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Abstract

Many particles in nature are composite particles composed of elementary particles
either fermions or bosons. These elementary particles shows di�erent properties and
behavior. Bosons tends to bunch together when two bosons are incident on the di�erent
ports of the beam-splitter (Hong-Ou-Mandel HOM interference) while fermions tend to
anti- bunch. While exploring the formalism of composite particles specially bi-partite
composite particles with Qunatum Information theory tools, we examine the nature
of composite particles and prove that degree of entanglement between the constituent
particles determines bosonic or fermonic behavior of composite particle. Interferometry
of composite particles demonstrate the interference of composite particles. We discuss
the problems of collective interference of composite bosons. First we study the case
of interferometry of composite bosons whose constituent particles are interacting and
then moves towards the interferometry of composite bosons whose constituent particles
are non-interacting. From the results of these two cases we shows that interaction in
important for the stability of composite system.

iii



Contents

1 Introduction 1

1.1 Elementary Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Composite Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2.1 Composite Particles Nature and Spin Statistics . . . . . . . . . 2

1.2.2 Composite Particles Nature and Quantum Information . . . . . 2

1.3 Non-Classical Correlation . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Quantum Entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4.1 Historical Background . . . . . . . . . . . . . . . . . . . . . . . 4

1.4.2 Understanding the Concept of Entanglement . . . . . . . . . . . 5

1.4.3 Entanglement and Nature of Composite Particles . . . . . . . . 5

1.5 Preparation of Entangled States . . . . . . . . . . . . . . . . . . . . . . 6

1.5.1 Basic principle of SPDC source . . . . . . . . . . . . . . . . . . 6

1.6 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Beam-splitting and Interferometry of Elementary Particles 9

2.1 Classical Beam-splitter . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Quantum Mechanical Beam-splitter . . . . . . . . . . . . . . . . . . . . 10

2.3 Fock Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2 Bosons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Basic Statistics of Single and Two Photon States at Beam-Splitter . . . 13

2.4.1 Single Particle and Beam-splitter . . . . . . . . . . . . . . . . . 13

2.4.2 Two Particles on Same Port of Beam-splitter . . . . . . . . . . . 14

2.4.3 Two Particles on Di�erent Ports of Beam-splitter . . . . . . . . 15

iv



3 Bipartite Entanglement and Stability of Composite Bosons 17

3.1 Fundamental Concepts of Quantum Information . . . . . . . . . . . . . 18

3.2 Preliminary De�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Composite Systems . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.2 Pure States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.3 Mixed States . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.4 Separable States . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.5 Entangled States . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.6 Density Operator . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Density Matrix Formalism . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.1 Reduced Density Operator for a Bipartite System . . . . . . . . 23

3.4 Criteria to Distinguish Separable and Entangled States . . . . . . . . . 23

3.4.1 Schmidt Decomposition . . . . . . . . . . . . . . . . . . . . . . 23

3.4.2 Purity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 Composite Boson Creation Operator . . . . . . . . . . . . . . . . . . . 26

3.6 Commutation Relation for Bosonic Operator . . . . . . . . . . . . . . . 27

3.7 N Particle State for Composite Particle . . . . . . . . . . . . . . . . . . 28

3.8 Conditions for Perfect Bosonic Operator . . . . . . . . . . . . . . . . . 29

3.9 Bounds on Normalization Factor . . . . . . . . . . . . . . . . . . . . . . 30

3.9.1 Purity as a Bound for Bosonic Quality . . . . . . . . . . . . . . 32

4 Collective Interference of Composite Bosons 34

4.1 Interferometry of Elementary Particles . . . . . . . . . . . . . . . . . . 34

4.2 Interferometry of Two Non-interacting Patricles . . . . . . . . . . . . . 35

4.3 Interferometry of Two Interacting Patricles . . . . . . . . . . . . . . . . 36

4.3.1 Two Photon Case . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Interferometry of Two Cobosons . . . . . . . . . . . . . . . . . . . . . . 37

4.4.1 Two Pairs of Photon . . . . . . . . . . . . . . . . . . . . . . . . 38

4.5 Non-local Bunching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Summary and Conclusion 41

Bibliography 43

v



Chapter 1

Introduction

1.1 Elementary Particles

All particles that exist in nature can be classi�ed into two categories. This classi�cation
is based on their spin di�erence, particles with half-integral spin are known as fermions
such as Quarks, leptons, and baryons and particles with integral spin are bosons such
as photons and mesons.
Fermions comply Pauli's Exclusion Principle and therefore it is not possible to co-exist
in same state for two fermions. Bosons, however, have no such restriction. Another the
simple way to di�erentiate between bosons and fermions is through Hong-Ou-Mandel
interference. Two bosons come out together through the same port i.e., they bunch
when they are used as the input of symmetric beam splitter. On the opposite side, two
fermions turn out independently i.e., they anti-bunch.

1.2 Composite Particles

In every day life, most of the particles that we deal with are composite in nature.
Therefore it is an important aspect of our reality to study di�erent aspects of compos-
ite particles. It is the basic inspiration behind the interest to study composite particles.
Particles that are made up of two or more than two sub-particles are called composite
particles. Composite particles composed of fermions and bosons. Composite systems
further divided into multi-partite systems and bipartite systems. Composite system
composed of more than two subsystems is known as multi-partite systems while com-
posite systems consist of only two subsystems are know as Bipartite systems. Proton
is composite particle composed of one down quark and two up quarks, neutron is com-
posed of one up and two down quarks and poin is composed of one up and one down
quark. Therefore proton and neuron are the example of multi-partite systems and poin
is an example of bipartite systems.
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The study of composite particle is owned by the �eld of many-body theories[1]. An
adequate amount of literature is available related to this subject but unfortunately
complexity in a system arises when we increase the number of the particles of the
system. For the present work, our interest is to explore that how the connection be-
tween constituent particles is responsible for several physical properties of the system.
Moreover, comparison of the pure elementary particles (speci�cally composite boson)
is part of this thesis.
When we introduce constituent particles of a system, we must have to introduce quan-
tum correlations between them. And understanding of these non-classical correlations
is mandatory to understand composite particles. The most astonishing feature of com-
posite systems is entanglement which is heart of quantum information processing pro-
tocols.

1.2.1 Composite Particles Nature and Spin Statistics

According to spin statistics, composite particles can show fermonic nature if the num-
ber of constituent fermions are odd and bosonic nature if the number of constituent
fermions are even.
As in case of proton two up quark and one down quark make odd integer spin so proton
show fermoic behavior whereas in case of pion one up quark and one down quark make
interger spin so pion show bosonic behaviour.

1.2.2 Composite Particles Nature and Quantum Information

The statistics of composites was recently re-considered from the perspective of quantum
information. Entanglement between two constituent particles comes out to be the
essential ingredient to guarantee bosonic or fermonic behavior. A pair of strongly
correlated fermions have integer spin, so long as its internal structure is not probed,
and is therefore expected to show bosonic behavior. For that reason, such composite
systems are sometimes traditionally called composite bosons, despite the fact that
the term is somewhat deceptive as not every all composite particles composed of two
fermions will exhibit bosonic behaviour. Theses composite particles can exhibit a
behavior ranging from fermionic to bosonic.

1.3 Non-Classical Correlation

Interference, superposition of quantum systems and tunneling are fundamental proper-
ties used to distinguish between quantum and classical systems. This is not only
distinction between classical systems and quantum mechanical system. When we talk
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about composite systems then there will exist correlation between constituent particles.
Classical correlation means classical probabilities but quantum mechanical correlation
means remote action at distance and such non-classical correlation leads us towards
entanglement.
Correlation is a statistic's term. If two systems are correlated that means they are
connected in such a way that we can predict a result of the second system if we know
the result of the �rst one with some uncertainty. For example, if we have a bag �lled
of pieces of paper, with 00 or 11 printed on each paper having equal probability of
occurrence. If we randomly pick a piece of paper and only look at one of the two
numbers, then automatically we will know the other number entirely. While if we
don't look at any number printed at that piece of paper, there is only �fty percent
chance that we guessed correctly. That is how knowing part of the system helps to
understand the other one. Above example is an example of classical correlation. The
only property we were interested was a number. Let us take another example, consider
we have two balls, one is blue and other is red. We give these balls to two di�erent
observers A and B with closed eyes, let say red to observer A and blue ball to observer
B. The observers only know the probability of having either color but are unaware of
the exact state (color) of their balls. Now, if the observer A looks at his ball and notice
that his ball is red, immediately he get to know that the color of the second ball is
blue. Concerning the spin of particles consider the products of the spin state of the
particles 1 and 2 of the form:

|φ〉 =
1√
2

(|↑〉1 |↓〉2 + |↓〉1 |↑〉2). (1.1)

When spin of the �rst particle is up then spin of the second particle will be down
and vice-versa. Suppose we want to �nd the spin of a particle along x-direction, from
measurement of the spin of particle 1 along Sx we can also determine the x-component
of the spin of a second particle. Thus, the state of a particle is correlated and this
is a classically correlated state with the probability of �fty percent outcome in this
case. But what if we want to measure the spin along two directions like along x and
y direction both. Suppose we have two observers Alice and Bob and the spin of a
particle along x-direction is measured by Alice and that is up. Bob measures spin of
that particle along y-direction and obtains spin down. Alice can never say that she has
managed to measure two complementary properties simultaneously because of Bob's
measurement. Imagine her surprise, then, when she tries to con�rm her conclusion
by measuring spin along y-direction and obtain herself spin up. Thus each of these
properties is individually anti-correlated with each other. But the Bell states formed
for quantum system have quantum correlation between them. This is a quantum
phenomena which we cannot explain classically.
Quantum entanglement is a special kind of correlation in which connection between
two systems cannot be explained by local cause.
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1.4 Quantum Entanglement

1.4.1 Historical Background

Interest in entanglement began because of the famous experiment known as Einsten-
Podolsky-Rosen (EPR) paradox. In their research paper[2], Einstein et al gave an intu-
itive argument using the theory of quantum mechanics and theory of special relativity.
They exploited the unique properties of an "EPR pair" which nowadays is known as
entangled states and raised a question on the completeness of quantum mechanics. At
that time, Einstein, Podolsky, and Rosen were arguing for an objective reality that
was about local-realism, which quantum mechanics with its postulate of uncertainty
appear to contradict. John S. Bell was the one who worked on the EPR argument
further in 1960s and showed that local-realism based theories are out of scope for the
correlations between measurements of entangle state predicted by quantum mechan-
ics [3]. The inequalities derived by Bell and others were tested for entangled photons
and these experiments proved the predictions of quantum mechanics [4, 5] . Although
explanations given by Einstein and his fellows were not satisfactory and their conclu-
sion is now proven to be invalid. However, it drew attention towards most important
phenomena of entanglement and raised the possibility that there exist special kind of
particles (entangled particles) in quantum mechanics. Even though, entangled states
were identi�ed since the beginning of quantum mechanics but recent concept of entan-
glement has modi�ed and our understanding is very di�erent from what Einstein and
his fellows had in mind. Most of the present day entanglement theory is motivated by
discoveries in the 1990s that use the strangeness of entanglement in various applications
like in quantum teleportation [6], quantum cryptography [7] and quantum dense coding
[8]. All these discoveries are experimentally demonstrated, that shows entanglement is
completely quantum mechanical phenomena that have no classical replacement.
Scientists put a great attention on quantum entanglement as it is considered a vi-
tal source for quantum communication and information processing. In 1935 Einstein,
Podolsky and Rosen supposed an experiment that described the incompletness of quan-
tum mechanics theory. This experiment is called as EPR paradox. According to EPR
paradox there is a hidden variable within a particle that reveals its properties during
a measurement. But after many experiment it was understood that two particles can
interact with each other and they cannot behave independently. Such interacting parti-
cles are called as entangled particles and this phenomenon of long distance interaction
is called entanglement. Entanglement is the basic property of quantum systems that
can be occur between di�erent particles or within two or more degree of freedom of a
single particle. In classical world there is no concept of entanglement between di�erent
particles that are at distance apart, but in quantum mechanics particles are entangled
even if they are at distance apart.
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1.4.2 Understanding the Concept of Entanglement

Quantum entanglement is a physical phenomenon in which we describe quantum state
of two or more particles with reference to each other.
(1) For entangled particles, quantum state associated with each particle cannot be
expressed independently but, we can de�ne the quantum state for a whole system
that contains complete information of that system. These particles are connected in
such a way that action operated on any one of them in�uences the whole system and
this connection can be explained in terms of entanglement. In terms of Schrodinger's
famous paradox, entangled state can be written as:

|ψ〉atom−cat =
1√
2

(|atom not decayed〉 |cat alive〉+ |atom decayed〉 |cat dead〉). (1.2)

(2) An entangled state is described as a state which cannot be written as a tensor
product state. It can not separated into state of system A and B. Consider Alice with
states |0〉A , |1〉A and Bob with state |0〉B , |1〉B then entangled state of Alice and Bob
can be de�ned as:

|Ψ〉 =
|1〉A |0〉B + |0〉A |1〉B√

2
, (1.3)

if |H〉 is a horizontal polarization and |V 〉 is a vertical polarization of a photon then
entangle state in terms of polarization of photons can be written as:

|Ψ〉1,2 =
|H1〉 |V2〉+ |V1〉 |H2〉√

2
. (1.4)

When we perform a measurement on photon 1 and �nd photon to be localized in
horizontal polariztion state, as a result we can immedietly guess the photon 2 will be
in vertical polarization and vice versa. This is due to the superposition of quantum
states which makes the outcome of measurement completely random. This means that
before a measurement we cannot know about the outcome of the event. This means
that if a photon 1 is collapsed in state |V 〉1 or |H〉1 then photon 2 will automatically
will collapes in |V 〉2 or |H〉2.

1.4.3 Entanglement and Nature of Composite Particles

We relate entanglement and compositeness of a particle with each other and study the
properties of a composite particle. Speci�cally, we study composite boson that is made
up of a pair of distinguishable fermions(or bosons). With the help of entanglement, we
can �nd out compositeness of particle and can tell how much the behavior of composite
boson is close to pure boson.
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1.5 Preparation of Entangled States

Spontanous Parametric Down Conversion Sources
The �rst experiment for polarization-entangled photon pair source was conducted with
atomic-cascade decays to violate remote Bell inequality. In the beginning of 1987
entangled photons were observed from a nonlinear crystal that is pumped with an
intense coherent source. So it is clear that nonlinear crystals have noval importance in
most engtnaled sources.
SPDC is a strongest method leading to the emission of photon pair from nonlinear
crystal. It is a process in which three waves mix together with the help of nonlinear
crystal of susceptibility χ(2). The phenomenon of SPDC was �rst intoduced in 1961
by Louisell and his co-worker .In general SPDC is a process in which a single photon
decays into two lower energy daughter photons. The theory of SPDC were developed
by Kleiman and modern mechanical calculations was developed by Hong and Mandel
in 1985.

1.5.1 Basic principle of SPDC source

Spontaneous parametric downconversion source is based on three waves in which pho-
ton from source is passed through a nonlinear optical crystal that has an equal prob-
abaility to be converted into daughter photons. We assumed that it is a three plane
wave mixing. It has two types that are called type I and type II downconversion. In
SPDC process daughter photons are characterised by their polarization from crystal
axis and are called ordinary and extraordinary. In nonlinear optics the downconverted
photons are called signal photons (index s) and idler photon (index i).
Polarization direction of signal and idler modes for type I downconverion is identical.
It means that if the pump have a extraordinary polarization then signal and idler will
be in ordinary polarization. The degenerate twin photons are emitted as cones in type
II down-conversion. In laborartoray frame we refer exteraordinary photon with vertical
polarization |V 〉. The frequencies of three �elds are expressed as ωp,s,i and vectors of
their �elds are written as kp,s,i. The energy and momentum conversion can be written
as:

ωp = ωs + ωi, (1.5)

kp = ks + ki. (1.6)

One cone contains ordinary polarized photons and other contains extra ordinary
polarized photons. The opening angle of photon relies on the angle of optical axis
with pump �eld and written as θp. At some value of θp, we get degenerate emission of
photons . This will happen when two cones exactly overlap at one point. The emission
of photons is in the direction of original photon. When θp is increased, two cones

6



Figure 1.1: Signal and idler mode for spontaneous parametric down convervion source

come close and interact at two points having pump beam in center. Photons coming
through these points are completly indistingishable excluding polarization states. So
two possible indistinguisable decay paths available at these interaction and causes the
emission of polarized entangled state. The emitted state can be written as:

|ψ〉 =
(|H1, V2〉+ eiφ |H2V1〉)√

2
, (1.7)

where φ is a phase angle between ordinary and extraordinary polarized light intro-
duced by the crystal birefringence. Global phase may be ignored. In addition to
realtive phase, the crystal also introduce longitudinal and transvers walk-o�. In lon-
gitudinal walk-o� ordinary and extraordinary have di�erent speeds throughout and
easily distingishable from each other. For transver walk-o� ordinary and extraordinary
waves propagate in di�erent directions and are separeted after passing through the
down conversion crystal. After the walk-o�s are corrected, one of the four maximally
entangled Bells states can be obtained by using half wave plate and quarter wave in
the source route. ∣∣ψ±〉 =

(|H1, V2〉 ± |H2, V1〉)√
2

, (1.8)

∣∣φ±〉 =
(|H1, H2〉 ± |V1, V2〉)√

2
, (1.9)

above four state have noval importance and have been used in many quantum infor-
mation theoretical models such as quantum teleportation.
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1.6 Thesis Outline

In chapter 1, we discuss introduction to elementary particles, composite particles and
the nature of composite particles. In chapter 2, there is Quantum mechanics of beam
splitter and Interferometry of elementary fermions and bosons. While moving next to
chapter 3, a detail discussion on basic concepts that are used in formulism of composite
bosons via quantum information. We view composite boson with quantum information
eye and discuss role of entanglement in deciding the nature of composite bosons. In
chapter 4,we discuss the cases of collective interference of composite bosons and at the
end in chapter no. 5 there is summary and conclusion of my thesis.
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Chapter 2

Beam-splitting and Interferometry of

Elementary Particles

In this chapter we discuss interferometry of elementary particles. First we discuss
classical light with traditional interferometer and then instead of classical light we
replace it with quantum �eld.

2.1 Classical Beam-splitter

Consider a lossless plane beam splitter on which a light of amplitude E is incident.
Plane beam-splitter will partially re�ect and partially transmit the incident light.

Figure 2.1: Classical Beam Splitter

The amplitudes of the re�ected beam Er and transmitted beam Et are written as:

Er = rE ; Et = tE, (2.1)

9



where r and t are the re�ectance and transmittance respectively of the beam splitter.
For 50:50 beam splitter, |r| = |t| = 1/

√
2.

|E|2 = |Er|2 + |Et|2,

this follows the condition as:
|r|2 + |t|2 = 1.

2.2 Quantum Mechanical Beam-splitter

For quantum mechanical beam-splitter, we replace classical light amplitudes with an-
nihilation operators â, b̂, ĉ and d̂ as shown in the �gure.

Figure 2.2: Quantum mechanical beam-splitter

ĉ = tâ+ rb̂ ; d̂ = râ+ b̂, (2.2)(
c
d

)
=

(
t1 r2
r1 t2

)(
a
b

)
, (2.3)(

c
d

)
= U

(
a
b

)
. U =

(
t1 r2
r1 t2

)
(2.4)

Now if r1 = r2 ; t1 = t2 then,

U =

(
cos(θ) exp(iφ) sin(θ)

− sin(θ) exp(−iφ) cos(θ)

)
, (2.5)

c = a(θ) = a cos(θ) + ib sin(θ) ; d = b(θ) = b cos(θ) + ia sin(θ), (2.6)
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By taking derivative of these equations,

da(θ)

dθ
= ib(θ) ;

db(θ)

dθ
= a(θ), (2.7)

Initial conditions are a(0) = a and b(0) = b.
To evaluate the Hamiltonian, we use Heisenberg equation.

da(θ)

dθ
= − i

~
[a(θ) , H] , (2.8)

ib(θ) = − i
~

[a(θ) , H] , (2.9)

i(b cos(θ) + ia sin(θ)) = − i
~

[a(θ) , H] . (2.10)

First we have to solve the following commutation relation,

[a(θ) , H] = a(θ)H −Ha(θ), (2.11)

now we have to select such form of Hamiltonian which satisfy the above Heisenberg
equation and is given as:

H = −~(a†b+ ab†). (2.12)

2.3 Fock Space

Fock Space is important because we use it to study many particles system, as well as
the system where number of particles may not be conserved. For example, in non-ideal
optical cavity there is possibility of leakage of photons. Another example is excited
atoms, these atoms emit a photon. Formalism that allows us to describe such type of
systems in a good way is explained below. This formalism is actually build by using
concept of creation and annihilation operators, we use to describe harmonic oscillator in
quantum mechanics. Let us consider a system having single particle. First we describe
this basic system and later we can easily generalize it for more than one particle. As
we are observing quantum mechanically, we cannot forget importance of vacuum state.
In a system, there must be state that represents zero particle. We denote vacuum state
by |0〉 and its inner product with itself 〈0|0〉 equal to one. Now just like harmonic
oscillator, we de�ne the creation and annihilation operators as â†n and âm respectively.
It is important to keep in mind that here harmonic oscillator is not involved, its just
that we are de�ning operators in ad hoc. Now the state of single particle is |1〉 = â†|0〉,
thus creation operator is adding one particle in system and annihilation operator just
removes a particle from the system.

〈0|ââ†|0〉 = 〈0|0〉 = 1.
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2.3.1 Fermions

The properties of annihilation and creation operators for fermions are:

â†n|0〉 = |ϕn〉, (2.13)

â†m|ϕn〉 = â†mâ
†
n|0〉 = |ϕmϕn〉 = −|ϕnϕm〉, (2.14)

ân|ϕn〉 = |0〉, (2.15)

ân|0〉 = 0. (2.16)

Here n is quantum number of fermion. From Eq. (2.14), we can de�ne that vector
states are anti-symmetric with interchange of any two fermions.
Anti-commutation relations for fermions are:

{â†n, â†m} = {ân, âm} = 0, {ân, â†m} = δnm, (2.17)

{â†n, b̂†m} = {ân, b̂m} = {â†n, b̂m} = {ân, b̂†m} = 0. (2.18)

where â and b̂ are operators belong to two distinguishable fermions.

2.3.2 Bosons

Following are the properties that creation and annihilation operator for bosons have:

ĉ†β = |0, 0, 0....,mβ = 0, ....〉 = |ϕβ〉 = |0, 0, .....,mβ = 1, 0, .....〉, (2.19)

ĉβ|m1,m2, ....,mβ = 0, ....〉 = 0, (2.20)

ĉ†β|m1,m2, ....,mβ, ....〉 =
√

(mβ + 1)|m1,m2, .....,mβ + 1, ...〉, (2.21)

ĉβ|m1,m2, ....,mβ, ....〉 =
√

(mβ)|m1,m2, .....,mβ − 1, ...〉. (2.22)

Bosons follow the commutation relation,

[ĉn, ĉ
†
m] = δnm. (2.23)

For all bosons to be in same mode then above relations become:

ĉ†|0〉 = 0, (2.24)

ĉ|0〉 = 0, (2.25)

ĉ†|m〉 =
√

(m+ 1)|m+ 1〉, (2.26)

ĉ|m〉 =
√
m|m− 1〉, (2.27)

[ĉ, ĉ†] = 1. (2.28)
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2.4 Basic Statistics of Single and Two Photon States

at Beam-Splitter

2.4.1 Single Particle and Beam-splitter

Consider a 50:50 beam-splitter, a single particle is taken as an input on its one port
[9]. This particle has a chance of 50% to come out on either output port (c) or (d).
The input state of beam-splitter undergo a transformation as:

|a〉 =
1√
2

(|c〉+ i |d〉). (2.29)

For simplicity, we assume beam splitter is symmetrical, this symmetry implies that
there is a phase shift of π/2 in the re�ected part [10].

Figure 2.3: The input particle is either re�ected or transmitted
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2.4.2 Two Particles on Same Port of Beam-splitter

Let two particles as an input on the same port of the beam-splitter. In this case we
have various possibilities. The initial state is de�ned as:

Figure 2.4: Two particles on same port of beam splitter

|ψin〉 = |a〉1 |a〉2 ,

where |a〉1and |a〉2 means that particle 1 and particle 2 are incident on port (a).

|a〉1 |a〉2 =
1

2
(|c〉1 + i |d〉1)(i |c〉2 + |d〉2),

|a〉1 |a〉2 =
1

2
(|c〉1 |c〉2 + i |c〉1 |d〉2 + i |d〉1 |c〉2 − |d〉1 |d〉2). (2.30)

The two particles behave as independent just as classical particles do. Therefore,
following are the probabilities

Probability for both particles on port c = 25%
Probability for both particles on port d = 25%

Probability for one particle on c and one on d = 50%
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2.4.3 Two Particles on Di�erent Ports of Beam-splitter

Consider two particles which are indistinguishable, here we have no informaion whether
particle 1 or particle 2 is incident on beam port (a) or (b) [11]. So the state is in
superposition of |a〉1 |b〉2 and |a〉1 |b〉2.
In case of the two particles are bosons, The state of system is written as:

|ψ〉boson =
1√
2

(|a〉1 |b〉2 + |a〉1 |b〉2). (2.31)

In case of the two particles are fermions, The state of system is written as:

|ψ〉fermions =
1√
2

(|a〉1 |b〉2 − |a〉1 |b〉2). (2.32)

The output state in case of two fermions on each port of the beam splitter is given as
[12]:

|ψ〉fermions =
1√
2

(|c〉1 |d〉2 − |d〉1 |c〉2), (2.33)

this shows that the two fermions will come out on di�erent output ports.
The output state in case of two bosons on each port of the beam splitter is given by
[12]:

|ψ〉bosons =
i√
2

(|c〉1 |c〉2 + |d〉1 |d〉2), (2.34)

this shows that the two bosons will come together either on (c) or (d) port. The
experimental veri�cation of this case is studied in 1987 [13].
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Figure 2.5: If the two particles are bosons, they found on same output ports.

Figure 2.6: If the two particles are fermions, they found on di�erent output ports.
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Chapter 3

Bipartite Entanglement and Stability

of Composite Bosons

In this chapter, we will discuss composite particle particularly a bipartite boson using
the quantum information approach. We will use the tools of quantum information to
develop the formalism that helps to understand the internal structure of composite
boson. We discuss the coboson made up of pair of fermions in detail, however, we also
discuss brie�y coboson comprised of pair of bosons. In this chapter we will see that we
can know information all about the composite behavior of composite boson with the
help of entanglement. We found that measurement of the degree of entanglement be-
tween the sub-particles explains the deviation of the composite character of composite
particle from a pure bosonic character. In other words, it explains how closely compos-
ite boson is behaving like pure boson. This phenomena entails some interesting ideas
about the constituent particles that these particles are somehow bound by quantum
entanglement. For the discussion of a composite particle and its behavior in a bipartite
system the mechanical binding forces are actually not necessary because these forces
usually help us only as physical means when we try to apply the quantum correlations.
Below in this chapter the underlying role of entanglement will be discussed using con-
cept of second quantization, on the bases of properties of ladder operators associated
with composite particles. In quantum mechanics, the state of a system is expressed in
complex vector space by a state vector. The state vector is either as a ket vector |α〉
or a bra vector 〈β|. This way of writing state vectors in Quantum Mechanics is called
Dirac Notation. Suppose we prepare a state |ψ〉 with Hilbert space H and expand it
in a series of basis states |φi〉 as:

|ψ〉 =
∑
i

ai |φi〉 , (3.1)

where ai are the amplitudes for each basis state.
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3.1 Fundamental Concepts of Quantum Information

Quantum mechanics allows a quantum system to be in superposition state. Superposi-
tion is the property of a quantum system to be in two states at the same time. However,
when we observe a system, the system has to decide where to be and we can only see
it in one of those two states. Quantum information is the e�ort to both understand
and use the properties of the quantum world. We use the concepts of quantum infor-
mation to understand the internal structure of composite system and its properties.
In this section, we describe the basic concepts and mathematical methods that will
help us to understand a later subject. We discuss the state of a composite quantum
system, speci�cally, bipartite quantum system and construct the formalism to express
the states of the composite quantum system in terms of states of subsystems. We also
explain the concept of entanglement and relate it with Schmidt decomposition.

3.2 Preliminary De�nitions

3.2.1 Composite Systems

A composite quantum system can decompose naturally into its subsystems, where
every subsystem is proper quantum system. Usually, we distinguish the subsystems
from each other on the basis of the distance between them which must be larger than
the individual subsystem's size. For example, hydrogen atom is composite in nature
since it consists of an electron and proton. Another common example of a composite
system is the string of ions in which every ion acts as a subsystem [14].
Multipartite Compoiste System
In quantum mechanics, we often associate a Hilbert space H, with a physical system.
If we have some system that is made up of two or more than two subsystems (known as
multipartite system), Hilbert space H associated with that system is given by tensor
product of all Hilbert spaces of subsystems.

H = H1 ⊗H2 ⊗H3 ⊗H4... (3.2)

Bipartite Composite System
In this section, we comprehensively take a look at the bipartite coboson from the
perspective of quantum information. We take a look at the fermionic and bosonic
algebra for ideal fermions and bosons and modify it for the composite boson.
Let us consider a composite bipartite particle C in Hilbert space H comprised of two
sub-particles. Let we denote sub-particles with A and B. Hilbert space HA be the
Hilbert space of subsystem associated with particle A and HB be the Hilbert space of
other subsystem related with particle B. Therefore the Hilbert space (H) of composite

18



particle is expressed as the tensor product of Hilbert spaces of sub-particles.

H = HA ⊗HB. (3.3)

Both constituent particles are distinguishable and can be either bosons or fermions.
Collectively, both particles behave as coboson. We will �nd that how much nature of
coboson is deviating from ideal boson. The state vector of composite bipartite sysem
can be written in form as;

|ψ〉C =
∞∑

i,j=0

αij|i〉A ⊗ |j〉B, (3.4)

where |i〉A and |j〉B are the state vectors of the subsystem.

3.2.2 Pure States

A pure state is the state where we have exact information about the system. Pure
state |ψ〉 is given by Density operator as:

ρ = |ψ〉 〈ψ| . (3.5)

Density operator for pure state always follows the following conditions as given by:

1. ρ2 = ρ

2. Tr(ρ2) = 1

3.2.3 Mixed States

Mix state is de�ned as a linear combination of di�erent pure states. In real life experi-
ments, instead of single quantum system often there are collection of quantum systems
(ensemble). Also each member of ensemble can be found in more than one quantum
states. Thus most of the time we encounter mix states instead of pure states.

For mixed states, the density matrix ρAB of a composite system is separable if and
only if

ρAB =
∑
k

PkρAρB. (3.6)
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3.2.4 Separable States

Consider a composite system consists of two distinct subsystems. Let a pure bipartite
quantum state |φ〉 ∈ H1⊗H2 ; it is called separable state if and only if it can be written
as a tensor product of pure states of subsystem, such that

|φ〉sep = |φ1〉 ⊗ |φ2〉 . (3.7)

Example

|φ〉 =
1√
2

[|0〉1 |0〉2 + |0〉1 |1〉2],

|φ〉 =
1√
2

[|0〉1][|0〉2 + |1〉2],

|φ〉 = |φ1〉 ⊗ |φ2〉 .

The results of measurements on pure separable states are not correlated i.e measure-
ment taken on one subsystem do not change the possible outcomes of other subsystem.
The reduced density matrices are give by the partial trace over the �rst and second
subsystem

ρ1 = Tr2(ρ) ; ρ2 = Tr1(ρ)

where ρ is the whole density matrix and is de�ned by ρ = |φ〉 〈φ|.
The density matrix of separable state can also be written as the tensor product of
reduced density matrices of the subsystem as given by:

ρ = ρ1 ⊗ ρ2. (3.8)

3.2.5 Entangled States

Entangled state of a bipartite system cannot be expressed as a tensor product of states
of subsystem given as:

|φ〉 6= |φ1〉 ⊗ |φ2〉 . (3.9)

Example: Examples of entangle bipartite states is Bell state,

|φ〉 =
1√
2

[|0〉1 |0〉2 + |1〉1 |1〉2].

So this type of state cannot be written like Eq.3.9. Information contain by the entangled
state is not described completely in terms of the states of subsystem. The results of
measurement on entangled states are correlated. Also for an entangled state, one can
�nd the density matrix as:

ρ = |φ〉 〈φ| 6= ρ1 ⊗ ρ2. (3.10)
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3.2.6 Density Operator

So far, in quantum mechanics we have dealt with the system which are completely
described by state vector and in such representation state vector contain all the infor-
mation about the system. In quantum mechanics there is also an alternative and more
general approach analogous to the state vector approach known as density operator or
density matrix approach. This is more convenient way to thinking for some commonly
encountered scenarios in quantum mechanics[15].
For a given ensemble [|φi〉 , pi] of N pure states |φi〉 with probability pi, the density
operator ρ is given by:

ρ =
N∑
i=1

pi |φi〉 〈φi| , (3.11)

where,
N∑
i=1

pi = 1.

Density operator must satis�es the following conditions:

1. ρ = ρ† density operator must be Hermitain.

2. Tr(ρ) = 1.

3. For a state vector |u〉 , 〈u| ρ |u〉 >= 1, means ρ is a positive operator.

3.3 Density Matrix Formalism

"Density matrix" is a very powerful formalism in which we describe quantum state by
its density matrix. It is an alternative formalism to describe a quantum state by Dirac
notations (bra-ket notation). Density operator is an average operator and basically
useful in describing statistical mixture. It is denoted by ρ.
In the case of pure states where the state of a system is de�nite, ρ can be constructed
by the outer product of state |ψ〉. To see this, let we consider some operator Q̂, we
�nd the average value (expectation value) of this operator. The expectation value 〈Q̂〉
can be written as:

〈Q̂〉 = 〈ψ|Q|ψ〉.
Expanding |ψ〉 in its orthonormal states, we get the form as

〈Q̂〉 = (γ∗1〈u1|+ γ∗2〈u2|+ γ∗3〈u3|.........γ∗m〈um|)Q(γ1|u1〉+ γ2|u2〉+ γ3|u3〉.........γm|um〉)

=
n∑

k,l=1

γ∗kγl〈uk|Q|ul〉
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=
n∑

k,l=1

γ∗kγlQk,l. (3.12)

As the expansion coe�cient can be written as:

γm = 〈un|ψ〉,

and the complex conjugate is
γ∗m = 〈ψ|un〉,

that means γ∗kγl = 〈ul(|ψ〉〈ψ|)uk〉. Thus the average value of operator Q̂ is

〈Q̂〉 =
n∑

k,l=1

γ∗kγlQkl

n∑
k,l=1

〈ul|ψ〉〈ψ|uk〉Qkl.

We call this outer product |ψ〉〈ψ|, a density operator ρ. And the average value of
operator with respect to state |ψ〉 is

〈Q̂〉 =
n∑

k,l=1

〈ul|ρ|uk〉Qkl.

In terms of trace, we can write it as

〈Q̂〉 = Tr (ρQ) .

For pure states, we see that

ρ2 = (|ψ〉〈ψ|)(|ψ〉〈ψ|) = (|ψ〉〈ψ|) = ρ.

As Tr(ρ) = 1, that means
Tr(ρ2) = 1.

Thus in terms of density operator, if trace of a square of density operator is equal to
one then state of a system is pure.
For mixed states, let suppose there are N number of possible states. For state |ψn〉,
density operator can be written as ρn = |ψn〉〈ψn|. Probability that system in ensemble
has been prepared in state |ψn〉 is pn. Then the density operator for ensemble is

ρ =
N∑
n=1

pn|ψn〉|〈ψn|.

We can characterize that given state of system is mixed state if trace of square of
density operator Tr(ρ2) < 1.
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3.3.1 Reduced Density Operator for a Bipartite System

Let ρ is a density operator of a bipartite system consists of two subsystems A and B
in Hilbert space H , then the reduced density operator ρA (ρB) is de�ned as:

ρA = TrB(ρ) ; ρA = TrA(ρ), (3.13)

where TrB(ρ) and TrA(ρ) are called partial trace. The idea behind partial trace is to
obtain a density operator for one of the subsystem alone.
Density operators have very important application in characterization of composite
systems and working with the states of their subsystems.

3.4 Criteria to Distinguish Separable and Entangled

States

The above criteria to distinguish separable and entangled states seems very simple on
�rst sight. But if we check di�erent states, we found that in some cases checking sep-
arability of state gets complicated. As for pure states, we have de�ned the criteria of
separability which is the existence of the decomposition of a state into product states,
or for mixed states by a convex sum of tensor products. Therefore, when we look at
the given state to check the separability, we have to �nd such decomposition. Once a
decomposition is found, it gets clear that the state is separable. But in case of failure
to �nd decomposition, there are two possible reasons: either the state is actually sep-
arable but reasonable decomposition could not be identi�ed, or the state is entangled
so there is no decomposition. Due to this reason, there is a need for a standard but
straightforward criterion to distinguish separable and entangled states which do not
require an explicit search. For pure states, there are criteria which di�erentiate separa-
ble and entangled states unambiguously, but in the case of mixed states, this criterion
is applicable only for a low dimensional system. For higher dimensional systems, this
criterion can give only partial information. Here we will discuss a simple case of pure
states as our primary work is basically on bipartite pure states.

3.4.1 Schmidt Decomposition

Schmidt decomposition can help us to �nd out whether the state of a system is separable
or entangled [16]. We will discuss that how useful is the Schmidt decomposition for
the measurement of bipartite entanglement for pure states [17].
Qubit System: A quantum system with two dimensional (d=2) linear independent
states is called Qubit system. This type of system is represented by a two dimensional
hilbert space H2. e.g spin 1

2
system and bell states. For pure bipartite systems, there
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is a very important concept known as schmidt decomposition which is only valid for
bipartite systems.
Let system has pure state |ψ〉 in the Hilbert space H which is given by the direct
product of the Hilbert spaces of subsystems.

H = HA ⊗HB,

where HA and HB are the Hilbert spaces of the subsystems having two local basis | i〉A
and | j〉B respectively. In terms of above mentioned basis, the state |ψ〉 of a system
can be expressed as:

|ψ〉 =
∑
i,j

αij(|i〉A ⊗ |j〉B), (3.14)

where αij is the expansion coe�cient, which represents the overlap of a state of system
with the basis vectors,

αi,j = 〈iA| ⊗ 〈jB|ψ〉,
= 〈iA|ψ〉〈jB|ψ〉. (3.15)

Now , let us write matrix formed by expansion coe�cient αij as some dA × dB matrix
C where dA and dB are equal to dimensions of Hilbert space HA and HB respectively.

[C]i,j = αi,j. (3.16)

As every matrix has singular value decomposition (SVD), with the help SVD we will
solve this matrix to �nd Schmidt eigenvalues.
Singular Value Decomposition(SVD)
SVD is the factorization technique of any m× n matrix A into three matrices UDV T .
Where U and V are the orthogonal matrices of size m × m and n × n, respectively.
While D is diagonal matrix of size m×n and these diagonal entries are called singular
values of matrix A.
To understand physically, for any vector, when matrix A apply on a vector, it rotates
the vector and also stretch it. In case of circle (two dimensional case of sphere), when
the matrix A apply on sphere, it rotates the circle and also stretch it, so that it becomes
ellipse.
Here let we denote orthogonal vectors of circle by v1 and v2, while major and minor
axis of ellipse are denoted by u1 and u2, respectively. So, when matrix A applies to
vector v1, it gives

Av1 = σ1u1,

Similarly, when matrix A applies to vector v2, it gives

Av2 = σ2u2,

where σ1 and σ2 are stretching factors. In case of N-dimensional sphere (hyper sphere),
after the operation we get a hyper ellipse.
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Avj = σjuj,

.

We can see Eq. is like a eigen value problem. In the matrix form, we can write

it as [A]
[
v1 v2 . . vn

]
=
[
u1 u2 . . un

]

σ1 0 0 0 0
0 σ2 0 0 0
0 0 . 0 0
0 0 0 . 0
0 0 0 0 σn

 , here A is

a matrix of order m × n. Generally, it can be written as, AV = UD, where D is a
diagonal matrix while V and U are the unitary matrices as the vectors belong to them
are orthonormal.

A = UDV T .

This is a singular value decomposition. Now writing a matrix C in Eq. (3.16) in SVD
form given by: ∑

i,j,k

αi,j =
∑
k

ui,kckvk,j. (3.17)

Substituting equation (3.17) in (3.14), we will get.

|ψ〉 =
∑
i,j,k

ui,kckvk,j(|i〉A ⊗ |j〉B),

|ψ〉 =
∑
k

ck(|k〉A ⊗ |k〉B),

|ψ〉 =
∑
k

√
λk(|k〉A ⊗ |k〉B). (3.18)

We have de�ned the orthonormal bases on the system A as |k〉A =
∑
i

ui,k|i〉A, on system

B as |k〉B =
∑
j

vk,j|j〉B. These orthonormal bases are known as Schmidt bases. While

λk = c2k and this is known as Schmidt coe�cient. The Schmidt coe�cients λk are like
eigenvalues of a matrix and unique for any state |ψ〉. We can extract the information
related to the entanglement of state in quantum system from the factor of Schmidt
coe�cient.
Schmidt Coe�cient and Its Importance in Checking Separability of State

The standard criteria to check separability of any state |ψ〉 is that if decomposed
state contains one non-zero Schmidt coe�cient, then we can say that the state must
be separable. On the other hand, if there exists more than one non-zero Schmidt
coe�cients, then the state |ψ〉 is not separable [18]. As discussed above the Schmidt
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coe�cients are very helpful in di�erentiating between entangled and separable states,
therefore our main focus is how we can evaluate them. We can do this with the help
of reduce density matrices, so then reduced density matrices are explicitly useful.

3.4.2 Purity

As with the help of Schmidt decomposition we can �nd out easily whether the state is
separable or entangled. For checking the degree of entanglement of a state (how much
state is entangled) we use the concept of purity. We can characterize the degree of
entanglement by the degree of purity of either of subsystem. Purity of any normalized
quantum state can be de�ned as the trace of the squared value of its density operator.

P = Tr(ρ2), (3.19)

where the range of a purity is
0 < P ≤ 1.

For subsystem, let us suppose for a subsystem A, purity is de�ned as: P = Tr(ρ2A) =∑
k

λ2k. When purity is equal to one, that means our state of system is separable. And

when purity is less than one, the state of a system is entangled.
Measurement of the entanglement can be de�ne as the Schmidt number given by:

κ ≡ 1

P
=
∞∑
k=0

1

λ2n
. (3.20)

In terms of Schmidt number κ, if κ = 1 this means that the state will be separable.
For all other values of κ the state of a composite system will appear to be entangled.

3.5 Composite Boson Creation Operator

Now, for the composite two-particle system, using the vision of second quantization
one can express the state vector in form of ladder operators as:

|ψc〉 = ĉ†|0〉. (3.21)

Hence, by comparing it with the equation (3.4) we can say that this creation operator
which is creating a particle in a composite system can also be the combination of
two other creation operators which can create sub-particle in the relevant subsystem
therefore,

ĉ† =
∞∑
ij

αij â
†
i b̂
†
j, (3.22)
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where αij represents probability amplitude of having particle A in |i〉 basis and particle

B in |j〉 basis. The creation operators for particle A and particle B are â†i and b̂
†
j. In the

perspective of entanglement theory, we use the process of decomposition to calculate
the probability amplitude therefore we can rewrite the state expressed above as:

|ψc〉 = ĉ†|0〉 =
∞∑
n=0

√
λnâ

†
nb̂
†
n|0〉, (3.23)

where basis n is the superposition of i and j and
√
n is the Schmidt coe�cient which

tells us about the probability of having both particles in the same basis n. The value
of λn also provides the measure of entanglement as we have discussed in chapter 2. In
terms of the Schmidt number κ provides us the following:

κ =
1

∞∑
n=0

λ2n

. (3.24)

Thus the operator for composite particle in terms of the Schmidt coe�cient is written
as

ĉ† =
∞∑
n=0

√
λnâ

†
nb̂
†
n. (3.25)

The operator c† can be treated as the ladder operator for the composite particle and
we can discuss its properties as well.

3.6 Commutation Relation for Bosonic Operator

Being ladder operator ĉ and ĉ†, satis�es the Bosonic algebra [19]. If constituent particles
A and B both are bosons then the commutation relation results as

[ĉ, ĉ†] = 1 +
∞∑
n=0

λn(â†nân + b̂†nb̂n). (3.26)

If constituent particles are fermions then,

[ĉ, ĉ†] = 1−
∞∑
n=0

[λn(â†nân + b̂†nb̂n)]. (3.27)

Collectively, we can write the above relation as:

[ĉ, ĉ†] = 1 + s∆, (3.28)
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where
s = +1 wehn A and B both are bosonic particles.
s = −1 wehn A and B both are fermonic particles.
The ∆ operator is de�ned as:

∆ =
∞∑
n=0

[λn(â†nân + b̂†nb̂n)]. (3.29)

Where the operator ∆ apperas as it shows how much composite bosonic operator
deviates from pure bosonic operator [20]. ∆ should be minimum so that c and c† will
operate similar as pure bosonic operator.

3.7 N Particle State for Composite Particle

The N particle state for composite particle is

|N〉 =
1
√
χ
N

(ĉ†)N√
N !
|0〉, (3.30)

where χN is the normalization constant and it should be here because ĉ† is not a perfect
bosonic creation operator [21]. χN measures the bosonic quality of composite bosons
overall. When χN = 1 it means our composite system is like a pure bosonic system.
when χN = 0 means system is least bosonic and any intermediate values represents sub-
bosonic quality. We can calculate this normalization constant by considering 〈N |N〉 =
1. By taking projection of state 〈N | with itself, we can write χN as:

〈0|ĉN(ĉ†)N |0〉 = N !χN ,

χN =
1

N !
〈0|ĉN(ĉ†)N |0〉. (3.31)

In order to understand that how well c exhibits as bosonic operator, we check its action
on the composite particle state |N〉. This is de�ned as

ĉ|N〉 = αN
√
N |N − 1〉+ |εN〉, (3.32)

where αN is constant and εN is another term which appears to be orthogonal to |N−1〉.
It is basically correction term which should appear here because the state of composite
particle |N〉 is only subset itself of the whole Hilbert space for composite system. The
value of αN can be �nd out by using following equation:

〈N − 1|ĉ|N〉 = αN
√
N〈N − 1|N − 1〉+ 〈N − 1|εN〉. (3.33)
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=⇒ 〈N − 1|ĉ|N〉 = αN
√
N. (3.34)

Also;

〈N − 1|ĉ|N〉 =
√
N
〈0|ĉN(ĉ†)N |0〉
√
χ
N

√
χN−1N !

. (3.35)

Putting the value from Eq. (3.31) in Eq. (3.35),

〈N − 1|ĉ|N〉 =

√
χN
√
N

√
χN−1

. (3.36)

Comparing Eq. (3.34) and Eq. (3.36), we �nd the value of αN ,

αN =

√
χN
χN−1

. (3.37)

3.8 Conditions for Perfect Bosonic Operator

In Eq. (3.32), we can see, bosonic operator will be pure bosonic, if it satisfy the
following two conditions:

αN −→ 1,

〈εN |εN〉 −→ 0,

where 〈εN |εN〉 can be derive using Eq. (3.32). We can write Eq. (3.32) as:

|εN〉 = ĉ|N〉 − α
√
N |N − 1〉.

Also
〈εN | = 〈N |ĉ† − αN

√
N〈N − 1|.

Thus we get

〈εN |εN〉 = 〈N |ĉ†ĉ|N〉+ αN
2N − αN

√
N〈N |ĉ†|N − 1〉 − αN

√
N〈N − 1|ĉ|N〉. (3.38)

By solving Eq. (3.38), we get,

〈εN |εN〉 = N − (N − 1)

(
1− χN+1

χN

)
+N

χN
χN−1

−N +(N)

(
1− χN

χN−1

)
−N

(
χN
χN−1

)
.

〈εN |εN〉 = 1 + (N − 1)

(
χN+1

χN

)
−N

(
χN
χN−1

)
. (3.39)

Thus from Eq. (3.37) and Eq. (3.39), we can see that both conditions depend on ratio
of normalization constant. Composite bosonic operator will be like pure bosonic when
χN±1

χN
→ 1.
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3.9 Bounds on Normalization Factor

As normalization constant is given as:

χN =
1

N !
〈0|ĉN(ĉ†)N |0〉. (3.40)

χN is derived [22] and is given by:

χFN = N !
∑

p1<p2...<pN

λp1λp2λp3 ....λpN , (3.41)

and
χBN = N !

∑
p1≤p2...≤pN

λp1λp2λp3 ....λpN , (3.42)

where χFN refers to the normalization constant for composite particle is made up of pair
of fermions, which is the elementary symmetric polynomial [23]. When our While χBN
is the normalization constant, when constituent particles are pair of bosons.
For the case of two particle wave function we can consider χN in terms of some spec-
i�ed Schmidt eigenvalues, which allows the very close and exact form to our system.
Therefore Schmidt eigenvalue is

λn = (1− z)zn, n = 0, 1, 2, 3, 4.... (3.43)

Here z explains decrease of normalization constant and is de�ned in the range of 0 <
z < 1. To �nd normalization constant, we make some assumptions. let we take

p1 = rN ,

p2 = rN + rN−1,

p3 = rN + rN−1 + rN−2,

.

.

.

pN = rN + rN−1 + .....+ r1.

Substituting above values in Eq. (3.42), normalization constant for pair of bosons
become

χBN = N !(1− z)N
∞∑
r1=0

∞∑
r2=0

∞∑
r3=0

......

∞∑
rN=0

zr1+2r2+3r3+.....NrN . (3.44)
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⇒ χBN = N !(1− z)N
∞∑
r1=0

zr1
∞∑
r2=0

(z2)
r2
∞∑
r3=0

(z3)
r3 + ...... (3.45)

For Geometric series when it converges for |r| < 1

s =
∞∑
k=0

rk = 1/(1− r).

By solving series in Eq. (3.45), equation becomes:

χBN =
N !(1− z)N

(1− z1)(1− z2)(1− z3)......(1− zN)
. (3.46)

Similarly for normalization constant of composite boson made of pair of fermions
Eq.(3.41) become

χN
F = N !

∑
pN>p>....p2>p1

λp1λp2 ....λpN . (3.47)

After few mathematical steps we reach at equation below

χFN = N !(1− z)N
∞∑
r1=1

∞∑
r2=1

∞∑
r3=1

......
∞∑

rN=1

zr1+2r2+3r3+.....NrN . (3.48)

χFN =
N !(1− z)N

(1− z1)(1− z2)(1− z3)......(1− zN)
zN(N−1)/2 (3.49)

Now we can �nd normalization ratio, that is

χBN+1

χBN
=

(N + 1)(1− z)

1− zN+1
, (3.50)

χFN+1

χFN
=
zN(N + 1)(1− z)

1− zN+1
. (3.51)

This normalization ratio shows deviation of composite particle from pure boson when
further particles are added to the state. Result shows that the ratio of normalization

constant for pair of boson is
χB
N+1

χB
N

> 1 and for pair of fermions is
χF
N+1

χF
N

< 1. Here the

di�erence seen between the normalization ratios of fermions and bosons is because of
their di�erence in nature [24]. Bosons are the particles that can lies in the same state
but fermions behave opposite to them as fermions follow Pauli- exclusion principle.
As the value of integer z is between zero and one. We can see from our result that
when z approaches to one, ratio of normalization constants approaches to one and
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composite boson will behave like pure boson. For z less than one, composite will show
deviation depending on the value of normalization ratio. In other words χN+1/χN is
interconnected to the strength of correlation in composite boson. As particle behaves
as a pure boson when z approaches to one, thus the quantum statistics associated to
the constituent particles appears to be less important at that point.

3.9.1 Purity as a Bound for Bosonic Quality

Now we can relate quantum entanglement with the normalization constant by using
the de�nition of quantum number κ. As for the Schmidt eigenvalues given by equation
(3.43), Schmidt number κ de�ned in equation (3.24) becomes:

κ =
1 + z

1− z
,

κ increases monotonically in the range of 0 < z < 1. Degree of entanglement can be

related to bose enhancement factor
χB
N+1

χB
N

and
χF
N+1

χF
N

when we express them in terms of

z because of the relation κ = 1+z
1−z . We notice that by increasing Schmidt number κ,

χB
N+1

χN
and

χF
N+1

χF
N

approaches to one. Speci�cally, we can show for κ� N

χN+1

χN
≈ 1 +

sN

κ
, (3.52)

where s = +1 [21], for bosonic pair and s = −1 for fermionic pair.

In this section [25], we have discussed bipartite composite particle wave function, we
have provided the basic information about the composite system which tells us that
the composite character is directly related to the correlation between the constituent
element. Therefore, we can apply a composite representation to those particles which
are strongly entangled. Now consider composite particle composed of a fermionic pair
[26], then we can explain the above assumptions as follows: Consider a composite
particle, consists of a pair of fermions. To �nd the large entanglement between the
two fermions, purity P will be small. Let N be the number of composite particles for
the quantum state, therefore the composite particles behaves like an ordinary bosons
if they satisfy the following conditions,

NP � 1.

Therefore, according to the above hypothesis, we can get the idea about the number
of particles which we can add in any pure state from quantity 1/P, without looking
to their composite behavior or before the interference of composite character with the
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independent ideal behavior of constituents. The ratio χN+1/χN is considered as the
quanti�er of the bosonic character where χN is basically a normalization factor which
appears due to the presence of composite behavior which is di�erent from the idea case.
Ideally for pure bosons, χN = 1 for all N.
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Chapter 4

Collective Interference of Composite

Bosons

4.1 Interferometry of Elementary Particles

Figure 4.1: single elementary particle can go through of re�ect by beam splitter

Consider a single elementary particle as an input of the beam-splitter (BS) whose
hamiltonian is given by:

HBS = a†LaR + a†RaL,

where L and R represents left and right mode of beam splitter. Input particle incident
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on the right mode transforms as:

a†R |0〉 →
1√
2

(a†R − ia
†
L) |0〉 . (4.1)

Similarly, input particle incident on the left mode transforms as:

a†L |0〉 →
1√
2

(a†L − ia
†
R) |0〉 . (4.2)

So we can say that a single particle can go through or re�ect by beam-splitter(BS).

4.2 Interferometry of Two Non-interacting Patricles

Figure 4.2: Two non-interacting patricles evolve independently, lead to four possible
outcomes

Consider two fermions described by two degrees of freedom a†i,X a
†
i,Y , where i=1,2,....d

and X , Y = R , L. The independent hamiltonain of each particle is given as:

HA =
d∑
i=1

(a†i,La
†
i,R + a†i,Ra

†
i,L),

HB =
d∑
i=1

(b†i,Lb
†
i,R + b†i,Rb

†
i,L).
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If the non-interacting pair of particles is indcident on the left mode of BS then it
transforms as:

c†L |0〉 =
1√
2

d∑
i=1

a†i,Lb
†
i,L |0〉 ,

=
1√
2d

d∑
i=1

(a†i,Lb
†
i,L − ia

†
i,Rb

†
i,L − ia

†
i,Lb
†
i,R − a

†
i,Rb

†
i,R) |0〉 , (4.3)

where we see that the two particles evolve independently, which leads to four possible
outcomes and decay of composite boson.

4.3 Interferometry of Two Interacting Patricles

Figure 4.3: Two interacting particles either both go through or both re�ects from beam
splitter

Consider a coboson, whose two constituent particles are interacting. The interaction
hamiltonian is given by:

Hint = −γ
∑

X=R,L

d∑
i=1

a†i,Xai,Xb
†
i,Xbi,X . (4.4)

If the interacting pair of particles is indcident on the left mode of BS, then it transforms
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as:

ĉ†L |0〉 =
1√
2

d∑
i=1

â†i,Lb̂
†
i,L |0〉 ,

=
1√
2

(ĉ†L − ĉ
†
R) |0〉 . (4.5)

The two interacting particles stay together, they collectively go through or re�ect from
BS which allows to treat them as a single particle.

4.3.1 Two Photon Case

Let us consider a case, in which two photons are incident on the same port of beam-
splitter (BS), e.g. |2, 0〉. This state undergoes the transformation as:

|2, 0〉 → 1√
2

(|0, 2〉 − i |2, 0〉),

here the two photons behave as a single boson system (a bi-boson) which also behave
as a pure boson, albeit one with twice the energy and half the wavelength of a single
boson.

4.4 Interferometry of Two Cobosons

Consider two cobosons, one as an input on left and other on the right mode of the BS.
The initial state is given by:

|ψ〉i = c†Lc
†
R |0〉 ,

=
1√
d

d∑
i,j=1

a†i,Lb
†
i,La

†
j,Rb

†
j,R |0〉 .

The two cobosons undergo a transformation and the �nal state is given as:

|ψ〉f =
1

d
√
χ2

d∑
i,j=1

(a†i,Lb
†
i,La

†
j,Lb

†
j,L + a†i,Rb

†
i,Ra

†
j,Rb

†
j,R),

=
(c†L)2 + (c†R)2

2
√
χ2

|0〉 , (4.6)

where
χ2 = 1− P.

This indicates that the two cobosons bunch together on the same port, just like ele-
mentary bosons do.
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4.4.1 Two Pairs of Photon

Consider a state of the form |2, 2〉. The Hamiltonian,

H = (a†)2b2 + (b†)2a2, (4.7)

will transform this state to |4, 0〉 and |0, 4〉. Now the states |4, 0〉, |2, 2〉, |0, 4〉 will span
a 3-dimensional subspace, lets denote this subspace as H3. Upon diagonalizing the
Hamiltonian we �nd the eigenvectors of form,

|λ0〉 =
1√
2

(|4, 0〉 − |0, 4〉),

|λ±〉 =
1

2
(|4, 0〉 ±

√
2 |2, 2〉+ |0, 4〉),

where H |λ±〉 = ±3
√

4 |λ±〉 and H |λ0〉 = 0. The three states |4, 0〉, |2, 2〉, |0, 4〉, can
be expressed in terms of new basis, as follows,

|4, 0〉 =
1

2
(|λ+〉+ |λ−〉 −

√
2 |λ0〉 ,

|2, 2〉 =
1√
2

(|λ+〉+ |λ−〉),

|4, 0〉 =
1

2
(|λ+〉+ |λ−〉+

√
2 |λ0〉 .

The evolution operator must have the form,

U(t) = exp(−iHt) = e−iλt |λ+〉 〈λ+|+ eiλt |λ−〉 〈λ−|+ |λ0〉 〈λ0| . (4.8)

Consider here, one photon pair as an input on 1st port of beam-splitter and other
photon pair on 2nd port of beam-splitter [28], i.e. the state is |2, 2〉. So we can say
that, we have one composite boson as an input on each port of beam-splitter. Thus
the state |2, 2〉 evolves under the Hamiltonian as,

U(t) |2, 2〉 = (e−i4
√
3t |λ+〉+ ei4

√
3t |λ−〉)/

√
2. (4.9)

The probabilities of �nding the photons in a particular state at time t is given by,

P22(t) = | 〈2, 2|U(t) |2, 2〉 |2 = cos2(4
√

3t),

P40(t) = | 〈4, 0|U(t) |2, 2〉 |2 =
1

2
sin2(4

√
3t),

P04(t) = | 〈0, 4|U(t) |2, 2〉 |2 =
1

2
sin2(4

√
3t).
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Here if select the time to be π/(8
√

3, then P22 = 0, while P40 = P04 = 1/2. Thus
probability of �nding photons in both output ports will be zero. So the output state,
at π/(8

√
3, is given as,

U(
π

8
√

3
) |2, 2〉 =

−i√
2

(|4, 0〉 − |0, 4〉). (4.10)

In the above equation, the term corresponding to two photons on each output port
|2, 2〉 is missing. This result is analogous to the HOM e�ect.

4.5 Non-local Bunching

In order to prove he above conjecture, one can consider a scenario where particles
a and b are separated, but still entangled [29]. Consider a bell type setup, to show

Figure 4.4: Schematic representation of the non-local bunching of two cobosons

the transformation is realisble. We have two spatially separated experimenters, Alice
and Bob, who share two cobosons. Each cobosons is split into two basic constituents,
fermions of a goes to Alice whereas fermions of b goes to Bob. The entanglement
between a and b is still present. Undergoes the transformation as:

|ψ〉i = c†Lc
†
R |0〉 =

1

d

d∑
i,j=1

a†i,Lb
†
i,La

†
j,Rb

†
j,R |0〉 , (4.11)
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The intraction Hamiltonian of particles is given by:

HA =
d∑

i,j=1

(a†i,La
†
j,Laj,Rai,L + a†i,Ra

†
j,Rai,Raj,L + a†i,La

†
j,Raj,Lai,L + a†j,La

†
i,Raj,Rai,R),

HB =
d∑

i,j=1

(b†i,Lb
†
j,Lbj,Rbi,L + b†i,Rb

†
j,Rbi,Rbj,L + b†i,Lb

†
j,Rbj,Lbi,L + b†j,Lb

†
i,Rbj,Rbi,R).

The hamiltonian HA generates the following transformations as:

a†i,La
†
j,R → −ia

†
i,La

†
j,L for all i > j,

a†j,La
†
i,R → −ia

†
i,Ra

†
j,R for all i > j,

a†i,La
†
i,R → a†i,La

†
i,R,

Similar transformations are generated by HB, and the state is transformed as:

=
1

d
(

d∑
i>j=1

a†i,Lb
†
i,La

†
j,Lb

†
j,L + a†i,Rb

†
i,Ra

†
j,Rb

†
j,R +

d∑
k=1

a†k,Lb
†
k,La

†
k,Rb

†
k,R) |0〉 , (4.12)

= (−(c†L)2 + (c†R)2

2
+

1

d

d∑
k=1

a†k,Lb
†
k,La

†
k,Rb

†
k,R |0〉 , (4.13)

= −
√

1− P |ψ〉f −
√
P |γ〉 , (4.14)

where

|ψ〉f =
(c†L)2 + (c†R)2

2
√
χ
2

|0〉 , (4.15)

|γ〉 =
1

d

d∑
k=1

a†k,Lb
†
k,La

†
k,Rb

†
k,R |0〉 . (4.16)

We found the required state with probability 1 − P . The probability of required
state depends on the degree of entanglement inside the coboson. In case of large
entanglement (d � 1), the probability of success approaches to one, since P → 0. This
con�rms our claim that bosonic quality is related to degree of entanglement.
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Chapter 5

Summary and Conclusion

Summary
Elementary particles are of two types either fermions or bosons. First of all we discuss
the interferometry of the elementary fermions and bosons. Bosons show bunching while
fermions show anti-bunching phenomena while passing through Beam-splitter. Then
we move towards the formalism of composite particles specially bi-partite composite
system with Qunatum Information theory tools. We de�ned a bosonic creation op-

erator ĉ† =
∞∑
n=0

√
λnâ

†
nb̂
†
n, this creation operator which will create a pair of A and B

particles in the state. The N -composite bosons state is given as |N〉 = 1√
χ
N

(ĉ†)N√
N !
|0〉,

where χN is a normalization constant which is necessary to put here since ĉ† is not
a perfect bosonic creation operator. The ratio of normalization constants χN±1

χN
is the

indicator whether the composite particle will behave like pure boson or not. To �nd the
large entanglement between the two constituent particles purity P will be small. Let N
be the number of composite particles for the quantum state. Therefore the composite
particles behave like an ordinary bosons if they satisfy the condition NP � 1. After
studying the formulasim of composite particles, then we discuss the interferometry of
composite particles using Beam-splitter. In the interferometry part of this thesis �rst
of all we discuss the interferomety of the elementary particles both for fermions as
well as bosons. Then we move towards the formalism of composite particles specially
bi-partite composite system with Qunatum Information theory. At the end we discuss
the problem of collective interference of composite bosons and proves that interaction
in important for the stability of composite system.

Conclusion
We deal with the problems of collective interference of composite bosons. First we
study the case of interferometry of composite bosons whose constituent particles are
interacting while undergoing Beam-splitter transformation, the two interacting par-
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ticles stay together, they collectively go through or re�ect from BS which allows to
treat them as a single particle. Then we move towards the interferometry of compos-
ite bosons whose constituent particles are non-interacting, where the �nal state after
transformation shows that the two particles evolve independently, which leads to the
decay of composite boson. From the results of these two cases one can say that interac-
tion is important for the stability of composite system. Also the interferometry of two
cobosons in state ĉ†Lĉ

†
R |0〉 shows the bunching phenomena as in the standard case two

elementary bosons bunch without an interaction but in case of cobosons an interaction
is necessary to provide stability of the system for any evolution involving a BS.
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