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Abstract

By solving the linearized relativistic Vlasov equation along Maxwell equations, a general-
ized expression for the plasma conductivity tensor is derived. The dispersion relation for
Bernstein waves in weakly relativistic plasma is investigated by employing the Maxwell-
Boltzmann-Juttner distribution function. The propagation characteristic of electrons Bern-
stein waves (overlapping, propagation regions, harmonics structure) are examined by using
different of n (ratio of rest mass energy to thermal energy) by taking constant ratio of plasma
frequency to the cyclotron frequency. We also observed that the propagation characteris-
tics of electron Bernstein waves for different values of the ratio of plasma frequency to the
cyclotron frequency by taking constant value of 7. Further ,it is observed that due to the
relativistic effect harmonics are overlapping with each other, as a result the propagation
regions is reduced.
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Chapter

Introduction

1.1 What is Plasma

A plasma is a quasineutral gas of charged and neutral particles which exhibits collective
behaviour[l] The quasiineutrality means plasma has some imbalancing between positive
and negative charge. The imbalancing of charges create electric fields in plasma medium.
This property of plasma medium distinguish from ionized gas|I] [3].

When the charge particles moves in plasma medium create electric current and magnetic field
in plasma medium. These fields effects the motion of other charge particles, so collective
behaviour mean motions that depends not only on local conditions but on the state of plasma
in remote region as well[4][1].

The ionized gas under certain conditions behave like plasma state. These condition are given
as,
)\D << L

Np >>>1
wr > 1

Where \p is the Debye length and L is the dimensions of the system. Np is the number of
particles in Debye sphere. w is frequency of plasma oscillation and 7 is the mean time of
collisions between charge particles and neutral atoms [I].

1.2  Various Plasma Environments

Most of matter in the universe is in plasma state. These matters having different temperature
T an density ng. The properties and environment of plasma change with temperature T" and
density ng. The temperature T" and density ng are called plasma parameter [3].



Figure 1.1: Debye shielding [1].

T (eV)
] pulsar
magnetosphere relativistic
6 plasmas
100 _ _ _ _ o e __o____
supemaovae
fusion
1 04 J reactor
solar
center
white
10?1 solar solar dwarfs
wind corona
interplanetar chromosphere
plasmas e gasin
1 00 | gas discharges metals
hotosphere
interstellar  iono— P P
plasmas sphere flames
10_2 5I T T T .1OI T T T l15I T T T l2(I) T T T .Qé T T T laé T T T l35| 3
10 10 10 10 10 10 10 n(m™)

Figure 1.2: Plasma environment with density and temperature



1.2.1 Non-Relativistic and Relativistic Plasma Environment

When the thermal energy of particles is very small as compared to the rest mass energy
the plasma environment is known as non-relativistic plasma environment. If the thermal
energy of particles is equal or nearly equal to the rest mass energy the relativistic effects are
dominant, such a plasma environment is known as relativistic plasma environment [6].

1.2.2 Examples of the non-Relativistic Plasma Environments
Earth Ionosphere

The ionosphere of any planet is the portion of atmosphere where the free electrons and
ions having thermal energy exist under the effect of gravity and magnetic field. The upper
portion of earth’s atmosphere contains large number of free electron and ions having thermal
energy. This portion of earth is known as earth ionosphere. 1t affects the propagation of
electromagnet waves when they pass through that region. The number of charged particles
in the lower layers are less but quite large in higher layers and have maximum value at the
altitude of 300 — 500km. This region of ionosphere is called F—layer. Values of plasma
parameter for ionosphere, e.g. , F—layer, the density of electron and ions is given as n, &~
n; ~ 102 m™3 and the temperature is rather high of the order of (0.26 to 0.43)eV [5].

Solar Wind

The external portion of the sun’s atmosphere, the solar corona is composed of very hot
plasma, a gas having high kinetic energy with free electron and positive ions. When these
gases move away from the sun then internal pressure of gases become larger than the weight
of upper plasma. These particles flow like a wind in the entire solar system with very high
velocity. The flow of these particles with very high velocity is called solar wind. The plasma
density for solar wind is n. ~ n; ~ 102 m~3 and the temperature is very high of the order
of (75 to 100) eV [5].

1.2.3 Example of the Relativistic Plasma Environment
Pulsars

Pulsars are very hot, dense and strongly magnetized rotating stars. Its surface temperature
is around 51.72 eV and estimated range of magnetic fields on its surface is of the order of
(10® to 10') gauss stronger than the earth’s magnetic field. Therefore the rotation of pulsar
along with strong magnetic field generates an electric field. This electric field ejects charged
particles from the surface of pulsar. In all of these particles electrons get relativistic velocity



due to small inertia. Those electrons which move along the curved magnetic field lines radiate
~ radiations, when their energy is more then the twice of rest energy of electrons. These ~
rays are further converted into electron-positron pair. This pair is also accelerated in the
electric field and v ray photon appear again. In this way the surface of the pulsars are filled
with relativistic electron-positron plasma [7].

1.3 Waves in Plasma

There are different types of waves in a plasma, depending upon the direction of propagation
with respect to electric and magnetic field.The waves which commonly exist in plasma are
perpendicular, parallel, longitudinal, transverse, electrostatics and electro-magnetics|I].

For Ey, By the ambient electric and magnetic fields and E;, By the perturbed electric and
magnetic fields and k the propagation vector of the wave. Following terminology is usually
used in plasma dynamics.

k || By — Parallel propagating waves.

k 1 By — Perpendicular propagating waves.

k || E; — Longitudinal waves.

k 1 E; — Transverse waves.

B; =0 and k || E; — Electrostatic waves.

B, =0 and k 1. E; — Electromagnetic waves.

B, # 0 — Electromagnetic waves.

1.3.1 Plasma Oscillation

Plasma has a property to restore charge neutrality. If we have a uniform plasma which is
made up of electrons and ions, mass of an electron is very small compared to the mass of an
ion (approximately 1836 times), so ions can be considered stationary. When electrons are
displaced from their mean position by any means, electric field will be developed between
the stationary ions and the displaced electrons. Under the influence of this field the electrons
will move towards the stationary ions. Due to inertia electrons do not stop at their mean
position and start oscillations about the mean position. The frequency with which electrons
will oscillate is known as the plasma frequency|[l]. The plasma frequency is given by the
following relation

noe?
- 1.1
Wpe €oMe (1.1)

where ng is the number density of plasma, e is the charge on an electron, m, is the electron
mass and € is the permittivity of free space. The plasma frequency is directly depend
on number density of the plasma. Higher the density the greater will be the frequency of
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Figure 1.3: Charge separation mechanism|2]

oscillation. The charge separation mechanism is shown in the following figure on next page.

1.3.2 Electron Plasma Waves with B, = 0 or k||By

When we consider the thermal motion of electrons, plasma oscillations propagate with ther-
mal velocity and carry information about oscillating region. These are called electron plasma
waves with the following dispersion relation,

3
(A}2 = (,()12;6 + §k2vt2he (12)

w is the wave frequency, w,. is the plasma frequency, k is the wave number and vy, is the
thermal velocity of electron. When we consider the thermal motion of electron, the wave
frequency depends on wave number k, ie, group velocity ‘fi—lk” # 0. Information carried by
wave travel from one region to other region with group velocity, so group velocity v, can
not exceed speed of light c¢. In figure (1.2) the slope of tangent at any P point on a curve
gives us group velocity v, and slop of any point P on curve drawn from origin gives us phase
velocity vs. From graph we also see that the slope of \/gvthe is also greater than the slope
of tangent at any point P. So the above equation holds only when,

3
Vg > \/;Uthe > Ug.

For large k (small \) vy, = vy and for small k (large \) vy < Ugpe.

10



Figure 1.4: Relation among phase group and thermal velocity [I]

1.3.3 Electrostatic Electron Waves Perpendicular to B

We are dealing with high frequency response particles like electrons. Tons are massive so they
are considered stationary and create a uniform background of positive charge. The electron
oscillations perpendicular to By mean direction of propagating vector k is perpendicular
to By and as we are consider electrostatic case so B; = 0, and k parallel to E; so they
are longitudinal plane wave propagating perpendicular to By. Under these assumptions
Eo = 0 = vy, kgT. = 0 (we neglect thermal motion) ,Vny =0 = % (their is no perturbation
in density or uniform plasma) we get the dispersion relation for electrostatic electron waves

perpendicular to By,

Wt =l +ud = . (1.3

where w,, is the plasma frequency of electron, w,. is the cyclotron frequency of electron and

define as
noe2
Wpe =
P €oMMe ’

B()e
Wee = )
Me

where wy, is the upper hybrid frequency. It is "hybrid’ because it is a mixture of the plasma
frequency and cyclotron frequency. Electrostatic electrons waves which are moving perpen-
dicular to By having upper hybrid frequency and those waves which are moving along By
having only plasma frequency. Magnetic field exerts force on electrostatic electron waves
which are propagating perpendicular to magnetic field By and changes their direction into
elliptical path, instead of oscillating along a straight line. When the electrons are displaced
from their mean position, the electric field will be developed in such direction that it opposes
the motion of electrons, but in the initial stage magnetic forces are strong compared to the

11
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Figure 1.5: Motion of electrons in an upper hybrid oscillation [I].

electric force and motion of particles is governed due to magnetic force. When the speed of
particles increases the Lorentz force also increases. As the motion of particles is against the
electric field so they lose energy. Their are two type of forces acting on the particles which
are propagating perpendicular to magnetic field. One is the electrostatic force and other is
the Lorentz force. This additional Lorentz force gives an increase in the frequency.

1.3.4 Electrostatic Ions Wave Perpendicular to B,

The frequency of electrostatic electron waves is very large as compared to both the plasma
and cyclotron frequencies but the response of ions in a field is very small due to large
mass. Therefore electrostatic ion waves are the lower frequency case. Here we discuss ions
oscillation almost perpendicular to By. Mean direction of propagation vector k is almost
perpendicular to By and it is electrostatic case so By = 0. Moreover is parallel to E; so
longitudinal plane wave is almost perpendicular to By. Here we let, Eg =0 = vq, kgT; =0
(we neglect thermal motion of ions) Vng =0 = % (their is no perturbation in density or
uniform plasma). For nearly perpendicular propagation of wave, i,e, for small but non-zero
k. the electron can oscillate in z-direction under the influence of the electric force due to
E,. and pressure gradient force in z-direction but due to large inertial effect ions can not
oscillate along By, so we can set k, ~ 0 for the ions fluid.

12
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Figure 1.6: Geometry of an electrostatic ion cyclotron wave propagating nearly at right angle
to BO [1]

The dispersion relation for electrostatic ion waves perpendicular to By is given as,
2 2 2,2
w” = w,; + kv

where w,; = % and v, = kB—MTe W, is ions cyclotron frequency and v, is ions acoustic speed.
The ions moving parallel to By having frequency w? = k?v?, it is same as electrostatic ions

wave parallel By and the additional cyclotron frequency is due to Lorentz force.

1.4 Different Theoretical Approaches

There are different theories to understand the dynamics of plasma wave depending upon
the study of interest and which theory is more efficient to describe the phenomena under
study. Here we are discussing two theories of plasma which are more general and most of
the researchers use to study the dynamics of plasma. First one is fluid theory and second is
the kinetic theory.

1.4.1 Fluid Theory

Plasma is made up of different types of particles, having different masses and charges. It
is difficult to study the dynamics of individual particles. To overcome this difficulty, we
consider each species as a fluid. Under this approximation the identity of individual particle
is neglected and we study the collective behaviour of each species. Actually in fluid theory we

13



average over velocity, density and temperature. Fach species fluid behaves like a continuous
medium, so all quantities are function of time, ¢, and position, r.

We obtain the fluid equation by taking moments of Boltzmann’s equation and average over
velocity space.

1.4.2 Kinetic Theory

Most of plasma phenomena are accurately describe by using fluid but for some phenomena
fluid theory is inadequate, to deal those phenomena we use velocity distribution f(v) for each
species, this treatment is called the Kinetic theory. The distribution function depends upon
seven independent variable, three for position, three for velocity and one for time f(r,v,1).
We get more information about plasma, when we use kinetic theory instead of using fluid
theory. The distribution function f(r,v,t) gives us the information about particles per unit
volume at position r and time ¢ with velocity component between v, and v, + dv,, v, and
vy + dv, and v, and v, + dv, is

f(l’, Y, 2, Ug,y Uy, Vg, t)dvmdvydvz,

if we integrate over all possible velocities, we get density of particles in given volume [1].

n(r,t) = /_OO f(r,v,t)d*.

1.4.3 Examples of Different Distribution Functions

To study the properties of plasma we use different distribution function, it depends upon the
the environment of plasma. Here we study two different distribution functions, Maxwellian-
Boltzmann distribution and Maxwell-Boltzmann-Jutner distribution.

When we treat with classical plasma we use Maxwellian-Boltzmann distribution because
the inter-particles distance become greater than the de-Broglie’s wavelength of the charge
particles. Therefore the velocity distribution of the charged particles (in thermal equilibrium)
is described by the Maxwell Boltzmann velocity distribution function [§].

1 v2

Jos = HOS(W)S(GXP —UTS)

We use Maxwellian-Boltzmann distribution for uniform isotropic plasma, it is independent
of time. It is a classical distribution function, so any number of particles can be found
in any state. The Maxwellian-Boltzmann distribution is applicable for low density or high
temperature plasma environment.

When we deal with particles having speed comparable to the speed of light, we can not
neglect the relativistic affect on the motion of particles. For those environment the velocity

14



is comparable to the speed of light we use relativistic distribution function to study their
motion |9

1 7
fo(p) = T K () exp(—17)
where
. ch
N LT

is the ratio of the rest mass energy of particles to that of their thermal energy, and K, is

the modified Bessel f;unction of the second kind and of order two. v is the relativistic factor
. 1
given as v = (1+ -£=)2

m2xc?

1.5 Bernstein Waves

An important electrostatic mode called Bernstein mode or cyclotron harmonics waves can
not predicted by fluid theory, the Bernstein waves depend upon the cyclotron motion of
particles about magnetic field line. In fluid theory, we average over larmor orbits, therefore
these waves are lost. The Bernstein modes propagate in frequency ranges that lie between
harmonics of the cyclotron frequency. These waves are the function of density, temperature
and field strength. Majority of oscillations in hot magneto active plasma are strongly damped
in time and space, but in some cases damping is weak. The cyclotron waves with frequency
near the cyclotrons frequencies of any species w = nw.s are especially interesting, where
n = 1,2,..., and s for any specie. These collisions -less plasma waves are important in
laboratories plasma and used to heat the plasma.

1.6 Thesis outline

In chapter 2, we derived the general expression for hot plasma dielectric tensor in cyclen-
derical co-ordinates by using Maxwell’s equations and Valsov equation. The derived tensor
can be used to study any type of plasma waves in non-relativistic regime. The hot plasma
dielectric tensor can be used to study for cold plasma waves by using cold plasma limits.
In chapter 3, the components of dielectric tensor are used to get the dispersion relation for
different type Bernstein waves, like electron, newterlized ions and pure ions Bernstein waves.
In this chapter we apply the fluid limits on above Bernstein waves and we get fluid results.
In chapter 4, we solve the relativistic Vlasov equation along Maxwell’s equations. We get
the general expression for conductivity tensor in spherical polar co-ordinate. The derived
tensor can be used to study any type of of plasma waves in relativistic regime. Bye using
0. the components of conductivity tensor we derived the dispersion relation for Bernstein
waves in relativistic regime. In chapter 5 we present discussion about results and conclusion
of our results.

15



Chapter

Mathematical Model

In section 2.1 we linerized the Vlasov equation and derived the dispersion relation relation for
electrons waves using plasma dispersion function. In section 2.2 we find out the dependence
of ions damping rates. In section 2.3 we derived the general expression for hot plasma
by using linerized Vlasov equation along Maxwell’s equations. In section 2.4 we solve the
dielectric tensor for isotropic Maxwellian plasma.

2.1 The Plasma Dispersion Function

To study the electromagnetic properties of plasma we need to solve kinetic equations for
charge particles. Here we assume that plasma is sufficiently hot, means plasma waves fre-
quency is very high as compare to collisions frequency, so collisions are infrequent and we
neglect them. We use kinetic equation with self-consistent field (Valsov equation) for such
hot, collision-less plasma. We can study the properties of such a plasma with collision-less
approximation by using kinetic equation called Valsov equation.

of of

q
- : —((E B)—=
+va+m( + v x )6v

o 0 (2.1)

Since the electric field, E, and B depend on distribution function, f(r,v,t), so the Vlasov
equation is first order, non-linear partial differential equation [I0, 11} 12]. To linearise the
Vlasov equation, we assume that the amplitude of the perturbed quantities is small so
we consider only first order perturbation. We consider a uniform plasma with equilibrium
distribution function fo(v) and a small perturbation in it [§]

f=fh+hfi
E=E,+ E;
B=B,+B;

16



and we let B, = 0 = E, and f; is the perturbation in distribution function. Since v is
independent variable and con not be linearized.Know linearizing the other terms.

o/ _ ol oh
ot ot ot
V.V =v(fo+ )
q of  q dfo . Ofi
E(E + v X B)E = E(EO + E1 + v X (Bo + B1>>( v + E)
When we neglect the effect of magnetic field, the linearised Vlasov equation is,
df1 /)

For simplicity we consider the wave is propagating in x—direction, f; = exp(c(kx — wt)),
where k is the propagation vector and w is the frequency of the wave. Applying Fourier-
Laplace transformation on the equation (2.2).

0 [e%] 3
(E.B.f) = / dt exp(—st) / T2 exp(—ik)(Ev, By, f1).

oo (2m)2

we get,
. . q El afo
fi=—i———

m (w — kv,) Ov

For different species we can write

fl _ Z_Z& El afos

ms (w — kvg) Ovg

S

f1s 1s the perturbation in distribution function of s specie. g5, ms and v, is the charge, mass
and velocity of sth specie respectively. The density perturbation of sth specie is given by
the following relation,

mo= [ " fualvdo, (2.3)

o0

Let the equilibrium distribution fys be one dimensional Maxwellian distribution,
_ngsy, 1 v2

for = () (=) exp = o8)

where ng, is the normalizing constant, called number density of sth species and

2kpT;

Mg

1
)2
)

Vths = (

is the thermal velocity of sth specie. Poisson’s equation for electrons,
oo
eV.E = —enj. = —e/ fie(vg)dv,
—00

17



Applying Fourier-Laplace transformation on above equation. The dispersion relation be-
come,

00 2
2 wpe 8foe
~Joe 2.4
g /_oo (Ve — %) Oy (2.4)

Wy is the plasma frequency of electrons and define as,

ey 1
)2

wpe - (60m
e

Now we calculate the dispersion relation using plasma dispersion function. Introducing the
dummy integration variable S’ = ;- and substituting value of f1s(vs)

_ s nOs 1
Ny = kvth \/_/ exp 52)(5 — 9 (2.5)

kvths

When we study the electrostatic wave in plasma by using kinetic theory we need plasma
dispersion function which in principle takes the from [13].

> f(S)
Z(&)=A / ——— (Im(&) >0
=4 &g (m©>0)
where A is the normalization constant, S is the normalized velocity of particles, f(S) is
the velocity distribution function and & is the normalized phase velocity. For Maxwellian
distribution plasma dispersion function is define as

26 = 5= [ oSy (m(©)>0

This type of integration is not done by simple way due to singularity at S = £. Landau was
the first to treat this type of integration properly. These types of singularities modify the
plasma dispersion relation and effect is not predicted by fluid theory. If the perturbation
grows or decays & will be complex. Above integral is treated as a contour integral in complex
plane. To express ny; in term of Z (&) we take derivative with respect to £ and then performing
integration by parts we get

9 1
f/ a5 P gy

So equation (2.3) in term of plasma dispersion function

s

. nos
N = 1—F

Z'(§) (2.6)

2
kvths

Poisson’s equation is given as,

EOV-E = ZQSnls
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fm{v) im(v)

C2
. wik /
Re(v) > ! l R
C1 e(v)
) o) w/k

(a) (b}

Figure 2.1: (a) Imw>0 an unstable wave (b) Imw<0 a damped wave [I].

After the Fourier-Laplace transformation of Poisson’s equation and putting value of n,, we
get,
qgnOS 1

——2'(§)

2
GQmS UthS

k=

The dispersion relation for electrons in term of plasma dispersion function is given as,

627’LO€

k2: Z/
€0MeVZ,, (&)
2 Wy
€ !
K= ) (2.7
the

e is the charge on electron and n,. is the number density of electron. Equation (2.7) is same
as (2.4), so from this exercise we see that their no effect on physics of plasma by using plasma
dispersion function. If the perturbation grows or decays w will be complex the integral

0o 2
k= +/ (ﬁaf“edv (2.8)

0o (Vz = %) Ov,

must be treated as a contour integral in the complex v plane. Possible contours are shown
in above figures. Normally one would evaluate the line integral along the real v-axis by the
residue theorem.
/ Gdv + / Gdv = 2H2'R(%)
c1 c2

Where G is the integrand, ¢; is the path along real axis, ¢y is the semicircle at infinity and
R(%) is the residue at . The residue theorem work if the integral over c, vanished but it
become large for Maxwellian when v — Fioo. Fried and Conte gives the numerical solution
for Maxwellian distribution. We can approximate these integral using Cauchy principal value

theorem for large phase velocity and weak damping.
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2.2 lons Wave and Their Damping

The plasma dispersion function

26 = 5= [ exn(=S) g gds (Im(©)>0)

The Fadeeva function is define as[13] [12]

w(€) = exp(—&)[1 + erf(:£)]

Integral representation of Fadeeva function is given as

Z(§) = ivmw(§) = ivmexp(—€*)[L + er f(i€)]
er f(i§) = ier fc(§)
Z(€) = iv/mexp(—€*)[1 + ier fe(€)]
The above form of plasma dispersion function used in Russian plasma physics literature.

Where ¢ = Y is ratio of phase velocity to thermal velocity of the specie. Electron has

small value of f . For small value of £ we can expand the series of exp(—£?) and error function.
For electron, the plasma dispersion function is given as|14],

2(6) =iV exp(~€) ~ 261 — &+ .. (2.9

The imaginary term represent the electron landau damping which was not appeared in fluid
theory. For & << 1
Z/(ge) ~ =2

electrons Landau damping term can be neglect in ions landau damping due to vipe >> vVgp;
The dispersion relation for ions is given as,

2 2
e o)+ 3 )

Uthe - Uthi

k* =

Where w,; is plasma frequency of ions and v,; is thermal velocity of ions.

w? 1
pe _2 - _
2. )= n

Aq 18 Debye length and it is a measure of shielding distance.

2
w2,
NN EZ(E) =R+ 1~

i Uthi
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For a single ion
2T;
Z/ i) — !
€)= =
T; and T, temperature of ions and electrons respectively. To obtain the analytical result, we
consider the limit & >> 1 and T, >> T;. The plasma dispersion function is define as

Z(&) = ivrw(§)

For large argument £ >> 1, (means high phase velocity) in this case the position of pole in
the integration contour is very close to the real S — axis. For large argument we can use,
the Plemelj relation to evaluate the plasma dispersion function [15].

‘ 2 L 0Oex —5? !

1 -1 -1 S S
— = —[1+=4+(5)+....
G-g -9 ettt
Putting this power series into above integration and then taking derivative with respect to
& we get,

7'(€) = —2iv/mexp (—&2) + 2%2 + 2:24 + ..

If the Landau damping is small we can neglect the Landau term —2i/7 exp (—&?)

3, 20
267 T

1
all+

T, >> T; so & is large. We can approximate £ by 5t e in the second term and final dispersion
relation become

w® kT, 4+ 3KT;

[ v
M is the mass of ions.This is the ions wave dispersion relation with 7, = 3. Electron behave
as isotherm due to high speed and their temperature comes in equilibrium. If we include the
landau damping term.

1 3 2T,
52(1+ )—22\/_§Zexp( ) ?

3+a 3+2T;1T
29T,

/3+Te
%A: _—

d& +RE) exp — (¢ + RNE)*

&iiv/mexp (&)

i 2T 2T
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RE >> FE; in comparison we drop I¢; and we can approximate the damping rate

%)

3E; (3 + 3

TR

w_2T 2T _ep_

Negative singe indicate damping of the wave. Damping rate depend on ratio of temperature
of two species when the temperature of the two species is comparable the the wave is strongly
damped and when T, >> T'i the wave is weakly damped. We can not explain damping effect
by using fluid theory.

2.3 Hot Plasma Dielectric Tensor

The linearised Vlasov equation for uniform plasma with ambient magnetic field By is given
as [8],

af 1 df1 q dfo

+v.V vxB =——(E; +v x By).

ot fit m( )Gy v m( ! 1)(8V

Consider all particles of same species are located at an arbitrary point r, v in phase

space at present time. The motion of all these particles is under same Lorentz force so

their trajectories are same in both future and past time. All particles having same initial

conditions at time ¢, so they have same r and v at any time ¢. The boundary conditions on

the trajectories of are x(t) = x and v(f) = v at time ¢. The distribution function in phase

space is,
fl = f1<r(t>,V(t),t)

where r and v is same for all particles at any time in phase space. Wave having small
amplitude so trajectories of particles are not effected by waves. Since unperturbed particle
trajectory equations are

) (2.10)

dr v
dt
, dv q
E = E(V X B)
Taking time derivative of distribution function
d 8f1 dr 6f1 dv
Efl(r(t),v(t),t) ot Vfl 8_v$
d 3f1 dr afl
E']%(I'(t),V(t),t) at Vfl 8V ( X Bo) (211)

Comparing equation (2.10) and (2.11) and then integrating both side

@0 = =L [ B )+ (v x B, ). 2

! 2.12
mJ_ ov dt ( )
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Attt =t

f(r/7vl> - f(I‘, V)
[T] The right hand side of equation (2.12) is the sum of all forces that modify the distribution
function. Unperturbed trajectories are characteristics of homogeneous hyperbolic partial
differential equation|16]. The right hand side of equation (2.10) is forcing term that change
the homogeneous solution. We can write the velocity in term of Cartesian components.

v(t) = (vLcos @ vLsing,v.)

Let E =0, B = Bgz. Equation of motion of charge particles in a uniform field is given as,

o' q
% = E(U, X BQZ)
o'’ , ,
o = —WesUpY + WesUy T
Wes = Bmo—‘fs is cyclotron frequency of sth specie. Let v}, + v, = v"(t')
d,U//
e —1wesv” (2.13)

equation (2.13) is non exact first order homogeneous equation .To make exact multiplied
with integrating factor exp(wwet) and writing its solution in term of v, and v, we get,

vl (1) = vy cos(—wes(t' — ) + ¢) (2.14)
v, (') = vy sin(—wes (' —t) + p) (2.15)
o) = (1) (216)

integrating above equations with conditions x = 2’ and ¢t = t/ we get

¥ —x= ::L (sin(wes(t' — t) — ¢) + sing))
v~y = = (cos(wn(t' ) — 6) — cos0))

2 —z=u,(t' —1)

Maxwell equations are given as,

= équ/fdgv (2.17)

—VXE—E —+ S/V d*v 2.18
1 0 Zq f ( )

0B
VxE=-—" (2.19)
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VE=0 (2.20)
Know we simplify the equation (2.12). We consider the field is sinusoidal
E,(r',t") = Ey expli(k.r’ — wt')]

E (r',t') = Eyexpli(k.(t' — ) —w(t' — 1)) expi(k.r — wt)]
Propagating vector k is define as
k=Fkz+ky

k
E(r',t') = E(r,t) exp(i LY

w; [sin(wes(t' — ) — @) + sing] + kjoy(t' —t) —w(t’ —1))

Using the identity of Bessel function

exp(iAsin(x Z Jn(A) exp(inx)

exp(iPL sin(wns () — 1) — 6)) = > Tu(E b (in(wn(t — 1) — 6))

exp(i kw sin(¢ Z I (——2) exp(ime)
\ = k:_)'UJ_
Ei(r ) =Ei(r,t) Y J.(\)Ju(\) expil(nwe, + kjoy — w)(t' —t) + (m — n)¢]
Rl v0,1) = L [ () + By ). D gy 2.21)

Let

S =—=[E(r,t) + — (v x (k x Eq(r,1)].
Using identity of vector
Ax(BxC)=(AC)B-(AB)C

< (kxE) = (v.E)k — (vKE,

5=y k'vl)El(r,t) . 1(V,.E1(r’t>)k]‘afo(v/)

m w w ov'!
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The velocity in a cylindrical coordinate.
V(') = vicos(—wes(t' —t) + @) + vy sin(—wes(t' — t) + @)y + vy 2
For simplicity we choice k is only in x and z direction.
k="Fk2+kz

E1 - El.ff + Elg + Elé

_ 4q kivicos((—wes)(t' —t) +¢) + kv dfo 8]‘ dfo
S= ——[1- - )(EL "o +Elza ,)
+£((E1xmcos(—wcs)(t’ — 1) + @) + (Eryvisin(—wes) (' —t) + @) + v Er.) (kL gf K gf(/))]

afozf)fox dfo . Ofo
o' Ovl vy, O

z

From equations (2.14), (2.15) and (2.16) we see that v, and v are constant of motion. This
implies that fo(v') = fo(v) and fy(v) is a function of v, and v. In a cylindrical coordinate
we can write,

vl =P+

Ofo Qv dfy . 9fo
o, v, v, cos|—wes(t' =) + ¢] ovy
dfo  Ovy dfo dfo

—_ = 1 — r_
o' 81}2”, ov| sin|—wes(t t>+¢]8vL

Y

dfo _ 0fo
v,y
S = —ﬁ([(w — kv”)g—f + kv gf][E cos(—wes(t' —t) + @) + Eysin(—wes(t' — t) + ¢)]
HO = kyoscos(anl = 0+ 0) + (nbscos(—wutd 1) + ) T2 EL)
filr(t), v(t),t) :/_ S Z I A) exp if(nwes + kv — w)(t' — 1) + (m — n)gldt’

nm=—oo

Rearranging the above equation.

fi(r / Z In( A) exp(—i(n—m))@ exp(tnwes(t' — t)) exp(i(kyv)—w) (t'—t))dt’

nm=——oo
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Let t' —t =7 and dt/ = dr

0
A0 = [ = = ko) 520+ b SO Ercos(-a(r) 4 0) + Bysinaa(r) + 0]
0 0
+[8—fﬁ<w — s 0c0s(—aes(7) +0)) + b cos(—l7) + 6) 520
Z I ( A) exp(—t(n —m))¢ exp(inwes(T)) exp(t(kjvy — w)(7))dr
\ = kJ_’UJ_
wCS
Let /s of
0
P = (w — k”v“)a— + k’”UJ_ (9v||
_ et Ofo o Of
Q - vy 81& + (w nwcs)avH
fvt = 4 io: Tn(\) exp [—(n — m)]¢ ! 2 PI,(\E, +iPJ,(\)E
T mw (w — kv — nwes) A " Y
+Q (N E.]
1 OE 5
%VXB:eggﬁ—;qs/vfdv (2.22)
0B
E=-—"— 2.2
V x 5 (2.23)
Applying Fourier-Laplace transformation on equation (2.23) we get,
B, - L(kxE
1= 1)
Putting value B in equation (2.22) and applying Fourier-Laplace transformation we get,
(k x k x El) = —(,U(?.El
Ho€ow
— e T i 3
e Ei=1E + eo—wgqs/vf(r,v,t)d v (2.24)
(kk + pocow?@ — K2 T) =0 (2.25)

26



Know we want to calculate
/Vf(r,v, t)d*v
V = U1 CoSPT + v Singy + vz
d*v = v, dv, dedo

X-component

oo 00 27
/vLcosgbfl(r,v,t)d?’vi" = / dv/ devl/ vy cospdo fi(r,v, t)T
—00 0 0
Identity of delta function

<5m,n+1 + 6m,n—1)

/%cosqﬁ exp(i[m — n|p)dp = 27
0

2
identity of Bessel function
Jn+1 (/\) + Jn—l(/\) n
= —J.(\
5 3 In(A)
/UL27TdULdU = dv®
iq 1 nJn(A) .
/ULcosgzﬁfl(r,v,t)d?’v = —%;/ d*v Py re— [y ( b V’PE, +ivy PJ,(\)J, (A E,

Y-component

e’} e’} 2
/vLsmgbfl(r,v,t)d%g) :/ dU”/ ULde/ vysingde fi(r, v, )y
—0o0 0 0

Identity of delta function

_27r

2m
/ sing exp(i[m — nl¢)de 5
0 i

(_5m,n+1 + 5m,n—1)

) R 1q 1 n
/vLsmgbfl(r, v, t)d*vg = —mg/ dgv(w y a——— [—1XULPJn()\)J;(/\)E$ + v, J?(\)PE,

0o 00 2T
/v||f1(r,v,t)d3v73 = / v”dv/ devl/ dofi(r,v,t)z
—00 0 0

27

Z-component



Identity of Bessel function

/ whnv, i = —-L3 / o L oy (L Jo (N PE, + iy PI,(\)JL(N E,
+QUHJ,21<)\)EZ]2

Know we will comeback to equation

@.El E1 + —qu/Vfl r,v t)d (226)

=1+ Z Z / o k”U” — Wcs)d v (2.27)

oL (MBORP miy PILOVL) QuitZ2(N)

D= | —i2o, PLOVLG) ol 2P iy QI (AN (2.28)
() 0P i) PJu () J,(A) QuJ7(A)

When we use the fluid theory or cold plasma, the dielectric tensor is a function of w, and w,

only. D is called hot plasma dispersion tensor. The dielectric tensor is not only a function
of w, and w.. It is also a function of temperature and wave number k. We include the
thermal motion of particles also. In cold plasma approximation we neglect thermal motion
of particles because of which we lose some important features.

2.4 Dielectric Tensor for an Isotropic Maxwellian Plasma

The Maxwellian distribution is define as|[17],

2
1 vy

fOs = Nos\—= s €Xp ——5—
(vthsﬁ) ( Ufhs)

2kT,

N[

)

Vths = (
s

Vs 18 thermal velocity of sth specie.
v =]+

9fo

dfo
P = (w—k||v||)—f+k|| Vg o

ovy
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0fo
8UH

~ nwesv) O fo
(N a"UJ_

+ (w — nwes)
Taking partial derivative with respect to v, and v we get

iy

8@

9fo
(9?]”

:A’UJ_

= AUH

Where A is define as

e N, v + vﬁ

s 3 (eXP—— 5
UthsT 2 ths

Using above results P and () are simplified as P = wv, A and Q = wy| A

2.4.1 Components of Conductivity Tensor

XX-Component

_1+Z

Z / o knvu ~ nwcs)d v (2.29)

we want to calculate

D, 1 ndn(A) |y
I= = d dv, 2 A
/(w — k”U” nwcs U / U”/ UJ‘ vt W(w - /{JHU” nwcs)< A ) “

We solve integral along parallel and perpendicular component separately.

[:Il*lg

U2

1 I
I = —/ exp (———)dv
PV (w = Ry — nuwes) v,

1
[1:__Zn ns
()

¢ W NWes
=

k| vns

Identity of Bessel function|I§].

/ooe (—pP) I at)dt = —exp(—2) [, ()
o L SOV
. p{—p n 202 Xp 22 22
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2_ 1 a®> _ _ A kL _
Letp—vgh,ﬁ—bs,t—manda— L =q
S

o] ,U2 2
[ e ey 2o, = “eexp(-b ) (5)

0 Uths

—2n05n2w2 w
Iy = ———-%— —by) I, (b
2 = T ()10
I,,(bs) is the modified Bessel function with argument b, and by is define as by = %

=1+ Z % Z —exp L(b5) Z (€ns) (2.30)

TL——OO

Where & is define as & =

kvths

XY-Component

—1+Z

a3 2.31
Z / (w— knvn T (2:81)
we want to calculate

D, o0 o0 1 ndn(N)J)(N)
I:/ Y d3v:/ dv/ v3dv, 27 ” wA
( A oy (—— ")

w = kv = ) Ul| — s

[ =13%1,
and [, = I3. Identity of Bessel function[18].

/ " exp (<pPR) R, (at) T (at)dt = p xp(— s [T (5s) — I )]

[ exp (= S BT OVdos = " exp b)) - L (8]

-0 Uths Wes

nw

Iy = —ings——exp(—by)[1,(bs) — I1,(Ds)]

Uths

€xy = Z p 50 Z nexp (b ) (bs>]Z(€ns) (2'32)

n=—oo

30



XZ-Component

=1+ Z Z / ’LU ]{:HUH — nwcs)d3v

we want to calculate

nJi(\)

D 1
I _ Tz — d d 2
/(w — kH’U” nwcs U / U” U”/ UL UL T(w — k‘”U” nwcs)(

I =151
v2

1 ° 1 I
Is = —/ v exp (———)dv
Vo (@ = Fjuy — nwes) B

Vths
Uths
I = Z (&,
= ez e
o] 2
Iy = —dop e / vrdv JA(N) exp (— 25
k‘J—’Uths 0 Uths

Identity of Bessel function.

[ e dnronat = - Ln(Ly)

o0 U2 2
/ exp(—TL)vLJg()\)de ;hsexp( bs) 1, (bs)

0 Uths

€on = Z % ZneXp 1 (b) 2" (€ns)

n=—oo

YY-Component

=1+ Z Z L / (w— k”v” — nwcs)dgv

we want to calculate

D o o 1
I= / 2 d*v = / dv / v dv) 21 gy
(w — k‘”U” — nwcs) 0o I 0 + (OJ — k”U” — nwcs)

I =1;x1g

31
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Z(NwA

(2.33)

JwA

(2.34)

(2.35)



The integral I; = I;

Identity of Bessel function.

o) 1 p2 n2 p2 p2 p2 p2
242\ 43 g2 N Y o o N 12
[ exp (=) T2 e = Jzexn(~ s ) + 2 i) = 2l
—4dng,w 1 n? ,
Iy = 50 _Ufhsexp<_bS)[_]n(b8) + 2(bs) I (bs) — 21, (bs)]
Uths 4 bs
R n?
e = 141D B D exp(—b)[-Lu(b) + 20 1n(b) = 2L,(.))Z(6)  (236)

YZ-Component

=1+ Z Z o, / . kHU” — nwcs)d% (2.37)

n=—oo

we want to calculate

D o o 1
I:/ ¥ d3v:—i/ vdv/ v dv 27 Jn(N) T (NwA
(w — kHU” — nwcs) —c0 I | 0 Lo (w - k”U” — nwcs) ( ) ( )

I:IQ*]H)

T 1 vl
Iy = —/ v exp (———)dv
VT o (@ = vy — nwes) Vi,

Let S = and ds =
Vths 1
I - Z ns
Ly = 4w 55/ vidvy J,(N)J,(A) exp (— 2L )
Uths 0 vths

[dentity of Bessel function. Identity of Bessel function. Identity of Bessel function.

[ e et i = Lo~ L) - L)

0 4a* 2a? 2a?

/ " exp (— S T (W = B sy )11 (1) — 1, (0,)

-0 Vths Wes

Ly = ing,
UthsWes

Eyz - _Ezy -



Z7Z-Component

=1+ Z Z N / (w— k”UH — nwcs)d%

n=—oo

we want to calculate

I =1 %1
R N Ry
e e et o
(11 ths
Let S = vj}‘i and dS =
RS
[ = thsSns Z/ s
1= 2%, (&ns)
W — NWes
S = | vns

Identity of Bessel function.

[ e nrtona - se- Ln(Ly)

00 2 2
/ eXp(—U—L)ULJ (\)dv, = U’;sexp(—bs)ln(bs)

0 Uths
—2ngsw
Lo 3 (1]62 exp(—bs)In(bs)
ths
b, — k2 Tk
’LU28 > !
e = 1= D560 D exp(=b)Ia(b)nZ (6ns)

We may summarize the results as below,

w1+ “be Zb—exp 1(b) Z(6ns)

€xy = Z p 50 Z nexp (b ) (b8>]Z<§nS)

n=—oo
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(2.39)

D o o 1
I:/ = d3v:/ UZdU/ vidv, 27 J2NwA
(w = oy — nwes) oo o T (w0 — Ry — i)

(2.40)

(2.41)

(2.42)



— _ZZ p L Z nexp bs) ()] Z (§ns)
> psson_z_oo = F (b (Ens)
— —zz psfo Z neXp (bs)Z' (&ns)

= - Z ps\/>€0 > exp(=by)[I,(b) — L (b)) Z' (¢ns)

n=—oo

- Z f & D xp(=b)IT3(0) — Fa())7 (6w

2 o]
= 1= 3 B Y exp(—b) ()62 (€ns)

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

The element of e involving along z-axis contain Z’(£) which gives rise to landau damping
when n = 0 and = ~ v,s. When n# 0 then make possible another collision-less damping

Ky

mechanism, cyclotron damping which occurs when, ‘“ik% ~ vgns |1
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Chapter

Bernstein Waves

In section 3.1 we derived the dispersion relation for Bernstein waves. In section 3.2 we de-
rived the dispersion relation for electron Bernstein waves and its subsection 3.2.1 we apply
the fluid limit on it we get fluid results from kinetic theory. In section 3.3 we discuss the ions
Bernstein waves and in its subsections 3.3.1 we derived the dispersion relation for neutralized
ions waves. In subsection 3.3.2 we apply the fluid limit on neutralized ions waves we get
fluid results from kinetic theory. In section 3.3.3 we derived the dispersion relation for pure
ions Bernstein waves. In sections 3.3.4 we apply fluid limit on pure ions Bernstein waves,
we get fluid results from kinetic theory. In section 3.3.5 we use plasma approximation on
pure ions Bernstein waves and we get lower hybrid waves. In the last section of chapter 3 we
extend this work for electron-positron plasma. In the last section we derived the dispersion
relation for electron-positron Bernstein waves. In its subsection we apply the fluid limit on
it and we upper hybrid mode for electron-positron.

The Bernstein waves are firstly studied by Bernstein in 1958 and are called Bernstein waves.
These waves are also called hot plasma waves because their existence depends on the tem-
perature of plasma. Bernstein waves have been observed in both laboratory experiment and
in magneto active stars having finite temperature. Electron Bernstein waves are reported by
Crawford in 1965 and Leuterer in 1969. Tons Bernstein waves were also observed in labora-
tory experiment by Schmitt in 1973. These waves are important in fusion process, to heat
the plasmall6].

3.1 Dispersion Relation for Bernstein Waves

FElectrostatic wave propagating at right angle to By at harmonics of the cyclotron frequency
are called Bernstein wave.
Poisson’s equation for electrostatic waves is written as,

VS E=0
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If we assume electrostatic perturbation such that E; = —V¢; and consider the form of
¢1 = ¢rexpli(k.r — wt)]. Let k is lying in x-z plane, after Fourier transformation the

Poisson’s equation take the form,
(k. k)¢, =0

¢1# 0 so above equation is written as
= kikje;; =0
]
and €, = €,
kY €ae + 2k 1 kj€a: + kife.. = 0. (3.1)
putting values of €., €., and €., in above equation we get,

omega ‘¢ > k2n2Z(&ns 2, ,
ek e 3 el L)) g [ 20 (6,0 k6,2 (6] = 0

n=—0oo

using these two identities Z'(&,5) = —2[14 (§ns) Z (&ns)] 5 Do L (bs) = 0 and simplifying
the terms in square bracket of above equation we get,

k3 + ki +Z %S Z exp(—by) L (bs) [2k2 (Ens + €22 (E0s))] = 0 (3.2)
2
2 w
fOS B k2vths
2 _ 2wy Kit €3 _ 2w,
Ds w? Uchs

KD+ K +Zsz Z exp(—ba) I (bs)[1 + €052 (60s)] = 0

n=—oo

Defining k? = k? + kﬁ

1+Z

Above relation is the a general dispersion relation for Bernstein waves|[19].

£ exp(-b LI + €0, Z(60)] =0 (3.3)

n=—oo

3.2 Electron Bernstein Waves

The electron-cyclotron waves like ordinary waves which are useful to heat the plasma at
frequency range of first harmonics and Extra-Ordinary waves are useful at the range of
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second harmonics. Only for special high temperature, higher heating is possible. Bernstein
waves having no such limit due to high cyclotron absorption and use to heat the plasma
at the range of higher harmonics|20, 21, 22|. Those waves are propagating at right angle
to the magnetic field and respond at high frequency are called electrons Bernstein waves.
Electron Bernstein waves are the special kind of electrons cyclotron waves, which are high
frequency electrostatic waves in magnetized hot plasma. When incoming frequency is high
only electron respond to these waves. Ions do not respond high frequency waves due small
neutral frequency and consider as stationary. For high frequency waves we may set k ~ 0
because these wave are not sensitive to small deviation from perpendicular propagation.
Plasma dispersion function for large &,.,

4 1 1
Z(€ne) = iv/mexp(—€2,) — [— + el MR ]
fne 2863,
for large value of &,. the landau term and higher order terms can be neglected, so above
equation can be written as,

-1
6ne =
Z{&ne) Ene
so the dispersion relation become
§oe
1+ Z Z exp(—be) I, (be)[1 — ( 50 )] =0 (3.4)

n=—oo
when n = 0 the term in square bracket is zero. We divide the sum into two sums,

1

k* + Z k% exp(— ZI §0e Z éoe) )] =0

using the identity of modified Bessel function I,,(b) = I_,,(b) and then replacing n = —n the
above equation become

506 &]e
E*4+) k7 exp(— Li(b)[1 — > 41— =0
Z D Z Ene §7ne]

putting values &, = % and &, = %jfﬁ in above equation. Here we drop sum over
r4 e z €

species, we consider electron only and we set kj = 0 for electrons|15],

ke 2n2w?
1= L2 ;GXP(_be)In(be)[m] (3.5)
k2 - _be In be
a(w,b) = FL — 9 2Zenma XP(O) 1 (bc) (3.6)
kDe L —n?
Where kp. and b, are define as k%, = %, b = kﬁ:é” = 1k3r?,, so the above equation
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Figure 3.1: The function a(w,b) versus w/w.. for electrons Bernstein waves.

become,
dw? & 1 1 n?
kird, = 23D es(—ghrioLGH ] (37)

In the limit k&, — 0 and n = 1, if w # nw.e we get upper hybrid frequency only. We can
obtain solution for all values of n > 1 if w = nw,.

3.2.1 Fluid Limit on Electron Bernstein Waves

The dispersion function for electron Bernstein wave is,

_ ey 1
1= ot ;exp(—be)fn(be)[w] (3.8)

For small value of b, the modified Bessel function is written as I,,(b.) = %(%)" when b, — 0
only n = 1 term exist. The equation (3.8) is written as,

2 _ 2 2 2
W _wpe+wce_th7

which is the upper hybrid oscillation [23]. Electrostatic electron waves across B have this

frequency and those waves along B are oscillating with plasma frequency, w.. = % when By
goes to zero w,, goes to zero then wave frequency is equal to plasma frequency. wﬁe = Zg—;j if
plasma density goes to zero, w, goes to zero then wave frequency equal to cyclotron frequency.
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Figure 3.2: Dispersion curve showing solution for EBW.

3.3 Ions Bernstein Waves

[ons Bernstein Waves are similar to electron Bernstein Waves but electrons Bernstein waves
are respond at high frequency and ions Bernstein waves responds at low frequency. Those
waves are propagating at right angle to the magnetic field and respond at low frequency are
called 1ons Bernstein waves. When the incoming waves having low frequency of the order of
ions cyclotron frequency. Tons respond these low frequency waves, as a result ions Bernstein
waves are produced[24].

W R Wy << Wpe

3.3.1 Neutralized Ions Bernstein Waves

General dispersion relation for Bernstein wave.

1+ Z Z oXP(—b) I (bs)[1 + €05 Z (€ns)] = 0 (3.9)

kDe Z exp(—be) L, (be)[l + & Z (Ene)] Z exp(—bi) L, (bi)[1 + &0, Z (&ni)] = 1 (3.10)

n=—oo n=—oo

We consider finite k, such that ki << Ve then &, — 0 and Z(&,e) =~ —2&,. For
perpendicular wavelength of the order of ion gyro radius we further have b, << 1. Hence
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only n = 0 term survives in the first sum. Iy(b. << 1) = 1 so the electron term is written as

ko 3 kbe
L2 Z exp(—be) I, (be)[l + e Z (Ene)] = e

W—NWeq
kzVthq

. 1 3
2/ (&) = =2iV/TEuexp(—€) + o + gt
for large value of &,; the landau term and higher terms can be neglected, so above equation
can be written as,

know we solve the ions terms where &,,; is define as &,; =

Z(6) = &
o §
Z(&ni) = e
so the ions term is written as
kb N <
-7 > exp(—bi) L, (bi)[1 — ( 5m)]

n=—oo
when n = 0 the term in square bracket is zero.So we divide the sum into two sum.
1

501 . 501’
Zl fm))+ > L(bi)(1— (m)]

using the identity of modified Bessel function I, (bi) = I_,(bi) and then replacing n = —n
the above equation become

n=—oo

ki RS §oi Eoi
S exp(—bz)Z[n(bz Jl—>—+1- ]
k n=1 gm g—m'
putting values &,; = 92 and £_,; = 2% in above equation and we get
& kzvins kzvini
B (o2
— o2 ;exp(—bl)]n(bl)[m]
so equation (3.11) is written as
k%e ()] 2n2w?; =0
(w? — ”2“’21') B
k%, = ﬁ where \p; is debye shielding length of species s and i% = %
m? T
Zexp —bi)I )[”—“’] = L1+ K22, (3.11)

(w? — n2w?) T.

above equation for neutralized Bernstein waves.
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Figure 3.3: Dispersion curve showing solution for Neutralized IBW.

3.3.2 Fluid Limit on the Neutralized Ions Bernstein Waves

The dispersion relation for the neutralized Bernstein waves|25] is given as,

14 o ﬁ;exp(—bz)fn(bz)[m] =0

When b; — 0 only n = 1 term survive, so the dispersion relation is given as,

kbe  kbibi, 2w}
k2 ?5[(002—(»2)]:0

ci

1+

2 U)2 2

B, Wk K
’Lb C? — 1 e
k:2 Z[(w2_w2)] + k2

ct

2,2
where b; is define as, b; = k;;%hl k%, = )\ZL where A\p, is debye shielding length of species s
ci Ds

an —/\QDE =L

)\QDi T
AL w2,
eb- ct -1 )\2 k,2 ~1
Abi Z[(WQ _W2)] A

1e
T;

1

2.2
k vthi[(wg . wg‘)
ct

=1

w? = w + k*? (3.12)

Where vy = kB—]\fe From equation (3.12), we conclude that when we apply the fluid limit on
Neutralized Ions Bernstein Waves they become ions cyclotron waves.
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Figure 3.4: Dispersion curve showing solution for pure IBW.

3.3.3 Pure lons Bernstein Waves

Dispersion function for ions Bernstein waves is written as,

2n2w? n?w?
be)|————=] ——F | =0
6)[(w2—n2w2 )[( — n2w? )]
In the limit of (almost) exact perpendicular propagation o >> Ve We further assume
that b, << 1. For small value of b the modified Bessel function is written as I(,) = %(%)”
when b — 0 only n = 1 term exist. kp and b is define as k% = 2% b= %
2w, 10 W2 w2 & 2n2w?
ce . % —b In b AWy 0
w2 b2w? — w2 k%?hi;exp( DI Z)[(wQ — n%@)]
W << Wee
2 2n2w?,
14 w2 ]{}2 ?hl ;exp bZ )[W] =0 (313)

The equation (3.12) represent the dispersion relation for pure ions Bernstein wave.
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3.3.4 Fluid Limit on the Pure Ions Bernstein Waves

The dispersion relation for ions Bernstein waves is given as,

w? 1 & 2n2w?,
pe pt o
i 7D _exp(=b;) I (by)| =0

tn=1

(w? = nwy;)

for small value of b; << 1 only n = 1 term is survive, the above relation is written as,

w? w?

e 7
L= 2p 2 2p 5 =0
w2 —w?  w?—wi

When the incoming frequency w ~ w,. we neglect the ions dynamics and we get upper hybrid
mode. Under the limit w,; << w << w, and the incoming frequency is w ~ w,; we get lower
hybrid mode. In fluid theory or in clod plasma there no wave between lower and upper
hybrid.

3.3.5 Lower Hybrid Waves

The dispersion relation for low frequency response particles, like ions is given as,

2n? wge
|=1+22

2 o0
Wi
b—i;exp(—bi)ln(bi)[

(w? = n*wZ)

We obtain the lower hybrid waves under the plasma approximation n; = n.[26].

wzz)e _ Wee
W Wi
2 o0
wi, 1 2n
—=n E —b;) 1, (b; =1
1 1 1
2T 2

Where wyy, is the lower hybrid frequency.

3.4 Electron Positron Bernstein Waves

When a high energy photon, such as ~-rays photons interact with matter the resulting
phenomena is pair production. In pair-production photons energy converted into electron-
positron pair. Positron is a particle having mass and charge equal to electron but the charge
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Figure 3.6: Dispersion curve showing solution for Lower hybrid waves.
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Figure 3.7: The function a(w,b) versus w/w.. for electrons-positron Bernstein waves.

being of opposite nature. We define the cyclotron frequency for electron and positron as

_ eBo _
Wee = me Wep =

_e€eBo
mp

2,2
2n*wz,

ke e
1= %Zexp(—be)[n(be)[
n=1

(W =

Here we know that m. = m,, ¢ =
relation is written as,
k2 &
1= 223 exp(=b)1,(0)
n=1

2
kQD — 22p b= k% o3,
3

4n?w?

4n?w?
o —nih)

5 e )

2 _ g2 — _
—qp 80 kp, = ki, be = bp, Wee =

]

— )

]

Dispersion relation for pure electron positron Bernstein waves

2,2
2n‘wy,

wep and dispersion

3.4.1 Fluid Limit on Electron-Positron Bernstein Waves

2w? &

1=>) mgiz;exp(—b)fn(b)[
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Figure 3.9: Dispersion curve showing comparison between Electrons and Electrons-Positrons
Bernstein waves.
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)" when b — 0

NS

for small value of b the modified Bessel function is written as I,,(b) = —(
only n =1 term exist. The equation (3.13) is written as

2

2 _ 2 2 _
where w;, = w,, and w;, = w;,

2 _ o 2 2 _ 2
w” = 2w, +w; = w,

witch is the upper hybrid oscillation. Electrostatic electrons-positrons waves across B have

this frequency and those wave along 'B’ are oscillating with plasma frequency. w. = eﬁ 0

when B goes to zero w. goes to zero then wave frequency is equal to plasma frequency.

wﬁ = ’Zgi, if plasma density is zero, w, goes to zero then wave frequency equal to cyclotron
frequency.

47



Chapter

Study of Relativistic Bernstein Waves

In section 4.1 general form of relativistic conductivity tensor in spherical polar co-ordinates is
derived. In our problem we need only XX-Component of conductivity tensor, so in subsection
4.1.1, we simplify XX-Component of conductivity tensor. In section 4.2 we check the validity
of our relativistic form of conductivity by applying non-relativistic limit. We solve it for non-
relativistic electrons Bernstein waves and also we apply fluid limit on it. We get same result
as in chapter 3. In section 4.3 we solve the dispersion relation for electrons Bernstein waves
in relativistic regime.

4.1 Derivation of Conductivity Tensor

To account the relativistic correction in conductivity tensor, we need to solve the relativistic
Vlasov equation along Maxwell’s equations. The relativistic Vlasov equation is
Ofa Ofa | 0fa

5 +v. I +a. v =0 (4.1)

)z = (1— Z—j)’% is the usual relativistic

Relativistic momentum p = ymv, where v = (1~|— mg 3

Lorentz factor. Velocity, acceleration and 2 a is define as v= —=L—— a = L%—i’, % =
v (m202—|—p2)2 m v
m% 18].
Relativistic equation of motion of charge particle in E and B fields
d 1
F = dIt) qE + VX B]
Ofa 3f 1 Ifa
— E+-vxB =0 4.2
o Vo TAEF v BlES (4.2)
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Maxwell equations are given by

V.E = 47qus/fd3v

10E 4
VXB:—8—+—7T qs/vfd%
c Ot ¢

VxE = 108

c Ot
Since the electric field, E, and the magnetic field, B, depend on the distribution function
f, so the Vlasov equation is a non-linear equation in. The last term in the Vlasov equation
is a non-linear term. To linearise the Vlasov equation we assume that the amplitude of the
perturbed quantities is small so we neglect the higher order perturbations. We consider a
uniform plasma with an equilibrium distribution function fy(v) and a small perturbation in

it. To linearise the Vlasov equation, we consider

f=fh+h
E=E,+ E;
B=B,+B;

The zeroth order term represents the unperturbed part of the variable and the first order
term represents the perturbed part of the variable. The linearise Vlasov equation is

0 0 1 1 af, 1 0
aﬁl +v afl +q(Bo + —v x Bo). ajs q(E1 + —v x By). (af )+ a(Bo + —v x By). 8{3 =0
and zeroth order part of equation is
1 0
(E0+—VXBO) a.ﬁ) =0

Ey=0,B = Byz

qBy o Ofo

vmc(p e op 0

dfo dfo dfo (13)

(p x 2)% = py@px —pza—py

In order to solve the above equation we introduce the spherical coordinate system, and
distribution function f; is depend on

fo= fo(p,0,9)

Pz = psinfcoso
py = psindsing
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p. = pcost
P =p3+p, +
8f0:%8p +%@«9 +%8¢
Op.  Op Op, 00 Op, ~ 0¢ Ip,
Ofo _ 0fo Op 4 9fo dfo 00 L 9fo dfo 09
8py 8p apy 00 8py 0¢ 8py

substituting the value of 22 p 99 and % we get

) Ops
dfo  Jdfo 0fy Lcosp, Ofy, sing
— 8 _ (=
Op.  Op gy (sinfeose) + o0 (p 0080) [3J0) ( psind
substituting the value of 22 p , ;pe and we get
9fo _ 0fo dfo 1sing,  Jdfy, coso
— 6 _ _JY
3py dp 3y (sinfsing) + 00 (p 0050) + 0o <p5in9)
putting values of g% andg—g and we get
9f _,
oo
this means that the equilibrium distribution function fy does not depend on angle ¢ so
fo = fo(p,0)

We consider a homogeneous plasma with a uniform magnetic field By and with no electric
field present .The distribution function fy is choice to any solution of zeroth order equation.
EO - O, B — BO,?AJ

ofi | 0N dfi

1
e +v A +q(- VXBo)%+Q(E1+—VXB1>(

9fo
op )

Applying Fourier and Laplace transformation,

[e’e] [e%¢] dgl' '
(E.8.4) = [ drespis) [ ek (B, B g

on above equation we get

qBo . _
(s+zkv)f+rm(pxz).ap . (5p
(pXZ)af pﬁ—pa—fz—a—f
op Y Op, 373apy 99

Let




and Q = 220 ig the relativistic cyclotron frequency.
yme

(s +ikv)f — Qg—i = —¢(9)

this is the first order non homogeneous differential equation. First we solve homogeneous

part,that is
0G(¢) B (s + ik.v)¢ _0
o¢p Q N

the solution of above equation is

We can take the wave vector k as.
k = (k;,0, k)
, and the velocity v in the spherical coordinate system can be written as

v = (vsinfcoso, vsinfsing, vcosh)

G(¢') = exp[é((s + ik, .vcosb)(p — ¢') + tkvsinb(sing — sing’))]

The general solution of the equation is
1) G ¢/ /

As the particles are rotating about the z-axis, so ¢’ will be evolved with the time. The
variable ¢’ is related to the time, ¢’ by ¢’ = QTt/ As t/ — —o0 this means we go back in
infinite past where there is no perturbation, so lower integration limit must be ¢ = +00[27].
If ¢ < 0 then f; will converge at ¢' — oo and vice versa. As f; is periodic in ¢ so its limits
of integration should be independent of ¢. Maxwell equations are given by

10E 4
VXB:—a—Jr—W qs/vfdgv
c Ot ¢

B 10E 4w

VxB=-—+—1J 4.4
x c Ot * c (44)
10B
VXE = ——— 4.5
. c Ot (4.5)
Applying Fourier-Laplace transformation on above equations we get,
1 4
z’ka:—[sE—e]—i——WJ
c c
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1
ik xE=——(sB—10)

c

e and b are constants and s = —iw . Illuminating B from above equations we get,
(w? — PEAE + Ak (k.E) = —4miwd
(w? — k) Ey + CkokgEg = —4miw ],
Ohm’s law is define as
Ja = O'aﬁEg (46)

where o, = x,y, z. We have used the Einstein summation convention that repeated indices
are summed over and are using the Cartesian tensor, so that we do not need to distinguish
between covariant and contra variant indices.

[(w? = ®k*)6ap + Ckokg + dTiwo g Es = 0

where
Rog = [(w? - 62k2)5aﬁ + Czk‘ak’g + Amiwo )

where the current density is given by

J= ano/Vfd3p

Vo ¢ / ]- . i . . . . Vi
Jo = E 7*ng / 5/ do exp[ﬁ((s + ik, .vcos0) (¢ — @) + ikyvsind(sing — sing'))]
1 8f0 3

we simplify the last term first, From Maxwell equation

B=_CikxE
s
1 ofs i 9fo
(E+EVXB)'8p = [E—gvx (kxE)].ap
Using back cap rule of
? o
=[E - g((v E)k — (vk)E)|. ap
_ 0fo L dfo _ dfo
= Dp 5((V.E)k op (vk)E. op )]




Ofy i 9o

dfo
Ops

= [ ) — (vk)5=)1Es

¢
Jo = Z 7*no / %/ de’ exp[é((s + ik,.vcos0)(p — @) + ikyvsinf(sing — sing’))]

of, i dfo 0 fo

— —(vg(k.
ops 55 o

[

) = (v-k) 1) Epd’p

comparing above equation with Ohm’s law

¢
Oup = Z 7*no / %a/_ d¢’ exp[%((s + ik, .wcos0)(p — ¢') + ik vsinb(sing — sing’))]

af, i of, dfo
s — ;(Ug(k. ap) — (V.k)apﬁ

[ )]d’p

In spherical polar coordinate
d®p = p*sinfdhdpded

and putting s = —iw

= T simtavapas s [ as sl (i + ibveost)(6 )
OB = Sha A P sin pde - N epr 1w + ik, .vcos

dfo 3fo)}
Ipg Op

+ikgvsind(sing — sing'))|[(w — v.k) +vg(k

This is a general expression for the conductivity tensor for any kind of distribution in a
spherical coordinate system.

4.1.1 XX-Component of Conductivity Tensor

In our case we are focussing on the Bernstein waves for which k 1. By. As we are interested
in perpendicular prorogation to By so we are left with o,, component of the conductivity
tensor which specifies the dynamics of the Bernstein wave.

2 oo pm 2T
. q-no 2 . 1 Vz
Opp = ES - /0 /0 /0 psinfdfdpde q

¢
dg¢’ exp[é((—z’w + vk, .vcos0)(d — @)

L o dfo 9fo
+ik,vsind(sing — sing'))][(w — v.k) o + v, (k. b )]
o = sinfcoso
@ = sinfsing
Dy
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o,
Ops

of,
Op.

of,
Opa

af,
Ops

Ofo

s )

+ Ux<kx + (kz

[(w—v.k) + v (k. —==)] = [(w — vpky — vk 2)

= [(w — kyvsinfcosd — kwcosQ)sz’anosqﬁ% + vsinfcosp(kysinfcosp + kzcosﬁ)%]
P p

2 0o o L2m ind ! 1
Opz = zs: q(:o/o /0 /0 p%in@d@dpdqﬁ'%/mdd exp[ﬁ((—iw + ik,.vcosh) (¢ — @)

+ik,vsinf(sing — sing’))]
9fo

,0f, ]
dp

op

[(w — kyvsinfcosd’ — k,vcost)sinfcosd’ == + vsinfcosd (kysinfcosd’ + k.cosh)

As fi is periodic in ¢, so we substitute ¢ — ¢’ = «, such that the integration limits become
independent of ¢. Putting

6-¢=a
A = —da
T -3 2
Ope =  — Z q no/ a‘;()dp/ vszg;z edQ/ cosfcos(¢p — a) exp[éikxvsme(sinqﬁ — sin(¢p — ))]de
0 0

0
1
/ da exp[ﬁ(—iw + ik, vcost)a]

o0

We note that

2
/ cosfcos(p — ) eXp[sz vsind(sing — sin(¢ — «))|d¢ = 2m Z EJS ") exp(ina)
0

where g/ — kxvgszznG

™ in 3 2 0 :
B 9 fo vsin~0 ne 5. ., —i
= 27 E q no/ p/o O o En @Jn(f ) exp(ma)/ooda exp[ﬁ(w — k. vcosh — nf2)a

0 -1 ZQ
—w— —n)a] =
/ daexp] 0 (w = kzvcost —nQ)a] (w — k,vcost — nfd)

o0

fo /” vsin®0 n? , iQ
- _9 2 e /
T Z q no/ dp 0 d@; o J: (&) exp(ina) (& hoocosh —nc)

- _ 2 fo sinf n?Q? 9
= 27mZZq no/o p/o (o~ Fovcosh — nQ)dQ =N J2(E (4.7)
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For Bernstein wave k, = 0
5O fo T sinf n?Q? , kyvsinf
— 2
mZZq no/ dp/0 (w—nQ)da = J:( O )

For n = 0 equation become zero so we divide the sum into sum, we get

of, / n*Q? , kyvsinf 1 1
_ 9 5 0o
O mZZq no/ p [ sin k2v Tn(— 19 )[(w—nﬂ)+(w+n9)]
" . 2 : 2n 1 1 3 2
sinfdfJ3; (Esind)dl = & F(§ +n)1 Fo[(n + 5)7 (n+ % 2n +1); =&
0
where ,F[(a1, .....ap), (b1, .....by), ] is a generalized Hyper-geometric function[28] and ¢ = £z
5 O0f, . n*Q* kv
Oy = —2%122(] n / d o (?)
1 1 3 2
F(§ +n)1Fy[(n + 5), (n+ 5 2n +1); =€
1 1

[(w —nf) * (w+nQ)]

4.2 Non-Relativistic Electron Bernstein Waves

First we solve above for non-relativistic case.

oo = (b exp— L)
e = (————)2(exp —
’ m2vt2hs7r P mzthhe
2T, 1
Vthe = ( )2

e

Vsne 18 thermal velocity of electron and where €2 = w., = % is the non-relativistic cyclotron
frequency when v =1

afo(p) _ 2]9 exp(—p—Z)
ap WﬁmSU?he mQU?he
9
o N0 ka0 9o 1 ) § . kzvo o
Opz = SWZZ—m <_ch ) 1Fy[(n + 2), (n+ 2,2n +1); —( o )7

1 w L af,
2F— —/ 3_0d
TGy ), P ™

For Bernstein wave £, and £, is zero.

Ry = w? + ATiwo,, = 0
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Figure 4.1: Dispersion curve showing solution for EBW.
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4.2.1 Fluid Limit on Non-Relativistic Electron Bernstein Waves

Dispersion relation for non-relativistic electron Bernstein waves is written as,

> kvo _ 1 3 k'U[)
1= 35 W2 (fabyon—2 p 1 3 o 1 1) (Fatoy
S (o B ) 3.+ 1
n20(2 + )
2 (w? — n2w?)

For % << 1 only n =1 term is survive. So, for n = 1 and l‘f}ﬂ << 1 the above dispersion

relation is written as,

w

2 _ 2 2 _ 2
_wpe+wce = Wyh

26



4.3 Relativistic Electrons Bernstein Waves

In a relativistic case, the cyclotron frequency is a function of momentum, where the rela-
tivistic equilibrium distribution function|29, 30].

1 U
fo(p) = T Ko () exp(—n7)
where
B mc?
N aT

is the ratio of the rest mass energy of particles to that of their thermal energy, and K, is
the modified Bessel function of the second kind and of order two. Taking derivative of fo(p)
with respect to p we get,

Ofolp) ___ L 7 2 exp(=n)
Jp drmPcd Ky(n) vy
Where the relativistic cyclotron frequency and relativistic velocity is define as = %,

cp

VvV = T
(m2ct 457

Here we easily prove that,

kv kyug
Q Qo
where vy and {2 is non-relativistic velocity and non-relativistic frequency.
2,2
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Y
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0
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For electrons Bernstein waves k, and k.’ is zero.
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This is the general form of fully relativistic Bernstein wave. To solve the above integral we
expand the v in the exponential term, we get weakly relativistic Bernstein wave. Here we
consider only electron Bernstein wave so, sum over species is dropped.

T Y i
F(% +n)1Fof(n + %); (n—+ g 2n + 1); _(%:’60)2]
[ ) T 2;; i
DR S D et
F(% +n)1 Fy[(n + %), (n + g, 2n +1); _(]jjio)z]

exp[—m\/g[( Y n? = () - Vgt — ()3

wce wCE wce wCE
V3 ()
DasonF| 2= ]

wpe and w,. are plasma frequency and cyclotron frequency of electron and DawsonF function
or DawsonF integral is define as,

xT

D (x) = exp[—xz]/o exp[t?]dt

D_(x) = exp|a?] /Ox exp[—t?]dt

4.4 Non-Relativistic Electron-Positron Bernstein Waves

First we consider the case of non-relativistic plasma for which we use the non-relativistic
Maxwellian distribution function

foo = (= exp——Po )
’ m2vt2hs7r P m2vt2h5
2T 1
Vths = ( )2

S
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in Eq. (3), we get,

)
o . q~Nos kx/UO 2n—2 1 . 3 . kxvﬂ 2
Ogp = gs 8t El . (—wcs ) IFQ[(n+§),(n+§,2n—|—1),—( o )7
1 W L af,
2 3 0s

I'= d 4.8
GG, P 9
where vy, is thermal velocity of sth species and Q = w. = % is the non-relativistic

cyclotron frequency.
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where s for species (s=electron, positron). The above expression is the dispersion relation
for the electron-positron Bernstein waves in the non- relativistic limit.

4.4.1 Fluid Limit on Non-Relativistic Electron Positron Bernstein
Waves

If we apply the fluid limit i.e., % << 1 on Eq. 8 we get the fluid result which is the upper
hybrid oscillations|31], 32] i.e.,
w? = 2w§ + wz = w?]h

4.4.2 Relativistic Electron Positron Bernstein Waves

Relativistic electron-positron pair plasmas are found in many astrophysical objects such
as neutron star, magnetosphere and white dwarf and many others. Positron is a particle
having mass and charge equal to electron but the charge being of opposite nature. The
weakly relativistic dispersion relation for Bernstein waves is given as,
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2 772 2 kzV0\9n 2 o
1= — "
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—n(1 d 4.10
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Figure 4.3: Dispersion curves showing solution for n = 1 and (:—1)2 = 50.

60



fafpr T T T ]

L -

g L i
— n=4
3'3 d | — n=2
-:: ] — n=2
— n=1

L=
Pa
£
=
L=

Figure 4.4: Dispersion curves showing solution for n = 1 and (%)2 = T75.

Where s (s = e,p) represent the species. After solving the above equation we get the
dispersion relation for weakly relativistic electron-positron Bernstein waves.

bl o O e
(5 + Bl + )t 5,20+ ;- (F20y
eXP[—U]\/gKfc)?’ + nw%(n2 - (—8)2) — V23 (n? — (%)2)3
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DasonF| 2(2) 1] (4.11)
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Figure 4.5: Dispersion curves showing solution for n = 1 and (2)? = 100.

The dispersion curves in figure 4.2 to 4.5 for n = 1 are plotted for different value of (%)

From these curve we observe that, when we increase the density, (we are increasing the
ratio of (32¢)) we get more harmonics.
ce
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Figure 4.6: Dispersion curves showing solution for n = 2 and (Z—i’e)z = 25.
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Figure 4.7: Dispersion curves showing solution for n = 2 and (22¢)% = 50.
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Figure 4.9: Dispersion curves showing solution for n = 2 and (L:f’e) = 100.
In figure 4.6 to 4.9, we fix n = 2 and plot the dispersion curve for different value of (Z),
we observed that, when we increase the plasma density we get more harmonics. The
number of harmonics depend on the value of (wce) and 7).
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Figure 4.10: Dispersion curves showing solution for n = 6 and (:‘:—i’)Q = 25.
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Figure 4.11: Dispersion curves showing solution for n = 6 and (Zj—i’e)2 = 50.
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Figure 4.12: Dispersion curves showing solution for = 6 and (22¢)? = 75.
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Figure 4.13: Dispersion curves showing solution for = 6 and (32¢)* = 100.
In figure 4.10 to 4.13 we increase the value of n = 6, we observe that ‘the number of
harmonics are increasing and overlapping is decreasing for same value of (£2¢) as compare
to figure 4.2 to 4.5 and 4.6 to 4.9. h
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Figure 4.14: Dispersion curves showing solution for n = 20 and (:}ﬂ)2 = 25.
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Figure 4.15: Dispersion curves showing solution for n = 20 and (22°)? = 50.
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Figure 4.16: Dispersion curves showing solution for = 20 and (*22)? = 75.
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Figure 4.17: Dispersion curves showing solution for n = 20 and (w’”)2 = 100.
In figure 4.14 to 4.17 we increase the value of n = 20(non-relativistic reglme) We observed
that, we get large number of harmonics with out overlapping for same value of ( ) as in
above plots.
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Figure 4.20: Dispersion curves showing solutions for n = 2 and (‘:—::)2 = 25 for the electrons-
positrons Bernstein waves
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Figure 4.21: Dispersion curves showing solutions for n = 2 and (%)2 = 75 for the electrons-
positrons Bernstein waves



Chapter

Discussion and Conclusion

5.1 Discussion

Most of the waves in plasma can be describe by using fluid but some waves can not observed
by using fluid theory. In fluid theory we average over the larmor orbits, therefore those
waves along larmor orbits are lost. To observe such waves in plasma we kinetic theory of
plasma. By using kinetic theory we observe important class of waves. These waves are
electron Bernstein waves, neutralized ions Bernstein waves and pure ions Bernstein waves.
By applying fluid limits on these kinetic theory predicted waves are converters into the
fluid waves. Under fluid limit electrons Bernstein waves are upper hybrid mode, neutralized
ions Bernstein waves are converted into ions cyclotrons waves and pure Bernstein waves are
converted into lower hybrid mode.

The dispersion curves in the figure 4.2 to 4.17 are plotted for different values of 1 and ‘;ﬂ
When we increase n( decrease in thermal energy) the contribution of higher harmonics with
the lower harmonics is decreases. Cyclotrons frequency is function of momentum. When
the thermal energy of particles is decreases, the momentum of particles also decrease so
the dependence cyclotrons frequency on momentum also decrease. Overlapping of higher
harmonics with lower harmonics is decreases with increasing 7. Higher harmonics contributes
with lower harmonics for small value of  and higher harmonics are stay in its own position
for lager value of 7. In those curves the value of n = 1 or n = 2 the relativistic effect are
more dominant because the cyclotron frequency frequency strongly depend on momentum.
In those curve n = 6 are intermediate state. The overlapping of the harmonics depend
on the density of plasma. Where the density is greater we seen overlapping and where the
density is small we have seen no overlapping. In dispersion curves plotted for n = 20(thermal
energy is very small as compare to rest mass energy), we have seen their no overlapping of
harmonics with others because dependence of cyclotron frequency on momentum is small
and the harmonics of cyclotron stay in their own positions. When we fix  and we increase
the density of plasma, the contribution of higher harmonics is due to over all increase in
momentum. The particles having higher momentum stay in the higher harmonics.
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5.2 Conclusion

On the non-relativistic distribution, although the velocities of particles are different, the cy-
clotron frequency remains the same. Therefore, non-relativistic particles tend to stay within
their corresponding harmonics.

Coming to the relativistic distribution, the mass of particles also vary, depending on their
velocities. The faster a particles moves, the more mass it gets. Cyclotron frequency of the
heavier particles decrease as a result of which the harmonics of heavier particles tend to come
down and interact with the lighter particles. Hence, the overlapping occurs within higher
and lower harmonics.

When we increase the density of plasma by taking n(ratio of the rest mass energy to the
thermal energy ) constant. The more particles having large speed and they get more mass.
So the overlapping between higher harmonics and lighter particles is increased in high den-
sity plasma. We also observed that the number of harmonics are increasing with density of
plasma because particles having low speed do not affects the cyclotron frequency so their
harmonics stay at their own positions.

By decreasing the thermal energies of particles(mc® = 20kgT), we observe that the relativis-
tic effects are vanished, so all harmonics are stay at their own positions.
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