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Abstract 

This thesis explores the vulnerability of video recognition models, specifically C3D, 

P3D, and Q3D, to adversarial attacks using the Crimes Scene dataset. Through rigorous 

testing involving seven distinct attack strategies, the study investigates the impact on 

model accuracy, revealing instances where certain attacks consistently lower accuracy 

and others induce constant effects. Comparative analyses extend to benchmarking the 

performance of the three models against others within the domain, employing accuracy 

as a key performance parameter. The findings highlight variations in susceptibility and 

robustness among the models. Subsequently, it proposes and evaluates defensive 

strategies aimed at enhancing the resilience of the models against adversarial attacks. 

This comprehensive examination contributes valuable insights to the field of video 

recognition model security, offering a nuanced understanding of vulnerabilities, 

comparative performance, and effective defense mechanisms. 
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Chapter 1 

 

Introduction and Motivation 
 
 

1.1 Background: 

 
In the recent years, Deep neural networks (DNNs) have evolved tremendously in terms 

of architecture design, training techniques, and applications making them a powerful 

tool in various fields of machine learning and artificial intelligence such as image and 

video processing, Natural Language Processing (NLP), Speech and Audio processing, 

health care, autonomous systems, finance, weather forecasting, and many more. The 

application of deep learning has evolved significantly over the years, driven by 

advancements in research, algorithms, computing power, and the availability of large 

datasets. 

 

Deep neural networks (DNNs) have gained immense popularity for their ability to learn 

complex patterns from data and excel in various tasks. However, their widespread 

adoption is accompanied by significant vulnerabilities and challenges that can have far- 

reaching implications for their performance, security, and overall reliability. These 

vulnerabilities stem from the intricate nature of DNNs, which involve numerous 

interconnected layers of artificial neurons, making them susceptible to a range of issues. 

These vulnerabilities are important to be understood and addressed for the safe and 

responsible deployment of DNNs. 
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The proliferation of Deep Neural Networks (DNNs) in various domains has undeniably 

revolutionized the landscape of machine learning and artificial intelligence [34]. These 

networks, with their deep architectures and intricate training mechanisms, have 

demonstrated exceptional capabilities in tasks that range from image and speech 

recognition to complex natural language understanding. Their contributions have 

permeated almost every facet of modern life, from virtual personal assistants that 

understand and respond to our voice commands to autonomous vehicles that navigate 

our streets safely. The transformative potential of DNNs has not only captured the 

imagination of researchers but has also spurred a wave of innovation in industry and 

academia alike. 

 

However, with this surge in popularity and integration into real-world applications, 

DNNs have unveiled a dark underbelly—their susceptibility to adversarial attacks. 

These attacks exploit the very intricacies that make DNNs so powerful—their 

sensitivity to subtle patterns and features within data. As DNNs delve deep into high- 

dimensional decision spaces to make predictions, they become vulnerable to 

manipulations that may seem imperceptible to human observers but can lead to 

catastrophic misclassifications. 

 

In real-world scenarios, the impact of adversarial attacks on DNNs can be profound and 

far-reaching [7]. Consider the use of image recognition systems in autonomous 

vehicles. These systems play a pivotal role in identifying objects, pedestrians, and other 

vehicles on the road, contributing to safe navigation and collision avoidance. However, 

if an adversarial attack can deceive these systems into misclassifying a stop sign as a 

yield sign or a pedestrian as a lamppost, the consequences can be dire. Such attacks 

could potentially compromise the safety of autonomous vehicles and put lives at risk. 

 

Similarly, in the realm of healthcare, DNNs are increasingly used for tasks like medical 

image analysis and disease diagnosis [15]. Adversarial attacks on these systems could 

lead to misdiagnoses, unnecessary treatments, or even delayed interventions, with grave 

implications for patient health and well-being. 

 

In the financial sector, where DNNs are deployed for fraud detection and risk 

assessment, adversarial attacks can result in the evasion of security measures, leading 

to substantial financial losses. In natural language processing applications, like 
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sentiment analysis and chatbots, adversarial attacks can manipulate user interactions, 

spreading misinformation or even causing harm. 

 

These real-world examples underscore the urgency of comprehending and mitigating 

adversarial vulnerabilities in DNNs. While DNNs have propelled us into an era of 

unprecedented automation and intelligence, they have also introduced a new dimension 

of risk that demands careful consideration. To harness the full potential of these 

powerful tools while ensuring their robustness and reliability, researchers and 

practitioners must confront the multifaceted challenges posed by adversarial attacks and 

work collectively to fortify DNNs against this emerging threat. In the following sections 

of this thesis, we delve deeper into the intricacies of these attacks, their types, and the 

strategies to enhance the resilience of DNNs in an increasingly adversarial landscape. 

 

1.2 Adversarial Attacks 

 
One critical vulnerability inherent to deep neural networks (DNNs) is their 

susceptibility to adversarial attacks. Adversarial attacks exploit a fascinating and 

concerning aspect of DNNs: their remarkable ability to be misled by seemingly 

imperceptible changes in input data. This vulnerability arises due to the complex, high- 

dimensional decision boundaries learned by DNNs, making them sensitive to subtle 

alterations in input features [1]. 

 

In the ever-evolving landscape of artificial intelligence and computer vision, the 

concept of adversarial attacks has garnered significant attention. Adversarial attacks are 

techniques employed to deceive machine learning models, particularly those used in 

computer vision, by subtly altering input data. These alterations, often imperceptible to 

human observers, can lead to incorrect model predictions and, in some cases, serious 

consequences. 

 

Adversarial examples are carefully crafted data points that are designed to deceive 

DNNs into making erroneous predictions. These examples are generated by adding 

perturbations to the original input data in a way that is imperceptible to human observers 

but significantly alters the DNN's output.[3] The perturbations are typically calculated 

using optimization techniques to maximize the model's prediction error, causing the 

DNN to confidently misclassify the input. 
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The susceptibility of deep neural networks (DNNs) to adversarial attacks is a 

paradoxical reflection of their own sophistication. These networks, with their intricate 

architectures, are capable of learning intricate patterns and representations from vast 

datasets, achieving human-level performance in numerous tasks. However, this very 

complexity that empowers DNNs also exposes them to manipulation. Adversarial 

attacks exploit this vulnerability by pinpointing the seams in the DNN's understanding 

of data, exploiting the chinks in their armor to create seemingly innocuous input 

modifications that lead to grievous errors in predictions. 

 

Adversarial examples, the ammunition of these attacks, are meticulously engineered to 

exploit the DNN's blind spots. Crafted with mathematical precision, they introduce 

subtle perturbations that walk a fine line between human imperceptibility and DNN 

sensitivity. These perturbations challenge the DNN's fundamental assumption that 

small input variations should not drastically alter predictions. By shattering this 

assumption, adversarial examples reveal the brittleness of DNNs, demonstrating that 

even state-of-the-art models can be led astray by these carefully constructed deceptions 

[5]. 

 

In essence, adversarial attacks lay bare the paradox of DNNs: their astonishing 

capabilities coexist with their vulnerability to minute alterations in input data. The 

ramifications of this vulnerability extend across domains where DNNs are employed, 

from autonomous vehicles making life-or-death decisions on the road to medical 

diagnoses and financial transactions that impact individuals and societies. As we delve 

deeper into the realm of adversarial attacks, we aim to uncover not only their 

mechanisms but also strategies to fortify DNNs against this intriguing and unsettling 

threat. 
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Example: 

 
Figure 1.1 shows how a simple modification in an image can lead to an adversarial 

attack. 

 

 
Fig 1.1: The Chihuahua vs Muffin example 

 
In the context of an adversarial attack, the "Chihuahua or muffin" example can be used 

to highlight the challenges faced in developing robust machine learning models. For 

instance, an attacker could create subtle modifications to an image of a Chihuahua that, 

when processed by a machine learning model trained to classify dogs, could cause it to 

misclassify the image as a muffin. This manipulation could involve perturbing pixel 

values or adding imperceptible noise to the image. 

 

The "Chihuahua or muffin" example serves as a reminder that even seemingly 

straightforward tasks, such as distinguishing between dogs and muffins, can be 

challenging for machine learning models. Adversarial attacks highlight the need for 

developing more robust and resilient models that can withstand intentional 

manipulations and maintain accurate predictions. 

 

The goal of such attacks is to exploit vulnerabilities in the model's decision-making 

process and expose its lack of robustness. By presenting a seemingly innocuous image 

that the model fails to classify correctly, the attacker can demonstrate the model's 

susceptibility to manipulation and potentially use this knowledge maliciously. 
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Another example is the use of adversarial attacks in security systems where it could be 

used to manipulate facial recognition systems, biometric authentication, or intrusion 

detection. An attacker could alter an image of an authorized individual to gain 

unauthorized access or evade detection. 

 

1.3 Types of Adversarial Attacks 

 
There are two main types of adversarial attacks based on the attacker’s knowledge. 

 
1.3.1 White-box Adversarial Attacks 

 
White-box adversarial attacks are a category of attacks on machine learning models, 

particularly deep neural networks, where the attacker has complete access to the target 

model's architecture, parameters, training data, and decision-making process. The 

attackers study the model's architecture, calculate gradients to understand input-output 

relationships, optimize perturbations to create misleading examples, and test these 

modifications to see if they trick the model into making incorrect predictions. The 

primary goal of a white-box adversarial attack is to generate carefully crafted 

perturbations or modifications to the input data (such as images or text) to deceive the 

model into making incorrect predictions [29]. Figure 1.2 shows a white-box attack 

scenario. 
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Figure 1.2 White-box attack Scenario 

 
1.3.2 Black-box Adversarial Attacks 

 
Black-box adversarial attacks are a type of attack on machine learning models where 

the attacker has limited or no access to the inner workings of the target model. Black- 

box attacks assume that the attacker can only observe the model's input-output behavior 

without knowing its internal details. 

 

In black-box attacks, attackers create a surrogate model imitating the target, use it to 

query the target for responses, exploit transferability, optimize input changes to deceive 

the target, and assess success by testing modified inputs for surprising model 

predictions. The objective of a black-box adversarial attack is to craft inputs (such as 

images, text, or other data) that can cause the target model to make incorrect predictions 

or produce unexpected outputs. Since the attacker doesn't know the exact details of the 

model, they rely on various techniques and strategies to generate these adversarial 

examples [28]. Figure 1.3 shows a black-box attack scenario. 

 

 

Figure 1.3 Black-box attack Scenario 

 
There are further two types of adversarial attacks whose primary distinction arises from 

the intended objective of the attacker. 
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1.3.3 Untargeted Attacks 

 
Untargeted attacks are concerned with manipulating input data in a way that causes a 

classifier, often a Deep Neural Network (DNN) classifier, to make an incorrect 

prediction about the object in the image. The goal here is to introduce subtle changes 

that result in any form of misclassification. The focus is on exploiting the model's 

vulnerabilities and pushing it into making a mistake, regardless of which incorrect 

category it assigns to the object [26]. In untargeted attacks, the intent is to demonstrate 

the model's susceptibility to adversarial perturbations and showcase its potential for 

making errors in its decision-making process. 

 

1.3.4 Targeted Attacks 

 
Targeted adversarial attacks involve the deliberate manipulation of input data, with the 

specific goal of causing a machine learning model, like a Deep Neural Network (DNN) 

classifier, to predict a predetermined incorrect output class. Unlike untargeted attacks, 

where the aim is to induce any form of misclassification, targeted attacks focus on 

steering the model's prediction towards a particular, predefined misclassification. This 

requires crafting precise adversarial examples that guide the model's decision 

boundaries in the desired direction. [27] The success of a targeted attack is measured 

by the ability to make the model confidently predict the specified incorrect class, 

highlighting the model's susceptibility to manipulation and the potential consequences 

of such attacks in practical applications. 

 

1.4 Motivation 

 
While adversarial attacks on images have been extensively explored, the domain of 

video adversarial attacks remains relatively unexplored. Adversarial attacks on video 

recognition models still pose a significant and challenging problem in the field of 

computer vision. Video recognition models, which are designed to understand and 

classify the content of videos, are vulnerable to similar types of attacks that affect image 

recognition models [4]. 

 

Attacks on videos can confuse models by changing things over time, altering frames, 

appearances, or motion patterns. Even the sequence and timing of actions can be messed 
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up, leading to wrong predictions. These attacks can target individual frames (spatial 

attacks) or manipulate the sequence of frames (temporal attacks), revealing 

vulnerabilities in the models' decision-making. These tricks might work in one part of 

the video and still fool the model in other parts. This is risky, like tricking security 

cameras or causing issues with self-driving cars. Smart solutions are being developed 

to tackle these challenges, making models understand motion and time better, to ensure 

they stay accurate and reliable in real-life situations. 

 

However, the dynamic and temporal nature of videos introduces additional and unique 

complexities to the attack scenarios compared to image-based attacks. Videos are 

essentially a series of pictures shown one after another quickly. Since videos are made 

up of frames, what happens in one frame is often related to what happens in the next 

frame. This connection between neighboring frames is like a thread that holds the whole 

video together. This close relationship between neighboring frames is important when 

dealing with adversarial attacks because any changes we make to one frame might 

affect the way things look and move in the frames that come after it. This complexity 

makes crafting effective adversarial attacks on videos quite challenging. Video 

recognition models are vital in diverse fields, from surveillance to entertainment, yet 

their vulnerability to adversarial attacks raises concerns that must be addressed. 

Performing adversarial attacks on videos presents a number of challenges that require 

elaborate solutions.[19] These challenges span various dimensions, including temporal 

consistency, computational intensity, dynamic motion understanding, temporal 

relationship comprehension, real-time constraints, evaluation metric robustness, 

contextual generalization, model transferability, variability accommodation, privacy 

concerns, perceptibility to human observers, and computational demands. 

 

Adversarial perturbations must intricately maintain temporal consistency across 

multiple frames to avoid disrupting the natural video flow, demanding a deeper 

understanding of dynamic motion and context. Optimizing perturbations in both spatial 

and temporal dimensions is computationally intensive, requiring specialized algorithms 

and substantial computational resources, all while considering real-time constraints in 

applications like surveillance. Furthermore, crafting effective adversarial examples 

across different time points amidst evolving video content poses a challenge. Defining 

robust evaluation metrics for quantifying attack effectiveness and impact on recognition 
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models is complex, particularly for diverse and complex video content. The ability of 

adversarial attacks to generalize across varying video contexts, scenes, lighting 

conditions, and camera angles is inherently intricate. Privacy concerns emerge as video 

manipulation raises ethical considerations, especially in personal videos or surveillance 

footage. The perceptibility of these attacks to human observers due to noticeable 

changes in object appearances, motion, and timing sets them apart from attacks on static 

images. Altogether, the high computational cost and multifaceted nature of video-based 

adversarial attacks underscore the need for sophisticated techniques and comprehensive 

understanding to navigate these challenges effectively. 

 

The overall research work can be summed-up as follows: 

 
1. To investigate the susceptibility of video recognition models to 

adversarial attacks, focusing on dynamic content and temporal 

relationships. 

2. To analyze the intricacies of crafting effective perturbations across 

spatial and temporal dimensions, considering the unique challenges 

posed by video data. 

3. Assess the impact of adversarial attacks on real-world applications like 

safety and surveillance systems, highlighting potential vulnerabilities. 

4. Propose and develop novel techniques to enhance the robustness of 

video recognition models against adversarial attacks, ensuring reliable 

performance in dynamic visual contexts. 

 

1.5 Aims and Objectives 

 
The study systematically investigates adversarial threats on video recognition models, 

uncovering vulnerabilities and emphasizing the need for enhanced robustness in 

dynamic scenarios, such as surveillance and autonomous vehicles. 

 

Contributions of our work are: 

 
• The research evaluates a diverse set of adversarial techniques, including the 

Adversarial Patch Technique, noise injection, frame manipulation, and motion 
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blur. This comprehensive assessment simulates real-world challenges, 

providing valuable insights into model-specific vulnerabilities. 

• The findings reveal distinct responses of Convolution 3D, Pseudo 3D, and Quasi 

3D Models to various adversarial methodologies. This in-depth analysis 

highlights model-specific weaknesses, contributing to a nuanced understanding 

of video recognition model behavior under adversarial threats. 

• We have introduced novel defense strategies, including median filtering, 

Gaussian blur, and deblurring filters, which proposes effective countermeasures 

against adversarial perturbations. Notably, the study identifies median filtering 

as a particularly robust defense mechanism, enhancing model resilience. 

• The study extends beyond theoretical insights, providing practical implications 

for deploying video recognition systems in security and law enforcement. The 

research emphasizes the significance of understanding model limitations and 

implementing defense strategies to ensure reliable and secure video recognition 

in real-world applications. 

 

1.6 Thesis Layout 

 
The rest of the thesis is organized as follows: 

 
This introductory chapter explains our research area, problem statement, and the scope 

of this research project. It also includes a brief explanation of the different types of 

adversarial attacks. Chapter 2 provides a review of the recent literature in the field of 

adversarial attacks on images and videos. Chapter 3 includes a detailed explanation of 

the dataset and models that we have used in this work. This is followed by Chapter 4, 

which includes the methodology, and state-of-the-art performances in the literature. 

Chapter 5 deals with the experiments and results analysis based on the model’s 

prediction and presenting making the DNNs resilient against those attacks. In the end, 

Chapter 6 discusses the conclusions of this research work and provides some 

suggestions for the future work. 
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Chapter 2 
 

Literature Review 
 

The growing prevalence of video recognition models across diverse applications has 

fueled significant advancements in computer vision. However, as these models become 

increasingly integrated into critical systems such as surveillance, autonomous vehicles, 

and video analysis, concerns surrounding their vulnerability to adversarial attacks have 

gained prominence. Adversarial attacks, well-documented in the context of image- 

based models, pose unique challenges when extended to video data due to the temporal 

and spatial intricacies inherent in video sequences. In this literature review, we delve 

into the evolving landscape of adversarial attacks specifically tailored to video 

recognition models. By examining the methodologies, techniques, and implications of 

such attacks, this review aims to provide a comprehensive understanding of the current 

state-of-the-art, identify research gaps, and shed light on potential strategies for 

fortifying video recognition models against adversarial threats. 

 

Furthermore, this review will explore the various categories of adversarial attacks on 

video recognition models, including spatial and temporal perturbations, and their 

corresponding impact on model performance. Spatial attacks focus on subtly altering 

individual frames to deceive the model's perception, while temporal attacks exploit the 

sequential nature of videos to disrupt the model's understanding of motion and scene 

progression. By analyzing the strengths and limitations of these attack types, we aim to 

uncover insights into the unique challenges posed by video data and how they differ 

from image-based adversarial attacks. Additionally, this review will delve into the 

transferability of adversarial attacks across different video recognition architectures and 

explore the effectiveness of defenses proposed to mitigate the impact of such attacks. 

By synthesizing the existing literature on this evolving topic, we endeavor to provide a 

comprehensive overview that informs future research 
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directions and facilitates the development of robust and secure video recognition 

models in the face of adversarial manipulation. 

 

2.1 Adversarial Attacks on Obfuscated Gradients 

 
Athalye, Carlini, and Wagner [1], investigate the effectiveness of various defense 

mechanisms designed to protect deep learning models from adversarial attacks. They 

focus on a method known as "obfuscated gradients," which aims to mislead attackers 

by making the gradients of the model difficult to interpret. The authors demonstrate that 

despite the perceived security of these obfuscated gradients, skilled attackers can still 

find ways to generate adversarial examples that can successfully bypass the defenses. 

Their findings highlight the importance of thoroughly evaluating the robustness of 

defense strategies and suggest that relying solely on obfuscated gradients may not 

provide a strong defense against determined adversarial attacks. The paper underscores 

the ongoing challenge of developing defenses that can effectively withstand 

sophisticated adversarial manipulation in deep learning models. 

 

2.2 Large-Scale Adversarial Attacks and Ensemble Defense 

 
In another work by Kurakin, Goodfellow, and Bengio [2], they examine the 

susceptibility of deep neural networks to adversarial attacks in large-scale scenarios. 

The study introduces the Basic Iterative Method, an extension of FGSM, to generate 

subtle perturbations causing significant misclassifications. The authors emphasize the 

potential impact of these attacks on security and privacy in real-world applications. The 

paper also proposes "Ensemble Adversarial Training," demonstrating its effectiveness 

in enhancing model resilience against adversarial examples. 

 

2.3 Efficient Video Adversarial Attacks with Keyframe Selection 

 
The work by Xu, Liu, Yin, Hu, and Ding [3] introduces an innovative approach to 

generating subtle adversarial perturbations in videos. By strategically selecting 

keyframes based on gradient analysis, the method efficiently manipulates specific 

frames to mislead deep neural network models. The proposed sparse adversarial attacks 

achieve comparable performance to dense attacks while utilizing fewer perturbations, 

highlighting the vulnerability of video recognition models to subtle adversarial 
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manipulation. This work contributes to advancing our understanding of adversarial 

attacks in the context of video data and underscores the importance of robustness in 

video recognition models. Figure 2.1 provides an overview of the gradient-based 

keyframe selection method. 

 

 
Figure 2.1 Overview of the gradient-based keyframe selection method 

 
2.4 Search-and-Attack Approach for Video Attacks 

 
The research paper by Heo, Ko, Lee [4] explores a method for inserting strategically 

timed disruptions into videos, known as adversarial perturbations. These disruptions 

aim to deceive video analysis systems while minimizing their visibility to human 

viewers. Referred to as "search-and-attack," this technique identifies key moments to 

insert perturbations, potentially causing misclassification by video analysis algorithms 

thus reducing the computational cost of the attack. The paper highlights the 

vulnerability of video analysis systems to these temporally sparse perturbations and 

discusses their potential implications on security and surveillance. In essence, the paper 

contributes to the field of adversarial machine learning by addressing challenges 

specific to videos and proposing strategies to enhance the resilience of video analysis 

systems. Figure 2.2 shows an overview of search-and -attack pipeline. 
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Figure 2.2 shows an overview of search-and -attack pipeline 

 
2.5 Gradient-Free Decision-Based Black Box Attack with Random 

Search Optimization 

 

In another work by Kim, Yu, and Ro [5], the authors explore a new method for attacking 

machine learning models without knowledge of their internal parameters by presenting 

a Gradient-free decision-based and boundary-free black box attack using random search 

optimization. It employs a coarse-to-fine random search technique to create adversarial 

perturbations that deceive the model's predictions. The approach focuses on a decision- 

based setting, utilizing only output labels, and gradually refines perturbations in a 

targeted manner. This strategy efficiently discovers robust adversarial examples with 

fewer queries to the target model, demonstrating its effectiveness through experiments. 

Figure 2.3 shows two types of query-based black-box attacks according to adversary’s 

knowledge (score and decision based attacks). 
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Figure 2.3 Two types of query-based black-box attacks according to adversary’s 

knowledge (score and decision-based attacks) 

 

2.6 PRADA: Black-Box Adversarial Attacks on Neural Ranking 

Models 

 

In the work by Wu, Zhang and Guo [6], they introduced a method called "PRADA: 

Practical Black-box Adversarial Attacks against Neural Ranking Models" PRADA for 

conducting effective black-box adversarial attacks on neural ranking models. The 

approach generates adversarial queries to manipulate model rankings without needing 

access to internal parameters. PRADA utilizes gradient-based optimization for 

perturbing query terms, ensuring practicality by requiring only query-level access. The 

paper demonstrates the attack's effectiveness through experiments on various neural 

ranking models, emphasizing its real-world relevance and the need to enhance model 

robustness against such attacks in critical domains like search engines and 

recommendation systems. Figure 2.4 shows overall architecture of the PRADA Method. 
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Figure 2.4 Overall architecture of the PRADA Method 

 
2.7 Exploiting Vulnerabilities in Hashing-Based Video Retrieval 

 
In the work by Hu, Huang, Shi [7], the primary objective is to explore and exploit the 

vulnerabilities of a hashing-based video retrieval system. This type of system employs 

a technique called hashing to efficiently store and retrieve videos based on their content. 

Hashing involves converting complex data like videos into compact binary codes, 

allowing for quick and accurate similarity comparisons. The researchers focus on a 

specific strategy to undermine the accuracy of this video retrieval system. They choose 

to manipulate the last 8 frames of a video. These frames are crucial in capturing the 

conclusion or final moments of the video, which often hold important information about 

its content. By perturbing or altering the last 8 frames of a video in subtle and carefully 

calculated ways, the researchers aim to trick the hashing-based system into producing 

incorrect binary codes for these videos. As a result, when the system attempts to retrieve 

videos based on similarity, it might yield inaccurate results, associating videos with 

incorrect or unrelated content. This process effectively demonstrates a form of 

adversarial attack, where small changes to the input data can lead to significant 

misclassifications or errors in the system's output. Such attacks highlight potential 

vulnerabilities that hashing-based video retrieval systems might have against targeted 
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perturbations. The research underscores the need for developing robust defenses against 

these types of attacks to ensure the reliability and accuracy of video retrieval systems. 

Enhancing the resilience of such systems against adversarial perturbations becomes 

crucial to maintaining their effectiveness in real-world applications where accurate 

video retrieval is essential, such as video surveillance, content recommendation, or 

search engines. Figure 2.5 shows the process of querying videos and the creating 

targeted adversarial videos. 

 
 

 
Figure 2.5 The process of querying videos and the creating targeted adversarial videos 

 
2.8 Transferable Adversarial Attacks in Object Detection 

Systems 

 

In another work by Wei, Liang, Chen [8], the researchers focus on the creation of 

transferable adversarial attacks targeting image and video object detection systems. 

These attacks involve generating perturbed images and videos that can fool object 

detection models, even when the models were not originally trained to recognize such 

adversarial examples. The research explores the transferability of adversarial attacks 

across different object detection models, architectures, and datasets. The goal is to 

demonstrate that adversarial perturbations crafted for one model can effectively deceive 

other models, highlighting a potential vulnerability in the generalization capability of 
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object detection systems. The paper likely includes experimental results that showcase 

the success of transferable adversarial attacks in causing multiple object detection 

models to misclassify or fail to detect objects. These findings emphasize the importance 

of developing robust defenses against adversarial attacks in object detection tasks, as 

well as the need to enhance the models' ability to handle diverse and unexpected inputs. 

In essence, the research contributes to the field of adversarial machine learning by 

revealing the cross-model vulnerability of object detection systems and underscoring 

the significance of creating more resilient models to maintain accurate object detection 

performance in various real-world scenarios. Figure 2.6 shows the training framework 

of Unified and Efficient Adversary (UEA). 

 

 

Figure 2.6 The training framework of Unified and Efficient Adversary (UEA) 

 

2.9 Reattack: Efficient Black-Box Adversarial Attack with 

Genetic Algorithms 

 

In the work by Alzantot, Sharma, and Chakraborty [9], the authors introduced a 

pioneering method for generating adversarial examples in the challenging black-box 

setting. The innovation lies in utilizing genetic algorithms, a gradient-free optimization 

technique, to efficiently create these adversarial examples without requiring access to 

the target model's internal details. This method iteratively refines a population of 

feasible adversarial solutions to achieve success. In various experiments, GenAttack 
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demonstrates remarkable query efficiency compared to existing black-box attack 

methods by performing practical experiments on diverse datasets including MNIST, 

CIFAR-10, and ImageNet, drastically reducing the number of queries required for 

adversarial example generation. This approach performs well even on high-dimensional 

datasets like ImageNet and remains effective against defenses that manipulate 

gradients. In essence, GenAttack presents a practical and efficient solution to bolster 

the security and robustness of neural networks against adversarial attacks. 

 

Figure 2.7 shows MNIST adversarial examples generated by GenAttack where Row 

label is the True label and Column label is the target label. 

 
 

 
Figure 2.7 MNIST adversarial examples generated by GenAttack. 

 
By leveraging genetic algorithms and avoiding the need for gradients, GenAttack offers 

a practical and efficient solution for crafting adversarial examples in real-world 

scenarios where model internals are not accessible. Its ability to significantly reduce 

query requirements and effectively target high-dimensional models highlights its 

potential impact on enhancing the security and robustness of deep neural networks. 



CHAPTER 2: LITERATURE REVIEW 

21 

 

 

 

2.10 Temporal Translation for Video Adversarial Attacks 

 
In the work by Wei, Chen, and Wu [10], the authors introduce a pioneering exploration 

of transfer-based attacks on videos, a relatively uncharted research area. It presents a 

temporal translation attack method, a novel approach aimed at enhancing the 

transferability of adversarial examples for video recognition models operating in a 

black-box scenario. The authors conduct an insightful analysis of discriminative 

temporal patterns across diverse video recognition models. This analysis illuminates 

the complexity of achieving cross-model transferability and serves as a foundation for 

their innovative solution. Drawing inspiration from spatial translations in image attacks, 

the paper proposes a temporal translation approach. By optimizing adversarial 

examples over temporally translated video clips, this method diminishes sensitivity to 

specific temporal patterns. This leads to the creation of more transferable adversarial 

examples. The proposed method undergoes rigorous empirical evaluation, involving six 

video recognition models and datasets (Kinetics-400 and UCF-101). The experimental 

outcomes validate the effectiveness of the temporal translation approach, demonstrating 

substantial enhancements in the transferability of video adversarial examples. 

 

Figure 2.8 shows an overview of the proposed methodology. 
 

 

 
 

 
Figure 2.8 Overview of the proposed methodology 
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2.11 Sparked Prior for Motion-Driven Video Adversarial Attacks 
 

In the study by Zhang, Zu, and Yang [12], the authors introduce a "Sparked Prior 

Incorporation" technique that enhances the generation of adversarial perturbations in 

videos. This innovative approach incorporates a sparked prior to capture motion 

information, contributing to more successful attacks by aligning perturbations with 

inherent motion patterns within videos. The resulting "Motion-Driven Perturbations" 

strategy creates convincing and evasive adversarial examples that exploit motion 

patterns while maintaining "Visual Imperceptibility" to human observers. The method 

prioritizes perturbations that manipulate video recognition models effectively without 

being easily detected. Extensive "Empirical Validation" through experiments 

demonstrates the efficacy of motion-driven perturbations and the sparked prior in 

creating potent adversarial attacks against video recognition systems. In summary, this 

approach introduces a novel way to leverage motion information for generating robust 

and visually imperceptible adversarial examples, thereby enhancing their effectiveness 

in video-based attacks. By aligning perturbations with motion patterns, the technique 

achieves a balance between visual imperceptibility and attack potency. The empirical 

validations highlight the efficacy of this method in creating deceptive adversarial 

attacks against video recognition models. 

 

Figure 2.9 shows an overview of motion-excited sampler for black-box video attack. 
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Figure 2.9 Overview of motion-excited sampler for black-box video attack 

 
2.12 Adversarial Attacks on Video Anomaly Detection 

 
In this work, the authors Mumcu et.al [13] presents a comprehensive exploration of 

adversarial attacks targeted at video anomaly detection systems. These attacks involve 

the manipulation of video data to deceive anomaly detection models. The study aims to 

exploit model vulnerabilities by subtly altering input videos to evade anomaly 

detection. It analyzes the susceptibility of video anomaly detection models to 

adversarial perturbations, investigating their accuracy in detecting anomalies and 

highlighting weaknesses. Various techniques are explored for crafting adversarial 

perturbations, involving pixel manipulation and subtle alterations to video frames. 

Empirical experiments rigorously evaluate the effectiveness of proposed attacks, 

assessing their impact on model performance and robustness. The paper offers practical 

insights into the security of video anomaly detection, underscoring the risks of 

adversarial attacks and advocating for the development of more resilient detection 

models. 

 

2.13 Adversarial Attacks in Video Classification using A2F 

Technique 

 

In the work by Chen, Xie, Pang [14], the authors delve into the realm of generating 

adversarial examples for video classification. It introduces a novel approach that 

leverages the semantic and perception spaces to manipulate video content, thereby 

evading detection in video anomaly detection systems. This study introduces the 

innovative Appending Adversarial Frames (A2F) approach, which involves 

strategically replacing consecutive frames in a video with dummy content, followed by 

the addition of adversarial perturbations solely to these modified frames as shown in 

Figure 2.11 adversarial examples are generated for video classification by replacing the 

ending part of the input clip with a few input frames. This two-step process effectively 

pushes the video closer to the classification border, enhancing the attack's success rate 

and minimizing perceptibility. The paper discusses various application scenarios for 

A2F as well, with a particular emphasis on black-box attacks. This approach is 

demonstrated to achieve high success rates across six state-of-the-art video 
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classification networks. Moreover, the approach exhibits remarkable transferability, 

enabling successful attacks across diverse videos and models, highlighting its potential 

as a universal adversarial attack method. In conclusion, this research establishes a 

conceptual framework by projecting videos into semantic and perception spaces. It 

underscores the distinct characteristics of video-based adversarial attacks compared to 

image-based attacks, emphasizing the significance of considering the inherent structure 

of videos. 

 
 

 

 
Figure 2.10 Appending adversarial frame 

 
2.14 Bullet-Screen Comment Attacks on Video Recognition 

Models 

 

In the work by Chen, Wei, Wu [15], the authors investigate the novel concept of 

adversarial attacks on video recognition models using bullet-screen comments (BSCs). 

In this method, the authors focus on patch-based attacks for videos in the black-box 

setting. This method works by formulating the attack process as a Reinforcement 

Learning (RL) problem, the authors enable an efficient search for optimal BSC 

positions and transparencies. The agent, driven by rewards based on fooling rate and 
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BSC overlap, adapts its selection strategy to achieve effective attacks. Extensive 

experiments on prevalent video recognition models and benchmark datasets (UCF-101, 

HMDB-51) demonstrate the BSC attack's efficacy. BSCs, resembling meaningful 

annotations, are attached to videos, making them less perceptible and more authentic. 

The method achieves high fooling rates while occluding only a small fraction of the 

video content. In conclusion, the proposed approach significantly advances the 

understanding of adversarial attacks on video recognition models, providing a valuable 

contribution to the field's ongoing research. 

 

The proposed methodology is shown in Figure 2.11. 
 

 
 

 
Figure 2.11 Overview of black-box adversarial BSC attack method 

 
2.15 Efficient Video Anomaly Detection from Weakly Labeled 

Surveillance Data 

 

In the work by Sultani et. al [16], the authors focused on video anomaly detection using 

surveillance videos. The authors propose a method to learn anomalies by utilizing both 

normal and anomalous videos. Instead of annotating anomalous segments within 

training videos, which is time-consuming, the authors suggest leveraging weakly 

labeled training videos where the labels are assigned at the video level rather than the 

clip level. The approach employs a deep multiple instances ranking framework for 

learning anomalies and automatically generating anomaly scores for video segments. 

Sparsity and temporal smoothness constraints are incorporated into the ranking loss 

function to improve anomaly localization during training. The authors introduce a new, 
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extensive dataset comprising 1900 real-world surveillance videos, totaling 128 hours 

of footage. This dataset features 13 distinct realistic anomalies such as fighting, road 

accidents, burglary, and robbery, alongside normal activities. The dataset can be utilized 

for two primary tasks: general anomaly detection and recognizing each of the 13 

anomalous activities. The paper's experimental results demonstrate that their multiple 

instance learning (MIL) method for anomaly detection outperforms existing 

approaches. Additionally, the dataset serves as a challenging benchmark for activity 

recognition due to the complexity and intra-class variations of activities. Baseline 

methods such as C3D and TCNN are tested on recognizing the 13 different anomalous 

activities. The authors also address the increasing use of surveillance cameras in public 

spaces for safety purposes and highlight the need for efficient video anomaly detection. 

The authors emphasize that practical anomaly detection systems should not rely heavily 

on prior event information and should ideally require minimal supervision. Sparse- 

coding-based approaches are mentioned as promising methods for anomaly detection, 

but they can struggle with changing environments and false alarms. 

 

The flow diagram of the proposed anomaly detection approach is shown in Figure 2.12. 
 

 

 

 
Figure 2.12 The flow diagram of the proposed anomaly detection approach 
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2.16 Efficient Black-Box Video Adversarial Attacks with GEO- 

TRAP 

 

In the work by Li, Aich, and Zu [17], the authors focused on addressing the challenges 

of black-box adversarial attacks against video classification models. The authors 

highlight the relative lack of attention given to video-based attacks when compared to 

their image-based counterparts. This disparity is attributed to the added complexities 

introduced by the temporal dimension in videos, which makes gradient estimation for 

attacks more challenging. The paper introduces a novel approach called "Geometric 

TRAnsformed Perturbations" (GEO-TRAP) to effectively search for gradients that 

maximize the misclassification probability of target videos. The authors also explain 

that query-efficient black-box attacks rely on accurate gradient estimation to create 

adversarial examples that lead to misclassification. In videos, the temporal dimension 

presents challenges in gradient estimation, making the attack process more resource- 

intensive. To address this, the authors propose GEO-TRAP, an iterative algorithm that 

leverages geometric transformations to parameterize the temporal structure of the 

search space. This parameterization reduces the search space and focuses the attack on 

a small group of parameters that describe the transformations. Experimental results on 

the widely used Jester dataset demonstrate the superiority of GEO-TRAP. The proposed 

method achieves better attack success rates with approximately 73.55% fewer queries 

compared to the current state-of-the-art method for black-box video adversarial attacks. 

The experimental results underline the method's effectiveness, showcasing its potential 

for identifying vulnerabilities in video classification models and advancing the 

understanding of black-box attacks in the video domain. 
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Figure 2.13 shows an overview of Geo-TRAP 
 

 
 

 
Figure 2.13 Overview of Geo-TRAP 

 

 

 
2.17 Enhancing Robustness in Video Adversarial Attacks using 

V3A Technique 

 

In the work by Yin, Xu, Hu [18], the authors demonstrate the vulnerability of video 

classification systems to adversarial attacks and propose a novel approach to generating 

robust video adversarial examples. They recognize that traditional methods of 

perturbing video inputs with noise may not result in highly robust adversarial examples. 

The authors identify the challenges associated with crafting robust video adversarial 

examples, a domain that has received less attention compared to image and audio 

counterparts. The authors propose a solution called Video-Augmentation-Based 

Adversarial Attack (v3a) to enhance the robustness of video adversarial examples. The 

proposed v3a approach addresses these challenges by integrating video augmentation 

techniques to improve the loss function's efficacy, leading to the generation of more 

robust adversarial examples. Importantly, v3a also considers the balance between 

perturbation robustness and human perceptibility. By applying transformations 

selectively and iteratively, the method enhances robustness without introducing 
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noticeable perturbations. The authors used the UCF-101 dataset and the long-term 

recurrent convolutional network (LRCN) model to assess v3a's robustness and 

effectiveness compared to existing methods. The results demonstrate that v3a 

significantly improves the fooling rate for both white-box and black-box attack 

scenarios, outperforming benchmarks such as the sparse adversarial video attack (SA) 

and the heuristic black-box adversarial video attack (HA). The method's ability to 

maintain mean absolute perturbation (MAP) within acceptable limits showcases its 

capability to enhance adversarial example resilience without compromising perceptual 

quality. This study contributes to understanding and addressing the challenges of 

robustness in video adversarial examples, highlighting v3a's potential for security- 

critical applications in video classification systems. 

 

Figure 2.14 shows an overview of video-augmentation-based adversarial attack 
 

 

 

 
Figure 2.14 Overview of video-augmentation-based adversarial attack 

 

2.18 V-BAD: Black-Box Video Adversarial Attacks and 

Robustness Evaluation 
 

In the work by Jiang, Ma, Chen [19], the authors introduce a groundbreaking 

framework that addresses a significant gap in the realm of adversarial attacks by 

focusing on the generation of black-box adversarial attacks targeting video recognition 

models by presenting the Video-Based Adversarial Attack (V-BAD) framework. The V- 

BAD framework harnesses the transferability of adversarial perturbations originating 

from image models. These perturbations are used as a starting point for the generation 

of video adversarial examples. To refine and enhance the effectiveness of these 

perturbations, the framework leverages Natural Evolution Strategies (NES), a 
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derivative-free optimization technique and its smart application at the patch level of the 

tentative perturbations. By focusing on patch-level rectification rather than pixel-wise 

adjustments, the framework achieves remarkable efficiency in generating adversarial 

gradients. The authors used three prominent video datasets and two state-of-the-art 

video recognition models to showcase the framework's capability in generating targeted 

and untargeted adversarial attacks. Notably, V-BAD achieves impressive success rates 

with a relatively low number of queries to the target models. This efficiency is 

noteworthy, given that videos inherently possess a significantly higher dimensionality 

than static images. Consequently, V-BAD emerges as a potent tool not only for 

generating adversarial attacks but also for evaluating and bolstering the robustness of 

video recognition models in the face of black-box adversarial attacks. By introducing 

the concept of black-box video adversarial attacks and presenting the innovative V- 

BAD framework, the authors have not only tackled an overlooked aspect of adversarial 

research but also enriched the field with a versatile tool for evaluating and enhancing 

the security of video recognition models. 

 

Figure 2.15 shows an overview of the proposed V-BAD framework for black-box video 

attacks 

 
 

 
Figure 2.15 Overview of the proposed V-BAD framework for black-box video attacks 

 

 

 

In conclusion, this comprehensive literature review illuminates the evolving landscape 

of adversarial attacks targeting video recognition models. As video-based applications 

become increasingly integral to critical systems like surveillance, autonomous vehicles, 
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and video analysis, the susceptibility of these models to adversarial manipulation 

demands thorough exploration. The unique challenges posed by video sequences, 

comprising both spatial and temporal intricacies, necessitate tailored approaches for 

crafting effective adversarial attacks. This review delves into a diverse array of 

methodologies, strategies, and implications of adversarial attacks in the video domain. 

 

The research examined encompasses a wide spectrum of attack techniques, each 

targeting specific vulnerabilities of video recognition models. Spatial attacks subtly 

manipulate individual frames to deceive models' perceptions, while temporal attacks 

exploit the sequential nature of videos to disrupt motion and scene understanding. The 

landscape of defenses and countermeasures is also explored, highlighting the ongoing 

struggle to establish robust defenses capable of withstanding sophisticated adversarial 

manipulation. 
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Chapter 3: 
 

Datasets and Models 
 

In recent years, video recognition models have become really good at understanding 

videos, and they're used in almost all fields of life such as surveillance, recommendation 

services, self-driving cars, and even healthcare. They help us make decisions based on 

what we see in real-time. But there's a problem we need to address - something called 

"adversarial attacks." These attacks are like tricks played on these models. They try to 

confuse the model by making small changes to the videos it sees. While people have 

studied these tricks a lot for pictures, it's different when it comes to videos. This chapter 

is all about how important it is to have the right kind of video data and the right models 

to deal with these tricky attacks. The main purpose of this research is to find the unusual 

things happening in a series of video frames. To do this, we need videos where someone 

has already marked which parts are normal and which parts are abnormal. We used two 

well-known sets of videos for this task. 

 

3.1 Dataset 

 
We demonstrate the effectiveness of our attack on CrimesScene dataset [21]. 

 

3.1.1 Hockey Fight Dataset 

 
The Hockey Fight dataset comprises a collection of 1000 videos, each with an average 

duration of 1.64 seconds and a frame rate of 25 frames per second. 
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Among these videos, an equal distribution is maintained, where 50% represent normal 

instances, while the remaining 50% are designated as fight scenes. The fight scenes are 

recognized as abnormal instances in this research. 

 

3.1.2 CrimesScene Dataset 

 
We used a new dataset called the "CrimeScene Dataset” [21] for the evaluation of scene 

recognition task in videos. We got the idea from the UCF Crimes dataset, which has 

thousands of videos spread over 13 different types of crimes. To detect major crimes in 

video sequences, we gathered a subset of videos from the UCF Crimes dataset, which 

includes three categories: fighting, shootings, and vandalism. We carefully marked 

which parts of these videos were normal and which were abnormal. This labeling helps 

train models to recognize scenes accurately. We named this new dataset the 

"CrimesScene Dataset." 

 

Our dataset contains 286 videos obtained from real world CCTV footage in which the 

average length of videos is 46.9 seconds. There are 201 videos in the training dataset 

and 85 videos in testing dataset. The normal class is labeled as 0 whereas abnormal is 

labeled as 1. All these details are shown in the table below. 

 

Dataset Classes Videos 
Normal 

Scenes 

Abnormal 

Scenes 

 
Hockey fight 

Fighting Single 500 500 

Fighting 45 1045 1962 

 
CrimesScene 

[Ours] 

Shooting 50 827 889 

Vandalism 51 557 1318 

Total 150 2429 4169 

 

The main contribution of the CrimesScene dataset lies in the improved annotation 

quality for the three categories within the UCF Crimes dataset. We have provided a 

finely annotated dataset for real-world major crimes, making it suitable for supervised 

learning-based algorithms. Figure 3.1 shows the procedure adapted to annotate frames 

of video sequence in Normal and Abnormal category. This is activity is repeated for 

videos of each class. 
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Figure 3.1 The procedure adapted to annotate frames of video sequence in Normal and 

Abnormal category. This is activity is repeated for videos of each class 

 

We've created a highly detailed dataset for significant real-world crimes, making it ideal 

for training supervised learning algorithms. This dataset includes videos that fall into 

three similar categories of major crimes. Within each category, there's an imbalance 

between normal and abnormal scenes. We've collected scenes from about 50 different 

videos for each crime type, which means there's a variety of environmental conditions 

and situations. Figure 3.2 (a), (b), (c) and (d) shows the instances from the normal, 

fighting, shooting, and vandalism classes of the Crimesscene dataset. 

 

 

Figure 3.2 Normal instances from the CrimesScene dataset 
 
 

 

(a) Fighting class from the CrimesScene dataset 
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(b) Shooting class from the CrimesScene dataset 
 
 

 

(c) Vandalism class from the Crimesscene dataset 

 
Due to these characteristics, this dataset demands advanced deep learning techniques 

to effectively extract features and identify abnormal scenes within video sequences. 

 

3.2 Video Recognition Models 

3.2.1 Convolution 3D Block 

 

A 3D convolutional block [33], often referred to as a "3D Convolution Block" or simply 

"Conv3D Block," is a fundamental component in 3D convolutional neural networks 

(CNNs). It's used for processing three-dimensional data, typically applied to video data 

or volumetric data such as medical images or 3D scans. This block helps extract 

hierarchical features from the input data. 

 

A typical 3D Convolutional Block consists of the following layers: 

 
1. 3D Convolutional Layer: This layer applies a set of learnable filters to the input 

data, just like a 2D convolutional layer in traditional CNNs but in three 

dimensions. These filters slide over the input volume, computing convolutions 

along the spatial dimensions (width, height) and the temporal dimension (time 

or depth). 

2. Activation Function: After each convolution operation, an activation function is 

applied element-wise to introduce non-linearity into the network. Rectified 

Linear Unit (ReLU) is a common choice. 
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3. Batch Normalization: Batch normalization is used to stabilize and speed up 

training by normalizing the activations of the previous layer within a mini- 

batch. 

4. Pooling Layer: This layer performs down-sampling, reducing the spatial and 

temporal dimensions of the feature maps while keeping the most important 

information. MaxPooling3D, for example, selects the maximum value from a 

small 3D region. 

 

These components are typically stacked together to create a Conv3D Block, and 

multiple Conv3D Blocks are often used in sequence to build deep 3D convolutional 

neural networks for tasks like video classification, action recognition, or medical image 

analysis. 

 

The exact architecture of a Conv3D Block can vary depending on the specific neural 

network architecture and the task at hand, but the core idea remains the same: applying 

3D convolutions to capture spatiotemporal features in three-dimensional data. 

 

The Conv3B Block has achieved state-of-the-art performance in various fields, but they 

require a large amount of training data and are computationally expensive. 

 

A simple Conv3D block is shown in the Figure 3.3. 
 
 

 
Figure 3.3 A simple Conv 3D Block 
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3.2.2 Pseudo 3D Block 

 
A pseudo 3D block, sometimes referred to as a "Pseudo 3D Convolution Block," is a 

specialized building block commonly used in two-stream convolutional neural 

networks (CNNs) for video analysis tasks [21]. It's called "pseudo" because it simulates 

a three-dimensional convolutional operation while actually performing separate 2D 

convolutions on two different input streams: one for spatial information and one for 

temporal information. 

 

Here's how a typical pseudo 3D block works: 

 
1. Spatial Stream: The spatial stream takes in individual frames (2D images) from 

a video sequence. It processes each frame using a standard 2D convolutional 

layer (3x3x1), which captures spatial features within each frame and encodes 

appearance information. 

2. Temporal Stream: The temporal stream takes multiple frames (typically a short 

sequence of consecutive frames) as input. It applies a 1D convolutional layer 

(1x1x3) along the temporal dimension (time) to capture temporal patterns and 

motion information across frames. 

3. Fusion: After processing both streams separately, the results are fused or 

combined in some way. This fusion can take different forms, such as 

concatenating the feature maps or using element-wise operations like addition 

or multiplication. The idea is to merge spatial and temporal information. 

4. Activation Function: An activation function like ReLU is applied to introduce 

non-linearity. 

5. Batch Normalization: Batch normalization may be applied to stabilize and speed 

up training. 

 

By using two separate streams—one for spatial and one for temporal information—and 

combining their outputs, pseudo 3D blocks aim to capture both spatial and temporal 

features in video data. This approach is computationally efficient compared to full 3D 

convolutions while still achieving good performance in video analysis tasks like action 

recognition and video classification. 
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Overall, pseudo 3D blocks are an important component of two-stream CNN 

architectures designed for video-related tasks, allowing models to effectively process 

spatiotemporal information. They leverage the power of 2D convolutional neural 

networks and requires less memory than 3D convolutional networks. Their only 

drawback is that they operate on temporally segmented data and hence may not capture 

long-term temporal dependencies as well as 3D convolutional networks, which operate 

on the entire temporal sequence 

 

Three different variants of P3D units P3DA, P3DB, and P3DC were developed for 

considering direct and indirect influence between the two filters. Figure 3.4 shows 

different variations of the Pseudo-3D Block. 

 

 

Figure 3.4 Different variations of the Pseudo-3D Blocks 

 

 

 

3.2.3 Quasi 3D Block 

 
A quasi-3D block, also known as a "Quasi-3D Convolutional Block," is a building block 

used in deep learning architectures, primarily for video analysis tasks. It is a variant of 

the Pseudo-3D block and combines both 2D and 3D convolutional operations to capture 

spatial and temporal features in video data effectively. [21] 

 

Here's how a quasi-3D block typically works: 

 
1. Spatial Stream (2D Convolution): The spatial stream processes individual 

frames or images from a video sequence using a standard 2D convolutional 
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layer. This layer captures spatial features within each frame, like how traditional 

2D convolutional neural networks (CNNs) operate. 

2. Temporal Stream (3D Convolution): The temporal stream takes a short sequence 

of consecutive frames (video clips) as input and applies a 3D convolutional 

layer along both the spatial and temporal dimensions. This 3D convolution 

captures temporal patterns and motion information across frames. 

 

It uses a 3 × 1 × 3 filter to encode the temporal variation along the horizontal axis. 

It uses a 1 × 3 × 3 filter to encode the temporal variation along the vertical axis. 

3. Fusion: After processing both the spatial and temporal streams, their outputs are 

fused or combined in some way. This fusion step typically involves 

concatenating the feature maps from both streams along a certain dimension or 

using element-wise operations like addition or multiplication. The goal is to 

merge the spatial and temporal information effectively. 

4. Activation Function: An activation function, such as the Rectified Linear Unit 

(ReLU), is applied to introduce non-linearity. 

5. Batch Normalization: Batch normalization may be applied for better training 

stability and faster convergence. 

 

The quasi-3D block leverages both 2D and 3D convolutional operations, allowing it to 

capture spatial details within individual frames and temporal dynamics across frames 

simultaneously. This approach strikes a balance between computational efficiency and 

performance, making it well-suited for video-related tasks like action recognition, video 

classification, and spatiotemporal feature extraction. 

 

In summary, the quasi-3D block is a key component in architectures designed for video 

analysis, as it efficiently extracts both spatial and temporal features from video data, 

which is crucial for understanding and recognizing actions and events in videos. It 

reduced the number of parameters and computational complexity of the model and also 

achieved comparable performance to traditional 3D convolutional networks on video 

analysis tasks. 
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There are three different variants of the Q3D block in terms of their architectural 

differences. 

 

1. Q3D-A: In this design, we have a series of filters that are connected in a cascade 

manner. Specifically, we first apply a spatial filter (S), followed by a temporal 

filter (T). Then, we have a spatiotemporal filter in the X direction (T§) and 

another one in the Y direction (T†), in that particular sequence. In this 

architecture, these filters have a direct influence on each other as they follow a 

common path or sequence. In other words, the output of one filter directly 

affects the input or behavior of the next filter in the chain. 

 
2. Q3D-B: This design is created by arranging the filters in a parallel configuration 

to enable an indirect influence among them. These filters are connected along 

separate pathways, all sharing the same input and collectively contributing to 

the output. In this representation, these elements and filters are interconnected 

in a way that allows them to jointly affect the final output, with each filter 

operating in parallel and contributing to the overall result. 

 
3. Q3D-C: This design is implemented to establish a direct connection among the 

spatial and temporal filters, along with the block's output, aiming to capture the 

combined effect of all spatial and temporal dimensions. To achieve this, two 

additional 1D filters, denoted as S§ and S†, have been introduced in this 

modified version of the Quasi-3D (Q3D) block. In this representation, these 

elements and filters work together to directly influence one another, allowing 

for the comprehensive integration of spatial and temporal dimensions in the 

output. 
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The different variations of the Q3D block are shown in Figure 3.5 below. 
 

 

 

 
Figure 3.5. Different variations of the Q3D block 

 
In this chapter, we delve into the pivotal role of datasets in advancing our understanding 

of adversarial attacks in the context of video recognition models. As we explore the 

characteristics, creation, and utilization of video datasets, we gain insights into the 

unique challenges posed by the temporal dimension of videos. By curating and utilizing 

robust video datasets, we enhance the security and resilience of video recognition 

models in an ever-evolving landscape of adversarial threats. This chapter serves as a 

critical foundation for the subsequent exploration of adversarial techniques and their 

impact on video-based AI systems. 
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Chapter 4 
 

Designing Adversarial Attacks 
 

This chapter introduces different methods of designing adversarial attacks on videos. 

Our goal is to explore various methods for creating attacks specifically targeted at video 

recognition models. These models are essential in applications like surveillance, 

autonomous vehicles, and content recommendation systems. However, their 

vulnerability to subtle manipulations in input data is a significant concern that needs 

thorough investigation. 

 

In this exploration, we will cover a range of adversarial attack techniques, each with its 

unique approaches and strategies. This includes creating perturbations that can fool 

video recognition models and the art of selecting keyframes and timing disruptions 

strategically. Section 4.1 to 4. lists the different methodologies designed for performing 

adversarial attacks on our video recognition models. 

 

4.1 Adversarial Attacks on Video Recognition Models using 

Adversarial Patch Technique 

 

Our first approach takes into account a rather intriguing and effective form of 

adversarial attack using an "Adversarial Patch." [22] This attack method involves 

adding a carefully crafted, seemingly harmless patch or image overlay to an existing 

scene or object. The goal is to manipulate the model's perception of the scene or object 

to produce a desired misclassification or erroneous interpretation. 
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4.1.1 Methodology 

 
The adversarial patch method involves a systematic approach to create and apply 

patches that can deceive video recognition models [22]. These patches are illustrated in 

Figure 4.1 and they are chosen on the basis of certain key parameters. Those key 

parameters include. 

 

• Robustness: These adversarial patches are designed to withstand variations in 

lighting, angle, scale, and other environmental factors. This robustness ensures 

that the attack remains effective across diverse conditions, making it a valuable 

tool for real-world scenarios. 

• Universality: These patches are universal as they are trained on a large and 

diverse dataset, ensuring that the patch remains effective across various 

scenarios and models. 

• Targeted Attacks: These adversarial patches can be crafted to target specific 

objects or classes within an image. This level of specificity allows attackers to 

manipulate model behavior with precision, potentially leading to 

misclassifications that have real-world implications. 

 

First, we select the frames of our video sequence that we want to manipulate. After that, 

we load any one image (out of the three shown in Figure 4.1) that is likely intended to 

be used as an adversarial patch. 

 

 
Figure 4.1 (a) Toaster-Target b) Crab-Target (c) Toaster-Target (Disguided). 

 
After loading the patch, we begin by specifying the location in our target frame where 

the patch should be placed. The available options include the top right corner, bottom 

right corner, top left corner, and bottom left corner. After that we resize it to a smaller 
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dimension so that the patch matches the dimensions of frames or objects in the target 

video where the patch will be applied. This step ensures that the patch fits appropriately 

within the video frames. After that, we convert the patch image from the BGR color 

space to the RGB color space to ensure that the color representation of the patch 

matches the expected color format in the video frames. This is done to avoid the 

differences between the image and the patch i.e., making it imperceptible to the human 

eye. After this, the resized and color-converted adversarial patch will be overlaid onto 

selected frames of the target video and fed to our video recognition models leading to 

misclassifications or misinterpretations by the models. This can be formulated using 

Algorithm 4.1. 

Algorithm 4.1 Attack through Adversarial Patch 

1: Load initial video sequence V. 

2: Load target video sequence ˆV. 

3: Load adversarial patch image as patch. 

4: Resize patch image. 

function applyAdversarialPatch(V, ˆV, patch, patch_location): 

5: Initialize empty video sequence V∗. 

6:  for each frame F in V do 

7: FrameWithPatch ← applyPatch(F, patch, patch_location) 

8: append FrameWithPatch to V∗. 

9:  end for 

10: return V∗. 

function applyPatch(frame, patch, patch_location): 

11: Initialize empty frame outputFrame. 

12: Copy content of frame to outputFrame. 

13: Paste adversarial patch onto outputFrame at patch_location. 

14: Return outputFrame. 

15: Load V, ˆV, the adversarial patch, and its location (patch_location). 

16: V∗ ← applyAdversarialPatch(V, ˆV, patch, patch_location). 

17: Save V∗. 
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Figure 4.2 (a) and (b) shows the original and perturbed frame after adding the 

adversarial patch in the top left corner. 

 

 
Figure 4.2 (a) Original frame (b) Perturbed frame after adversarial patch 

 
4.1.2 Consequences and Implications 

 
Adversarial patches pose significant security and privacy risks across various domains. 

They can deceive surveillance and facial recognition systems, enabling unauthorized 

access and evasion of surveillance. In the realm of autonomous vehicles, these patches 

can jeopardize road safety by causing misinterpretations of the environment. Content 

moderation on platforms like social media becomes vulnerable, as malicious content 

can evade detection. Furthermore, recommendation systems may provide misleading 

suggestions due to attacks on user preference perception, ultimately impacting user 

experiences and content consumption. 

 

4.2 Appending Adversarial Frames to Video Sequences for 

Adversarial Attacks 

 

The second approach is the appending of adversarial frames after several frames of a 

video [13]. This technique tampers the temporal consistency of the videos thus holding 

the potential to disrupt video-based machine learning models and poses significant 

challenges to the integrity of digital video content. 
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4.2.1 Methodology 

 
The process of appending adversarial frames to a video sequence involves strategically 

adding frames to the existing content, which subtly incorporate adversarial 

perturbations and deceive machine learning models. These frames are generated using 

adversarial attack algorithms, which often require knowledge of the target model's 

architecture and parameters. The main objective is to introduce adversarial content to 

the video sequence while allowing for the adjustment of FPS to observe varying results. 

 

In the first step, we begin by selecting an initial FPS setting for the video sequence. 

This value will serve as the baseline for the video manipulation process. For the sake 

of simplicity, we have chosen to maintain the initial FPS at a standard rate of 30 frames 

per second (FPS) commonly used in video content. In this context, the value of FPS 

will signify the frequency at which an adversarial frame is inserted into the video 

sequence, indicating the number of original frames that precede each insertion. 

 

Next, we generate adversarial frames for the attack using techniques like generative 

adversarial networks (GANs) or gradient-based methods. These frames should be 

designed to deceive AI models while remaining visually inconspicuous to human 

observers. In this case, we have employed a carefully crafted adversarial image, as 

illustrated in Figure 4.1. In the next step, we strategically place the adversarial frames 

at specific points within the video sequence to maximize their impact i.e we have 

inserted it into video sequences at a rate of one frame per second (1 FPS) while 

maintaining the temporal coherence in the video by considering the flow of events. 

Inserted frames should not disrupt the natural progression of the video. This technique 

is designed to exploit the temporal nature of videos, where the adversarial frames 

emerge after several frames, making them nearly imperceptible to human observers. 

The deliberate timing of these insertions aims to deceive human perception, as the 

alterations become progressively subtle and inconspicuous. [13] 

 

After that, we fed the altered video sequence to our video recognition models and 

assessed the success of the attack by measuring its impact on the performance of those 

models. Then we iterate through the process, adjusting the parameters, including FPS, 

adversarial perturbation magnitude, and interpolation techniques, to optimize the 
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results. The goal is to find the right balance between adversarial effectiveness and 

human perceptibility. 

 

This approach poses a significant challenge to the human eye's ability to detect subtle 

visual discrepancies, potentially leading to a false sense of authenticity in the 

manipulated video content. This can be formulated using Algorithm 4.2. 

 

Algorithm 4.2 Attack through Appending Adversarial Frames 
 

 
Require: Functions for Adversarial Frame Insertion function append Adversarial 

Frames(video, adversarial_frames, insertion_rate, start_fps, end_fps): 

1: Initialize an empty video sequence for the manipulated video. 

2: manipulated_video ⇐ [] 
3: current_fps ⇐ start_fps 

4: frame_counter ⇐ 0 

5: for each frame F in video do 

6: append F to manipulated_video 

7: if frame_counter % current_fps == 0: 

8: adversarial_frame ⇐ adversarial_frames.pop() 

9: append adversarial_frame to manipulated_video 

10:  if current_fps > end_fps: 

11: current_fps ⇐ current_fps - 1 

12: frame_counter ⇐ frame_counter + 1 

13: return manipulated_video 

14: original_frames ⇐ loadFrames("original_frames_directory/") 

15:adversarial_frames ⇐ 
loadAdversarialFrames("adversarial_frames_directory/") 

16: insertion_rate ⇐ 1 # Insert adversarial frames every 1 second (1 FPS). 

17: start_fps ⇐ 30 

18: end_fps ⇐ 10 

19:manipulated_frames  ⇐ appendAdversarialFrames(original_frames, 

adversarial_frames, insertion_rate, start_fps, end_fps) 

20:saveFramesAsVideo(manipulated_frames, 

"manipulated_video_with_adversarial_frames.mp4") 
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Figure 4.3 (a), (b), and (c) shows the original frame, frame after 3 fps and frame after 5 

fps in which the adversarial patch is appended after 5 FPS. 

 

 

 

 
Figure 4.3 (a) Original Frame (b) After 3 FPS (c) After 5 FPS 

 
4.2.2 Challenges 

 
The appending of adversarial frames within video sequences poses a potent and 

evolving threat to the fields of computer vision and cybersecurity. These imperceptible 

alterations can compromise the security of systems relying on computer vision, 

including surveillance cameras, facial recognition, and autonomous vehicles, by 

deceiving them into making incorrect decisions, potentially leading to security breaches 

or accidents. Moreover, the technique has profound implications for the dissemination 

of disinformation, as malicious actors can manipulate news broadcasts, social media 

videos, or security footage, eroding trust and propagating false narratives in society. As 

machine learning applications in video-based contexts continue to proliferate, the risk 

of adversarial attacks disrupting and compromising these systems becomes increasingly 

significant. Thus, understanding the methodology, challenges, and consequences of 

appending adversarial frames is imperative for the development of effective defense 
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mechanisms and the preservation of the integrity of digital video content in our 

interconnected world. This research sheds light on the intricacies of adversarial attacks 

in video data and highlights the importance of developing robust countermeasures in 

the field of computer vision and cybersecurity. 

 

4.3 Adversarial Attacks on Video Recognition Models through 

Gaussian Noise 

4.3.1 Introduction to Gaussian Noise 

 
Gaussian noise, sometimes called white noise, is a key idea in signal processing and 

statistics. It's a kind of random pattern that follows a familiar bell-shaped curve, known 

as the Gaussian distribution, as shown in Figure 4.2. This noise looks like a bell curve 

and has a few key features: it has a zero mean and unit standard deviation, each piece 

of noise is independent, and it's got a uniform amount of energy across different 

frequencies. Because of these characteristics, Gaussian noise is used in different areas 

like electronics, communication, and image editing. It helps describe the natural 

randomness or errors that can show up in data and signals. [25] Knowing and dealing 

with Gaussian noise is essential for tasks like cleaning up data or making accurate 

measurements. 

 

Figure 4.2 Gaussian Distribution 
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4.3.2 Adversarial Attacks using Gaussian Noise 

 
Adversarial attacks on video recognition models using Gaussian noise involve adding 

subtle noise to individual frames of a video sequence. The noise is drawn from a 

Gaussian distribution, making it appear as random variations that are often 

imperceptible to the human eye but capable of misleading the model's predictions. 

 

In our experiments, we have added subtle Gaussian noise to each frame of our video 

sequence which disrupts the visual coherence of video frames, leading our video 

recognition models to misclassify or misinterpret the content. The carefully crafted 

noise perturbations cause the model to make incorrect decisions, which is particularly 

concerning in safety-critical applications like autonomous vehicles. 

 

4.3.2.1 Methodology 

 
In our approach to these attacks, we uniformly introduced Gaussian noise across all 

frames of the video sequence. Initially, we determined the specific characteristics of the 

Gaussian noise by setting its mean and standard deviation. Combining mean and 

standard deviation allows to craft noise patterns that not only introduce bias (mean) but 

also control the level of randomness or unpredictability (standard deviation) in the 

perturbations.[26] Low values suggest subtler attacks, while high values indicate more 

pronounced and potentially malicious attacks aimed at either causing misclassifications 

or obscuring the visual content of the video. While the mean typically remained at zero, 

we also conducted evaluations with adjusted mean values as needed. For each 

individual frame within the video, we generated Gaussian noise samples based on the 

predefined mean and standard deviation. To achieve this, we employed a random 

number generator that adheres to the Gaussian distribution, thus creating a set of 

random noise values. 

 

Subsequently, we seamlessly incorporated this generated Gaussian noise into each 

frame of the video sequence. This incorporation was achieved by straightforwardly 

adding the generated noise values to the pixel values of each frame. To ensure that the 

pixel values remained within the valid range (e.g., 0 to 255 for 8-bit images), we applied 

clipping to the noisy pixel values. 
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Fine-tuning the noise levels was possible by adjusting the standard deviation. Higher 

standard deviations were associated with more pronounced noise, resulting in noisier 

frames, while lower values yielded a milder noise effect. Finally, after successfully 

introducing Gaussian noise to all selected frames, we preserved the altered video frames 

for subsequent analysis and experimentation. This can be formulated using Algorithm 

4.3. 

 

Algorithm 4.3 Attack through Gaussian Noise 
 

 

Require: Input image I, Mean (μ), Standard Deviation (σ) 

1: Create empty noisy_image 

2: for each pixel (x, y) in I do 

 

3: Generate random noise δ ~ N(μ, σ) 

4: Apply: I(x, y) = I(x, y) + δ 

5: Clip: I(x, y) = clip(I(x, y), 0, 255) 

6: noisy_image(x, y) = I(x, y) 

7: end for 

 

8: return noisy_image 
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Figure 4.4 (a) and (b) shows the original and perturbed image after the addition of 

Gaussian noise. 

 

 

Figure 4.4 (a) Original Image (b) Perturbed Image after Gaussian Noise 

 
4.3.3 Consequences and Implications 

 
Attacks that use Gaussian noise on video recognition models pose two main problems: 

security and privacy. On the security side, these attacks can make the models make 

mistakes, which could let unauthorized people in or miss important security issues in 

things like surveillance. On the privacy side, these attacks can lead to 

misunderstandings by the models, potentially causing unnecessary spying or exposing 

people's private information. In simple terms, these attacks are a growing threat to the 

reliability and safety of computer vision systems, putting security and privacy at risk 

by confusing the models that rely on how things look and move in videos. 

 

4.4 Adversarial Attacks on Video Recognition Models Through 

Contrast Adjustment 

 

The fourth approach of performing adversarial attacks involves the manipulation of 

video data through contrast adjustment. This technique aims to exploit the shortcomings 

of video recognition systems by subtly altering the contrast levels within video frames 

[27] Through this attack, we dive deeper into the intricacies of adversarial attacks using 

contrast adjustment on video recognition models. 
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4.4.1 Methodology: 

 
In this methodology, we adjusted the contrast across all frames of our video sequence 

for manipulating the video sequence. First, we adjusted the parameters for contrast 

adjustment by specifying the alpha (α) and beta parameters. The parameter alpha (α) 

corresponds to a scaling factor that controls the contrast adjustment. It determines how 

much to increase or decrease the contrast in an image. When alpha (α) is set to 1.0 (or 

100%), it means no change in contrast. The image remains as it is. When alpha (α) is 

greater than 1.0, it increases the contrast. This makes the dark areas of the image darker 

and the bright areas brighter, leading to a higher overall contrast. When alpha (α) is less 

than 1.0, it decreases the contrast. This has the opposite effect, making dark areas lighter 

and bright areas darker, resulting in reduced contrast. By adjusting `alpha`, we 

effectively control the extent of contrast modification. The parameter beta (β) allows us 

to shift the brightness of the image. When beta (β) is zero, there is no brightness shift. 

If beta (β) is set to a positive value, it increases the brightness of the entire image. If 

beta (β) is set to a negative value, it decreases the brightness of the entire image. 

 

The alpha (α) and beta (β) parameters provide fine-grained control over how the 

contrast and brightness of an image are adjusted. We aim to adjust these parameters 

such that the alterations blend seamlessly into the video stream, making them difficult 

for human observers to notice. [28] To ensure that the pixel values remained within the 

valid range (e.g., 0 to 255 for 8-bit images), we applied clipping to the altered pixel 

values. 

 

Finally, the altered frames (contrasted frames) can be fed into recognition models, 

potentially causing them to make incorrect decisions because these contrasted frames 

significantly impact how recognition models perceive and interpret visual content 

within videos, ultimately resulting in misclassification or misinterpretation. This can be 

formulated using Algorithm 4.4. 
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Algorithm 4.4 Attack through Contrast Adjustment 

 

Require: Initial video sequence V and target video sequence ˆV 

function adjustContrast(V, ˆV, α, β): 

1: V∗ ⇐ [] // Initialize an empty video sequence. 

2: for each frame F in V do 

3: AdjustedFrame ⇐ applyContrastAdjustment(F, α, β) 

4: append AdjustedFrame to V∗ 

5: end for 

6: return V∗ 

function applyContrastAdjustment(frame, α, β): 

7: outputFrame ⇐ [] // Initialize an empty frame. 

8: for each pixel (x, y) in frame do 

9: adjustedPixel ⇐ (frame(x, y) * α) + β 

10: adjustedPixel ⇐ clip(adjustedPixel, 0, 255) 

11: append adjustedPixel to outputFrame 

12:  end for 

13: return outputFrame 

function clip(value, min_value, max_value): 

14: if value < min_value, value ⇐ min_value 

15: if value > max_value, value ⇐ max_value 

16:  Return value 

17: Load V, ˆV, α, and β 

18: V∗ ⇐ adjustContrast(V, ˆV, α, β) 

19:  Save V∗ 
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Figure 4.5 (a) and (b) shows the original and perturbed image after the contrast 

adjustment. 

 

 
Figure 4.5 (a) Original Image (b) Perturbed image after contrast adjustment 

 
4.4.2 Consequences and Implications 

 
Adversarial attacks using contrast adjustment carry significant implications across 

security, safety, and privacy domains. They pose a severe security risk by potentially 

deceiving surveillance systems, leading to missed threats or false alarms in situations 

where precise video analysis is imperative. They can also lead to certain safety concerns 

particularly in autonomous vehicles, where altered road signs or obstacles due to 

contrast adjustment can confuse perception systems, increasing the risk of accidents or 

unsafe driving conditions. Additionally, privacy becomes compromised as attackers 

manipulate video content to reveal sensitive information or distort identities in 

surveillance footage. These attacks primarily aim to influence recognition models, as 

detailed in the methodology, potentially causing misclassifications or 

misinterpretations by feeding contrast-adjusted frames into models, further highlighting 

the profound consequences of such adversarial tactics. As recognition models' 

importance grows, comprehending and mitigating these attacks is crucial to ensure the 

reliability and security of computer vision systems in our interconnected world. 



CHAPTER 4: DESIGING ADVERSARIL ATTACKS 

56 

 

 

 

4.5 Adversarial Attacks on Video Recognition Models using 

Salt and Pepper Noise 

 

The fifth technique involves performing adversarial attacks using salt and pepper noise, 

a powerful technique to compromise the accuracy and reliability of video recognition 

systems. [29] Though this noise appears to be seemingly harmless, it significantly 

impacts the reliability and security of video recognition systems. 

 

4.5.1 Introduction to Salt and Pepper Noise 

 
Salt and pepper noise, also known as impulse noise, is random interference affecting 

digital images and videos. It appears as scattered white and black pixels resembling salt 

and pepper grains, often due to transmission errors or sensor glitches. This noise 

degrades image quality, making affected regions appear speckled or grainy. To mitigate 

its impact, image processing techniques like median filtering or averaging are 

employed, replacing noisy pixels with values consistent with their surroundings to 

restore image quality and reduce visual artifacts.[30] Figure 4.2 (a) and (b) shows the 

impact on an image before and after adding salt and pepper noise, respectively. 

 

 

Figure 4.2 (a) Before adding salt and pepper noise (b) After adding salt and pepper 

noise 

 

4.5.2 Methodology 

 
In this method, we randomly inject white and black pixels (salt and pepper) into video 

frames at strategic locations. We first select our video frames that we want to alter and 
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then define the parameters for adding salt and pepper noise. The parameters are 

parameters are ̀ salt_prob` and ̀ pepper_prob`, which represent the probability of adding 

salt (white pixels) and pepper (black pixels) noise, respectively. Before performing any 

attack, we create a copy of the video frame to avoid altering the original and calculate 

the total number of pixels in the frame. Based on the defined probabilities (`salt_prob` 

and ̀ pepper_prob`), we compute the number of salt and pepper pixels to be added which 

is done by multiplying the total pixel count by the respective probabilities. 

 

Then, we generate random coordinates within the frame for adding salt noise. The 

number of salt pixels is determined by `num_salt`. Set the pixel values at these 

coordinates to the maximum intensity (255 in the code), creating white pixels (salt) in 

the frame. 

 

After that, we generate random coordinates for adding pepper noise. The number of 

pepper pixels is determined by `num_pepper`.[30] Set the pixel values at these 

coordinates to the minimum intensity (0 in the code), creating black pixels (pepper) in 

the frame. 

 

We ensure that the noise addition maintains temporal consistency. We inject the noise 

across multiple frames, making the noise pattern consistent across the video sequence. 

 

Finally, after adding the Salt and Pepper noise to all frames, we assess the success of 

the adversarial attack by evaluating how the manipulated video sequence affects the 

behavior of the recognition model. The model's misclassification rate or its ability to 

make incorrect decisions is measured based on the manipulated frames. This can be 

formulated using Algorithm 4.5. 
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Algorithm 4.5 Attack through Salt and Pepper Noise 
 

Require: Initial video sequence V and target video sequence ˆV 

function addSaltAndPepperNoise(V, ˆV, salt_prob, pepper_prob): 

1: V∗ ⇐ [] // Initialize an empty video sequence. 

2: for each frame F in V do 

3: NoisyFrame ⇐ applySaltAndPepperNoise(F, salt_prob, pepper_prob) 

4: append NoisyFrame to V∗ 

5: end for 

6: return V∗ 

function applySaltAndPepperNoise(frame, salt_prob, pepper_prob): 

7: outputFrame ⇐ [] // Initialize an empty frame. 

8: totalPixels ⇐ total number of pixels in frame 

9: numSalt ⇐ salt_prob * totalPixels 

10: numPepper ⇐ pepper_prob * totalPixels 

11: for each pixel (x, y) in frame do 

12: if random number < salt_prob: 

13: Set pixel to 255 // Add salt noise 

14: else if random number < salt_prob + pepper_prob: 

15:  Set pixel to 0 // Add pepper noise 

16: else: 

17: Keep the original pixel value 

18: append pixel to outputFrame 

19:  end for 

20: return outputFrame 

21: Load V, ˆV, salt_prob, and pepper_prob 

22: V∗ ⇐ addSaltAndPepperNoise(V, ˆV, salt_prob, pepper_prob) 

23: Save V∗ 

 

 
Figure 4.6 (a) and (b) shows the original and perturbed image after adding salt and 

pepper noise. 
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Figure 4.6 (a) Original Image (b) Perturbed image after adding salt & pepper noise 

 
4.5.3 Consequences and Implications 

 
Adversarial attacks using salt and pepper noise on video recognition models have far- 

reaching consequences. They introduce security vulnerabilities, potentially causing 

these models to make erroneous decisions in critical scenarios like surveillance and 

access control systems, thereby risking security breaches. Moreover, these attacks pose 

substantial safety risks, particularly in autonomous vehicles, where misinterpretations 

of traffic signs or obstacles could lead to accidents and unsafe driving conditions. 

Beyond safety and security, adversaries can exploit this technique to manipulate video 

content for malicious purposes, including spreading misinformation and 

disinformation, ultimately eroding societal trust. To counter these threats, continuous 

advancements in defense mechanisms and research are imperative to safeguard 

computer vision systems and ensure their responsible and secure integration across 

various domains. 

 

4.6 Adversarial Attacks on Video Recognition Models using 

Motion Blur Technique 

 

The sixth approach deals with the deployment of motion blur in videos as a potential 

adversarial attack. [31] The adversarial attacks through motion blur follow a 

meticulously crafted methodology designed to manipulate the visual content of videos 

subtly. 
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4.6.1 Methodology 

 
In this method, we specify the direction, length, and intensity of the blur effect, which 

will be applied to the frames for performing the desired attack. First, we determine the 

parameters for motion blur, which dictate the characteristics of the blur effect. The key 

parameters include. 

 

• The dimensions of the matrix used for applying the blur effect (called the kernel 

size). A kernel size of 15 means that the motion blur effect will be applied using 

a square kernel with dimensions 15x15 pixels. A larger kernel size will result in 

a more pronounced blur effect, as it covers a larger area of the image. 

Conversely, a smaller kernel size will produce a less intense blur effect. kernel 

size and orientation. 

• The direction in which the motion blur is applied (called the orientation). By 

default, the motion blur produces horizontal effect meaning that the objects in 

the video frames will appear blurred in a horizontal direction, as if they were 

moving from side to side. By adjusting the orientation parameter, we can control 

the direction of the blur effect. For example, setting the orientation to a specific 

angle will produce a diagonal motion blur effect. 

 

After this, we apply the motion blur to specific regions within frames by convolving 

the frame with a motion blur kernel. The kernel simulates the effect of motion on objects 

within the video, resulting in blurred frames. [31] 

 

After this we feed the manipulated video data, containing motion-blurred frames to our 

video recognition models lead to misclassifications or misinterpretations by the models. 

The attack using motion blur is applied in a way that it becomes nearly imperceptible 

to the human eye, ensuring that the alterations blend seamlessly into the video stream. 

This can be formulated using Algorithm 4.6. 



CHAPTER 4: DESIGING ADVERSARIL ATTACKS 

61 

 

 

 

Algorithm 4.6 Attack through Motion Blur 

 
Require: Initial video sequence V and target video sequence ˆV 

function applyMotionBlur(V, ˆV, kernel_size): 

1: V∗ ⇐ [] // Initialize an empty video sequence. 

2:  for each frame F in V do 

3: BlurredFrame ⇐ applyBlur(F, kernel_size) 

4:  append BlurredFrame to V∗ 

5: end for 

 

6: return V∗ 
 

function applyBlur(frame, kernel_size): 

 

7: outputFrame ⇐ [] // Initialize an empty frame. 

 

8: motionKernel ⇐ createMotionKernel(kernel_size) 

 

9: BlurredFrame ⇐ applyKernel(frame, motionKernel) 

10:  return BlurredFrame 

function createMotionKernel(kernel_size): 

 

11: Create a kernel of size (kernel_size, kernel_size) with central row as ones. 

12:  Normalize the kernel elements. 

13: Return the kernel. 

 

function applyKernel(frame, kernel): 

 

14: Convolve frame with the kernel to obtain BlurredFrame. 

15:  Return BlurredFrame 

16: Load V, ˆV, and kernel_size 

 

17: V∗ ⇐ applyMotionBlur(V, ˆV, kernel_size) 

18: Save V∗ 
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Figure 4.7 (a) and (b) shows the original and perturbed image after motion blur. 
 
 

 
Figure 4.7 (a) Original Image (b) Perturbed image after motion blur 

 
4.6.2 Consequences and Implications 

 
Adversarial attacks using motion blur on video recognition models have several 

important consequences. They pose security risks by causing recognition models to 

make incorrect decisions, especially in situations like surveillance, which could lead to 

security breaches. There are safety concerns, particularly in autonomous vehicles, 

where motion-blurred road signs or obstacles might confuse the vehicle's systems, 

potentially causing accidents. Privacy issues also arise when attackers manipulate 

videos to reveal sensitive information or hide people's identities in surveillance footage. 

Finally, these attacks can be used for misinformation campaigns, spreading false 

information, and causing confusion in society. Overall, they challenge the reliability 

and security of computer vision systems, underlining the importance of robust defenses 

and ongoing research to protect against these threats and maintain trust in these 

technologies. 

 

4.7 Adversarial Attacks on Video Recognition Models using 

Frame Dropping Technique 

 

The seventh technique deals with performing adversarial attacks on video recognition 

models using the frame dropping technique. This technique is a form of temporal 



CHAPTER 4: DESIGING ADVERSARIL ATTACKS 

63 

 

 

 

perturbation that disrupts the flow of visual information and can be used to create 

adversarial examples. 

 

4.7.1 Methodology 

 
In this method, we have manipulated the video data by selectively dropping frames to 

deceive or compromise the performance of video recognition algorithms. We 

selectively drop frames at specific timestamps or locations. The goal is to disrupt the 

temporal consistency and make the video recognition model misclassify the action or 

object in the video. We dropped every 2nd, 4th and 5th frame for an imperceptible attack. 

The attack using frame dropping is applied in a way that it becomes nearly 

imperceptible to the human eye, ensuring that the alterations blend seamlessly into the 

video stream. This can be formulated using Algorithm 4.7. 

 

Algorithm 4.7 Attack through Frame Dropping 
 

 
Require: Initial video sequence V and target video sequence ˆV 

Input: Frame drop rate, Frame drop pattern 

Output: Adversarial video sequence V* 

function applyFrameDropping(V, frame_drop_rate, frame_drop_pattern): 

1: V* ⇐ [] // Initialize an empty video sequence for the adversarial attack. 

2: frame_count ⇐ 0  // Initialize the frame count. 

3: for each frame F in V do 

4: if frame_count is not in the frame_drop_pattern then 

5: append F to V* // Keep the frame if it's not part of the frame drop pattern. 

6: end if 

7: frame_count ⇐ frame_count + 1 

8: if frame_count >= frame_drop_rate then 

9: rame_count ⇐ 0 // Reset the frame count after dropping frames. 

10: end if 

11: end for 

12: return V* 
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4.7.2 Consequences and Implications 

 
The impact of frame dropping attacks on video recognition models is profound, leading 

to reduced accuracy and jeopardizing the reliability of these models. Through strategic 

frame removal, these attacks can disrupt a model's ability to correctly identify actions 

and objects in videos, potentially introducing severe misclassifications. This has 

significant implications for surveillance and security applications, where misclassified 

events may trigger inappropriate responses. Additionally, frame dropping poses a 

concerning security and privacy risk as attackers could exploit this technique to evade 

video surveillance systems, compromising individual privacy and overall security. 
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Chapter 5 
 

Experiments & Results 
 

This chapter delves into a series of rigorous experiments conducted using the 

CrimeScene dataset. Our primary goal is to gain a deep understanding of how video 

recognition models fare when faced with adversarial attacks, exploring both their 

strengths and vulnerabilities. 

 

Our approach to experimentation is meticulous and thorough. We commence by 

establishing a baseline, measuring the accuracy of our video recognition models when 

tested on the dataset in its original, unaltered form. This baseline serves as our reference 

point, giving us insights into the models' performance under normal, unaltered 

conditions. 

 

The true essence of our research unfolds as we introduce adversarial attacks (described 

in Chapter 4) into the equation. These attacks are carefully designed to mimic real- 

world scenarios where video recognition systems may encounter subtle manipulations 

or deceptive inputs. We meticulously perform these attacks on the C3D, P3D, and Q3D 

models, aiming to understand how they respond when faced with adversarial 

challenges. We evaluate how well the models function both before and after these 

attacks are applied. These attacks take different forms, such as attempts to confuse the 

model or induce incorrect responses. At each stage of our experimentation, we 

scrutinize the accuracy of our models. This evaluation is pivotal in gauging the impact 

of adversarial attacks. Does the introduction of adversarial perturbations result in 

misclassifications or reduced accuracy? Or do our models demonstrate resilience in the 

face of these challenges? These questions guide our analysis as we delve into the results. 

We highlight specific observations, revealing how each model responds uniquely to 

different attack strategies. 
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The results of these experiments offer valuable insights into the areas where these 

models are susceptible and provide guidance on enhancing their capabilities to handle 

challenging scenarios effectively. 

 

5.1 Model Performance’s Evaluation: Measure of Accuracy 

 
We will be using accuracy as a key parameter for judging model performance. This is 

not only common but also highly informative. In the subsequent sections, we will 

elaborate how accuracy was employed to evaluate model performance against various 

adversarial attacks and the valuable insights gained through this evaluation. 

 

5.1.1 Using Accuracy as a Performance Metric 

 
Accuracy is a widely used metric to evaluate the performance of machine learning 

models, particularly in classification tasks. It measures the ratio of correctly predicted 

instances to the total number of instances in the dataset. In the context of adversarial 

attacks on models, accuracy provides a clear and intuitive measure of how well the 

model is performing in the presence of adversarial manipulation i.e., ability to resist 

manipulation and make accurate predictions. 

 

5.1.2 Calculation of Accuracy 

 
To calculate accuracy, we constructed confusion matrices. [35] The confusion matrix 

(shown in Figure 5.1) provides a breakdown of model predictions, including true 

positives, true negatives, false positives, and false negatives. Accuracy is computed as 

shown in Equation 5.1. 

 

Accuracy = Number of correct predictions 

Total number of predictions 

Where, Number of correct predictions= True positives+ True negatives 

 
Total number of predictions= True positives+ True negatives+ False positives + False 

negatives 

 

Accuracy is mostly computed in percentage. 
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Figure 5.1 Confusion Matrix 

From Figure 5.1, the Accuracy can be calculated as. 

Accuracy = 27+28 
 

27+28+18+12 

 
The total accuracy is calculated to be 0.64 which is 64%. 

 
5.1.3 Insights Gained Through Accuracy Assessment in Adversarial Attacks 

 
Assessing model performance against adversarial attacks using accuracy provides 

crucial insights. Initially, accuracy establishes a baseline on clean data, offering a 

reference point for assessing adversarial impact. A notable accuracy drop indicates 

vulnerability, while varying attack severity becomes evident by comparing accuracy 

across different adversarial tactics. Model robustness is quantified by comparing 

accuracy before and after attacks, with robust models maintaining reasonable accuracy 

levels. These insights inform the development of countermeasures, including 

adversarial training and defensive techniques, to bolster model resilience. In 

conclusion, accuracy proves invaluable for evaluating model performance, aiding the 

creation of more dependable AI systems capable of withstanding the challenges of an 

ever-evolving adversarial landscape. 
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5.2 Performance of the models on CrimesScene dataset before the 

attack 

 

Our experiments have highlighted a standout model in terms of performance. The P3D 

model has shown outstanding capabilities by achieving remarkable results on the new 

test data. It boasts an impressive accuracy rate of 78%, firmly establishing itself as one 

of the top-performing models in our study. This demonstrates that P3D excels at making 

accurate predictions and recognizing things in videos, even when the videos are tricky 

or unfamiliar to the model. 

 

While P3D performed exceptionally well, our experiment shows that C3D and Q3D, 

while competent, achieved a decent but comparatively lower accuracy rate of 64%. This 

difference encourages us to investigate further into the specific aspects of these models' 

performances, aiming to understand the factors that influenced their outcomes. 

 

We've compiled all our experiment results in Table 5.1. It gives a quick and clear view 

of how accurate C3D, Q3D, and P3D were on the CrimeScene dataset. 

 

Models Accuracies 

C3D 64% 

P3D 78% 

Q3D 64% 

 

Table 5.1 Performance of Models before the attacks 

 
The outcomes of these experiments extend beyond mere numbers. They provide 

insights into the strengths and limitations of these video recognition models, shedding 

light on their adaptability and resilience when faced with novel and challenging video 

content. These findings set the stage for a comprehensive analysis of the models' 

performance when subjected to various adversarial challenges, ultimately advancing 

our quest for more robust and secure video recognition systems. 
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5.3 Results of Adversarial Attacks on Crimes Scene Dataset 

 
In the following sections, we conducted various adversarial attacks on our CrimesScene 

dataset, as outlined in Chapter 4. We evaluated the performance of our models when 

presented with these modified video frames. The subsequent sections provide insights 

into our models' performance across different attack scenarios. 

 

5.3.1 Adversarial Attacks on Video Recognition Models using 

Adversarial Patch Technique 

 

We conducted adversarial attacks on our video recognition models using the technique 

discussed in Section 4.1. and subsequently evaluated the outcomes. 

 

5.3.1.1 Impact of Adversarial Patches in the Bottom right corner 

 
We examined the effects of introducing three distinct adversarial patches into the 

bottom right corner of each frame within our video dataset. [22] 

 

Following the inclusion of these patches, C3D's accuracy decreased by 21%, 14%, and 

14% for Patch-1, Patch-2, and Patch-3, respectively. P3D, while initially robust with 

only a 3% accuracy drop, maintained its performance against all three patches, 

illustrating its resilience. Q3D, with an initial accuracy drop of 1.5%, also demonstrated 

adaptability to these adversarial patches. 

 

5.3.1.2 Impact of Adversarial Patches in the Bottom left corner 

 
Next, we strategically placed the three patches in the bottom left corner of each frame 

in our video dataset. 

 

C3D exhibited resilience, with accuracy drops of 1.5%, 1.5%, and 7.75% against Patch- 

1, Patch-2, and Patch-3, respectively. P3D, initially showing an accuracy rise of 3.25%, 

maintained its accuracy against all three patches, reaffirming its robustness. Similarly, 

Q3D displayed adaptability, with accuracy drops of 1.5% and 1.5% against the first and 

second patches, and an increase of 4.75% against the third patch. 
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5.3.1.3 Impact of Adversarial Patches in the Top right corner 

 
In this series of experiments, we strategically applied the three distinct adversarial 

patches to the top right corner of each frame in our video dataset. 

 

C3D consistently exhibited an accuracy drop of 1.5% against all three patches, 

emphasizing its resilience to spatial perturbations in the top right corner. P3D 

maintained a consistent accuracy drop of 9.25% when subjected to all patches, 

reaffirming its robustness. Similarly, Q3D retained an accuracy drop of 1.5% in the 

presence of these adversarial manipulations. 

 

5.3.1.4 Impact of Adversarial Patches in the Top left corner 

 
Finally, we introduced three distinct adversarial patches into the top left corner of each 

frame in our video dataset. 

 

C3D's accuracy drop, initially at 7.75%, showcased remarkable resilience against these 

patches, ultimately achieving an accuracy rise of 4.75% against all three. P3D also 

demonstrated unwavering performance, with an accuracy drop of 9.25% against each 

patch. Q3D, with its initial accuracy drop of 1.5%, maintained this level when subjected 

to adversarial manipulations. These findings shed light on the models' responses to 

spatial perturbations in various corners of the frames, emphasizing their distinct 

strengths and vulnerabilities in the face of adversarial attacks. 
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Table 5.2 shows the performance of models after adding the adversarial patches 
 
 

Target Model Patch in 

Corner 

Accuracies   

  Patch-1 Patch-2 Patch-3 

C3D Bottom right 43% 50% 50% 

 Bottom left 62.5% 62.5% 56.25% 

 Top right 62.5% 62.5% 62.5% 

 Top left 56.25% 68.75% 68.75% 

P3D Bottom right 75% 75% 75% 

 Bottom left 81.25% 81.25% 81.25% 

 Top right 68.75% 68.75% 68.75% 

 Top left 68.75% 68.75%% 68.75% 

Q3D Bottom right 62.5% 62.5% 62.5% 

 Bottom left 62.5% 62.5% 62.5% 

 Top right 62.5% 62.5% 62.5% 

 Top left 62.5% 62.5% 62.5% 

 

Table 5.2 Performance of models after adding the adversarial patches 

 
These results illuminate the models' impressive resistance to adversarial attacks 

localized in the specific regions of video frames, emphasizing their robustness in this 

specific region. C3D employs a 3D convolutional approach, which may not be as robust 

when facing spatial and temporal perturbations introduced by adversarial attacks. In 

contrast, P3D and Q3D, with their pseudo-3D and quasi-3D architectures, respectively, 

may better capture temporal information while being less sensitive to frame-level 

alterations. 

 

5.3.2 Adversarial Attacks on Video Recognition Models using Appending 

Adversarial Frame Technique 

 

We conducted adversarial attacks on our video recognition models using the technique 

outlined in Section 4.2 and evaluated the results. Here are the key findings: 
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5.3.2.1 Impact of Appending Frames After 30 FPS on Video Recognition 

Models 

 

In these experiments, we introduced three distinct adversarial frames following a 

standard frame rate of 30 frames per second (FPS). [13] After the adversarial frames 

were incorporated at 30 FPS, C3D's accuracy experienced a decrease of 1.5% in Frame 

1, followed by a further 7.75% decline in Frames 2 and 3. In contrast, P3D demonstrated 

greater resilience, with an accuracy reduction of 3% in Frame 1 and Frame 3, and a 

9.25% drop in Frame 2. Q3D maintained a consistent accuracy decrease of 1.5% 

throughout the adversarial frames. 

 

5.3.2.2 Impact of Appending Frames After 25 FPS on Video Recognition 

Models 

 

Moving on, we introduced three distinct adversarial frames after a standard frame rate 

of 25 FPS. As the adversarial frames were added at 25 FPS, C3D's accuracy decreased 

by 1.5% in Frame 1 and Frame 2, with a further 7.75% drop in Frame 3. P3D displayed 

a relatively robust performance, experiencing an accuracy drop of 3% in Frame 1, and 

a 9.25% reduction in both Frame 2 and Frame 3. Meanwhile, Q3D maintained a 

consistent accuracy decrease of 1.5% throughout the adversarial frames. 

 

5.3.2.3 Impact of Appending Frames After 20 FPS on Video Recognition 

Models 

 

In the subsequent experiment, we added three distinct adversarial frames after a 

standard frame rate of 20 FPS. As the adversarial frames were introduced at 20 FPS, 

C3D's accuracy decreased by 1.5% in Frame 1 and Frame 2, followed by a 7.75% 

reduction in Frame 3. P3D continued to demonstrate resilience, with a 3% drop in 

accuracy in Frame 1 and a 9.25% decrease in both Frame 2 and Frame 3. Q3D 

maintained a consistent accuracy reduction of 1.5% across all the adversarial frames. 

 

5.3.2.4 Impact of Appending Frames After 15 FPS on Video Recognition 

Models 

 

In the next experiment, three distinct adversarial frames were inserted after a standard 

frame rate of 15 FPS. As the adversarial frames were integrated, C3D's accuracy 
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dropped by 1.5% in Frame 1 and Frame 2, with a further 7.75% decline in Frame 3. In 

contrast, P3D displayed varying performance, with a 9.25% reduction in accuracy in 

Frame 1 and Frame 3, while experiencing only a 3% drop in Frame 2. Q3D saw a drop 

in accuracy of 7.75% in Frame 2 and Frame 3, while maintaining a consistent 1.5% 

drop in accuracy in Frame 1. 

 

Table 5.3 shows the performance of models with appended adversarial frames beyond 

a certain FPS. 

 

Target Model FPS Accuracies   

  Frame-1 Frame-2 Frame-3 

C3D 30 62.5% 56.25% 56.25% 

 25 62.5% 62.5% 56.25% 

 20 62.5% 62.5% 56.25% 

 15 62.5% 62.5% 56.25% 

P3D 30 75% 68.75% 75% 

 25 75% 68.75% 68.75% 

 20 68.75% 68.75% 68.75% 

 15 68.75% 75% 68.75% 

Q3D 30 62.5% 62.5% 62.5% 

 25 62.5% 62.5% 62.5% 

 20 62.5% 62.5% 62.5% 

 15 62.5% 56.25% 56.25% 

 

Table 5.3 performance of models with appended adversarial frames beyond a certain 

FPS 

 

These findings shed light on P3D's vulnerability in this context. P3D's use of pseudo- 

3D convolutional filters to capture motion information might make it more sensitive to 

adversarial perturbations in the frames, as these perturbations can affect the perception 

of motion cues. 
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5.3.3 Adversarial Attacks on Video Recognition Models through Gaussian 

Noise 

 

We conducted adversarial attacks on our video recognition models using the technique 

outlined in Section 4.3 and evaluated the results. [26] Notably, the range of values for 

μ was systematically varied between -5 and 5, and σ within the range of 1 to 5. Here 

are the key findings: 

 

5.3.3.1 Adversarial Attacks with Low Gaussian Noise Parameters 

 
In the first series of experiments, we employed low values for both μ and σ, ranging 

from -5 to 0 for μ and 1 to 2.25 for σ. These attacks revealed distinct vulnerabilities 

within the models. C3D experienced a significant accuracy drop of 14%, indicating its 

sensitivity to this specific form of noise. P3D followed suit with a reduction in accuracy, 

while Q3D consistently exhibited a 14% accuracy drop, underscoring its limited 

adaptability to low μ and σ values in Gaussian noise attacks. 

 

5.3.3.2 Adversarial Attacks Using Gaussian Noise: Low Mu and High Sigma 

Values 

 

In the subsequent set of experiments, we introduced Gaussian noise with low μ and 

higher σ values. Surprisingly, C3D showcased an interesting pattern, with its accuracy 

gradually improving as σ increased from 3.75 to 4.75, stabilizing at a mere 1.5% drop. 

Conversely, P3D displayed fluctuations in accuracy, hitting its lowest point with a 

9.25% drop when σ was set to 4.75. Meanwhile, Q3D remained relatively stable, 

maintaining a 14% accuracy drop. 

 

5.3.3.3 Adversarial Attacks Using Gaussian Noise: High Mu and Low Sigma 

Values 

 

Moving forward, we explored the impact of high μ and low σ values on the models. 

Here, C3D's accuracy drop remained consistent at 1.5%, showcasing its resilience to 

this specific noise configuration. P3D demonstrated intriguing behavior, achieving 

increased accuracy drops, notably at μ values of 4 and 5, where it experienced a rise in 

accuracy drop to 3.25%. Q3D also displayed an accuracy increase under these 

conditions, particularly at μ values of 4 and 5. 
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5.3.3.4 Adversarial Attacks with High Gaussian Noise Parameters 

 
Lastly, we delved into adversarial attacks with high values for both μ and σ. In this 

scenario, C3D maintained a 1.5% accuracy drop, highlighting its robustness against this 

noise type. P3D exhibited fluctuations, reaching notable accuracy drops at μ values of 

1 and 3, with drops of 7.75% and 3%, respectively. Q3D displayed a minimal accuracy 

decrease at μ = 5 and σ = 5, reducing by 7.25% from the original 14%. 

 

These findings underscore the intricate relationships between model architectures and 

the nuanced parameters of Gaussian noise, shedding light on the models' diverse 

responses under varying noise conditions. 

 

Table 5.4 shows the performance of the models after adding Gaussian noise with 

varying parameters. 

 

Target Model Low μ & σ  Accuracies 

 μ σ  

C3D -5 1 50% 

 -4 1.25 50% 

 -3 1.5 50% 

 -2 1.75 62.5% 

 -1 2 62.5% 

 0 2.25 68.75% 

P3D -5 1 50% 

 -4 1.25 50% 

 -3 1.5 50% 

 -2 1.75 56.25% 

 -1 2 56.25% 

 0 2.25 68.75% 

Q3D -5 1 50% 

 -4 1.25 50% 

 -3 1.5 50% 

 -2 1.75 50% 

 -1 2 50% 
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 0 2.25 50% 

 Low μ & High σ   

 μ σ  

C3D -5 3.75 50% 

 -4 4 56.25% 

 -3 4.25 62.5% 

 -2 4.5 62.5% 

 -1 4.75 62.5% 

 0 5 62.5% 

P3D -5 3.75 50% 

 -4 4 50% 

 -3 4.25 50% 

 -2 4.5 50% 

 -1 4.75 68.75% 

 0 5 62.5% 

Q3D -5 3.75 50% 

 -4 4 50% 

 -3 4.25 50% 

 -2 4.5 50% 

 -1 4.75 50% 

 0 5 50% 

 High μ & Low σ   

 μ σ  

C3D 0 1 62.5% 

 1 1.25 62.5% 

 2 1.5 62.5% 

 3 1.75 62.5% 

 4 2 62.5% 

 5 2.25 62.5% 

P3D 0 1 75% 

 1 1.25 75% 

 2 1.5 75% 

 3 1.75 75% 
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 4 2 75% 

 5 2.25 75% 

Q3D 0 1 50% 

 1 1.25 56.25% 

 2 1.5 62.5% 

 3 1.75 62.5% 

 4 2 62.5% 

 5 2.25 62.5% 

 High μ & σ   

 μ σ  

C3D 0 3.75 62.5% 

 1 4 68.75% 

 2 4.25 62.5% 

 3 4.5 62.5% 

 4 4.75 62.5% 

 5 5 62.5% 

P3D 0 3.75 75% 

 1 4 68.75% 

 2 4.25 68.75% 

 3 4.5 75% 

 4 4.75 75% 

 5 5 75% 

Q3D 0 3.75 50% 

 1 4 50% 

 2 4.25 50% 

 3 4.5 50% 

 4 4.75 50% 

 5 5 56.25% 

 

Table 5.4 performance of the models after adding Gaussian noise with varying 

parameters. 
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5.3.4 Adversarial Attacks on Video Recognition Models Through Contrast 

Adjustment 

 

We conducted adversarial attacks on our video recognition models using the technique 

outlined in Section 4.4 and evaluated the results. It's noteworthy that the range of values 

for alpha was systematically adjusted between 0.1 to 3, and beta within the range of - 

255 to 255. Here are the key findings: 

 

5.3.4.1 Low values of alpha (α) and beta (β) 

 
In this study, [28] we conducted adversarial attacks on video recognition models by 

applying contrast adjustments to the frames of our video dataset. The table above 

summarizes the impact of these attacks on three different models: C3D, P3D, and Q3D. 

We employed low values of alpha (α) and beta (β) to introduce contrast adjustments. 

The results reveal that as we increased the values of α and β, the models' accuracy 

underwent varying degrees of change. 

 

As we introduced contrast adjustments with α ranging from 0.01 to 0.75 and β 

decreasing from -255 to -50, C3D's accuracy consistently decreased, ultimately 

dropping by 7.75%. This suggests that C3D is relatively robust against low-level 

contrast adjustments but becomes increasingly susceptible to more significant changes. 

 

Similarly, the P3D model also showed a pattern of decreasing accuracy as we applied 

contrast adjustments. The accuracy of P3D dropped by 21.75% with the highest values 

of α and β, indicating its vulnerability to these adversarial manipulations. 

 

Q3D also experienced accuracy reductions as contrast adjustments were introduced. 

The most substantial drop occurred when α was 0.75 and β was -50, leading to a final 

accuracy drop of 1.5%. Q3D, therefore, demonstrated a sensitivity to contrast 

alterations but exhibited a more stable performance compared to P3D. 

 

5.3.4.2 Low values of alpha (α) and High values of beta (β) 

 
Next, we applied contrast adjustments to the frames of our video dataset, using low 

values of alpha (α) and high values of beta (β). The table above summarizes the impact 

of these attacks on three different models: C3D, P3D, and Q3D. As we increased the 
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values of α and set β to high positive values, the models' accuracy exhibited varying 

degrees of change. 

 

As we introduced contrast adjustments with increasing α and high β values, C3D's 

accuracy drop remained relatively stable at 14%. This suggests that C3D is relatively 

resilient against these specific contrast alterations. 

 

Conversely, the P3D model demonstrated a pattern of accuracy improvement with the 

introduction of higher α and β values. Its accuracy increased to 68.75% in the most 

extreme case, indicating that P3D could benefit from these contrast adjustments when 

the values are sufficiently high. 

 

Q3D remained largely unaffected by the contrast adjustments, with its accuracy drop 

consistently at 14% regardless of the values of α and high β. This suggests that Q3D is 

more robust to these particular adversarial manipulations. 

 

5.3.4.3 High values of alpha (α) and Low values of beta (β) 

 
Next, we conducted adversarial attacks on video recognition models by applying 

contrast adjustments to the frames of our video dataset, using high values of alpha (α) 

and low values of beta (β). The table above summarizes the impact of these attacks on 

three distinct models: C3D, P3D, and Q3D. As α was consistently set at 1.0 and we 

decreased β from -255 to -50, the models' accuracy exhibited varying degrees of change. 

 

As contrast adjustments were introduced with progressively lower values of β, the C3D 

model's accuracy showed fluctuations, ranging from an accuracy drop of 26.5% to a 

high of 1.5%. This indicates that C3D is susceptible to these particular contrast 

manipulations when high α values are applied. 

 

P3D displayed a range of responses to the contrast adjustments with its accuracy drop 

fluctuating from 21.75% to 3%, with the highest accuracy achieved at α = 2.0 and β = 

-150. This suggests that P3D might exhibit some resistance to these specific adversarial 

perturbations under certain conditions when high α values are used. 

 

Likewise, Q3D demonstrated a spectrum of responses to the attacks, resulting in 

fluctuations in accuracy ranging from a 14% decline to a notable 4.75% increase. 
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Notably, the most substantial accuracy increase occurred at α = 1.5 and β = -200. This 

indicates that Q3D's performance is subject to fluctuations and may even benefit from 

the adversarial manipulations under specific conditions with high α values and low β 

values. 

 

5.3.4.4 High values of alpha (α) and beta (β) 

 
Next, we investigated the effects of adversarial attacks on video recognition models by 

applying contrast adjustments to the frames of our video dataset, using high values of 

both alpha (α) and beta (β). The table above summarizes the outcomes for three distinct 

models: C3D, P3D, and Q3D. With a consistent α value of 1.0 and increasing β values 

from 50 to 255, the models' accuracy demonstrated diverse changes. 

 

As contrast adjustments were introduced with higher β values, C3D's accuracy showed 

fluctuations but remained relatively stable, with the lowest accuracy drop recorded at 

14% and the highest at 1.5%. This suggests that C3D is somewhat resilient to these 

specific contrast manipulations when high α and β values are applied. 

 

P3D displayed a decline in accuracy as we increased β from 50 to 255. Its accuracy 

drop ranged from 28% to 3%, with the highest drop occurring at α = 1.0 and β = 50. 

This indicates that P3D can be sensitive to such adversarial perturbations when high α 

and β values are utilized. 

 

Q3D remained mostly unaffected by the contrast adjustments, with its accuracy drop 

consistently at 14% regardless of the values of α and high β. This suggests that Q3D is 

quite robust to these specific adversarial manipulations. 

 

Table 5.5 shows the performance of the models after changing the contrast by varying 

different parameters. 

 

Target Model Low α & β  Accuracies 

 α β  

C3D 0.01 -255 50% 

 0.1 -200 50% 

 0.25 -150 50% 
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 0.5 -100 56.25% 

 0.75 -50 56.25% 

P3D 0.01 -255 50% 

 0.1 -200 50% 

 0.25 -150 50% 

 0.5 -100 56.25% 

 0.75 -50 75% 

Q3D 0.01 -255 50% 

 0.1 -200 50% 

 0.25 -150 50% 

 0.5 -100 50% 

 0.75 -50 62.5% 

 Low α & High β   

 α β  

C3D 0.01 255 50% 

 0.1 200 50% 

 0.25 150 62.5% 

 0.5 100 62.5% 

 0.75 50 62.5% 

P3D 0.01 255 50% 

 0.1 200 50% 

 0.25 150 50% 

 0.5 100 68.75% 

 0.75 50 68.75% 

Q3D 0.01 255 50% 

 0.1 200 50% 

 0.25 150 50% 

 0.5 100 50% 

 0.75 50 50% 

 High α & Low β   

 α β  

C3D 1.0 -255 37.5% 

 1.5 -200 62.5% 
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 2.0 -150 43.75% 

 2.5 -100 62.5% 

 3.0 -50 37.5% 

P3D 1.0 -255 56.25% 

 1.5 -200 56.25% 

 2.0 -150 75% 

 2.5 -100 68.75% 

 3.0 -50 56.25% 

Q3D 1.0 -255 50% 

 1.5 -200 68.75% 

 2.0 -150 68.75% 

 2.5 -100 56.25% 

 3.0 -50 56.25% 

 High α & β   

 α β  

C3D 1.0 255 62.5% 

 1.5 200 62.5% 

 2.0 150 56.25% 

 2.5 100 50% 

 3.0 50 50% 

P3D 1.0 255 75% 

 1.5 200 56.25% 

 2.0 150 56.25% 

 2.5 100 50% 

 3.0 50 50% 

Q3D 1.0 255 50% 

 1.5 200 50% 

 2.0 150 50% 

 2.5 100 50% 

 3.0 50 50% 

 

Table 5.5 Performance of the models after changing the contrast by varying different 

parameters. 
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In these experiments, various contrast adjustment-based adversarial attacks were 

applied to video recognition models, exploring four scenarios based on alpha (α) and 

beta (β) values. The models exhibited diverse responses: low α and β led to 

susceptibility in C3D, P3D's vulnerability, and Q3D's relative stability. Conversely, low 

α and high β values showcased C3D's resilience, P3D's occasional benefit, and Q3D's 

robustness. High α and low β values introduced complexity in C3D, varying sensitivity 

and resistance in P3D, and fluctuations and occasional benefit in Q3D. High α and β 

values highlighted C3D's relative resilience, P3D's sensitivity to high α, and Q3D's 

robustness. These findings underscore the importance of understanding model-specific 

behaviors for enhancing security and robustness in video recognition tasks. 

 

5.3.5 Adversarial Attacks on Video Recognition Models Through Salt & 

Pepper Noise 

 

We conducted adversarial attacks on our video recognition models using the technique 

outlined in Section 4.5 and evaluated the results. Here are the key findings: 

 

5.3.5.1 Uniform Salt and Pepper Noise Probability in Adversarial Attacks 

 
In this study, we conducted adversarial attacks on video recognition models by 

introducing visual distortions to the frames of our video dataset, using the same values 

of salt and pepper noise probability (salt_prob and pepper_prob). [29] The table above 

summarizes the impact of these attacks on three distinct models: C3D, P3D, and Q3D. 

 

When introducing visual distortions with salt_prob and pepper_prob set at 0.01, C3D 

exhibited a moderate accuracy drop of 7.75%, which improved to a 1.5% decrease as 

salt and pepper noise probability rose to 0.05, indicating some adaptability to these 

conditions. However, C3D's accuracy started to drop as salt_prob and pepper_prob 

reached 0.1 and beyond, ultimately stabilizing at a drop of 14%, suggesting increased 

susceptibility to motion blur. 

 

P3D, on the other hand, exhibited a different pattern, it started with a minimal 3% 

accuracy decrease and maintained this level when salt_prob and pepper_prob were low. 

However, as these probabilities increased, P3D's accuracy intensified, reaching 14%, 

implying its vulnerability with higher salt and pepper noise probabilities. 
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Q3D showed a notable accuracy drop as the salt and pepper noise probability increased, 

ultimately stabilizing at 14% decrease. This suggests Q3D's sensitivity to motion blur 

under these conditions. 

 

5.3.5.2 Varied Salt and Pepper Noise Effects in Adversarial Attacks 

 
In our subsequent experiments, we conducted adversarial attacks on video recognition 

models by introducing a range of perturbations to the frames of our video dataset. 

Notably, we employed varying combinations of salt and pepper noise probabilities, with 

high values for salt_prob and low values for pepper_prob in some cases, and vice versa. 

The table above summarizes the outcomes for three distinct models: C3D, P3D, and 

Q3D. 

 

When we introduced these perturbations with high salt_prob (ranging from 0.5 to 1) 

and low pepper_prob (ranging from 0.01 to 0.1), C3D's accuracy exhibited fluctuations, 

ultimately revealing a 4.75% increase. This suggests that C3D displayed some 

resilience to these specific conditions under varying salt and pepper noise probabilities. 

 

Conversely, P3D's accuracy experienced a marginal drop of 3% under the conditions of 

high salt and low pepper noise probabilities. However, its accuracy showed variability 

when these probabilities were reversed, indicating vulnerability to specific 

combinations of perturbations. 

 

Q3D remained largely unaffected by the changing salt and pepper noise probabilities, 

with its accuracy drop consistently maintained at 14%. This suggests that Q3D 

exhibited robustness against the introduced perturbations under these varying 

conditions. 

 

In our study on adversarial attacks, we investigated the impact of visual distortions, 

specifically salt and pepper noise, on three video recognition models: C3D, P3D, and 

Q3D. When using uniform salt and pepper noise probabilities, C3D displayed 

adaptability to low noise levels but increased susceptibility as noise probabilities rose. 

P3D showed vulnerability with higher noise probabilities, resulting in a significant 

accuracy drop. In varied noise conditions, C3D demonstrated resilience to specific 

combinations, while P3D exhibited sensitivity and variability. Q3D remained robust 
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and unaffected by changing noise probabilities. This highlights the varying responses 

of these models to adversarial attacks. 

 

Table 5.6 shows the performance of the models after adding Salt and Pepper noise with 

varying parameters. 

 

Target Model Uniform salt & 

pepper noise 

 Accuracies 

 salt_prob pepper_prob  

C3D 0.01 0.01 56.25% 

 0.05 0.05 62.5% 

 0.1 0.1 68.75% 

 0.25 0.25 56.25% 

 0.5 0.5 50% 

 0.75 0.75 50% 

P3D 0.01 0.01 75% 

 0.05 0.05 75% 

 0.1 0.1 68.75% 

 0.25 0.25 50% 

 0.5 0.5 50% 

 0.75 0.75 50% 

Q3D 0.01 0.01 62.5% 

 0.05 0.05 56.25% 

 0.1 0.1 50% 

 0.25 0.25 50% 

 0.5 0.5 50% 

 0.75 0.75 50% 

 Variable salt and 

pepper noise 

  

 salt_prob pepper_prob  

C3D 0.5 0.01 56.25% 

 0.75 0.05 50% 

 1 0.1 50% 

 0.01 0.5 62.5% 
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 0.5 0.75 62.5% 

 0.1 1 68.75% 

P3D 0.5 0.01 50% 

 0.75 0.05 50% 

 1 0.1 50% 

 0.01 0.5 75% 

 0.5 0.75 56.25% 

 0.1 1 56.25% 

Q3D 0.5 0.01 50% 

 0.75 0.05 50% 

 1 0.1 50% 

 0.01 0.5 50% 

 0.5 0.75 50% 

 0.1 1 50% 

 

Table 5.6 performance of the models after adding Salt and Pepper noise with varying 

parameters. 

 

5.3.6 Adversarial Attacks on Video Recognition Models using Motion 

Blur Technique 

 

We conducted adversarial attacks on our video recognition models using the technique 

outlined in Section 4.6 and evaluated the results. Here are the key findings: 

 

5.3.6.1 Adversarial Attacks with Horizontal Motion Blur and Varying Kernel 

Sizes 

 

In our study, we conducted adversarial attacks on video recognition models by 

introducing motion blur to the frames of our video dataset, while keeping the orientation 

consistently horizontal. [30] We varied the kernel size, ranging from 5 to 30, to evaluate 

the impact on three distinct models: C3D, P3D, and Q3D. The results, as presented in 

the table, indicate that these models exhibited varying levels of sensitivity to motion 

blur under these conditions. 

 

C3D's accuracy consistently decreased across all kernel sizes, with the greatest impact 

observed at a 5x5 kernel size, resulting in a substantial 20% drop from its original 



CHAPTER 5: EXPERIMENTS & RESULTS 

87 

 

 

 

accuracy. P3D also showed a decrease in accuracy, although it was less pronounced, 

with a 10% drop when the kernel size was set to 5x5. In contrast, Q3D exhibited a 

mixed response, with some kernel sizes leading to increased accuracy, possibly due to 

the model's robustness against certain motion blur conditions. 

 

5.3.6.2 Adversarial Attacks with Vertical Motion Blur and Varying Kernel 

Sizes 

 

Our exploration continued with adversarial attacks that maintained a constant vertical 

orientation. We systematically altered the kernel size, ranging from 5 to 30, to assess 

the models' reactions to vertical motion blur. 

 

C3D's accuracy remained relatively stable across different kernel sizes, indicating a 

consistent performance even in the presence of motion blur. P3D, on the other hand, 

exhibited mixed results, with some kernel sizes causing a drop in accuracy, particularly 

at 15x15 and 20x20 kernel sizes. Q3D displayed a similar pattern, with certain kernel 

sizes leading to decreased accuracy, most notably at 15x15. 

 

5.3.6.3 Adversarial Attacks with Diagonal (45°) Motion Blur and Varying 

Kernel Sizes 

 

In the subsequent phase, we introduced diagonal motion blur at a 45-degree angle, with 

varying kernel sizes ranging from 5 to 30, as part of our adversarial attacks. The models' 

performance, as reflected in the accuracies, shed light on their reactions to diagonal 

motion blur in these conditions. 

 

C3D consistently demonstrated a relatively stable accuracy across different kernel 

sizes, maintaining its performance in the presence of diagonal motion blur. P3D, in 

contrast, displayed consistently high accuracy levels, with occasional fluctuations, 

especially at larger kernel sizes where its accuracy increased by 3.25%. Q3D, on the 

other hand, showed sensitivity to diagonal motion blur, with accuracy decreasing as the 

kernel size increased. 
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5.3.6.4 Adversarial Attacks with Diagonal (135°) Motion Blur and Varying 

Kernel Sizes 

 

Moving on, we conducted adversarial attacks by applying diagonal motion blur at a 

135-degree angle to the frames of our video dataset, altering the kernel sizes from 5 to 

30. This evaluation aimed to understand how these models respond to diagonal motion 

blur at this specific orientation and with different kernel sizes. 

 

C3D maintained relatively consistent accuracy across different kernel sizes, exhibiting 

a stable performance under the influence of diagonal motion blur at a 135-degree angle. 

In contrast, P3D showed a remarkable ability to resist this type of perturbation, with 

high accuracy levels remaining largely unchanged, even at larger kernel sizes where its 

accuracy increased by 3.25%. Q3D, however, displayed sensitivity to diagonal motion 

blur at 135 degrees, with a consistent decrease in accuracy as the kernel size increased. 

 

5.3.6.5 Adversarial Attacks with Cross Motion Blur and Varying Kernel 

Sizes 

 

In our latest series of experiments, we conducted adversarial attacks by introducing 

motion blur to the frames of our video dataset with a unique twist—maintaining a 

"cross" orientation. This involved deliberately setting the direction of motion blur 

perpendicular to the primary orientation of the objects or scenes in the videos. The table 

above summarizes the outcomes for three distinct models: C3D, P3D, and Q3D. 

 

For C3D, the introduction of cross orientation motion blur resulted in a 6.25% increase 

in accuracy at a kernel size of 20, indicating an interesting resilience under these 

specific conditions. P3D, on the other hand, showed variability in accuracy, with some 

fluctuations in response to the cross-orientation motion blur. Nevertheless, it remained 

relatively stable at higher kernel sizes, indicating a moderate level of robustness. Q3D's 

accuracy remained mostly unaffected under these conditions, suggesting a degree of 

stability when confronted with cross orientation motion blur. 

 

In this study of adversarial attacks on video recognition models, we explored their 

responses to different types of motion blur and varied kernel sizes. C3D showed varied 

sensitivity across motion blur types, with pronounced accuracy drops in horizontal and 
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diagonal motion blur scenarios. P3D displayed a degree of robustness, maintaining high 

accuracy under certain conditions. Q3D exhibited mixed responses to the perturbations, 

indicating its sensitivity to particular motion blur orientations. These findings highlight 

the nuanced behavior of these models under diverse motion blur conditions and kernel 

sizes. 
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Table 5.7 shows the performance of the model after the introduction of a motion blur 

filter in video frames with diverse parameters. 

 

Target Model Horizontal Orientation Accuracies 

 Kernel Size  

C3D 5 50% 

 10 50% 

 15 50% 

 20 62.5% 

 25 62.5% 

 30 68.75% 

P3D 5 50% 

 10 50% 

 15 50% 

 20 56.25% 

 25 56.25% 

 30 68.75% 

Q3D 5 50% 

 10 50% 

 15 50% 

 20 50% 

 25 50% 

 30 50% 

 Vertical Orientation  

 Kernel size  

C3D 5 50% 

 10 56.25% 

 15 62.5% 

 20 62.5% 

 25 62.5% 

 30 62.5% 

P3D 5 50% 

 10 50% 
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 15 50% 

 20 50% 

 25 68.75% 

 30 62.5% 

Q3D 5 50% 

 10 50% 

 15 50% 

 20 50% 

 25 50% 

 30 50% 

 Diagonal Orientation  

 Kernel size  

C3D 5 62.5% 

 10 62.5% 

 15 62.5% 

 20 62.5% 

 25 62.5% 

 30 62.5% 

P3D 5 75% 

 10 75% 

 15 75% 

 20 75% 

 25 75% 

 30 75% 

Q3D 5 50% 

 10 56.25% 

 15 62.5% 

 20 62.5% 

 25 62.5% 

 30 62.5% 

 Diagonal (135°) Orientation  

 Kernel size  

C3D 5 62.5% 
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 10 68.75% 

 15 62.5% 

 20 62.5% 

 25 62.5% 

 30 62.5% 

P3D 5 75% 

 10 68.75% 

 15 68.75% 

 20 75% 

 25 75% 

 30 75% 

Q3D 5 50% 

 10 50% 

 15 50% 

 20 50% 

 25 50% 

 30 56.25% 

 Cross Orientation  

 Kernel size  

C3D 5 43.75% 

 10 43.75% 

 15 43.75% 

 20 50% 

 25 50% 

 30 50% 

P3D 5 62.5% 

 10 68.75% 

 15 62.5% 

 20 62.5% 

 25 62.5% 

 30 62.5% 

Q3D 5 56.25% 

 10 50% 
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15 50% 

20 50% 

25 50% 

30 50% 

 

Table 5.7 Performance of the model after the introduction of a motion blur filter in 

video frames with diverse parameters. 

 

 

 
5.3.7 Adversarial Attacks on Video Recognition Models using Frame 

Dropping Technique 

 

We conducted adversarial attacks on our video recognition models using the technique 

outlined in Section 4.7 and evaluated the results. Here are the key findings: 

 

After subjecting video recognition models to adversarial attacks using the frame 

dropping technique with different frame drop rates [31], a notable impact on their 

accuracies has been observed. The effectiveness of the frame dropping attack can be 

seen in the significant reductions in accuracy across the models. For the C3D model, a 

frame drop rate of 2 resulted in a decrease in accuracy by 1.5%, while the accuracy of 

P3D at the same frame drop rate was reduced by 28%. A frame drop rate of 5 led to 

variable outcomes with C3D and Q3D but resulted in an accuracy drop of 9.75% for 

the P3D model. 

 

Frame dropping can considerably hinder the models' abilities to correctly classify 

actions and objects in videos, highlighting the importance of developing robust defense 

mechanisms against such adversarial attacks. This reduction in accuracy underscores 

the need for continuous research and improvement to bolster the security and reliability 

of video recognition systems in the face of adversarial threats. 
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Table 5.8 shows the performance of the models after dropping a certain number of 

frames. 

 

Target Model Frame Drop Rate Accuracies 

C3D 2 62.5% 

 3 56.25% 

 5 62.5% 

P3D 2 50% 

 3 50% 

 5 68.25% 

Q3D 2 50% 

 3 50% 

 5 62.5% 

 

Table 5.8 performance of the models after dropping a certain number of frames. 

 
5.4 Comparison of Model Performance in Handling 

Additional Features Related to Learned Patterns 

5.4.1 Experimental Setup: 

 
Both our models (C3D, P3D, Q3D) and another model (C3D, LRCN) underwent an 

experiment where extra features, specifically tied to learned patterns, were introduced 

to the video data. 

 

5.4.2 Impact on Our Models: 

 
Upon introducing these features, our models experienced a noticeable decline in 

accuracy. This drop was attributed to an increased focus on certain patch-related 

features, learned during training but not directly relevant to the video analysis task. 

 

5.4.3 Behavior of the Other Model: 

 
In contrast, the other model demonstrated a more resilient response to extraneous 

features. The impact on accuracy was either less pronounced or negligible compared to 
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our models. This suggests that the other model may possess a more robust mechanism 

for handling non-task-specific features. 

 

5.4.4 Specifics in the Case of C3D: 

 
For the C3D model, commonly used in video analysis, our model exhibited a 

disproportionate emphasis on specific patch-related features, leading to a maximum 

21% accuracy drop upon feature addition. The other model maintained a more balanced 

consideration of features, preserving higher accuracy despite the introduction of non- 

task-related information. 

 

5.4.5 Implications for Our Model: 

 
Observing our model's tendency to overly prioritize certain features, especially patch- 

related ones, highlights challenges in its adaptability to diverse video scenarios. This 

overemphasis may result in suboptimal performance when faced with videos containing 

features not directly aligned with learned patterns during training. 

 

In conclusion, the comparative analysis between our model and another model 

underscores the importance of a model's robustness in handling extraneous features. 

While the other model exhibited a more stable performance in the face of introduced 

patterns, our model demonstrated sensitivity, particularly in the case of the C3D model. 

These insights inform potential avenues for refining our model to enhance its 

adaptability and effectiveness in diverse video analysis scenarios. 

 

5.5 Defenses Against Adversarial Attacks on Video Recognition 

Models 

 

Within the realm of video recognition models, I engaged in a study to understand their 

response to challenges. Initially, I tested these models deliberately, introducing changes 

to the input data. This process allowed me to identify areas where the models might 

struggle or make errors. 

 

Subsequently, the focus shifted to fortifying these models. I developed strategic 

defenses to shield them from being misled by intentional confusion. These defenses act 
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as safeguards, ensuring that the models can maintain accurate video recognition even 

when faced with attempts to cause confusion. 

 

This two-phase approach—first, identifying vulnerabilities, and then constructing 

defenses—aims to improve the reliability and security of video recognition systems in 

the dynamic field of artificial intelligence. 

 

Some of the major defenses used during this research are: 

 
5.5.1 Median Filtering 

 
Median filtering is a robust defense strategy against salt and pepper noise, a type of 

disruptive noise in images and videos. This technique works by replacing each pixel 

with the median value within its local neighborhood, effectively eliminating isolated 

extreme values introduced by salt and pepper noise. Unlike other filtering methods, 

median filtering maintains the structural details of the image while effectively reducing 

noise. [32] This makes it especially suitable for preserving the integrity of video frames 

in the presence of sporadic and unpredictable noise. The simplicity and efficiency of 

median filtering contribute to its widespread use as an effective defense mechanism in 

video recognition models, ensuring improved accuracy and reliability by mitigating the 

impact of salt and pepper noise. 

 

5.5.2 Gaussian Blur 

 
Gaussian blur stands as a practical defense mechanism against Gaussian noise, a type 

of random noise that manifests as a smooth, continuous variation in pixel intensity. 

When applied as a defense, Gaussian blur mitigates the disruptive effects of Gaussian 

noise by averaging pixel values within a local neighborhood, effectively smoothing out 

irregularities in intensity. This process involves convolving the image or video frame 

with a Gaussian kernel, resulting in a blurring effect that reduces the impact of high- 

frequency variations introduced by Gaussian noise. The strength of the blur is 

determined by the standard deviation of the Gaussian kernel, allowing for a 

customizable level of noise reduction. [33] This defense strategy is particularly 

effective in scenarios where maintaining a visually coherent appearance is essential, as 
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it targets the gradual fluctuations characteristic of Gaussian noise without sacrificing 

overall image or video quality. 

 

5.5.3 Deblurring Filter 

 
Deblurring serves as a potent defense mechanism against motion blur attacks, where 

intentional blurring is introduced to compromise image or video recognition. In 

response to such attacks, deblurring algorithms are employed to reverse or minimize 

the effects of motion blur. These algorithms analyze the characteristics of the blur and 

apply an inverse operation to restore sharpness and clarity to distorted regions. This 

defense strategy proves effective in countering intentional blurring introduced by 

adversaries, enhancing the accuracy of recognition models by ensuring a clearer 

representation of the original content. [34] Deblurring is particularly valuable in 

scenarios where maintaining visual fidelity is paramount, offering a reliable means to 

mitigate the intentional blurring introduced to undermine the performance of 

recognition models. 

 

5.5.4 Experiments & Results 

 
During our defense experiments, we implemented protective measures against 

adversarial attacks on video recognition models. We employed diverse defense 

strategies, including Motion Blur defense, Median Blur defense, and Gaussian Noise. 

The table above outlines the effectiveness of these defenses across three distinct 

models: C3D, P3D, and Q3D. 

 

For C3D, both the Motion Blur and Median Blur defenses consistently exhibited a 

56.25% accuracy improvement, showcasing the model's heightened resilience. 

Additionally, the Gaussian Noise defense resulted in a 50% accuracy improvement, 

further reinforcing C3D's robustness against adversarial attacks. 

 

P3D displayed varying degrees of success with the applied defenses, with the Motion 

Blur defense yielding an impressive 81.25% accuracy improvement, emphasizing its 

notable resistance. The Median Blur defense achieved a 68.75% improvement, while 

the Gaussian Noise defense contributed a 50% accuracy boost, indicating P3D's 

adaptability to specific defense strategies, particularly Motion Blur. 
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Q3D, the third model under consideration, consistently demonstrated a 56.25% 

accuracy improvement with the Motion Blur defense, a 62.5% improvement with the 

Median Blur defense, and a 50% improvement with the Gaussian Noise defense. These 

defense mechanisms collectively underscored Q3D's enhanced resistance to adversarial 

attacks, highlighting its robust performance across diverse defense strategies. 

 

Table 5.9 shows the performance of our models against these defense strategies. 
 
 

Model Deblurring Filter Median Filtering Gaussian Blur 

C3D 56.25% 56.25% 50% 

 
56.25% 62.5% 62.5% 

 
56.25% 50% 62.5% 

 
56.25% 50% 62.5% 

 
56.25% 50% 62.5% 

 
56.25% 50% 62.5% 

P3D 81.25% 68.75% 50% 

 
68.75% 75% 68.75% 

 
75% 50% 81.25% 

 
62.5% 50% 81.25% 

 
62.5% 50% 68.75% 

 
62.5% 56.25% 75% 

Q3D 56.25% 62.5% 50% 

 
56.25% 50% 50% 

 
50% 50% 50% 

 
56.25% 50% 50% 

 
50% 50% 50% 

 
56.25% 50% 50% 
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Table 5.9 Performance of our models against these defense strategies 

 
In summary, our application of Motion Blur, Median Blur, and Gaussian Noise defenses 

yielded positive results across all three video recognition models. These defenses 

significantly contributed to fortifying the models, showcasing increased accuracy and 

resilience against potential adversarial perturbations. 
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Chapter 6 

Conclusion & Future Work 

In conclusion, this thesis has undertaken a comprehensive investigation into the 

vulnerability of video recognition models, specifically C3D, P3D, and Q3D, to 

adversarial attacks using the Crimes Scene dataset. The empirical analysis revealed 

intricate patterns of susceptibility, with some attacks consistently diminishing model 

accuracy, while others induced a constant impact. Comparative assessments against 

other models in terms of accuracy provided valuable insights into the relative 

performance of the three models within the domain. 

 

Moreover, the study did not merely stop at identifying vulnerabilities; it extended to the 

development and evaluation of defensive strategies aimed at fortifying the models 

against adversarial threats. The implementation of these defense mechanisms 

showcased promising results in enhancing the resilience of the video recognition 

models, marking a crucial step towards addressing the security challenges posed by 

adversarial attacks. 

 

The findings of this research emphasize the nuanced nature of model vulnerabilities and 

the need for tailored defensive strategies. As the field of adversarial attacks continues 

to evolve, the insights gained from this study serve as a foundation for further research 

and development in the realm of video recognition model security. 

 

While this thesis has made significant strides in understanding and mitigating 

adversarial attacks on video recognition models, there remains a plethora of avenues 

for future exploration. Firstly, expanding the scope of the study to include diverse 

datasets and real-world scenarios would provide a more comprehensive understanding 

of model behavior and performance in practical applications. 
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Additionally, exploring novel adversarial attack techniques and adapting defensive 

strategies to address emerging threats would contribute to the ongoing evolution of 

model security. Investigating the transferability of defenses across different model 

architectures and datasets could offer insights into the generalizability of protective 

measures. 

 

Furthermore, the incorporation of explain ability and interpretability techniques into 

defensive strategies would enhance our ability to comprehend the decision-making 

processes of models under adversarial conditions. This would not only bolster the 

robustness of the models but also foster trust and transparency in their applications. 

 

In conclusion, future research endeavors should aim to deepen our understanding of 

adversarial threats in video recognition models, refine defensive mechanisms, and 

explore the broader implications of these findings in real-world scenarios. The pursuit 

of these avenues promises to contribute significantly to the ongoing efforts to secure 

video recognition models against adversarial challenges. 
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