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ABSTRACT 

 

Liquefaction Analysis is one of the most important parameters in the study of geotechnical 

earthquake engineering. Till the 1960’s this phenomenon was relatively less unearthed, and 

practitioners have not formulated any detailed method for its assessment. However, two large 

earthquakes in 1964 in Niigata, Japan, and Alaska, USA have turned the attention of engineers 

toward this issue. Several laboratory and field methods were developed for the calculation of 

the Factor of Safety. Developed methods have been used all over the world which use the Cyclic 

Resistance Ratio and Cyclic Stress Ratio for measuring the factor of safety. As empirical meth-

ods have inherent limitations due to certain assumptions for the ease of work, liquefaction for-

mulations have also been generalized to counter the real-world scenario. These assumptions 

significantly impacted the implementation of the simplified methods. In recent years Machine 

Learning has been used to improve the inherent shortcomings present in the conventional 

method of predicting liquefaction. As machine learning algorithms learn from the data and are 

not explicitly programmed, they can develop highly non-linear relationships and learn from the 

data. Researchers have mostly used the published data based on the Factor of Safety to predict 

the liquefaction potential which is not a credible approach as it has inherent shortcomings in 

ascertaining CSR and CRR(Kurnaz & Kaya, 2019a).In this research work four different ma-

chine learning models namely Logistic regression, Support vector machine, Decision tree, and 

Artificial neural networks have been used to predict the liquefaction potential of the soil based 

on the published field data. The data has been procured from credible published research papers. 

It includes six different input parameters named cone tip resistance, sleeve friction ratio, effec-

tive stress, total stress, maximum horizontal ground surface acceleration, earthquake moment 

magnitude, and one output parameter named liquefaction. The performance of the developed 

models was gauged with the help of classification assessment report parameters named accu-

racy, precision, recall, and F1 score. It was found that the Decision Tree algorithm performance 
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was the best among all the other algorithms followed by Artificial neural networks, Logistic 

regression, and Support vector machine. The developed models can be used as a predictive 

model for the preliminary liquefaction assessment of soil. 

 

Keywords: Liquefaction, Machine Learning, Cyclic Resistance Ratio (CRR), Cyclic Stress Ra-

tio, (CSR), Decision Tree, Logistic Regression, Support Vector Machine, Artificial Neural Net-

work. 
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Chapter. 1 

1. INTRODUCTION  

1.1. General  

 

The liquefaction of soil presents a significant challenge in geotechnical engineering, particu-

larly in regions prone to seismic activity. This phenomenon occurs when saturated soil loses its 

strength and stiffness under the influence of cyclic loading, such as earthquakes, resulting in a 

temporary state resembling that of a liquid. Liquefaction can lead to catastrophic consequences, 

including ground settlement, structural damage, and even the collapse of buildings and infra-

structure. 

The liquefaction of soil presents a significant challenge in geotechnical engineering, particu-

larly in regions prone to seismic activity. This phenomenon occurs when saturated soil loses its 

strength and stiffness under the influence of cyclic loading, such as earthquakes, resulting in a 

temporary state resembling that of a liquid. Liquefaction can lead to catastrophic consequences, 

including ground settlement, structural damage, and even the collapse of buildings and infra-

structure. 

Addressing the liquefaction susceptibility of soil requires a comprehensive understanding of 

various factors such as soil composition, groundwater levels, seismic characteristics, and his-

torical earthquake data. Traditional geotechnical methods for assessing liquefaction potential 

involve extensive field investigations and laboratory testing, which can be time-consuming and 

costly. 

1.2. Fundamentals of Liquefaction   
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 "Liquefaction" is a term used to describe various phenomena; the common thing allied with 

all phenomena is the instigation of excess water pressure due to the increase in the dynamic 

load. (Kramer & Seed, 1988) 

During the process of un-drained loading, the capacity of saturated soil to contract initiates the 

development of excess soil pore water pressure in the soil matrix, which results in a decrease 

in the effective stress of the soil matrix. The reduction in effective stress further leads to various 

failures. The aforementioned failures are classified into two main types: flow liquefaction and 

cyclic mobility. Cyclic mobility failure happens more regularly and often causes less damage 

than flow liquefaction.   

Flow liquefaction is most commonly described by substantial, abrupt deformations in-

fluencing large areas (Kramer, 1996). Flow liquefaction initiates when the static shear stresses 

of a soil mass exceed the soil’s inherent shear strength. The precarious state results in an abrupt 

movement of the matrix, called flow failure. In flow failures, the static stresses-which are shear 

stresses in nature are greater than the soil’s strength. 

Cyclic mobility, in contrast to flow-liquefaction, starts whenistaticishear stress does not 

exceed the shear strength of the soil mass(Kramer & Seed, 1988).  

         Three topics must be thoroughly understood to address hazards associated with the liq-

uefaction phenomenon: Liquefaction Susceptibility, Liquefaction Initiation, and Liquefaction 

Effects. Soil might not be prone to liquefaction at the very start. Even if a soil mass is vulner-

able to liquefaction, the prevalent environment is not there to start the process of liquefaction.  

Finally, if liquefaction initiates, adverse impacts may not be exhibited.  

1.3. Liquefaction Susceptibility  
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The inquiry if a soil is at risk of liquefaction hazard or not is the fundamental step to-

wards the determination of liquefaction potential Soil vulnerability to liquefaction is determined 

by the use of different criteria which include and are not limited to historical, geological, and 

composition, and state criteria. 

1.3.1. Historical Criteria; Geological Criteria; and Composition Criteria 

 

Historical criteria are rudimentary and basic considerations of liquefaction; questioning 

whether soil is liquefied or not in its history. This factor is mostly premised on different case 

histories or on-site real proof of earlier liquefaction. (Rinne, 1987) ascertained that as long as 

soil and groundwater conditions do not vacillate, liquefaction occurs at the same location.  

Geological criteria consider geological footprints in the evaluation of a soil’s vulnerability to 

liquefaction (Youd & Keefer, 1994).  

Conventionally, liquefaction was taken into matter just in wet soils (Kramer & Seed, 1988); 

and ground settings primarily controlled whether a soil is at liquefaction risk or not. However, 

tri-axial tests conducted by (Unno et al., 2008) highlighted that certain unsaturated soils also 

drop effective stress due to the cyclic shear and act as liquids. They detected this phenomenon 

to initiate when the air in the pores of the soil matrix and the pressure of water is equal to the 

starting confining pressure. Therefore, unsaturated soils should not be taken out of the equation 

while assessing the liquefaction potential. 

Composition criteria have been altered significantly in recent years. Many practitioners, for al-

most a decade, trusted the “Chinese criteria” (Liu, 2020) which says that soils can be prone to 

liquefaction hazards if the given conditions are satisfied:  

- Fraction which is finer than 0.005mm ≤ 15% 

- Liquidity Index of the soil ≤ 0.75  

-  Water Content of the soil, wc ≥ 0.9 LL  
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- Liquid Limit, LL ≤ 35%  

 

This rudimentary criterion was pervasive until several profound earthquakes (1994 Northridge 

Earthquake, Earthquake of Kocaeli 1999, and Chi-Chi 1999 Earthquake) in which a large 

amount of infrastructure was damaged due to the Chinese criteria. 

1.3.2. State Criteria  

Engineers would analyze the soil and ask a few questions; is this soil susceptible to 

liquefaction, and would look at the historical, geologic, and compositional criteria to try to an-

swer the question. If the answer to the question is a yes, that soil is vulnerable to liquefaction, 

it does not necessarily mean that the soil will liquefy for sure if it is exposed to earthquakes. It 

is because the initiation also depends upon the magnitude and duration of the loading that we 

are applying. Casagrande (1936) established primitive patterns to assess the liquefaction poten-

tial.  He performed drained, tri-axial tests on contractive and dilative sands and observed all 

soils regardless of dense or loose, when they are sheared, soils try to approach a line which is 

called the Critical Void Ratio Line. The void ratio to where all soils come together was named 

the critical void ratio ec, Casagrande speculated that the undrained shearing of loose matrix 

specimens produces pore pressure positive in nature and on the contrary dense specimens pro-

duce negative pore water pressure. According to Casagrande, this line would be the margin 

connecting the susceptible and unsusceptible soils. Soils present above the Critical Void Ratio 

line as shown in Figure 1.1 were vulnerable to liquefaction, and soils present below the CVR 

line were dense sands, and hence resistant to liquefaction. 

 Understanding these criteria is crucial for assessing and mitigating the risk of soil liq-

uefaction, especially in areas prone to seismic activity or other cyclic loading events. Engineer-

ing measures, such as soil improvement techniques and proper foundation design, can help mit-

igate the risks associated with liquefaction. 
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Figure 1  Casagrande’s CVR Line (after Kramer; 1996) 

 

The explanation given by Casagrande was considered to be rational and true until Fort 

Peck Dam failed in 1938. Post-dam failure investigations of the site divulged that the initial 

condition of almost all the liquefied soils was beneath the Critical Void Ratio Line. To rectify 

the mistakes of experiments, Castro, conducted several cyclic tests on isotopically consolidated 

specimens and developed a concept slightly different from Casagrande’s assumption (Castro, 

1969).  He demonstrated that the soil specimens acted in three different ways.  According to 

him loose soil specimens in (Figure 1.2) show contraction under loading and tend to liquefy 

under these loads.  

 

 

Figure 2 Castro’s Triaxial Tests (after Kramer, 1996) 
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On the other hand, very dense specimens (Specimen B) show initial contraction but later dilate 

and grow strength; no tangible proof of the liquefaction is visible. Castro’s research had given 

rise to the phenomenon of the steady state of deformation. Steady-state deformation of soil in 

liquefaction refers to the continuous and ongoing displacement or movement of soil particles 

following the onset of liquefaction. When saturated soils experience cyclic loading, such as 

during an earthquake, the pore water pressure within the soil increases, leading to a reduction 

in effective stress and subsequent loss of shear strength. This decrease in strength can cause the 

soil to transition from a solid-like state to a liquid-like state, resulting in flow-like deformation. 

(Poulos et al., 1985) defined it as a state where soil continuously deformed under persistent 

shear stress and confining effective pressure. This soil state is known as the steady state 

strength, Ssu. The steady-state line runs parallel to the CVR, but slightly below it. It represents 

a true boundary between dilative and contractive behavior in undrained conditions. 

 

 

 

 

 

 

 

 

 

 

  

Figure 3 Castro's Steady State Line 
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Castro’s work was so indispensable because now engineers were able to show that if the soil is 

tested in an undrained manner, it almost shifts the CVR line, and we use a steady state line to 

tell whether the soil is contractive or in other words susceptible to liquefaction. 

 

 1.4. Liquefaction Initiation 

 

Liquefaction initiation is studied in two classes. 

• Flow Liquefaction 

• Cyclic Mobility 

1.4.1. Flow Liquefaction  

 

In 1979 (Hanzawa et al) elucidated that liquefaction initiation could be explained with the use 

of stress paths of loose saturated soils. In Figure 1.4, there are five specimens consolidated at 

the same void ratio showing different behaviors at different initial confining stress (undrained 

tests). A and B soil specimens are below the steady state line and demonstrate dilative behavior 

as the stress paths go to the steady state point. These specimens show no signs of liquefaction. 

On the contrary, C, D, and E soil specimens are above the line and show contractive behavior. 

These specimens experience a peak shear strength before reaching the ssp (steady state point), 

and this peak strength is the point where specimens start to lose the capability to take any load. 

(Vaid et al., 1985)  propounded a line of peak strengths known as flow liquefaction surface 

(FLS). It is a line or surface where if the stress path hits it, flow liquefaction is initiated, and 

the stress path rapidly dives to the steady state strength. FLS truncates at a certain position; it 

is because flow liquefaction cannot take place if the initial state of stress of soil is less than the 

steady state point. (Galupino & Dungca). 
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Figure 4 Flow Liquefaction Surface 

 

 If a soil specimen is in the mentioned area, and experiences an undrained loading, there is a 

high risk that the flow liquefaction would begin. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.4.2. Cyclic Mobility  

Cyclic mobility in soil liquefaction refers to the phenomenon where soils lose their strength and 

stiffness temporarily during cyclic loading, such as earthquakes or other repetitive loading 

events. This process can cause the soil to behave like a liquid, resulting in potentially hazardous 

consequences for structures built upon it. During seismic activity or cyclic loading, the soil 

Figure 5 Space (in p’ – q graph) Prone to Flow Liquefaction 
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experiences stress from the shaking or loading. This stress causes an increase in pore water 

pressure within the soil mass, which, when it surpasses the effective stress, reduces the effective 

stress to zero. As a result, the soil loses its strength and behaves like a viscous liquid, potentially 

leading to settlement, lateral spreading, and even structural failure.  

  

 

 

 

 

 

 

 

 

 

 

Figure 7 Cyclic Mobility Scenarios 

 

Figure 6 Space (in p’-q graph) Prone to Cyclic Mobility 
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1.5 Factor of Safety for Determining Liquefaction Potential 

 

The potential for liquefaction initiation has been determined since the very beginning in terms 

of capacity, demand, and factor of safety. 

 

 

 

FS Liq is what is the shear stress required to liquefy the soil versus what is the shear stress 

applied to the soil. If the term is divided by effective overburden pressure, it would transform 

into a unitless equation containing Cyclic Resistance Ratio and Cyclic Stress Ratio. 

• CRR quantifies the resistance of soil to liquefaction. 

• CSR quantifies the cyclic loading from a particular earthquake. 

CSR is computed these times using one of the two methods 

 

• Site Specific Site Response Analysis 

• Simplified Method 

 

1.5.1 Simplified Method (Originally Seed and Idriss 1971): 

Most engineers use this approach to approximate CSR. 

 

(𝜏 cyc)𝑟𝑖𝑔𝑖𝑑 = 0.65 
𝑎𝑚𝑎𝑥

𝑔
 𝜎𝑣         (2) 

Where; 

amax = maximum horizontal ground acceleration 

g = gravitational acceleration 

σv = overburden vertical stress 

𝐹𝑂𝑆𝐿𝑖𝑞 =  
τ𝑐𝑦𝑐,𝐿/𝜎𝑣′

τ𝑐𝑦𝑐/𝜎𝑣′
  = CSR/CRR        (1) 
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(T max) has been reduced to account for the fact that field conditions do not apply harmonic 

loading resulting in lower shear stresses. However, the soil is flexible, and not rigid. This is 

corrected by the depth reduction factor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.5.2 Inherent Shortcomings to Compute CSR by Simplified Method: 

• Pattern of Loading is harmonic which is extremely different from the site. 

• Block of soil is considered to be rigid, which is also not the case in the field. 

 

1.5.3 Determination of CRR: 

The Cyclic Resistance Ratio is determined by one of the two methods, by: 

• Laboratory Testing 

• Insitu Field Tests 

 

➢ Laboratory Testing: 

Japan was prominent in Liquefaction research at the same time the USA was conducting several 

tests for the liquefaction prediction. Both countries in the 1960’s relied unequivocally on La-

boratory testing to investigate the triggering of liquefaction initiation, and both agreed that 

laboratory testing is indispensable; because stresses produced on the soil specimens and the 

Figure 1.8 Depth Reduction Factor Graph Figure 8 Depth Reduction Factor Graph 
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number of cycles of those stresses can be controlled. In this way, engineers can see if a partic-

ular soil will liquefy under a certain cyclic stress shear stress. 

However, there were two major problems.  

➢ How to get an undisturbed sample of the soil? 

➢ How to reduce the costs of the tests? 

Every time engineers try to sample sand; it rearranges its soil matrix. The only way to do so is 

to freeze the soil and core it. After these procedures, the soil could be transported. It takes a lot 

of time and money. 

Initially, all the engineers preferred laboratory testing for CRR. However, in the USA, Late 

Professor Harry Seed thought if this practice continued, it would bankrupt the projects. Taking 

undisturbed soil samples is arduous, as the sand matrix rearranges every time it is disturbed. 

Engineers in Japan used the freezing method for the undisturbed soil sample which is way more 

costly. 

1.5.3.1 Main Idea by Prof. Harry B. Seed: 

Professor Seed's notable contribution is the development of liquefaction susceptibility criteria, 

such as the widely used "Seed and Idriss" method, which helps engineers assess the potential 

for soil liquefaction at a given site based on factors like soil properties, earthquake character-

istics, and groundwater conditions. The main idea propounded by Professor Harry B. Seed is: 

• Perform the SPT test and measure the blow count. 

• Determine CSR from the design Earthquake. 

• Plot CSR vs (N1) 60 

• Plot the point with field SPT, if it plots above the CRR line, it will liquefy, otherwise it 

will not. 
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𝜏 𝑐𝑦𝑐, 𝐿

𝜎𝑣′
= 𝐶𝑅𝑅 𝑀=7.5,𝜎𝑣′=1 𝑎𝑡𝑚  𝑀𝑆𝐹. 𝐾𝜎. 𝐾𝛼       

(3) 

 

MSF= Magnitude Scaling Factor 

Kσ = Overburden Correction Factor 

Kα = Initial Shear Stress Correction Factor 

1.5.3.2 Inherent Shortcomings to Compute CRR: 

The initial Shear Stress Correction Factor which assumes that the ground is leveled and there 

are no initial shear stresses present on the surface does not reflect the site conditions as the soil 

site is never leveled as propounded in the formulation of the formula. 

1.6 Problem Statement 

 

The methods and techniques used hitherto in estimating Liquefaction Susceptibility were prem-

ised on the Factor of Safety Method, which has inherent shortcomings in terms of estimating 

Figure 9  CSR vs N1(60) Graph by Seed et al 
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the Cyclic Resistance Ratio and Cyclic Stress Ratio. New ways should be introduced to esti-

mate the Liquefaction Susceptibility that can properly model the field and soil behavior under 

dynamic loading. 

1.7 Machine Learning as an Alternative  

As has been explained there are multiple shortcomings in the determination of Factor of Safety 

for Liquefaction. Many researchers have used different field tests to counter the limitations; 

however, all these procedures have limitations for the computation. Recently, researchers have 

applied machine learning techniques to compute the liquefaction phenomenon as it is an intel-

ligent computer-based model to compute the non-linear relationship among different variables. 

They found out that intelligent machine learning models have performed better than the con-

ventional approach. This, of course, is due to the limitations that conventional methods have 

in terms of certain assumptions and lack of expertise in performing laboratory tests. In this 

research, different supervised machine learning algorithms such as Decision Tree, Logistic Re-

gression, Support Vector Machine, and Artificial Neural Networks will be used to predict the 

liquefaction potential of the soil. 
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Chapter. 2 

2. LITERATURE REVIEW 

 

 

The advancement in the field of artificial intelligence has allowed researchers to bring it into 

the realm of geotechnical engineering. (Jian, Xibing, & Xiuzhi , 2012) (Samui et al., 2011) 

(Hanna et al., 2007)(Khandelwal et al., 2018)(Zhou et al., 2015)(SHI et al., 2012). (Artificial 

Neural Network) is a deep learning method in machine learning, which can perform functions 

simulating the human mind and has been widely used for predicting liquefaction events. 

(Hanna et al., 2007)(Abbaszadeh Shahri, 2016)(Ramakrishnan et al., 2008). 

(Zhou et al., 2022) used Genetic Algorithms along with Support Vector Machine to forecast the 

earthquake-induced liquefaction potential of the soil. A multi-data set was employed to develop 

the machine learning algorithms. As SVMs are sensitive to noise and outliers in the data, out-

liers can significantly affect the decision boundary, leading to poor performance, especially in 

high-dimensional spaces. This research aims to not only detect the outliers but also remove 

them to develop a machine-learning model for the prediction. (J. Zhang & Wang, 2021) used 

an Ensemble learning algorithm to predict the liquefaction assessment by the use of a Voting 

Classifier. Different base models were used to predict liquefaction prediction. This research 

used Cyclic Stress Ratio as a base input parameter for the model generation, which means 

dataset accuracy was compromised as CSR is determined using empirical relationship, and its 

accuracy is contested. (Kumar et al., 2021) predicted a deep machine learning (DL) model for 

classifying the soil in determining the liquefaction. Emotional Back Propagation neural net-

works were used to test the applicability of the model. In this research only two input parame-

ters were used: Cone Penetration Test and Peak Ground Acceleration. When there are too few 
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input variables, the model may not have enough information to accurately identify the under-

lying patterns in the data. Consequently, it may resort to memorizing the training data rather 

than learning meaningful relationships, leading to overfitting. 

(Ahmad et al., 2021) examined the implementation of different machine learning (ML) algo-

rithms by (CPT) test based on case histories to ascertain the earthquake-induced liquefaction 

potential. An insufficient data set was used to train the model. Also, data was not balanced 

between liquefaction and non-liquefaction cases which misled the accuracy parameters. The 

results presented in the research did not determine the probability or the extent to which lique-

faction is susceptible. This research work will use a probabilistic method to ascertain the like-

lihood of liquefaction potential. Similarly, (W. Zhang & Goh, 2018) assessed the liquefaction 

potential of soils based on the backpropagation networks. Also, they validated the model accu-

racy, F1 score, and AOC curve with the already published experimental data and found that 

backpropagation neural networks perform better than the simplified procedure equations. The 

model generated could not be applied to the dataset outside the range given by the author which 

limits its applicability. 

(Zhou et al., 2019) proposed the stochastic-gradient-boosting (SGB) method for predicting soil 

liquefaction potential using SPT and CPT data history cases. These techniques have achieved 

good and confirming results. However, it has some limitations which include black-box nature. 

It overfits the algorithm and has a slow convergence speed. To counter these problems, (Kurnaz 

& Kaya, 2019b) proposed an alternative approach that uses the group method of data handling 

(GMDH). GMDH is a self-establishing machine-learning approach. Recently, this method has 

been applied to geotechnical problems. However, ensemble learning models are computation-

ally expensive and time-consuming. Theyalso overfit the problem’s data. 
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In 2018 (Hoang & Bui)proposed an algorithm premised on the hybridization of the kernel dis-

criminate investigation Support Vector Machine for evaluating earthquake-triggered liquefac-

tion. In this research scant dataset of 185 instances had been used to train the model. Also, a 

prediction algorithm was generated. Before the hybridization of the kernel function, (Kohestani 

et al., 2015)deployed a random machine forest (Supervised Machine Learning) algorithm for 

predicting the soil liquefaction potential using CPT case points. He used the uncleaned dataset 

to develop a prediction model that would not perform satisfactorily on the test data set. In 2015 

(Xue & Yang, 2013) utilized the Fuzzy machine learning neural networks for predicting the 

liquefaction potential of the soil. However, they relied only on Support Vector Machines and 

the target classes were overlapping, due to which data was not linearly separated. 

In 2014 (Muduli & Das) used the Chi–Chi earthquake database to estimate the liquefaction of 

soil employing genetic programming (GP). The main research gaps left out in their research 

were: the use of genes and mutation were not identified, and they relied on accuracy parameters 

only that could be misleading as elucidated in the coming section where accuracy parameters 

are explained. (Chern et al., 2008) utilized the fuzzy machine learning neural network model 

for the prediction of soil based on the Cone Penetration Test data points. It has a total of 466 

points of data. Based on a fuzzy machine learning neural network model, a fuzzy neural net-

work model known as ANFIS was implemented to predict the soil’s potential to liquefy. One 

main issue faced by the researchers was that a significant amount of noise was prevalently 

present in the dataset, due to which data remained uncleaned. 

In 2008 (Hanna et al.) developed the correlation between soil’s liquefaction potential and 12 

affecting variables using the deep learning method known as artificial neural networks (ANNs) 

on 620 cases accumulated from seismic activity cases in Taiwan and Turkey. The developed 

model has a black-box nature that causes issues regarding the interpretation of the problem at 

hand. (Pal, 2006) also utilized the CPT and SPT data history records from the already published 
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literature for predicting the liquefaction of soil. In this research, the developed algorithm 

showed greater accuracy for the training data and less accuracy for the testing dataset. It is, 

therefore, not advisable to use algorithms that have high training accuracy and low testing 

accuracy. 

(Rahman & Wang, 2002) also propounded fuzzy neural networks for the prediction of lique-

faction potential with the SPT database. The input parameters used for the prediction also con-

tain a cyclic stress ratio. As it has been explained in detail in the previous section, the use of 

CSR as an input parameter brings a lot of uncertainty that could lead to the uncertain output of 

the model. This research will not use those input parameters that have inherent uncertainties 

and generalizations. (In 2003 Baziar & Nilipour,)  utilized an Artificial Neural Network includ-

ing a backpropagation algorithm to ascertain liquefaction potential in different locations based 

on the results of the Cone Penetration Test. In this research, regression algorithms were used 

to predict the liquefaction prediction that used a dataset containing the Factor of Safety as an 

input parameter. As FOS in the liquefaction problem contains certain generalizations, it is not 

advisable to use a dataset containing FOS. 
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Chapter. 3 

3. METHODOLOGY AND RESEARCH WORK 

 

3.1 Overview of the Machine Learning Algorithms Used  

3.1.1 Support Vector Machine 

 (SVM) is a formidable and flexible learning algorithm that falls under the class of supervised 

learning, mainly applied to classification tasks and regression tasks. Vapnik and Cortes pio-

neered SVM in 1995, and it has acquired considerable recognition due to its capacity to handle 

complex datasets by finding optimal hyperplanes that are suitable for different classes. 

Principles and Concepts:  

• The primary objective of this algorithm is to locate a hyperplane that effectively splits 

data points of distinct classes. This hyperplane is denoted as w*x + b = 0; w is the weight 

vector, x is the input, and b is the bias. 

 

 

 

 

 

 

 

 

 

• Margin: 

SVM strives to locate the hyperplane with the largest possible boundary connecting the 

two groups. The maximum distance between the hyperplane and the closest data points 

Figure 10 SVM algorithm Graphic Intuition 
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from each class is equal to the maximum. Maximizing this margin enhances the gener-

alization capabilities of the model and reduces the risk of overfitting. 

• SupportiVectors:  

The data points that lie on the margins or within the margin boundary are called support 

vectors. These vectors are crucial as they influence the placement of the optimal hyper-

plane. SVM focuses on these points to make accurate predictions. 

Working Principle: 

 

• Linear SVM: 

 In a linearly separable scenario, SVM aims to find the hyperplane with the maximum 

margin. 

• Non-Linear SVM: 

 When the data is not linearly separable, SVM utilizes kernel functions to transform the 

data into a higher-dimensional space. In this transformed space, a linear decision bound-

ary can potentially separate the classes. 

 

Advantages of SVM: 

 

• Robust to High Dimensional Data: 

Figure 11 Kernel Function for non-linearity 
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SVM is effective in high-dimensional spaces, which is especially useful for tasks such 

as text categorization, classification, and image recognition.  

• Handles non-linearity: 

The kernel trick allows SVM to model complex relationships that cannot be captured 

by linear models. 

• Control on Regularization: 

The 'C' parameter provides control over the trade-off between margin maximization and 

classification error minimization, thus preventing overfitting. 

• Global Optimal Solution: 

SVM optimization aims for a global optimal solution, which contributes to its stability 

and reliability. 

3.1.2 Logistic Regression 

 

Introduction: 

 

Logistic Regression is a widely used method for binary classification, particularly suited for 

situations where the dependent variable is categorical, and the goal is to predict the probability 

of an event occurring. It is a fundamental algorithm in machine learning and serves as a build-

ing block for more complex models. 

Key Concepts: 

• Sigmoid Function: 

The core idea behind logistic regression is the use of the sigmoid (logistic) function to 

represent the linear sequence of input characteristics to a value between 0 and 1. This 

value corresponds to the anticipated likelihood that the dependent variable belongs to 

the positive class. 
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𝑝(𝑦 = 1/𝑥) = 1

(1 + 𝑒−𝑧)
 

(4) 

Formulation: 

The logistic regression model is formulated as follows: 

𝑙𝑜𝑔(𝑜𝑑𝑑𝑠) = 𝛽0 + 𝛽1 ∗ 𝑥1 + 𝛽2 ∗ 𝑥2 + ⋯ + 𝛽𝑘 ∗ 𝑥𝑘 (5) 

            Where, 

log(odds) is the log odds of the positive class. 

 x₁, x₂, ..., xₖ are the input features. 

 β₀, β₁, β₂, ..., βₖ are the coefficients corresponding to each featu 

• Objective Function (Likelihood): 

The goal of logistic regression is to estimate the coefficients that maximize the likeli-

hood of observing the given data under the model. The likelihood function represents 

the probability of observing the given set of outcomes (dependent variable) given the 

predictor variables and a set of model parameters. For a binary logistic regression 

model, where the dependent variable y takes on values of 0 or 1, the likelihood function 

for a single observation 

 L(β) = π𝑖(𝑝(𝑦 = 1|𝑥𝑖))
𝑦𝑖

∗ (1 − 𝑝(𝑦 = 1|𝑥𝑖))
(1−𝑦𝑖)

 (6) 

                

Figure 12 Logistic Regression for Binary Classification 
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Advantages: 

 

• Simple Interpretability: 

 

Logistic regression coefficients can be interpreted as the change in log odds for a unit 

change in the corresponding feature. 

• Efficiency: 

Logistic regression is computationally efficient and works well for linearly separable 

data 

Limitations: 

• Limited Complexity: 

Logistic regression may not perform well on complex datasets with intricate decision 

boundaries. 

• Sensitive to Outliers: 

Outliers can significantly impact the coefficients and predictions. 

 

Figure 13 Graphical Intuition of Logistic Regression 
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3.1.3 Decision Trees 

 

Introduction: 

 

Decision Trees are a versatile and widely used machine algorithm used for both classification 

tasks and regression tasks. They represent a graphical model of decisions and their possible 

consequences in a tree-like structure. Decision Trees are intuitive, and interpretable, and can 

capture complex relationships in data, making them a valuable tool in data analysis and pre-

dictive modeling. 

Key Concepts: 

• Nodes and Edges: 

A decision tree contains nodes & edges. Nodes denote decisions or test conditions, 

while edges connect nodes and indicate the outcomes of the tests. 

• Root Node: 

The highest node of the tree represents the initial decision point where the first test is 

applied. 

• Internal Nodes: 

Every node other than the root node is an internal node, representing intermediate de-

cisions. 

• Leaf Nodes: 

 

Terminal nodes, or leaf nodes, represent final decisions or outcomes, such as class la-

bels in a classification task or predicted values in a regression task. 

• Splitting Criteria: 

The process of creating decision nodes involves selecting features and values that opti-

mize a splitting criterion, typically aimed at reducing impurity in classification tasks or 

minimizing variance in regression tasks. 
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Formulation: 

 

For a node 't' containing data points of class 'i' with proportion 'p(i)', the Gini impurity is cal-

culated as: 

       Gini(t) = 1 − ∑[𝑝(𝑖|𝑡)]2  (7) 

 

For a node 't' containing data points of class 'i' with proportion 'p(i)', the entropy is calculated 

 

Advantages: 

 

• Interpretability: 

 

DTs are easily interpreted, making them suitable for presenting decisions to stakehold-

ers. 

• Handling Irrelevant Features: 

Figure 14 Decision Tree Model Intuition 
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Decision Trees can automatically select important features and disregard irrelevant 

ones. 

Limitations: 

 

• Overfitting: 

 

Deep trees can overfit noisy data, leading to poor generalization of new data. 

 

• Predisposition towards Dominant Classes: 

 

DTs tend to favor dominant classes, potentially causing imbalanced data problems.(Jas 

& Dodagoudar, 2023) 

3.1.4 Artificial Neural Network: 

 

Introduction: 

 

 (ANNs) are a class of learning models stirred by the biological neurons in the human brain. 

ANNs consist of joined nodes, or artificial neurons, ordered in layers. They excel at learning 

patterns and relationships in data, enabling them to perform tasks. 

 

Key Concepts: 

• Neuron Model: 

An artificial neuron processes input data and produces an output using weights and 

biases. The output is determined by a function applied to the sum of inputs and biases.  

(Jas & Dodagoudar, 2023) 

Mathematically, the output 'a' of a neuron with 'n' inputs is: 

 

• Activation Functions: 

𝑎 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(Σ(weight i ∗ input i) + 𝑏𝑖𝑎𝑠) (8) 
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Activation functions initiate non-linearity into the network, allowing it to model intri-

cate connections. 

 Common activation functions include: 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑: 
1

(1 + exp(−𝑥))
          

(9) 

  hyperbolic tangent (tanh) =
(exp(−𝑥) − exp(−𝑥))

(exp(𝑥) + exp(−𝑥))
      

(10) 

 

Types of Layers: 

 

• Input Layer: 

 

 Receives input data, features, or observations. It serves as the interface between the 

external environment or dataset and the network itself. The number of nodes in the input 

layer is determined by the dimensionality of the input data. 

 

• Hidden Layers: 

 

 Intermediate layers between the input and output layers. They learn representations 

and transform data. In neural networks, hidden layers are layers of nodes between the 

input and output layers where computation occurs. The types of hidden layers in neural 

networks can vary based on their architecture and function  

 

• Output Layer:  

 

Produces the final prediction or output of the network. It represents the results or pre-

dictions generated by the network based on the input data and the learned parameters. 

The structure and characteristics of the output layer depend on the nature of the task the 

neural network is designed to solve. 
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Advantages: 

 

• Pattern Learning: 

 

ANNs can learn intricate patterns from data, making them suitable for complex tasks 

.  

• Feature Extraction:  

 

They can automatically learn relevant features from raw data, reducing the need for 

manual feature engineering 

.   

• Versatility:  

 

ANNs can handle a wide range of data types and solve various tasks.  

 

Limitations: 

 

• Data Requirements:  

 

ANNs require substantial amounts of data for effective training 

.   

• Overfitting: 

 

 Deep networks overfit small datasets, requiring regularization techniques.   

  

Figure 15 Artificial Neural Network Structure 
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4. DATASET DESCRIPTION AND EXPLORATORY DATA ANALYSIS 

 

 

4.1 Dataset Description: 

The dataset utilized in this study has been gathered and collected from previous research pa-

pers. This dataset has a total of 226 observations of liquefaction and non-liquefaction instances. 

This dataset has been gathered from the following research papers. (Juang et al., 2003) (Goh 

& Goh, 2007) (Baziar & Nilipour, 2003). A total of six input variables have been used in this 

study to develop machine learning algorithms. These input variables are: 

• Cone tip resistance 

• Sleeve friction ratio 

• Effective Stress  

• Total Stress 

• Maximum horizontal ground surface acceleration 

• Earthquake moment magnitude 

 

 

Figure 16 Data head in Jupyter Notebook 
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4.2 Statistical Description of Data 

 

Statistical description of data involves summarizing and analyzing various aspects of a dataset 

to gain insights and comprehend its characteristics. Jupyter Notebook has been used to deter-

mine the statistical parameters of the data. It has been done by using the function (describe) in 

the jupyter notebook.  

 

 

 

4.2.1 Correlation Matrix 

 

A correlation matrix is a valuable statistical tool used to comprehend the relationships between 

multiple variables in a dataset. It provides insights into how pairs of variables move together, 

which can be crucial for making informed decisions. 

In a correlation matrix, each cell contains the correlation coefficient between two variables.  

 

 

Figure 17 Statistical Description of Input Data 
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Understanding the values in a correlation matrix: 

• A positive correlation coefficient suggests that as one variable increases, the other tends 

to increase as well. 

• A negative correlation coefficient indicates that as one variable increases, the other 

tends to decrease. 

• A correlation coefficient close to 0 suggests little to no linear relationship between the 

variables. 

A well-constructed correlation matrix facilitates researchers to identify patterns and potential 

multicollinearity (high correlation between predictor variables) in datasets, which can impact 

statistical analyses. 

 

 

 

 

Figure 18 Correlation Matrix of the Data set 
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Figure 19 Heatmap of the Correlation Matrix 

Figure 20 Bar Graph of the Correlation Matrix 
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4.3 Exploratory Data Analysis 

 (EDA) is an indispensable and effective technique in data analysis that is premised upon un-

derstanding the structure, patterns, and potential information within a dataset.EDA involves a 

range of techniques to unearth hidden information, detect anomalies, and formulate hypotheses 

before more formal statistical analysis or modeling begins. 

4.3.1 Histogram 

A histogram is a visual portrayal of the distribution of a dataset. It gives a visual overview of 

the frequency of values within the specified intervals, called "bins”.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21 Tip Resistance Histogram 
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Figure 22 Sleeve Friction Histogram 

Figure 23 Effective Stress Histogram 
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4.3.2 Joint plots 

 

A joint plot is a dynamic data visualization tool in Python, which is often created using libraries 

such as Seaborn or Matplotlib. It combines multiple univariate and bivariate plots to provide 

an overview of the relationship between two variables. A joint plot typically includes scatter 

plots and a kernel density estimate. 

 

 

 

 

 

 

 

 

 

 

 

 

It can be observed that after a certain value of Cone Penetration is achieved, that is 12 Mpa, 

the liquefaction potential of the soil diametrically decreases. This plot further corroborates the 

finding that with the increase in Cone Penetration Resistance, liquefaction potential decreases. 

 

Figure 24 Joint plot of Total stress and Cone Resistance 
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4.3.3 Box Plots 

A box plot is a graphical demonstration of the allocation of a dataset by five key summary 

statistics: the minimum, first quartile (Q1), median, third quartile (Q3), and maximum.  

 

 

 

 

 

 

 

Figure 25 Joint plot of Sleeve Friction and Cone Resistance 

Figure 26 Boxplot of Input Variables 
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As can be seen from the above box plot, there are considerable numbers of outliers present in 

total stress and cone penetration resistance. The presence of these outliers can, sometimes, alter 

the desired results by shifting the central tendency. It is, therefore, indispensable to remove the 

outliers present in the data so that the data can be cleaned, and machine learning algorithms 

can give a good performance. 

 

 

 

 

 

 

 

 

 

 

It can be seen from above Figure 31 that the tip resistance data contains a considerable number 

of outliers. Removal of these outliers can give a better result while performing machine learn-

ing algorithms. A code, shown below, was generated to remove the outliers from the Tip re-

sistance dataset. 

Figure 27 Tip Resistance Box Plot 
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Similarly, outliers were removed from the total stress data so that the data becomes clean, and 

the performance of machine learning algorithms can be optimized. The process of removing 

the outliers has been a monumental activity to train the particular set of algorithms, as outliers 

can significantly alter the performance of the algorithm. 

Figure 28 Outliers Removed Tip Resistance Box 
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Figure 29 Total Stress Box Plot 

Figure 30 Outliers Removed Total Stress Box Plot 
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4.3.4 Swarm Plot 

A swarm plot is a method of data visualization that provides a unique way to display the dis-

tribution of categorical data along with individual data points. In contrast to traditional scatter 

plots, a swarm plot is specifically designed for categorical variables and aims to prevent data 

points from overlapping. This technique results in a clearer representation of data density and 

distribution within each category. In a swarm plot, each data point is arranged individually 

along the categorical axis. The positioning of data points is adjusted to avoid overlapping, cre-

ating a visual pattern that appears to be a "swarm" of points. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31 Swarm Plot of the data points 
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4.3.5 Pair plot 

A joint plot is a dynamic data visualization in Python, created using libraries such as Seaborn 

or Matplotlib. It combines multiple plots to provide a comprehensive view of the relationship 

among variables. A joint plot typically includes scatter plots, histograms, and sometimes a re-

gression line or a kernel density estimate. 

  Figure 32 Pair plot of the datasets 
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Chapter. 5 

5. PERFORMANCE EVALUATING PARAMETERS 

 

 

The performance evaluation of classification algorithms involves assessing how well a model's 

predictions match the actual results. Various metrics and parameters are used to determine the 

quality and effectiveness of these algorithms. Here are key performance-determining parame-

ters for classification algorithms. 

5.1 Confusion Matrix 

A confusion matrix is a table that lists the outcomes of a classification problem. It illustrates a 

comparison between the predicted classes generated by a model and the actual classes present 

in the dataset. The matrix is typically arranged as a 2x2 table for binary classification tasks, 

with each cell representing different combinations of true positive (TP), true negative (TN), 

false positive (FP), and false negative (FN). 

Key Elements Interpretation: 

i. True Positive (TP): 

 Those datasets that are correctly predicted as positive class are known as True positive 

class. 

ii. True Negative (TN): 

Those datasets that are correctly predicted as negative class are known as True negative 

class. 

iii. False Positive (FP): 

Instances that are predicted as a positive class but belong to the negative class. This is 

also known as Type I error. 

iv. False Negative (FN): 
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Instances that are predicted as a negative class but belong to the positive class. This is 

also known as Type II error. 

 

 

 

 

 

 

 

 

 

 

 

 

5.2 Accuracy 

The proportion of correctly guessed cases to the total number of cases in the dataset. While it 

provides an overall idea of the model's performance, accuracy might not be appropriate for 

imbalanced datasets. The accuracy score does not specifically tell you about the mistake be-

ing made by the model. Hence, it does not tell you which outcome is incorrectly predicted. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
           

(11) 

 

 

Figure 33 Confusion Matrix Binary Classification 
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5.3 Precision 

Precision is the fraction of true positive estimates to the sum of true positive predictions and 

false positive predictions. It quantifies the accuracy of the positive predictions made by the 

model, specifically focusing on how well it avoids making incorrect positive predictions. It 

indicates the accuracy of positive predictions. It tells you what prediction of predicted positive 

is truly positive. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
          

(12) 

 

5.4 Recall 

It is defined as True Positive divided by the sum of True Positive and False Negative. It indi-

cates the model's ability to capture positive instances. 

5.5 F1 Score  

The F1 score is the harmonic mean of precision and recall. It considers both false positives and 

false negatives, offering a balanced assessment of a classification model's effectiveness. The 

F1 score is especially useful when the class distribution is skewed or when the consequences 

of false positives and false negatives differ significantly. It is used when it cannot be decided 

which class is more dangerous than the other class. 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
          

(14) 

 

 

 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
          

(13) 
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Chapter. 6 

6. PYTHON PROGRAMMING, RESULTS AND DISCUSSIONS 

 

 

6.1 Python Programming 

In this research work Anaconda environment has been used commensurate with Jupyter Note-

book to write the Python codes. Four different machine learning algorithms have been used to 

predict the liquefaction potential. The details of these algorithms have already been discussed 

in the previous sections. In this section, different programs that have been made will be dis-

played and the subsequent performance of the algorithms will be discussed. 

6.1.1 Logistic Regression Classification 

 

The following steps have been taken to perform the Logistic Regression Classification. 

a. Importing different libraries for data extraction, data visualization, and machine 

learning algorithms 

b. These libraries are: 

i. Pandas Library 

ii. NumPy Library 

iii. Seaborn Library 

iv. Matplotlib.pyplot Library 

v. TensorFlow Library 

After importing the aforementioned libraries in the Jupyter Notebook, programs were made to 

analyze, visualize, and predict the data using the Logistic Regression Algorithm. 
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After importing the necessary libraries in the Jupyter Notebook, sklearn. the model library was 

used to train, test, and split the data in the Python notebook. I have used a test size of 0.30, 

which means 30 percent of the data has been used to test the model’s performance and 70 

percent has been used to train the particular algorithm. 

 

.  

Figure 34 Python Code of Logistic Regression 
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6.1.2 Logistic Regression Results 

As it has already been discussed in detail the performance of binary classification in machine 

learning is evaluated based on certain parameters. These parameters are, and are not limited to, 

Accuracy, Precision, Recall, and F1 Score. All these parameters are evaluated based on a con-

fusion matrix which is also discussed in detail in the previous sections. 

 

 

 

Figure 35 Confusion Matrix of Logistic Regression 
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6.1.3 Decision Tree Classification 

 

The following steps have been taken to perform the Decision Tree Classification. 

a. Importing different libraries for data extraction, data visualization, and machine 

learning algorithms 

b. These libraries are: 

i. Pandas Library 

ii. NumPy Library 

iii. Seaborn Library 

iv. Matplotlib.pyplot Library 

v. TensorFlow Library 

After importing the aforementioned libraries in the Jupyter Notebook, programs were made to 

analyze, visualize, and predict the data using the Decision Tree Algorithm. 

 

 

 

0.86

0.88

0.9

0.88

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F1 Score 0.88

Recall 0.9

Precision 0.88

Accuracy 0.86

Logistic Regression Report

F1 Score Recall Precision Accuracy

Table 1 Logistic Regression Graphical Performance 



49  
  

 
 

Figure 36 Python Code of Decision Tree Classification 
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6.1.4 Decision Tree Results 

 

 

 

 

 

 

0.92

0.93

0.93

0.93

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Tree Classifier

F1 Score 0.93

Recall 0.93

Precision 0.93

Accuracy 0.92

Decision Tree Classifier

F1 Score Recall Precision Accuracy

Figure 37 Decision Tree Confusion Matrix 

Table 2 Tree Classifier Graphical Performance 
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6.1.5 Support Vector Machine Classification 

 

The following steps have been taken to perform the Support Vector Machine Classification. 

a. Importing different libraries for data extraction, data visualization, and machine 

learning algorithms 

b. These libraries are: 

i. Pandas Library 

ii. NumPy Library 

iii. Seaborn Library 

iv. Matplotlib.pyplot Library 

v. TensorFlow Library 

After importing the aforementioned libraries in the Jupyter Notebook, programs were made to 

analyze, visualize, and predict the data using the Support Vector Machine. 

 
 

Figure 38 Support Vector Machine Python Code 
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6.1.6 Support Vector Machine Results 

 

 

 

Table 3 Support Vector Machine Graphical Performance 

 

Figure 39 Support Vector Machine Confusion Matrix 

0.84

0.86

0.86

0.83

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F1 Score 0.83

Recall 0.86

Precision 0.86

Accuracy 0.84

SVM Report

F1 Score Recall Precision Accuracy
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6.1.7 Artificial Neural Network Classification 

 

The following steps have been taken to perform the Artificial Neural Network. 

a. Importing different libraries for data extraction, data visualization, and machine 

learning algorithms 

b. These libraries are: 

i. Pandas Library 

ii. NumPy Library 

iii. Seaborn Library 

iv. Matplotlib.pyplot Library 

v. TensorFlow Library 

After importing the aforementioned libraries in the Jupyter Notebook, programs were made to 

analyze, visualize, and predict the data using the Artificial Neural Network. 
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Figure 40 Artificial Neural Network Python Code 
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6.1.8 Artificial Neural Network Results 

 
Figure 41 Confusion Matrix of ANN 

 

 
Table 4 Artificial Neural Network Graphical Performance 

 

0.91

0.91

0.94

0.92

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Artificial Neural Network

F1 Score 0.92

Recall 0.94

Precision 0.91

Accuracy 0.91

Artificial Neural Network Report

F1 Score Recall Precision Accuracy



56  
  

6.2 Discussion 

• Logistic Regression: 

 

 

Accuracy 0.86 

Precision 0.88 

Recall 0.90 

F1 Score 0.88 

Table 5 Logistic Regression Report  

 

As has been discussed, Logistic Regression has a limitation when there are outliers. Some out-

liers were removed using the box plot programming; however, completely eradicating all the 

outliers would have decreased our data to a large extent. Therefore, removing all the outliers is 

recommended when the datasets are in multiple thousands. In the domain of geotechnical en-

gineering, data collection is an arduous and hectic process, and generating thousands of sets of 

data is improbable. 

Logistic regression is an indispensable tool in the machine learning toolkit box, particularly 

when interpretation and efficiency are imperative. However, its linear nature and assumptions 

inhibit its applicability in cases involving deep and complex relationships, non-linear patterns, 

and high-dimensional data. As always, the choice of algorithm should depend on the charac-

teristics of the data and the goals of the task at hand 

 

• Support Vector Machines: 

 

Accuracy 0.84 

Precision 0.86 

Recall 0.86 

F1 Score 0.83 

Table 6 Support Vector Machine Report 
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Support Vector Machines are powerful classifiers that can be utilized in various scenarios. 

However, their effectiveness is closely influenced by careful hyperparameter tuning and the 

choice of appropriate kernel functions might not be the best choice for extremely large datasets 

or situations where interpretability and probabilistic outputs are critical. Like any machine 

learning algorithm, understanding the strengths and limitations of SVMs is crucial for making 

informed decisions about their usage. 

Support Vector Machines aim to find the hyperplane that best separates the classes while max-

imizing the margin. However, they can be sensitive to noise and outliers in data. Outliers can 

significantly influence the position and orientation of the optimal hyperplane, leading to subop-

timal classification results. This is the reason SVM has been unable to give the best predictions. 

 

• Artificial Neural Network and Decision Trees 

 

Accuracy 0.91 

Precision 0.91 

Recall 0.94 

F1 Score 0.92 

Table 7 Artificial Neural Network Report 

 

Accuracy 0.92 

Precision 0.93 

Recall 0.93 

F1 Score 0.93 

Table 8 Decision Tree Report 

 

The performance parameters of different algorithms have been gauged using Python language 

and Jupyter Notebook. A comparative analysis of these algorithms' final report shows that Ar-

tificial Neural Networks and Decision Tree performance were the best among all four algo-

rithms. However, ANN performed better than Decision Tree. Neural Networks perform better 

when there are multiple hidden layers, and in our case, the data was not sufficient to provide 
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hidden layers. Had multiple hidden layers been used in the algorithm, it would have overfit the 

algorithm. Furthermore, the predictions would have vacillated a lot due to the overfitting of the 

model. Because an overfit model has high bias and low variance, it is always suggested that a 

model should not overfit the data. 

Artificial Neural Networks are adept at modeling intricate patterns and high-dimensional data 

but require substantial data and computational resources. Decision Trees are interpretable, ef-

ficient, and useful for tasks with clear feature importance, but they can overpower and struggle 

with non-linear connections. The choice between ANNs and Decision Trees depends on factors 

such as the complexity of the problem, the available data, the need for interpretability, and the 

resources available for training and inference 

 

 

 

 

 

Figure 42 Summary Report of All Algorithms used 
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• Sensitivity Analysis 

 

• Sensitivity Analysis shows that Cone penetration resistance is the most important input 

parameter in the data set. 

• After CPT, different input parameters have sensitivity in the following decreasing or-

der: 

• Sleeve Friction Ratio 

• Maximum horizontal ground surface acceleration 

• Total Stress 

• Effective Stress 

• Earthquake Magnitude 

 

 

 

Table 9 Sensitivity Analysis 

0 10 20 30 40 50 60 70 80 90 100

CONE TIP RESISTANCE

SLEEVE FRICTION RATIO

EFFECTIVE STRESS

TOTAL STRESS

MAXIMUM HORIZONTAL GROUND SURFACE 
ACCELERATION 

EARTHQUAKE MOMENT MAGNITUDE

Sensitivity Analysis

DT SVM LOR ANN
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6.3 Practical Demonstration of the Algorithm 

 

Test Data 

Tip Resistance 8 MPa 

Sleeve Friction 2 % 

Effective Stress 50 kPa 

Total Stress 100 kPa 

Maximum Acceleration 0.36 m/s2 

Moment Magnitude 7.1 

 

Table 10 Test Data with Tip Resistance 8 MPa 

 

 

 

The new test data has been used to predict the liquefaction susceptibility in terms of the prob-

ability of an event. Tip resistance with a value of 8 MPa was used as a variable input parameter 

to gauge the effect on the liquefaction susceptibility while keeping all the input parameters 

constant. After the algorithm was fed with the above-mentioned values, it showed that there 

are 88 % chance that the soil with these input parameters will not liquefy 
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Test Data 

Tip Resistance 6 MPa 

Sleeve Friction 2 % 

Effective Stress 50 kPa 

Total Stress 100 kPa 

Maximum Acceleration 0.36 m/s2 

Moment Magnitude 7.1 

 

Table 11  Test Data with Tip Resistance 6 MPa 

 

 

 

 

When the value of tip resistance is decreased from 8 MPa to 6MPa keeping all the other values 

constant, the algorithm gave the output that there is a 72 % chance that Liquefaction is not 

susceptible. It shows that the probability of no liquefaction decreased from 88 percent to 72 %. 

 

Test Data 

Tip Resistance 4 MPa 

Sleeve Friction 2 % 
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Effective Stress 50 kPa 

Total Stress 100 kPa 

Maximum Acceleration 0.36 m/s2 

Moment Magnitude 7.1 

 

Table 12  Test Data with Tip Resistance 4 MPa 

 

 

Similarly, when the value of Cone Penetration resistance was further decreased to 4MPa while 

keeping all the input parameters constant, the algorithm suggested that there are 53 % chance 

that the soil would liquefy under the given circumstances. So, in this way, these machine learn-

ing models could be used in practical fieldwork to measure and estimate the liquefaction sus-

ceptibility of the soil. 
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Chapter. 7 

 

7. CONCLUSION AND FUTURE RECOMMENDATIONS 

 

 

7.1 Conclusion 

 

With the technological advancement in every domain of the field, practitioners are shifting their 

inclinations and energies towards soft computations which require less energy and effort to 

save time and money, and at the same time give results that surpass the old computational and 

obsolete methods. In this study, an effort has been made to predict the liquefaction potential of 

liquefiable soils using four different machine-learning algorithms. As liquefaction assessment 

is a laborious task in the field as well as in the laboratory, it requires extreme human force, 

effort, and financial resources to perform field and laboratory tests. Furthermore, these tests 

have inherent limitations due to the generalizations made for the formulation of different as-

sessment formulas. 

Being cognizant of the limitations of simple techniques and approaches, the engineering world 

is rapidly changing and transmogrifying the old techniques with new ones which are cost-ef-

fective, and accurate. In this research four supervised machine learning algorithms are used to 

predict the liquefaction potential. These algorithms are Logistic Regression, Support Vector 

Machines, Decision Tree Classifiers, and Artificial Neural Networks.  

The database was collected using the previous research papers and literature where supervised 

and unsupervised algorithms were applied to the data. The input parameters used to develop 

the training model were Cone tip resistance, sleeve friction ratio, effective stress, total stress, 

maximum horizontal ground surface acceleration, and earthquake moment magnitude. The da-

taset consisted of 226 instances of liquefaction and non-liquefaction case histories. In the de-

velopment of all the models, 70 percent of the data has been used for the training of the model, 
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and the remaining 30 percent of the data is used for the testing of the algorithms. Liquefaction, 

as a probabilistic output, has been the output of the algorithms as a binary classification prob-

lem. Four different performance criteria were used in the research to ascertain the performance 

of the generated models. These include Accuracy, Precision, Recall, and F1 scores. 

 

• It was observed that two models, namely Decision Tree and Artificial Neural Network 

performed the best among all the algorithms. 

• The performance of the Artificial Neural Network was better than the performance of 

the Decision Tree in this study. 

• In the case of highly inseparable data, as in the case of this study, Logistic Regression 

and Support Vector Machines do not perform well because they work best when the 

data is linearly separable. 

• The performance criteria defined by Accuracy can be misleading as it has certain limi-

tations. To counter these limitations, three other performance criteria were used for the 

assessment. It has been observed that all the performance criteria were giving more or 

less similar results, which is indicative of a good model generation. 

• If a large database is available to the engineers, Artificial Neural Networks perform the 

best. However, in case of paucity of the dataset, the Decision Tree algorithm should be 

used for the development of the prediction model. 

• An imbalanced data set should not be used for the development of a model as in that 

case the prediction model will sway towards the most likely situation and overfit the 

one particular situation. 

• Cone Penetration Resistance has the most significant impact on the overall performance 

of the model. It should be noted that CPT values are properly documented and do not 



65  
  

contain any null values. However, if the values are zero in some dataset, it should be 

replaced by the mean of the particular column. 

• The presence of an outlier, especially in an important variable, can significantly reduce 

the performance of the machine learning model. CPT or SPT data should be cleaned 

beforehand so that a model can best fit that accurately represents the whole dataset. 

 

 

7.2 Recommendations 

 

• In the future, different input parameters can be introduced like the fine content of the 

soil, its water content, etc. to predict the liquefaction potential. 

• Use of ensemble learning is a new technique that uses different base qualifiers to predict 

the output. Artificial Neural Networks and Tree Classifiers can be used as base models 

in the future to further refine the output accuracy of the algorithms. 

• Feature engineering is a technique where new features are introduced by manipulating 

and performing mathematical functions on the dataset. It should be applied to the da-

taset to extract the best features that can give the best results. 

• Convolution Neural Networks learn on visual data to predict the output. In the future, 

CNN can be used to train the model by the incorporation of images of the soils that 

liquefy under given loading conditions. This can further increase the prediction capa-

bility of the Neural Networks. 

 

• Liquefaction has been treated by practitioners as a binary classification due to its nature. 

Binary classification has some limitations in terms of labeling outputs as 0 and 1. These 

absolute values can make it difficult to interpret the probability of any event. To counter 

this issue in the future, probabilistic models can be introduced based on Nayes Bases 

Theorem that can give the probability score of the liquefaction potential assessment 
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