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Abstract

Quantum Dense Coding (QDC) is one of the primary and basic protocol used in quantum

information. It can be performed through photons having polarization and spatial degree

of freedom. The optical model which uses linear optics can performs this task by producing

entaglement in the polarization degree of freedom. The spectral effects can be seen in QDC

taking frequency distribution of photons. Hence detectors can be treated in continuous

modes and their result can be compared to other models, performing QDC. The frequency

contribution is used to bring a time delay in one of photon modes. We also introduced

the theoretical model of detectors in continuous modes and develop tools for QDC in these

modes.
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Chapter1
Introduction

Quantum Information is relatively younger branch of quantum physics. It implements the

concept of quantum physics in information theory. The quantum behavior and its effects

in different forms become very useful for many information processes and communication

protocols. There are many protocols which use different types of quantum system but the

most common and useful one is light. Information traveling with the speed of light, makes

it an ideal system for communication both in quantum and classical domain. Here, in our

work, we have used the spatial and polarization degrees of freedom of photon as a source of

quantum communication, considering the spectral effects of light in frequency phase space [1].

1.1 Linear Algebra in Quantum Domains

The behavior of Quantum system is studeid with the help of a Hilbert space. The physical

properties of the system reperesent states in a Hilbert space. e.g in case of an electron

there are two states of spin, i.e. "Up" and "down". Hence the degree of freedom for an

electron system in case is two. So the dimentionality of a Hilbert space is decided by the

way quantem system behaves. The two states |α〉 , |β〉 of finite dimentionality ‘m’ belongs
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to a Hilbert space ‘H’ such that the inner product of thses two vectors

|α〉 =



α1

α2

.

.

.


, |β〉 =



β1

β2

.

.

.


, |α〉 = (|α〉)† = (ᾱ1ᾱ2....ᾱm), (1.1)

becomes

〈α|β〉 = ᾱ1β1 + ᾱ2β2 + ....+ ᾱmβm :=
m∑
j=1

ᾱjβj ∈ C,

Where z̄ is a complex number. Normally a vector is normalized by dividing it by its norm

i.e. ||z||=
√
〈z|z〉. The inner product must satisfy the Cauchy-Schwarz inequality(||α||β|| ≥

|| 〈α|β〉||). Consider the following matrix X

X =



x1,1 x1,2 . . x1,m

x2,1 x2,2 . . x2,m

. . .

. . .

. .

xm,1 xm,2 . . xm,m


(1.2)
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The transpose(XT ) and the complex conjugate (X̄) are given below

XT =



x1,1 x2,1 . . xm,1

x1,2 x2,2 . . xm,2

. . .

. . .

. .

x1,m x2,m . . xm,m


, X̄ =



x̄1,1 x̄1,2 . . x̄1,m

x̄2,1 x̄2,2 . . x̄2,m

. . .

. . .

. .

x̄m,1 x̄m,2 . . x̄m,m


(1.3)

Now the condition for Hermitian operator or matrix is

X† =



x̄1,1 x̄2,1 . . x̄m,1

x̄1,2 x̄2,2 . . x̄m,2

. . .

. . .

. .

x̄1,m x̄2,m . . x̄m,m


, (1.4)

which is X† = X̄T . Also the Hermitian matrix X is called positive semidefinite if 〈c|Xc〉 ≥ 0,

where c ∈ H and X ≥ 0. For c 6= 0, X is positive definite if 〈c|Xc〉 > 0. The eigenvalues of

matrix X are either zero or positive if X is diagonalized and it obeys the condition discussed

above.

In a bra-ket notation for any matrix X, |Xc〉 = X |c〉 , 〈Xc| = 〈c|X†. For Hermitian matrix

X, 〈x|Xy〉 = 〈Xx|y〉 which also equal to Tr |y〉〈x|X. The commutator relation for two

matrices M and N is

{M,N} =
1

2
(MN +NM) (1.5)[

M,N
]

=
1

2
(MN −NM).
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If a vector space obey’s the above two relation, then it is called as Jorden or Lie algebra [2].

1.2 Composite Systems and Tensor Products

Composite systems come under discussion when more than one quantum system are treated

in quantum mechaanical problems. In order to understand it, consider two Hilbert spaces

HX and HY which represents two quantum systems with orthogonal basis x1, x2, ..., xd and

y1, y2, ..., yd respectively. The joint system of HX and HY is called the composite system.

This system then belongs to a Hilbert space H = HX ⊗HY , with the tensor product of HX

and HY having orthogonal basis {x1 ⊗ y1, x1 ⊗ y2, x1 ⊗ y3, ...., x1 ⊗ yd, x2 ⊗ y1, x2 ⊗ y2, x2 ⊗

y3...., x2⊗ yd, xd⊗ y1, xd⊗ y2, xd⊗ y3...., xd⊗ yd. So the system is in a dimention of d×d [3].

The tensor peoduct of two vectors

a ≡
∑
i

ci |xi〉 (1.6)

and

b ≡
∑
j

ćj
∣∣yj〉 , (1.7)

is given as below

|a⊗ b〉 =
∑
i,j

cićj |xi〉 ⊗
∣∣yj〉 , (1.8)

or in a simple way

|ab〉 =
∑
i,j

cićj
∣∣xiyj〉 (1.9)
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The operator in form of a matrix for HX is AX and for HY is BY . The tensor product of

AX ⊗BY is defined as

AX ⊗BY (|xi〉 ⊗
∣∣yj〉) = AX |xi〉 ⊗BY

∣∣yj〉 , (1.10)

In addition, the trace of the tensor product can be written as

Tr(AX ⊗BY ) = TrAXTrAY . (1.11)

In general for any Hermitian operators AX , BX and CX ∈ HX , and AY , BY and CY ∈ HY

has the following property

(AX ⊗ AY )(BX ⊗BY )(CX ⊗ CY ) = (AXBXCX)⊗ (AYBYCY ) (1.12)

So the trace of above equation becomes

Tr(AX ⊗ AY )(BX ⊗BY )(CX ⊗ CY ) = Tr(AXBXCX)Tr(AYBYCY ). (1.13)

In this section we studied the opertion of traces on states of composite systems.

1.3 Entangled States

A thought experiment normally known as EPR paradox was proposed in 1935 by Einstein,

Padolsky and Rosen, which concluded that the laws of quantum mechanics are incomplete [4].

It was explained through a non local property of QM, later on called as entanglement. The

entangled particle shows the phenomena of two particles, far apart, which effects their phys-

ical properties by interacting at a long distance with one another. This phenomena was also

observed through many experiments [5].
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The Entanglement introduces correlation which cannot be measured through classical ap-

proach [6] [7]. To explain this concept mathematically, consider two qubits X and Y, which

coresponds to the states of two electrons i.e. spin "up" and spin "doen". The state |1〉

represents spin "up" state whilw |0〉 spin "down" for each electron system. The qubits of

electron X and Y are written as

φX = x0 |0〉+ x1 |1〉 , φY = y0 |0〉+ y1 |1〉 . (1.14)

The composite state of two qubits are as under

φX ⊗ φY = (x0 |0〉+ x1 |1〉)⊗ (y0 |0〉+ y1 |1〉) (1.15)

= x0y0 |00〉+ x1y0 |10〉+ x0y1 |01〉+ x1y1 |11〉 . (1.16)

which is simply the tensor product. So the states become entangled, if it can not be expressed

in the tensor product. Now to write the entangle state formed by the superposition of |00〉

and |11〉 is shown below

∣∣φ+
〉

=
1√
2

(|00〉+ |11〉)XY (1.17)

The above state is an example of entangled state [8]. It can be proved by taking a con-

dradiction, consider that the obove equation can be written in tensor product of individual

quantum systems. Then

∣∣φ+
〉
XY

= (x0 |0〉+ x1 |1〉)X(y0 |0〉+ y1 |1〉)Y , (1.18)

= x0y0 |00〉+ x1y0 |10〉+ x0y1 |01〉+ x1y1 |11〉 . (1.19)

8



By equating the coefficients of Eq.(1.17) and Eq.(1.19),

x0y0 =
1√
2
, x1y0 = 0, x0y1 = 0, x1y1 =

1√
2
, (1.20)

which seems impractical , due to the fact that if x1y0 = 0, then it reveals either x1 = 0

or y0 = 0 or both are zero. By taking x1 = 0 and y0 6= 0, above equation suggests that

x1y1 must be zero, but it is assigned the valaue i.e. x1y1 = 1
2
in Eq. (1.20), So this shows

clear contradiction with the above supposition. In addition, the first and the fourth term of

Eq.(1.20) shows x0, x1, y0 and y1 6= 0, while the second and third term pionts out that either

all the amplitudes i.e. x0, x1, y0, y1 = 0 or at least some of them, which seems unfeasible.

So the state of Eq.1.17 is unfactorizable and it exhibit the property of entanglement. The

best example is the Bell’s states given below

∣∣z1
〉
XY

=
∣∣ψ+

〉
XY

=
1√
2

(|01〉+ |10〉)XY , (1.21)∣∣z2
〉
XY

=
∣∣ψ−〉

XY
=

1√
2

(|01〉 − |10〉)XY , (1.22)∣∣z3
〉
XY

=
∣∣φ+
〉
XY

=
1√
2

(|00〉+ |11〉)XY , (1.23)∣∣z2
〉
XY

=
∣∣φ−〉

XY
=

1√
2

(|00〉 − |11〉)XY , (1.24)

So all of these states are maximally entangled states and they are orthonormal

〈
zi
∣∣∣zj〉

XY
= δij. (1.25)

Such states can be expressed in {|00〉 , |01〉 , |10〉 , |11〉} basis or {
∣∣z1
〉
,
∣∣z2
〉
,
∣∣z3
〉
,
∣∣z4
〉
} basis

respectively.
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1.4 Quantum Gates

Since quantum mechanics depicts all the physical processes that take place in the universe,

therfore its study involves the effect of operators in quantum states. This process is known

as measurement in quantum mechanics which yield a number or a constant. The real value

demands that the operator must be unitary. This unitary operation on quantum states are

called quantum gates [9].

Figure 1.1: Basic operation of Unitary operator

Figure1.1 shows a basic operation of any unitary operation ’U’ on quantum state |φ〉. The

initial states |φ〉 changes to a new state U|φ〉 as a result of single gate operation.

A qubit is basically the superposition of |0〉 and |1〉 which corresponds to number ’0’ and

’1’ in classical domain. This qubit contains large number of superposed states which is

the elementary principal of quantum information. Figure1.2 introduces various quantum

gates including the Hadamard, Pauli gates X, Y, and Z and Phase gate along with their

transformation matrices. In Dirac Notation these gates are written as

H =
1√
2

(|0〉+ |1〉) 〈0|+ 1√
2

(|0〉 − |1〉) 〈1| ,

I = |0〉〈0|+ |1〉〈1|,

X = |1〉〈0|+ |0〉〈1|,

Y = ι|1〉〈0| − ι|0〉〈1|,

Z = |0〉〈0| − |1〉〈1|.

The Paul(X) gate changes the state quantum state |0〉 and |1〉 into |1〉 and |0〉 respectively,
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therfore it named as flip or Not gate. In a similar way the operation of CNot gate in Dirac

notation is shown below

CNot = |00〉〈00|+ |01〉〈01|+ |11〉〈10|+ |10〉〈11|. (1.26)

The above action of CNot emphasizes that there must be two particles, so that the first

qubit is treated as control to make changes in the second qubit. So when the condition that

the first qubit must be |1〉 is met, only then the second qubit would flip or change. Figure1.2

represents various quantum gates.

Figure 1.2: Quantum Gates

1.5 Formulism of Entanglement

The formation of entangled states, in particular the Bell’s states is achieved using the

Hadamard gate and CNot gate. Consider the the general state |ab〉XY where a,b ∈ 0, 1.
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To produce
∣∣ψ+

〉
XY

state, put a = 0 and b = 1, and apply the respective gates in an order

mentioned above. The whole process is shown in figure1.3

|01〉AB
HA−−→ 1√

2
(|01〉+ |11〉)AB

Control=A−−−−−−→ 1

2
(|10〉+ |10〉)AB =

∣∣ψ+
〉

(1.27)

For
∣∣ψ−〉 a = 1 and b = 1

|11〉AB
HA−−→ 1

2
(|01〉 − |11〉)AB

Control=A−−−−−−→ 1

2
(|01〉 − |10〉)AB =

∣∣ψ−〉 (1.28)

To produce
∣∣φ+
〉
state then m = n = 0

|00〉AB
HA−−→ 1√

2
(|00〉+ |10〉)AB

Control=A−−−−−−→ 1

2
(|00〉+ |11〉)AB =

∣∣φ+
〉

(1.29)

and for
∣∣φ−〉 state m = 1 and n = 0

|10〉AB
HA−−→ 1√

2
(|00〉 − |11〉)AB

Control=A−−−−−−→ 1

2
(|00〉 − |11〉)AB =

∣∣φ−〉 (1.30)

Figure 1.3: Formation of Bell’s States

Rotational Invariance of Bell states One of the most important feauteres of Bell states

are that, their effect remains the same irrespective of the basis. Which means that they are

rotationary invarient under every basis. In order to prove it consider two sets of basis |0〉 , |1〉
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and |+〉 , |−〉. First write
∣∣φ+
〉
state in |0〉 , |1〉 basis,

|φ〉 =
1√
2

(|00〉+ |11〉). (1.31)

Now to introduce a change of 45◦ anglular rotation in it i.e.

|0〉 =
1√
2

(|+〉+ |−〉)

|1〉 =
1√
2

(|+〉 − |−〉) (1.32)

So by substituting the values of |0〉 and |1〉 in Eq. (1.31)

∣∣φ+
〉

=
1√
2

(
1√
2

(|+〉+ |−〉) 1√
2

(|+〉+ |−〉) +
1√
2

(|+〉 − |−〉) 1√
2

(|+〉 − |−〉)),∣∣φ+
〉

=
1√
2

(
1

2
(|++〉+ |−+〉+ |+−〉+ |−−〉) +

1

2
(|++〉 − |−+〉+ |−−〉 − |+−〉)),∣∣φ+

〉
=

1√
2

(|++〉+ |−−〉). (1.33)

which shows identical behavior compared to Eq. (1.31). This can be varified through any

general orthonormal basis. For example

|ω〉 = x0 |0〉+ x1 |1〉 and |ώ〉 = x1 |0〉 − x0 |1〉 ,with condition that|x0|2 + |x1|2 = 1. (1.34)

writing
∣∣φ+
〉
state in {|ω〉 , |ώ〉} basis

∣∣φ+
〉

=
1√
2

(|ωω〉+ |ώώ〉). (1.35)
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By putting values of |ω〉 and |ώ〉 from Eq. (1.34) into the above equation.

∣∣φ+
〉

=
1√
2

((x0 |0〉+ x1 |1〉)(x0 |0〉+ x1 |1〉) + (x1 |0〉 − x0 |1〉)(x1 |0〉 − x0 |1〉)),∣∣φ+
〉

=
1√
2

(|x0|2 |00〉+ x0x1 |10〉+ x0x1 |01〉+ |x1|2 |11〉

+ |x1|2 |00〉 − x0x1 |10〉 − x0x1 |01〉+ |x0|2 |11〉),∣∣φ+
〉

=
1√
2

((|x0|2 + |x1|2) |00〉+ (|x0|2 + |x1|2) |11〉). (1.36)

From the condition of Eq. (1.34)

∣∣φ+
〉

=
1√
2

(|00〉+ |11〉). (1.37)

Which suggests that the Bell’s states can be formed using any othonormal basis in two

dimentional Hilbert space i.e.

∣∣φ+
〉

=
1√
2

(|00〉+ |11〉) =
1√
2

(|++〉+ |−−〉) =
1√
2

(|ωω〉+ |ώώ〉). (1.38)

The non classical correlation is explained through the rotational invariance of the Bell’s

states.

1.6 No-Cloning Theorem

In 1982 Wooters and Zurek [10] publishhed a theorem which states that non-orthonormal

quantum states can not be completely cloned or copied. In this context consider a unitary

operator ’U’, which acts an copying machine on some state, say |β〉 by copying the orthogonal
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states |0〉 to |1〉 in the following manner

U |0〉 |α〉 = |0〉 |0〉

U |1〉 |α〉 = |1〉 |1〉

Now to copy a superposed state i.e. λ |0〉+ γ |1〉 is given below

U(λ |0〉+ γ |1〉) |α〉 = λU |0〉 |α〉+ γU |1〉 |α〉

= λ |0〉 |0〉+ γ |1〉 |1〉

6= (λ |0〉+ γ |1〉)(β |0〉+ γ |1〉)

So it is concluded above that to clone a non-orthonormal quantum state is ssimply unachiev-

able.

1.7 Quantum Dense Coding (QDC)

In quantum information, the technique used to send two classical bits using quantum channel

or qubits is known as quantum dense coding. Like quantum teleportation [11] [12], the

first step to achieve QDC, is the formation of entangled states. The entaglement permits

the spatial and polarization of photons to link together and send information between two

parties, irrespective of their partition.

The first step towards QDC protocol is the formation of an entangled state, which is shared

to both parties i.e Alia and Bob. Each recieved a qubit of shared entangled state. Alia

encodes her classical message on her qubit by applying some local operation on it. She has

a choice of four possible messages but one at a time. The classical bit encoding is shown in

the table given below
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Table 1.1: Encoding process of QDC

Each classical two bits with Alia corresponds to one of four Bell states. If she has recieved∣∣φ+
〉
bell state then she can perform local operation on her qubit to send four different

messages in form of four Bell states. After encoding process, she sent it to Bob who already

has his qubit. Bob then apply decoding process on the Bell state in his station and retrieve

the classical information.

The capacity of bits that can be sent through a single qubit is two which occurs due to the

entanglement between Alia and Bob. So it basically doubles the speed from one bit to two

classical bits per qubit [13].

It should be noted that though two qubits are used in the process, one part of entangled

pair already with Bob and other sent by Alice, but at the time of sharing the message only

one qubit is sent. Additionally the message is completely secured as information can not

be ritrieved by one qubit sent by Alice alone. Classically two classical bits can not be sent

securely by two bits alone. This makes this coding scheme a quantum dense coding one.
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Chapter2
Basics Tools for Quantum Dense Coding

The main ingredient for various quantum information protocols is quantum entanglement.

Its the first step towards the formulism of quantum cryptography, quantum teleportation,

quantum dense coding and quantum computaion using linear optics [14]. The efficient,

controlled and bright formation of entangled photons is the prerequisite requirment of these

protocols. Moreover the detection mechanism requires a theoretical background to model

the detectors keeping practical efficeincies in mind. The main topics discussed in this chapter

are: entangled phtons sources in real world in Sec.2.1, theoratical treatment of sources in

Sec.2.2, practical sources for quantum dense coding in Sec.2.3, Bell states in Sec.2.4 and

dectectors of our model is been in Sec.2.5.

2.1 Spontaneous Parametric Down Conversion(SPDC)

The first established experiment regarding entanglement of positron annihilation was on

spatiallly seperated quantum states. This opposed prediction was established after the ob-

servation of EPR proposal for spin half systems by Bohm [15] and the discovery of the Bell.

Various experimental observations on polarization entangled photons emitted from calcium
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are in a visible region, using standard linear optical instruments. But the photons on emis-

sion do not conserve momentum because of the random orientation of the momentum of

two photons from the atom. So this makes it impossible to study experimental setup. The

alternate method of producing more efficient photon pair, that can be easily handled exper-

imently too, is the process named as Parametric Down Conversion (PDC) [16].

The process of Spontaneous Parametric Down Conversion (SPDC) is used to produce entan-

gled photon pair, when a non-linear material is subjected to a single photon. This property

of material permits the convesrsion of a single photon into two i.e. a pair, obeying the both

law of conservation of momentum and energy. Each photon of the manufactured pair are

identified by naming them, the one as idler with frequncy ’ωi’and the other partner as signal

with frequncy ’ωs’. The photon that passes through a non-linear object is named as pump

photon with frequency ’ωp’. The material used for the SPDC process to occur is Beta Barium

Oxide (BBO) by obeying the following two fundamental laws

ωp = ωs + ωi, (Law of Conservation of energy) (2.1)

Kp = Ks +Ki, (Law of conservation of momentum) (2.2)

(2.3)

Figure 2.1 shows the process of SPDC, where the single photon laser passes through a

non-linear medium i.e. BBO and emitted on the other side as a pair of two cones each.

Each cone represents the idler photon and the singnal. The overlap region of cones specifies

the presence of two photons in effect of one another. The frequencies of the pair of photon

satisfies the condition of mismatch, which corresponds to the conservation of momentum.

The efficiency of SPDC is usually very low and it approaches to 10−6 [17]. The main criteria

for the whole process is that, the detection of signal photon predicts the presence of idler

photon, when measured. Following are the two types of SPDC
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Figure 2.1: The two photons of frequency ωi and ωs, formed as a result of a laser (pump)
photon passes through a BBO crystal with freqeucy ωp. The dotted lines depicts the region,
where two entangled photons effect each other.

2.1.1 SPDC Type-I

This type offers the production of two photons with identical polarization. Consider for

instance that the emitted entangled pair of photon have ordinary polarization than the

pump pulse would have the extraordinary polarization [18]. The Bell’s states production by

such type of SPDC is as under

∣∣φ±〉 =
1√
2

(|HH〉 ± |V V 〉). (2.4)

Linear optical techniques are used to examine the coreespondent Bell’s state of two photons.

2.1.2 SPDC Type-II

This type of SPDC assigns non-identical polarization to the spatial degree of photons. In

addition, there are two refractive indexes in various directions. So, if the pumping photon
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carries ordinary polarization then the output entangled photon pair must have extraordinary

polarization. The shape of Bell’s states folowing type-II takes the form

∣∣ψ±〉 =
1√
2

(|HV 〉 ± |V H〉). (2.5)

The real experimental processes manufactures less entangled states as compared to the ideal

Bell’s states.

2.2 Theoretical Setup for Practical sources

In any quantum communication domain specifically, the protocols of quantum information

demands greatly the practical sources for the generation of entanglement. Efforts are been

made to make models for the real formation of entanglement. The protocls for which such

models works are quantum teleportation, enataglement swapping and quantum dense coding

as in our case. All these protocols are in a big need of the real sources for entaglement

generation in correspondence to the Bell’s states. SPDC process is not a deterministic one

so, it produces either one pair, two pairs or even multiple pairs at any instant of time in

a random fashion. The prediction of number pairs is completely equivocal. Such process

obeys a direct relation of property of non-linear medium κ(2) with the strength of pump pulse

laser and the time which incident photon(pump) takes to pass through that medium. The

mathematical structure of SPDC follows Lie Algebra SU(1,1) having basis {Mx,My,Mz}

and makes use of following conditions

[Mx,My] = −ιMz, [My,Mz] = ιMx, [Mz,Mx] = ιMy. (2.6)
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The SPDC Type-I follows SU(1,1) algebra by the following generators

M (i)
x =

1

4
(d†id

†
i + didi), (2.7)

M (i)
y =

1

4
ι(d†id

†
i − didi), (2.8)

M (i)
z =

1

4
(d†idi + did

†
i ), (2.9)

where ’di’ represents any of the operators i.e. aH , aV , bH and bV . In addition SPDC type-II

uses the same algebra using the following generators

M (ik)
x =

1

2
(d†id

†
k + didk), (2.10)

M (ik)
x =

1

2
ι(d†id

†
k − didk), (2.11)

M (ik)
x =

1

2
(d†idk + did

†
k). (2.12)

In case of SPDC Type-I, generators illustrates that di = aH and dk = bH , which shows iden-

tical polarization. while SPDC Type-II exhibit distinct polarization and the generators are

repersented in such way i.e. di = aH and dk = bV . Mathematically SU(1,1) transformation

involves the treatment of operators on a vacuum state[18]

Z(γ) = exp(ιγMx) |vac〉 , γ ∈ R, |vac〉 = |0H0V 0H0V 〉 . (2.13)

Furthermore, generators must satisfy the following conditions of commutators

[MX ,My] = −ιMZ , [My,Mz] = ιMx, [Mz,Mx] = ιMy. (2.14)

The genarators obeying the above conditions for SPDC Type-I, takes the form

Mx =
1

2
(a†Hb

†
H + aHbH), (2.15)
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where the generators make use of annihilation and creation operators as spatial mode with

their respective degree of polarization i.e. Horizental (H) and Vertical (V). The ultimate

result of this process includes, production of quantum state
∣∣K(κ)

〉
which is a superposotion

of fock state and a vacuum state. The state also contain single pair, double and even multiple

pairs of high order. To an approximate small value of (γ), state K (γ) turn into following

form

K(γ) = |vac〉+
1

2
ιγ |1010〉 , γ ∈ R (2.16)

Polarization corresponds to order (HVHV) and state |ijkl〉 shows that i, j, k and l photons

are in spatial mode ’a’ and ’b’. The presence of vacuum state suggests high probabilty of

not even a single photon creation.

2.3 Modeling Practical Sources For Practical Quantum

Dense Coding

As it is obvious that many quantum information protocols require entanglement is the first

priority of the problem. In a similar way quantum dense coding also need such state, similar

to Bell’s state. But the main task is to prodeuce practically entangled sources. Here in this

problem, SPDC Type-II source is used to accomplish this job. The aim is to produce state,

which carreis identical behavior to that of
∣∣ψ+

〉
Bell state. The spatial mode are chosen to

be ’d’ and ’e’ with orthogonal polarization of Horizental(H) and vertical(V). Now starting

from the
∣∣ψ+

〉
Bell state

∣∣ψ+
〉
de

=
1√
2

(|HV 〉+ |V H〉), (2.17)

=
1√
2

(|1001〉+ |0110〉)dHdV eHeV (2.18)
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For the formation of Bell state as written above, following generators play the role as

Mx =
1

2
(d†He

†
V − d

†
V e
†
H + dHeV − dV eH), (2.19)

My =
1

2ι
(d†He

†
V − d

†
V e
†
H − dHeV + dV eH), (2.20)

Mz =
1

2
(d†HdH − eV e

†
V − d

†
V dV + eHe

†
H). (2.21)

where the {Mx,My,MZ} obeys the condition of Eq(2.6) imposed by SU(1,1) algebra. The

ultimate state produced by such SPDC is given below

|χ〉 = exp[ιχ(d†He
†
V − d

†
V e
†
H + dHeV − dV eH)] |vac〉 , (2.22)

where χ is the efficiency parameter of the source with condition χ = 1
2
γ ∈ R. The condition

of commutator relation for operator is already discussed in section 2.2, But these relation

for operators are as under

[di, d
†
j] = δij, [ei, e

†
j] = δij, (2.23)

[di, e
†
j] = 0, [ei, dj] = 0, (2.24)

where the indices i,j ∈ polarization {H, V }. Making use of above commutations relation,

Eq(2.22) beomes

|χ〉 = exp[ιχ(d†He
†
V + dHeV )]exp[−ιχ(d†He

†
V + dV eH)] |vac〉 , (2.25)

Now to futher solve the above equation, it will be better to transform the operators to normal

order. For this purpose some generator in terms of opertaors used in above equation are

defined as

J+ = d†e†, J− = de, and J0 =
1

2
(d†d+ e†e+ 1). (2.26)
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where new generators are {J+, J−, J0} of SU(1,1) algebra which satisfies the following com-

mutation relation

[J−, J+] = 2J0, [J0, J±] = ±J±. (2.27)

These generators in normal order are given by [19].

exp[α+J+ + α0J0 + α−J−] = exp[D+J+]exp[ln(D0)J0]exp[D−J−], (2.28)

Now D∓, D0 are defined as

D∓ =
α∓/V sinhV

coshV − ( α0

2V
) sinhV

, (2.29)

D0 = [coshV − (
α0

2V
) sinhV ]−1, (2.30)

V = [(
α0

2
)2 − α+α−]

1
2 . (2.31)

So applying the transformation defined in Eq.(2.28) to first part of Eq.(2.25)

exp[ιχ(d†He
†
V + dHeV )] = exp[ιχ(d†He

†
V + ιχdHeV )]

= exp[φ(χ)d†He
†
V ]exp[ω(χ)(d†HdH + e†V eV + 1)]exp[(φ(χ)dHeV )] (2.32)

In above scenario α+ = α− = ιχ and α0 = 0, and using Eq.(2.31), the values of φ(χ) and

ω(χ) can be calculated as

φ(χ) ≡ ι tanh(χ), ω(χ) ≡ −ln[cosh(χ)], V = χ. (2.33)
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In a similar way the second part of Eq.(2.25) changes to

exp[−ιχ(d†He
†
V + dV eH)] = exp[−ιχd†He

†
V +−ιχdV eH ], (2.34)

= exp[
´́
φ(χ)d†He

†
V ]exp[ ´́ω(χ)(d†V dV + e†HeH + 1)]exp[

´́
φ(χ)dV eH ], (2.35)

with parameters

´́
φ(χ) := itanh(χ), ´́ω(χ) := −ln[Cosh(χ)], V́ := χ (2.36)

The normal state is obtained from SPDC Type-II by putting Eq. (2.32) and Eq. (2.35 in

Eq.(2.25), we get

|χ〉 = exp[φ(χ)(d†Hc
†
V + d†V c

†
H)]exp[ω(χ)(d†HdH + d†V dV + c†HcH + c†V cV + 2)]

exp[φ(χ)(dHcV − dV cH)] |Vac〉 . (2.37)

where |Vac〉 =
∣∣0dH0dV 0cH0cV

〉
. In above equation the last two exponential vanishes away

due to the action of annihilation operator on vacuum state, therefore the state we obtain

from SPDC becomes

|χ〉 = exp[2ω(χ)]exp[φ(χ)(d†Hc
†
V + d†vc

†
H)] |Vac〉 (2.38)

This is the final state which we use in our work for QDC.

2.4 Bell state Measurement

The quantum system usually usually represents quantum information protocols through a

quantum state. Th quantum state keeps this information unless it exposed to measurement.

The whole system is controlled by the Hamiltonian of that system. To recover this informa-
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tion, the system usually interacts with detectors and the state vanishes. In this section, the

measurement of Bell states will be discussed.

Bell state keep information in a particular order, depending on the way ,they are constructed.

To recover this information and use it in different quantum information processes, Bell state

measurement plays its role and gives result in classical bits [16]. The Bell state measuremet

process consists of a 50 : 50 beam splitter (BS) followed by a two polarization beam splitters

(PBS). The detectors which click specify the presence of respective bell state in those modes.

Here we take two spatail modes "b" and "c" which first paseses through beam splitter (BS)

and passes through polarization beam splitter (PBS), which only allows to transmit horizon-

tal polarized photon and reflects the vertical polarized photon mode. The photons finally

strike with detectors spatially apart form on another. As a result different spatial mode pho-

tons are detected with the help of photo detectors with coreesponding polarizations. Those

detectors which click shows that photon has been detected, while no click means no photon

has been detected by detector.

The four Bell states are given below

∣∣ψ±〉
bc

=
1√
2

(|1001〉 ± |0110〉)bHbV cHcV , (2.39)∣∣φ±〉
bc

=
1√
2

(|1010〉 ± |0101〉)bHbV cHcV , (2.40)∣∣ψ±〉
bc

=
1√
2

(b†Hb
c†Vc |0000〉 ± b†Vbc

†
Hc
|0000〉), (2.41)∣∣φ±〉

bc
=

1√
2

(a†Hb
c†Hc
|0000〉 ± b†Vbc

†
Vc
|0000〉), (2.42)

So the modes "b" and "c" when pass through beam splitter use the following transformations

i.e

b†H −→
1√
2

(b†H1
+ ic†H4

), b†V −→
1√
2

(b†V2
+ ic†V3

) (2.43)

b†H −→
1√
2

(ib†H1
+ c†H4

), c†V −→
1√
2

(ib†V2
+ c†V3

) (2.44)
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So the above transformations on Eq.(2.42) and Eq.(2.42) leads to

|ψ〉−bc −→
1√
2

(
1√
2

(b†H1
+ ic†H4

).
1√
2

(ib†V2
+ c†V3

) |0000〉

− 1√
2

(ib†V2
+ c†V3

).
1√
2

(ib†H1
+ c†H4

) |0000〉)

|ψ〉−bc −→
1

2
√

2
((b†H1

b†V2
− c†H4

b†V2
+ b†H1

c†V3
+ ic†H4

c†V3

−(ib†V2
b†H2
− c†V3

b†H1
+ b†V2

c†H4
+ ic†V3

c†H4
) |0000〉)

|ψ〉−bc =
1

2
√

2
(i |1100〉 − |0110〉+ |1001〉+ i |0011〉

−i |1100〉+ |1001〉 − |0110〉 − i |0011〉)H1V2H4V3

=
1

2
√

2
(2 |1001〉 − 2 |0110〉)H1V2H4V3

|ψ〉−bc =
1√
2

(|1001〉 − |0110〉)H1V2H4V3 (2.45)

In a similar way
∣∣ψ+

〉
changes in the following way due to above transformation

|ψ〉+bc −→
1√
2

(
1√
2

(b†H1
+ ic†H4

).
1√
2

(ib†V2
+ c†V3

) |0000〉

+
1√
2

(ib†V2
+ c†V3

).
1√
2

(ib†H1
+ c†H4

) |0000〉)

|ψ〉+bc −→
1

2
√

2
((b†H1

b†V2
− c†H4

b†V2
+ b†H1

c†V3
+ ic†H4

c†V3

+(ib†V2
b†H2
− c†V3

b†H1
+ b†V2

c†H4
+ ic†V3

c†H4
) |0000〉)
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|ψ〉+bc =
1

2
√

2
(i |1100〉 − |0110〉 − |1001〉 − i |0011〉

+i |1100〉 − |1001〉+ |0110〉+ i |0011〉)H1V2H4V3

=
1

2
√

2
(2 |1001〉+ 2 |0110〉)H1V2H4V3

|ψ〉+bc =
1√
2

(|1001〉+ |0110〉)H1V2H4V3 (2.46)

Figure 2.2: The
∣∣ψ−〉 state is detected when d1 and d3 OR d2 and d4 clicks.

Figure 2.3: The
∣∣ψ+

〉
state is detected when d1 and d2 OR d3 and d4 clicks.

Figure 2.4: The
∣∣ψ−〉, ∣∣ψ+

〉
states are detected when d1 OR d3 OR d2 OR d4 clicks.
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2.5 Detectors

Detectors plays a very important role in quantum information processes. Many of quantum

information protocols uses detectors such as quantum teleportation, quantum dense coding

and entaglement swapping. In each protocols, detectors are made through specific mechanism

in order to study the behavior of quantum mechanical model. In this section we will discuss

different types of detectors with their uinque limitations to detect photons.

The detectors used for an optical system are usually photo diodes. They work on the principle

of photoelecric effect. One of the primary dtectors used are semi conductor detector such as

Indium Galium Arsenide (InGaAs), which usually works at room temperature[ [19]]. In such

detector the photon presence is detected through avalanch of electrons, which symbolized as

a "click". However these detectors are not able to discriminate the photon number. There

are some detectors which have the ability to discriminate between photons number, one of

them is named as superconducting transition edge sensors (TES) which has efficiency upto

88 %. They work at 1550 nm and also account for dark counts rates [20]. The presence of

dark counts refers to event "click", even in the absence of single photon. These drak counts

lower the efficiency of detectors. On practical basis, it is impossible to construct an ideal

detector, therefore we have used a theoretical model to deal with such issue, discussed in

next section.

2.5.1 Ideal Photon Number Discriminating Detectors

These detectors register a "click", when photons are present in certain modes and shows

"no click" in the absence of even single photon. These detectors carry the information of

number of photons striking, which is measured through the strength of the click. They are

known as projective valued measurement (PVM). Mathematically they are represented using
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projection operators i.e

Πn = |n〉〈n| where n = 0, 1, 2, ....

Here |n〉 is a fock state and ‘n’ belongs to natural nubers (N) of certain modes. If we have

four modes, then |n〉 = |lkmn〉 and the PVM would become

Πlkmn = |l〉〈l| ⊗ |k〉〈k| ⊗ |m〉〈m| ⊗ |n〉〈n|,where l, k, m, n = 0, 1, 2, 3,.... (2.47)

2.5.2 Inefficient Photon Number Discriminating Detector with no

Dark Counts

These detectors are considerd to be inefficient because of dark counts. In our model , the

efficiency of detector is represented by "η", and 0 < η < 1. The inefficiency demands

that there is possibility of "click" of a detector, even when no single photon present. Our

theoratical model tackle such issue by introdusing a beam splitter with transmittance "η".

So the photon which passes through such beam splitter are only allowed to strike the detector

and get measured, while the reflected photons vanishes by taking trace on reflected photons.

Due to absence of dark counts, we take a vacuum state at one of the input port of beam

splitter as shown in figure(2.5). Hence the probability that the detector measured n photons

when input state "ρinput" reaches to other port of beam splitter is given below

P (η/ρinput) = Trtran[ΠnTrref (Bηρinput ⊗ |V ac〉〈V ac|)B†ηΠn] (2.48)

The beam spltter action is done through unitary matrix "Bη", while the "ρinput" state are

basically fock statesas discussed above i.e ρinput = |l〉〈l|. So by putting ρinput = |l〉〈l| in above
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equation, we get the final expression for probability

P (n/l) = Trtran[ΠnTrrefBη(|l〉〈l| ⊗ |Vac〉〈vac|)B†ηΠn] (2.49)

Figure 2.5: The model for an imperfect threshold detector.

The above equation basically suggests that in order to detect "n" photons, l > n unless dark

counts are taken into account.

2.5.3 Threshold Detectors

These detectors have two outcomes i.e either a "click" or "no click". These detectors are

easily available and understandable than the other detectors discussed so for. They does not

have the ability to disciminate photon numbers. The expressions for these outcomes are as

under

No click = Πo = |0〉〈0|
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and

click = Π⊥o = I− |0〉〈0|

For threshold detectors with dark count probability of no click is

Πdc
o = (1− Pdc)|0〉〈0|.

while probability of click is

Πdc
1 = I− Πdc

o = I− (1− Pdc)|0〉〈0|.

we used above operators for detection of photons in our model of quantum dense coding.

In order to proceed further, we will transport two classical bits through quantum dense

coding in the next chapter. We would use the prctical sources for entanglement and will use

threshold detectors for our theoratical model of QDC.
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Chapter3
Tools for Quantum Dense Coding

through continuous Modes

Dense Coding protocol enables communication by sending classical information of two classi-

cal bits, through quantum bit or qubit. The first step to acomplish this task is the formation

of enatangled state and sending it to both parties. The sharing of this entangled state pro-

vides the basis for QDC. In order to produce shared entangled state using practical sources,

we have used SPDC type-II process.

Hence the state which we obtain from PDC source becomes

∣∣ψ+
〉

= exp [2ω(χ)] exp [φ(χ)(a†Ha
(ω) + b†Vb(ώ) + a†Vaω + b†Hb

ώ) |vac〉] (3.1)

So now we convert the state obtained from SPDC type-II in Eq. (2.35) to continous mode

frequency distribution in Sec.3.1. In Sec.3.2 we see how two photons can be made distinguish-

able. In Sec.3.3 we present detector model in continuous mode and in Sec.3.4 we develop

quantum state after passing through beam splitter.
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3.1 Continuous Mode (Frequency Space)

We have taken the state in frequency distribution of photon modes. The state in frequency

distribution can be written as

|1〉 →
∫ ∞
−∞

f(ω)
∣∣1(ω)

〉
dω →

∫ ∞
−∞

f(ω)a†(ω) |0〉 dω

(3.2)

where f(ω) is the distribution function and is normally a gaussian [21]. Hence above
∣∣ψ+

〉
state in frequency distribution takes the form

∣∣ψ+
〉

= e[2ω(χ)] exp [φ(χ)

∫ ∫
[f(ω, ώ)a†H(ω)b†V (ώ) + g(ω, ώ)a†V (ω)b†H(ώ)dωdώ] |vac〉] (3.3)

In order to simplify the exponential function, we used the power series expansion. Using

Maclaurin’s formula, the exponential function can be written as

exp(x) =
∞∑
n=0

xn

n!

Now using above formula in Eq.(3.3), the stste
∣∣ψ+

〉
becomes

∣∣ψ+
〉

= exp [φ(χ)

∫ ∫
[f(ω, ώ)a†H(ω)b†V (ώ) + g(ω, ώ)a†V (ω)b†H(ώ)dωdώ] |vac〉]

=
∞∑
n=0

[φ(χ)
∫ ∫

[f(ω, ώ)a†H(ω)b†V (ώ) + g(ω, ώ)a†V (ω)b†H(ώ)dωdώ] |vac〉]n

n!

=
∞∑
n=0

[φ(χ)]n

n!

[ ∫ ∫ (
f(ω, ώ)a†H(ω)b†V (ώ) + g(ω, ώ)a†V (ω)b†H(ώ)dωdώ

)
|vac〉

]n

so
∑∞

n=0
[φ(χ)]n

n!
= e[φ(χ)]. Subsituting it in above equation, we get

∣∣ψ+
〉

= e[φ(χ)]

∞∑
n=0

[ ∫ ∫ (
f(ω, ώ)a†H(ω)b†V (ώ) + g(ω, ώ)a†V (ω)b†H(ώ)dωdώ

)
|vac〉

]n
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since (a+ b)n =
∏i=n

i=1 (ai + bi). Above equation becomes

∣∣ψ+
〉

= e[φ(χ)]

∞∑
n=0

i=n∏
i=1

[ ∫ ∫
f(ωi, ώi)a

†
H(ωi)b

†
V (ώi) + g(ωi, ώi)a

†
V (ωi)b

†
H(ώi)dωidώi

]
|vac〉

where ωi and ώi represents two photons with different frequency. So substituting it in

Eq.(3.3), we get

∣∣ψ+
〉

= exp [2ω(χ) + φ(χ)]
∞∑
n=0

i=n∏
i=1

[ ∫ ∫
[f(ωi, ώi)a

†
H(ωi)b

†
V (ώi) + g(ωi, ώi)a

†
V (ωi)b

†
H(ώi)dωidώi]

]
|vac〉

Above equation gives the
∣∣ψ+

〉
state in continuous modes.

3.2 Time Delay in one mode

In our problem the photon mode having frequency (ωi) reaches the beam splitter with a time

delay of ’∆
c
’. Therefore, we introduce here a phase shift factor i.e. exp[ιωi∆/c]. Mathematically

to acomplish this job we used the fourier transformation i.e

f(t) =

∫
f́(ω)eωtdω

The above fourier transform for time delay can be written in the following way.

f(t+
∆

c
) =

∫
f́(ω)eιω(t+ ∆

c
)dω =

∫
f́(ω)eιωteιω

∆
c dω
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The above equation shows that the exponential factor "eιω
∆
c " appears due to time delay in

one of mode of photons in frequency domain. In a similar context the above
∣∣ψ+

〉
becomes

∣∣ψ+
〉

= exp [2ω(χ) + φ(χ)]
∞∑
n=0

i=n∏
i=1

[

∫ ∫
e(ιωi∆/c)[f(ωi, ώi)a

†
H(ωi)b

†
V (ώi) (3.4)

+g(ωi, ώi)a
†
V (ωi)b

†
H(ώi)dωidώi] |vac〉]

The action of annihilation and creation operators on vacuum state ’|vac〉’ are as under

∣∣ψ+
〉

= exp [2ω(χ) + φ(χ)]
∞∑
n=0

i=n∏
i=1

[

∫ ∫
e[ιωi∆/c][f(ωi, ώi)

∣∣Ha(ωi)
〉
|Vbώi〉

+g(ωi, ώi)
∣∣Va(ωi)〉 ∣∣Hb(ώi)

〉
dωidώi]]

In next step we will perform Bell state measurement in continuous modes.

3.3 Bell State Measurement in Continuous Mode(BSM)

Usually an entangled state which contains qubit is from one out of four Bell states. The Bell

state measurement refers to the investigation, which verify the holding of one out of four

possible Bell state that an entangled particals exist. Normally this process is done through

linear optical device such as beam splitter. So in order to perform BSM in our case we use

beam splitter which works on the principle of equivalent reflectance and transmittance i.e

|r| = |t|, known as 50 : 50 beam splitter. The transformation that we used for such action

are given below.

 âH,V

b̂H,V

→ UBS

 âH,V

b̂H,V
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Thus after passing through beam splitter, we obtained the
∣∣∣ψ́〉 state i.e

∣∣∣ψ́〉 =
1

2
exp [2ω(χ) + φ(χ)]

∞∑
n=0

n∏
i=1

[ ∫ ∫ (
e(ιωi∆/c)f(ωi, ώi)[

∣∣Hb(ωi)Vb(ώi)
〉
− ι
∣∣Hb(ωi)Va(ώi)

〉
+ι
∣∣Ha(ωi)Vb(ώi)

〉
+
∣∣Ha(ωi)Va(ώi)

〉
] + g(ωi, ώi)[

∣∣Vb(ωi)Hb(ώi)
〉
− ι
∣∣Vb(ωi)Ha(ώi)

〉
+ι
∣∣Va(ω)Hb(ώi)

〉
+
∣∣Va(ωi)Ha(ώi)

〉
dωidώi]

)]
(3.5)

After BSM, the resultant state strikes the detectors. Since the photons are in continous

mode, so we would discuss the detectors for continous frequency distribution in the next

section.

3.4 Detector Model for continuous Modes

Now we explain our theory of detectors for practical QDC. Since ideal photon number dis-

crimination detectors rarely exist in practical laboratory therfore, we haved used threshold

detectors. These detectors are used to investigate the existance of no photon or presence

of at least one photon. Hence they detects two states i.e "no click" or "click" which repre-

sents no photon and prsence of at least one photon. So the ideal threshold detector can be

represented mathematically as

Πo = |0〉〈0|

But for practical purpose , we have used inefficient threshold dectectors wich have dark

counts. These dark counts refers to such state of detector when it display "click" even in

the presence of no photon. Such drak counts accounts for the inefficiency of dectector which

in our case is ’η’. The theroratical model for such detector has been shown in the figure

(2.5). This figure explains our theoretical model for inefficent threshold detector having an

efficiency of η. The beam splitter has transmittance η and have a signal state on one input
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port and a vacuum state on the second. A perfect threshold detector with unit efficiency is

placed on one exits port while second port have trash to discard the reflected photons. For

the no click of a detector with unit efficiency and have dark counts is given by operator

Πo = (1− Pdc)|0〉〈0|

and the "click" event is calculated using operator obtained by substracting the "no click"

operator from identity ‘I’. i.e

probability of "click" = I− "probability of no click"

= I− Πo

= I− (1− Pdc)|0〉〈0|

3.5 Continuous mode Bell state after action of beam split-

ter

The
∣∣∣ψ́〉 state after passing through beam splitter reaches to the detectors. For an imperfect

threshold detector with efficiency "η", in our model, the quantum state passes through beam

splitter with transmitivity"η" as in figure 3.1, with following transformations

 â

0̂

 −→ B†η

 â

r̂a

 ,

 b̂

0̂

 −→ B†η

 b̂

r̂b

 (3.6)

While the transformations for operators are as under

a† −→ √ηa† −
√

1− ηr†a, b† −→
√

1− ηb† +
√
ηr†b (3.7)
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Where Bη is the unitary matrix of the beam splitter.

Bη =

 √
η

√
1− η

−
√

1− η √
η

 (3.8)

and ra and rb are the reflected modes from detector beam splitter Bη After passing through

a beam splitter with above tranformation, the
∣∣∣ψ́〉 becomes

∣∣∣∣ ´́ψ〉 = Bη

∣∣∣ψ́〉∣∣∣∣ ´́ψ〉 =
1

2
e[2ω(χ)+φ(χ)]

∞∑
n=0

n∏
i=1

[ ∫ ∫ (
[e[ιωi∆/c]f(ωi, ώi)[[

√
1− ηr†H,a(ωi) +

√
ηb†H(ωi)][

√
1− ηr†V,a(ώi)

+
√
ηb†V (ώi)]− ι[

√
1− ηr†H,a(ωi) +

√
ηb†H(ωi)][

√
ηa†V (ώi)−

√
1− ηr†V,b(ώi)] + ι[

√
ηa†H(ωi)

−
√

1− ηr†H,b(ωi)][
√

1− ηr†V,a(ώi) +
√
ηb†V (ώi)] + [

√
ηa†V (ωi)−

√
1− ηr†H,b(ωi)][

√
ηa†V (ώi)

−
√

1− ηr†V,b(ώi)]] |vac〉 dωidώi + g(ωi, ώi)[[
√

1− ηr†V,a(ωi) +
√
ηb†V (ωi)][

√
1− ηr†H,a(ώi)

+
√
ηb†H(ώi)]− ι[

√
1− ηr†V,a(ωi) +

√
ηb†V (ωi)][

√
ηa†H(ώi)−

√
1− ηr†H,b(ώi)] + ι[

√
ηa†V (ωi)

−
√

1− ηr†V,b][
√

1− ηr†H,a(ώi) +
√
ηb†H(ώi)] + [

√
ηa†V (ωi)−

√
1− ηr†V,b(ωi)][

√
ηa†H(ώi)

−
√

1− ηr†H,b(ώi)]] |vac〉]dωidώi
)]

(3.9)

where probability that the detector gives a "click"

P = Trtran

[
(I− (1− Pdc)|0, 0〉〈0, 0|)Trref

∣∣∣∣ ´́ψ〉〈 ´́
ψ

∣∣∣∣] (3.10)

Using our detector model theory, the event "no click" becomes

no click = (1− Pdc)|0, 0〉〈0, 0|)Trref
∣∣∣∣ ´́ψ〉〈 ´́

ψ

∣∣∣∣,
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Where in our case |0, 0〉〈0, 0| represents the coincidence of
∣∣ψ+

〉
state which is given below

|0, 0〉〈0, 0| =
∣∣0aH , 0aV 〉〈0aH , 0V ∣∣ (3.11)

Hence the detector will register a "click" as

click = [(I− (1− Pdc)|0, 0〉〈0, 0|)Trref[BηρB
†
η]] (3.12)

which obviously will be traced out and gives the probability of an event given by Eq.(3.10).

we have developed certain tool for continous mode quantum dense coding including thee Bell

state, Bell state measurement and detectors.
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Chapter4
Conclution

Quantum Entanglement is the prime requisite of every quantum information protocol. In

our work we used the PDC process to generate the
∣∣ψ+

〉
Bell state. We come to know that

the PDC process is completely a random process i.e it either produce single pair photons

or multi-pair, and taking small value of non linearity χ(2) of BBO crystal. Hence the non

linearity plays a vital role in the formation of an entangled state. We bring a path diference

between two modes of photon by taking a delay of time on one of the modes. This time delay

appears as a fourier tranform in mathematical form which is represented by a phase factor. In

next step we perform Bell state measurement in continuous modes of frequency distribution.

We use linear optics for this process. Further, we develop a theory of detectors in continuous

modes in frequency domian. In order to construct a theory for practical purposes, we take

into account the inefficiency of dectectors and dark counts. Hence we obtain a theoretical

model for detectors, which detects the photons close to the practical scale. At the end we

calulate the density matrix of theoratical model of QDC. In future we will calculate the final

probability of QDC process for above optical model and will observe its variation with the

path difference "∆". It lead us to compare the variation of probabilty and "∆" with the

experimental quanutm dense coding.
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