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Abstract

The one-dimensional Morse oscillator in the context of generalized coherent

states is discussed. It plays a vital role in the description of many phys-

ical oscillatory systems such as diatomic and polyatomic molecules. Using

the Gazeau-Klauder formalism, the generalized coherent states for the Morse

oscillator are constructed and their basic properties are discussed. The tem-

poral characteristics of these states are analyzed by means of autocorrelation

function and the phenomena of quantum revivals and fractional revivals are

studied. Furthermore, we construct the time evolved coherent state wave

packets both in position space and in momentum space to calculate the cor-

responding probability densities as a function of time. The time evolution

of these probability densities result in the constructive and destructive inter-

ferences leading to the formation of quantum carpets. Moreover, we analyze

the phase space properties by means of position-momentum expectation val-

ues and Wigner quasi probability distribution function. The negativity of

the Wigner function reflects the nonclassicality of the constructed coherent

states of the Morse oscillator.



Chapter 1

Introduction

The history of coherent states goes back to early days of modern quantum me-

chanics when Erwin Schrödinger was developing the wave mechanics. In 1926

he attempted to build quantum mechanical states menifesting dynamical be-

haviour close to classical dynamics. He suceeded to build quantum states

for harmonic oscillator [1] and failed for general systems. In the context of

wave mechanics, the centroids of the harmonic oscillator wave packets follow

classical trajectories and minimise the uncertainty relation for the canoni-

cal variables involved. The expectation values of these canonical variables

evolve in time in the same fashion as suggested by the classical theory for

the harmonic oscillator.

The idea remained dormant for more than three decades before Roy

Glauber in 1963 redefined these states [2–4] in terms of ladder operators

of the harmonic oscillator. In a series of his seminal papers [2–4], he ex-

pressed the coherent electromagnetic field by means of these states, so they

were named as coherent states. His ground breaking work laid the founda-

tion of new field of quantum optics. He proposed three routes to define the

coherent state as i) an eigen state of the annihilation operator; ii) a displaced

ground state iii) a minimum uncertainty state. These three definitions were

shown to be mutually equivalent. Later on these states were proved to be a

cornerstone in many areas of physics and Glauber received the Nobel prise

1



CHAPTER 1. INTRODUCTION 2

in 2005 for his remarkable contribution.

The abundant applications of these states motivated the researchers to

generalize the notion of coherent states. A generalized procedure for the con-

struction of the coherent states for systems other than harmonic oscillator

is required. The first mile stone in this regard was presented by Klauder in

1963 when he developed a generalized formalism to relate quantum dynam-

ics with the classical dynamics [5]. In the same time Sudarshan described

the semiclassical and quantum mechanical nature of light beams using their

statistical behaviours [6]. In 1965 Klauder and McKenna jointly developed a

generalized formalism for the diagonal representation of the coherent states

using the density operators [7]. In their work they also discussed the Phase

space representation for the coherent states. Later on Klauder and Sudar-

shan presented a description of the generalized coherent states based on Lie

group algebra [8].

Most of the efforts to generalize the concept of coherent states were based

on various algebraic groups. Klauder and Sudarshan presented the general-

ized coherent states based on Lie Group Algebra [8]. Barut and Girardello

developed the coherent states for non compact groups [10], these states are

known as Barut-Girardello coherent states. The concept was further gener-

alized for all kind of lie groups by Perelomov [15] and the states are known

as Perelomov coherent states. The work on generalized coherent states was

beautifully collected and arranger by Klauder and Skagerstam in the form

of a book [46]. In this work the literature was classified on the basis of the

applications of the coherent states in different fields of physics and mathe-

matics.

The available techniques to construct the generalized coherent states for

various systems were explicitly based on the underlying algebra of the sys-

tem. Therefore the available generalization techniques were not suitable to

construct the coherent states for the systems whose algebraic structure was

not known. It become necessary to develop some generalization techniques
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for the construction of the coherent states which are independent of the al-

gebraic structure of the system. In 1996 Klauder developed a formalism for

the construction of coherent states of the system exhibiting discrete and de-

generate energy spectra [11]. Later on the idea was extended by Gazeau and

Klauder for general hamiltonian systems with bounded below non degenerate

discrete and continuous energy spectrum. In this work a set of requirements

was given, that should be satisfied by the states to be called as coherent

states. This formalism attracted much attention of the researchers because

of their algebraic independence. The coherent states were constructed based

on the Gazeau-Klauder formalisum for large variety of quantum mechanical

systems such as pseudoharmonic oscillator [18], the Pöschl-Teller potential

and the infinite square potential [19], the power law potentials [20,21], the tri-

angular well potential [22] and the Morse oscillator potential [23,24]. In these

articles various properties of the Gazeau-Klauder coherent states were stud-

ied for different hamiltonian systems. For example S. Iqbal. and F. Saif. in

their work [20,21] have discussed the space time dynamics of Gazeau-Klauder

coherent states for the power law potentials. In [22] they have studied the

Gazeau-Klauder coherent states for Triangular well potential for which the

under lying algebra does not exists and discussed its spatiotemporal char-

acteristics. Another generalized approach for the construction of coherent

states was introduced by R. Fox where he used a Gaussian function to ap-

proximate the behaviour of the coherent states. These Gaussian coherent

states [13, 14] are important because they efficiently resolve unity.

In present work we have focused on the construction of Gazeau-Klauder

coherent states for the Morse oscillator potential. The Morse oscillator has

a wide history starting form the work presented by P. M. Morse in 1929

[25], while solving the Schrödinger equation for the diatomic molecule. The

Morse oscillator presents a realistic model for the vibrations of atoms in a

diatomic or poly-atomic molecule, therefore its is equally important in the

field of physics and chemistry. The Morse quantum system is one of the
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quantum mechanical system which is exactly solvable and is based upon

SU(1,1) algebra.

Based upon its algebraic structure, the Barut-Girardello coherent states

along with the harmonic limit were discussed for the Morse oscillator [16].

Sánchez and Récamier used the f-deformed oscillator formalism (basically

an algebra dependent formalism) to discuss the squeezed coherent states for

Morse oscillator along with the phase space representation and corresponding

Wigner function [17]. An excellent collection of work done so far on the Morse

oscillator was published by Dong in the year 2007 [26]. In this book exact

solution, ladder operators, matrix elements, harmonic limit, Franck-Condon

factor, transition probabilities and associate Lie algebra was discussed for

the Morse oscillator. Generalized coherent states for the Morse oscillator

were discussed by Angelova and Hussin. They studied the squeezed coherent

states for Morse quantum system and analysed its various properties like

localization in position space and minimization of Heisenberg uncertainty

relation. They also have given a phase space picture for a short time interval

[31,32]. Based on this work, we will try to develop Gazeau-Klauder coherent

states for the Morse oscillator and present a complete dynamical picture for

these states both in position and momentum space.

Our work is organized as follows. In Chapter 2 we discuss the Morse

oscillator, reduction to harmonic oscillator (harmonic limit), exact solution

for the corresponding Schrödinger equation and its uses in different fields.

Chapter 3 is dedicated to the generalized coherent states, here we will de-

rive the coherent state for harmonic oscillator using Glauber’s definitions

and discuss its various properties. Then we will discuss the various gener-

alization introduced for the construction of coherent states for the general

hamiltonian systems. Chapter 4 is dedicated to the construction of gen-

eralized Gazeau-klauder coherent states for the Morse potential, its revival

dynamics in position as well as momentum space, its phase space represen-

tation using the expectation values in position and momentum space and
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the Wigner quasi probability distribution function. We conclude our work in

Chapter 5.



Chapter 2

The Morse Oscillator

2.1 Introduction

In 1929 P.M. Morse introduced the Morse Potential [25] while finding an exact

solution for the Schrödinger equation which represents the realistic model

for the oscillations of the nuclei in a diatomic molecule. This potential have

diverse uses in the fields of Physics and Chemistry which we will discuss at

the end of this chapter. So far among the known quantum physical systems,

very few of them are exactly solvable for example harmonic oscillator and

hydrogen atom. Before 1929 harmonic oscillator potential was used to model

the oscillations of nuclei in a diatomic molecule. The harmonic oscillator

potential does not account for the an-harmonic behaviour of the diatomic

or poly-atomic molecules. But after the introduction of Morse potential

it takes the place of harmonic oscillator potential. This is because Morse

potential efficiently accounts for the an-harmonic behaviour of the diatomic

or ploy-atomic molecules. In literature we can find two main equivalent ways

to find the eigen values and eigen function for the Morse potential. The

first method is relatively a difficult approach by Landau and Lifshitz [27]

but it is remarkable. In this method the underlying algebra was developed

for the morse potential using SUSYQM method and ladder operators were

developed. Second method at which we have focused in our research work

6
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is by solving the corresponding Schrödinger wave equation as proposed by

P.M. Morse.

This chapter is dedicated to the Morse oscillator. In section 2.2 we discuss

the mathematical form of the Morse potential. In section 2.3 we present an

exact solution to the Schrödinger equation for Morse oscillator. In section

2.4 we try to reduce our Morse potential into harmonic oscillator potential

under the harmonic limit and will give a graphical comparison between the

both potentials. Section 2.5 is dedicated to some of the uses of this potential

in different fields.

2.2 Mathematical form of the Morse Oscilla-

tor Potential

The generalized mathematical form of the Morse potential [25] that was

proposed by P. M. Morse is

V (x) = V0e
−2ξ(x−x0) − 2V0e

−ξ(x−x0), (2.2.1)

where V0 = ω2
e

4ωexe
is the potential energy at equilibrium position and related

to the depth of potential at equilibrium, ωe is the vibrational constant, ωexe

is the anharmonicity constant, ξ is the parameter of the model related to the

depth and width of the potential and is dependent upon the anharmonicity

constant by the relation ξ = 0.2454(
√
µωexe), x0 is the distance between the

diatomic molecule at the equilibrium and x represents the displacement form

the equilibrium position. These above mentioned constants are called the

spectroscopic constants [29]. We have used the values of these spectroscopic

constants for different isotopes of Nitrogen molecule in figure 2.1 where each

colour represents a different isotope.
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Figure 2.1: Plots for different isotopes of Nitrogen molecules along with the
corresponding values of ξ

2.3 Exact Solution to Schrödinger Equation

The Morse quantum system is exactly solvable [26] and this section provides

us a complete description of the solution. The one dimensional Schrödinger

wave equation can be written as(
−~2

2µ

d2

dx2
+ V (x)

)
ψ(x) = Eψ(x), (2.3.1)

where µ is the reduced mass of the system and we have taken the Morse

potential given in eq. (2.2.1)in simplified form in one dimension as

V (x) = V0

(
e−2ξx − 2e−ξx

)
, (2.3.2)

where V0 is the potential at the mean position, ξ is the parameter of the

system related to depth and width of the potential and x respresents the

displacement. Using eq. (2.3.2) in eq. (2.3.1) we get(
−~2

2µ

d2

dx2
+ V0

(
e−2ξx − 2e−ξx

))
ψ(x) = Eψ(x), (2.3.3)

which on rearranging becomes

d2

dx2
ψ(x) +

2µ

~2

(
E − V0e

−2ξx + 2V0e
−ξx
)
ψx = 0. (2.3.4)
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Let us introduce the following substitutions y = 2
√

2µV0
ξ~ e−ξx, The derivative

of y with respect to x can be written as dy
dx

= −2
√

2µv0
~ e−ξx which simply

equals to dy
dx

= ξy. Now the derivative of Ψ(x) with respect to x can be

written as dψ(x)
dx

= dψ(y)
dy

dy
dx

by chain rule and can be further simplified as

dψ(x)
dx

= dψ(y)
dy

ξy. The second derivative of ψ(x) is d2ψ(x)
dx2

= d
dx

(
dψ(y)
dy

)
ξy =

d
dy

(
dψ(y)
dy

dy
dx

)
ξy, which on performing derivative can be written as d2ψ(x)

dx2
=(

d2ψ(y)
dy2

ξy + dψ(y)
dy

ξ

)
ξy. This can simply be written as

d2ψ(x)

dx2
= ψ′′(y)ξ2y2 + ψ′(y)ξ2y. (2.3.5)

Also

e−ξx =
ξ~y

2
√

2µV0

, (2.3.6)

e−2ξx =
ξ2~2y2

8µV0

. (2.3.7)

Using eq. (2.3.5), eq. (2.3.6) and eq. (2.3.7) in eq. (2.3.4) we get

ψ′′(y)ξ2y2 +ψ′(y)ξ2y+
2µ

~2

(
E − V0

ξ2~2y2

8µV0

+ 2V0
ξ~y

2
√

2µV0

)
ψ(y) = 0. (2.3.8)

On simplification eq. (2.3.8) becomes

ψ′′(y) +
ψ′(y)

y
+

2µE

ξ2~2y2
ψ(y)− 1

4
ψ(y) +

√
2µV0

ξ~y
ψ(y). (2.3.9)

Now in order to define our wavefunction ψ(y) in the limits from 0 to ∞, we

make some more substitutions by introducing the following variables

s =

√
−2µE

ξ~
, (2.3.10)

n =

√
2µV0

ξ~
−
(
s+

1

2

)
. (2.3.11)

Using eq. (2.3.10), eq. (2.3.11) in eq. (2.3.9) we get

ψ′′(y) +
ψ′(y)

y
+

(
− 1

4
+

1

y

(
n+ s+

1

2

))
ψ(y) = 0. (2.3.12)
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Our wavefunction must be finite and it must behave as e
−y
2 at y → ∞ and

as ys if y → 0, so we may write our wavefunction as

ψ(y) = e
−y
2 ysw(y), (2.3.13)

where w(y) is an unknown function of y. In order to find it we may take first

and second derivatives of eq. (2.3.13) i.e ψ′(y) and ψ′′(y) and substituting

their values in eq. 2.3.12 we get a second order differential equation for w(y)

which can be written as

yw′′(y) + (2s+ 1− y)w′(y) + nw(y) = 0. (2.3.14)

The above equation is an equation for a confluent hypergeometric function.

We need to find the solution of this equation under the conditions that when

y → 0, w(y) is finite and when y → ∞, w(y) tends to infinity not more

rapidly than every finite power of y. These conditions can be satisfied by

considering the F (−n, 2s + 1, y) form of confluent hypergeometric function

which may reduced to a polynomial called Associated Laguerre polynomials

given as

L2s+1
n (y) = (−1)2s+1 n!

(n− 2s+ 1)!
eyy−2s−1 d

n−2s−1

dyn−2s−1

(
e−y(2s+1)n

)
. (2.3.15)

We may ignore 1 form 2s+ 1 and can take it as 2s

L2s
n (y) = (−1)2s n!

(n− 2s)!
eyy−2s d

n−2s

dyn−2s

(
e−y(2s)n

)
. (2.3.16)

Hence we see that the unknown function w(y) is L2s
n (y) and therefore our

wavefunction Ψ(y) can be written as we may also convert the variable y into

x for our the ease of discussion in further calculations.

ψn(x) = Nne
−x
s xsL2s

n (x), (2.3.17)

where, Nn is the normalization constant and is given as

Nn =

√
ξ(ν − 2n− 1)Γ(n+ 1)

Γ(ν − n)
, (2.3.18)
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where ν is defined as ν =
√

8µV0
ξ2~2 and provides the truncation of energy

spectrum which can be written using eq. (2.3.10) as

En = − ~2

2µ
s2ξ2, (2.3.19)

and s = ν−1
2
− n which also shows that n can take only discrete but finite

values and the maximum number of values which n can take is given by ν−1
2

.

Here we also want to show the plots for the wavefunction ψn(x) for different

values of n as in Figure 2.2.

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0
n = 0

n(x)

X

-2 -1 0 1 2 3 4

-0.5

0.0

0.5

1.0

n = 5

-2 -1 0 1 2 3 4

-0.5

0.0

0.5

1.0

n = 10

-2 -1 0 1 2 3 4 5 6

-0.5

0.0

0.5

n = 15

Figure 2.2: Plots of the wavefunction ψn(x) for different values of n

2.4 Limiting Behaviour Of Morse Potential

As the scientific society always took interest in the simplification of the com-

plicated system into a simple system. Therefore here we are going to have a

look on the simplification of our potential given by eq. (2.2.1). We have al-

ready discussed that before the introduction of morse potential harmonic os-

cillator potential was used to model the vibrations of the diatomic molecules
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and other related situations. The atomic vibration of these diatomic or poly-

atomic molecules are not harmonic in nature. The best suited model is that

which is presented by Morse in the form of Morse potential eq. (2.2.1), which

accounts well for the anharmonicity of the molecules. Now the question is:

Is there any limit under which this Morse potential can be reducible to the

harmonic oscillator potential? The answer is, yes we can reduce The Morse

potential to the harmonic oscillator potential. Actually the anharmonicity

in the vibrations of the molecules arises as a result of increasing vibrational

amplitudes. Near equilibrium there is least anharmonicity and our system

behaves harmonically. This restriction to study the system near equilibrium

is called the ”Harmonic Limit for Morse oscillator potential”. Let us elab-

orate the procedure as suggested by Popov in [30]. The Morse potential as

given in eq. (2.2.1) can also be written as

V (x) = V0

(
1− e−ξx

)2

. (2.4.1)

Imposing the limit that near equilibrium the product of ξx → 0 such that

in the series expansion of the involving exponential function eq. (2.4.1) its

square and higher powers can be neglected. that is

V (x) = V0

(
1− (1− ξx)

)2

, (2.4.2)

which on further simplification gives

V (x) = V0ξ
2x2. (2.4.3)

Comparison of above equation and the harmonic oscillator potential VHO =

mω2x2

2
leads us to the relation between the spectroscopic constants discussed

above and the mass m and frequency ω as mω2

2
= V0ξ

2. This relation has the

units of the spring constant k i.e (Kg/s2). We can also show a comparison

between the harmonic oscillator potential (HO) and the Morse oscillator

potential (MO) by Figure 2.3.
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Figure 2.3: A graphical comparison between HO potential and MO potential

The energy spectrum given by eq. (2.3.19) for morse oscillator, can also

be reduced to the harmonic oscillator energy spectrum under harmonic limit

by using the following relation,

mω2

2
= V0ξ

2, (2.4.4)

which we already discussed above. The eq. (2.3.19) reads as

En = − ~2

2µ
s2ξ2, (2.4.5)

with,

s =
ν − 1

2
− n, ν =

√
8µV0

ξ2~2
. (2.4.6)

Using the values s and ν in eq. (2.4.5) we get

En = −V0 + ~ξ

√
2V0

µ

(
n+

1

2

)
− ~2ξ2

2µ

(
n+

1

2

)2

. (2.4.7)

By using the relation given by eq. (2.4.4) above equation becomes

En = −V0 + ~ω
(
n+

1

2

)
− ~2ω2

4V0

(
n+

1

2

)2

, (2.4.8)
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which is just another way to write eq. (2.3.19). According to the harmonic

limit ξ → 0 such that its square and higher values can be neglected, using

this condition eq. (2.4.7) get reduced to

En ≡ ~ξ

√
2V0

µ

(
n+

1

2

)
= ~ω

(
n+

1

2

)
, (2.4.9)

which is the energy spectrum for harmonic oscillator.

2.5 Applications in Different Fields

The Morse potential has wide range of application in different fields of physics

and chemistry. The Morse potential was used in the field of quantum op-

tics where its generalized and gaussian coherent states were studied using

the underlying algebra by Angelova and Hussin [31, 32]. The work done by

Jarmain and Fraser [33] for the calculation of transition probabilities is re-

markable. Having the transition probabilities in hand we can easily calculate

the matrix elements numerically [34–36]. In literature, people use this poten-

tial in various calculations like variational method to investigate equilibrium

thermodynamic behaviour of quantum morse chain[37], phase shift to the

partition function was presented for a diatomic molecule model [38], on the

calculation of the wigner distribution function [39–41]. Also some of the

applications of morse potential can also be found in the field of solid state

physics related to the physical properties of the materials including all the

spectroscopic constants [29] and it also includes the study of binding ener-

gies, stabilities of different kind of materials, the point defect, the line defect

etc.



Chapter 3

Coherent States in Quantum
Mechanics

3.1 Introduction

In 1926, Schrödinger introduced coherent states as some superposition of en-

ergy eigenstates of quantum harmonic oscillator [1] whose dynamics is closely

related to the behaviour of the classical harmonic oscillator and most im-

portantly these states minimize the uncertainty relation. After Schrödinger

this idea did not flourish for almost 2 decades. In 1963 Glauber [2–4] ex-

tended the idea working in context of quantum aspects of light. He showed

that electromagnetic field states have classical behaviour and named them

as coherent states. As harmonic oscillator is of fundamental importance in

quantum mechanics. It not only help us to understand the basic ideas of

quantum mechanics, rather it also have much practical applications. As we

have discussed in the previous chapter that Morse oscillator can be reduced

to harmonic oscillator under harmonic limit. Therefore it is quite reasonable

at this stage to first discuss the coherent states for harmonic oscillator and

than we look for the generalizations to the other hamiltonian systems.

This chapter contains a review on the coherent states of the harmonic

oscillator in section 3.2 including the properties satisfied by these states.

The section 3.3 is dedicated to the generalized coherent states in which we

15
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will briefly discuss the different types of coherent states that can be found

in literature and will try to provide some details about the Gazeau-Klauder

coherent states with some of its uses.

3.2 Coherent States for Harmonic Oscillator

and their Properties

3.2.1 Algebraic Structure for Harmonic Oscillator

The hamiltonian Ĥ for harmonic oscillator can be written using the two

canonical operators x̂ for position and p̂ for momentum as

Ĥ =
p̂2

2µ
+
µω2x̂2

2
, (3.2.1)

where x̂ and p̂ are Hermition and ω is the frequency of the oscillator related

to spring constant k as ω =
√

k
µ
. Let us here define two non-Hermition

operators

â =

√
µω

2~

(
x̂+

ip̂

µω

)
, â† =

√
µω

2~

(
x̂− ip̂

µω

)
, (3.2.2)

these operators are named as annihilation and creation operators, the reason

for there naming will be explained shortly. Their commutation relation is[
â, â†

]
= 1. (3.2.3)

Also we define a number operator as

N̂ = â†â, (3.2.4)

which is a Hermition operator. We can write our hamiltonian Ĥ in terms of

this number operator as

Ĥ = ~ω
(
N̂ +

1

2

)
. (3.2.5)

Now as Ĥ can be written in terms of N̂ , therefore they can have simultaneous

eigenkets. We can represent the action of the number operator on the energy

eigenket |n〉 as

N̂ |n〉 = n|n〉, (3.2.6)
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where n is the corresponding eigenvalue. This n can have only nonnegative

values, as

Ĥ|n〉 = ~ω
(
n+

1

2

)
|n〉, (3.2.7)

which means that the corresponding energy eigenvalues are

En = ~ω
(
n+

1

2

)
. (3.2.8)

Now if n can take negative values the energy becomes negative, which is not

possible. The ground state energy for harmonic oscillator is E0 = 1
2
~ω.

Now we are going to explain the reason for naming â as annihilation

operator and â† as creation operator. Let us note the following commutation

relations [
N̂ , â

]
= −â,

[
N̂ , â†

]
= â†. (3.2.9)

If we study the operation of N̂ on the state â†|n〉 using eq. 3.2.9, we get the

resultant eigenvalue increased by one as

N̂ â†|n〉 = (n+ 1)â†|n〉. (3.2.10)

Similarly the operation of N̂ on the state â|n〉, we get the resultant eigenvalue

decreased by one as

N̂ â|n〉 = (n− 1)â|n〉. (3.2.11)

Using eq. (3.2.10) and eq. (3.2.11) we get

â|n〉 =
√
n|n− 1〉, â†|n〉 =

√
n+ 1|n+ 1〉. (3.2.12)

Hence the above equation explain the reason for naming â as annihilation

operator as it annihilate the number state to one level similarly the cre-

ation operator â† adds one level to the number state. From last result of

eq. (3.2.12), we may observe that we can obtain state |n〉 by the successive

action of creation operator â† on the vacuum state |0〉 i.e,

|n〉 =
(â†)n√
n!
|0〉. (3.2.13)
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As Ĥ and N̂ are Hermition operators and |n〉 are simultaneous eigenstates of

these operators, therefore number states |n〉 are orthogonal i.e 〈n′|n〉 = δnn′ .

In addition these states states forms complete basis and their completeness

relation is given as
∞∑
n=0

|n〉〈n| = 1. (3.2.14)

3.2.2 Construction

Glauber proposed three equivalent definitions for the coherent states. Let us

see the construction of the coherent states of harmonic oscillator using these

definitions.

As an Eigenstate of the Annihilation Operator

The harmonic oscillator annihilation operator â is given by eq. (3.2.2), using

this operator we can define coherent state |α〉 as

â|α〉 = α|α〉, (3.2.15)

where α is complex entity. In order to derive an explicit expression for

our coherent state |α〉, we need to expand our coherent state in terms of

eigenstates of the number operator |n〉. We can perform this expansion by

writing |α〉 as

|α〉 =
∞∑
n=0

|n〉〈n|α〉, (3.2.16)

where we have used the completeness relation of number state given by

eq. (3.2.14). Now 〈n|α〉 can be determined by projecting 〈n| on eq. (3.2.15),

〈n|â|α〉 = α〈n|α〉. (3.2.17)

The complex conjugation of the relation â†|n〉 =
√
n+ 1|n + 1〉 given by

eq. (3.2.12), is 〈n|â =
√
n+ 1〈n+ 1|. Using this result in eq. (3.2.17) we get

√
n+ 1〈n+ 1|α〉 = α〈n|α〉. (3.2.18)
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Replacing n+ 1 by n, we have
√
n〈n|α〉 = α〈n− 1|α〉 we can write

〈n|α〉 =
α√
n
〈n− 1|α〉. (3.2.19)

In addition 〈n− 1|α〉 = α√
n−1
〈n− 2|α〉 and hence

〈n|α〉 =
α2

√
n
√
n− 1

〈n− 2|α〉. (3.2.20)

If we repeat the above step n times we eventually get

〈n|α〉 =
αn√
n!
〈0|α〉. (3.2.21)

Using above relation in eq. (3.2.16) we have

|α〉 = 〈0|α〉
∞∑
n=0

αn√
n!
|n〉, (3.2.22)

where 〈0|α〉 is a constant and can be found by normalization of above equa-

tion i.e 〈α|α〉 = 1

〈α|α〉 =
∞∑
n=0

∞∑
m=0

αn√
n!

α∗m√
n!
|〈0|α〉|2〈m|n〉. (3.2.23)

At m = n above equation becomes 1 = |〈0|α〉|2
∑∞

n=0
|α|2n
n!

which will give

〈0|α〉 = e−
1
2
|α|2 . (3.2.24)

Using eq. (3.2.24) in eq. (3.2.22) we can get the required expansion of |α〉 in

terms of the eigenstates of number operator as

|α〉 = e−
1
2
|α|2

∞∑
n=0

αn√
n!
|n〉. (3.2.25)

The above equation provides us an explicit expression for the coherent state

of harmonic oscillator.
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As Displaced Vacuum States

The second definition implies that the coherent states can be obtained by

operating the displacement operator D̂(α) on to the vacuum state of har-

monic oscillator. This displacement operator [9] can be written in terms of

annihilation and creation operator of harmonic oscillator and is defined as.

D̂(α) = e(αâ†−α∗â). (3.2.26)

Therefore using D̂(α) the coherent state can be written by definition as

|α〉 = D̂(α)|0〉. (3.2.27)

Now here we consider the famous Baker-Hausdorff identity which reads as

eÂ+B̂ = eÂeB̂e−
1
2

[Â,B̂] = eB̂eÂe
1
2

[Â,B̂]. (3.2.28)

This identity is valid only if [Â, B̂] 6= 0 and [Â, [Â, B̂]] = [B̂, [Â, B̂]] = 0.

By taking Â = αâ† and B̂ = −α∗â and [Â, B̂] = |α|2 we can write eq. (3.2.26)

as

D̂(α) = e−
1
2
|α|2eαâ

†
eα
∗â. (3.2.29)

By taking series expansion of eα
∗â where â is the annihilation operator, its

action on |0〉 i.e ground state gives

eα
∗â|0〉 =

∞∑
l=0

(−α∗)l

l!
(â)l|0〉. (3.2.30)

As (â)l|0〉 = 0 except only when l = 0 the above equation gives

eα
∗â|0〉 = 0. (3.2.31)

By taking the series expansion of eαâ
†

where â† is the creation operator, its

action on the ground state |0〉 gives

eαâ
†|0〉 =

∞∑
n=0

αn

n!
(â†)n|0〉. (3.2.32)
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As (â†)n|0〉 =
√
n!|n〉 the above equation gives

eαâ
†|0〉 =

∞∑
n=0

αn√
n!
|n〉. (3.2.33)

Now by using eq. (3.2.29) along with eq. (3.2.31) and eq. (3.2.33) in eq. (3.2.27)

we get our coherent state as

|α〉 = e−
1
2
|α|2

∞∑
n=0

αn√
n!
|n〉. (3.2.34)

As Minimum Uncertainty States

Both Glauber and Schrödinger agree with this definition that the coherent

states of harmonic oscillator minimizes the uncertainty relation for the in-

volved canonical variables. For harmonic oscillator, the dimensionless canon-

ical position and momentum operators can be defined as

X̂ =
1

2
(â+ â†), (3.2.35)

P̂ =
1

2i
(â− â†). (3.2.36)

We are now interested in finding out the dispersions in these quadratures

with respect to our coherent state |α〉 using the formulas

∆x =

√
〈X̂2〉α − 〈X̂〉2α, (3.2.37)

∆p =

√
〈P̂ 2〉α − 〈P̂ 〉2α. (3.2.38)

Now we calculate 〈X̂2〉α ,〈X̂〉α, 〈P̂ 2〉α and 〈P̂ 〉α. and make use of these

identities â|α〉 = α|α〉 , 〈α|â† = α∗〈α|

〈X̂〉α =
1

2
〈α|(â+ â†)|α〉, (3.2.39)

Which by using above identities and 〈α|α〉 becomes

〈X̂〉α =
1

2
[α + α∗]. (3.2.40)
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In addition 〈X̂2〉α can be calculated as follows

〈X̂2〉α = 〈α|X̂X̂|α〉, (3.2.41)

〈X̂2〉α =
1

4
〈α|(â+ â†)(â+ â†)|α〉, (3.2.42)

which on using the commutation relation [â, â†] = 1 and performing simpli-

fication becomes

〈X̂2〉α =
1

4
〈α|ââ+ 2â†â+ â†â† + 1|α〉. (3.2.43)

Using the above identities above equation takes the form

〈X̂2〉α =
1

4
(α2 + 2α∗α + α∗2 + 1), (3.2.44)

〈X̂2〉α =
1

4
((α + α∗)2 + 1). (3.2.45)

Similarly we can calculate 〈P̂ 〉α, 〈P̂ 2〉α and they have the forms

〈P̂ 〉α =
1

2i
[α− α∗], (3.2.46)

〈P̂ 2〉α = −1

4
((α− α∗)2 − 1). (3.2.47)

By using eq. (3.2.40), eq. (3.2.45) in eq. (3.2.37) we get

∆x =

√
1

4
((α + α∗)2 + 1)− 1

4
(α + α∗)2 =

1

2
, (3.2.48)

Similarly, by using eq. (3.2.46), eq. (3.2.47) in eq. (3.2.38) we get

∆p =

√
−1

4
((α− α∗)2 + 1) +

1

4
(α− α∗)2 =

1

2
. (3.2.49)

Hence ∆x∆p = 1
4

which is the minimum uncertainty condition for harmonic

oscillator. Therefore harmonic oscillator coherent state |α〉 are the minimum

uncertainty states with equal uncertainty in each quadrature.

3.2.3 Properties of Coherent States

Now in this section we will discuss some of the properties of the coherent

states. These states satisfy a special set of properties which are
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Orthogonality

A coherent state say |α〉 is orthogonal to a state |β〉 if 〈β|α〉 = 0. In order to

prove this we study the overlap of two different coherent states of harmonic

oscillator say |α〉, |β〉 generated by the action of there corresponding dis-

placement operators D̂(α) and D̂(β) on the vacuum state as |α〉 = D̂(α)|0〉,
|β〉 = D̂(β)|0〉. We are now interested in the overlap 〈β|α〉 i.e

〈β|α〉 = 〈0|D̂†(β)D̂(α)|0〉. (3.2.50)

Where D̂(α) = e−
1
2
|α|2eαâ

†
e−α

∗â and D̂†(β) = e−
1
2
|β|2e−βâ

†
eβ
∗â. Using these

in above equation we get

〈β|α〉 = 〈0|
(
e−

1
2
|β|2e−βâ

†
eβ
∗â

)(
e−

1
2
|α|2eαâ

†
e−α

∗â

)
|0〉. (3.2.51)

Above equation can also be written as

〈β|α〉 = e−
1
2

(|β|2+|α|2)〈0|e−βâ†eβ∗âeαâ†e−α∗â|0〉. (3.2.52)

By applying Taylor series expansion to the outer two operators i.e e−βâ
†

=(
1−(βâ†)+· · ·

)
and e−α

∗â =

(
1−(α∗â)+· · ·

)
. Operating these expression

onto the left and right respectively using 〈0|â† = 0 and â|0〉 = 0, the higher

order terms vanishes and the eq. (3.2.52) reduces to

〈β|α〉 = e−
1
2

(|β|2+|α|2)〈0|eβ∗âeαâ†|0〉. (3.2.53)

Again by taking the Taylor expansion of the involved exponentials i.e eβ
∗â =

(1 + (β∗â) + (β∗â)2

2!
+ · · · ) and eαâ

†
= (1 + (αâ†) + (αâ†)2

2!
+ · · · ) the eq. (3.2.53)

takes the form

〈β|α〉 =

(
〈0|+β∗〈1|+β

∗2
√

2

2!
〈2|+· · ·

)(
|0〉+α|1〉+α

2
√

2

2!
|2〉+· · ·

)
e−

1
2

(|β|2+|α|2),

(3.2.54)

Using orthogonality of the number state, the above equation reduces to

〈β|α〉 =

(
1 + αβ∗ +

(αβ∗)2

2!
+ · · ·

)
e−

1
2

(|β|2+|α|2). (3.2.55)
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Which can be written as

〈β|α〉 = eαβ
∗− 1

2
(|β|2+|α|2). (3.2.56)

Also

|〈β|α〉|2 = e−(|α|2+|β|2)+αβ∗+α∗β = e−|α−β|
2

. (3.2.57)

The above equation shows that the coherent states are not orthogonal but if

|β − α|2 is large then they are nearly orthogonal.

The completeness relation

The completeness relation for the coherent state |α〉 can be written in the

form of an integral on to the complex α plane i.e

1

π

∫
|α〉〈α|d2α = 1, (3.2.58)

where d2α = dRe(α)dIm(α). The Proof of the above relation is as follows∫
|α〉〈α|d2α =

∫
e−|α|

2
∞∑
n=0

∞∑
m=0

αnα∗m√
n!
√
m!
|n〉〈m|d2α. (3.2.59)

We now transform above relation in polar coordinates by taking the explicit

form for α = reiθ such that d2α = rdrdθ and get∫
|α〉〈α|d2α =

∞∑
n=0

∞∑
m=0

|n〉〈m|√
n!
√
m!

∫ ∞
0

drer
2

rn+m+1

∫ 2π

0

dθei(n−m)θ. (3.2.60)

But we know that
∫ 2π

0
dθei(n−m)θ = 2πδnm and by changing the variables as

r2 = y, 2rdr = dy and for the condition that m = n we have∫
|α〉〈α|d2α = π

∞∑
n=0

|n〉〈n|
n!

∫ ∞
0

dye−yyn. (3.2.61)

We also know that
∫∞

0
dye−yyn = n!, hence∫
|α〉〈α|d2α = π

∞∑
n=0

|n〉〈n|. (3.2.62)
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Which satisfies eq. (3.2.58), by making use of the condition for number state

i.e
∑∞

n=0 |n〉〈n| = 1. By the use of this completeness relation for the coherent

state of harmonic oscillator, any arbitrary state vector say |ϕ〉 in the Hilbert

space of harmonic oscillator can be written in terms of the coherent states of

harmonic oscillator as

|ϕ〉 =

∫
d2α

π
|α〉〈α|ϕ〉. (3.2.63)

Over Completeness

A coherent state can be expressed in terms of another coherent state by using

the nonorthogonality condition, i.e by making use of eq. (3.2.63)

|β〉 =
1

π

∫
d2α|α〉〈α|β〉, (3.2.64)

where 〈α|β〉 = e−
1
2

(|α|2+|β|2)+α∗β using eq. (3.2.56).

|β〉 =
1

π

∫
d2αe−

1
2

(|α|2+|β|2)+α∗β|α〉. (3.2.65)

This relation is referred as over completeness.

Temporal Stability

A coherent state remains coherent under the time evolution. Let us have

a coherent state defined at time t = 0 as |α, 0〉. Now the question is, can

we get a time evolved coherent state by making use of the coherent state

at t = 0? The answer is ”yes” we can, by making use of the unitary time

evolution operator Û(t)[9]. Such that Û(t)|α, 0〉 = |α, t〉. Where α, t〉 is the

time evolved coherent state. This operator is defined as

Û(t) = e−
iĤt
~ , (3.2.66)

where Ĥ is the usual hamiltonian Ĥ = ~ω
(
â†â+ 1

2

)
for the harmonic oscil-

lator and hence

|α, t〉 = e−iωt(â
†â+ 1

2
)|α, 0〉. (3.2.67)



CHAPTER 3. COHERENT STATES..... 26

In previous section we have shown the form of the coherent state |α〉 in

eq. (3.2.25) and eq. (3.2.34). These equations represent the coherent state

for harmonic oscillator at time t = 0 we may write |α, 0〉 as

|α, 0〉 = e−
1
2
|α|2

∞∑
n=0

αn√
n!
|n〉. (3.2.68)

Now the time evolved state can be written as

|α, t〉 = e−
1
2
|α|2

∞∑
n=0

αn√
n!
e−iωt(â

†â+ 1
2

)|n〉. (3.2.69)

Also we know that the entity â†â is the number operator N̂ and N̂ |n〉 = n|n〉,
therefore using these results in above equation we get

|α, t〉 = e−
1
2
|α|2e−

iωt
2

∞∑
n=0

αn√
n!
e−iωtn|n〉, (3.2.70)

Now by defining ά = αe−iωt such that |ά| = |α|, we can write the above

equation as

|α, t〉 = e−
iωt
2

(
e−

1
2
|ά|2

∞∑
n=0

άn√
n!
|n〉
)
, (3.2.71)

which is again a coherent state only with some time dependent phase factor

e−
iωt
2 . Therefore a coherent state of harmonic oscillator are stable temporally.

3.3 Generalized Coherent States

So far in this chapter we have discussed the coherent states for harmonic os-

cillator and some of the properties satisfied by these coherent states. We can

also construct the coherent states of the system other then the harmonic os-

cillator, but this sort of construction demands the complete knowledge of the

underlying algebra for the system under consideration. From such algebra we

mean the corresponding ladder operators, their commutation relations and

much more. We do not always develop such kind of algebra for any arbitrary

system, but this does not means that we can not construct the coherent
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states for such cases. We can achieve our target by using the generalized

techniques developed for the construction of coherent states for the systems

other than the harmonic oscillator.

The early algebra based generalization was introduced by Barut and Gi-

rardello in 1971 [10]. Perelomove in 1972 [15] introduced another general-

ized coherent states called generalized perelomove coherent states, which are

applicable to any Lie group. Later in 1996 John R Klauder introduced co-

herent states for hydrogen atom with out the use of underlying algebra [11].

He purposed a generalized form of states that can be referred as coherent

states which are normalized, have the continuity of parameters, resolve unity

and possesses temporal stability. Three years after that in 1999 Gazeau and

Klauder working together presented a more general criteria for the construc-

tion of coherent states for the quantum systems which exhibits discrete and

continuous spectra [12]. This technique is the core of our work and we will

discuss it in detail in this section. Another generalization was introduces by

Fox and Choi in the year 2001 [13]. In their work they have discussed the

generalized Gaussian Klauder coherent states of any arbitrary hamiltonian

satisfying all of the requirements of the coherent states as set by Gazeau and

Klauder [12].

3.3.1 Barut-Girdello Coherent States

Barut-Girardello coherent states were introduced in 1971 in order to gener-

alize the concept of Lie algebra of non compact groups [10]. A connection

was developed relating Lie algebra. The generalized coherent states was con-

structed by considering them as the eigenstates of annihilation operator say

L−. The generalized form of this state is

|ξ〉 =
√

Γ(−2l)
∞∑
m=0

(
√

2ξ)m

(m!(Γ(−2l +m)))
1
2

|l,m〉, (3.3.1)

where |l,m〉 are the basis vector of the Hilbert space and ξ is any complex

number.
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3.3.2 Perelomove Coherent States

Perelomove in 1972 [15] and presented a more generalized form of the coherent

states based on algebraic structure which works for all kinds of Lie algebra.

He defined these coherent states as

The system of coherent states which have the form (D|ψ0〉) is called a set of

states |ψn〉 i.e |ψn〉 = D(n)|ψ0〉 where n runs over all the group G. Let H be

the stationary subgroup of the state |ψ0〉. then the coherent state |ψn〉 can be

determined by the point x = x(n) of the factor space G/H corresponding to

the element n i.e |ψn〉 = eiα|x〉 and |ψ0〉 = |0〉,

where D is the representation of the group G acting in the some space H and

|ψ0〉 is a fixed vector of this space.

3.3.3 Gazeau-Klauder (G.K) Coherent States

The Algebra independent generalized coherent states were introduced by

Klauder in 1996 [11] and the idea was extended in a joint effort by Gazeau

and Klauder in 1999 [12]. They named these states as generalized Gazeau-

Klauder (G.K) coherent states, that are defined for the quantum systems

which exhibits discrete energy spectrum by making use of two coherent state

parameters say |ζ, ϑ〉 where ζ ≥ 0 and −∞ < ϑ < ∞. In order to call the

state |ζ, ϑ〉 they also have mentioned a set of suitable requirements involv-

ing the Hamiltonian operator Ĥ for the concerned quantum system. These

requirements are as follows

1. Continuity of the parameters i.e (ζ́ , ϑ́)→ (ζ, ϑ).

2. Resolution of unity i.e 1 =
∫
|ζ, ϑ〉〈ζ, ϑ|dx(ζ, ϑ).

3. Temporal stability i.e exp(−iĤt)|ζ, ϑ〉 = |ζ, ϑ+ ωt〉 ω is a constant.

4. Action Identity i.e 〈ζ, ϑ|Ĥ|ζ, ϑ〉 = ωζ.
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For any Hamiltonian say Ĥ having a discrete spectrum with the condition

that Ĥ ≥ 0 and Ĥ|n〉 = En|n〉 where n ≥ 0 and |n〉 are orthonormal eigen-

states of Ĥ the generalized G.K coherent states can be defined as

|ζ, ϑ〉 =
1√
N(ζ)

∞∑
n=0

ζ
n
2 e−ienϑ
√
ρn
|n〉, (3.3.2)

where en is the dimensionless form of the energy spectrum En and ρn is

defined as the product of these dimensionless energies en i.e

ρn =
n∏
i=0

ei, (3.3.3)

In order for this product to be non zero we set the energy for ground state

e0 = 1. N(ζ) is the normalization constant which can be chosen so that

〈ζ, ϑ|ζ, ϑ〉 =
1

N(ζ)

∞∑
n=0

ζn

ρn
≡ 1, (3.3.4)

Therefore

N(ζ) =
∞∑
n=0

ζn

ρn
. (3.3.5)

These generalized states can readily be reduced to the coherent states for

the harmonic oscillator. For the harmonic oscillator the energy spectrum can

be given as En = ~ω(n+ 1
2
). We can write its dimensionless form as en = n

with out the loss of generality. Now making use of eq. (3.3.3) we can write

ρn = n!. Also we may assume that α =
√
ζe−iϑ such that αn = ζ

n
2 e−inϑ also

by eq. (3.3.5) the normalization constant N(ζ)2 = eζ which can be written

in the form of α as N(ζ) = e
1
2
|α|2 by substituting these values in eq. (3.3.2)

we get

|α〉 = e−
1
2
|α|2

∞∑
n=0

αn√
n!
|n〉. (3.3.6)

which is exactly in accordance with the eq. (3.2.25) and eq. (3.2.34). We

may also say that these generalized G.K coherent states are actually the

generalized form of the harmonic oscillator coherent states.
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Applications of G.K Coherent States

Generalization of coherent states makes them very useful in different fields

of Physics. Coherent states are of fundamental importance in the field of

quantum optics. For example generalized G.K coherent states were developed

for pseudo-harmonic oscillator [18], the Morse potential [23,24], Pöschl-Teller

potential [19], the power law potentials [20,21], the triangular well potential

[22]. These coherent states can be used to discuss anharmonic crystals [42],

non equilibrium statistical mechanics [43], elementary particle physics [44,45],

quantum oscillators [48] and many more applications of coherent states can

be found in [46,47].

3.3.4 Gaussian Klauder Coherent States

The generalized Gaussian coherent states [14] were introduced by R. Fox in

the year 1999. These states were introduced in order to criticise the notion

that a Gaussian function can not be used to approximate a coherent state.

Fox presented that a Gaussian function is quite suitable choice for the con-

struction of generalized Gaussian coherent states and he clearly mentioned

that these states resolve unity and shows a little variation for the selected

operators. He constructed these states for harmonic oscillator and Rydberg

atom. He named these states as Gaussian-Klauder coherent states and con-

structed them for a particle in 2D square box [13]. The Generalized form for

such states can be written as

|ζ, ϑ〉 =
∞∑
n=0

e−
(n−ζ)2

4σ2

(N(ζ))
1
2

eienϑ|n〉, (3.3.7)

Where N(ζ) is the normalization constant and is given as

N(ζ) =
∞∑
n=0

e−
(n−ζ)2

2σ2 . (3.3.8)

Also ζ and ϑ are the coherent state parameters such that ζ ≥ 0 and −∞ <

ϑ <∞ and σ is related to the width of the Gaussian.



Chapter 4

The Coherent States for the
Morse Oscillator

4.1 Introduction

After discussing the Morse oscillator in chapter 2 and developing the con-

cepts about the coherent states for general systems in chapter 3, we are now

in a position to develop the coherent states for the Morse oscillator. The

formalism introduced by Gazeau and Klauder (hereafter referred to as G-

K) for the construction of coherent states [12] for the general hamiltonian

is quite suitable for the Morse oscillator. Earlier some attempts have been

made [23, 31, 32] by various authors to construct the coherent states for the

Morse oscillator. In present work we construct the coherent states for the

Morse oscillator using G-K formalism and discuss their dynamical behaviour

by means of auto correlation function, position and momentum space wave-

functions and the Wigner distribution function.

The chapter is organized as follows: In section 4.2 the G-K coherent

states for the Morse oscillator are constructed. The statistical measures

which are necessary for the study of the coherent states are discussed in sec-

tion 4.3. Section 4.4 is dedicated to the study of the dynamical behaviour of

these states. We calculate the auto correlation function and study the phe-

nomenon of quantum revivals. We construct the coherent state wave packets

31
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in position space and momentum space, and discuss their time dependence.

Then the position and momentum space probability densities are calculated

as a function of time that leads to the formation of the quantum carpets.

Moreover, we calculate the expectation values of position and momentum

and discuss the phase space spanned by these expectation values. Lastly we

discuss Wigner quasi probability distribution function. The Wigner function

accounts for the nonclassical characteristics of the Morse oscillator.

4.2 Gazeau-Klauder Coherent States for Morse

Oscillator

Following the G-K formalism, presented in chapter 3, the coherent states for

the Morse oscillator can be given as

|ζ, ϑ〉 =
1√
N(ζ)

nmax−1∑
n=0

ζ
n
2 e−ienϑ
√
ρn
|n〉, (4.2.1)

where en is the dimensionless form of energy spectrum which we can calculate

using the expression for energy spectrum Eneq. (2.3.19) as

en ≡ κ(En − E0) = −n(n+ 1− ν), (4.2.2)

where κ = − 2µ
~2ξ2 , En is the energy of the nth state and E0 is the energy of the

ground state. Also ρn is defined by eq. (3.3.3) as the product of the above

dimensionless energy spectrum en, where ρ0 = 1. We can get an explicit form

of ρn by making use of eq. (4.2.2) in eq. (3.3.3)

ρn ≡
nmax∏
i=1

ei = n!
Γ(ν − 1)

Γ(ν − n− 1)
, (4.2.3)

while driving the above expression we make use of the following property of

the gamma function i.e,

Γ(z) =
π

Sin(πz)

1

Γ(1− z)
. (4.2.4)
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From eq. (4.2.2) we can see that due to the presence of the factor ν energy

spectrum can not take infinite values. Therefore the summation on n in

eq. (4.2.1) does not run from 0 to ∞, but up to some finite number which

can be determined using eq. (2.4.6) as nmax = ν−1
2

. Where N(ζ) is the

normalization constant given by eq. (3.3.5) and explicitly given for the Morse

oscillator as

N(ζ) =
nmax−1∑
n=0

ζn

n!

Γ(ν − n− 1)

Γ(ν − 1)
. (4.2.5)

Also ζ and ϑ are real parameters. The domain of ϑ is −∞ < ϑ <∞ while ζ

lies between 0 < ζ < R and R is the radius of convergence and depend upon

the nature of ρn at large value of n and is given as R = limn→∞ n
√
ρn.

It can be proved that the coherent state given by the eq. (4.2.1) satisfies all

of the requirements set by Gazeau and Klauder i.e continuity of parameters,

temporal stability and action identity, while the resolution of unity is still

an open problem for the case of Morse potential. We can take resolution of

unity for granted and study the dynamical properties of the coherent state

for the Morse oscillator.

4.3 Statistical Measures of the Coherent State

Before presenting the dynamics of the states constructed for the Morse os-

cillator, here we want to mention some of the statistical measures of the

coherent state. The statistical measures involves the calculation of 1st and

2nd order expectation values of the number operator N̂ .

〈n〉 = 〈ζ, ϑ|N̂ |ζ, ϑ〉 =
nmax−1∑
n=0

1

N(ζ)

nζn

ρn
, (4.3.1)

〈n2〉 = 〈ζ, ϑ|N̂2|ζ, ϑ〉 =
nmax−1∑
n=0

1

N(ζ)

n2ζn

ρn
. (4.3.2)

Using the above expectation values we can define the spread of number op-

erator ∆n as

∆n =
√
〈n2〉 − 〈n〉2. (4.3.3)
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The calculation of mean and ∆n is essential, as the weighting distribution of

the coherent states depends upon these entities. For example in the case of

coherent states for the harmonic oscillator the mean and spread ∆n are equal

which characterizes a poisson distribution. For the case of coherent states

for the triangular well [22] the spread is always greater than mean hence the

weighting distribution is super-Poissonian. The weighting distribution for

the above coherent states can be defined as

|wn|2 ≡ |〈n|ζ, ϑ〉|2 =
1

N(ζ)

ζn

ρn
, (4.3.4)

where wn accounts for the initial localization of the coherent state around

〈n〉. The weighting distribution is dependent on the coherent state parameter

ζ, in such a way that 〈n〉 changes with ζ. This dependence is illustrated by

the following figure 4.1
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Figure 4.1: Dependence of 〈n〉 on the Model Parameter ζ in (a) ζ = 106,
〈n〉 ≈ 2, (b) ζ = 251, 〈n〉 ≈ 5, in (c) ζ = 451, 〈n〉 ≈ 10 and in (d) ζ = 602,
〈n〉 ≈ 15, also for numerics we have taken ξ = 0.5, ϑ ≈ 0, ν = 57.44 and
nmax = 27.
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4.4 Dynamical Behaviour of the Coherent State

In previous section we have seen the construction of the coherent states for

the Morse oscillator along with the various parameters involved. This section

is dedicated to the study of the dynamical behaviour of these states.

4.4.1 Time Evolution of the Coherent State

The time evolved coherent state can be obtained by the action of the time

evolution operator Û(t) = e
−iĤt

~ on eq. 4.2.1 as Û(t)|ζ, ϑ〉 = |ζ, ϑ, t〉 and time

dependent form can be written as

|ζ, ϑ, t〉 =
1√
N(ζ)

nmax−1∑
n=0

ζ
n
2 e−ien(ϑ+ωt

2
)

√
ρn

|n〉, (4.4.1)

where ω is the phase frequency and Ĥ is the Hamiltonian for the Morse

oscillator. We are intrusted in the temporal characteristics of these states.

In other words, we are intrusted to find out how closely the time evolved

states resembles to the initial states. Which can be explained by the auto

correlation function.

Auto Correlation Function A(t)

According to Poincarè’s theorem, the states of the quantum system which

have the discrete energy eigenvalues and are initially localized, when evolved

with time eventually regain its initial form. This phenomenon can be ob-

served using the auto correlation function [49] and the time elapsed in this

interval is known as revival time [49–51]. The time development of the coher-

ent state given by eq. (4.4.1) involves the study of the overlap 〈ζ, ϑ, t|ζ, ϑ, 0〉.
This overlap is termed as auto correlation function A(t) and can be written

as

A(t) ≡ 〈ζ, ϑ, t|ζ, ϑ, 0〉 = 〈ζ, ϑ|e
−iĤt

~ |ζ, ϑ〉, (4.4.2)

where, Ĥ is hamiltonian of the system under consideration. This overlap is

also used to calculate the time which the system took to reach an orthogonal
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quantum state, called the time of revival. Using eq. (4.2.1) and the relation

Ĥ|n〉 = En|n〉 we can write eq. (4.4.2) as

A(t) ≡ 〈ζ, ϑ, t|ζ, ϑ, 0〉 =
nmax−1∑
n=0

|wn|2e
−iEnt

~ , (4.4.3)

where wn is the weighting distribution given by eq. (4.3.4).

If our coherent state is initially localized around 〈n〉 having the dispersion

∆n � 〈n〉, we can take the Taylor enpension of the energy En around 〈n〉
such that

En = E〈n〉+
1

1!

(
∂En
∂n

)
n=〈n〉

(n−〈n〉)+ 1

2!

(
∂2En
∂n2

)
n=〈n〉

(n−〈n〉)2+. . . . (4.4.4)

The first term in the expansion is independent of n, also such phase factor is

common to all the terms in the expansion. Therefore it is unimportant here.

The proceeding terms are of great importance as each of them is related to

a time scale as

T1 =
2π∣∣∣∣∂En∂n ∣∣∣∣
n=〈n〉

, T2 =
π∣∣∣∣∂2En∂n2

∣∣∣∣
n=〈n〉

, . . . . (4.4.5)

Therefore we can define a general formula [20] for time scale as

Tα =
2π(

1
α!

∣∣∣∣∂αEn∂nα

∣∣∣∣
n=〈n〉

) , (4.4.6)

where

• α = 1 corresponds to time of classical period of oscillation Tcl.

• α = 2 corresponds to quantum revival time Tqr.

• α = 3 corresponds to super revival time Tsr.

• and so on depending upon the nth dependence of en.
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Particularly for the Morse oscillator this time scale is only restricted to the

quantum revival time as the energy spectrum En eq. (2.3.19) is of the order

n2 and the higher order derivatives of En vanish. The time for classical period

Tcl and quantum revival Tqr for the case of Morse oscillator can be found by

taking 1st and 2nd derivative of eq. (4.2.2) with respect to n i.e,

∂En
∂n

=
ξ2

2
(−2n− ν + 1),

∂2En
∂n2

=
ξ2

2
(−2). (4.4.7)

By making use of eq. (4.4.6) and α = 1 we get the expression for Tcl as,

Tcl =
4π

ξ2| − 2〈n〉 − ν + 1|
, (4.4.8)

also the expression for Tqr using α = 2 is,

Tqr ≡
4π

ξ2
= | − 2〈n〉 − ν + 1|Tcl. (4.4.9)

While analysing the statistical measures we have specified that the mean

value 〈n〉, of the weighting distribution has a direct dependance of the co-

herent state parameter ζ. This implies that the time for classical period and

quantum revival also have an inverse dependence upon the coherent state

parameter ζ by virtue of eq. (4.4.6). However for the case of the Morse os-

cillator having an energy spectrum which have a quadratic dependence upon

n, this makes Tqr independent of 〈n〉 and therefore have no dependence on ζ.

Due to the inverse dependence of Tcl on ζ, we conclude that if we increase the

value of ζ the number for classical periods increases in quantum revival of

the coherent state. This feature can also be observed in the following figure

4.2 for the modulus square of auto correlation function.
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Figure 4.2: Modulus square of auto correlation function (a) for 〈n〉 = 5 and
(b) for 〈n〉 = 10.

Here, from these graphs we can clearly see the exact meaning of the

quantum revival. It can be noticed that at t = 0 the overlap 〈ζ, ϑ, t|ζ, ϑ, 0〉
give maximum result, but after few classical periods this overlap undergoes

a collapse. In the middle region, we see some sort of fractional revivals,

but with the passage of some more time this overlap again give maximum

value, this time is named as quantum revival time. Also similar kind of plots

can be found in [20] for harmonic oscillator restricted only to classical period,

Infinite square well restricted to quantum revival time and the triangular well

potential with no bounds on the time scale depending on the nth dependence

of the corresponding energy spectrum En.
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4.4.2 Dynamics In Position Space

Position Space Wave Function

The position space time dependent wave function Ψ(x, ζ, ϑ, t) for G.K coher-

ent state for the Morse potential can be written by projecting a position bra

i.e 〈x| on to the coherent state given by eq. (4.4.1)

Ψ(x, ζ, ϑ, t) ≡ 〈x|ζ, ϑ, t〉 =
1√
N(ζ)

nmax−1∑
n=0

ζ
n
2 e−ien(ϑ+ωt

2
)

√
ρn

〈x|n〉, (4.4.10)

where, 〈x|n〉 is the eigenfunction ψn(x) for morse potential as given by

eq. (2.3.17). Hence our coherent state in position representation can be

written as

Ψ(x, ζ, ϑ, t) =
1√
N(ζ)

nmax−1∑
n=0

ζ
n
2 e−ien(ϑ+ωt

2
)

√
ρn

ψn(x). (4.4.11)

The dependence of probability distribution
∣∣Ψ(x, ζ, ϑ, t)

∣∣2 on the coherent

state parameter ζ taking ϑ = 0 and t = 0 can be shown in the Figure 4.3.

From the figure we conclude that with increasing the value of the parameter ζ

the center of the initial state shift towards left and results in the delocalization

of the probability distribution in space, as the height of the decreases and

width increases.
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Figure 4.3: Probability distribution dependence on the coherent state pa-
rameter ζ at t = 0.

Time Evolution of Probabilities Densities

The snap shots for probability density at different intervals of time can be

represented by following figure. In this figure we see that for a fixed value of

ζ which we have taken as 251 for present case. At t = 0 we get a single well

localized peak, as time passes this peak splits up in to multiple peaks and

gets delocalized in space this can be observer at t = 5Tc1 and at t = 15Tcl,

but at the revival time we again get a single well localized peak resembling

the one we have obtained at t = 0.



CHAPTER 4. THE COHERENT STATES OF THE MORSE... 41

-1 0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t = 0

-2 -1 0 1 2 3 4
0.0

0.1

0.2

0.3

0.4

0.5

t = 5TCl

-2 -1 0 1 2 3 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

t = 15TCl

(x
)

X
-1 0 1 2 3

0.0

0.2

0.4

0.6

0.8

t = TQR

Figure 4.4: Snap shots for probability density at different times.

We can also study the evolution of probability density as a function of

time by plotting the quantum carpets for position space wave function, for

the coherent states of the Morse potential Figure 4.5. The probability density

is defined as ∣∣Ψ(x, ζ, ϑ, t)
∣∣2 = Ψ∗(x, ζ, ϑ, t)Ψ(x, ζ, ϑ, t), (4.4.12)

which on using eq. (4.4.11) becomes

∣∣Ψ(x, ζ, ϑ, t)
∣∣2 =

1

N(ζ)

nmax−1∑
m=0

nmax−1∑
n=0

ζ
m+n

2

√
ρm
√
ρn
e−i(en−em)(ϑ+ωt

2
)ψ∗m(x)ψn(x).

(4.4.13)

The above expression can be split in to two expression which are,

x1 =
1

N(ζ)

∑
m=n

Jn

ρn

∣∣ψn(x)
∣∣2, (4.4.14)

x2 =
1

N(ζ)

∑
m6=n

J
n+m

2

√
ρn
√
ρm

e−i(en−em)(ϑ+ωt
2

)ψ∗m(x)ψn(x). (4.4.15)
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Hence eq. (4.4.13) becomes,∣∣Ψ(x, ζ, ϑ, t)
∣∣2 = x1 + x2. (4.4.16)

It can be concluded that the expression for x1 is independent of time and

therefore provides us with a constant back ground in the formation of quan-

tum carpets. While on the other hand x2 is dependent upon time and results

in the quantum interfering terms which result in the formation of the pattern

we observe in figure 4.5. The colored region in Figure 4.5 represents the max-
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Figure 4.5: Quantum carpet for one Tqr with ζ = 251.

imum probabilities while the white space represents minimum probabilities.

For the comparison we also plotted the quantum carpet for 1
4
Tqr along with

the quantum carpet for harmonic oscillator in position space. We can see

that for few classical periods these carpets shows similar trend, but as time

increases the quantum carpet for Morse oscillator become distorted due to

the quantum interferences representing anharmonic behaviour. On the other

hand the quantum carpet for harmonic oscillator runs smoothly showing the

harmonic behaviour.
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Figure 4.6: Graphical comparison between the quantum carpet for coherent
state of Morse oscillator and harmonic oscillator.

4.4.3 Dynamics in Momentum Space

The Momentum Space Wave Function

The Fourier Transform connects the position space wave function to the

momentum space wave function by the following relation

φn(p) =
1√
2π~

∫ ∞
−∞

e
−ip.x

~ ψn(x)dx. (4.4.17)

So our coherent state wave function for the Morse oscillator in momentum

space can be written as

Φ(p, ζ, ϑ, t) =
1√
N(ζ)

nmax−1∑
n=0

ζ
n
2

√
ρn
e−ien(ϑ+ωt

2
)φn(p). (4.4.18)

The dependence of probability density
∣∣Φ(p, ζ, ϑ, t)

∣∣2 on the model parameter

ζ in momentum space is shown in Figure 4.7. Here we also take ϑ = 0 and

t = 0. From the figure 4.7, an opposite trend compared to position space has

been noted for momentum space. In this case, we have established that as ζ

increases the probability distribution of the momentum space wavefunction

gets more localized. This comparison is in agreement with the Heisenberg

uncertainty relationship.
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Figure 4.7: Probability density dependence on the coherent state parameter
ζ at t = 0.

Time Evolution of Probabilities Densities

The snap shots for probability density at different intervals of time can be

represented by the following Figure 4.4.3. Here, a similar behavior as has

been observed as for position space wave packet. For ζ =251 and at t =0

we got a well localized probability density; as time passes the single peak

splits up into multiple peaks and get delocalized in space. This can also be

observed at t = 5Tcl and at t = 15Tcl. We witnessed a well localized peak at

the revival time t = Tqr.
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Figure 4.8: Snap Shots of Probability density at Different Times.

The complete picture for the time evolution of the probability density

can be shown by using the quantum carpet for momentum space using

eq. (4.4.18). The probability density for momentum space is defined as∣∣Φ(p, ζ, ϑ, t)
∣∣2 = Φ∗(p, ζ, ϑ, t)Φ(p, ζ, ϑ, t), (4.4.19)

which on using eq. (4.4.18) can be written as

∣∣Φ(p, ζ, ϑ, t)
∣∣2 =

1

N(ζ)

nmax−1∑
m=0

nmax−1∑
n=0

ζ
m+n

2

√
ρm
√
ρn
e−i(en−em)(ϑ+ωt

2
)φ∗m(p)φn(p).

(4.4.20)

The above expression can also be written in the form of two summations as

we have previously for the case of position space wavepacket.

p1 =
1

N(ζ)

∑
m=n

Jn

ρn

∣∣φn(p)
∣∣2, (4.4.21)

p2 =
1

N(ζ)

∑
m 6=n

J
n+m

2

√
ρn
√
ρm

e−i(en−em)(ϑ+ωt
2

)φ∗m(p)φn(p). (4.4.22)
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Such that eq. (4.4.20) becomes,∣∣Φ(p, ζ, ϑ, t)
∣∣2 = p1 + p2. (4.4.23)

Figure 4.9 shows the quantum carpet for one Tqr for Momentum space and
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10

15

20

25

30

35

P

Figure 4.9: Quantum Carpet for one Tqr with ζ = 251.

all other parameters are same as we have used for the calculation of position

space quantum carpet. The similar result can be concluded form this picture

as we got in the case of position space. The time independent term p1 pro-

vides a constant back ground while time dependent term p2 is responsible for

the quantum interferences. Like before here we show a comparison between

quantum carpet of Morse oscillator for 1
4
Tqr and quantum carpet of harmonic

oscillator as we have shown in the position space representation. Here we

also see the similar behaviour as we have discussed before for position space.
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Figure 4.10: Graphical comparison between the quantum carpet for coherent
state of Morse oscillator and Harmonic oscillator.

4.4.4 The Phase Space Picture

Time Evolution of Expectation Values 〈x(t)〉

The time dependent coherent state wave function for the Morse oscillator is

given by eq. (4.4.11). We can study the time evolution of the expectation

valves of position by using formula

〈x(t)〉 =

∫ ∞
−∞

x|Ψ(x, ζ, ϑ, t)|2.dx (4.4.24)

Time evolution of the expectation values in position space for one quantum

revival time Tqr is shown in Figure 4.11. For the numerics we have used

eq. (4.4.11) taking ζ = 251, ϑ = 0, ξ = 0.5, ν = 57.44, n = 0, 1, . . . , 27,

〈n〉 = 5 and taking integrating limits form x = 0, 1, . . . , 10. From Figure 4.11

we see the trend with which the expectation values of position are evolving

with time. The average values dies in the middle but reappears at quantum

revival time.
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Figure 4.11: Expectation values for Tqr, τ = t
Tcl

.

Time Evolution of Expectation Values 〈p(t)〉

Using eq. (4.4.18) we are able to find the time evolution of the expectation

values of momentum.

〈p(t)〉 =

∫ ∞
−∞

p|Φ(p, ζ, ϑ, t)|2dp. (4.4.25)

The plot for eq. (4.4.25)is given in figure 4.12. For numerics we have used

same values as we have used for the case of expectation values of position.

Here we have taken the integrating limits for momentum p = 0, 1, . . . , 10.

From Figure 4.12, we see the trend about the time evolution of the expec-

tation values which also dies in the middle and revive again at revival time

Tqr.
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Figure 4.12: Plot for 〈p〉 for one Tqr with ζ = 251, τ = t
Tcl

.

We have calculated the expectation values in position space 〈x(t)〉 and as

well as in momentum space 〈p(t)〉. Now by using these expectation values

we are going to present a Phase Space picture Figure 4.13 representing the

time evolution for one Tqr of the Morse oscillator. From this figure it can be

noted that initially for few classical periods we get approximately a closed

trajectory as one can observe for the case of harmonic oscillator. But as

time passes and the quantum interferences arises, we get a spiral phase space

trajectory which minimizes with time till we see some fractional revivals in

the middle. After these fractional revivals it again minimizes with time. As

we approach near quantum revival the trajectory again gets maximize full

revival can be observed at revival time Tqr.
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Figure 4.13: phase space for one Tqr with ζ = 251.

4.4.5 Quasi Probability Distribution

In past due to the increasing development in the field of quantum mechanics

science society felt a need to calculate the quantum mechanical behaviour of

the system in a classical way. The first milestone in this regard is the phase

space distribution. In order to measure the expectation values of quantum

mechanical observable in classical fashion Wigner in the year 1932 introduced

the Wigner distribution function by considering the joint distribution of the

probabilities in momentum and position space. This distribution function

took much fame as it involves the features that are common to both classical

mechanics and quantum mechanics. This Wigner distribution takes on the

negative values which makes it different form the probability distribution that

will always give us positive values. So it is named as quasi probability distri-

bution. The reason for the appearance of these negative values was efficiently

discussed in [53] by Hudson In his work he mentioned that Wigner distri-

bution function involves the observable X for position and P for momentum

satisfying the Heisenberg commutation relation [X,P ] = i~. Incompatibility

of these observables is the reason for the appearance of these negative prob-
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abilities. Due to the incompatibility joint probability distribution can not

be measured by any experimental technique which is a postulate of quantum

theory. We can therefore also refer the appearance of the negative values

as the appearance of non classicality of the quantum system under study.

In [54] Tatarski discussed the specific rules and properties which makes this

quasi probability distribution different form the true probability.

For our coherent state wave function given in eq. (4.4.10) the Wigner function

can be defined as

W (x, p) ≡ 1

2π~

∫ ∞
−∞

Ψ∗(ζ, x− 1

2
z, 0)Ψ(ζ, x+

1

2
z, 0)e

ipz
~ dz. (4.4.26)

Here, we have plotted Wigner function for different values of ζ. Form these

plots it is evident that for smaller value of ζ non classicality is minimum but

as we increase the value of ζ the non classicality becomes more and more

prominent.
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Figure 4.14: Contour plot of wigner function for ζ = 251.
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Figure 4.15: Contour plot of wigner function for ζ = 452.
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Chapter 5

Summary and Conclusion

In this thesis we have studied the dynamical behaviour of the Morse oscilla-

tor in the context of generalized coherent states. The Morse oscillator is an

anharmonic oscillator that models the dynamics of many physical systems of

great practical importance, for instance, diatomic molecules and polyatomic

molecules. We solve the Schrödinger equation for the system to find out the

eigenvectors and eigenenergies. It has been found that the Morse oscillator

exhibits discrete, non degenerate and finite energy spectrum. We also derive

its harmonic limit for which it reduces to the simple harmonic oscillator. The

coherent states of harmonic oscillator are very well known in many areas of

physics, such as quantum dynamics, quantum optics and quantum field the-

ory.Because of their abundant application, there have been great efforts to

generalize the notion of coherent states for general systems beyond the har-

monic oscillator. In our work, we have studied various methods to construct

generalized coherent states for anharmonic systems. In particular, we studied

the methods to construct generalized coherent states suitable for the Morse

oscillator. One of them is the so called Gazeau-Klauder procedure for gen-

eral hamiltonian systems with discrete, non degenerate and below-bounded

energy spectra.

We have constructed the generalized coherent states for the Morse oscil-

lator based on the Gazeau-Klauder formalism and studied their basic proper-

53
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ties. We study the time evolution of these states and analyze their temporal

characteristics. We have calculated the autocorrelation function to measure

the resemblance of the time evolved coherent states to the initial ones. It

is shown that the Morse oscillator coherent states follow classical evolution

for their short time evolution. Afterwards quantum destructive interference

dominates that leads to the collapse of the states. These states undergo the

process of quantum revivals and fractional revivals. Furthermore, we have

constructed the time evolved coherent state wave packets both in position

space and in momentum space to calculate the corresponding probability

densities as a function of time. The time evolution of these probability den-

sities results in the constructive and destructive interferences leading to the

formation of quantum carpets. We have analyzed the phase space proper-

ties by means of position-momentum expectation values and Wigner quasi

probability distribution function. The negativity appeared in the Wigner

distribution function reflects the non classicality of the constructed coherent

states of the Morse oscillator.
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