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ABSTRACT 

 

This project aims to develop an accurate power forecast of a photovoltaic (PV) system for active 

buildings, using machine learning (ML) models. The objective is to create a demand response 

system that regulates energy usage in active buildings by providing recommendations for 

efficient power usage to the user.   

 

In this project, we have collected historical data on environmental factors such as solar irradiance 

and compared various ML models to select the best one based on its accuracy. The selected ML 

model is implemented to generate the power forecast of the PV system.  To create the demand 

response system, a mobile application is developed that uses the power forecast to provide 

recommendations for efficient power usage to the user.  

 

Our results show that the ML model accurately predicts the power output of the PV system and 

that the demand response system based on the power forecast can help to manage energy 

consumption in active buildings. This project demonstrates the potential of ML-based power 

forecasting and demand response systems in achieving sustainable and energy-efficient 

buildings. 
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SUSTAINABLE DEVELOPMENT GOALS 

 

This project is linked with Sustainable Development Goals (SDGs) 7 and 11, which aim to 

promote affordable and clean energy, and sustainable cities and communities. By promoting the 

use of solar panels to produce clean energy, this project contributes to SDG 7. Additionally, solar 

energy is a reliable and sustainable source of energy, which contributes to SDG 11 by promoting 

sustainable cities and communities. Overall, this project aligns with the United Nations' goals for 

sustainable development by promoting the use of clean and sustainable energy sources for 

building a better and more equitable future. 

 

Figure 1 Sustainable Development Goals 
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Chapter 1 - Introduction 

 

Demand Response (DR) is a concept that is becoming increasingly important in the realm of 

energy management. With the advent of renewable energy sources such as solar, wind, and 

hydropower, the need for an efficient and reliable DR system has become more pronounced. A 

demand response system is a mechanism or program that allows electricity consumers to actively 

participate in managing their energy consumption in response to fluctuations in electricity supply 

and demand. It involves modifying electricity usage patterns or reducing power consumption 

during peak demand periods or when the grid is stressed. This system enables grid operators to 

balance electricity supply and demand more effectively, reduce strain on the grid, avoid blackouts 

or brownouts, and improve overall system reliability [20]. It can also provide financial incentives 

to participants for their willingness to adjust their energy usage based on grid conditions. DR is 

essentially a mechanism that allows for the adjustment of electricity demand in response to 

changes in supply, typically to help balance the grid during periods of peak demand [19]. In recent 

years, DR has gained popularity due to its potential to reduce energy costs, improve grid reliability, 

and promote the integration of renewable energy sources into the grid [18].   

 

The focus of this thesis is to develop a DR system for PV-dominated active buildings that utilizes 

machine learning techniques to achieve accurate power forecasting. PV-dominated active 

buildings refer to buildings that are designed and equipped to actively generate and utilize solar 

energy through photovoltaic (PV) systems. These buildings prioritize the use of renewable energy 

sources, particularly solar power, to meet their energy needs [17]. These buildings often employ 

advanced energy management systems to optimize the use of solar power, store excess energy in 

batteries or other storage systems, and efficiently distribute energy throughout the building. 

Around 4.4% of the energy worldwide comes from solar whereas the 11.5% of the renewable 

energy is extracted from solar [16]. Renewable energy sources contribute 38% to the total energy 

production [16]. The proposed system has used historical data on environmental factors such as 
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solar irradiance to predict the power output of a photovoltaic (PV) system. The historical data has 

been analyzed using various machine learning models, including linear regression, Prophet, 

Random Forest, and ARIMA, to identify the model that provides the best accuracy in predicting 

the power output. The selected models have been used to predict the power output of the PV 

system, and the predicted data has been sent to a mobile application that provides users with 

recommendations for efficient power usage.  

 

In addition to power forecasting and demand response, the proposed system also incorporates 

home automation features. Users can turn on and off home appliances remotely via the mobile 

application, allowing for better control over energy usage. By accurately predicting the power 

output of a PV system and providing recommendations for efficient power usage, the system helps 

in managing energy consumption and promote the integration of renewable energy sources into 

the grid. The integration of home automation features also provides users with better control over 

energy usage, allowing them to avoid a blackout. 

1.1 Objectives  

 

• Develop accurate power forecasting models for PV systems, utilizing historical data of 

environmental factors such as solar irradiance, wind direction and wind speed etc.  

 

• A user-friendly mobile application has been created to integrate with the power forecasting 

models. It provides real-time updates and recommendations based on the predicted power 

output. Users can now monitor energy consumption, receive alerts, and make informed 

decisions about adjusting their energy usage patterns to optimize their energy consumption.   

 

• Ensure an uninterrupted power supply to active buildings by offering personalized energy 

usage recommendations.  

1.2 Advantages  

Certainly, here are some advantages of our project:  
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• Increased Use of Clean and Sustainable Energy Sources 

By promoting the use of solar panels to produce clean energy, our project contributes to the 

achievement of SDG 7 (Affordable and clean energy). The use of solar energy is reliable and 

sustainable, reducing the dependence on fossil fuels and their associated environmental impacts. 

 

• Improved Energy Efficiency  

The power forecast generated by our machine learning models creates a demand and response 

system for active buildings. This system provides recommendations to users on how to manage 

their energy load more efficiently, resulting in reduced energy consumption and lower energy bills.   

 

• Integration with Home Automation  

Our project includes integration with home automation, which allows users to turn on and off home 

appliances using the mobile application. This feature enhances convenience for users and reduces 

unnecessary energy consumption.   

 

• Real-Time Monitoring and Prediction of Solar Irradiance  

Our project's machine learning model is used to predict solar irradiance based on historical data. 

This feature allows for real-time monitoring and prediction of solar irradiance, which is crucial for 

efficient energy management.   

 

• Increased Affordability and Accessibility of Energy  

By providing safe and affordable energy for houses, our project contributes to SDG 11 (sustainable 

cities and communities). The use of solar energy as a sustainable and affordable energy source can 

be particularly beneficial for low-income households, reducing their energy bills and improving 

their quality of life.   

Overall, our project has several advantages that contribute to the achievement of the SDGs and 

improve energy efficiency, accessibility, and sustainability. 
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Chapter 2 – Literature Review and Background 

2.1 Background 

 

The global energy challenges have posed significant obstacles in our daily lives and hindered our 

professional development compared to international competitors. To address these difficulties, the 

utilization of alternative energy resources for power generation has emerged as a viable solution, 

with Solar Energy being at the forefront. Initially, Solar Panels were primarily available for 

industrial applications, but over time, they have become more accessible for domestic use as well, 

at a higher cost. However, despite the widespread adoption of Solar Panels, many users lack 

awareness regarding their efficient utilization, resulting in inefficient and ineffective use of the 

generated solar energy and significant wastage.   

 

To tackle this issue within the constraints of our country, our project provides a software product 

that optimizes the usage of Solar Panels. By leveraging machine learning models, the Application 

developed delivers precise energy utilization schedules that users with deployed Solar Panels can 

implement to achieve energy-saving strategies. The model estimates solar energy production 

during peak hours. Based on the generated energy, the app provides an optimal schedule, taking 

into account the user's behavioral patterns. This approach provides maximize reliance on the 

generated solar energy instead of the traditional grid, resulting in cost savings for the user.  By 

addressing the lack of awareness and providing efficient energy utilization schedules, our project 

seeks to bridge the gap between solar energy generation and its effective utilization. The 

application empowers users to optimize their energy consumption patterns and reduce reliance on 

conventional energy sources, thereby promoting sustainability, cost savings, and a more 

environmentally friendly approach to energy usage. 

2.2 Literature Review 

 

In recent years, there has been a significant shift towards sustainable and renewable energy 

sources, with photovoltaic (PV) technology emerging as a promising solution for generating 
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clean electricity. Due to the need to shift towards sustainable energy systems, considerable 

research has taken place worldwide in the domain of power forecasting and demand response 

systems. PV systems are being increasingly integrated into buildings, transforming them into 

active structures that actively generate and consume energy. The rise of PV-dominated active 

buildings not only offers a pathway towards achieving energy independence but also presents 

new challenges and opportunities for optimizing energy consumption patterns [21]. 

 

One of the key challenges associated with PV-dominated active buildings is the fluctuating 

nature of solar energy production. Solar power generation is heavily dependent on environmental 

factors such as sunlight availability, weather conditions, and seasonal variations. Consequently, 

the energy supply from PV systems can vary significantly throughout the day, week, and year 

[22]. This intermittency poses a unique challenge for effectively managing the energy demand in 

PV-dominated active buildings, as it requires balancing energy consumption with energy 

generation. 

 

To address this challenge, the concept of Power forecasting and Demand Response (DR) systems 

has gained considerable attention in the field of smart grids and energy management. DR 

systems enable the adjustment of energy consumption in response to fluctuations in energy 

supply or grid conditions. By leveraging advanced control and communication technologies, DR 

systems empower building owners and occupants to actively participate in the energy market, 

optimize energy use, and contribute to grid stability. After integration of power forecasting into 

energy management, there were different horizons of power forecasting as shown in Figure 2.1 

and all of them had different applications and fluctuations [23]. 
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Figure 2.1 Forecasting horizons, their Fluctuations and Applications 

 

 

Prominent research done by H. A. Kazem gained popularity due to its high level of accuracy. 

The methodology employed in this study has focused on the evaluation of FRNN and PCA. 

FRNN being a multilayered neural network model as shown in figure 2.2 was quite impressive in 

this research as it provided an accuracy of 72.4%. The researchers collected one year of 

experimental data at second and hourly intervals, resulting in a dataset of 50,400 daily samples. 

The GCPV system was assessed based on various parameters such as power and efficiency. The 

FRNN and PCA models were utilized to predict GCPV current and power, and their results were 

compared against measured values for validation. The findings demonstrated that the FRNN 

model outperformed the PCA model in simulating the experimental results, highlighting its 

potential for accurate long-term power forecasting in GCPV systems [1]. Additionally, a 

comprehensive comparison and evaluation of the measured and predicted data reinforced the 

technical and economic viability of GCPV systems, showcasing their suitability in the study area 

with notable yield, capacity factor, energy cost, and payback period values. 
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Figure 2.2 Typical Structure of a Feed-Forward Neural Network 

 

The increasing relevance of forecasting in renewable energy sources applications, particularly in 

the context of PV power generation, has led to the exploration of various machine learning and 

hybrid techniques. In a research paper, the authors focus on the characteristics of artificial neural 

networks and their training approaches within a hybrid method for day-ahead PV output power 

forecasting. By analyzing different data set compositions and employing both traditional and 

newly defined performance indexes, the study evaluates the effectiveness of the training 

methods. The results, validated using one year of experimentally measured data, indicate that 

method C1 outperforms others when a substantial amount of historical data is available, while 

method A is more suitable for newly deployed PV plants with limited historical data. The 

findings also demonstrate the importance of ensembles composed of independent trials and 

highlight the significance of accumulating a minimum period of measurement data for accurate 

forecasting in newly deployed PV facilities [2]. Overall, this study provides insights into 

optimizing training data sets for effective PV power production forecasting. 

 

A recent study done by H.Wang did some pioneering work on integrating Artificial Intelligence 

techniques to do solar power forecasting. As shown in Figure 2.3, they experimented with a 

range of machine learning models to find out their accuracy and use the most accurate model for 

forecasting. In the end, the research finalized down to four models which were the most accurate 

and made a hybrid model consisting of results from those models and that model provided them 
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with overall a lower accuracy [44]. 

 

 

Figure 2.3 RMSE Comparison of Different Machine Learning Models 

 

The demand for renewable energy has led to the adoption of photovoltaic (PV) panels as a clean 

energy source globally, including in Bangladesh. Accurate forecasting of PV panel output is 

crucial for efficient energy distribution and capacity planning. A study introduces the Prophet 

Model, a machine learning model designed for univariate time series forecasting, to predict the 

energy output of PV panels. Data was collected from an outdoor experimental setup in 

Bangladesh during the winter season. The proposed method successfully predicts the short 

circuit current of the PV panels one day in advance, with reliable results and a high coefficient of 

determination averaging at 0.9772 for one-day-ahead PV panel output energy forecasting [3]. 

 

Uncertainty in renewable energy integration, particularly in solar photovoltaic (PV) systems, due 

to its dependence on meteorological phenomena, presents a significant challenge. To address this 

issue, numerous forecasting tools have been developed, with recent emphasis on physics-

informed machine learning (ML) methods. However, the lack of replicability and fair 

comparisons among these studies has led to misleading assessments. A paper conducts a 

comprehensive literature review and comparison of the most relevant ML methods. The authors 

propose a novel methodology that integrates a PV-performance model within ML models to 
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forecast PV power several hours ahead with a 5-minute resolution. The methodology involves 

expanding the basic dataset, consisting of power production and meteorological measurements. 

This expansion allows the ML models to learn the physical interdependencies among different 

features, thereby potentially improving the accuracy compared to conventional methods. To 

further refine the model, a physics-informed feature selection approach is introduced to narrow 

down the search space for the best-performing model. The proposed methodology is validated 

using a case study of a PV array in Denmark, employing both the original and expanded datasets. 

The results consistently demonstrate that the ML models incorporating physics-informed features 

outperform other models in terms of accuracy. By leveraging physics-based information, the 

models can make more accurate predictions, while the feature selection process helps streamline 

the training and tuning stage [4]. Overall, this research contributes to the forecasting community 

by providing benchmark performance for ML and statistical methods, as well as offering a 

replicable and comparable framework for future studies in PV power forecasting. 

 

Accurately predicting power output in solar photovoltaic (PV) facilities is essential for assessing 

their energy generation potential. However, the effectiveness of existing prediction models on 

new sites is not well understood due to variations in topography and meteorological conditions. 

Another research presents a monthly PV power forecasting model that utilizes data from 164 PV 

sites, including plant capacity, electricity trading data, weather conditions, and solar irradiation 

estimates, collected over a significant time period. The model employs a recurrent neural 

network (RNN) with long short-term memory (LSTM) to capture temporal patterns. The model's 

performance is evaluated using testing data from new plants. The results demonstrate the model's 

ability to achieve accurate predictions, with low error rates and good capture of temporal patterns 

[5]. This approach is valuable for planning officials in selecting suitable locations for PV plants 

in different areas, considering weather and terrain data. 

 

Another paper presents a novel approach aimed at addressing the long-term forecasting challenge 

and reducing the uncertainty in PV forecasts. The proposed method involves a series of pre-and 

post-processing steps designed to optimize data preparation before inputting it into the 

forecasting model and refining the forecast output. Particularly, the method focuses on 

converting the non-stationary historical solar PV radiation data into a stationary format, enabling 



 

10 
 

the utilization of a larger dataset for more accurate forecasting [6]. The performance of the 

proposed method is demonstrated through numerical simulations, highlighting its effectiveness 

in improving long-term PV forecasting. 

 

Huang’s research in 2019 outlined traditional demand response systems and their future as 

shown in Figure 2.4. He highlighted multiple benefits of installing a demand response system 

which included greater efficiency, reduced energy consumption and off-peak energy 

consumption [25]. This research included multiple types of energy forms to develop this demand 

response system. 

 

Figure 2.4 Layout of Demand Response System 
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Similarly, another research focusing on overview of demand response systems in the electricity 

market highlights its importance and benefits to the consumers as well as the market. Figure 2.5 

can be seen below which demonstrates the advantages in a distributive manner to all the 

stakeholders of this system [26]. The effect of DR system on the electricity market prices can be 

seen in Figure 2.6 as per this research. 

 

 

Figure 2.5 Benefits of Demand Response System 

 

 

Figure 2.6 Effects of Demand Response System on Electricity Prices 
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Demand response systems face several challenges that can impact their effectiveness and 

widespread implementation. One key challenge is participant engagement. Encouraging active 

involvement from consumers and building owners can be difficult due to factors such as lack of 

awareness, understanding, or motivation. Educating and incentivizing participants becomes 

crucial in order to foster their engagement. Additionally, human behavioral patterns present a 

challenge [27]. Consumption habits and preferences can vary greatly, making it challenging to 

accurately forecast and respond to demand fluctuations. Understanding and predicting individual 

behaviors in response to incentives is complex and requires careful consideration. 

 

Technological integration poses another significant challenge. Demand response systems often 

need to integrate diverse and sometimes outdated energy management systems. Ensuring 

interoperability, data compatibility, and seamless communication between devices, sensors, and 

control systems can be complex and time-consuming. Data privacy and security also come into 

play [28]. Demand response relies on collecting and analyzing sensitive energy consumption 

data. Protecting privacy and ensuring data security are essential for gaining consumer trust and 

preventing unauthorized access or misuse of data. 

 

Infrastructure limitations can hinder the effective implementation of demand response. Existing 

grid infrastructure may have capacity, stability, or flexibility constraints that need to be 

addressed. Upgrading infrastructure to support bidirectional communication and accommodate 

distributed energy resources (DERs) is necessary but can be costly and require significant time 

and effort. Moreover, regulatory and policy barriers can impede progress. Outdated policies, 

complex regulations, or a lack of clear guidelines may not adequately support or incentivize 

demand response programs [29]. Aligning policies and market structures to facilitate demand 

response becomes crucial for its success. 

 

Evaluation and measurement present their own set of challenges. Assessing the effectiveness of 

demand response programs requires accurate baseline establishment, quantifying energy savings, 

and determining the impact on grid stability and reliability. Robust evaluation methodologies and 

data analysis techniques are necessary to gauge the true benefits of demand response accurately. 

Lastly, stakeholder collaboration plays a critical role [30]. Collaboration among consumers, 
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utilities, grid operators, and policymakers is necessary for effective implementation. 

Coordinating efforts, aligning interests, and fostering collaboration can be challenging due to 

diverse priorities, fragmented markets, and differing levels of awareness. 

 

Addressing these challenges requires a comprehensive approach that combines technical 

advancements, behavioral interventions, regulatory reforms, and market-oriented solutions. 

Overcoming these hurdles can lead to wider adoption of demand response systems, enabling 

more efficient and sustainable energy management practices. 

From the given literature review, we have selected the best research papers from the literature 

review and made a simplified table to show the advantages and disadvantages of the research 

papers. 

 

No.  Title, Year, Journal Methodology  Pros  Cons  

1 Long-term power forecasting 

using FRNN and PCA models 

for calculating output 

parameters in solar 

photovoltaic generation,2022, 

Heliyon 

 

ML Models: 

FRNN and PCA 

 

FRNN is better at 

simulating the 

experimental results 

curve compared with 

PCA 

 

Only two models have 

been compared  

 

No comparison of ml-

based models and 

statistical models has 

been made. 

 

2 Comparison of Training 

Approaches for Photovoltaic 

Forecasts by Means of 

Machine Learning, 2018, 

Applied Sciences 

 

Physical Hybrid 

Artificial Neural 

Network  

 

Higher accuracy and 

less error 

 

Only day ahead which 

is of less benefit 
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3 Forecasting PV Panel Output 

Using Prophet Time Series 

Machine Learning Model, 

2020, IEEE Xplore 

 

Prophet Model The prophet model is 

encouraging and 

reliable 

 

Only one model has 

been studied. 

 

One-day ahead 

forecasting  

 

4 Benchmarking physics-

informed machine learning-

based short-term PV-power 

forecasting tools, 2022, 

Energy Reports 

 

RF, SVR, CNN, 

LSTM, CNN-

LSTM, and 

Persistence 

Recurrent neural 

network 

 

RF proved to be the 

best performer 

 

Casted more accurate 

predictions 

 

Only benchmarking 

was done in this article  

 

No real application was 

tested for verification 

 

5 Long short-term memory 

recurrent neural network for 

modeling temporal patterns in 

long-term power forecasting 

for solar PV facilities: A case 

study of South Korea, 2020, 

Journal of Cleaner Production 

 

Recurrent Neural 

Network 

Allow planning 

officials to evaluate 

suitable locations for 

PV plants in a wide 

area. 

 

Power forecasting was 

just 1hr ahead which is 

too small to be of any 

importance in the long 

term 

 

6 Long-term solar generation 

forecasting, 2016, IEEE 

Xplore 

 

NARX Model  

 

Long-term 

forecasting is done 

which is of greater 

importance 

 

The long-term forecast 

has lesser accuracy 

 

Table 2.1 Literature Review Table 
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Chapter 3 – Methodology 

 

3.1 System Design 

 

In this portion, we will describe in detail the design of the system. 

3.1.1 Block Diagram of the System  

 

The Block diagram showcases the operational process of demand response in PV-dominated 

active buildings, incorporating various interconnected components. The system begins by 

acquiring daily weather forecast data, which serves as crucial input. This weather data is then fed 

into a machine learning model, which leverages historical data and current weather information 

to predict key parameters such as energy demand and PV power output. The predicted data is 

subsequently transmitted to a mobile application, empowering users with real-time insights and 

control over their energy consumption.   

 

On the other side of the system, the main power supply is composed of PV panels. To monitor 

and measure the electrical parameters, voltage, and current sensors are attached to the power 

supply. These sensors continuously collect data of the voltage and current levels, providing real-

time information on energy consumption and PV power production. The collected data is then 

relayed to a microcontroller, which acts as an intermediary.   

 

To facilitate seamless communication, a Wi-Fi module is employed to wirelessly transmit the 

data from the microcontroller to the mobile application. This integration enables users to access 

and manage the data remotely through the mobile application interface. Additionally, the mobile 

application facilitates load control by utilizing relays connected to the voltage and current 

sensors. Users can remotely activate or deactivate specific loads, allowing for efficient load 

management and responsive demand response strategies.   
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By combining accurate weather forecasting, machine learning prediction models, real-time data 

monitoring, and mobile application control, the system empowers users to optimize their energy 

consumption, adapt to dynamic energy conditions, and actively participate in demand response 

activities. This comprehensive approach fosters sustainability, efficiency, and effective energy 

management in PV-dominated active buildings. 

 

 

  

 

Figure 3.1 Systematic Block Diagram 

3.2 Data Collection and Preparation  

3.2.1 Data Collection 

 

The solar irradiance data used in this study was obtained from the PK_Solar_Islamabad_NUST 

site, located at the National University of Science and Technology (NUST). The data collection 

was carried out using a Tier 1 station equipped with solar trackers and thermopile irradiation 
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sensors. The site is situated at an elevation of 500 meters, with a latitude of 33.6419 (positive 

north, in decimal degrees) and a longitude of 72.9838 (positive east, in decimal degrees). The 

data was sourced from the website of the World Bank [9]. Regarding data preparation, the 

original data had a temporal resolution of 10 minutes. To facilitate analysis and modeling, 

several steps were taken.  

3.2.2 Data Preparation 

 

Firstly, the data was summarized by calculating the average value within each 10-minute 

interval. This allowed for a smoother representation of the solar irradiance data at a higher level 

of granularity. Subsequently, the data was converted into a one-day interval, providing a more 

suitable time scale for analysis and forecasting. Normalization was then applied to the data to 

ensure consistency and comparability. The values were normalized by dividing each data point 

by the largest value in the dataset. This normalization process brought all the data within the 

range of 0 to 1, enabling easier interpretation and manipulation during the subsequent modeling 

stages. By conducting these data collection and preparation steps, the solar irradiance data from 

the PK_Solar_Islamabad_NUST site was transformed into a suitable format for further analysis 

and utilization in the machine learning models. 

3.2.3 Machine Learning Model Training  

 

During the ML model training phase, various models were evaluated based on a comprehensive 

literature review, including Prophet, Linear Regression, Random Forest, and ARIMA. Among 

these models, Random Forest emerged as the most suitable choice for our project, which focuses 

on predicting solar irradiance using time series data.  

 

Random Forest is an ideal choice for our specific application due to several advantages it offers. 

Firstly, it exhibits robustness and stability, making it highly effective in handling outliers and 

noisy data. It has the ability to handle diverse data patterns and is less prone to overfitting, 

ensuring reliable predictions even in the presence of irregularities. Additionally, Random Forest 

provides valuable insights into feature importance, enabling us to analyze the contribution of 

different variables in predicting solar irradiance. This understanding allows us to enhance the 
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model's performance by focusing on the most influential features. Moreover, Random Forest 

utilizes ensemble learning, combining multiple decision trees to make predictions. This ensemble 

approach helps reduce bias and variance, resulting in more accurate and robust predictions. By 

leveraging the collective decision-making process, the model becomes adept at capturing 

intricate relationships and patterns within the data. 

 

After selecting Random Forest as our ML model, we proceeded with the training phase using the 

collected and preprocessed data. To evaluate the model's performance, we considered several 

metrics, including Root Mean Square Error (RMSE), Mean, and R-squared (R2) score. The 

trained Random Forest model demonstrated exceptional performance in our project, achieving a 

low RMSE value, and indicating precise predictions of solar irradiance. Moreover, the high R2 

score showcased the model's ability to explain a significant portion of the variance in the solar 

irradiance data, indicating a good fit. Overall, Random Forest exhibited robustness, stability, and 

the ability to handle complex data patterns. Its feature importance analysis provides valuable 

insights, and the ensemble learning approach improves prediction accuracy. With its strong 

performance, Random Forest proves to be a reliable and effective model for solar irradiance 

prediction in our project. 

3.2.3.1 Code’s Explanation 

 

The code provided in annex A performs the following steps: It starts by importing the required 

libraries and reading the data from a CSV file into a Panda DataFrame. The data is then prepared 

by renaming columns and visualizing the time series. Next, lag features are created by shifting 

the 'ghi_pyr' column by different time intervals. The data frame is then cleaned by dropping any 

rows with missing values. The code imports the Random Forest Regressor model from scikit-

learn and prepares the input and output variables for training. The data is split into training and 

testing sets based on a specific date. The Random Forest model is trained on the training data, 

and predictions are made on the testing data. Finally, the predictions are plotted against the 

actual values, and performance metrics such as RMSE (Root Mean Squared Error), mean, and 

R2 score are calculated and printed. 
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3.2.3.2 Formula Used for the Calculation of Energy 

 

The formula that has been used to Calculate energy from the predicted solar irradiance is given 

below: 

 

                                      (1)                     

Where A is the Area of the panel, PR is the performance ratio, H is the annual average solar 

irradiation and r is the solar panel yield [7]. 

The energy has further been used to calculate the power using the following formula: 

                                                             (2) 

In the equation 2, P is the power, E is the energy and T is the time [8]. 

 

3.3 Home Automation Integration  

 

In our project, home automation refers to the integration of technology and systems to automate 

and control various aspects of a home environment. It involves the use of sensors to monitor and 

manage functions such as energy consumption. The goal of home automation is to enhance 

convenience, comfort, efficiency, and security for homeowners. 

 

Home automation using Wemos involves the integration of Wemos D1 Mini, an ESP8266-based 

microcontroller board, with various sensors, actuators, and smart devices to automate and control 

different aspects of a home environment. Here is a brief explanation of the working of home 

automation using Wemos:   

 

• Hardware Setup: The Wemos D1 Mini board is connected to the home Wi-Fi network, 

and sensors and actuators are connected to its GPIO pins. These sensors include current 

and voltage sensors, while actuators include relays.   

 

• Blynk Integration: The Blynk platform has been used to create a mobile application for 

controlling and monitoring the home automation system. Blynk provides an easy-to-use 
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interface to create a customized user interface with buttons, sliders, and other widgets to 

interact with the Wemos board.   

 

• Communication: The Wemos board communicates with the Blynk server through the 

Wi-Fi network. It sends data from the connected sensors to the server and receives 

commands from the mobile application to control the actuators.   

 

• Data Monitoring and Control: The Wemos board continuously monitors the sensor 

data, such as current and voltage. It sends this data to the Blynk server, which is accessed 

by the user through the mobile application. The user now views real-time data from the 

sensors and control the connected actuators remotely.   

 

• Automation and Rules: The home automation system can be configured to automate 

certain actions based on predefined rules. For example, if the generated power is less then 

the user is notified accordingly so the user can manage the load accordingly.  

 

• Alerts and Notifications: The system has been set up to send alerts or notifications to 

the user's mobile device.  

3.3.1 Explanation of Code  

 

The code in annex B is an Arduino sketch that establishes a connection between the ESP8266-

based Wemos D1 Mini board and the Blynk cloud platform using the Blynk library. The sketch 

sets up Wi-Fi credentials and defines virtual pins for controlling digital outputs. It handles Blynk 

events triggered by changes in the virtual pin states and performs corresponding actions to 

control the digital output pins. Additionally, it includes a timer event that sends the Arduino's 

uptime to a virtual pin every second. The setup function initializes the necessary configurations, 

and the loop function continuously runs Blynk and timer events. Overall, the code demonstrates 

the integration of the Wemos board with the Blynk platform for remote monitoring and control 

applications. 



 

21 
 

 

In order to validate the functionality and performance of the developed circuit, the Blynk 

platform was utilized as a testing tool. Blynk, a user-friendly mobile application, provided a 

convenient interface for monitoring and controlling the circuit remotely. This allowed for 

immediate verification of the circuit's operation and ensured that the readings were accurately 

captured.  The Blynk application also offered control features, enabling the activation or 

deactivation of specific loads connected to relays. This functionality provided an additional 

means of assessing the responsiveness and effectiveness of the circuit's load control capabilities. 

The utilization of Blynk for circuit testing demonstrated the practical feasibility of the developed 

application and provided valuable insights for further refinement and optimization. 

3.4 App Development  

 

The mobile application developed for this project aims to provide real-time monitoring and 

control of power usage in households through an IoT network. Built using Flutter, an open-

source mobile UI software development kit, the Android app offers a user-friendly interface to 

visualize data collected from multiple current and voltage sensors. This section elaborates on the 

key features and components of the mobile application which we have named as SolarSense.   

 

3.4.1 App Development Environment:  

 

The app was developed using Android Studio IDE and Flutter framework, which leverages Dart 

as the underlying programming language. This combination allowed for efficient native app 

development with a focus on smooth user experience and cross-platform compatibility.   

3.4.2 Real-Time Data Display and WiFi-based Device Control: 

 

The mobile application integrates with an IoT network comprising multiple sensors monitoring 

the power usage of household appliances. Real-time data, including sensor readings and weather 

forecasts, is retrieved from the Firebase Real-time Database, a cloud-hosted NoSQL database. 

The app provides an intuitive interface to display this data, allowing users to track their power 
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consumption and make informed decisions.   

 

The mobile application enables users to remotely control household appliances connected to the 

IoT network. By leveraging WiFi connectivity, users can turn devices on and off conveniently 

through the app. This feature enhances convenience, allowing users to manage their appliances 

from anywhere within the network range.   

3.4.3 Energy Efficiency Recommendations and Alerts:  

 

In addition to real-time power consumption information in form of percentages, the SolarSense 

offers users valuable recommendations and alerts to enhance energy efficiency. Through 

intelligent analysis of the collected data, users receive personalized suggestions on optimizing 

their energy usage and reducing dependence on the electric grid. This feature empowers users to 

make conscious choices and contributes to sustainability efforts.  

3.4.4 User Interface and Navigation:  

The SolarSense consists of five screens/pages, designed to provide a seamless user experience:  

 

a. Splash/Loading Screen: Displays an initial screen while the app loads.  

 

b. Home Screen: Features interactive widgets that guides users to other sections and provide an 

overview of the percentage of forecast PV power utilized.  

 

c. Power Usage Page: Displays the percentage of forecast PV power utilized and real-time 

power consumption of each appliance, allowing users to monitor their energy usage patterns this 

page contains a master switch as well for all the appliances.  

 

d. Devices Page: Enables users to control the on/off states of various household appliances 

connected to the IoT network, providing convenient device management.  

 

e. Notifications Page: Shows users the latest app-generated recommendations and alerts aimed 

at maximizing energy efficiency and promoting sustainable practices.   
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The developed mobile application serves as a powerful tool for real-time monitoring and control 

of power usage in IoT-based active buildings. By leveraging Flutter and Dart, the app offers a 

user-friendly interface, enabling users to visualize real-time data, receive energy efficiency 

recommendations, and control devices remotely. The app's multi-screen architecture provides a 

comprehensive user experience, facilitating effective power management and contributing to a 

sustainable and energy-efficient lifestyle. 

The code for the application has been provided in the link at the appendix section.  
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Chapter 4 - Hardware 

4.1 IOT Network Schematic  

 

The hardware setup of the circuit diagram comprises several components and connections that 

enable the monitoring and control of electrical loads. The circuit begins with a 5-volt power 

supply provided to the ESP32 microcontroller. To protect the circuit from excessive current, 

resistors are connected to the output pins of the microcontroller, limiting the current flow. 

 

An optocoupler is utilized to connect the isolated circuits within the system. This component 

ensures that the high-voltage circuit on the right side of the diagram remains separate from the 

low-voltage circuit on the left side, maintaining safety and preventing any potential damage. 

Capacitors are also used to create a low pass filter to aid in noise reduction in the sensor reading. 

 

The circuit includes a total of four current sensors, with three of them connected in parallel to 

each load. These current sensors measure the electrical current consumed by each individual 

load. Additionally, a voltage sensor is connected to measure the voltage across each appliance, 

providing valuable information on power consumption. 

 

To control the loads, three relays are incorporated, each accompanied by a diode to prevent any 

reverse current flow. Furthermore, to protect the LEDs from burning out, a 1k resistor is attached 

to each LED. The circuit also incorporates multiple 50-ohm resistors to vary the load. With the 

help of resistors 3, 6 and 9 Watts.  

 

A battery is integrated into the system, and a current sensor and voltage sensor are connected to 

it. These sensors measure the current flowing through, and the voltage supplied by the battery, 

respectively. This allows for monitoring the power provided by the battery to the loads. 

 

On one side of the circuit, there is a provision for connecting a battery as the power source for 

the loads, while on the other side, a solar panel can be attached as an alternative power source. 

This setup enables flexibility in selecting the power supply based on availability and 



 

25 
 

requirement. 

 

Overall, the schematic diagram illustrates a well-designed circuit configuration that facilitates the 

monitoring, control, and efficient management of electrical loads through the integration of 

various components, including microcontrollers, sensors, relays, resistors, and power sources. 

The software used for making this schematic is Altium designer. 

 
 

Figure 4.1 IoT Network Schematic 

 

4.2 Components and Usage of Components in the Project 

 

The following components have been used in our project. 

 

• Esp32 DOIT dev kit v1  

 

The ESP32 microcontroller serves as the central control unit in our project, acquiring data 

from sensors, processing it, and communicating with the mobile application. It facilitates 
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real-time monitoring, control, and management of power usage within the IoT network, 

enhancing energy efficiency and user convenience. 

 
Figure 4.2 Esp32 DOIT dev kit v1 [9] 

 

 

• 0-25 V DC Voltage Sensor (1x) 

 

The 0-25 V DC voltage sensor in our project enables accurate measurement and 

monitoring of voltage levels across various appliances(loads) and measures the voltage 

supplied by the battery.  

 

• ACS712 5A Current Sensor (4x) 

 

The ACS712 5A current sensor in our project is used to accurately measure and monitor 

the electrical current flowing through the circuit. It provides real-time data on current 

consumption, enabling precise power analysis and control of the connected loads. 
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Figure 4.3 ACS712 5A Current Sensor [10] 

• Diode (3x) 

 

The use of diodes in our project is to prevent the reverse flow of current in the circuit.  

 

• Resistors (1 kΩ (3x), 15 Ω (4x), and 50 Ω (6x)) 

 

The purpose of a 1 kΩ resistor across the LED is to prevent it from burning out, the 

purpose of a 50 Ω resistor is to vary the load, and the purpose of a 15 Ω resistor is to 

prevent the circuit from damage. 

 

• TLP521-4(GB) Photocoupler (1x) 

 

The use of a photocoupler in our project is to separate the high voltage from the low 

voltage side of the circuit to avoid any damage. 



 

28 
 

 
Figure 4.4 TLP521-4(GB) Photocoupler [11] 

 

• 7805BT 1A Voltage Regulator (1x) 

 

The purpose of the 7805BT 1A voltage regulator in our project is to stabilize and regulate 

the incoming voltage to a constant 5V output. It ensures a consistent power supply for the 

connected components, protecting them from voltage fluctuations and providing reliable 

operation. 
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Figure 4.5 7805BT 1A Voltage Regulator [12] 

• LED Lights (3x) 

 

The LEDs in our circuit serve the purpose of the load.  

 

• Transistor (1x) 

 

The purpose of a transistor in our project is to switch electronic signals. It acts as a 

control element, allowing us to regulate the flow of current.  

 

• Vero Board (1x) 

 

The Vero board in our project serves as a reliable and convenient platform for assembling 

and connecting electronic components, enabling the development of the circuitry. 
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Figure 4.6 Vero Board [13] 

 

• 20W Solar panel (1x) 

 

The solar panel used in our project consists of a single panel with a maximum power 

output of 20W. The panel has an area of 0.1736 square meters. The yield (r) of the panel 

is determined to be 22.5. The performance ratio (PR) of the panel is 0.75. The purpose of 

using this solar panel in our project is to capture solar energy and convert it into electrical 

power. 

 
Figure 4.7 20W Solar Panel [14] 

 

• 3.2 Ah Battery (1x) 
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The purpose of the 12 V battery in our project is to store the power generated by the solar 

panel and then supply the power to the appliances(loads).  

 
Figure 4.8 3.2Ah Battery [15] 

 

4.3 Comparison of Actual and Predicted Power (Testing) 

 

The performance of our solar panel system was tested by comparing the predicted data from our 

model with the actual data obtained from a real solar panel system. The tested solar panel system 

consisted of 19 panels, with each panel having a maximum power output of 540W. The total area 

covered by the 19 panels was 49.0827 square meters. The yield (r) of the system was determined 

to be 22.5. The irradiance (H) and performance ratio (PR) were taken into account during the 

testing process. The tilt angle of the panels was set at 20-25 degrees facing south, with a raised 

structure at a height of 12 ft. This comparison allowed us to assess the validity and accuracy of 

our predictive model in simulating the performance of the solar panel system. 

 

The table presents the predicted and actual generation of solar energy in kilowatt-hours (KWh) 

over a specific time period. A comparison between the predicted and actual values allows for 

assessing the accuracy and performance of the prediction model. The data highlights variations 

in generation on different dates, providing insights into the effectiveness of the solar panel 

system in capturing and converting solar energy. 
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The table presents the results of the testing phase, comparing the predicted generation (in kWh) 

with the actual generation. The average mean square error (MSE) is calculated to be 

104.7105144, indicating the overall deviation between the predicted and actual values. The root 

mean square error (RMSE) is 10.23281557 (or 10.23%), representing the average magnitude of 

the prediction errors. The accuracy of the model is measured at 89.77%, reflecting its ability to 

accurately forecast the solar energy generation. 

 

 

Table 4.1 Predicted and Actual Generation in KWh 

 

 

The bar chart visually represents the comparison between the actual power generated and the 

predicted power. It provides a clear illustration of the variances between the two values, allowing 

for a quick assessment of the model's accuracy. The height of each bar indicates the deviation 

between the actual and predicted power. 
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Figure 4.9 Actual vs Predicted Power Comparison 

4.4 Working of IoT Network 

 

The IoT network in the project plays a crucial role in connecting and facilitating the exchange of 

data between different components. The microcontroller, in our case it is ESP32, serves as the 

central hub for gathering sensor data and retrieving data from the Firebase database. 

 

The microcontroller receives sensor data from various sources, such as current and voltage 

sensors attached to the battery and appliances (loads). These sensors measure the power 

consumption of each household appliance (load) and provide the corresponding data to the 

microcontroller. 

 

Additionally, the microcontroller interacts with the Firebase database, which serves as a cloud-

hosted database in this project. It retrieves data from the database. The microcontroller processes 

the collected data, performs necessary computations, and updates the values on the Firebase 

database. 

 

On the other hand, the mobile application acts as the interface for users to access and visualize 

the collected data. It retrieves the sensor data from the Firebase database and displays it on the 

application's user interface. Users can view real-time power usage, forecasted power generation, 

and other relevant information related to energy consumption. 

 

Furthermore, the mobile application also allows users to interact with the IoT network and 

control certain aspects remotely. Users can control signals via the mobile application, which can, 
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in turn, adjust the operation of devices or appliances connected to the system. 

 

Overall, the IoT network establishes a seamless connection between the microcontroller, the 

Firebase database, and the mobile application. It enables the real-time monitoring of power 

usage, data exchange between different components, and remote control of devices, providing 

users with valuable insights and control over their energy consumption. 

 

 
Figure 4.10 IoT Network Circuitry 

 

 
Figure 4.11 Hardware Setup 
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4.4.1 ESP32 Code Explanation  

 

The explanation of the functions used in the code provided in the Annex C is given below. 

• GetRelayStatus() function to get state of devices from database. States are changed when 

user turns device on/off from mobile app. 

• GetSensorData() function gets analog values from sensors and converts to currents/amps 

using formula derived from sensor characteristics and calibration values obtained from 

testing performed on each sensor individually. 

• GetEnergyConsumed() function to calculate total energy consumption from sensor values 

by accumulating power values over time. 

• PublishSensorData() to publish all calculated energy data and sensor values to the online 

database so it is accessible by the mobile app.  
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Chapter 5 – Results and Discussion 

5.1 Performance Evaluation of Machine Learning Model  

 

In this portion, the performance of our machine learning model will be evaluated with the help of 

different parametrics. 

 

5.1.1Graphical Results of ML Model  

 

The graph displays the comparison between the predicted and actual irradiance levels over a 

specific time period. The graph consists of two distinct curves: one in blue and the other in 

orange. The blue curve represents the predicted irradiance values, which were estimated using 

the forecasting model. The orange curve represents the actual measured irradiance values 

obtained from on-site sensors.   

 

Both curves exhibit variations and trends throughout the time period. The curves display 

fluctuations, rises, or falls in response to changes in environmental conditions. The shape of the 

curves suggests that the predicted irradiance generally aligns closely with the actual measured 

irradiance, indicating the effectiveness of the forecasting model. 
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Figure 5.1 Graphical Results of ML Model 

 

5.1.2 Accuracy of the Model 

 

The accuracy of the model was evaluated using various performance metrics. 

 

The R2 value, a measure of how well the model fits the data, was found to be 0.924. This 

indicates that approximately 92.4% of the variability in the irradiance levels can be explained by 

the model. A high R2 value signifies a strong correlation between the predicted and actual 

values, suggesting the model's effectiveness in capturing the underlying patterns in the data.   

 

The mean absolute error (Mean) was calculated to be 0.4389. This represents the average 

difference between the predicted and actual irradiance values. A lower mean absolute error 

indicates a higher accuracy of the model's predictions, as it reflects the average deviation from 

the true values.   
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Furthermore, the root mean square error (RMSE) was computed and found to be 0.049. The 

RMSE provides a measure of the model's accuracy by quantifying the average magnitude of the 

errors between the predicted and actual values. A lower RMSE value indicates a smaller average 

prediction error and, hence, a higher level of accuracy.   

 

These performance metrics demonstrate the effectiveness and accuracy of the model in 

predicting irradiance levels. The high R2 value, along with the low mean absolute error and 

RMSE, indicates a strong correlation between the predicted and actual values, showcasing the 

model's reliability in capturing and forecasting irradiance accurately. 

5.2 Application Results 

 

This portion will include the presentation usability of the mobile application. 

5.2.1 Presentation and Usability of the Mobile Application's User Interface 

 

Figure 5.2 illustrates the first page of the mobile interface, featuring buttons for controlling 

different devices. Users can easily toggle the devices on and off using these buttons. Moving on 

to the second page, depicted in Figure 5.3, users can access valuable information such as the 

power forecast for the day, battery status, and power meter readings. Continuing with the mobile 

application, the intuitive user interface allows for seamless device management and provides 

real-time updates on power consumption and battery status. This user-friendly design empowers 

users to make informed decisions and optimize their energy usage for enhanced efficiency and 

convenience. 
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                            Figure 5.2 Interface Page 1                    Figure 5.3 Interface Page 2 

 

Moving on to the next features of the mobile application, the third page (Figure 5.4) provides a 

detailed breakdown of the percentage of forecasted power consumed, highlighting the individual 

power consumption of each device. This allows users to gain insights into their energy usage 

patterns and make informed decisions for efficient load management. Additionally, the fourth 

page (Figure 5.5) presents the total percentage of power consumed, enabling users to effectively 

manage their overall power load and make adjustments based on the valuable suggestions 

provided by the application. These features enhance user control and promote optimal energy 

utilization for improved sustainability. 
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                             Figure 5.4 Interface Page 3                     Figure 5.5 Interface Page 4 
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Chapter 6 – Conclusion and Future Work 

 

6.1 Conclusion 

 

This project marks a significant milestone in the realm of renewable energy and home 

automation, showcasing the potential for sustainable and efficient energy management in active 

buildings. By seamlessly integrating power forecasting capabilities, an IoT network, and a user-

friendly mobile application named as SolarSense, we have created a comprehensive system that 

empowers users to optimize their energy consumption. Through accurate power forecasting 

using machine learning and weather data, users can make informed decisions about their energy 

usage. The integration of an IoT network with current and voltage sensors enables real-time 

monitoring of power usage, while the SolarSense provides a centralized control hub for remotely 

managing devices and receiving energy efficiency recommendations. Together, these 

advancements demonstrate the synergy between renewable energy, data analytics, and user-

centric design, offering a promising pathway towards smarter, greener, and more sustainable 

homes. 

6.2 Future Work  

 

In order to further enhance the accuracy and effectiveness of the thesis research, several avenues 

for future work can be explored. One potential direction More features can be added to the app to 

enable automated load optimization and prioritization. Additionally, the inclusion of additional 

variables can significantly enhance the accuracy of the forecasting model. Consideration of 

factors like temperature, wind speed, and atmospheric conditions can provide valuable insights 

into their influence on solar energy generation. By incorporating these variables, the forecasting 

model can capture a more comprehensive understanding of the environmental factors impacting 

solar panel performance. Expanding the features of the accompanying application to enable 

monitoring of net metering can also be a fruitful area for future work. By developing the app to 

include functionalities such as energy balance, users can gain a more comprehensive 
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understanding of their energy usage. This enhanced monitoring capability will facilitate better 

management of the net metering system and enable users to optimize their energy consumption 

patterns. 

 

By pursuing these avenues of future work, the thesis can make significant contributions to the 

field of solar energy forecasting and provide practical solutions for enhancing the efficiency and 

accuracy of solar energy systems. 

 

6.3 Limitations of the Project 

 

The project, despite its achievements, is subject to several limitations that need to be 

acknowledged. Firstly, the installation of a Maximum Power Point Tracking (MPPT) system to 

extract the maximum power from the solar panel was not implemented.  

 

Another limitation is the absence of a Solar Tracking System, which would enable the panel to 

rotate and align with the sun's position throughout the day. This feature can optimize the panel's 

exposure to sunlight and enhance its power generation capacity. Since the solar panel system 

from which the data was initially taken to train the model had a solar tracking system.  

 

It is important to note that the project did not consider multiple factors that could influence the 

overall performance of the system. Factors such as wind speed, temperature variations, etc., were 

not taken into account during the analysis and forecasting processes. Incorporating these factors 

into future iterations of the project could lead to more accurate predictions and assessments that’s 

why recognizing these limitations provides insights into potential areas of improvement in our 

project. 
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Annexure 

Annex A 

 

Machine Learning Code 

 

import pandas as pd 

df=pd.DataFrame() 

df = pd.read_csv('alterdata.csv',index_col='Date',parse_dates=True) 

df.tail() 

df.columns = ['ghi_pyr'] 

df.plot(figsize=(12,8)) 

df['ghi_pyr_LastMonth']=df['ghi_pyr'].shift(+1) 

df['ghi_pyr_1Monthsback']=df['ghi_pyr'].shift(+2) 

df['ghi_pyr_2Monthsback']=df['ghi_pyr'].shift(+3) 

df['ghi_pyr_3Monthsback']=df['ghi_pyr'].shift(+4) 

df['ghi_pyr_4Monthsback']=df['ghi_pyr'].shift(+5) 

df['ghi_pyr_5Monthsback']=df['ghi_pyr'].shift(+6) 

df['ghi_pyr_6Monthsback']=df['ghi_pyr'].shift(+7) 

df['ghi_pyr_7Monthsback']=df['ghi_pyr'].shift(+8) 

df['ghi_pyr_8Monthsback']=df['ghi_pyr'].shift(+9) 

df['ghi_pyr_9Monthsback']=df['ghi_pyr'].shift(+10) 

df['ghi_pyr_10Monthsback']=df['ghi_pyr'].shift(+11) 

df 

df=df.dropna() 

df 

from sklearn.ensemble import RandomForestRegressor 

model=RandomForestRegressor(n_estimators=100,max_features=3, random_state=1) 

import numpy as np 

x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,y=df['ghi_pyr_LastMonth'],df['ghi_pyr_1Monthsback'],df['g
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hi_pyr_2Monthsback'],df['ghi_pyr_3Monthsback'],df['ghi_pyr_3Monthsback'],df['ghi_pyr_4Mon

thsback'],df['ghi_pyr_5Monthsback'],df['ghi_pyr_6Monthsback'],df['ghi_pyr_7Monthsback'],df['

ghi_pyr_8Monthsback'],df['ghi_pyr_9Monthsback'],df['ghi_pyr'] 

x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,y=np.array(x1),np.array(x2),np.array(x3),np.array(x4),np.ar

ray(x5),np.array(x6),np.array(x7),np.array(x8),np.array(x9),np.array(x10),np.array(x11),np.array

(y) 

x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,y=x1.reshape(-1,1),x2.reshape(-1,1),x3.reshape(-

1,1),x4.reshape(-1,1),x5.reshape(-1,1),x6.reshape(-1,1),x7.reshape(-1,1),x8.reshape(-

1,1),x9.reshape(-1,1),x10.reshape(-1,1),x11.reshape(-1,1),y.reshape(-1,1) 

final_x=np.concatenate((x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11),axis=1) 

print(final_x) 

#X_train,X_test,y_train,y_test=final_x[:-1000],final_x[-200:],y[:-1000],y[-200:] 

#import numpy as np 

 

# assuming final_x is a numpy array of shape (n_samples, n_features) 

dates = pd.to_datetime(df.index)  # convert index to datetime 

 

# get the indices of the dates in the desired range 

train_idx = np.where(dates <= '2022-11-30')[0] 

test_idx = np.where(dates >= '2022-12-01')[0] 

 

# slice the numpy array using the indices 

X_train, X_test = final_x[train_idx], final_x[test_idx] 

y_train, y_test = y[train_idx], y[test_idx] 

pred=model.predict(X_test) 

import matplotlib.pyplot as plt 

plt.rcParams["figure.figsize"] = (12,8) 

plt.plot(pred,label='Random_Forest_Predictions') 

plt.plot(y_test,label='Actual ghi_pyr') 

plt.legend(loc="upper left") 

plt.show() 
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import matplotlib.pyplot as plt 

import numpy as np 

 

# Plot the predictions and actual values 

plt.rcParams["figure.figsize"] = (12,8) 

plt.plot(pred,label='Random_Forest_Predictions') 

plt.plot(y_test,label='Actual ghi_pyr') 

plt.legend(loc="upper left") 

plt.show() 

 

# Get the data points from the graph 

x_points = np.arange(len(pred)) 

pred_points = pred.reshape(-1) 

actual_points = y_test.reshape(-1) 

 

# Create a table 

table = [] 

for i in range(len(pred_points)): 

    table.append([x_points[i], pred_points[i], actual_points[i]]) 

 

# Print the table 

print("Data Table:") 

print("{:<10} {:<20} {:<20}".format("Index", "Predicted Value", "Actual Value")) 

for row in table: 

    print("{:<10} {:<20} {:<20}".format(row[0], row[1], row[2])) 

from sklearn.metrics import mean_squared_error 

from math import sqrt 

rmse_rf=sqrt(mean_squared_error(pred,y_test)) 

print('Mean Squared Error for Random Forest Model is:',rmse_rf) 

# Calculate mean 

mean_rf = np.mean(pred) 
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# Print mean results 

print('Mean for Random Forest Model is:', mean_rf) 

from sklearn.metrics import r2_score 

# Calculate r2 score 

r2_rf = r2_score(y_test, pred) 

# Print r2 score results 

print('R2 Score for Random Forest Model is:', r2_rf) 
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Annex B 

 

Home Automation Code 

 

#define BLYNK_TEMPLATE_ID "TMPL6Ri0OVpKe" 

#define BLYNK_TEMPLATE_NAME "Wemos" 

#define BLYNK_AUTH_TOKEN "KCsFfFYcaw_g5WpBgCdBLN5Qbd4Aulyj" 

#define BLYNK_PRINT Serial 

#include <ESP8266WiFi.h> 

#include <BlynkSimpleEsp8266.h> 

#define USE_WEMOS_D1_MINI 

char ssid[] = "New55"; 

char pass[] = "12345312"; 

BlynkTimer timer; 

int pin0 = 5; 

int pin1 = 4; 

int pin2 = 0; 

int pin3 = 2; 

 

BLYNK_WRITE(V7) 

{ 

    int value = param.asInt(); 

    if(value == 1) 

      digitalWrite(pin0, HIGH); 

    else 

      digitalWrite(pin0, LOW); 

} 

BLYNK_WRITE(V8) 

{ 

    int value = param.asInt(); 

    if(value == 1) 

      digitalWrite(pin1, HIGH); 

    else 

      digitalWrite(pin1, LOW); 

} 

BLYNK_WRITE(V9) 

{ 

    int value = param.asInt(); 
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    if(value == 1) 

      digitalWrite(pin2, HIGH); 

    else 

      digitalWrite(pin2, LOW); 

} 

BLYNK_WRITE(V6) 

{ 

    int value = param.asInt(); 

    if(value == 1) 

      digitalWrite(pin3, HIGH); 

    else 

      digitalWrite(pin3, LOW); 

} 

 

{ 

  // Change Web Link Button message to "Congratulations!" 

  Blynk.setProperty(V3, "offImageUrl", "https://static-

image.nyc3.cdn.digitaloceanspaces.com/general/fte/congratulations.png"); 

  Blynk.setProperty(V3, "onImageUrl",  "https://static-

image.nyc3.cdn.digitaloceanspaces.com/general/fte/congratulations_pressed.png"); 

  Blynk.setProperty(V3, "url", "https://docs.blynk.io/en/getting-started/what-do-i-need-to-

blynk/how-quickstart-device-was-made"); 

} 

 

void myTimerEvent() 

{ 

  Blynk.virtualWrite(V2, millis() / 1000); 

} 

void setup() 

{ 

  Serial.begin(115200); 

  Blynk.begin(BLYNK_AUTH_TOKEN, ssid, pass); 

  

  delay(100); 

  pinMode(pin0, OUTPUT); 

  pinMode(pin1, OUTPUT); 

  pinMode(pin2, OUTPUT); 

  pinMode(pin3, OUTPUT); 

  digitalWrite(pin0, HIGH); 

  digitalWrite(pin1, HIGH); 

https://static-image.nyc3.cdn.digitaloceanspaces.com/general/fte/congratulations.png
https://static-image.nyc3.cdn.digitaloceanspaces.com/general/fte/congratulations.png
https://static-image.nyc3.cdn.digitaloceanspaces.com/general/fte/congratulations_pressed.png
https://static-image.nyc3.cdn.digitaloceanspaces.com/general/fte/congratulations_pressed.png
https://docs.blynk.io/en/getting-started/what-do-i-need-to-blynk/how-quickstart-device-was-made
https://docs.blynk.io/en/getting-started/what-do-i-need-to-blynk/how-quickstart-device-was-made
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  digitalWrite(pin2, HIGH); 

  digitalWrite(pin3, HIGH); 

  timer.setInterval(1000L, myTimerEvent); 

} 

void loop() 

{ 

  Blynk.run(); 

  timer.run(); 

  

} 
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Annex C 

 

ESP32 Code 

 

#include <WiFi.h> // esp32 library 

#include <IOXhop_FirebaseESP32.h>    

#include <ArduinoJson.h>    

#include <StopWatch.h>     

 

#define FIREBASE_HOST "fyp1-d368c-default-rtdb.firebaseio.com" 

#define FIREBASE_AUTH "opIEHzpGfErpN1bGu79I1SYnKQXdtiaDAVj2evHF" 

#define WIFI_SSID "Repeater_AP" 

#define WIFI_PASSWORD "Repeater@1234" //password of wifi ssid 

const int NumofDevices=3; 

const int NumofSensors=4; 

String RelayStatus[]={"OFF","OFF","OFF"}; 

int RelayPin0=23; 

const int RelayPins[]={21,19,18}; 

int VoltagePin=A3; 

int CurrentPins[]={A6,A7,A4,A5}; 

float voltage=0.0; 

float totalpower=0.0; 

float energy[NumofSensors]={0.0,0.0,0.0,0.0}; 

float previousenergy[]={0.0,0.0,0.0,0.0}; 

int homestate=0; 

float current[NumofSensors]={0.0,0.0,0.0,0.0}; 

float power[NumofSensors]={0.0,0.0,0.0,0.0}; 

int calcurrent=2931; //calibration value 

float battery_state=0.0; 

float prevenergy=0.0; 
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unsigned long lastSample=0.0; 

unsigned long timeFinishedSetup = 0; 

StopWatch sw_secs(StopWatch::SECONDS); 

float elapsedtime; 

 

void WiFi_Setup(){ 

  WiFi.begin(WIFI_SSID, WIFI_PASSWORD); //try to connect with wifi 

  Serial.print("Connecting to "); 

  Serial.print(WIFI_SSID); 

  while (WiFi.status() != WL_CONNECTED) { 

    Serial.print("."); 

    delay(500); 

  } 

  Serial.println(); 

  Serial.print("Connected to "); 

  Serial.println(WIFI_SSID); 

  Serial.print("IP Address is : "); 

  Serial.println(WiFi.localIP());  

} 

 

void Firebase_Setup(){ 

  Serial.println ("firebase is running"); 

  Firebase.begin(FIREBASE_HOST, FIREBASE_AUTH); // connect to firebase 

  Serial.println ("firebase connection completed"); 

} 

 

void GetRelayStatus(){ 

 

  homestate=Firebase.getInt("Home_State/State");   

  if(homestate==0){ 

     digitalWrite(RelayPins[0], LOW); 
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     digitalWrite(RelayPins[1], LOW); 

     digitalWrite(RelayPins[2], LOW); 

     Serial.println("Master switch: OFF"); 

  } 

  else if(homestate==1){ 

      

     for(int i=0;i<NumofDevices;i++){ 

     String path="Device_States/Device"+ String(i+1); 

      RelayStatus[i]=Firebase.getString(path); 

          if (RelayStatus[i] == "ON") { // compare the input of led status received from firebase                  

          digitalWrite(RelayPins[i], HIGH); // turn led ON 

        } 

        else if (RelayStatus[i] == "OFF") { // compare the input of led status received from firebase 

          digitalWrite(RelayPins[i], LOW); // turn led OFF 

        } 

        else { 

            Serial.println("Wrong Credential! Please send ON/OFF"); 

        } 

       

    }; 

  } 

   

  } 

 

 

 

void GetSensorData(){ 

  float analog_val=0.0; 

  float temp_vol=0.0; 

  float temp_curr=0.0; 

  //getting voltage sensor data 
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  for(int i=0; i<100;i++){ 

    analog_val = analogRead (VoltagePin); 

    temp_vol= temp_vol+(analog_val)/231;    

  } 

  Serial.print("analog value voltage:"); 

  Serial.println(analog_val); 

  voltage=(temp_vol/100); 

  Serial.println ("Voltage sensor value: "+ String(voltage) + " volts"); 

  //getting current sensor's data  

  for(int i=0;i<NumofSensors;i++){ 

    float temp_curr=0.0; 

   for(int j=0; j<100;j++){ 

    analog_val = analogRead (CurrentPins[i]); 

    temp_curr = temp_curr+(analog_val-calcurrent)*(2); 

     

   }  

    current[i] = (temp_curr/100)-80; 

    for (int k=1;k<NumofSensors;k++){ 

    if((current[k]<0)||(current[k]<7)){ 

              current[k]=0; 

              }    

      }     

      if(current[0]<-4000){ 

              current[0]=0; 

              }    

    Serial.println ("Current sensor " + String(i) + " value: "+ String(current[i]) + " mA"); 

  } 

  if(current[0]<0) 

  {battery_state=1.1; 

  }   

  else 
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  {battery_state=0.1;} 

  } 

 

 

  void GetEnergyConsumed(int time){  

      Serial.println(String(power[0])+" Watts"); 

    for(int i=0; i<NumofSensors;i++){ 

      energy[i]=(current[i]*voltage*time)/1000; 

      previousenergy[i]= previousenergy[i]+energy[i]; 

      power[i]=current[i]*voltage/1000; 

      Serial.print("Energy "+String(i)+": "); 

      Serial.println(previousenergy[i]); 

      Serial.print("Power "+String(i)+": "); 

      Serial.println(String(power[i])+" Watts"); 

       } 

  } 

 

void PublishSensorData(){ 

  for(int i=0;i<NumofSensors;i++){ 

    String currpath="/Sensor_Data/Current_Sensor"+String(i); 

    String powerpath="/Power_Data/Device"+String(i); 

    String energypath="/Energy_Data/Device"+String(i); 

    Firebase.set (currpath,current[i]); 

    GetRelayStatus(); 

    GetSensorData(); 

    elapsedtime=sw_secs.elapsed()-elapsedtime; 

    GetEnergyConsumed(elapsedtime); 

    elapsedtime=sw_secs.elapsed(); 

    Firebase.set(powerpath, power[i]); 

    GetRelayStatus(); 

    GetSensorData(); 
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    elapsedtime=sw_secs.elapsed()-elapsedtime; 

    GetEnergyConsumed(elapsedtime); 

    elapsedtime=sw_secs.elapsed(); 

    Firebase.set(energypath, previousenergy[i]); 

    GetRelayStatus(); 

    GetSensorData(); 

    elapsedtime=sw_secs.elapsed()-elapsedtime; 

    GetEnergyConsumed(elapsedtime); 

    elapsedtime=sw_secs.elapsed(); 

    } 

    Firebase.set("/Power_Data/Battery_State",battery_state); 

 

} 

 

void setup() { 

 

  Serial.begin(9600); 

  delay(1000); 

 

  for(int i=0; i<NumofSensors;i++){ 

    pinMode(RelayPins[i], OUTPUT);  

    pinMode(CurrentPins[i], INPUT);  

  }          

  pinMode (VoltagePin,INPUT);    

  WiFi_Setup(); 

 

  Firebase_Setup(); 

  digitalWrite(RelayPins[2], HIGH); 

  digitalWrite(RelayPins[1], HIGH); 

  digitalWrite(RelayPins[0], HIGH); 

  previousenergy[0]=Firebase.getInt("Energy_Data/Device0");   
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  Serial.println(previousenergy[0]); 

  sw_secs.start(); 

   

 

} 

void loop() { 

   GetRelayStatus(); 

   Serial.println(RelayStatus[0]); 

   Serial.println(RelayStatus[1]); 

   Serial.println(RelayStatus[2]); 

   Serial.println(RelayStatus[3]); 

    GetSensorData(); 

    elapsedtime=sw_secs.elapsed()-elapsedtime; 

    GetEnergyConsumed(elapsedtime); 

    elapsedtime=sw_secs.elapsed(); 

    PublishSensorData(); 

 

} 
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Appendix 

 Drive Link for the project file of mobile application code. 

 

1. https://drive.google.com/drive/folders/1-

7hcNdOwTRU2JFdnn4BxpQbD1ymXUaAK?usp=sharing  

2. https://docs.google.com/document/d/1-_wit7GwwsHt-

AcRfQbThK2yaiR80Bwdnv6igTFd7tE/edit?usp=sharing 

 

 

https://drive.google.com/drive/folders/1-7hcNdOwTRU2JFdnn4BxpQbD1ymXUaAK?usp=sharing
https://drive.google.com/drive/folders/1-7hcNdOwTRU2JFdnn4BxpQbD1ymXUaAK?usp=sharing
https://docs.google.com/document/d/1-_wit7GwwsHt-AcRfQbThK2yaiR80Bwdnv6igTFd7tE/edit?usp=sharing
https://docs.google.com/document/d/1-_wit7GwwsHt-AcRfQbThK2yaiR80Bwdnv6igTFd7tE/edit?usp=sharing

