
ii

D
E

-4
1

 (E
E

)
A

b
d

u
lla

h
,

A
im

en
, L

a
ib

a

COLLEGE OF

ELECTRICAL AND MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND

TECHNOLOGY RAWALPINDI

2023

PARKINSON’S DISEASE DETECTION

USING MACHINE LEARNING

iii

COLLEGE OF

ELECTRICAL AND MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND

TECHNOLOGY RAWALPINDI

2023

iv

 PROJECT REPORT

DE-41 EE

 Parkinson’s Disease Detection Using Machine Learning

 Submitted to the Department of Electrical Engineering in partial fulfillment of the

 requirements for the degree of

 Bachelor of Engineering

 in

 Electrical

 2023

Sponsoring DS: Submitted By:

Sobia Hayee M.S Abdullah Sohail

Aimen Munawar

Laiba Aftab Bajwa

v

CERTIFICATE OF APPROVAL

It is to certify that the project “Parkinson’s Disease Detection Using Machine

Learning” was done by NS Abdullah Sohail, NS Aimen Munawar, and NS Laiba

Aftab Bajwa under supervision of Sobia Hayee M.S.

This project is submitted to Department of Electrical Engineering, College of

Electrical and Mechanical Engineering (Peshawar Road Rawalpindi), National

University of Sciences and Technology, Pakistan in partial fulfilment of requirements

for the degree of Bachelor of Electrical Engineering.

Students:

Abdullah Sohail

NUST ID: ___________________ Signature: _________________

Aimen Munawar

NUST ID: ___________________ Signature:____________________

Laiba Aftab Bajwa

NUST ID: ___________________ Signature: ____________________

APPROVED BY:

Sobia Hayee M.S

Project Supervisor: ____________________Date: ___________

ii

DECLARATION

We affirm that the content presented in this Project Thesis is original and has not been

submitted in support of any other degree or qualification at this or any other educational

institution. We acknowledge that any act of plagiarism will result in full responsibility and

may lead to disciplinary action, including the potential cancellation of our degree, based on

the severity of the offense.

1. Abdullah Sohail ___________________

2. Aimen Munawar ___________________

3. Laiba Aftab Bajwa ____________________

iii

COPYRIGHT STATEMENT

The text of this thesis is protected by copyright and is the intellectual property of the

student author. Any copies or extracts made from this thesis should strictly follow the

instructions provided by the author and be lodged in the Library of NUST College of

E&ME. Permission in writing from the author is required for making additional

copies of such copies.

Intellectual property rights related to any content described in this thesis are owned

by NUST College of E&ME, unless otherwise specified, and cannot be used by third

parties without written permission from the College. The terms and conditions of such

agreements will be determined by the College of E&ME. For more information on

disclosure and exploitation conditions, please consult the library of NUST College of

E&ME in Rawalpindi.

iv

ACKNOWLEDGMENTS

First and foremost, we express our gratitude to Allah Almighty for granting us the

ability and courage to comprehend and overcome the challenges faced during this

demanding endeavor. Alongside our collective efforts, the success of any project

greatly relies on the guidance and support of numerous individuals. We extend our

sincere appreciation to our supervisor, Ma’am Sobia Hayee whose invaluable

assistance, support, and guidance were instrumental in our achievement.

Furthermore, we are deeply indebted to our beloved parents, whose unwavering

support and patience played a vital role in our journey. They have consistently been

there for us in times of need.

Additionally, we would like to thank our colleagues Muhammad Hassaan Aftab,

Muhammad Arhum Mobin, Bakht Baidar and others for their support and invaluable

guidance.

Lastly, we would like to express our heartfelt gratitude to the Department of

Electrical Engineering for nurturing us throughout our academic years and enabling

us to excel in our field. We extend our appreciation to all the faculty members and

staff who have diligently contributed to providing us with exceptional facilities and

guidance.

v

ABSTRACT

This research describes the design and development of a machine learning system for

detecting Parkinson's disease. The system includes Python method creation, support vector

machine (SVM) classifier building, and data analysis utilising UCI/Oxford university

datasets[0]. Pitch, jitter, shimmer, and harmonic-to-noise ratio are among the variables

retrieved from speech recordings of healthy and Parkinson's patients in the dataset. The

technology also includes a mobile application that can detect Parkinson's disease from

speech recordings using the classifier. Users can record their voice samples and save them

locally on the device using the mobile application. The system is built on a Raspberry Pi

device, which includes a microphone module that can gather voice signals and execute the

classifier. The project's goal is to develop a low-cost, portable, and accurate Parkinson's

disease diagnosis tool that may be used by anybody, anywhere.

vi

SUSTAINABLE DEVELOPMENT GOALS

The goal of constructing a machine learning model for Parkinson's disease diagnosis

coincides with SDGs 1 and 7, which focus on eradicating poverty and ensuring access to

affordable and clean energy.

The project intends to improve the accessibility and affordability of health care services by

developing a machine learning model that can identify Parkinson's disease based on voice

data. This helps to eradicate poverty by developing low-cost and reliable diagnosis

methods that can enable patients with Parkinson's disease receive prompt and appropriate

treatment. Furthermore, the research promotes creativity by applying SVM, a powerful

machine learning technique, to a fresh and demanding issue area. It offers more accurate

and robust diagnosis by optimising model performance, opening the door to new

possibilities in sectors such as telemedicine, speech recognition, and biomedical

engineering.

Furthermore, the project emphasises clean energy by focusing on the development of a

mobile application that will employ live speech recording as the input for the machine

learning model. This is consistent with the goal of developing energy-efficient technology

that reduce environmental impact and encourage responsible resource utilisation. The idea

removes the need for storing and transferring large amounts of data, which can cost a

significant amount of energy, by employing live voice recording. Furthermore, by utilising

a mobile application, the concept uses the existing infrastructure of smartphones and

wireless networks, which may be fueled by renewable energy sources.

In summary, the project of developing a machine learning model for Parkinson's disease

detection contributes to SDGs 1 and 7 by improving health care accessibility and

affordability, fostering innovation in machine learning and speech analysis, and promoting

clean energy practises in the field of mobile computing.

vii

TABLE OF CONTENTS

Contents

CERTIFICATE OF APPROVAL .. 6

DECLARATION ... 2

COPYRIGHT STATEMENT ... 3

ACKNOWLEDGMENTS ... 4

ABSTRACT ... 5

SUSTAINABLE DEVELOPMENT GOALS .. 6

TABLE OF CONTENTS .. 7

LIST OF ABBREVIATIONS ... 10

1. Introduction ... 11

1.1. Project Overview: ... 11

1.2. Problem Statement: .. 12

1.3. Approach... 13

1.1.1. Data Processing: .. 13

1.1.2. SVM Implementation: .. 13

1.1.3. Hyperparameter Tuning: ... 13

1.1.4. Mobile Application Development: ... 13

1.1.5. Integration: .. 13

1.1.6. Testing: ... 13

1.4. Objectives: ... 14

1.5. Specifications: .. 14

1.6. Deliverables: ... 15

1.7. Organization of Thesis: .. 15

2. Literature Reveiw .. 17

2.1. Background .. 17

2.1.1. Introduction to Machine Learning .. 17

viii

2.1.2. Anaconda and Spyder: .. 18

2.1.3. Machine Learning Model Programming ... 18

2.2. Data Processing .. 19

2.2.1. Voice Features Extraction: ... 19

2.3. Machine Learning Model .. 20

2.3.1. Methodology .. 21

2.3.2. Mathematical concept ... 21

2.3.3. Impact of SVM on Final Output: ... 22

2.4. Existing Literature Related to the topic: .. 22

2.5. Problem Formulation of the Topic: ... 23

3. Chapter 3: Design and Development .. 24

3.1. Design Flow: ... 24

3.2. Hardware and Software part: ... 26

3.3. Software part: ... 26

3.3.1. Designing algorithm ... 26

3.3.2. Csv Generation using Python: .. 27

3.4. Machine learning using scikit-learn ... 28

3.4.1. SVM module .. 28

3.5. Mobile Application part using Android Studio: .. 29

3.6. Python/App integration: .. 30

3.7. Software Requirement: ... 32

4. Result Analysis ... 33

4.1. Algorithm Design on Python; ... 33

4.1.1. Android Application Development: ... 34

4.2. Hardware Result Analysis: Raspberry pi Implementation .. 34

4.2.1. Voice Recording module ... 34

4.2.2. SVM Prediction module.. 35

4.3. Software result Analysis: Python Implementation .. 36

ix

4.3.1. Voice Recording and Feature Extraction .. 36

4.3.2. Voice recording and Prediction: .. 37

4.3.3. Voice Recording Implementation .. 39

4.3.4. Fundamental Frequency ... 39

4.3.5. Harmonicity Analysis .. 40

4.3.6. Nonlinear Dynamical Complexity Analysis .. 41

4.3.7. Spectral Analysis ... 42

4.3.8. Pitch Period Entropy Analysis ... 42

4.4. Voice Recording and Feature Extraction .. 43

5. Chapter 5: Future Work ... 45

5.1. Real-Time Monitoring: .. 45

5.2. Smartwatches: .. 45

5.3. Large Scale voice Dataset: ... 45

5.4. Feature Engineering: ... 45

5.5. Fusion with other Modalities: .. 46

5.6. Longitudinal analysis: .. 46

6. Conclusion .. 47

6.1. Overview ... 47

6.2. Objective Achieved/ Achievements .. 47

6.3. Contributions .. 47

6.4. Limitations .. 48

6.5. Applications .. 48

6.5.1. Voice Authentication: ... 48

6.5.2. Voice Enhancement: ... 49

6.5.3. Voice Analysis: .. 49

REFERENCES .. 50

10

LIST OF ABBREVIATIONS

Acronyms:

SVM: Support Vector Machine

IDE: Integrated Development Environment

App: Mobile Application

11

1. Introduction

This introduction provides a brief overview of the project, beginning with a critical

analysis of the challenges and opportunities connected with utilising machine learning to

diagnose Parkinson's disease. It then describes the project's goals, constraints, and

requirements, as well as the deliverables that are expected. Finally, the chapter concludes

with an organizational structure for the thesis.

1.1. Project Overview:

The purpose of this project was to develop a machine learning model for

detecting Parkinson's disease using SVM and a mobile application that would use

live voice recording as input to the model. Python was the programming

language, and Anaconda and Spyder were the software environment and IDE,

respectively.

The librosa and parselmouth tools were used to retrieve the model's voice

features, and SVM was created with the sklearn library. The model's performance

was evaluated using the accuracy score and confusion matrix measurements. The

GridSearchCV function was used to fine-tune the model's hyperparameters.

During the testing phase, the model was applied to a new speech recording to

generate a prediction. To validate the model's accuracy and efficacy, the forecast

was compared to the person's actual state. The comparison demonstrated that the

algorithm correctly identified the voice sample as belonging to a Parkinson's

disease patient.

In summary, this project included the successful development of a machine

learning model based on SVM for Parkinson's disease detection as well as a

mobile application based on live voice recording. Anaconda and Spyder allowed

for rapid software development and testing, whilst Python and its libraries

allowed for rapid data processing and machine learning implementation. The

comparison of projected and actual status confirmed the correctness of the SVM

algorithm and the model's usefulness.

12

1.2. Problem Statement:

Machine learning is a powerful approach with applications ranging from health

care to speech recognition to computer vision. Using machine learning to identify

Parkinson's disease, on the other hand, raises issues and possibilities that affect

the diagnosis's quality and accuracy. When using speech characteristics as input

for the machine learning model, the model's resilience and dependability may

suffer. SVM is a popular machine learning strategy for dealing with complex and

nonlinear problems, but identifying the optimum hyperparameters for the model

can be difficult and time-consuming. Although Python is a powerful

programming language with several libraries and frameworks for data processing

and machine learning, building and testing a mobile app that will use live audio

recording as the model's input can be challenging and tough. As a result, the

project proposes to develop a machine learning model for Parkinson's disease

detection based on SVM and a mobile application that would use live voice

recording as input to the model. The model must extract speech characteristics

and apply SVM on the audio recording to be rapid and efficient. Python and its

libraries will be utilised for data processing and machine learning, while

Anaconda and Spyder will be used for the software environment and the IDE,

respectively. To ensure the model's correctness and efficacy, testing and

comparison with the person's real state will be undertaken. The goal of the project

is to overcome the challenges of utilising machine learning to detect Parkinson's

disease and create a low-cost and reliable diagnostic tool.

This model's development has the potential to improve various industries,

including health care, voice recognition, and biomedical engineering. By

developing more accurate and robust machine learning algorithms, this endeavour

may help to improve these subjects and their applications.

13

1.3. Approach

The "Parkinson's Disease Detection Using Machine Learning" project aimed to

develop a machine learning model for Parkinson's disease identification using

SVM and a mobile application that used live speech recording as input to the

model. The approach included several phases, including:

1.1.1. Data Processing:

The initial step was to use Python's librosa and parselmouth modules to

analyse the speech recordings and extract the voice characteristics.

1.1.2. SVM Implementation:

After extracting the speech characteristics, we used Python's sklearn

module to create SVM.

1.1.3. Hyperparameter Tuning:

The SVM model's hyperparameters were then tuned using Python's

GridSearchCV function.

1.1.4. Mobile Application Development:

In Python, we utilised the sounddevice and soundfile libraries to create a

mobile application that would use live speech recording as input for the

model.

1.1.5. Integration:

Using SVM and a mobile application, we combined all of the components

to construct a machine learning model for Parkinson's disease

identification.

1.1.6. Testing:

Finally, we ran the model on a fresh speech recording and compared the

forecast to the person's actual condition to confirm its accuracy.

Using SVM and a mobile application, we were able to develop an accurate and

robust machine learning model for Parkinson's disease identification. The model

might be utilised in telemedicine, voice recognition, and biomedical engineering,

among other applications that need low-cost and accurate diagnostic tools.

14

1.4. Objectives:

The purpose of this project is to provide a software-based solution for Parkinson's

disease diagnosis utilising machine learning and a mobile application, as well as

to accomplish the following objectives:

• To attain a high degree of precision in the diagnostic procedure.

• To improve the machine learning model's performance.

• To verify that the voice feature extraction and SVM implementation are

robust and reliable.

• To explore the potential applications of the model in low-cost and reliable

diagnosis tools.

• To provide the groundwork for future growth and research in machine

learning and voice analysis.

1.5. Specifications:

The Anaconda and Spyder software tools are robust and adaptable, and they were

used in this study to develop and test a machine learning model for Parkinson's

disease detection using speech features and SVM. Anaconda is a software

environment that provides libraries and frameworks for data processing and

machine learning such as librosa, parselmouth, sklearn, and nolds [4]. Spyder is a

Python programming IDE with a user-friendly interface and debugging

capabilities. In this project, Anaconda is used to install and maintain the libraries

and frameworks required for the model's data processing and machine learning

components. Spyder is used to write and run Python code that extracts speech

features and applies the SVM algorithm. The use of both the Anaconda and

Spyder tools allows for more efficient software development and testing, resulting

in faster performance and higher model accuracy. Overall, Anaconda and Spyder

are excellent tools for this project, providing the power and flexibility required for

effective machine learning model building and testing.

15

1.6. Deliverables:

This project's deliverables include:

• A working model/prototype of a machine learning system that employs speech

features and SVM to identify Parkinson's disease.

• Python programming is utilized for the data processing and machine learning

components of the model.

• Creation and testing of a mobile application that will use live speech recording

as input to the model.

• The model is being evaluated to ensure that it detects Parkinson's illness

correctly.

• Documentation of the model's design, development, and testing processes.

1.7. Organization of Thesis:

The organization of this thesis is as follows:

Chapter 1: Introduction

This chapter provides a project summary, including project goals and an issue

description. It also includes a brief explanation of the machine learning model and

the mobile application, both of which are used as software tools in this project. It

also highlights the methodologies used in project development and testing.

Chapter 2: Literature Review

This chapter examines the literature on machine learning, voice analysis, and

SVM-based applications. It includes an in-depth study of the present state of the

art in machine learning for Parkinson's disease identification.

Chapter 3: System Design

The general system architecture, as well as the data processing and machine

learning components, are all explained in this chapter. It covers design elements

like voice feature extraction, SVM implementation, and hyperparameter tuning.

The development process is also described in this chapter, including the Python

code for the data processing and machine learning components, as well as the

mobile application that will use live audio recording as model input.

Chapter 4: Results and Analysis

This chapter evaluates the system's performance using a variety of metrics,

including accuracy score, confusion matrix, and prediction time. It also compares

the findings to the person's actual state.

16

Chapter 5: Future Work

This chapter describes potential future work that might be done to improve the

system even more. It explores potential enhancements to the data processing and

machine learning components, as well as potential new features.

Chapter 6: Conclusion

This chapter summarizes the project's research activities and highlights the major

accomplishments. It concludes by looking at the project's contributions to

machine learning and voice analysis.

17

2. Literature Reveiw

There is an unprecedented demand for low-cost and dependable diagnostic devices in

today's digital age. Machine learning has emerged as an effective technique for addressing

complex and challenging issues in a range of fields, including health care, speech

recognition, and computer vision [1]. Parkinson's disease detection is a popular app for

detecting a neurological disorder that affects millions of people worldwide [2]. Traditional

diagnostic treatments, due to their high cost and complexity, may not be accessible or

affordable to everyone. As a result, machine learning-based implementations of

Parkinson's disease detection based on speech features and SVM have piqued the interest

of researchers in recent years [3].

2.1. Background

This chapter provides a high-level overview of the machine learning model and the

mobile app that will feed the model real-time speech samples. It also includes a

review of the literature on the topics covered in our study. Each of the topics will

be explored briefly in order to complement and enrich the objective of this work.

The purpose of this chapter is to familiarize readers with our project's data

processing and machine learning components, as well as current research in this

field.

2.1.1. Introduction to Machine Learning

Machine learning is an artificial intelligence subfield that allows computers

to learn from data and make predictions or judgments without being

explicitly programmed [4]. Machine learning models, unlike conventional

algorithms, can adapt to new data and improve their performance over time,

making them suited for a broad variety of applications. As a result, they are

now widely used in a variety of disciplines, including health care, voice

recognition, and computer vision [5].

Machine learning combines the greatest aspects of statistics and computer

science, which has fueled its widespread acceptance across many sectors in

recent years. Data-driven insights and solutions are provided through

machine learning. Data-driven models have the same flexibility as software

operating on a processor-based system, but they are not constrained by

18

human experts' assumptions or regulations. Machine learning models, as

opposed to algorithms, have a genuine learning aspect. Because there is no

predetermined logic, multiple models might find different patterns or

correlations in the same data. Every separate job is carried out by a

specialised model that can operate autonomously and independently of

other models. As a consequence, the performance of one portion of the

application has no effect on the other operations.

2.1.2. Anaconda and Spyder:

Anaconda and Spyder are Python programming and data science software

tools[6]. Anaconda is a software environment that includes various data

processing and machine learning libraries and frameworks, including as

librosa, parselmouth, sklearn, and nolds [7]. Spyder is an IDE for Python

programming that offers a user-friendly interface and debugging facilities.

These tools may be used to create and validate machine learning models and

applications.

Anaconda and Spyder are prominent data science and machine learning

frameworks. Because of their diverse programming language and extensive

collection of libraries and frameworks, they are well-suited for building

complicated data processing and machine learning algorithms. Furthermore,

their simple installation and setup make them an ideal platform for software

development and testing.

2.1.3. Machine Learning Model Programming

The user may use a programming language or a graphical interface to

describe the behaviour of the machine learning model. The programming

language structure is especially well suited for dealing with complicated

algorithms since it enables the user to express them numerically rather

than sketching each component manually. Using a graphical interface, on

the other hand, allows for simpler viewing of the model.

The model is then trained and tested using a data processing and machine

learning technology. This model is then tuned to match the ideal

hyperparameters through a process known as hyperparameter tuning,

19

which is commonly performed using the GridSearchCV function [9]. The

accuracy score, confusion matrix, and prediction time metrics are used by

the user to verify the training and testing outcomes [10]. Following the

completion of the model generation and validation processes, the model

is stored as a binary file created by the pickle library [11]. The mobile

application receives this file through its input port.

A machine learning model developer runs simulations at different phases

of the development process in a typical development flow. To begin, the

Python data processing and machine learning code is emulated by

generating test cases to examine the model's behaviour and consequences

[13]. After the GridSearchCV function has tuned the model to discover

the optimum hyperparameters, it is converted to a binary file and

simulations are run to ensure error-free tuning. Finally, the model is

applied to a fresh voice recording, which allows for the inclusion of live

speech characteristics, and the simulation is repeated with these values

annotated onto the model.

2.2. Data Processing

The alteration of data to prepare it for machine learning or extract meaningful

information from it is known as data processing [14]. This may include procedures

like cleaning, scaling, and modifying data to make it more fit for a certain model or

application [15]. The purpose of data processing is to increase the quality or

dependability of the data while retaining the original data's relevance.

2.2.1. Voice Features Extraction:

The extraction of significant information from speech recordings is a subset

of data processing [16]. This may be accomplished by evaluating the

frequency, amplitude, and length of speech signals, as well as using

additional strategies to make voice characteristics more representative or

useful for machine learning [17]. The purpose of speech feature extraction

is to increase the machine learning model's performance or accuracy while

lowering the dimensionality of the input.

20

There are several data processing approaches, such as point [18],

neighbourhood [19], and global processing [20].

Point processing: includes performing actions on each data point

independently of its neighbours. It signifies that a data point's output value

is decided exclusively by its own input value and a mathematical function.

Point processing methods include, for example, normalisation,

standardisation, and binarization.

Neighborhood processing: The creation of a new data point value based on

the values of the surrounding data points is known as local processing. The

output value of a data point in this approach relies not only on its own input

value but also on the values of its nearby data points. Neighborhood

processing methods include filtering, which includes smoothing,

sharpening, and edge detection.

Global processing: includes digesting the full data collection in its entirety.

A data point's output value is determined by the values of all the data points

in the data set. Dimensionality reduction, feature selection, and feature

extraction are some examples of global processing approaches. Global

processing is generally employed for high-level data analysis and

interpretation since it is more computationally costly than point and

neighborhood processing.

2.3. Machine Learning Model

SVM is a popular classification and regression machine learning algorithm. The

strategy works by locating a hyperplane that divides data points from distinct

classes with the greatest margin of error, resulting in a more accurate and robust

model. SVM's hyperplane function is a linear or nonlinear function that translates

input characteristics to output values. SVM is a global machine learning approach

that uses the data points from the complete data set to select the best hyperplane.

Local machine learning algorithms, on the other hand, create predictions or choices

utilising just a subset of data points.

21

There are other variants of the fundamental SVM approach, such as kernel SVM

and soft margin SVM. Kernel SVM enhances basic SVM by transforming the input

features into a higher-dimensional space, allowing for nonlinear classification or

regression. Soft margin SVM provides a different method by allowing some data

points to be misclassified or inside the margin, resulting in a trade-off between

accuracy and generalisation that is better suited for noisy or outlier-filled data sets.

2.3.1. Methodology

The formula for SVM is relatively straightforward and involves the

following steps:

• Identify the inputs: In the case of SVM, the inputs are the data set's

features and the target. A symbol for the inputs should be included

in the flowchart.

• Compute the hyperplane: Find the hyperplane with the greatest

margin that divides the data points in distinct classes. This may be

accomplished by solving an optimization issue that reduces mistake

while increasing margin. This phase should be represented by a

symbol in the flowchart.

• Compute the kernel function: If the data points cannot be

separated linearly, employ a kernel function to transfer them into a

higher-dimensional space where a hyperplane can separate them.

This phase should be represented by a symbol in the flowchart.

• Compute the prediction: Using the hyperplane and the kernel

function, compute the forecast for a new or previously unknown

data point. This phase should be represented by a symbol in the

flowchart.

• Output the prediction: The forecast for the data point should be

output as a class label or a continuous value. A symbol for the

output should be included in the flowchart.

2.3.2. Mathematical concept

The equation used for SVM is given below:

22

w · x + b = 0

where w is the weight vector, x is the feature vector, and b is the bias term.

The function w · x + b = 0 defines the hyperplane that separates the data

points in different classes. The function w · x + b > 0 or w · x + b < 0

determines the class label of a data point.

2.3.3. Impact of SVM on Final Output:

The selection of hyperparameters has a considerable impact on the final

output of the SVM process. If the hyperparameters are not ideal for the data

set, the SVM model will perform poorly and accurately. This may lead to

data point misclassification, particularly when the data points are near to the

margin or overlap.

If, on the other hand, the hyperparameters are ideal for the data set, the

SVM model will perform well and accurately. This may result in the right

categorization of data points, particularly when the data points are close to

the edge or separable.

2.4. Existing Literature Related to the topic:

The paper 'Voice Analysis for Detection of Parkinson's Disease' by Anusha

Prakash and Dr. K. Thanushkodi from Coimbatore Institute of Technology,

and the paper 'Parkinson's Disease Detection using Machine Learning

Algorithms' by S. Mythili and Dr. A. R. Mohamed Shanavas from Sri Krishna

College of Engineering and Technology, are two related works on this topic.

The first study presented a speech analysis approach for identifying

Parkinson's disease utilising different vocal characteristics and an SVM

classifier. On a dataset of 195 speech samples, the SVM model had an

accuracy of 93.33 percent, according to the research. The second research

used k-nearest neighbours (KNN), decision tree (DT), and random forest (RF)

machine learning techniques on a dataset of 1040 speech samples to predict

Parkinson's illness. Among the algorithms, the RF algorithm obtained the best

accuracy of 98.65%, according to the report. The research offered a thorough

assessment of the effectiveness of several machine learning methods for

23

detecting Parkinson's disease.

2.5. Problem Formulation of the Topic:

The richness and complexity of speech factors, on the other hand, limit the

usefulness of traditional voice analysis tools for detecting Parkinson's disease. To

overcome this limitation, we propose adopting a support vector machine (SVM)

technique to detect Parkinson's disease using voice samples.

The main purpose of this study is to apply and develop the SVM algorithm for

detecting Parkinson's disease using voice data. The proposed system would employ

machine learning's capability and flexibility to attain high accuracy performance.

GridSearchCV will also be utilised to refine the system for feature selection and

parameter adjustment in order to improve the efficiency and robustness of the

algorithm. The proposed method will be tested utilising 5875 speech recordings

from 42 persons with early-stage Parkinson's disease from the UCI Parkinson's

disease dataset. The accuracy of the system will be compared to existing speech

analysis algorithms for detecting Parkinson's disease.

24

3. Chapter 3: Design and Development

The support vector machine (SVM) technique is used in the project "Machine Learning for

Parkinson's Disease Detection Using Voice Samples." Using Python and the scikit-learn

modules, the SVM method may be taught and evaluated on a computer.

A telemonitoring device may be used to capture the participants' speech signals in order to

acquire voice samples. A micro-USB cable or a wireless connection may be used to

connect the device to a computer. Alternatively, speech samples from an existing dataset,

such as the UCI dataset for Parkinson's disease, may be collected.

The speech samples may be processed and analysed in Python using the librosa and

parselmouth packages. These libraries may extract a variety of speech characteristics,

including fundamental frequency, jitter, shimmer, harmonicity, and fractal scaling

exponent. These characteristics may be saved in a csv file or a data frame.

The SVM algorithm may utilise the voice characteristics as input. The SVM method may

be implemented and optimised in Python using the scikit-learn module. GridSearchCV

may be used to refine the algorithm for feature selection and parameter adjustment. The

algorithm's accuracy score and confusion matrix may be used to assess it.

Finally, a pickle file containing the trained SVM model may be created. Load this pickle

file and use it to create predictions on fresh voice samples. The projections can tell if the

speech sample belongs to a healthy individual or someone suffering from Parkinson's

disease.

3.1. Design Flow:

Data collection, data preprocessing, feature extraction, model selection, model

training, model assessment, model deployment, and model testing are typical

phases in the design flow of a machine learning system for Parkinson's disease

diagnosis using voice samples. Each phase in the design flow is explained in detail

below:

• Data Collection: The voice samples of the individuals are acquired using a

telemonitoring device or taken from an existing dataset during the data gathering

25

phase. The speech samples are identified based on the patients' health state (healthy

or Parkinson's disease).

• Data Preprocessing: The voice samples are treated and cleaned at this step to

eliminate noise and silence. To maintain constant and reasonable data size, the

voice samples are additionally standardised and separated.

• Feature Extraction: Various speech characteristics are retrieved from the

preprocessed voice samples in this stage using Python's librosa and parselmouth

packages. Fundamental frequency, jitter, shimmer, harmonicity, and fractal scaling

exponent are among these characteristics. These features capture the peculiarities

and changes of speech sounds that are important for detecting Parkinson's disease.

• Model Selection: A machine learning model is chosen for Parkinson's disease

identification utilising speech characteristics based on the system requirements and

performance targets. A support vector machine (SVM) technique is used in this

research because to its power and versatility in classifying tasks.

• Model Training: The SVM method is developed and trained in Python using the

scikit-learn module. GridSearchCV is used to enhance the model's efficiency and

resilience by refining the method for feature selection and parameter adjustment.

To understand the patterns and correlations between the speech characteristics and

labels, the algorithm is trained on a subset of them.

• Model Evaluation: Following model training, model assessment is carried out to

assess the model's accuracy and performance on unknown data. To examine the

model's capacity to accurately categorise the speech samples as healthy or

Parkinson's disease, several assessment measures such as accuracy score and

confusion matrix are utilised.

• Model Deployment: When the model assessment is finished, the model is

deployed to make it ready for usage on fresh voice samples. A pickle file

containing the trained SVM model is created. Load this pickle file and use it to

create predictions on fresh voice samples.

• Model Testing: The last step is to confirm the deployed model's functionality and

performance by testing it on fresh voice samples. The model's predictions are

compared to the actual labels of the speech samples to ensure accuracy and

dependability. Unit testing, integration testing, and system testing are all types of

testing.

26

3.2. Hardware and Software part:

This project has both software and hardware components. We developed the

method for sound feature extraction in Python, utilising the librosa and

parselmouth libraries to extract different speech aspects such as fundamental

frequency, jitter, shimmer, harmonicity, and fractal scaling exponent.

Following that, the created csv file with the speech features will be utilised in

the project's hardware component. In this case, we will utilise scikit-learn to

create the SVM module, while GridSearchCV in Python will be used for

feature selection and parameter tweaking. To establish the accuracy score and

confusion matrix, the computer's final output will be compared to the actual

labels of the speech samples collected from the data collecting component. The

accuracy and performance of the developed machine learning algorithm will be

used to determine the project's success.

3.3. Software part:

The software part comprises of coding of Python and Java.

3.3.1. Designing algorithm

Python is a high-level programming language and interactive environment

that is often used for data analysis, visualisation, and machine learning. The

method for speech feature extraction was built and tested in Python for this

project.

The goal of creating the method in Python was to test and evaluate it before

implementing it on the computer using scikit-learn. The method may be

simply developed and tested in Python on sample speech recordings to

ensure that it works as intended and produces the desired outcome.

The algorithm design for voice feature extraction includes the following

steps:

• Voice acquisition: The first step in the algorithm is to acquire the input

voice recording.

• Noise removal and silence trimming: The input voice recording is

processed and cleaned to remove noise and silence using librosa library.

27

• Normalization and segmentation: The voice recording is normalized and

segmented to ensure consistent and manageable data size using librosa

library.

• Calculation of the voice features: The voice features are calculated

using librosa and parselmouth libraries. These features include

fundamental frequency, jitter, shimmer, harmonicity, and fractal scaling

exponent.

• Conversion of the voice features to a csv file: The voice features are

converted to a csv file using pandas library.

• Comparison of the output csv file with the actual labels: The output

csv file is compared with the actual labels of the voice samples using

scikit-learn library.

3.3.2. Csv Generation using Python:

The process of creating a.csv file entails translating the speech

characteristics of the input audio recording into numerical format, with a

particular number of decimal places set aside for each feature value. The

numerical data is next transformed into comma-separated values, a data

format in which each feature value is separated by a comma.

The comma-separated values are then stored in a file with the extension

.csv. This file contains the numerical data of the voice features in a format

that can be easily read by machine learning algorithms such as SVMs.

Tables below shows the data generated by the code using voice sample of a

healthy person:

Table 1

Table 2

Table 3

28

3.4. Machine learning using scikit-learn

Machine learning using scikit-learn for this project involves creating a model

that will be trained and tested on the computer using Python.

3.4.1. SVM module

Python's SVM package is in charge of identifying the speech samples as

healthy or Parkinson's illness. It reads speech characteristics from a csv file

and determines the best decision border between classes. The SVM offers a

classification model, which is required for many machine learning

applications.

In Python, the SVM module is implemented by constructing a machine

learning object that trains and tests on speech characteristics. It employs a

fit approach to discover patterns and correlations between characteristics

and labels. The SVM module effectively analyses speech data and creates a

prediction array that reflects voice sample categorization.

The SVM module in our design utilizes a GridSearchCV object along with

several key parameters. These parameters work together to achieve efficient

SVM optimization:

• Estimator: An estimator is a kind of object that performs the fit and

predict procedures. It defines the optimization machine learning

algorithm to be utilised. We utilise an SVM estimator from the scikit-

learn module in this scenario.

• Param_grid: A dictionary that describes the parameter space to search

through is a param grid. It defines the hyperparameter values to be

tweaked for the estimator. For the SVM estimator, we utilise a param

grid that comprises kernel, C, and gamma parameters.

• Scoring: A scoring is a string or a callable that describes the evaluation

measure that will be used to score the estimator's performance. It

describes how to assess fit quality and forecast approaches. In our

situation, we employ an accuracy score, which evaluates the percentage

of true predictions.

29

• Cv: A cv is an integer or a cross-validation generator that specifies the

cross-validation approach to be used when dividing data into train and

test sets. It describes how to verify the estimator's generalisation

capabilities. In our example, we utilise 5-fold cross-validation cv, which

divides the data into 5 parts and uses each subset as a test set once.

Our SVM module successfully manages feature selection, parameter tuning, model

training, and model testing by combining these parameters and utilising a well-

designed GridSearchCV object. The GridSearchCV object manages the flow and

scheduling of these processes, guaranteeing reliable and efficient voice data

processing.

3.5. Mobile Application part using Android Studio:

The mobile application component is based on a machine learning study aimed

at detecting Parkinson's disease from speech recordings using SVM (Support

Vector Machine) as the classifier. The smartphone app makes predictions on

live speech recordings using the trained SVM model and displays the results on

the screen. The Android Studio-based mobile app interfaces with the SVM

model through Anaconda and Spyder. Python was used to create the SVM

model, as well as libraries such as librosa, parselmouth, nolds, sklearn, and

others. Here's an outline of how the mobile app and SVM model did this:

• App Development: The app was created in Java with the help of Android

Studio. The programme includes a UI for recording a speech sample from

the device's microphone, passing it to the SVM model for processing, and

obtaining the SVM model's prediction result.

• Voice Recording: The programme records audio from the device's

microphone at a sample rate of 44100 Hz for 10 seconds using the

sounddevice and soundfile libraries. The audio is saved as a wav file called

"voice.wav" by the programme.

• Voice Processing: The librosa library is used by the programme to load and

trim the voice recording, deleting any silence areas. The parselmouth library

is also used by the app to turn the voice recording into a parselmouth. A

sound object that is used to determine speech metrics such as fundamental

30

frequency, jitter, shimmer, harmonicity, and so on. The software also makes

use of the nolds library to compute nonlinear dynamical complexity metrics

such as RPDE, DFA, and so on. The software generates a feature vector

from these voice measurements and stores it as "voice measures.csv."

• SVM Model: The SVM model was created in Spyder IDE using Python.

The model creates and trains an SVM classifier on a dataset of voice

measurements from healthy persons and patients with Parkinson's disease

using the sklearn package. GridSearchCV is used by the model to tune

hyperparameters to discover the optimal kernel, C, and gamma values for

the SVM classifier. The accuracy score and confusion matrix are used by

the model to assess classifier performance. The trained classifier is saved in

a pickle file called "svm model.pkl" by the model.

• Prediction: Anaconda is used by the app to interface with the SVM model

and deliver the feature vector as input. The SVM model reads the pickle file

and uses the learned classifier to predict the feature vector. Anaconda is

used by the SVM model to transmit the prediction result back to the app.

• Result Display: The prediction result is converted into a text message by

the app and shown on the screen using a text view. For reference, the

software also displays the speech recording and the feature vector. The

speech recording on the device may be readily examined and categorised

by constructing the mobile app component based on Parkinson's disease

diagnosis for machine learning using SVM. The smartphone's mobile

software allows for easy diagnosis and tracking of Parkinson's disease

using speech samples.

.

3.6. Python/App integration:

The project included developing and linking a mobile app and Python code to

diagnose Parkinson's illness from speech recordings using machine learning

technologies. The Android Studio and Java were used to create the mobile app,

while the Python code was produced using Spyder IDE and numerous libraries. The

31

smartphone app captured and presented the speech data and prediction results,

while the Python code computed several voice metrics and made predictions using

a trained SVM model. Anaconda was used to communicate between the mobile app

and the Python code. Here's a rundown of how the Python code mobile app

integration went:

• Python Code: The Python code loaded and trimmed the speech recording,

deleting any silence sections, using the librosa module. The parselmouth

library was also utilised by the Python code to transform the voice recording

into a parselmouth. The sound object was utilised to compute several speech

metrics such as fundamental frequency, jitter, shimmer, harmonicity, and so

on. The Python programme also made use of the nolds module to compute

nonlinear dynamical complexity metrics such as RPDE, DFA, and so on.

The Python code generated a feature vector from these voice measurements

and predicted it using a trained SVM model. The SVM model was trained

on a dataset of voice measurements from healthy persons and patients with

Parkinson's disease using the sklearn package. The SVM model was stored

in the pickle file "svm model.pkl." Using return statements, the Python

programme delivered the prediction result as an output value.

• Mobile App: The sounddevice and soundfile libraries were used by the

mobile app to capture audio from the device's microphone at a sample rate

of 44100 Hz for 10 seconds. The audio was stored as a wav file called

"voice.wav" by the mobile app. Anaconda was also utilised by the mobile

app to interface with the Python code on the remote server and deliver voice

data as input. The Python programme read the pickle file and used the

learned classifier to make a prediction on the speech data. The prediction

result was returned to the mobile app by the Python code through

Anaconda. Using a text view, the mobile app presented the prediction result

on the screen.

By creating and connecting a mobile app and a Python code that can detect

Parkinson’s disease from voice recordings using machine learning technology, the

32

project achieved a simple and effective implementation of a portable diagnostic

tool for Parkinson’s disease.

3.7. Software Requirement:

The software requirement for this project includes the following:

• Anaconda

• Spyder

• Android Studio

• Android Emulator

33

4. Result Analysis

This section of the report focuses on the analysis and evaluation of the key project

tasks discussed earlier. The purpose is to assess the effectiveness and performance of

the implemented algorithms and techniques.

4.1. Algorithm Design on Python;

The approach for detecting Parkinson's illness using speech analysis and SVM

without any built-in functions begins by loading a dataset of voice samples and

labels. The dataset is divided into features and targets, followed by train and test

sets.

The technique then uses GridSearchCV to generate and fit an SVM model with

hyperparameter adjustment. GridSearchCV's best estimator is utilised to generate

predictions on the test set and assess model performance using the accuracy score

and confusion matrix. For subsequent usage, the best estimate is also preserved as a

pickle file.

The method then uses multiple libraries and functions to determine the voice

measurements for a fresh voice recording. The voice is recorded using sound

device and sound file libraries, then loaded and trimmed using the librosa library.

Using the parselmouth, librosa, scipy, and nolds libraries, the voice sample is

converted to a numpy array and different metrics of variance in fundamental

frequency and amplitude are determined. The voice measurements are stored as a

csv file as well.

Finally, the programme loads the stored SVM model and uses the voice

measurements to generate a prediction on the new voice sample. The forecast is

either healthy or unhealthy.

The developed approach's correctness is then assessed by comparing the results to

those obtained using built-in functions. The comparison demonstrates that the

developed algorithm's accuracy is considerably high, suggesting its usefulness in

detecting Parkinson's disease using speech analysis and SVM.

34

The project then moves on to the Android application development phase, which is

built on this foundation.

4.1.1. Android Application Development:

The Android app was created in Java using Android Studio. The app is

divided into four activity sections that are connected by buttons. The app's

front end was created using XML files for each action. The app's back end

was created utilising Java files that include various methods for performing

various tasks and processing. The software enables users to record their

voice, upload it to the MATLAB programme for analysis, and obtain the

prediction result in seconds. In the event of a positive diagnosis, the app

also allows you to call a doctor and begin treatment.

4.2. Hardware Result Analysis: Raspberry pi Implementation

The project calls for the development of two modules: voice recording and

SVM prediction. This section provides an in-depth examination of these

modules, with a focus on their performance and functionality.

4.2.1. Voice Recording module

The Voice Recording module in this design comprises of a microphone and

a sound card connected to the Raspberry Pi. The microphone receives and

converts the user's spoken signal to an electrical signal. The sound card

converts the analogue signal to a digital signal, which is then delivered to

the Raspberry Pi for processing.

To efficiently collect and preserve the speech signal, a Python script is

employed. Using the sounddevice and soundfile libraries, the script records

and saves the voice signal to a wav file. The librosa library was also used by

the script to load and trim the voice stream, removing any silent periods.

The script then saves the decreased speech signal to a new wav file.

Two types of design checks were used in this project: software testing and

hardware testing. For software testing, a specific test script with specified

inputs embedded into the code was established. The test script was then run

35

using the Python interpreter. Figure 4-5 shows screenshots of the testing

results, exhibiting the software testing process and its outcomes.

The interpreter outputs a demonstration of how the Voice Recording

module works. The user's speech signal from the microphone and sound

card is successfully captured and preserved by this module. The output

illustrates the signals and attributes found within the Speech Recording

module, giving for a better understanding of how it works and how it

processes the voice signal.

Finally, the Voice Recording module recorded and saved the user's voice

signal from the microphone and sound card, as well as demonstrated its

capacity during execution. The outcome demonstrated the recording and

trimming methods of the Voice Recording module, indicating effective data

processing and storage. The activities of the Voice Recording module were

validated by the interpreter's console display. Furthermore, the block

diagram depicted the Voice Recording module's outside structure and

connections. The successful development and analysis of the Speech

Recording module validates its vital function in capturing speech data and

enabling future voice analysis operations in the co-processor architecture.

4.2.2. SVM Prediction module

In this approach, the SVM Prediction module consists of a Python script

and a pickle file containing the SVM model and voice measurements. The

Python script loads the SVM model and voice measurements from the

pickle file using the pickle library. The script then employs the SVM model

to forecast the speech signal based on the voice measurements.

A Python script is used to effectively create and show the forecast. The

script imports and employs the SVM model and its functionalities using the

sklearn package. Print statements are also used in the script to show the

prediction result and its interpretation.

In this project, two types of design checks were used: software testing and

36

hardware testing. A specific test script with predetermined inputs

incorporated in the code was created for software testing. The Python

interpreter was then used to run the test script.

The interpreter produces output that demonstrates how the SVM Prediction

module works. This module generates and displays a forecast based on the

user's speech signal acquired from the Voice Recording module. Within the

SVM Prediction module, the output gives a visual representation of the

prediction result and its significance, allowing for a better understanding of

its operation and how it analyses the speech signal.

Finally, the SVM Prediction module successfully predicted and showed the

user's speech signal from the Voice Recording module, demonstrating its

capability via execution. The output revealed the SVM Prediction module's

prediction result and its meaning, demonstrating the accuracy and

usefulness of data analysis. The interpreter's console pane validated the

dependability of the SVM Prediction module's activities. Furthermore, the

block diagram illustrated the exterior structure and connections of the SVM

Prediction module. The effective installation and analysis of the SVM

Prediction module in the co-processor architecture proves its critical role in

diagnosing Parkinson's disease and assisting subsequent treatment initiation

activities.

4.3. Software result Analysis: Python Implementation

Spyder's Python-based software implementation of audio recording and feature

extraction resulted in effective voice analysis. The voice recording method

correctly caught the individuals' speech signals, giving vital information regarding

the amplitude and frequency of the voice. This data was then sent into the feature

extraction method, which was used to extract numerous speech metrics and

increase diagnostic quality.

4.3.1. Voice Recording and Feature Extraction

The procedure of speech recording and feature extraction included

integrating the voice analysis module into the current software architecture.

The goal of this integration was to smoothly connect the speech analysis

module's capabilities with other modules and components in the system.

37

By effectively integrating the speech analysis module, we were able to

create a coherent system in which the voice processing capabilities

functioned in tandem with other components. This connection guaranteed

efficient data flow and allowed the speech processing module to

communicate with other system components.

The speech analysis module in Python is integrated by attaching it to the

SVM model module. This link allows data to be exchanged seamlessly

between the speech analysis module and the SVM model module, allowing

for rapid processing and categorization of voice characteristics. The speech

analysis module is also linked to the sound device and sound file modules

through the sounddevice and soundfile libraries. These links let the speech

analysis module to interface with the sound device and sound file modules,

allowing for the recording and storage of voice signals.

Furthermore, the speech analysis module extracts several voice

measurements from recorded voice signals using libraries such as librosa,

parselmouth, nolds, scipy, and numpy. Fundamental frequency, jitter,

shimmer, harmonicity, nonlinear dynamical complexity, spectral and pitch

period entropy are among these measurements. These metrics are then

employed as input characteristics for the SVM model module, allowing

machine learning methods to be used to diagnose Parkinson's disease and

enhance detection quality.

The system maintains smooth data and control signal flow by combining

these modules and providing the appropriate connections, allowing for

efficient execution of the speech analysis process. This integration allows

the Python-based speech analysis module to work in tandem with the SVM

model module, as well as interaction between the voice analysis module and

the sound device and sound file modules.

4.3.2. Voice recording and Prediction:

The speech recording and prediction method included taking a fresh voice

sample from a subject and predicting it using the trained SVM model. The

goal of this approach was to show our system's functionality and usefulness

in identifying Parkinson's disease using speech recordings.

We established a viable and effective technique for diagnosing Parkinson's

38

disease using speech attributes by effectively recording and predicting a

new voice sample. This diagnosis was based on the SVM model's prediction

utilising voice characteristics retrieved from the fresh voice sample, which

offered vital information regarding the impairment and disorder of the

voice.

In Python, recording and predicting a fresh voice sample entails using the

sounddevice module to capture sounds from a microphone attached to a

computer. We may use this library to record audio with different settings

such as samplerate, duration, and filename. Because these parameters

impact the quality and format of the recorded audio, they must be set in

accordance with our specifications. We utilise the librosa library to load and

trim the audio file using the librosa.effects.trim function to remove the

silence areas of the recorded audio. This method produces a trimmed audio

signal and the indices that correspond to it, which we use to save the

trimmed audio file using the soundfile library.

Furthermore, similar to the voice analysis module, we employ several

libraries such as librosa, parselmouth, nolds, scipy, and numpy to extract

various speech metrics from the trimmed audio signal. Fundamental

frequency, jitter, shimmer, harmonicity, nonlinear dynamical complexity,

spectral and pitch period entropy are among these measurements. These

metrics are then moulded into a feature vector, which is subsequently fed

into the SVM model module. Using the pickle library's pickle.load method,

we load the trained SVM model from a file. This method produces an SVM

model object, which may be used to forecast fresh data. Using the

svm.predict function, we utilise this object to forecast the illness status of

the new voice sample. This method produces a predicted label indicating

whether the voice sample belongs to a healthy or ill individual.

We verify that we have a working and useful system that can reliably

diagnose Parkinson's disease using speech recordings by recording and

predicting a new voice sample, as well as extracting and exploiting voice

attributes. This procedure allows us to show our system's functionality and

usefulness in identifying Parkinson's disease using voice characteristics.

39

4.3.3. Voice Recording Implementation

The Python voice recording was stored as a wav file, making it easy to

represent and manipulate the speech data. The speech signal's amplitude

values were saved in the wav file, resulting in a clear and continuous

representation of the voice.

The quality and consistency of the Python-generated voice recording were

assessed by comparing it to the Audacity-created voice recording. The

Audacity wav file, which also included the amplitude values of the voice

signal, served as a reference for comparison.

The resemblance and dissimilarity between the Python-generated speech

recording and the Audacity voice recording were investigated. Statistical

metrics such as signal-to-noise ratio (SNR) were used to compare the

amount of noise and distortion in the two voice recordings.

We may evaluate the Python implementation's quality and accuracy by

comparing the Python-generated speech recording to the Audacity voice

recording.

4.3.4. Fundamental Frequency

The fundamental frequency analysis technique created in Python was tested

for its utility in diagnosing Parkinson's illness using voice recordings. The

results were examined by comparing the voice characteristics of healthy and

unwell individuals in order to quantify the differences discovered using the

basic frequency analysis approach.

The basic frequency analysis method successfully retrieved the average,

maximum, and minimum values of the vocal pitch of the voice signals,

resulting in improved Parkinson's disease diagnosis and classification. A

statistical comparison of the healthy and diseased groups indicated a

significant difference in the fundamental frequency values.

According to the p-value investigation, the Python version of the

fundamental frequency analysis approach achieved a high level of

significance, indicating a substantial association between fundamental

40

frequency and Parkinson's disease. This means that the ill individuals had

lower average, maximum, and lowest fundamental frequency values than

the healthy participants, implying a lower level of voice stability and control

during speech production. The high p-values discovered support the

accuracy of the fundamental frequency analysis algorithm in diagnosing

Parkinson's disease using voice data. Evaluation of Jitter

Using speech recordings, the Python-implemented jitter analysis technique

was assessed for its utility in identifying Parkinson's disease. To quantify

the alterations induced by the jitter analysis technique, the data were

analysed by comparing the voice features of healthy and unwell patients.

The jitter analysis technique discovered various measurements of

fluctuation in the basic frequency of speech signals, resulting in improved

Parkinson's disease diagnosis and classification. A statistical comparison of

the healthy and unwell groups indicated a significant difference in jitter

values.

According to the p-value investigation, the Python version of the jitter

analysis approach achieved a high level of significance, indicating a

significant link between jitter and Parkinson's disease. This suggests that the

ill participants had higher jitter values than the healthy participants,

implying a higher level of voice irregularity and disturbance during speech

production. The high p-values discovered support the accuracy of the jitter

analysis technique in diagnosing Parkinson's disease using speech data.

4.3.5. Harmonicity Analysis

The harmonicity analysis approach created in Python was tested for its

usefulness in diagnosing Parkinson's disease using voice recordings. The

results are examined by comparing the voice characteristics of healthy and

unwell patients in order to quantify the variations caused by the harmonicity

analysis technique.

41

The harmonicity analysis technique successfully retrieved two measures of

the noise-to-tone component ratio in speech recordings, resulting in more

accurate Parkinson's disease diagnosis and categorization. A statistical

comparison of the healthy and diseased groups indicated a significant

variation in harmonicity levels.

According to the p-value analysis, the Python version of the harmonicity

analysis approach achieved a high level of significance, indicating a

substantial association between harmonicity and Parkinson's disease. This

suggests that the ill participants had lower harmonicity values than the

healthy participants, implying a lower level of voice quality and clarity

during speech production. The observed high p-values support the accuracy

of the harmonicity analysis technique in detecting Parkinson's disease using

speech data.

4.3.6. Nonlinear Dynamical Complexity Analysis

Using voice recordings, the harmonicity analysis technique created in

Python was assessed for its utility in identifying Parkinson's disease. In

order to quantify the differences caused by the harmonicity analysis

technique, the result analysis involved comparing the voice characteristics

of healthy and unwell patients.

The harmonicity analysis technique successfully retrieved two measures of

noise to tone component ratio in speech data, allowing for more accurate

Parkinson's disease diagnosis and categorization. A statistical comparison of

the harmonicity scores of the healthy and unwell groups revealed a

significant difference.

The resulting p-values revealed that the Python version of the harmonicity

analysis approach achieved a high level of significance, indicating a

significant relationship between harmonicity and Parkinson's disease. This

demonstrates that the ill participants had lower harmonicity values than the

healthy participants, implying a lower level of voice quality and clarity

42

during speech production. The high p-values found confirm the technique's

efficacy in effectively detecting Parkinson's disease using voice features.

4.3.7. Spectral Analysis

The spectrum analysis technique created in Python was tested for its utility

in diagnosing Parkinson's illness using speech recordings. To assess the

differences caused by the spectrum analysis process, the results were

examined by comparing the voice features of healthy and unwell subjects.

The spectrum analysis technique successfully recovered two spectral

measurements of the fluctuation in fundamental frequency of speech

sounds, allowing for more accurate Parkinson's disease diagnosis and

categorization. A statistical comparison of the healthy and diseased groups

indicated a significant difference in spectral values.

According to the p-value analysis, the Python implementation of the

spectrum analysis technique achieved a high level of significance,

indicating a substantial association between spectral and Parkinson's

disease. This means that the ill participants had larger spectral values than

the healthy participants, indicating a higher degree of voice deviation and

distortion during speech production. The observed high p-values support the

accuracy of the spectrum analysis technique in detecting Parkinson's disease

using voice data.

4.3.8. Pitch Period Entropy Analysis

The pitch period entropy analysis technique created in Python was tested for

its utility in diagnosing Parkinson's illness using voice recordings. The

results were examined by comparing the voice characteristics of healthy and

unwell volunteers in order to quantify the differences discovered by the

pitch period entropy analysis technique.

The pitch period entropy analysis method successfully extracted a nonlinear

measure of fundamental frequency fluctuation from speech data, resulting in

43

improved Parkinson's disease diagnosis and classification. A statistical

comparison of the pitch period entropy value between the healthy and ill

groups found a significant difference.

According to the p-value investigation, the Python version of the pitch

period entropy analysis approach achieved a high level of significance,

indicating a significant link between pitch period entropy and Parkinson's

disease. This suggests that the ill participants had larger pitch period

entropy values than the healthy participants, implying a higher degree of

voice fluctuation and instability during speech production. The high p-value

obtained confirms the pitch period entropy analysis algorithm's utility in

correctly detecting Parkinson's disease using speech data.

4.4. Voice Recording and Feature Extraction

The procedure of speech recording and feature extraction included integrating the

voice analysis module into the current software architecture. The goal of this

integration was to smoothly connect the speech analysis module's capabilities with

other modules and components in the system.

By effectively integrating the speech analysis module, we were able to create a

coherent system in which the voice processing capabilities functioned in tandem

with other components. This connection guaranteed efficient data flow and allowed

the speech processing module to communicate with other system components.

The speech analysis module in Python is integrated by attaching it to the SVM

model module. This link allows data to be exchanged seamlessly between the

speech analysis module and the SVM model module, allowing for rapid processing

and categorization of voice characteristics. The speech analysis module is also

linked to the sound device and sound file modules through the sounddevice and

soundfile libraries. These links let the speech analysis module to interface with the

sound device and sound file modules, allowing for the recording and storage of

voice signals.

Furthermore, the speech analysis module extracts several voice measurements from

recorded voice signals using libraries such as librosa, parselmouth, nolds, scipy,

and numpy. Fundamental frequency, jitter, shimmer, harmonicity, nonlinear

dynamical complexity, spectral and pitch period entropy are among these

44

measurements. These metrics are then employed as input characteristics for the

SVM model module, allowing machine learning methods to be used to diagnose

Parkinson's disease and enhance detection quality.

The system maintains smooth data and control signal flow by combining these

modules and providing the appropriate connections, allowing for efficient

execution of the speech analysis process. This integration allows the Python-based

speech analysis module to work in tandem with the SVM model module, as well as

interaction between the voice analysis module and the sound device and sound file

modules.

4.5. App Integration

The app interfacing stage was a success, allowing the user and the system to

communicate and engage in real time. The app was created using Android Studio

and Kotlin, and it has a user-friendly interface for data entry and output. This

interface enabled the user to capture a speech sample using the smartphone's

microphone and obtain an SVM model prediction of Parkinson's disease state.

Creating and linking numerous app components such as activities, layouts, buttons,

text displays, and voice recorders was part of the app interfacing step. These

elements allowed the user to browse the programme, record and store a voice

sample, and see the prediction result. The software also included speech analysis

and SVM model modules that were executed on the smartphone utilising libraries

like sounddevice, soundfile, librosa, parselmouth, nolds, scipy, numpy, and sklearn.

The programme was able to extract numerous vocal characteristics from the voice

sample and utilise the trained SVM model to forecast Parkinson's disease status

thanks to these libraries.

45

5. Chapter 5: Future Work

The future work for the project is to design hardware which will link with android

application. The hardware can be installed in places which lack sources of Parkinson

Detection test, especially in remote and underdeveloped cities.

Following are some areas that can be explored for further enhancement of the co-processor:

5.1. Real-Time Monitoring:

One possible avenue for future research is the identification of Parkinson disease

in real time utilising an Android application and hardware. This will include

connecting an Android application to hardware that will detect speech signals

and deliver them to an Android programme through Bluetooth/, yielding

expected results in seconds on devices that do not have an audio reception

device. This will not only save time but also money. In the event of a major

incident, the application may have an extra function in which the patient with

Parkinson's disease symptoms recognised by voice is called by a doctor, who

will verify and begin treatment for the PD patient.

5.2. Smartwatches:

The PD prediction may also be incorporated to smartwatches to increase

accessibility and ease testing. A function that records speech or detects tremors

in the body might be useful in identifying Parkinson's disease in a person, and

this feature is readily added in smartwatches.

5.3. Large Scale voice Dataset:

The future work involves the collection and curation of large scale voice datasets

specifically for PD detection. This would involve recording voice samples from

diverse range of individuals, including PDs and healthy patients.

5.4. Feature Engineering:

Feature research would explore novel feature engineering techniques specifically

tailored for PD detection. This may involve designing features that capture specific

characteristics of the voice associated with PD-related symptoms such as vocal

46

tremors, dysarthria or dysphonia.

5.5. Fusion with other Modalities:

Future research could investigate the fusion of voice data with data from wearable

sensors, such as accelerometers or gyroscopes, to capture motor related features. It

will provide a more comprehensive representation of PD symptoms and improve

the accuracy of the detection models.

5.6. Longitudinal analysis:

It will provide insight into the progression of PD and effectiveness of treatment of

treatments. It would explore more machine learning techniques that can analyze

voice data collected over time to track changes in vocal characteristics and predict

disease progression.

47

6. Conclusion

6.1. Overview

The goal of this project was to use Python and SVM to perform speech analysis and

Parkinson's disease diagnosis on a smartphone, as well as to integrate the code with

the Raspberry Pi device. The method was developed and tested in Spyder IDE for

the project. Modules for speech recording and feature extraction were incorporated

in the design. The Python software implementation enabled result comparison and

validation.

6.2. Objective Achieved/ Achievements

This project's accomplishments include improving efficiency and functionality in

Python and SVM designs in Spyder and Android Studio, leading in efficient

implementation. The smartphone software included modules for speech recording

and feature extraction, allowing for efficient data collecting and processing. The

use of software permitted result comparison and confirmation, assuring accuracy

and dependability.

6.3. Contributions

The study demonstrates how to employ smartphone technology to perform effective

speech analysis tasks including feature extraction and illness diagnosis. It

contributes to the development of sophisticated speech analysis methods by proving

the usefulness of smartphone-based implementations. It emphasises the

significance of combining hardware and software components for best

performance. The usage of libraries and software implementation allows for a

synergistic approach, which leads to greater efficiency and accuracy in speech

analysis applications. It highlights the efficient performance of software

components in smartphone app designs, such as voice recording and feature

extraction modules. It adds to performance optimization and allows quicker and

more efficient speech analysis algorithms by building modules that efficiently

record and analyse voice data.

48

6.4. Limitations

Smartphones have limited processing power, memory capacity, and battery life.

The time of the speech recordings or the number of characteristics that may be

retrieved concurrently may be limited depending on the complexity of the installed

modules and the available resources. As a result, the project's scalability and

applicability to larger-scale speech analysis jobs may be limited.

6.5. Applications

The following are some of the important areas where this project may be applied:

Medical Condition: Using speech recordings, the voice analysis approach may be

used to identify medical illnesses such as Parkinson's disease. It may help with the

identification and analysis of diverse symptoms, which can enhance illness

diagnosis and categorization. It may help healthcare practitioners make more

accurate diagnoses and treatment plans.

Speech Recognition: In speech recognition applications, voice analysis methods

such as feature extraction are critical. They may be used to increase feature

extraction, improve voice quality, and reduce noise. The smartphone-based

implementation of this project supports real-time processing, making it suited for

speech recognition applications such as speech-to-text conversion, voice

commands, and natural language processing.

6.5.1. Voice Authentication:

Voice analysis techniques can also be utilised for voice authentication in

biometric security systems, access control systems, and identity verification

systems. Smartphone-based implementations benefit from mobility,

convenience, and user-friendliness, making them ideal for voice

authentication activities such as password verification, face unlock, and

digital signature.

49

6.5.2. Voice Enhancement:

Smartphone-based voice analysis systems can also be used for voice

improvement activities such as noise reduction, pitch correction, and voice

modulation. The rapid data capture and processing capabilities of

smartphone-based speech recording and feature extraction modules allow

for smooth incorporation into voice enhancement pipelines.

6.5.3. Voice Analysis:

Smartphone-based voice analysis can be integrated into voice analysis

applications for various purposes such as emotion recognition, personality

assessment, health monitoring, and social interaction. The real-time

processing capabilities of smartphones, combined with compact size and

low power consumption, make them suitable for resource-constrained voice

analysis environments.

50

REFERENCES

[0] “UCI Machine Learning Repository: Parkinsons Data Set.” [Online]. Available:

https://archive.ics.uci.edu/ml/datasets/parkinsons

[1] T. M. Mitchell, Machine Learning. New York: McGraw-Hill, 1997.

[2] J. Jankovic, “Parkinson’s disease: clinical features and diagnosis,” Journal of

Neurology, Neurosurgery & Psychiatry, vol. 79, no. 4, pp. 368-376, Apr. 2008.

[3] S. Sapir et al., “Voice disorder detection using machine learning and speech processing

techniques,” in 2017 IEEE 30th Convention of Electrical and Electronics Engineers in

Israel (IEEEI), Eilat, Israel, 2017, pp. 1-5.

[4] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. Upper Saddle

River: Pearson Education, 2010.

[5] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning. Cambridge: MIT Press,

2016.

[6] “Anaconda | Individual Edition.” [Online]. Available:

https://www.anaconda.com/products/individual

[7] “Spyder.” [Online]. Available: https://www.spyder-ide.org/

[8] “Librosa.” [Online]. Available: https://librosa.org/

[9] “sklearn.model_selection.GridSearchCV — scikit-learn 0.24.2 documentation.”

[Online]. Available: https://scikit-

learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html

[10] “sklearn.metrics — scikit-learn 0.24.2 documentation.” [Online]. Available:

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics

[11] “pickle — Python object serialization — Python 3.9.6 documentation.” [Online].

Available: https://docs.python.org/3/library/pickle.html

[12] “Python unittest — Python Testing.” [Online]. Available: https://python-

testing.readthedocs.io/en/latest/unittest.html

[13] “pickle.load() vs pickle.loads() - GeeksforGeeks.” [Online]. Available:

https://www.geeksforgeeks.org/pickle-load-vs-pickle-loads/

[14] R. C. Gonzalez and R. E. Woods, Digital Image Processing, Fourth Edition, 2018.

[15] J. Han et al., Data Mining: Concepts and Techniques, Third Edition, 2012.

[16] M.-H. Tsai et al., “A portable device for real-time voice disorder detection based on a

smartphone platform,” in Proceedings of the Annual International Conference of the IEEE

51

Engineering in Medicine and Biology Society (EMBS), Boston MA USA , Aug.-Sep.,

2011 , pp . 5078-5081 .

[17] J.-H. Lee et al., “A study on the development of a smartphone application for the self-

management of Parkinson’s disease,” Healthcare Informatics Research, vol. 25, no. 4, pp.

291-300, Oct.-Dec., 2019.

[18] M.-H. Tsai et al., “A portable device for real-time voice disorder detection based on a

smartphone platform,” in Proceedings of the Annual International Conference of the IEEE

Engineering in Medicine and Biology Society (EMBS), Boston MA USA , Aug.-Sep.,

2011 , pp . 5078-5081 .

[19] R.C.Gonzalez and R.E.Woods,Digital Image Processing,Forth Edition ,2018.

