 → N2. This result shows that, at

minimum entanglement each constituent boson started to show bosonic behavior in-

dependently. Thus the e�ective number of cobosons at ground state increased with
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increase in degree of entanglement.

We can check it directly from the coboson number operator. At minimum entangle-

ment, ĉ† can be represented by direct product of â†b̂†. At temperature T → 0, the

state of composite bosons at ground state can be described by |N〉, where N is the

total number of cobosons. The e�ective number of cobosons in lowest energy state is

given by

〈N |ĉ†ĉ|N〉 = 〈Na, Nb|â†âb̂†b̂|Na, Nb〉 = N2. (4.30)

Here a and b are representing di�erent modes.

Maximum Entanglement

When the constituent bosons are maximally entangled (z = 1), the e�ective number

〈n̂0〉 is given by

〈n̂0〉z=1 =

(
1− e−1/kT

)
1− e−(N+1)/kT

N∑
n=0

ne−(N−n)ε1/kT . (4.31)

Solving the series in the above equation, the end result of 〈n0〉z=1 is

〈n̂0〉z=1 =
1

1− e−(N+1)/kT

[
N −

e−1/kT
(
1− e−N/kT

)
1− e−1/kT

]
. (4.32)

At absolute zero temperature (T −→ 0), the e�ective number of cobosons in ground

state approach to N . At maximum entanglement, all cobosons are behaving like pure

boson and all condensed in a ground state.

Moderate Entanglement

When the constituent bosons of coboson are entangled slightly less than the maximum

entanglement, we approximate normalization ratio of bosons to χn+1/χn ≈ 1 + n/κ.

E�ective number 〈n̂0〉 is given by

〈n̂0〉 = 〈n̂0〉z=1 +
N

κ(1− e−(1+N)/kT )

[
N + 1− 2e−1/kT

1− e−1/kT
+

2e−2/kT
(
1− e−N/kT

)
N (1− e−1/kT )

2

]
.

(4.33)
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When temperature T → 0, we obtain

〈n̂0〉 = N +N(N + 1)/κ > N.

At zero temperature, 〈n̂0〉 is depending on Schmidt number κ. If Schmidt number

approaches in�nity this means that the entanglement between constituent bosons is

increasing. Thus the e�ective number of cobosons 〈n̂0〉 decrease and approach to N .

4.3.2 Realistic Model for Bi-bosons

We consider N number of identical cobosons trapped in three-dimensional harmonic

trap [48]. When constituent bosons are not correlated (z = 0), by using Eq. (4.20),

the e�ective number of cobosons for ground state is

〈N̂0〉 =
1

Z0

∞∑
n=0

e−(ε0−µ)n/kTn2. (4.34)

Putting the value of a partition function and solving Eq. (4.34), we �nd 〈N̂0〉 which is

〈N̂0〉 =
eµ/kT

(
1 + eµ/kT

)
(1− eµ/kt)2

. (4.35)

The term eµ/kT is fugacity and we have considered ground level energy equal to zero.

As Bose-Einstein distribution for ideal bosons in the ground state is 1/e−µ/kT −1, 〈N̂0〉
is always larger than N . When a pair of bosons is maximally entangled z = 1, the

e�ective number of bosons is same as Bose-Einstein distribution i.e, 1/e−µ/kT −1. Thus

at absolute zero temperature 〈N̂0〉 approach to N .
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Chapter 5
Summary and Conclusion

In this thesis, we have discussed some exciting features about the bosonic nature of

composite bosons. Earlier, in the content of Bose-Einstein condensation, it was not

clear that why strongly correlated bunch of fermions show bosonic behavior. Later on,

it was found, in the content of of quantum information, that such a connection between

a pair of fermions maybe expressible by quantum entanglement. There is a possibility

that entanglement is not the only reason for a group of fermions to behave like a boson,

but it provides a convincing reason to do so. As entangled particles are independent

of local correlation, we can entangle two fermions that are spatially separated and to-

gether they can behave like a boson. Describing the correlations of fermions with the

help of entanglement is something new and highly interesting.

In this thesis, the primary focus of our work is on the composite particles made up

of two distinguishable particles, both either bosons or fermions e.g., a hydrogen atom.

The main reason behind it is that relation between entanglement and bipartite compos-

ites is better developed and understood than tripartite or more system. In this regard,

we have used second quantization formalism to represent composite particles by means

of their annihilation and creation operators and constructed the quantum mechanical

states (number states) for cobosons. Using these commutation relations of bosonic

annihilation and creation operator, we derive some conditions for the composite char-

acter of particles and relate it with entanglement through Schmidt number. Schmidt

numbers are the parameters that can be used to determine the extent of entanglement.
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Finally, we studied deviation of coboson Bose-Einstein condensation from the behavior

of Bose-Einstein condensation compose of pure bosons. We have seen that e�ective

number of composite bosons are related to the degree of correlation between paired

particles. For the maximum level of entanglement, the e�ective number of composite

bosons is equal to the total number of cobosons in a system. When the degree of

entanglement between constituents is weak, the e�ective number of composite bosons

is smaller (larger)than the total number of cobosons composed of fermions (bosons).
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Appendix A

As from Eq. (3.48)

|ξN〉 = ĉ|N〉 − αN
√
N |N − 1〉

〈ξN | = 〈N |ĉ† − αN
√
N〈N − 1|

〈ξN |ξN〉 = 〈N |ĉ†ĉ|N〉+ αN
2N − αN

√
N〈N |ĉ†|N − 1〉 − αN

√
N〈N − 1|ĉ|N〉

(5.1)

Now solving �rst term in above equation.

〈N |ĉ†ĉ|N〉 =
1

N !
〈0|ĉN ĉ†ĉ(ĉ†)N |0〉

=
1

N !
(〈0|ĉN ĉ†(N(ĉ†)N−1 −N(N − 1)(ĉ†)N−2b†)|0〉)

=
N

N !
〈0|ĉN ĉ†(ĉ†)N−1|0〉 − N(N − 1)

N !
〈0|ĉN ĉ†(ĉ†)N−2b†|0〉

= N − N(N − 1)

N !
〈0|ĉN(ĉ†)N−1b†|0〉 (5.2)
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Since

[∆, (ĉ†)N ] = ∆(ĉ†)N − (ĉ†)N∆

That means,

∆(ĉ†)
N |0〉 = (ĉ†)N−1[4, ĉ†]|0〉+ [∆, (ĉ†)N−1]ĉ†|0〉+ (ĉ†)N∆|0〉

As [∆, ĉ†] = 2b†, by putting it in above equation, we obtain

∆(ĉ†)N |0〉 = 2(ĉ†)N−1b†|0〉+ [∆, (ĉ†)N−1]ĉ†|0〉

= 2(ĉ†)N−1b†|0〉+ ((ĉ†)N−2[∆, ĉ†]ĉ† + [∆, (ĉ†)N−2](ĉ†)2)|0〉

∆(ĉ†)N |0〉 = 2(ĉ†)N−1b†|0〉+ 2(ĉ†)N−1b†|0〉+ [∆, (ĉ†)N−2]ĉ†|0〉

Taking b† common from above equation, we get

∆c†
N |0〉 = 2[(ĉ†)N−1 + (ĉ†)N−1 + .....]b†|0〉

∆(ĉ†)N |0〉 = 2N(ĉ†)N−1b†|0〉 (5.3)

Putting the value from Eq. (5.3) in Eq. (5.2), we get

〈N |ĉ†ĉ|N〉 = N − N − 1

2
〈∆〉N

As 〈∆〉N = 2(1− χN+1

χN
)

=⇒ 〈N |ĉ†ĉ|N〉 = N − N − 1

2
{2(1− χN+1

χN
)}

or

〈N |c†c|N〉 = N − (N − 1)(1− χN+1

χN
) (5.4)
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Now we solve the third term in Eq. (5.1).

αN
√
N〈N |ĉ†|N − 1〉 =

αN
√
N√

N !
√

(N − 1)!
√
χN
√
χN−1

〈0|ĉN ĉ†(ĉ†)N−1|0〉

=
αN
√
N√

N !
√

(N − 1)!
√
χN
√
χN−1

〈0|ĉN(ĉ†)N |0〉

=
αN
√
N√

N !
√

(N − 1)!
√
χN
√
χN−1

N !χN

=
αN(
√
N)2

N !
N !

√
χN
χN−1

= N
χN
χN−1

(5.5)
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Now we solve the fourth term in Eq. (5.1).

αN
√
N〈N − 1|ĉ|N〉 =

αN
√
N√

N !
√

(N − 1)!
√
χN
√
χN−1

〈0|ĉN−1ĉ(ĉ†)N |0〉

αN
√
N〈N − 1|ĉ|N〉 =

αN
√
N√

N !
√

(N − 1)!
√
χN
√
χN−1

〈0|cN−1(N(ĉ†)N−1 −N(N − 1)

(ĉ†)N−2b†|0〉)

= N − αN(N − 1)

(N − 1)!
√
χN
√
χN−1

〈0|ĉN−1(ĉ†)N−2b†|0〉

= N − αN(N)

2(N − 1)!
√
χN
√
χN−1

< 0|ĉN−1∆(ĉ†)N |0〉

= N − N

2
〈N − 1|∆|N − 1〉

= N − 1

2
(N)2(1− χN

χN−1
)

= N − (N)(1− χN
χN−1

) (5.6)

Putting values from Eq. (5.4) , Eq. (5.5) and Eq. (5.6) in Eq. (5.1), we �nd 〈εN |εN〉

〈εN |εN〉 = N − (N − 1)(1− χN+1

χN
) +N

χN
χN−1

−N + (N)(1− χN
χN−1

)−N χN
χN−1

〈εN |εN〉 = 1 + (N − 1)(
χN+1

χN
)−N χN

χN−1
(5.7)
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Appendix B

As ĉ† is de�ned in Eq. (3.41) as ĉ† =
∞∑
n=0

√
λnâ

†
nb̂
†
n., then

〈0|cNc†N |0〉 = 〈0|
∑

p1p2...pN

∑
q1q2...qN

√
λp1λp2...λpN

√
λq1λq2...λqN (apN bpNapN−1

bpN−1
.......ap2bp2

ap1bp1)(a
†
qN
b†qNa

†
qN−1

b†qN−1.......a
†
q1
b†q1)|0〉

〈0|cNc†N |0〉 = 〈0|
∑

p1p2...pN

∑
q1q2...qN

√
λp1λp2...λpN

√
λq1λq2...λqNapNapN−1

.......ap2ap1

a†qNa
†
qN−1

.......a†q1bpnbpN−1
.......bp2bp1b

†
qN
b†qN−1

.......b†q1|0〉

〈0|cNc†N |0〉 = N !〈0|
∑

p1<p2<p3....<pN

λp1λp2 .....λpN apNapN−1
......ap1 a†p1a

†
p2
.....a†pN |0〉

= N !
∑

p1〈p2<p3...<pN

λp1λp2 ....λpN 〈0|apNapN−1
......ap1a

†
p1
a†p2 .....a

†
pN
|0〉
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〈0|cNc†N |0〉 = (N !)2
∑

p1<p2<p3....<pN

λp1λp2λp3 .....λpN

As we already knew that

〈0|cNc†N |0〉 = N !χN

This means that

χFN = N !
∑

p1<p2...<pN

λp1λp2λp3 ....λpN
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