
 

 

 

D
E

-4
1

 (E
E

)           A
B

D
U

L
 R

E
H

M
A

N
,       A

Y
E

S
H

A
,     M

A
S

H
H

O
O

D
 

 

 

 

 

 

 

 

  

FPGA IMPLEMENTATION OF CNN FOR LUNG 

CANCER DIAGNOSIS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COLLEGE OF 

ELECTRICAL AND MECHANICAL ENGINEERING 

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY 

RAWALPINDI 

2023 
 



 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

          DE-41 EE 

PROJECT REPORT 

 
FPGA IMPLEMENTATION OF CNN FOR LUNG CANCER 

DIAGNOSIS 

 

 
Submitted to the Department of Electrical Engineering 

in partial fulfillment of the requirements 

for the degree of 

Bachelor of Engineering 

in 

Electrical 

2023 

 

 

 

     Submitted By: 

 

              Abdul Rehman Faisal 

          Ayesha Babar 

             Mashhood Ahmad Khan 

              
 

 

 



 

 

 

 

 

 

CERTIFICATE OF APPROVAL 

 

It is to certify that the project “FPGA IMPLEMENTATION OF CNN FOR LUNG 

CANCER DIAGNOSIS” is done by NS Abdul Rehman Faisal, NS Mashhood 

Ahmad Khan, and NS Ayesha Babar under the supervision of Dr. Shahzad Amin 

Sheikh and A/P Kamran Aziz Bhatti. 

 

Submission: This project is submitted to the College of Electrical and Mechanical 

Engineering (Peshawar Road Rawalpindi), National University of Sciences and 

Technology, Pakistan, as part of the Bachelor of Electrical Engineering degree program. 

 

Students: 

1. Abdul Rehman Faisal 

NUST ID: _______________________ Signature: ___________________ 

2. Ayesha Babar 

NUST ID: _______________________ Signature: ___________________ 

3. Mashhood Ahmad Khan 

NUST ID: _______________________ Signature: ___________________ 

 

Approved By: 

Project Supervisor: _________________________ Date: ______________ 

A/P Kamran Aziz Bhatti 

Project Co-Supervisor: ______________________ Date: ______________ 

Dr. Shahzad Amin Sheikh 

 

 

 

 

 

 



 

 

 

DECLARATION 
 

 

We thus certify that no part of this Project Thesis has been submitted in support of an 

application for another degree or qualification from this or any other university or other 

educational institution. We are totally liable for any disciplinary action taken against us 

based on the nature of the proved offence, including the revocation of our degree.” 

 

 

1. Abdul Rehman Faisal ____________________________________ 

 

2. Ayesha Babar ____________________________________ 

 

3. Mashhood Ahmad Khan ____________________________________ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

COPYRIGHT STATEMENT 

 
 

● “The student author retains all co-authorship rights in the text of this thesis. Only in 

line with the author's instructions and at the NUST College of E&ME Library may 

copies (by any method) be produced in whole or in excerpts. To learn more, speak with 

the Librarian. Any copies that are created must include this page as an integral 

component of the document. The author's written permission is required for any further 

copies of copies prepared in line with these instructions. 

 

● Intellectual property rights described in this thesis belong to NUST College of 

E&ME, subject to any prior agreements to the contrary, and may not be made available 

to third parties without permission in writing from the College of E&ME, which will 

prescribe the terms and conditions of any such agreements. 

 

● Information on how disclosures and exploitation might occur is accessible from the 

library of NUST College of E&ME, Rawalpindi.” 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

ACKNOWLEDGEMENTS 

 
 
 

First and foremost, we are humbled and grateful for the blessings and guidance 

bestowed upon us by Allah Almighty. It is his divine intervention and blessings that we 

have been able to overcome numerous challenges throughout our project. 

 

We are deeply indebted to our supervisors; Sir Kamran Aziz Bhatti and Sir Shahzad 

Amin Sheikh whose continuous guidance, expertise, and patience have been 

instrumental in bringing this project to fruition. 

 

Lastly, we are immensely grateful to our families who acted as our support systems and 

their unwavering love, encouragement, and sacrifices have been the foundation upon 

which we successfully completed this project.



i 

 

ABSTRACT 

 

 
Lung cancer is a fatal disease taking more than 1.8 million lives every year, 

necessitating timely and accurate diagnosis for effective treatment. This research 

investigates the utility of deep learning models to diagnose lung cancer and its hardware 

implementation on an FPGA (Field Programmable Gate Array). Notably, this research 

is distinguished due to the utilization of a dataset consisting of bone scans. The dataset 

comprises bone scans of more than 3247 patients, where some cases exhibit bone 

metastasis. This dataset undergoes stages of comprehensive processing to standardize 

image resolutions and remove any potential artifacts. Subsequently, CNN 

(Convolutional Neural Network) models are trained and evaluated using these bone 

scans in order to extract relevant features and classify them according to the presence 

or absence of metastatic lung cancer. The performance of the four CNN architectures 

and hyperparameter configurations is evaluated using accuracy, precision, recall, and 

F1 score metrics. A hardware implementation of the trained model is realized on an 

FPGA due to its efficient and parallel processing capability, enabling effective 

diagnosis. In the latter chapters, this thesis evaluates the performance and 

computational efficiency of FPGA, considering factors such as resource utilization, 

inference speed, and power consumption. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ii 

 

SUSTAINABLE DEVELOPMENT GOALS 
 

 

Pakistan affirmed its commitment to the 2030 Agenda for Sustainable Development by 

adopting the Sustainable Development Goals (SDGs) as its own national development 

agenda through a unanimous National Assembly Resolution in 2016. Since then, the 

country has made considerable progress by mainstreaming these goals in national 

policies and strategies and developing an institutional framework for SDGs 

implementation in Pakistan. 

 

Our project is working towards the following SDGs: 

 

 

 

 

 

Ensure healthy lives and promote well-being for all, by 

making healthcare more accessible. 

 

 

 

 

  

 

 

Build resilient infrastructure, promote inclusive and 

sustainable industrialization, foster innovation. 

 

 

 

 

 

 

 

 

 

Reducing inequality within country by providing affordable 

healthcare to all regardless of income/status. 

 

 

 

 

 



iii 

 

TABLE OF CONTENTS 
 

ACKNOWLEDGMENTS ................................................................................................. i  

ABSTRACT ...................................................................................................................... ii  

SUSTAINABLE DEVELOPMENT GOALS……………………….………..…………..iii 

TABLE OF CONTENTS ....................................................................................................iv  

LIST OF FIGURES ............................................................................................................v  

LIST OF ABBREVIATIONS.............................................................................................vii 

Chapter 1 – INTRODUCTION ……………………………...............................................1 

1.1 Background Information……………………………………………………...1 

1.2 Types of Lung Cancer……………………………………………………...…1 

1.3 Diagnostic Techniques………………………………………………………. 3 

1.3.1 Introduction………………………………………………………3 

1.3.2 Invasive Diagnostic Procedures………………………………….3 

1.3.3 Non-Invasive Diagnostic Procedures………………………….....5 

             1.4 Inspecting the Utility of Bone scans in Lung Cancer Diagnosis……………..7 

Chapter 2 – CANCER DIAGNOSIS AND AI………………...….................................... 9  

2.1 Introduction.......................................................................................................9  

2.2 Comparison between AI and Traditional Medicine…………………………...9 

2.3 Use of Convolutional Neural Networks in Lung Cancer Diagnosis…………..9 

Chapter 3 – Data Acquisition and Preprocessing................................................................11 

3.1 Introduction………... ………..........................................................................11 

3.2 Acquisition of Bone scans…………………………………………………....11 

3.3 Data Preprocessing…………………………………………………………...12 

3.3.1 Image Resizing .................................................................................12 

3.3.2 Image Enhancement……………………………………………......12 

3.3.2.1 Noise Reduction………………………………………....13 

3.3.2.2 Image Sharpening………………………………..............13 

             3.3.3 Data Augmentation………………………………………………………...13 

             3.3.4 Training and Testing Datasets……………………………..........................14 

Chapter 4 – DEEP LEARNING MODEL ARCHITECTURES …………………………15  

4.1 Introduction…………………………………………………………………..15 

4.2 Components of a basic Convolutional Neural Network……………………..15 

4.2.1 Convolutional Layer……………………………………………….15 

4.2.2 Pooling Layer……………………………………………………...16 

4.2.3 Flattening Layer……………………………………………………16 

4.2.4 Fully Connected Layer……………………………………………..16 

4.2.5 Dropout Layer……………………………………………………...16 

4.3CNN Architectures……………………………………………………………16 

4.3.1 Inception-V3…………………………………………………….....17 

4.3.2 ConvNeXt………………………………………………………….18 

4.3.3 DenseNet169………………………………………………………19 

4.3.4 EfficientNet………………………………………………………..20 

Chapter 5 – CODE DESCRIPTION.……………………..……………………………...22  

5.1 Platform used………………………………………………………………...22 



iv 

 

5.2 Libraries used………………………………………………………………...22 

5.2.1 Tensorflow…………………………………………………………22 

5.2.2 Keras……………………………………………………………….22 

5.2.3 OpenCv…………………………………………………………….22 

5.2.4 Scikit learn…………………………………………………………22 

5.2.5 Matplotlib.pyplot………………………………………………......23 

5.2.6 Numpy…………………………………………………………......23 

5.2.7 OS………………………………………………………………….23 

5.2.8 Shutil……………………………………………………………….23 

5.2.9 Zip file………………………………………………………….......23 

5.2.10 PIL……………………………………………………………......23 

5.3 Code Explanation…………………………………………………………….23 

5.3.1 Extract Label Information………………………………………….24 

5.3.2 Extract Folder Information…………………………………………24 

5.3.3 Train Test Separation Folder……………………………………….25 

5.3.4 Classes Separation Folder………………………………………….26 

5.3.5 Median Height Calculation Function………………………………26 

5.3.6 Preprocessing Function……………………………………………27 

5.3.7 Data Augmentation and making the CNN model…………………28 

5.3.8 Adding custom layers and training the model…………………….29 

5.3.9 Activation Function……………………………………………….29 

5.3.10 Performance Metrics……………………………………………..29 

5.3.11 Make Test data function………………………………………….33 

5.3.12 ImageToNumpy function………………………………………...34 

5.3.13 Training of Resized Neural Network to be implemented on FPGA.35 

Chapter 6 – IMPLEMENTATION ON FPGA……………………………………………36 

6.1 Introduction…………………………………………………………………..36 

6.2 Architecture of a neuron……………………………………………………...36 

6.3 Layers………………………………………………………………………...38 

6.4 Test Data……………………………………………………………………...38 

6.5 Additional Information……………………………………………………….40 

6.6 Resource Utilization………………………………………………………….40 

6.7 Verilog Code…………………………………………………………………41 

Chapter 7 –  CONCLUSIONS AND FUTURE WORK…………………………………46 

7.1 Block Diagram……………………………………………………………….46 

7.2 Constraints and discussion…………………………………………………...46 

7.3 Results………………………………………………………………………..48 

7.4 Future work………………………………………………………………......48 

References………………………………………………………………………………..50 

Plagiarism Report………………………………………………………………………...51 

  

 

  

 

 



v 

 

 

LIST OF FIGURES 

 
Figure 1.1 Bone scan of SCLC…………………………………………………2 

Figure 1.2 Bone scan of Adenocarcinoma……………………………………...2 

Figure 1.3 Bone scan of Small cell carcinoma…………………………………2 

Figure 1.4 Bone scan of Large cell carcinoma…………………………………2 

Figure 1.5 Needle Biopsy………………………………………………………4 

Figure 1.6 Bronchoscopy……………………………………………………….4 

Figure 1.7 Thoracoscopy……………………………………………………….4 

Figure 1.8 Mediastinoscopy…………………………………………………….4 

Figure 1.9 Chest X Ray………………………………………………………....6 

Figure 1.10 CT Scan……………………………………………………………6 

Figure 1.11 PET Scan…………………………………………………………..6 

Figure 1.12 Sputum Cytology…………………………………………………..7 

Figure 1.13 Bone scans…………………………………………………………7 

Figure 2.1 Convolutional layer…………………………………………………10 

Figure 4.1 Basic CNN model…………………………………………………...15 

Figure 4.2 InceptionV3 architecture…………………………………………....18 

Figure 4.3 ConvNeXt architecture……………………………………………...19 

Figure 4.4 DenseNet architecture……………………………………………….20 

Figure 5.1 ReLU activation function and its derivative…………………………21 

Figure 5.2 Sigmoid activation function and its derivative …………………...…31 

Figure 5.3 Tanh activation function and its derivative…………………………..32 

Figure 5.4 Classification Report Example……………………………………….32 

Figure 6.1 Architecture of a neuron………………………………………….......36 

Figure 6.2 Resource Utilization table of a neuron with data width of 16………...37 

Figure 6.3 Performance of activation functions………………………………….37 

Figure 6.4 Layer Architecture……………………………………………………38 

Figure 6.5 First 23 pixel values converted into a text file………………………..39 

Figure 6.6 DMA controller and processor………………………………………..39 

Figure 6.7 AXI4 stream interface………………………………………………...39 

Figure 6.8 Equations of a neuron…………………………………………………40 

Figure 6.9 Implementation report of 100 neurons with sigmoid depth of 5……....41 



vi 

 

Figure 6.10 Implementation table of 170 neurons………………………………...46 

Figure 7.1 Block diagram of FPGA NN………………………………………….46 

Figure 7.2 Cloud of FPGA proposed architecture………………………………...47 

Figure 7.3 Result Analysis………………………………………………………...48 

Figure 7.4 Zybo Board…………………………………………………………….48 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 

 

 

LIST OF ABBREVIATIONS  
 

SCLC                Small cell lung cancer 

AI                     Artificial Intelligence 

CAD                 Computer-Aided Diagnostics 

CNN                 Convolutional Neural Networks 

DL                    Deep Learning 

CT Scan           Computed Tomography Scan 

FPGA               Field Programmable Gate Array 

ReLU               Rectified Linear Unit 

DNN                Deep Neural Network 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 

 

CHAPTER 1 – INTRODUCTION 

 
1.1. Background Information 

 

Cancer has emerged as a significant contributor to global mortality, affecting 

approximately one in every six individuals annually. With an estimated 10 million 

deaths occurring each year, cancer stands as a prominent factor in the loss of human 

lives worldwide. Cancer is a complex group of diseases characterized by the 

uncontrolled growth and spread of abnormal cells in the body. Unlike normal cells in 

the body which grow, divide, and eventually die in a regulated manner; cancer cells do 

not follow this orderly process and continue to divide and grow uncontrollably, forming 

a mass of cells called Tumour.   

 

Lung cancer stands as the foremost contributor to cancer-related fatalities, accounting 

for approximately 1.5 million global deaths annually. Metastasis is the primary factor 

behind the overwhelming majority of lung cancer deaths; it refers to the process by 

which cancer cells break away from the original tumour in a certain organ (such as the 

lungs) and spread to other parts of the body through the bloodstream or lymphatic 

system. These cancer cells can then form new tumours, known as metastatic tumours, 

in different organs or tissues, contributing to the progression and severity of the disease. 

The spread of cancer cells to other parts of the body hampers treatment effectiveness 

and leads to severe complications, resulting in significant loss of life. The diagnosis of 

cancer at early stages is important to increase the chances of successful treatment and 

prognosis; enabling less aggressive and invasive treatment options, reducing potential 

side effects, and lowering the cost of cancer treatment. Detecting skeletal metastasis in 

its early stages is vital to decrease morbidity and disease staging, outcome prediction 

and treatment planning. 

 

1.2. Types of Lung Cancers 

Lung cancer is a type of cancer that originates in the lungs and may spread to lymph 

nodes or other parts of the body. It is characterized by the uncontrolled growth of 

abnormal cells in lung tissues which can interfere with normal lung function. 

Lung Cancer can be mainly divided into two types: 

i) Small cell lung cancer (SCLC): These are also classed as neuroendocrine 

tumours since they originate from the neuroendocrine tissue of the lungs. 

These are caused by smoking and account for 15-20 % of lung cancers 

diagnosed. 

ii) Non-small cell lung cancer (NSCLC): These are the most common type of 

lung cancer accounting for at least 80-85% of all lung cancers diagnosed. It 

has several types: 



2 

 

a. Adenocarcinoma: It often begins from the peripheral regions of the 

lungs and is associated with smoking. 

b. Squamous cell carcinoma: It is also known as epidermoid carcinoma 

and originates from the airways of the lungs. 

c. Large cell carcinoma: It is the least common subtype of NSCLC and 

can originate from any part of the lungs. 

 

 

 
Figure1.1. Bone scan of SCLC 

 

 

 
Figure1.2. Bone scan of adenocarcinoma 

 

 

 
Figure1.3. Bone scan of small cell carcinoma 

 

 
Figure1.4. Bone scan of large cell carcinoma 



3 

 

1.3. Diagnostic techniques 
 

1.3.1. Introduction 

 

The primary approaches utilized for diagnosing bone metastasis predominately 

rely on noninvasive diagnostic imaging techniques. The invasive procedures to 

diagnose lung cancer are used less often due to the complications and patient 

discomfort associated with them. These procedures involve higher costs as 

compared to non-invasive techniques. The diagnostic yield of non-invasive 

techniques such as CT scans or bone scans is also considered better than that of 

invasive procedures. In many cases, non-invasive techniques provide sufficient 

diagnostic information without the need for invasive procedures. 

 

1.3.2. Invasive Diagnostic Procedures 

 

Here are some of the invasive diagnostic procedures used in diagnosing Lung 

Cancer: 

i) Needle biopsy: It is also known as percutaneous biopsy because it involves the 

insertion of the needle through the skin into the lung tissue to extract sample 

tissue for analysis. 

 It can be further classified into: 

a. Transthoracic Needle Biopsy 

b. Endobronchial Ultrasound-Guided Biopsy (EBUS) 

c. Transbronchial Needle Aspiration (TBNA) 

 

ii) Bronchoscopy: It is a procedure to allow direct visualization of the airways by 

inserting a thin, flexible bronchoscope (tube-like) through the mouth or nose of 

the patient. 

 

iii) Thoracoscopy: It is a video-assisted thoracoscopic surgery involving the 

insertion of a thoracoscope (a thin tube with a camera) into the small incisions 

made in the chest wall. This technique allows the physician to access the lungs 

and pleura in the chest. 

 

 

iv) Mediastinoscopy: It is a surgical procedure involving the insertion of a scope 

to examine the mediastinum (the space between the lungs) and obtain tissue 

samples from lymph nodes.   

 

 

 

 

 

 



4 

 

 

 

Figure1.5. Needle biopsy 

 

 

 

Figure1.6. Bronchoscopy 

 

 

 

Figure1.7. Thoracoscopy 

 

 

 

Figure1.8. Mediastinoscopy 



5 

 

1.3.3. Non-invasive Diagnostic Procedures 
 

These are commonly used to diagnose lung cancer and do not involve the insertion 

of instruments into the body of the patient. Some of the techniques are listed below: 

 

i) Imaging tests 

a. Chest X-ray: It uses low levels of radiation to create images 

of the lungs. It can detect abnormalities in the lungs such as 

masses or nodules. 

b. Computerized tomography (CT): CT scans provide cross-

sectional images of the chest to help detect smaller lesions 

and the size, location, and shape of the tumour. 

c. Magnetic Resonance Imaging (MRI): It is an imaging test 

that assesses the involvement of structures nearby lesions. 

It uses powerful magnets to generate detailed images of the 

lungs.  

d. Bone scans: Bone scans are the primary tests to diagnose 

lung cancer and determine bone metastasis. 

 

ii) Positron Emission Tomography: This imaging test utilizes a radioactive 

tracer that is injected into the body to detect areas of high metabolic activity. 

Cancer cells have increased metabolic activity and PET scans can help 

detect tumours and metastasis. 

 

iii) Sputum Cytology: This test utilizes sputum samples coughed up from the 

lungs of the patient. This sputum is studied under a microscope to detect any 

cancerous or precancerous changes in the lungs. 

 

iv) Blood tests: These tests are employed to identify any biomarkers associated with 

lung cancer such as carcinoembryonic antigen (CEA) or other genetic 

mutations. 

 

v) Liquid Biopsy: This test involves testing the body fluids or urine of the patient 

to help identify any circulating tumour cells (CTCs) or fragments of tumour 

DNA. 

 

 

The following images below show how lung cancer appears under various non-invasive 

diagnostic procedures. 

 



6 

 

 
Figure1.9. Chest X-ray 

 

 
Figure1.10. CT Scan 

 

 
Figure1.11. PET Scan 

 



7 

 

 
Figure1.12. Sputum Cytology 

 

 
Figure1.13. Bone Scans 

 

 

1.4. Inspecting the Utility of bone scans in Lung Cancer Diagnosis 

 

Bone scans (skeletal scintigraphy) with technetium-99 methylene phosphonic acid are 

employed in this project due to their ability to provide a holistic assessment of the entire 

skeletal system enabling the detection of metastasis in multiple bone sites 

simultaneously. The procedure involves injecting a small amount of a radioactive 

substance into the bloodstream, which gathers in areas of increased bone activity, such 

as sites affected by metastatic cancer. Special cameras then detect the emitted radiation 

and create detailed images of the skeleton, helping identify any abnormal areas. Bone 

scans have the ability to detect both primary cancers and bone metastasis which is a 

cancer that has spread to bones from other parts of the body. 

 

In contrast, CT and PET scans have limitations in capturing the entire skeletal system 

in a single image. Additionally, Bone scans have high sensitivity for detecting bone 

metastasis, even in the early stages or when lesions are small. This is particularly 

important for diagnosing metastatic bone involvement, as CT and PET scans may not 

always be as sensitive in detecting such lesions. Bone scans have relatively higher 

sensitivity, specificity, positive predictive value, and negative predictive value than 



8 

 

CT/PET scans.  

 

Moreover, bone scans can also be performed relatively quickly and are generally well-

tolerated by patients. Due to more holistic and accurate results provided by bone scans 

as compared to other diagnostic techniques, bone scans have been utilized in this 

research for diagnosing lung cancer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



9 

 

 

CHAPTER 2 – CANCER DIAGNOSIS AND AI 
 

 

2.1. Introduction 

 

The use of artificial intelligence in the diagnosis and prognosis of lung cancer has great 

potential in the field of medical sciences. Artificial intelligence is a tool that 

pathologists can utilize to analyze large amounts of patient data. However, it is 

important to note that AI in cancer diagnosis is still evolving and its usage in clinical 

diagnosis and prognosis requires careful validation and integration with doctor’s 

judgment. While AI has the potential to improve the accuracy and efficiency of lung 

cancer diagnosis, it is currently used as an auxiliary tool to help healthcare professionals 

rather than replace their expertise. 

 

2.2. Comparison between AI and Traditional Medicine  

 

Traditional medicine is a term that refers to the conventional approach to medicine that 

completely depends on the clinical expertise and discretion of healthcare professionals 

to diagnose lung cancer. It does not involve the integration of AI or advanced 

technologies. 

 

Computer Aided Diagnosis (CAD) is a term that refers to the use of AI or computer 

technologies to assist and aid healthcare professionals to diagnose diseases and predict 

prognosis. 

 

AI algorithms have shown favorable results in achieving high levels of objectivity and 

accuracy in lung cancer diagnosis. AI algorithms can detect subtle abnormalities in lung 

cancer diagnosis that may be overlooked by pathologists, reducing the rates of false 

positive and false negative outcomes.  

 

The time response of AI is better than that of healthcare professionals since it can 

analyze large amounts of data such as patient records or medical images in a shorter 

span of time. AI can rapidly learn features and patterns that may be indicative of lung 

cancer, aiding in early diagnosis and treatment of lung cancer. 

 

AI systems can provide decision support to healthcare professionals in making more 

informed diagnosis and provide prognosis more efficiently. 

 

 

2.3. Use of Convolutional Neural Networks in lung cancer diagnosis 

 

A convolutional neural network (CNN) is a subset of machine learning particularly 



10 

 

designed for visual inputs such as videos and images. It is a kind of deep learning 

architecture that is specifically involved in pixel manipulation and image classification. 

The architecture of CNN is inspired by the visual cortex of the human brain which 

consists of multiple nodes each performing a particular operation on visual input. 

 

CNNs have the ability to detect and locate lung nodules which are small round lesions 

indicative of lung cancer. CNNs can be trained to identify such nodules in bone scans 

and classify bone scan images as cancerous and non-cancerous, assisting radiologists 

in the early diagnosis of lung cancer. 

 

Each layer in a CNN architecture plays a crucial role in extracting meaningful features 

and aiding in detecting and classifying lung cancer accurately. 

 

The input layer in a CNN architecture receives medical image data (bone scans in this 

research). The image data prior to being fed into the input layer is preprocessed to 

normalize pixel values. 

 

Convolutional layers consist of filters or kernels that perform the operation of 

convolution on each input image. These filters tend to extract important features such 

as edges, shape, and location of tumour. 

 

 

 

Figure 2.1. Convolutional Layer 

 

 

Activation functions such as ReLU add non-linearity into the CNN architecture to help 

capture intricate relationships within the extracted features and enable the CNN to 

understand the complex patterns associated with lung cancer. 

 

Pooling layers tend to reduce the spatial dimensions of feature maps and retain the most 

salient features that contribute to lung cancer diagnosis. 

 

Fully connected layers, in the end, produce the classification results from the learned 

features and help determine whether the patient has cancer. The details of CNN are 

further explained in the latter chapters of this thesis. 



11 

 

CHAPTER 3 – DATA ACQUISITION AND PRE-PROCESSING  
 

 

3.1. Introduction 

 

Image preprocessing refers to a series of operations or techniques applied to an image 

before it is used for further analysis or processing. It involves manipulating the image 

data to enhance its quality, remove noise or artifacts, standardize the format or size, and 

prepare it for subsequent tasks such as feature extraction, classification, or object 

detection. Image Processing of bone scans is a crucial step in this project to enhance 

the quality of data being fed into the CNN models for it to accurately diagnose and 

classify cancer. Image processing techniques are employed to enhance the bone scan 

images to improve their clarity, contrast, and visibility of lung structures.  Moreover, 

Image processing algorithms are used to isolate the regions of interest from the bone 

scan images. By specifically focusing on these regions, CNN models can prioritize the 

analysis of lung-related features, effectively reducing irrelevant information and noise 

that may be present in the bone scans. Image processing techniques also assist in 

extracting relevant features from the bone scan images that are indicative of lung 

cancer. These techniques include edge detection, texture analysis, or morphological 

operations to identify potential tumour regions. These extracted features are then 

directly fed into CNN models aiding in the detection and classification of lung cancer. 

Image processing also allows us to augment the datasets by applying transformations 

such as rotation, scaling, or mirroring the bone scan images. This helps to increase the 

diversity and variability of the training dataset, enabling CNN models to generalize 

better and improve their accuracy in predicting cancer. By applying image processing 

techniques to bone scans, CNN models can benefit from enhanced image quality, 

focused analysis on lung regions, extraction of relevant features, and increased training 

data variability which then increases their accuracy to detect lung cancers. 

 

3.2. Acquisition of Bone Scans 

 

A benchmark dataset is used for the purpose of research for this project. BS-80K is the 

first open-source bone scan dataset consisting of 82544 bone scan images associated 

with 3247 patients from the West China Hospital. In BS-80K, each patient provides two 

whole-body bone scan images corresponding to the anterior and posterior views. For 

each view, there are 13 anatomical slices of body parts susceptible to bone metastasis. 

For this project, chest slices are used to train CNN models because lungs are enclosed 

in the chest and this would result in a more precise diagnostic conclusion. 

 

This project utilizes four different angles of chest bone scan including anterior and 

posterior views for the right and left sides of the chest to comprehensively analyze any 

bone metastasis. Four different CNN models are employed on four angles of the chest 

bone scan to evaluate potential metastatic lesions on four sides of the chest. By 



12 

 

examining the scans from different angles, the model can capture a broader range of 

features and patterns that may indicate the presence of metastasis. The output of the 

CNN model can assist radiologists and oncologists in the early detection and accurate 

characterization of metastatic lesions, enabling timely intervention and appropriate 

treatment planning for patients. 

 

 The anterior view of the chest bone scan includes the front portion of the chest 

capturing the heart, lungs, ribs, sternum, and clavicle.  This anterior angle is further 

divided into right anterior and left anterior chest bone scans. InceptionV3 is applied on 

the left anterior part of the chest bone scans whereas ConvNeXt is applied on the right 

anterior part of the chest bone scans to identify and localize any potential lesions in the 

anterior part of the chest. 

 

The posterior view of a chest bone scan captures the back portion of the chest, providing 

an assessment of structures such as the spine, ribs, lungs, and surrounding tissues. This 

view allows for the evaluation of potential abnormalities or pathologies in the posterior 

aspect of the chest. The posterior angle is further divided into left posterior and right 

posterior chest bone scans. DenseNet-169 is applied on the left posterior part of the 

chest bone scans whereas EfficientNet is applied on the right posterior part of the chest 

bone scans to identify and localize any potential lesions in the posterior part of the chest. 

 

 

3.3. Data Preprocessing  

 

3.3.1. Image resizing  

 

Image resizing is a crucial preprocessing step performed to ensure uniform 

dimensions of bone scan images prior to feeding them into CNN models. By 

resizing the images, they are brought to a consistent size, enabling compatibility 

and facilitating efficient processing within the CNN models. To achieve 

consistent dimensions in bone scan images, the approach is to calculate the 

median height and width of all the images in the dataset and resize the height 

and width of all the bone scale images to the median value. After resizing, all 

bone scan images have a uniform dimension of 171x75. 

 

3.3.2. Image enhancement  

 

Image enhancement refers to the pixel-manipulating operations that tend to 

enhance the salient features of the images to convey meaningful information. 

This is done in mainly two steps: Noise reduction and Image Sharpening. 

 

 

 



13 

 

3.3.2.1. Noise Reduction 

 

Noise reduction in bone scan images is performed by using Gaussian Filter. The 

Gaussian filter works by convolving the image with a Gaussian kernel, which 

is a bell-shaped function that assigns higher weights to the central pixels and 

gradually decreases the weights as we move away from the center. The Gaussian 

filter helps reduce noise in bone scan images by smoothing out the high-

frequency components that are often associated with noise. By blurring the 

image slightly, the filter effectively reduces the impact of noise while preserving 

the overall structure and important features of the image. 

 

3.3.2.2. Image Sharpening 

 

Image sharpening is performed by applying a High pass Filter to the bone scan 

images. The Laplacian filter enhances fine edges and details by subtracting the 

blurred version of the image from the original image, improving the visibility 

and clarity of potential tumour lesions in the lungs. It amplifies the high-

frequency components resulting in sharper edges and improved image details. 

 

3.3.3. Data Augmentation 

 

This local bone scan dataset had a class imbalance issue where cancerous 

images are fewer than non-cancerous ones. Data Augmentation Techniques are 

employed for cancerous images to replicate them. Furthermore, rotation is 

performed encompassing different orientations and angles at which cancer is 

present, application of shear factor to skew or deform the bone scan images 

around an axis to introduce variations, zoom to introduce variations in the scale 

and size of bone scan images, and horizontal flip to mirror the bone scan images 

along the vertical axis. These augmentation techniques contribute to reducing 

the model’s sensitivity to the exact arrangement or symmetry of lesions in bone 

scans, making the model more robust and generalized to detect cancer 

accurately. 

 

3.3.4. Training and Testing Datasets 

 

The training datasets are employed to train a CNN model to help it learn patterns 

and features in input data and tune its internal parameters to conclude accurate 

predictions. The larger the training dataset allocated to a CNN model; the better 

it learns and generalizes. The testing dataset, on the other hand, is used to 

evaluate the performance of the training dataset. By evaluating the model's 

performance on this unseen data, we can assess its ability to generalize and make 

predictions accurately on new, unseen chest bone scan images. The bone scan 

datasets have been divided into training and testing datasets in the ratio of 



14 

 

0.8:0.2 to provide an estimate of how well the model performs 

in real-world scenarios.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



15 

 

CHAPTER 4 – DEEP LEARNING MODEL ARCHITECTURES 
 

 

4.1. Introduction 

 

Our project uses a model based on a Convolutional Neural Network (CNN) to 

categorize a bone scan as either cancerous or non-cancerous. A CNN is a type of deep 

learning architecture ideal for processing structured grid-like data, such as images. It 

utilizes convolutional layers to automatically learn and extract relevant features from 

the input data. CNNs are especially effective in capturing spatial relationships and 

patterns in the data by applying filters and pooling operations. This enables them to 

achieve excellent performance in image classification tasks. 

 

A basic CNN model is shown below: 

 

 
 

Figure 4.1. Basic CNN model 

 

 

 

4.2. Components of a Basic Convolutional Neural Network 

 

Following are some components of a typical CNN: 

 

4.2.1. Convolutional layer 

 

The convolutional layer takes the input image and applies a filter that moves 

across the image, calculating dot products to extract features. 

 

 

 



16 

 

4.2.2. Pooling layer 

 

The pooling layer reduces the spatial size of the feature map, helping to decrease 

the computational requirements and extract key features that are invariant to 

position and rotation. 

 

4.2.3. Flattening layer 

 

After the convolutional and pooling layers, the flattening layer converts the 

multidimensional feature map into a one-dimensional array, preparing it for the 

fully connected layer. 

 

4.2.4. Fully connected layer 

 

Following the flattening layer, the fully connected layer receives the flattened 

feature vector as input. It connects every neuron in the previous layer to each 

neuron in this layer, allowing for complex combinations of features. This layer 

performs the final computations and produces the output predictions based on 

the learned features. 

 

4.2.5. Dropout layer 

 

To prevent overfitting, the dropout layer randomly ignores a portion of neurons 

during training, temporarily removing their contribution to downstream 

activation and avoiding excessive training. Dropout values range between 0 and 

1 to control the dropout rate. 

 

 

4.3. CNN Architectures 

 

CNN architectures refer to the specific design and structure of Convolutional Neural 

Networks. Over the years, various CNN architectures have been developed, each with 

its own characteristics and strengths. In our project we have experimented with the 

following architectures:  

 

 InceptionV3 

 ConvNext 

 DenseNet169 

 EfficientNet 

 

 
 

 



17 

 

4.3.1 Inception-v3 

 
Inception-v3 is a convolutional neural network architecture, also known as 

GoogLeNet-v3, that is introduced by Google researchers in 2015 as an evolution 

of the original Inception architecture. It is designed to achieve high accuracy 

while being more computationally efficient compared to its predecessors. 

 

Inception-v3 focuses on achieving better computational efficiency compared to 

previous architectures. It achieves this through factorization, efficient use of 

convolutional filters, and reducing the number of operations. 

 

Some notable features and characteristics of Inception-v3: 

 

Inception Modules: Inception-v3 uses a series of Inception modules, which 

consist of parallel convolutional layers of different filter sizes (1x1, 3x3, and 

5x5) along with max pooling. The outputs of these parallel branches are 

concatenated and fed into subsequent layers, allowing the network to capture 

features at different scales. 

 

Factorization: To reduce computational complexity, Inception-v3 employs 

factorization techniques. It replaces large convolutions with a combination of 

smaller convolutions, such as a 5x5 convolution being factorized into two 3x3 

convolutions. This reduces the number of parameters and operations, making 

the network more efficient. 

 

Auxiliary Classifiers: Inception-v3 includes auxiliary classifiers at intermediate 

layers during training. These auxiliary classifiers are used to combat the 

vanishing gradient problem and provide additional supervision. They encourage 

the network to learn more discriminative features and help with gradient 

propagation. 

 

Pre-training on ImageNet: Inception-v3, like many other CNN architectures, is 

typically pre-trained on large-scale datasets such as ImageNet. This pre-training 

provides a good initialization for the network's weights and allows the model to 

leverage learned features before fine-tuning on a specific task or dataset. 

 



18 

 

 
Figure 4.2. Inception-v3 architecture 

 

 

 

 

 

4.3.2. ConvNeXt 

 

ConvNeXt is a convolutional neural network architecture that was proposed in 

2022 by researchers at Facebook AI. It is designed to be a more efficient and 

accurate alternative to Vision Transformers, which are currently state-of-the-art 

for image classification. 

ConvNeXt achieves its efficiency and accuracy by combining several 

architectural innovations, including: 

 

Using depthwise separable convolutions, which allow the network to learn more 

complex features with fewer parameters. 

 

Introducing a new attention mechanism called Swin Transformer, which allows 

the network to better capture long-range dependencies in images. 

 

Using a new training technique called mixup, which helps the network to learn 

more robust features. 

 

ConvNeXt has been shown to achieve state-of-the-art results on a variety of 

image classification benchmarks, including ImageNet and CIFAR-10. It is also 

more efficient than Vision Transformers, making it a more practical choice for 

deployment on mobile devices and other resource-constrained platforms. 

 



19 

 

 
Figure 4.3. ConvNeXt architecture 

 

 

4.3.3. DenseNet169 

 

DenseNet-169 is a variant of the DenseNet architecture proposed by Huang et 

al. in 2017. It is part of a family of CNN architectures designed to address the 

challenges of gradient propagation and parameter efficiency. 

 

DenseNet architectures introduce the concept of dense connections, where each 

layer is connected to every other layer in a feed-forward manner. This dense 

connectivity enables direct information flow between layers, promoting feature 

reuse and enhancing gradient flow throughout the network. 

 

Here are some key features of the DenseNet architectures: 

 

Dense Blocks: DenseNet consists of multiple dense blocks, each composed of 

multiple layers. Within a dense block, each layer is connected to all preceding 

layers, both within the same dense block and across different dense blocks. This 

dense connectivity leads to rich feature representations and facilitates gradient 

propagation. 

 

Bottleneck Layers: DenseNet incorporates bottleneck layers, which reduce the 

number of input feature maps before the 3x3 convolution is applied. The 

bottleneck layers help reduce computational complexity while retaining the 

expressive power of the network. 

 

Transition Layers: Between dense blocks, DenseNet includes transition layers 

that reduce the spatial dimensions of feature maps by using 1x1 convolution and 

average pooling. This compression aids in reducing the number of parameters 

and allows for a smooth transition between different scales of feature 

representations. 

 

Growth Rate: DenseNet introduces a growth rate parameter, which determines 

the number of feature maps produced by each layer within a dense block. The 



20 

 

growth rate controls the capacity of the network and influences the balance 

between model complexity and memory usage. 

 

Global Average Pooling and Classifier: DenseNet architectures often conclude 

with a global average pooling layer, which aggregates spatial information from 

feature maps. This is typically followed by a fully connected layer or a SoftMax 

classifier for the final prediction. 

 

The choice between DenseNet-169, DenseNet-121, or DenseNet-201 depends 

on various factors, including the specific task, available computational 

resources, and the trade-off between model complexity and performance. For 

our project, after experimenting with different DenseNet variants on our dataset 

and evaluating the performance of each, we used DenseNet-169. 

 

 
Figure 4.4. DenseNet architecture 

 

 

4.3.4. EfficientNet 

 

EfficientNet is a family of CNN architectures introduced by Tan et al. in 2019. 

It aims to achieve state-of-the-art performance while being computationally 

efficient and parameter efficient. It stands out for its innovative approach to 

scaling the model dimensions, including depth, width, and resolution, in a 

principled and balanced manner. It utilizes a compound scaling method to 

achieve better performance by carefully scaling these dimensions. 

 



21 

 

EfficientNet achieves its efficiency and accuracy by combining several 

architectural innovations, including: 

 

Using compound scaling: EfficientNet scales the model dimensions in a 

balanced way by applying a compound coefficient to control the depth, width, 

and resolution of the network. This coefficient is derived through a neural 

architecture search and achieves a better trade-off between accuracy and 

computational efficiency. 

 

Introducing a new building block called the mobile inverted bottleneck 

convolution (MBConv), which is designed to be more efficient than traditional 

convolutions. The MBConv block combines depthwise separable convolutions, 

which reduce computational cost, with a bottleneck structure to capture more 

complex features. 

 

 
Figure 4.5. EfficientNet architecture 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



22 

 

CHAPTER 5 – CODE DESCRIPTION AND EXPLANATION 
 

 

5.1. Platform Used 

 

We used Google Colab to write the code of our project. Google Colab is a free cloud-

based platform that provides a Jupyter notebook environment for running and sharing 

code. It offers powerful GPU acceleration, allowing for faster execution of deep 

learning models. Its accessibility, convenience, and collaborative features make it an 

excellent choice for experimentation, learning, and collaborative coding projects. 

 

 

5.2. Libraries Used   

 

We have used the following python libraries in our project: 

 

5.2.1. TensorFlow  

 

An open-source library for numerical computation and machine learning that 

provides a flexible and efficient framework for building and training various 

types of deep learning models. With its extensive ecosystem and powerful 

features, TensorFlow has become one of the most widely used libraries for 

developing deep learning solutions. 

 

5.2.2. Keras 

 

A high-level neural networks API that runs on top of TensorFlow, providing a 

user-friendly interface for building and training deep learning models, including 

CNNs. 

 

5.2.3. OpenCV 

 

A computer vision library that provides tools for image and video processing, 

including functions for pre-processing images before feeding them into CNN 

models. 

 

5.2.4. scikit-learn 

 

A comprehensive machine learning library that includes various tools for 

classification, regression, clustering, and more, including utilities for CNN 

evaluation and preprocessing. We used scikit-learn in our project for its 

evaluation metrics. 

 



23 

 

 

5.2.5. Matplotlib.pyplot 

 

Matplotlib.pyplot is a module within the Matplotlib library that provides a high-

level interface for creating static, animated, and interactive visualizations in 

Python, making it a popular choice for data plotting and exploration tasks. 

 

 

5.2.6. NumPy 

 

A powerful library for numerical computing in Python, offering multi-

dimensional arrays, mathematical operations, linear algebra, and more. 

 

5.2.7. OS 

 

OS provides a way to interact with the operating system, allowing you to 

perform various operations like file and directory manipulation. 

 

5.2.8. Shutil 

 

Shutil offers high-level file and directory operations, providing functions to 

copy, move, and delete files or entire directory trees. 

 

5.2.9. Zipfile  

 

A zip file allows you to create, read, write, and extract files from ZIP archives, 

providing functionalities for compression and decompression. 

 

5.2.10. PIL 

 

PIL (Python Imaging Library) is a library for opening, manipulating, and saving 

many different image file formats, widely used for image processing tasks. 

 

 

5.3. Code Explanation 

 

Code is divided into multiple functions and independent blocks using Jupyter Notebook 

format on Google Colab. The aim is to make the code easier to understand, debug and 

scale according to our needs without compromising the efficiency. 

 

Note that the dataset we used in BS-80K, and is publicly available in a temp.zip file. 

The required contents of this file are directly extracted and used with our code. Since 

our objective is detection of lung cancer, CNN models are only trained for bone scans 



24 

 

of the chest i.e. chestLANT, chestLPOST, chestRANT and chestRPOST. 

5.3.1. Extract Label Function 

 

The function provided allows for the extraction of the label file for a specific 

sub-dataset. To use the function, the name of the sub-dataset must be specified 

as an argument. The label file, which contains image names and their 

corresponding labels, is in text format. Once extracted, the label file is saved 

within our drive. 

 

 

 

 

 

 

 

 

 

 

 

5.3.2. Extract Folder Function 

  

 



25 

 

 

 

This function extracts the whole sub-folder from the temp.zip file. The name of 

the sub-folder needs to be added into the argument of the function when calling 

it. Since the zip file has many sub-folders, this function needs some time to 

execute completely. 

 

 

5.3.3. Train Test Separation Function   

 

 
 

The folders extracted must have sub-folders of train and test. The ratio used to 

separate them randomly is 0.2, which infers that 80% of the data is allotted to 

the train folder and 20% is allotted to the test folder. Train_test_split function 

is used within this function to serve this purpose. The images selected are then 

moved to their folders. 

 

 

 

 

 

 

 

 

 



26 

 

5.3.4. Classes Separation Folder   

 

 
 

To separate the images according to their labels, this function is developed. This 

gives us more control over our data for manual changes and augmentation. Two 

subfolders in the train and test folders are created with names 0 and 1. 1 is for 

cancerous and 0 is for non-cancerous. 

 

 

5.3.5. Median Height Calculation Function    

 

 



27 

 

 

This function calculates the median dimensions of the images inside the train 

folder of a sub-dataset. As the train folder contains 80% of the entire dataset, 

computing the median length from this subset provides a reliable 

approximation. Subsequently, all the images are resized to match the calculated 

median length. 

 

 

5.3.6. Preprocessing Function  

 

 
 

In this function, the images within a subfolder are resized based on the 

previously computed median dimensions. Following the resizing process, 

these images undergo a series of enhancements. First, they are subjected to a 

median filter to reduce noise and improve overall smoothness. Next, a 

Laplacian filter is applied to further enhance the images, emphasizing fine 

details and sharpening them. These refined and sharpened images are then 

utilized to enhance the training of our model, leading to improved 

performance. 

 

 

 

 

 

 

 

 

 

 



28 

 

5.3.7. Data Augmentation and Making the CNN Model 

 

 
 

ImageDataGenerator API is used to augment the training dataset with a 

shear_range, rotation_range, and fill_model. Data augmentation is performed to 

make a model more generalized and prevent it from overfitting. Additionally, 

data augmentation plays a significant role in reducing data bias. In this project, 

where the ratio of cancerous images to non-cancerous images in the dataset is 

approximately 1:10, data augmentation techniques are used to augment the 

number of cancerous samples, effectively increasing their representation in the 

dataset. 

 

 Four different models are imported: Inception-v3, ConvNext, EfficientNet 

and DenseNet. Each model is used to predict a different sub-dataset. These 

specific architectures are known to perform well with data that exhibits 

similarities to the dataset being utilized. The objective is to evaluate each 

architecture on each sub-dataset and analyze their performance. This analysis 

will enable the selection of the model that demonstrates the most favorable 

performance characteristics for each specific sub-dataset. 

  

To provide flexibility in handling variable image sizes, the include_top 

argument is set to false, allowing the model to accommodate different image 

dimensions. In this case, the images being fed to the model have dimensions of 

175x75x3. Since the dataset comprises only two classes (cancerous and non-

cancerous), the num_classes parameter is set to 2. 

The batch_size, an essential hyperparameter, is adjusted through 

experimentation with the model. Initially, a batch size of 32 is used, but it lead 

to overfitting. Consequently, the batch size is reduced to 16 to alleviate the 



29 

 

overfitting issue and improve the model's performance. 

 

 The smaller batches have more noise, and the images are likely to be different 

from each other, which essentially adds a regularization effect on the model. 

Furthermore, using smaller batch sizes means that the weights and biases of the 

model are updated more frequently. After each batch is processed, the gradients 

are calculated, and the weights and biases are adjusted accordingly to minimize 

the loss. This frequent updating of parameters allows the model to converge 

faster and potentially achieve a better convergence point, leading to improved 

performance. 

 

Data normalization is also done using the ImageDataGenerator API. It is done 

on both train and test images because both should be passed through the same 

pre-processing techniques for correct model prediction. The goal is to make our 

cost function symmetric for quicker and better convergence at the minimum 

point. 

 

Transfer learning is used, only the last 10 layers of each CNN model are trained 

by us while the weights and biases of layers beyond them are simply imported 

from tensor flow. During training, the last 10 layers are fine-tuned on the bone-

scan dataset and their weights and biases are accordingly set. This technique is 

very useful to save time in training large CNN models. The lower layers, which 

only detect low-level features like edges, are not very important so these layers 

can be trained on any big dataset. The final layers detect high-level features 

which are important and hence these layers are trained on the actual dataset. 

Transfer learning is known to give good results, save time and also prevent the 

model from overfitting due to the less amount of data. 

 

5.3.8 Adding Custom Layers and Training the Model 

 

 
 

Custom layers are connected to the model after convolutional/max-pooling 



30 

 

blocks. The first layer is the Global Average Pooling layer which is used to 

reduce the tensor size. It can be considered as a regularization technique because 

it reduced the number of features that are to be fed into dense layers for 

prediction. The reduced tensor size is then flattened into a single column by the 

flattening layer. Then dense layers with 512 and 256 neurons are added to study 

the feature maps inside tensors.  

 

To tackle overfitting and reduce model complexity, dropout regularization is 

implemented. A dropout probability of 50% is used, indicating that half of the 

neurons in a 256-neuron layer are randomly deactivated during training. When 

neurons are dropped, the remaining neurons tend to distribute their weights to 

adjacent neurons, leading to an overall reduction in the magnitude of weights. 

Dropout is a common technique employed for computer vision applications and 

prevents the model to get too computationally intensive and complex. Although 

it helps to address some issues, it makes the calculation of the cost function 

difficult and makes it less defined due to which the training time can increase. 

 

The learning rate, an essential hyperparameter, is adjusted based on 

experimentation with the model. Initially set at 0.0001, the model encountered 

challenges in converging to the optimal minima and tended to get trapped in a 

local minimum. Consequently, it experienced high loss and did not yield 

significant improvements during training after each epoch. To address this, the 

learning rate was increased to 0.001. This adjustment facilitated the model's 

escape from the local minimum and enabled convergence at a better minimum 

with reduced loss. 

 

In this scenario, the loss function chosen is sparse_categorical_crossentropy, 

despite the problem being binary in nature. Typically, for binary classification 

problems, binary_crossentropy (log loss) is commonly used. However, due to 

the restriction imposed by the FPGA model, which requires the number of 

output neurons to match the number of classes, the problem had to be 

transformed into a multi-class problem. As a result, the 

sparse_categorical_crossentropy loss function is utilized.Another consideration 

is the label format, which is not in one-hot encoded vector form. Consequently, 

the commonly used multi-class loss function, categorical_crossentropy, could 

not be employed in this case. 

Regarding the optimizer, Adam is selected as it is known to offer advantages 

over stochastic gradient descent (SGD) and simple gradient descent algorithms. 

Adam combines elements of both adaptive learning rates and momentum 

methods, enabling faster convergence and better optimization performance. 

 

 

 



31 

 

5.3.9. Activation Functions 

 

In all models, the Rectified Linear Unit (ReLU) activation function is utilized 

for the hidden layers, while the SoftMax activation function is employed for the 

output layer. Activation functions are crucial as they introduce non-linearity, 

enabling our models to learn complex functions. Without activation functions, 

our models would resemble simple linear regression models, limiting their 

learning capacity. The sigmoid function is not used because it has a vanishing 

gradient and saturation problem if the output of the node is either lesser than -3 

or greater than 3. This ceases the learning of the model and makes training 

useless after the first few epochs.  

 

Tanh function, though being zero-centered, makes the learning easier by making 

the loss function symmetric however it also suffers from vanishing gradient and 

saturation when the output of nodes falls below -3 or exceeds 3.  

 

ReLU function which is a relatively advanced function, does not face vanishing 

gradient and saturation problems since it is linear when input is greater than 0. 

It is more efficient than both sigmoid and tanh due to which it converges faster 

to the global minimum. Though, ReLU is not suitable for negative values 

because the gradient for negative values is zero which means that back 

propagation will play no role in updating the weight values. This problem can 

be addressed by leaky ReLU but to comply with our neural network on FPGA 

which had to be an exact replication of the software neural network, leaky ReLU 

is not used. 

 

Fig 5.1. ReLU Activation Function and its Derivative 

 

 

 

 

 

 

 

 

 

 

Fig 5.2. Sigmoid Activation Function and its Derivative 

 



32 

 

 

 

 

 

 

 

 

Fig 5.3. Tanh Activation Function and its Derivative 

 

 

 

 

5.3.10. Performance Metrics 

 

 

 

 

 

 

 

 

 

 

 

 

In this piece of code, we used performance metrics to evaluate our model 

including: accuracy, precision, recall and F1-score. Since the dataset is biased, 

F1-score is the ideal metric for evaluation. F1-score is calculated at the end on 

our test data using scikit-learn. 

 

 

 
 

Fig 5.4. Classification Report Example 

 

 

 

 

 



33 

 

5.3.11. MakeTestData Function  
 

 
 

This crucial function marks the commencement of the neural network's 

transition onto the FPGA. The previously trained model is imported, and a new 

sub-model is created comprising only the layers above the global average 

pooling layer. The test data is then fed through this sub-model, generating 

predictions in the form of tensors. The test data is passed through the model and 

predictions are taken in the form of tensors. The tensors which are in 4 

dimensions are de-normalized and reshaped into a single 2D plane. This 2D 

plane is converted into an RGB image by replicating this 2D plane twice. Now 

our tensor has a batch size of 1 which means that it only contains the image 

itself and is ready to be stored as an image file in JPEG format. The data is saved 



34 

 

in a drive to be further processed by FPGA. 

 

5.3.12. ImageToNumpy Function  

 

 
 

This function serves the purpose of taking the resized tensors stored in JPEG 

format and splitting them into four arrays: x_train, y_train, x_test, and y_test. 

These arrays, filled with data, will be utilized to train a new neural network that 

will later be replicated onto the FPGA. 

 

It's important to note that while these may appear as simple images, they 

actually contain feature maps within them. Training a neural network with 

feature maps proves to be easier and more effective compared to training with 

simple images. 

The necessity for retraining arises due to the resizing process, which is essential 

from the FPGA perspective. The FPGA model requires images directly as input, 

hence the feature maps are stored as images. If resizing was not performed, this 

retraining step would have been unnecessary. Nonetheless, the resizing step is 

crucial for compatibility with the FPGA model, enabling the storage of feature 

maps as images. 

 

 

 

 

 

 

 



35 

 

5.3.13. Training of Resized Neural Network to be Implemented on FPGA 

 

 

 
 

Initially, the inputs of both the test and training sets are normalized to ensure 

consistent preprocessing. Following normalization, multiple dense layers are 

added to the neural network, each employing the sigmoid activation function. 

While it has been discussed and acknowledged previously in this thesis that 

ReLU performs better but sigmoid is used to save up FPGA resources. By opting 

for sigmoid, the neural network can be replicated precisely on the FPGA while 

managing resource utilization effectively. 

 

Once the model is trained, the weights and biases are stored in a text file. This 

text file will further be converted into multiple weight files, so that each neuron 

gets a separate weight file for itself. However, all neurons in a layer will have 

to share the same bias which is a compromise we made to save resources. 

 

Although we are using SoftMax function for the final layer of our software code, 

we will be using HardMax function in the final layer of our hardware code. This 

is again done to save resources with some compromise on the performance of 

our hardware model. 

 

 

 

 

 



36 

 

CHAPTER 6 – IMPLEMENTATION ON FPGA 
 

6.1. Introduction 

 

Due to the increased demand for data processing, a new IT architecture is used 

nowadays to ease up the load on the internet and on the data centers by moving some 

of the storage and computer units close to the data-producing nodes. This is also known 

as edge computing. This provided a new opportunity for low-cost FPGA devices to act 

as edge computing neural network nodes for users who want computation power to run 

their ML/DL applications. In this work, we introduce DNN models on FPGA, solely 

for oncologists who want to detect cancer in their patients using bone Scan images. 

These models are compatible with low-cost hybrid FPGA platforms such as the Xilinx 

Zynq. Based on a software-hardware co-design approach, this project supports pre-

trained networks. Simulation results show that the performance of DNNs implemented 

on the FPGA is very close to their software implementations in terms of performance 

metrics such as accuracy, precision, recall, and F1-score. At the same time, it gave 

better processing performance than CPUs and GPUs with a lower energy footprint 

because their concurrent computation model is neural network friendly. 

 

6.2 The Architecture of Neuron: 

 
The architecture of neurons consists of multiple registers, LUTs and designated 

processing units. The depth of the weight memory is proportional to the number of 

inputs to the neuron. When it comes to images, each pixel acts as an input to a neuron, 

so the bigger the image size, the larger the weight of memory we will need. For this 

purpose, the output tensor sizes are reduced to limit the model complexity. The weight, 

bias, and activation memories will be like a ROM memory because they must not be 

changed when the optimal point is reached during the training of our models. The 

neurons will use MAC units to perform the necessary mathematical operations and each 

operation will have a delay, denoted as d in our Verilog code. All inputs are first 

multiplied with their corresponding weights and added together using an adder block. 

Finally, at the last step, a bias is added to the whole equation. The equation will be a 

linear equation with multiple inputs, to add non-linearity in our model for better 

prediction and generalization, a non-linear activation function is used. 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                               

                                              Fig 6.1 Architecture of a Neuron 



37 

 

 

 
    
 

 

 

 
               Fig 6.2 Resource Utilization table of a neuron with data width of 16 

 

 

We have developed two activation functions in our model: Sigmoid and ReLU. The 
Sigmoid function is developed using Look-Up Tables (LUTs), with the depth of the LUTs 
being proportional to the number of inputs to our neurons. On the other hand, the 
ReLU function is developed using dedicated circuitry. 
The choice of activation function has a significant impact on the performance of our 
model in terms of speed, latency, and accuracy. While the sigmoid function developed 
using LUTs is not as accurate as ReLU, it consumes fewer FPGA resources compared to 
ReLU. However, ReLU provides better prediction results and its zero-mean nature 
contributes to faster and more accurate predictions. To strike a balance between 
resource utilization and prediction performance, we decided to use the sigmoid 
function, as saving FPGA resources allows us to have more neurons and deeper neural 
networks, which are crucial for handling the complex task of cancer detection. 
In terms of memory utilization, the smallest available Block RAM (BRAM) is 36kbits, 
and we aim to utilize at least half of it. To optimize our BRAM resources, we have 
implemented the activation memory using Dynamic Random-Access Memory (DRAM), 
as the required memory size is less than 18kbits. This decision helps us save the crucial 
BRAM resources for other parts of our model. 
 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 6.3 Performance of Activation Functions 

 

High Resource utilization but better performance as Max freq is higher 

Sigmoid with sigmoidSize = 10, BRAM is used instead of DRAM but due to 

combinational circuit the max frequency is less 

 

Sigmoid with sigmoidSize = 5, LESS BRAM IS USED as some portion is shifted to 

DRAM. Due to DRAM the max frequency is dropped further. 



38 

 

 

6.3 Layers:  
 

Our DNN consists of multiple layers that have the ability to learn complex non-linear 

functions. The first layer in our network is a flatten layer, responsible for converting 

the input, which is in the form of an image, into a single column of pixel values. This 

particular operation does not involve any weights, biases, or mathematical 

computations. However, it plays a crucial role in preparing the data for further 

processing in the subsequent dense layers of the network. 

 

The output of the neurons is stored in a bus and when the bus is full which is indicated 

by the ol_valid, it is unloaded into a big register called holdData. This acts as the input 

register for the next layer of neurons, this register is unloaded to an output layer by 

shifting one per clock cycle. This shifting is exactly equal to the data width needed for 

the next neuron. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 6.4 Layer Architecture 

 

6.4 Test Data: 

 
The test data is derived directly from the tensors of the final block of our CNN. We 
extract the feature map of each image from these tensors and save them as JPEG 
images. These images are then converted into text files, where each row represents 
a pixel value of the image in binary format, adhering to the appropriate data width 
and Qn.m format. In the Qn.m format, 'n' indicates the number of bits allocated for 
the integer part, while 'm' represents the number of bits allocated for the fractional 
part. Since the pixel values are normalized, the value of 'n' is always set to 1. The 
header file of the test image contains the corresponding label of the image. To 
facilitate data transfer, the AXI-stream is connected to the DMA Controller, while the 
AXI lite interface is connected to the processing system. The DMA controller enables 
the efficient transfer of blocks of external data with minimal intervention from the 
FPGA's processor. 



39 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig 6.5 First 23 pixel values of a test image converted into a text file 

 

 
 

                                     Fig 6.6 DMA controller and Processor 

 

 
                                   
                                    Fig 6.7 AXI4-Stream Interface 

 

 

 



40 

 

𝑆𝑢𝑚[𝑛]  =  (𝑤_𝑜𝑢𝑡[𝑛]  ∗  𝑖𝑛[𝑛])  +  𝑠𝑢𝑚[𝑛 − 1] 
 

𝑆𝑢𝑚[𝑙𝑎𝑠𝑡] =  (𝑤𝑜𝑢𝑡[𝑙𝑎𝑠𝑡] ∗  𝑖𝑛[𝑙𝑎𝑠𝑡]) +  𝑠𝑢𝑚[𝑙𝑎𝑠𝑡] +  𝑏𝑖𝑎𝑠 

 
𝑊_𝑜𝑢𝑡[𝑛]  =  𝑤𝑒𝑖𝑔ℎ𝑡𝑉𝑎𝑙𝑢𝑒[𝑛 − 1] ;         𝑖𝑛[𝑛]  =  𝑚𝑦𝑖𝑛𝑝𝑢𝑡[𝑛 − 1] 
 

 

6.5 Additional Information: 
 

Throughout the project, a fixed-point representation is used, although errors due to 

value estimation accumulate during mathematical operations. This can lead to some 

accuracy degradation, particularly when overflow occurs. However, fixed-point 

representation is preferred over floating-point representation due to its efficient 

resource utilization, especially considering the limited resources available.By carefully 

selecting an appropriate data width, such as 8 bits in our case, a compromise between 

accuracy and resource utilization can be achieved. 

 

Xilinx IP cores are not directly utilized in the project; instead, their codes are copied 

and adjusted to meet our requirements. This approach provides greater flexibility and 

control over our model. Moreover, it introduces additional hyperparameters to fine-

tune, including data width, activation function depth, and memory allocation. Utilizing 

a similar code ensures that our implementation remains efficient, akin to an IP core. 

 

 

 

 

 

 
Fig 6.8 Equations of a Neuron 

 

6.6 Resource Utilization: 
From Figure 6.2, it is evident that a single neuron with a data width of 16 requires 2 

digital signal processing (DSP) blocks. In the Xilinx Zynq Zybo FPGA, we have a total 

of 80 DSP blocks available. This means that we can accommodate a maximum of 40 

neurons with a data width of 16, which is a relatively small number considering the 

desired number of neurons. 

 

To overcome this limitation, we can reduce the data width to 8, which allows the 

neurons to be implemented using Look-Up Tables (LUTs) instead of DSP blocks. 

Figure 6.9 illustrates the implementation report of a model with 100, 8-bit neurons. As 

the LUTs and flip-flops (FFs) are not exhausted, we still have the potential to 

incorporate more neurons into the model. 

 

Figure 6.10 displays the implementation report for 170 neurons, which represents the 

maximum number of neurons we can include. However, some slight adjustments can 

be made by modifying the density of each layer. Neurons in a layer with fewer input 

nodes tend to consume fewer resources, allowing for potential resource optimization. 

Additionally, the depth of the activation function can be fine-tuned, as higher depths 

will require more LUTs. 

 

 

 

 

 



41 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

             Fig 6.9 Implementation Report of 100 neurons with sigmoid depth of 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 6.10 Implementation table of 170 Neurons 

 

 

 

6.7 Verilog Code: 

 

 
 



42 

 

 
 

Above is the code for a single neuron. All the input and output registers are declared 

with the necessary data width. The include file will provide the neuron with the 

necessary hyperparameters like the type of activation function, number of inputs, 

number of outputs and data width assigned to the neuron. Some variables like mul are 

given a size equal to double the data width, this is because when two Qn.m numbers 

are multiplied, the result is Qn+n.m+m. This means that it will need twice the size than 

the size of the numbers being multiplied. As the product is added to the equation, the 

sum variable also had to be initialized with twice the data width. 

 
 

The values of weights are added in the neuron; if the reset signal is set high, all weights 

are made zero; this will make an empty model with no learning. If the weight matches 

with the specifications of the neuron; it will be loaded into the neuron. After the action 

on weights, some important calculations are performed to form the linear equation of 

the neuron. 

 

 



43 

 

 
 

The bias file is read and if the bias matches with the specifications of the neuron, it is 

fed into the neuron. 
 

 
 

 

To mitigate the potentially detrimental impact of overflow in our mathematical 

operations, we implement a saturation mechanism. Whenever an overflow is detected, 

the corresponding variable is saturated by assigning it the highest positive number or 

the lowest negative number, depending on the nature of the overflow. While this 

approach may result in some data loss, it is the optimal choice to obtain reliable and 

accurate results. 

 



44 

 

 
 

The output signals are adjusted to either delay or start the operation of next neuron of 

the next layer. The weight memory is instantiated with the variable names used in the 

code of neuron. 

 

 

 
 

The final step involves selecting the activation function for the neuron. When using the 

sigmoid activation function, only a portion of the left bits is retained while discarding 

the remaining right bits to conserve FPGA resources. This may result in some data loss, 

but it has minimal impact on the results. In contrast, the ReLU activation function does 

not cause any data loss as it is specifically designed for FPGA circuitry. 



45 

 

 

 
 

Here is the code for our hardmax function. It is designed as an alternative to the softmax 

function, considering the trade-off between accuracy and computational efficiency. 

While the softmax function provides higher accuracy, it is computationally more 

expensive. In contrast, the hardmax function aims to maximize the output of the neuron 

with the highest probability, while nullifying the outputs of other neurons. This results 

in an output vector with a length equal to the number of output neurons. The neuron 

with the highest probability is assigned a value of 1, while the remaining neurons are 

assigned a value of zero. 

 

 

 

 

 

 

 

 

 

 

 



46 

 

CHAPTER 7 CONCLUSIONS AND FUTURE WORK 

 

7.1 Block Diagram: 

 
        
                                     Fig 7.1 Block Diagram of FPGA NN 

 

ZYNQ processor of our FPGA is used to display the FPGA output on teraterm. Since, 

large amount of data had to be transferred from our computer to the FPGA board, we 

used AXI_DMA for this purpose. AXI_SMARTCONNECT which is a configurable 

interconnect component which provided us with a scalable system which is a plug and 

play solution for connecting multiple masters and slaves.  

 

Processor System Reset IP is used to ensure proper initialization and synchronization 

of the processor for more reliable and predictable system operation. It generated the 

necessary reset signals to initialize the processor including the asserting and de-

asserting of the reset signals. Path for communication between neural network and 

processor is developed using AXI_LITE interface. This is necessary for the situation 

when our bias and weight files or other memory files cannot provide input, in this case, 

the processor will take the command and will provide the necessary data. 

 

The design underwent validation, wiring, synthesis, and implementation using Vivado 

tools on a Xilinx Zybo board. The processor was programmed using the Vivado SDK 

kit. For data input and output, a UART port was utilized, enabling the communication 

between the FPGA design and external devices. 

 

7.2 Constraints and Discussion: 

 
FPGAs, with their support for parallel processing, can be an ideal device for 

implementing neural networks. However, the limited memory resources, especially in 

low-cost hybrid FPGAs, can present challenges when dealing with deeper neural 

networks. If we utilize a more powerful board like the Zed-board instead of the Zybo 

board we used previously, a 32-bit implementation with 80 neurons using the sigmoid 

activation function would require 50,349 LUTs, 15,543 flip-flops, 70 BRAMs, and 200 



47 

 

DSP slices. Similarly, an implementation using the ReLU activation function would 

need 54,560 LUTs, 18,000 flip-flops, 30 BRAMs, and 200 DSP slices. These numbers 

correspond to approximately 95% of the LUTs, 17% of the flip-flops, 22% of the 

BRAMs, and 100% of the DSP slices available on a Zed-board. 

 

While the use of 32-bit neurons can outperform 8-bit neurons, a mere 80 neurons may 

not be sufficient for tackling complex and sensitive problems such as cancer detection. 

 

One interesting result is the determination of the depth of the Sigmoid Look-Up Table 

(LUT), which is calculated using the expression 2^(address_bits). Simulation results 

have shown that when the number of bits is less than the sum of integer bits used to 

represent weight and input values, the accuracy is significantly reduced. Typically, the 

number of integer bits for input is set to 1 due to normalization, which doesn't pose a 

significant issue. However, for better estimation of weight values, the integer bits for 

weight values are usually set to 4. To address this issue, the minimum number of 

address bits for the sigmoid function is set to 5. If higher prediction accuracy is required, 

the depth of the sigmoid can be increased further, although this comes at the expense 

of BRAM resources. 

  

When it comes to cancer detection in a hospital setting, high-end Xilinx FPGA devices 

should be used as edge devices. Incorrect diagnosis can be extremely dangerous and 

reduce the chances of patient survival if treatment is delayed. The way forward for 

improved diagnosis is clear: we need to deploy deeper Deep Neural Networks (DNNs) 

on our edge devices. This can be achieved through a hybrid approach, where FPGAs 

are connected to cloud data centers to increase storage capacity, or by deploying 

multiple low-cost FPGAs in parallel to increase processing power and storage. 

Alternatively, a single high-end FPGA device capable of handling the complexity of 

the model can be utilized. 

 
Fig 7.2 Cloud and FPGA proposed architecture 



48 

 

7.3 Results: 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 7.3 Hardware Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 7.4 Zybo Board 

 

In the results, 1 represents cancerous while 0 represents non-cancerous. The accuracy 

achieved of our models is in between 85-93%. This depreciation is due to the 

compromises made in the neural network deployed in FPGA. 

 

7.3 FUTURE WORK 

 

In future work, several key aspects can be addressed to enhance the implementation and 

usability of the FPGA-based neural network for cancer detection. The following points 

outline potential areas of focus: 

 



49 

 

1. Optimization for Higher-End FPGAs: Explore the utilization of high-end FPGA 

devices with increased resources, such as the Xilinx Virtex-5 XC5VLX330, to 

replicate denser neural networks. These FPGA devices offer greater capacity for 

implementing larger models and accommodating more layers and neurons. 

Investigate the performance improvements achieved by deploying deeper neural 

networks on these high-end FPGAs. 

 

2. Dataset Enhancement: Consider expanding the dataset used for training and 

validation by sourcing locally available data, such as the NORI dataset. 

Incorporating a diverse and representative dataset can enhance the robustness 

and generalization capabilities of the trained neural network model. 

 

3. Shift Convolutional and Pooling Blocks: Investigate the optimization of 

convolutional and pooling blocks within the FPGA design. Explore techniques 

such as parallelization, pipelining, and resource sharing to maximize the 

utilization of FPGA resources and improve the computational efficiency of 

these blocks. 

 

4. User-Friendly Interface: Design and develop a user-friendly end product that 

can be easily utilized by doctors and medical professionals. Consider 

incorporating a graphical user interface (GUI) that provides intuitive controls 

for loading input data, initiating the cancer detection process, and presenting the 

results in a clear and interpretable manner.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



50 

 

REFERENCES 

 

• Kizheppatt Vipin (2020) ZyNet: Automating Deep Neural Network 

Implementation on Low-Cost Reconfigurable Edge Computing Platforms 

• Zongmo, Pu, et al. (2022) BS-80K: The first large open-access dataset of bone 

scan images 

• Tan, Le. (2019) EfficientNet: Rethinking Model Scaling for Convolutional 

Neural Networks 

• Szegedy, Vanhoucke, et al. (2015) Rethinking the Inception Architecture for 

Computer Vision   

• Zhuang, Hanzi, et al. (2022) A ConvNet for the 2020s  

• Gao, Zhuang, et al. (2016) Densely Connected Convolutional Networks 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



51 

 

PLAGIARISM REPORT 

 

 
 

 

 


