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Abstract

Secret sharing is a method to split a message into several parts in such a way that no subset of

parts is able to read the message, but the entire set is. In this thesis we explore the secret sharing

schemes by the entanglement as well as without the entanglement with the discrete and continu-

ous variables. Secret sharing has the vast importance in different areas of the recent technology

due to its large security. In the first scheme, we review the secret sharing by the entanglement

of discrete variable and use the Greenberger-Horne-Zeilinger (GHZ) states as a discrete variables.

In this method we see that how this secret sharing is implemented and how the presence of the

eavesdropper will introduce errors.

In the second , we review a particular symmetric variety of secret sharing, known as (k, n) thresh-

old scheme. It involves a dealer who wants to distribute a secret among a group of n parties and

any k number of players from n parties are sufficient to reconstruct the secret and any set of k − 1

or fewer parties has nothing about the secret and also it is noticed that threshold scheme exists for

all value of k and n with n > k.

It is difficult to deal with multi-party entanglement, because the entangled states are difficult to

prepare and maintained among growing the number of participants. So we explore sequential

scheme for secret sharing, in which qubits are controlled by the parties without using any shared

entanglement and it involves random hopping of the states by using the qdits (d-level states). This

sequential method is required for any value of d. We also extend this idea into continuous basis by

means of d→∞ and explore some tools needed for continuous variable secret scheme.
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Chapter1
Introduction

1.1 Quantum bit

The quantum bit or qubit is a basic unit of quantum information science. It is representation of a

two state quantum mechanical system such as a polarization of a single photon, or spin of a single

electron in a hydrogen atom, and can take one of the two possible values 0 or 1. Any quantum

system in quantum information theory, having two states |0〉 and |1〉 (in Dirac notation) can serve

as a qubit.

Let us suppose we have a quantum system with two states |0〉 and |1〉, then any of the qubit state

|ψ〉 of this system can be written as the linear superposition of |0〉 and |1〉

|ψ〉 = α|0〉+ β|1〉, (1.1)

where α and β are complex numbers and known as probability amplitudes. Whenever we measure

the qubit state |ψ〉 in the standard basis, then α comes as the probability amplitude of the output

|0〉 and β for |1〉. Since the absolute square of probability amplitude is probability so the α and β

must fulfil the requirement

|α|2 + |β|2 = 1. (1.2)
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It should be noted that in Eq. (1.1) the qubit state |ψ〉 is not somewhere between the |0〉 and |1〉,
it is in the linear superposition of both states |0〉 and |1〉. When some one wants to measure |ψ〉,
he will find that it is in state |0〉 with the probability of |α|2 and in |1〉 with |β|2. In the coordinate

representation, these states |0〉 and |1〉 are represented as

|0〉 =

0

1

 and |1〉 =

1

0

 . (1.3)

By using Eq. (1.3), the qubit state |ψ〉 can be written as

|ψ〉 =

α
β

 . (1.4)

Thus we can say that unlike the classical bit which can only be set equal to 1 or 0, the quantum bit

in a vector space can be parameterized by α and β. In the next section, we are going for a brief

review on the theory of entanglement.

1.2 Entanglement

Quantum entanglement is one of the mysterious central principles of quantum physics. Entan-

glement depends upon two quantum properties known as "non- locality" and "non-separability",

which are impossible in "classical" physics. Information physics (and the information interpre-

tation of quantum mechanics) can explain them both with no equations, in a way that should be

understandable to the lay person [1].

The roots of entanglement go back to the year 1935 when Einstein and two colleagues, Podolsky

and Rosen (generally known as EPR) published a paper to show that quantum theory is incomplete.

"The properties of physical systems have definite values whether system is being observed or not"

this was the core by EPR and other "realists". When a system is entangled, individual component

systems or particles are considered as single entity. Measurement of any component of system is

a measurement on the entire system. The wave function for the system then collapses and com-

ponent systems or particles assume definite states. In short, quantum entanglement correlates the
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multiple particles or systems in such a way that measurement of one particle’s quantum state gives

the information about the other particle’s quantum state irrespective of the location of the particles

in space. Even if entangled particles are separated by billions of miles, changing the state of one

particle will induce a change in that of the other. Now we are going to describe Bell states.

1.3 Bell states

In quantum information science, the Bell states are represent the simplest example of entanglement.

In two particle system we have four maximally entangled states known as Bell states. We can write

them compactly as [2]

|βab〉 =
1√
2

(
|0b〉+ (−1)a|1b〉

)
, (1.5)

where b denotes "not" b, (if b is 1 b is 0 and vice versa) and a and b ( having values 0 or 1) known

as phase bit and parity bit respectively. It means that we can represent any two particles quantum

state in terms of basis {|00〉, |01〉, |10〉, |11〉}. Now we are going to see how an entangled state can

be identified.

1.3.1 Is the quantum state entangled?

The quantum states other than the entangled ones are known as product or separable states. We

can differentiate between them in such a way that, the quantum states which can be written as a

product of individual systems is separable and the state which cannot be written in product form

is referred as entangled one. If we write two states by using the tensor product, the resulting state

is composite state. The state of a composite system defined in Hilbert spaces as |ψ〉 ∈ HA ⊗HB

are not surely entangled, where HA and HB are two dimensional Hilbert spaces. Let we have two

states |φ1〉 ∈ HA and |φ2〉 ∈ HB and their composite state is defined |χ〉 = |φ1〉 ⊗ φ2〉. Let the
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composite state χ has the form

|χ〉 =



a

b

c

d


, (1.6)

then, state |χ〉 is said to be entangled if and only if ad 6= bc, otherwise, it is separable state. Let us

consider the Bell state |β01〉 and check the above condition to show that Bell state is an entangled

state.

|β01〉 =
1√
2

[|01〉+ |10〉],

|β01〉 =
1√
2

[|0〉 ⊗ |1〉+ |1〉 ⊗ |0〉], (1.7)

using the coordinate representation of |0〉 and |1〉, we have

|β01〉 =
1√
2


0

1

⊗
1

0

+

1

0

⊗
0

1


 ,
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after performing the tensor product, we have

|β01〉 =
1√
2





0

0

1

0


+



0

1

0

0




,

|β01〉 =
1√
2



0

1

1

0


, (1.8)

clearly 0 6= 1, this is what we have to prove. By using this procedure, we can check out whether

the given state in 2×2 Hilbert space is entangled or not. Now we are going to describe our desired

quantum states by using the quantum bit idea and then use them for further purposes.

1.4 Greenberger-Horne-Zeilinger (GHZ) state

In quantum information theory, a GHZ state is an entangled quantum state which involves at least

three particles (subsystems). When each of the subsystems being two-dimensional (that is for

qubits), it can be expressed as

|GHZ〉 =
|0〉⊗N + |1〉⊗N√

2
,

withN > 2. The GHZ state can also be defined as the state representing the quantum superposition

of all subsystems being in state |0〉 with all of them being in state |1〉. The most simplest form of

GHZ state (for N = 3) is written as

|GHZ〉 =
|000〉+ |111〉√

2
.
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GHZ states have very interesting use in the field of secret sharing. We will use these states as a

basic tool of an secret sharing scheme in Chapter 3. Now in the rest of this Chapter, we will discuss

about secret sharing.

1.5 Secret sharing

The process in which a plaintext (secret) is converted into cyphertext by encoding and decoding it

and then back into plaintext is known as cryptography. Traditionally cryptography involves only

two people or parties: the sender and the receiver usually known as Alice and Bob respectively.

However there are some applications when a sender wants to send the secret to more than one

receiver due to some security reason so that only when all receivers or any subset of it collaborators

get together, the secret can be recovered. Protocol used for this type of cryptocommunication is

known as secret sharing protocol. Secret sharing protocols needed in the situations for example,

when the sender can not trust the individual receiver but he/she has a believe on a number receiving

parties collectively.

There are many types of secret sharing schemes in which the dealer distributes a share of the secret

to many players, after fulfilling the specific conditions, the players be able to reconstruct the secret

from their shares. The dealer plays with each player by giving a share to each of them and he

can choose by his own wish what number of players (threshold members required for decoding)

are allowed to retrieve the secret. One of the most important scheme of secret sharing, which is

referred as (k, n) threshold protocol of secret sharing . This protocol has a dealer, who is distribute

secret message into n parties by encoding it. This scrambling information is then retrieved by the

collective collaboration of a set of k players, while the remaining members of recipients get no

information about the secret.

1.5.1 Secret sharing using quantum mechanics

Secret sharing can be said as the multi-party generalization of the quantum cryptography in which

a secret message is not only protected against the criminal parties (eavesdropper) but only be re-

trieved by the collective collaborations of several people [3]. There are some examples of quantum
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mechanics based secret sharing which we will be discussed in detail in the coming chapters:

• Discrete variables secret sharing The quantum bits are used as discrete variables in order to

implement the secret sharing of discrete variables. The first quantum mechanics based secret shar-

ing scheme by discrete variables is proposed by using the GHZ state [4] and this state being the

resource of entanglement, splits the secret information among all the participants. In this proto-

col, first a key is established between all the parties in such a away that when all the participants

work together they retrieve the secret, while any single member is unable to do so. This work is

discussed in chapter 3.

• Continuous variables secret sharing In continuous variables secret sharing, the GHZ state is

replaced by the N-mode maximally entangled state
∫
dx|x1, x2, , , xN〉 . Continuous variable secret

sharing is suggested by Tyc and Sanders [5] in 2002. In this protocol, secret is shared locally and

only a sufficiently large subgroups of arbitrary participants can have access to the secret informa-

tion. They used the multimode entangled states and produced the secret with the beam splitter and

the squeezed light. The details of this scheme is in chapter 3.

• Secret sharing without entanglement: In chapter 4, we review the schemes of secret sharing

which alleviates the need of entanglement by considering a sequential method for secret sharing.

The random hopping of the states by using the qdits (d-level states) with the application of local

operators will be performed there.

1.6 Outline of Thesis

The thesis is organized as follows: In second chapter, we will learn the basic information about

the continuous variables, like the quadrature of the field and why they are called as continuous

variables. Section 2.1 includes the definition of continuous variables, the quadrature of the field

operator and how they can be squeezed. In section 2.2, we will see how continuous variables are

transformed linearly via linear optics. In section 2.3, Non-linear optics of continuous variables

are discussed in detail and it compromises of how the operator evolves in non-linear fashion. In

section 2.4, the entanglement of continuous variables are briefly explained.

In chapter 3, we discuss the secret sharing by using the entanglement. In section 3.1, the discrete

(GHZ state as discrete variable) variable secret sharing are briefly discussed. Section 3.2 includes

the (k, n) threshold secret sharing scheme in which secret is share by using the entanglement of
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continuous variables. In chapter 4, we present the entanglement free secret sharing without using

entanglement. Section 4.1 includes the secret sharing by means of the random hopping of states of

odd d (dimensions) whereas section 4.2 consists of random hopping scheme also but in that case it

is for general dimension d.

Chapter 5 includes the three sections: in section 5.1, random hopping of states in continuous basis

by using the Fourier and translation operators are explained and in section 5.2, we discuss the

random hopping of continuous basis by using the squeezing and displacement operators. In the

last section, we present a general scheme that how any arbitrary quantum state can be displaced

and how it can be implemented physically. We conclude in sixth chapter.
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Chapter2
Continuous Variable

In this Chapter, we are going to review the literature of continuous variables in quantum optics envi-

ronment. We will discuss about the quantized electromagnetic field quadratures and then squeezing

of these quadratures. In the last, we will study linear and nonlinear optics of continuous variables

and conclude with some important remarks.

2.1 Continuous variables

Those variables that can take infinite numbers of possible values are known as continuous vari-

ables. Alternatively, it can be defined as if a variable can take any value between its minimum

value and its maximum value known as continuous. Variables other than continuous are discreet.

When a transition is made classical mechanics to quantum mechanics of in a system, then the ob-

servable in the Hamiltonian of that system change into non hermitian operators. Then the modes of

electromagnetic field of the system corresponds to quantum harmonic oscillators and the quadrates

of that mode plays the role of position and momentum of the oscillators.
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2.1.1 The quadratures of electromagnetic (em) field

In case of quantum harmonic oscillators, the Hamiltonian in terms of ladder operators having single

mode k can be written as

Ĥk = ~ωk
(
â†kâk +

1

2

)
, (2.1)

where

âk =
1√

2~ωk
(ωkx̂k + ip̂k) , (2.2)

â†k =
1√

2~ωk

(
ωkx̂k − ip̂k

)
. (2.3)

Now the Hamiltonian in terms of position and momentum have the form

Ĥk =
1

2

(
ω2
kx̂

2
k + p̂2

k

)
. (2.4)

From Eqs. (2.2) and (2.3) the position and momentum operator can be written as

x̂k =

√
~

2ωk

(
âk + â†k

)
, (2.5)

p̂k = −i
√

~ωk
2

(
âk − â†k

)
, (2.6)

and the commutation relation of these operators are

[x̂k, p̂k] =
i

2
δkk′ . (2.7)

This is the expected result, because of the bosonic commutation relation of creation and annihila-

tion operator such as: [âk, â
†
k′ ] = δkk′ and [âk, âk′ ] = 0 = [â†k, â

†
k′ ]. From Eq. (2.2), it can be seen

that operators p̂k and x̂k up to normalization factors are the imaginary and real parts of creation

operators respectively. So we can define the dimensionless pairs of non-commuting variables such
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as

X̂k ≡
√
ωk
2~
x̂k = Reâk, (2.8)

P̂k ≡
√

1

2~ωk
p̂k = Imâk, (2.9)

and their commutation relation will be

[X̂k′ , P̂k] =
i

2
δkk′ . (2.10)

In other words, we can say that the dimensionless pair of conjugate operators X̂k and P̂K are

defined if we take ~ = 1
2

and they represent the quadratures of the single mode k of the field.

Classically these operators correspond to the real and imaginary parts of complex amplitude of

the oscillators. So now onwards by using (X̂k, P̂k) or (x̂k, p̂k), we will call these quadratures

representing the position and momentum variables. Now the variance of any two non-commuting

observable Â and B̂, for any arbitrary state can be written as

〈(4Â)2〉 ≡ 〈Â2〉 − 〈Â〉2, (2.11)

〈(4B̂)2〉 ≡ 〈B̂2〉 − 〈B̂〉2, (2.12)

and their Heisenberg uncertainty relation

〈(4Â)2〈(4B̂)2〉 ≥ 1

4
|〈[Â, B̂]〉|2. (2.13)

When we set ~ = 1
2

and ωk = 1, Eqs. (2.5) and (2.6) may reduce to

x̂k =
1

2

(
âk + â†k

)
, (2.14)

p̂k =
1

2i

(
âk − â†k

)
. (2.15)

Now the Heisenberg uncertainty relation of these observable will be

〈(4x̂)2〈(4p̂)2〉 ≥ 1

4
|〈[x̂, p̂]〉|2 =

1

16
, (2.16)
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with [x̂k, p̂k] = i
2
. So the variance of these quadratures is similar to coherent or vacuum state. Now

further we want to see what is the sense of quadratures in the electric field for a single mode [6],

Êk′(r, t) = u0[âk′e
i(k.r−ωk′ t) + â†k′e

−i(k.r−ωk′ t)]. (2.17)

From Eqs. (2.14) and (2.15), we can write âk and â†k as

âk′ = x̂k′ + ip̂k′ , (2.18)

â†k′ = x̂k′ − ip̂k′ . (2.19)

Now insert Eqs. (2.18) and (2.19) in Eq. (2.17), we have

Êk′(r, t) = u0

[
(x̂k′ + ip̂k′)e

i(k.r−ωk′ t) + (x̂k′ − ip̂k′)e−i(k.r−ωk′ t)
]
,

Êk′(r, t) = u0

[
x̂k′e

i(k.r−ωk′ t) + ip̂k′e
i(k.r−ωk′ t) + x̂k′e

−i(k.r−ωk′ t) − ip̂k′e−i(k.r−ωk′ t)
]
,

with the value eiθ = cos θ + i sin θ, above equation reduces to

Êk′(r, t) = u0

[
x̂k′
(

cos(k.r− ωk′t
)

+ i sin(k.r− ωk′t)
)

+ ip̂k′
(

cos(k.r− ωk′t) + i sin(k.r− ωk′t)
)

+x̂k′
(

cos(k.r− ωk′t)− i sin(k.r− ωk′t)
)
− ip̂k′

(
cos(k.r− ωk′t)− i sin(k.r− ωk′t)

)]
,

after doing some mathematics, we have

Êk′(r, t) = u0

[
2x̂k′

(
cos(k.r− ωk′t

)
− 2p̂k′

(
sin(k.r− ωk′t)

)]
,

Êk′(r, t) = 2u0

[
x̂k′
(

cos(ωk′t− k.r
)

+ p̂k′
(

sin(ωk′t− k.r)
)]
. (2.20)

From Eq. (2.20), it is obvious that the position and momentum operators x̂k and p̂k are the in-phase

and out-of-phase components of the electric field amplitude of the single mode k with respect to a

classical reference wave ∝ cos(ωkt− k.r). Now we dropped the mode index k and going to study

few important relations such as

x̂|x′〉 = x′|x′〉, p̂|p′〉 = p′|p′〉. (2.21)
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These quadratures form orthogonal and complete basis such as

〈x′|x′′〉 = δ(x′ − x′′) and 〈p′|p′′〉 = δ(p′ − p′′), (2.22)∫ ∞
−∞
|x′〉〈x′〉dx′ = 1 and

∫ ∞
−∞
|p′〉〈p′〉dp′ = 1. (2.23)

Also the eigenstates of these quadratures are transform into one an other by a Fourier transform

|x′〉 =
1√
π

∫ ∞
−∞

e−i2x
′p′|p′〉dp′, (2.24)

|p′〉 =
1√
π

∫ ∞
−∞

ei2x
′p′ |x′〉dx′. (2.25)

The quadratures eigenstates are very useful in order to calculate the wave function ψ(x) = 〈x|ψ〉
etc., and continuous variables based communication methods such as infinitely squeezed vacuum

state in position basis can be represented by a zero position eigenstates |x′ = 0〉 = 1√
π

∫
|p′〉dp′.

2.1.2 Squeezing of the field quadratures

When the uncertainty principle of any two observable in a quantum state is in saturation form, then

this state is called as squeezed state. Noise of the electric field in squeezed states of light falls

below a certain level than the vacuum state. This means that, when the squeezed light is turned on,

we see less noise than no light at all [7].

When two operator Â and B̂ satisfy the commutation relation [M̂, N̂ ] = iR̂, then the variance of

these operators can be written as [8]

〈(4M̂)2〉〈(4N̂)2〉 ≥ 1

4
|〈R̂〉|2. (2.26)

The state of the system is said to be squeezed if either

〈(4M̂)2〉 < 1

2
|〈R̂〉|,

or

〈(4N̂)2〉 < 1

2
|〈R̂〉|.
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But both variances are not less than 1
2
|〈R̂〉| simultaneously. When we consider the squeezing of

field quadratures, we take M̂ = x̂k and N̂ = p̂k , being the quadratures operators of Eqs. (2.14)

and (2.15) respectively and satisfying [x̂k, p̂k] = i
2
. So Eq. (2.26) may be written as

〈(4x̂k)2〉〈(4p̂k)2〉 ≥ 1

16
, (2.27)

and the quadratures squeezing exist whenever

〈(4p̂k)2〉 < 1

4
or 〈(4x̂k)2〉 < 1

4
. (2.28)

Now we are going to see, how the squeezing of quadratures can be done mathematically. Let us

consider the operator which can generate the squeezed state, when it acts on any state and this

operator is known as squeezing operator defined as [7]

Ŝ(ξ) = exp[
1

2
(ξ∗a2 − ξa†2)], (2.29)

or

Ŝ†(ξ) = exp[
−1

2
(ξ∗a2 − ξa†2)], (2.30)

with ξ = reiθ and where r is known as squeezing parameter having values 0 ≤ r ≤ ∞ and θ

is the phase angle having values 0 ≤ θ ≤ 2π. Also note that the squeezing operator is unitary

that is Ŝ†(ξ) = Ŝ(−ξ) and the formation of this operator reveals that it is a kind of two photon

generalization of the displacement operator, which is used to define the usual coherent states of a

single mode field. The operators a2 and a†2 tell that when operator Ŝ(ξ) is acting on the vacuum

state, it would create or destroy two-photon state. Let us denote the squeezed state |ψs〉 which is

generated by the action of squeezing operator Ŝ(ξ) on any arbitrary state |ψ〉 as

|ψs〉 = Ŝ(ξ)|ψ〉. (2.31)

In order to find the squeezing of quadratures (X1, X2), we have to find the variance of these oper-
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ators in |ψs〉 basis. First consider the operator X̂1 = 1
2
(a+ a†)

〈ψs|X̂1|ψs〉 = 〈ψ|S†(1

2
(a+ a†))Ŝ|ψ〉,

〈ψs|X̂1|ψs〉 = 〈ψ|S†aŜ|ψ〉+
1

2
〈ψ|Ŝ†a†Ŝ|ψ〉. (2.32)

If we take Â = −1
2
(ξ∗â2 − ξâ†2) then Eqs. (2.29) and (2.30) can be written as

Ŝ(ξ) = e−Â and Ŝ†(ξ) = eÂ. (2.33)

So Eq. (2.32) reduces to

〈ψs|X̂1|ψs〉 =
1

2
〈ψ|e+Ââe−Â|ψ〉+

1

2
〈ψ|e+Ââ†e−Â|ψ〉. (2.34)

Now consider the term e+Âae−Â from Eq. (2.34) and apply the Baker-Campbell-Haussdorff lema

[9], which is define as, eŶ B̂e−Ŷ = B̂ + [Ŷ, B̂] + 1
2
[Ŷ, [Ŷ, B̂]] + .....

eÂâe−Â = â+ [Â, â] +
1

2
[Â, [Â, â]] + ...... (2.35)

Now we have to calculate the first few terms of the series and arrange our results, let us first

consider [Â, â] = Ââ− âÂ, using the value of Â we have

[Â, â] =
−1

2
(ξ∗â2 − ξâ†2)â+

1

2
â(ξ∗â2 − ξâ†2),

after doing some mathematics, we have

[Â, â] =
1

2
ξ(â†2â− ââ†2) =

1

2
ξ[(â†2, â)] =

−1

2
ξ[â, â†â†],

now using the the property of commutator [10], [Â, B̂Ĉ] = [Â, B̂]Ĉ + Ĉ[Â, B̂], above equation

reduces to

[Â, â] = −ξâ†. (2.36)
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Now consider the term [Â, [Â.â]] and following the same procedure as we used earlier, we have

[Â, [Â.â]] = ξξ∗a. (2.37)

Inserting Eqs. (2.36) and (2.37) into Eq. (2.35), we have

eÂâe−Â = â− ξâ† +
1

2
ξξ∗â+ ......,

take ξ = reiθ and ξ∗ = re−iθ, above equation reduces to

eÂâe−Â = â− reiθâ† +
1

2
r2â+ ......,

re-arrange above equation, we have

eÂâe−Â = â(1 +
r2

2!
+ .....)− eiθâ†(r +

r3

3!
). (2.38)

As we know that in general

sinh r = r +
r3

3!
+ ....., and cosh r = 1 +

r2

2!
+ ...., (2.39)

using Eq. (2.39), Eq. (2.38) reduces to

eÂâe−Â = Ŝ†âŜ = a cosh r − sinh reiθâ†. (2.40)

Similarly, by following the same procedure, we can find

eÂâ†e−Â = Ŝ†â†Ŝ = â† cosh r − âe−iθ sinh r. (2.41)

Now insert Eqs. (2.40) and (2.41) in Eq. (2.34) we have,

〈ψs|X̂1|ψs〉 =
1

2
〈ψ|a cosh r − sinh reiθâ†|ψ〉+

1

2
〈ψ|â† cosh r − âe−iθ sinh r|ψ〉. (2.42)
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Let us consider the special case where |ψ〉 is the vacuum state |0〉 and |ψs〉 is the squeezed vacuum

state and denoted by |ψsv〉;

|ψsv〉 = Ŝ(ξ)|0〉, (2.43)

so that Eq. (2.42) reduces in terms of the squeezed vacuum state.

〈ψsv|X̂1|ψsv〉 =
1

2
〈0|â cosh r − sinh reiθâ†|0〉+

1

2
〈0|â† cosh r − âe−iθ sinh r|0〉, (2.44)

after doing some mathematics, we have

〈ψsv|X̂1|ψsv〉 = 0. (2.45)

We now calculate the expectation of X̂
2

1

〈ψs|X̂1

2
|ψs〉 = 〈ψs|

1

4
(a+ a†)2|ψs〉,

when we consider the squeezed vacuum state, we have

〈ψsv|X̂1
2|ψsv〉 =

1

4
[cosh2 r + sinh2 r − 2 cosh r sinh r cos θ]. (2.46)

The variance for X̂1 in squeezed vacuum state is written as

〈ψsv|(∆X̂1)2|ψsv〉 = 〈ψsv|X̂1
2|ψsv〉 − 〈ψsv|X̂1|ψsv〉2, (2.47)

using Eqs. (2.45) and (2.46), we have

〈ψsv|(∆X̂1)2|ψsv〉 =
1

4
[cosh2 r + sinh2 r − 2 cosh r sinh r cos θ]. (2.48)

Similarly for quadrature X̂2, variance will be;

〈ψsv|(∆X̂2)2|ψsv〉 =
1

4
[cosh2 r + sinh2 r + 2 cosh r sinh r cos θ]. (2.49)
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Let us now consider the case when θ = 0, which reduces

〈(∆X̂1)2〉 =
1

4
[cosh r − sinh r]2 =

1

4
e−2r, (2.50)

〈(∆X̂2)2〉 =
1

4
[cosh r + sinh r]2 =

1

4
e+2r, (2.51)

From above equations, it can be seen that the squeezing exists in X̂1 quadrature. Similarly if we

consider the case when θ = π then by using Eqs. (2.48) and (2.49), we will have

〈(∆X̂1)2〉sv =
1

4
e2r, (2.52)

〈(∆X̂2)2〉sv =
1

4
e−2r. (2.53)

Thus we conclude this section by saying that uncertainty in one of the quadrature increases with the

decrease in other quadrature because of unitary evolution and the over all state remain minimum

uncertain.

2.2 Transformation of variables in linear optics

Linear optics is the branch of physics that deals with linear systems such that mirrors and lenses

etc. The passive optical devices (beam splitters and phase shifters) preserve the number of photons

and transform linearly the modes of annihilation operator. Any particular quantum state can be

generated and manipulated by using the linear optics tool-box. Input and output relation for beam

splitter is written as

â′1
â
′
2

 = T̂ (2)

â1

â2

 , (2.54)

where T̂ (2) is the transformation operator and it must be unitary, T̂−1(2) = T̂ †(2) in order to

ensure that the commutation relations such as; [â′i, â
′
j] = [(â′i)

†, (â′j)
†] = 0 and [â′i, (â

′
j)
†] = δij

are preserved. The unitary of T̂ shows that the total number of photons during the transformation

remains constant for a (lossless) beam splitter. The same transformation for two modes can be
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written as [11]

T̂ (2) =

 e(φ+δ) sin θ eiδ cos θ

e(φ+δ
′
) cos θ e−iδ

′
sin θ

 , (2.55)

with the phase factors φ and δ. Thus any ideal phase-free beam splitter can be expressed by the

following relations

â′1
â
′
2

 =

sin θ cos θ

cos θ − sin θ


â1

â2

 , (2.56)

where sin θ represents the reflectivity and cos θ shows the transmittance of beam splitter. In general,

transformation relation for a phase free and phase shift beam splitter can be expressed as

T̂ (2) =

eiδ 0

0 e−iδ
′


sin θ cos θ

cos θ − sin θ


eiφ 0

0 1

 , (2.57)

that is we can decompose any N ×N matrix into such beam splitter operations.

2.3 Transformation of variables in non-linear optics

In quantum communication protocol the important tool is entanglement and squeezed light is nec-

essary ingredient for the generation of continues variable entanglement. The quantum fluctuations

of em field are squeezed by using the transfer matrices of non-linear optics.

So far, we have discussed a process that is initiated from linear optics in last section, which is

based on passive optical devices as expressed in Eq. (??). Now we are going to discuss such

a process that deals linearly with the input and output expressions but it eliminates the needs of

ladder operators. It is the most general linear transformation and combines the elements from

linear and non-linear optics and it is known as linear unitary Bogoliubov transformation [12] and
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mathematically written as

â
′

i =
∑
j

Dij âj + Ejiâ
†
j + γj, (2.58)

where D and E are the matrices satisfying DET = (DET )T and DD† = EE† + 1, because of

the bosonic commutation relation for â′i. Eq. (2.58) describes the relation of input and output for

multi-port interferometers, the multi-mode squeezers and any quadratic Hamiltonian in â† and â.

In the rest of this section, we are going to develop a squeezing method involving a non-linear

optical χ2 interaction, which is described by a quadratic interaction Hamiltonian. As increase of

quantum fluctuation in one observable with the decrease of fluctuation in the conjugate observable

below some level is referred as squeezing and practically implementation of squeezing can be done

by a method know as the degenerate parametric amplification. The output state of this method

involves the signal and idler frequencies and they are both equal to half of the pump frequency,

corresponding to a single mode squeezed state. The single mode squeezing effect can be calculated

by an interaction Hamiltonian, which is quadratic in creation and annihilation operators

Ĥint = i~
κ

2

(
â†

2
eiθ − â2e−iθ

)
. (2.59)

This equation describes the amplification of signal mode â is at half of the pump frequency in

the interaction picture. Here we suppose the coherent pump mode to be classical and the real

amplitude od coherent states ( |α| ) is resolved in κ and θ is considered as pump phase. The

number κ as well contains the material’s susceptibility such that κ ∝ |αpump|. So the interaction

Hamiltonian will be ˆHint ∝â†
2
âpump− â2â†pump and with the parametric approximation we suppose,

âpump → αpump = |αpump|eiθ.
Now we are going to calculate the Heisenberg equation of motion of creation and annihilation

operator by assuming that the pump phase is zero that is θ = 0. The equation of motion of â is

written as

d

dt
â(t) =

i

~
[â(t), Ĥint(t)], (2.60)

=
κ

2
[â(t),

(
â†

2
(t)− â2(t)

)
].

23



After doing some mathematics of commutator algebra, we have

d

dt
â(t) = κâ†. (2.61)

Now take the hermitian conjugate, we have

d

dt
â†(t) = κ∗â. (2.62)

Eqs. (2.61) and (2.62) represent the equations of motion of the creation and annihilation operators

respectively. Now in order to find the solution of these equations, we first differentiate Eq. (2.61)

with respect to "time" and then put Eq. (2.62) in it, with κκ∗ = |κ|2 = κ2 we have

d2

dt2
â(t)− κ2â(t) = 0.

The solution of this equation is written as

â(t) = c1 cosκt+ c2 sinκt,

= â(0) cosκt+ â†(0) sinκt. (2.63)

This equation shows the evolution of annihilation operator at time t = 0 to t in the interaction

picture. Now we are going to calculate the evolution of the field quadratures defined in Eqs. (2.14)

and (2.15). We first re-write these equations in terms of time dependence such as

x̂(t) =
1

2

(
â(t) + â†(t)

)
, (2.64)

p̂(t) =
1

2i

(
â(t)− â†(t)

)
. (2.65)

The evolution equation of motion for â(t) in the interaction picture can be written as

d

dt
x̂(t) =

1

i~
[x̂(t), Ĥint(t)],

=
κ

4

[(
â(t) + â†(t)

)
,
(
â†

2
(t)− â2(t)

)]
,

=
κ

2

(
â(t) + â†(t)

)
,
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using Eq. (2.64), above equation reduces to

d

dt
x̂(t) = κx̂(t). (2.66)

This is the equation of motion of quadrature x̂(t) and its solution is

x̂(t) = x̂(0)eκt. (2.67)

Similarly, for the quadrature p̂

p̂(t) = p̂(0)e−κt. (2.68)

Eqs. (2.67) and (2.68) are representing the evolutions of quadratures x̂ and p̂ respectively. Now

we are going to calculate the variance of these operators. Consider the vacuum state |0〉 and first

calculate the relations 〈0|x̂2(t)|0〉 and 〈0|x̂(t)|0〉. We take â(0) ≡ â and â†(0) ≡ â† for our

convenience, so that

〈
0|x̂2(t)|0

〉
= e2κt〈0|x̂2(0)|0〉 =

e2κt

4
〈0|(â+ â†)2|0〉,

using the relations â|n〉 =
√
n|n − 1〉 , â†|n〉 =

√
n+ 1|n + 1〉 and the orthogonality of the

fock bases, the above equation reduces to
〈
0|x̂2(t)|0

〉
= e2κt

4
and in the same way, we will have

〈0|x̂(t)|0〉 = eκ〈0|x̂(0)|0〉 = 0. Thus

〈(∆x̂(t))2〉vac =
e2κt

4
. (2.69)

Similar procedure can be used to calculate the variance of quadrature p̂(t) to get

〈(∆p̂(t))2〉vac =
e−2κt

4
. (2.70)

The uncertainty relation of these variances can be calculated as

〈(∆x̂(t))2〉vac〈(∆p̂(t))
2〉vac ≈

1

16
. (2.71)
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Eqs. (2.69), (2.70) and (2.71) show that the total uncertainty of evolving states remain minimum.

So we can write as

Û(t, t0) = exp[
1

i~
Ĥ(t− t0)], (2.72)

with the Hamiltonian from Eq. (2.59) and t0 = 0. Now we are going to introduce the unitary

squeezing operator Ŝ(ξ) by defining the ξ = −reiΘ with a dimensionless effective interaction time

r = κt (the squeezing parameter)

Û(t, 0) = exp

[
κt

2
(â†

2
eiΘ − â2e−iΘ)

]
≡ Ŝ(ξ) = exp

[
ξ∗

2
â2 − ξ

2
â†

2
]
. (2.73)

Due to the unitary evolution, the squeezing operator satisfies Ŝ†(ξ) = Ŝ−1(ξ) = Ŝ(−ξ) and result

of application of this operator on any arbitrary initial modes â(0) ≡ â and â†(0) ≡ â† are described

in Eqs. (2.40) and (2.41). The squeezing operator Ŝ(ξ) defines mathematically squeezing of the

quadratures and physically their squeezing can be done by the optical parametric amplification.

More general minimum uncertainty states are displaced squeezed vacuum states, denoted by |α, ξ〉,
which can be calculated by the combined application of squeezing operator Ŝ(ξ) and displacement

operator D̂(α) on the vacuum state such as

|α, ξ〉 = D̂(α)Ŝ(ξ)|0〉, (2.74)

where the unitary displacement operator D̂(α) = exp(αâ− α∗â†) = exp(2ipαx̂− 2ixαp̂) with

α = xα + ipα and â = x̂ + ip̂. So displaced squeezed vacuum wave function in position basis is

written as

φ(x) = (
2

π
)
1
4 e

r
2 exp[−e2r(x− xα)2 + 2ipαx− ixαpα], (2.75)

and the corresponding Wigner function is

W ′(x, p) =
2

π
exp[−2e2r(x− xα)2 − 2e−2r(p− pα)2]. (2.76)

When we apply the two-mode squeezing and displacement operators on a vacuum state, then we
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can write the wave function in position basis

φ(x1, x2) =

√
2

π
exp

[
−e−2r (x1 + x2)2

2
− e2r (x1 − x2)2

2

]
, (2.77)

and the corresponding Wigner function is written as

W ′(x1, p1, x2, p2) = (
2

π
)2 exp[−e−2r((x1 + x2)2 + (p1 − p1)2)− e2r[(x1 − x2)2 + (p1 + p2)2]]

(2.78)

where we set ξ = (x1, p1, x2, p2). This Wigner function approaches δ(x1−x2)δ(p1+p2) in the limit

of infinite squeezing r −→ ∞, corresponding to the original EPR state. The derivations of Eqs.

(2.76) and (2.78) are in appendix-A . The Wigner function can be used to obtain the probability of

momenta or position wave functions by taking the marginal distributions such as:

∫
dp1dp2W (ξ) = |ψ(x1, x2)|2, (2.79)∫
dx1dx2W (ξ) = |ψ(p1, p2)|2. (2.80)

These equations show that once we calculate the Wigner representations of any given wave func-

tion, then we will be able to find its counter parts by taking the marginal of Wigner function. Now

in the next Chapter, we are going to discuss the secret sharing schemes by using the entanglement,

which involves both discrete variables and continuous variables.
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Chapter3
Secret Sharing by using Entanglement

In chapter 1, we presented an introduction of quantum mechanic besed secret sharing and here we

discuss it in detail. This chapter includes two schemes of secret sharing. In first scheme, the secret

sharing is done by using the entanglement of discrete variables and Greenberger-Horne-Zeilinger

(GHZ) states is used as a discrete variables. Whereas in the second scheme, the secret sharing by

the entanglement of continuous variables will be discussed.

3.1 Secret sharing by discrete variables

3.1.1 Introduction

In particular we are reviewing the scheme presented by M.Hillery et.al. [4] and consider the case

in which Alice (who is the admin of this protocol) wants to send an information to her clients, Bob

and Charlie. Alice knows that only one of her clients is not trustworthy but she does not know

which one. She cannot simply send the message to both because, the dishonest one will try to

misuse her information. So a problem arises here that what should she do to keep her message

secret?

The answer to this problem lies in the following procedure. Firstly, she can split her message

into two parts in such a way that each part does not contain a complete information about her
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original message but by combining both parts, complete information can be obtained. Then she

will send these parts to each client (Bob and Charlie) so that they can get Alice’s message by

working together. As Alice’s original message is in the form of binary bit string, she takes a string

of bits as key bits having the same length as of her message string and add this to encrypts her

message. The addition is done bit-wise under modulo 2. Then she sends the encrypted message

string to one party and her random chosen key bit string to the other party. The two parties only

get Alice’s message only when they add their strings bitwise and modulo 2.

3.1.2 Working of scheme

In this scheme, GHZ state is used as a discrete variables which is N-qubits entangled state with

50 : 50 superposition |0〉 and |1〉. We consider the case when it is tripartite entangled state and we

suppose that all three parties (Alice, Bob and Charlie) has one particle from this triplet

|ψ〉abc =
1√
2

[
|000〉+ |111〉

]
,

=
1√
2

[
|0〉a|0〉b|0〉c + |1〉a|1〉b|1〉c

]
. (3.1)

The above equation is written in the eigenstates of z-basis spin and we also define eigenstates of

the other two x and y spins

| ± x〉 =
1√
2

(
|0〉 ± |1〉

)
and | ± y〉 =

1√
2

(
|0〉 ± i|1〉

)
,

From the set of equations, it can b written as

|0〉 =
1√
2

(
|+ x〉+ | − x〉

)
, (3.2)

|1〉 =
1√
2

(
|+ x〉 − | − x〉

)
. (3.3)
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Also

|0〉 =
1√
2

(
|+ y〉+ | − y〉

)
, (3.4)

|1〉 =
i√
2

(
| − y〉 − |+ y〉

)
. (3.5)

The procedure is as follows: Before Alice sends the message, each party chooses randomly the

direction of its measurement, it could be x or y direction. After the measurement, they publicly

declare the direction of measurement but not the result of their measurements. There is a 50%

chance that both Bob and Charlie’s measurements are in the same direction so that half the time,

they can get the result of Alice’s measurement. Similarly, Alice can generate a random key to

contact with one of them.

In order to check how the Charlie’s state linked with Alice and Bob states, we decompose the GHZ

triplet in terms of x eigenstates,

|ψ〉abc =
1√
2

[
|0〉a|0〉b|0〉c + |1〉a|1〉b|1〉c

]
, (3.6)

using Eqs. (3.2) and (3.3), we have

|ψ〉abc =
1√
2

[ 1√
2

(
|+ x〉a + | − x〉a

)( 1√
2

(
|+ x〉b + | − x〉b

))
|0〉c

]
+

1√
2

[ 1√
2

(
|+ x〉a − | − x〉a

)( 1√
2

(
|+ x〉b − | − x〉b

))
|1〉c

] , (3.7)

re-arrangement gives

|ψ〉abc =
1

2
√

2

[(
|+ x〉a|+ x〉b + | − x〉a| − x〉b

) (
|0〉c + |1〉c

)]
+

1

2
√

2

[(
|+ x〉a| − x〉b + | − x〉a|+ x〉b

) (
|0〉c − |1〉c

)]
. (3.8)

30



Similarly,

|ψ〉abc =
1

2
√

2

[(
|+ y〉a|+ y〉b + | − y〉a| − y〉b

) (
|0〉c − |1〉c

)]
+

1

2
√

2

[(
|+ y〉a| − y〉b + | − y〉a|+ y〉b

) (
|0〉c + |1〉c

)]
. (3.9)

From the decomposition of |ψ〉, we can see that what happens to Charlie’s state, when Alice

and Bob measure their states. For example, if both Alice and Bob make measurements in the

x-direction and get the same result then Charlie will be in the state 1√
2

(
|0〉c + |1〉c

)
which is |+x〉

and if they get different result, then he will have the state 1√
2

(
|0〉c − |1〉c

)
which is |−x〉. Similarly

if they make measurement in y-direction and both get the same results then he will have the state
1√
2

(
|0〉c − |1〉c

)
which is | − x〉 and if get different result then this state will be 1√

2

(
|0〉c + |1〉c

)
which is |+ x〉.
By performing a measurement along x or y direction, Charlie can determine which of these state

he has. If Charlie knows in what direction (x or y) Alice and Bob made measurements, he can

determine whether they both have same or opposite results but he will not know about their actual

results. Similarly, Bob will not be able to know about Alice’s result without contact to Charlie

because he does not know whether his result is the same as the Alice or the opposite to her. As

each person is choosing randomly the direction of measurement (x or y), so there is 50% chance

that the GHZ triplet will show a useful correlation.

For instance, when both Bob and Alice measure in x-basis, then Charlie will be constrained to

measure his particle in x-basis to get the useful correlation. He will get nothing if he measures

his particles in y-basis. Because Charlie chooses randomly the measurement basis, so he will be

successful only half time. So in order to enhance the probability of success, all three parties an-

nounce their measurement direction. First both Bob and Charlie send their measurement basis to

Alice, who then decides the given round is valid or not. From this procedure, Alice makes a key of

random bit strings and uses it to encrypt her message.
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3.1.3 Security against eavesdropper

Now we are going to discuss the problems of eavesdropping which Alice should take into account.

Here Eavesdropper is the fourth member or it is among Bob and Charlie pair that tries to gain

access to Alice’s results. Eavesdroppers can however be detected by using different protocols.

Now we are going to discus how it can be detected, let us consider the case that when the eaves-

dropper is Bob and try to access the Charlie’s information and also his own. As he gets two

particles from Alice, first he measures them and then transmit any of them to Charlie. Here Bob

wants to get what is the result of Alice without contact to Charlie. Now we consider the case when

Alice measures in x-basis and the GHZ triplet is

|ψ〉abc =
1√
2

[
|0〉a|0〉b|0〉c + |1〉a|1〉b|1〉c

]
,

=
1

2

[
|+ x〉a(|00〉+ |11〉)bc + | − x〉a

(
|00〉 − |11〉

)
bc

]
. (3.10)

Similarly, when she measures in y-direction

|ψ〉abc =
1

2

[
|+ y〉a

(
|00〉+ i|11〉

)
bc

+ | − y〉a
(
|00〉 − i|11〉

)
bc

]
. (3.11)

Bob does not know in which direction Alice made measurement, he has a problem here either he

measures in this basis 1
2

(
|00〉 ± |11〉

)
or in 1

2

(
|00〉 ± i|11〉

)
basis. Since Bob chooses at random,

he has a probability of 1
2

of making a mistake. If he chooses correctly and takes a valid combination

of measurement axis, then he will be able to know about the result of Charlie’s particle from

his measurement. Then he is able to know about Alice’s bit. For instance, when Alice makes

measurement in x-basis and has result | + x〉 then the state which Bob has 1
2

(
|00〉+ |11〉

)
. Now

when Bob makes measurement in 1
2

(
|00〉 ± |11〉

)
, he will come to know what is the state of two

particle. Since

1

2

(
|00〉+ |11〉

)
=

1

2

[
|+ x〉|+ x〉+ | − x〉| − x〉

]
, (3.12)

After measurement Bob came to knows Charlie’s result is similar to his result. So Bob will get

access easily to Alice’s bit.
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Now we want to see that how Bob’s cheating caught, when he choose the wrong basis of measure-

ments. Let us consider when Alice measures in y-basis and Bob makes measurements in x-basis

and gets 1√
2

(
|00〉 ± |11〉

)
. He has a half probability to get either basis vector.

Now he sends one of his particles to Charlie and then both Bob and Charlie measure their particles.

Since, Alice measures in y-direction, so in order to produce a valid key bit from the measurement

results of all three parties, it is necessary for Bob and Charlie have different direction of mea-

surements. We consider the case when Bob and Charlie measure their particles in x and y basis

respectively. It is obvious from Bob measurement basis 1√
2

(
|00〉 ± |11〉

)
no connection in between

x and y basis is found. Let us consider 1√
2

(
|00〉+ |11〉

)
1√
2

(
|00〉+ |11〉

)
=

1√
2

(
|0〉b|0〉c + |1〉b|1〉c

)
, (3.13)

using Eqs. (3.2), (3.3), (3.4) and (3.5) and after doing some algebra, we have

1√
2

[
|0〉b|0〉c + |1〉b|1〉c

]
=

1

2

[
exp

(
−iπ

4

)(
|+ x〉b|+ y〉c + | − x〉b| − y〉c

)]

+
1

2

[
exp

(
+i
π

4

)(
|+ x〉b| − y〉c + | − x〉b|+ y〉c

)]
, (3.14)

where we have written 1√
2
± i√

2
= exp(±iπ

4
). From above equation it can be seen that in half the

situation the results of the measurement will be wrong. For example, if Alice found |+y〉 and Bob

found | + x〉 then Charlie should measure in | − y〉 if he measures his particle in y-direction. But

because of Bob measurement (cheating) Charlie also has a probability of 1
2

in | + y〉. So in this

cheating scheme, the overall probability of an error is 1
4
, one half is for choosing a wrong basis

and one half for wrong result. So this increment in error tells to Alice that something unusual is

happening.

Now consider when Bob came to know about both Alice and Charlie basis before the announce-

ment of his basis, but he made the wrong measurement basis. When he tells his basis to Alice,

both Alice and Charlie notice a failure rate that is higher than usual (75% as against to 50%).

To make this kind of cheating more difficult, Alice asks first both Bob and Charlie to send their

measurement basis and then announce all three measurement basis. Now in the next section, we

will discuss the protocol in which secret sharing is done by using the entanglement of continuous

variables.
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3.2 Secret sharing by the entanglement of continuous variables

In the previous section, we reviewed the secret sharing by the entanglement of discrete variables,

now in this section we are going to review secret sharing scheme given by T. Tyc et.al. [5], which

involves the continuous variables (CV) entanglement.

3.2.1 Introduction

A protocol of secret sharing, which is referred as (k, n) threshold secret sharing protocol. In this

scheme we have a dealer and he wants to distribute secret message among them number of players

and any k number of players from m parties are enough to retrieve the message. Any arbitrary set

of k − 1 parties get nothing about that secret message [13].

The secret message is considered as any arbitrary quantum state, and this message is encrypted by

the "dealer" into an shared entangled state of m parties and then by the collaboration of authorized

group of k players, this message is decrypted and the remaining m − k players form an EPR pair

without any information about secret message. [14].

3.2.2 Running the scheme

In this scheme we consider the quantum state |ψ〉 as secret and we encoded by some how this

secret in terms of entangled state |Φ〉1 ∈H
⊗
m as m parts one for each party. This entanglement is

generated in such a way that when swapping of entanglement is made by the authorized group of

players, the secret state may be recovered but the adversary group recover nothing about that state.

As the QSS is concerned with the access structure and a general group of adversary, so that in this

scheme we consider a particular access structures.

Our present threshold scheme is (k, 2k − 1) having a dealer, which distributes |ψ〉 (secret state)

into the entangled state ||Φ〉1 by operating on k collaborators. So the |Φ〉1 is the entangled state

which is expressed by the product of |ψ〉 and k − 1 pair wise. Advantages of this entanglement

among the collaborator and non-collaborator is that the non-collaborator got nothing about |ψ〉.
Before following the procedure, let us introduce the continuous variable representation for secret
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state |ψ〉. We can express the secrete state |ψ〉 as

ψ(x′) = 〈x′|ψ〉, (3.15)

the canonical position operator x̂ are not normalized and it satisfy the orthogonality condition

〈x′|x′′〉 = δ(x′ − x′′). (3.16)

Since dealer wants to distribute the secret |ψ〉 among the 2k − 1 players so that he uses a special

kind of linear mapping L on x ∼= (x1, x2, ......, xk)
T in such a way that he defines a specific position

for each player such that

L : Rk → R2k : x→ L(x) =
[
x1, L1(x), ......, L2k−1(x)

]T
. (3.17)

This linear mapping is done in such a way that any components of k-elements subset of {x1, L1, ...., L2k−1}
are linearly independent and the dealer is used this linear mapping to encode secret |ψ〉 into the

entangled state |φ〉 such as

|Φ〉1 =

∫
Rk
〈ψ|L(x)〉dkx, (3.18)

using Eq. (3.17), we have

|Φ〉1 =

∫
Rk
〈ψ|(x1, L1(x), ..., L2k−1(x))T 〉dkx,

=

∫
Rk
ψ(x1), |L1(x)〉, ..., |L2k−1(x)〉)Tdkx.

Here ||Φ〉1 is not normalized because |x〉 is not. In this way the secrete is first decoded and then

distributed among all the parties in the form of entangled state |φ〉. Now we are going to see

how it can be decoded by the authorized group of players. For this purpose, let us consider

{r1, r2, ....., r2k−1} as any random permutation of numbers 1, 2, ..., 2k − 1, that permutates the

linear mapping L such that {Lr1 , Lr2 , ......, Lrk}. As both sets of linear mapping {Lr1 , Lr2 , ..., Lrk}
and {x, L1, L2, ..., L2k−1} are not linearly dependent so that a non-singular matrix T ′ having k× k
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dimensions exists, such as

T ′



Lr1

Lr2
...

Lrk


=



x1

Lrk+1

...

Lr2k−1


, (3.19)

so that for any T ′ matrix, we have a transformation operator Û(T ′) such as

U(T ′)



Lr1

Lr2
...

Lrk


= ||T ′||

1
2



x1

Lrk+1

...

Lr2k−1


, (3.20)

or

U(T ′)|Lr1〉r1|Lr2〉r2 , ..., |Lrk〉rk = ||T ||
1
2 |x1〉r1 |Lrk+1

〉r2 , ...|Lr2k−1
〉rk , (3.21)

where Û(T ′) is unitary operator and ||T ′|| = ||detT ′||. Now we have to find the matrix element

of unitary operator Û in the continuous basis |x′′〉 ≡ |x′′1〉r1 , ..., |x′′k〉rk , that is we have to calculate

〈x′|U(T ′)|x′′〉.
First consider

U(T ′)|x′′〉 = ||T ′||
1
2



T11 T12 . . . T1k

T21 T22 . . . T2k

...
...

...

Tk1 Tk2 . . . Tkk





x′′1

x′′2
...

x′′k


,

= ||T ′||
1
2

k∑
j=1

Tijx
′′
i . (3.22)
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Now we consider the inner product of two continuous variables such that

〈x′′|x′〉 =
(
〈x′′1|〈x′′2|, ..., 〈x′′k

)
(|x′1〉|x′2〉, ......, |x′k〉),

=
k∏
i=1

δ(x′′i − x′). (3.23)

From Eq. (3.2.2) and Eq. (3.23), the matrix elements can have the values

〈x′|U(T ′)|x′′〉 = ||T ′||
1
2

k∏
i=1

δ

 k∑
j=1

Tijx
′′
j − x′i

 , (3.24)

where Tij is the matrix element of T ′ matrix. Now the collaborators with the shared index by

r1, r2, ..., rk reconstruct the secret state by transforming their shares by the application of Û(T ) as

Û(T ′)|φ〉1 = Û(T ′)

∫
Rk
ψ(x1)|L1(x1〉1......|L2k−1(x1〉2k−1d

kx,

= ||T ′||
1
2J

∫
Rk
ψ(x1)|x1〉r1|Θ〉r2,rk+1

|Θ〉r3,rk+2
...|Θ〉rk,r2k−1

, (3.25)

where |Θ〉ij =
∫
Rk
|x〉i|x〉jdx and a quantity J called Jacobian comes here due to the change of

basis and it has value

J =



∂Lrk+1

∂x1

∂Lrk+1

∂x2
. . .

∂Lrk+1

∂xk

∂Lrk+2

∂x1

∂Lrk+2

∂x2
. . .

∂Lrk+2

∂xk

...
...

...
...

∂Lr2k−1

∂x1

∂Lr2k−1

∂x2
. . .

∂Lr2k−1

∂xk


. (3.26)

Now consider the term
∫
ψ(x1)|x1〉r1dx1 from Eq. (3.25)

∫
ψ(x1)|x1〉r1dx1 =

∫
〈x1|ψ〉|x1〉r1dx1,

= |ψ〉r1 Î , (3.27)
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by using this value, Eq. (3.25) becomes

Û(T ′)|φ〉1 = ||T ′||
1
2J |ψ〉r1|Θ〉r2,rk+1

|Θ〉r3,rk+2
...|Θ〉rk,r2k−1

. (3.28)

From the above equation, it can be seen that the r1-th part is the state |ψ〉which is our secret and the

remaining parts r2, ..., rk are entangled maximally with the parts of unauthorized group of players

(adversaries). Thus the secret is decoded in this way from any k parts by the application of unitary

operator Û(T ′). Any remaining k − 1 parts get nothing about the secret |ψ〉 and they just result in

Einstein-Podolski-Rosen (EPR) states.

In next Chapter, we are going to review secret sharing without using entanglement.

38



Chapter4
Secret Sharing without Entanglement

In the previous chapter, we reviewed two secret sharing schemes, the first one involves the idea of

secret sharing among three people by using the entanglement of GHZ states and it was shown that

local measurements of GHZ state enables three parties, to generate and share the key for secret

sharing. In second scheme, we reviewed a sequential method that involved the multi-party entan-

glement of continuous variable and established a secret sharing theme. The problem which arises

with all the entangled-based methods is that they are not scalable, because the entangled states

are difficult to prepare and maintain among growing number of the participants. In this Chapter,

to avoid the above mentioned problem, a sequential scheme is reviewed, which is proposed by V.

Karimipour et.al [15], for secret sharing in which qubits are controlled by the parties without using

any shared entanglement.

4.1 Secret sharing by a single qudit state for a prime d

In this section, we are going to discuss a secret sharing scheme which is free of entanglement and

it involves the random hopping of the states by using the qdits (d-level states). In this protocol, we

performed the action of some operators on the basis vectors and results into the random hopping.
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4.1.1 Introduction

Let us consider the set of MUBS [15]

|ejp〉 =
1√
d

d−1∑
k=0

ωk(p+jk)|k〉, (4.1)

where j = 0, 1, ..., d represents the basis and p = 0, 1, ..., d − 1 labels the basis vector in each

individual basis. These states satisfy the property of MUBS

|〈ejp|e
j′

p′〉|
2 =

1

d
where j 6= j′. (4.2)

This is only true when d is an odd prime because complete set of MUBS exists only for odd d.

Figure 4.1: The application of operators Û and V̂ by the players generating the random hoping of
states in lattice.

We consider these states in a square lattice as shown in Fig. 4.1 and the lattice points have unit

distance from each other. The lattice is periodic in both directions so it has a topology of a torus.
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4.1.2 Running the scheme

Let us now define the operators

Û ≡
d−1∑
k=0

ωk|k〉〈k| and V̂ ≡
d−1∑
k=0

ωk
2|k〉〈k|. (4.3)

Application of operators Û and V̂ to the states of lattice results in a single-step hopping in the hor-

izontal and vertical of lattice point as shown in Fig. 4.1. We consider N + 1 players Po, P1, ..., PN

and the first player may be considered as Alice who will control the protocol and use the secret key

for sending the message and Player PN may be considered as Bob. All the other players considered

collectively by Charlie and Bob retrieve Alice’s message by contacting to Charlie. The working

steps of this scheme are

• The first player Po (Alice), prepares a state |e0
p〉 (the top left corner of the lattice) and apply

two operators ÛaoV̂ bo on it, where 0 ≤ (ao, bo) ≤ d− 1 are random numbers which she can

chose randomly (suppose she chose ao = 2 that will means she apply Û operator two times

on the state ). Application of these operators results in hopping the state ao units forward

and bo units downwards and state passes to the next player.

• The second player P1 receive the state from Po and apply its own operators Ûa1V̂ b1 with

0 ≤ a1, b1 ≤ 1− d and state moves a1 units forward and b1 units downwards as well as

passes to the next player P2. This procedure continues until Bob will received the state.

• The last party PN receives the state from PN−1 and performs the same action with its own

operators ÛaN V̂ bN and passes the state to next and makes measurement in next basis which

should be |e0
p〉.

From Fig. 4.1, we can see that when all the parties apply their respective operators, the point will

perform a random hopping and it will move a distance R ≡
∑N

i=0 ai to the right and D ≡
∑N

i=0 bi

downwards. When the distance D ≡
∑N

i=0 bi = 0 mod d, this will represent that the point has

moved a full round around the torus and landed in the first row. Thus the measurement, which

is made by the last player PN always be done in the first row and the round of random hopping

is treated as valid when the result of his measurement m is perfectly correlated with the distance
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traveled in the forward direction

N∑
i=0

ai = m, or −m+
N∑
i=0

ai = 0. (4.4)

If Eq. (4.4) is not satisfied, then the round is considered as invalid. For every valid round, a set of

completely random dits (0, 1, 2, ..., d− 1) are shared among all the parties. If we consider p valid

rounds and denote the results of Bob’s measurement by κ = (−m1,−m2, ...,−mp) and a long

sequence of dits by ki = (ai1, ai2, ..., aip), then according to Eq. (4.4), we can write as

κ⊕ ko ⊕ k1 ⊕ k2⊕, ...,⊕kN = 0, (4.5)

where⊕ represents the addition is done dit-wise and modulo 2 and ko, k1, ..., kN are random chosen

keys for each player. Once these randomly shared keys are established among all the players then

Alice send the message (M) to Bob in form of M ⊕ ko. Since Bob has access of his own key kN as

well as the measurement key κ, so that he can easily retrieve Alice’s message by asking the keys

to other members (P1, P2, ..., PN−1). That is he has to just perform the summation as

Sum = (M ⊕ ko)⊕ k1⊕, ...,⊕kN−1 ⊕ (kN ⊕ κ),

= M ⊕ (ko ⊕ k1⊕, ...,⊕kN−1 ⊕ kN ⊕ κ) = M ⊕ (0),

= M. (4.6)

In this way Alice sends secret message to her colleague Bob, who retrieves her message by col-

laboration of all the other players and is unable to do that without them. So we have a successful

secret sharing scheme by the random hoppimg of lattice points but we are restricted to only to

prime dimensions d of the mutually unbiased basis. Now in the next topic, we are going to es-

tablish a secret sharing scheme which follows the same procedure but it will be for any general

dimensional lattice.
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4.2 Secret sharing by using a d-level state for any dimensions

In previous topic, the secret sharing in a lattice of states using random hopping motivates us to

look for other lattices of other dimensions, shapes, geometries and perform the random hopping

to model secret sharing schemes. In order to do that, we consider such a lattice which has again

topology of torus but not a square d × d, instead of square, it is torus of 4 × d dimensions, where

d is any positive integer [15]. This lattice is based on the property of Fourier transform operator.

This operator has properties that when applied to the computational basis, turns it into another

basis which is mutually unbiased with respect to it and four times application of this operator on

the states does nothing.

We consider a orthonormal d dimensional basis, which is defied as

|φ〉 = {|k〉, 0 ≤ k ≤ n− 1}, (4.7)

where n is any arbitrary positive integer and we called this basis as the computational basis because

we always measure in this basis. The operator F̂ is to be defined as the Fourier transform operator

with umj = exp
[
i2πmj
n

]
be the n-th roots of unity

F̂ =
1√
n

n−1∑
m,j=0

umj|m〉〈j|. (4.8)

Application of F̂ operator on any state |k〉 results in another state |ak〉 such that

|ak〉 = F̂ |k〉,

=
1√
n

n−1∑
m=0

umk|m〉, (4.9)

and we call it as another basis |ψ〉 which is defined as |ψ〉 = {|ak〉, 0 ≤ k ≤ n − 1} and it is

mutually unbiased with respect to |φ〉. The square of F̂ has the form

F̂ 2 =
n−1∑
k=0

| − k〉〈k|. (4.10)
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This property of Fourier operator reveals that two times application of it on some basis state results

in the negative of this basis state. For example

F̂ 2|c〉 =
n−1∑
k=0

| − k〉〈k|c〉,

= | − n〉, (4.11)

and four times application of Fourier operator is

F̂ 4 = Î . (4.12)

Proofs of Eqs. (4.10) and (4.12) are in appendix-B. Now consider the generalized Pauli operators

X̂ ≡
n−1∑
k=0

|k + 1〉〈k| and Ẑ ≡
n−1∑
k=0

uk|k〉〈k|, (4.13)

operators X̂ and Ẑ act as shift operators on the basis |φ〉 and |ψ〉 respectively. We first consider

the operator X̂ as acting on state of basis φ〉 and shifts it into a step forward

X̂|k′〉 =
n−1∑
k=0

|k + 1〉〈k|k′〉 =
n−1∑
k=0

|k + 1〉δkk′ ,

= |k′ + 1〉. (4.14)

Similarly, when the operator Ẑ acts on a state of basis ψ〉, it shifts it a step forward

Ẑ|a′k〉 =

n−1∑
k=0

uk|k〉〈k|

 1√
n

n−1∑
m=0

umk
′

|m〉

 ,

=
1√
n

n−1∑
k=0

n−1∑
m=0

uk+mk
′

|k〉〈k|m〉,
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Figure 4.2: The operator X and Z act as shift operators on |φ〉 and |ψ〉 basis respectively. Operator
F transform |φ〉 into |ψ〉 and vice versa.

with the property
∑n−1

k=0 |k〉〈k| = Î , above equation reduces to

Ẑ|a′k〉 =
1√
n

n−1∑
m=0

um+mk
′

|m〉,

= |ak′+1〉. (4.15)

On the other hand, when the operator X̂ acts on state of |ψ〉, it does nothing without the addition

of phase factor. Let us consider the action of X̂ on a state |ak〉

X̂|a′k〉 =

n−1∑
k=0

|k + 1〉〈k|

 1√
n

n−1∑
m=0

umk
′

|m〉

 ,

= u−k
′

|a′k〉. (4.16)

Similarly, when the application of Ẑ on a state of |φ〉 basis, it will act as phase operator

Ẑ|k′〉 =
n−1∑
k=0

uk|k〉〈k|k′〉,

= uk
′

|k〉. (4.17)
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All these properties of the operators are shown in Fig. 4.2. In this figure, the action of operator

Ẑ on the first and third row and the operator X̂ on the second and fourth row is not shown, that

means they just add a phase factor there.

4.2.1 Working of the scheme

Similar to the previous section protocol, there are N + 1 players and to be specific we name them

as, the player Ro is Alice, RN as Bob and all the other players R1 to RN−1 collectively by Charlie.

Alice controls the protocol and she is supposed to send her message (M) to Bob by using the shared

secret key and Bob then retrieves the message with collaboration of Charlie. Running steps of this

Figure 4.3: Random hoping in the lattice of state and the lattice points are unit distance from each
other.

protocol are

• Player Ro starts from state |0〉 (which is a first basis vector of the computational basis φ〉 )

and a set of operators X̂a0Ẑb0F̂ c0 applies to it (where 0 ≤ a0, b0 ≤ n− 1 are random chosen

positive integers and c0 = 1, 0 ). This application results into the shifting of state a0 or b0

times forward in the respective basis and state passes to the next player R1. Player R1 does

the same by the operators X̂a1Ẑb1F̂ c1 . This process is repeated until the last player Bob
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receives the state. Bob also applies his operators X̂aN ẐbN F̂ cN on the received state and then

he measure it in the computational basis. Here ci has only value 1 or 0, which means that

operator F̂ is applied or not.

• After the measurement by Bob, Alice asks all players R0, R1, , , RN−1 to announce their

integer ci in random orders. There is no need for Bob to announce his ci integer. It is crucial

that the integer values of ai and bi chosen by individual player are kept secret and are not

announced at any stage.

• After the announcement of ci value from every player, Bob knowing his own value of cN ,

checks the following condition

N∑
i=0

ci = 0 (under the mod 2). (4.18)

If this condition is satisfied then the round will be treated as a valid round and is kept for

further analysis, otherwise it is discarded. The condition in Eq. (4.18) reveals that the final

state before measurement is landed in |φ〉 basis. The reason why Bob doesn’t announce his

cN value is that he has the advantage of knowing which round is valid or not.

• In a valid round, Bob’s measurement result has a prefect correlation with the random bits

applied by all players, including Bob’s.

Now we are going to perform a random hopping by following above discussed procedure, consider

the Fig 4.3 and it can be seen that only players Rk and Rl apply operator F̂ and we have random

hooping of states. Then final state will have the form

|β〉 =

∣∣∣∣∣∣
k−1∑
i=0

ai +

y−1∑
i=k

bi −
n∑
i=k

ai

〉
+
∣∣W0,k−1 +Gk,y−1 −Wy,n

〉
, (4.19)

with Wr,s +
∑s−1

i=r ai and Gr,s +
∑s−1

i=r bi. Similarly, the random hopping of Fig. 4.4 shows that F̂

is applied four times by Rm, Rn, Rp and Rl. The corresponding final state is written as

|β̂〉 =
∣∣A0,m−1 +Bm,n−1 − An,p−1 −Bp,l−1 + Al,k

〉
. (4.20)
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Figure 4.4: A random hoping by the four times application of Fourier operator.

Now we are in a position to understand all the patterns of random hopping. The important point

here to emphasize is that after the publicly announcement of ci numbers, all players, Alice, the

middle ones and Bob know the positions of vertical step.

4.2.2 Keys formation of the protocol

Now we are going to explain how the secret keys of each individual player can be arranged and

how these can be used to send the secret message. Let us consider we have total six players and

two rounds 1 and 2 and the operator F̂ is applied two times in each round as shown in Fig. 4.5.

The position of operator F̂ is at third and fifth players in round 1 and at first and fourth players in

round 2. If we denote m and m′′ as the measurements values of Bob in round 1 and 2 respectively,

then according to Eq. (4.18) it can be written as

a0 + a1 + a2 + b3 + b4 − a5 = m, (4.21)

a
′′

0 + b
′′

1 + b
′′

2 + b
′′

3 − a
′′

4 − a
′′

5 = m
′′
. (4.22)

As through the public announcement of ci values, the positions of operator F̂ are known and they

know how to arrange their keys K0, K1, ...., K5 from the d-level integers. For instance, the number
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(a) (b)

Figure 4.5: Two different paths corresponding to two different random hopping of 6 players
(Ro to R5) . In (a) only players R3 and R5 apply operator F while in (b)only R1 and R4.

of these keys are

ko = (ao, a
′′

o , ...), k1 = (a1, b
′′

1 , ...), k2 = (a2, b
′′

2 , ...), k3 = (b3, b
′′

3 , ...), k4 = (b4,−a
′′

4 , ...),

k5 = (−a5,−a
′′

5 , ...), κ = (−m,−m′′ , ...). (4.23)

The important point is to be clear that the order of numbers inside the keys is completely random

and the continuity of the numbers inside the keys represents that if you have more than two rounds

then the respective number can be placed there. After the keys establishment they just have to

perform the sum defined in Eq. (4.4) as

ko ⊕ k1 ⊕ k2 ⊕ k3 ⊕ k4 ⊕ k5 ⊕ κ = 0. (4.24)

From Fig. 4.5, it can be seen that in round 1, the player Ro moves one step forward that means its

number has value ao = 1 and player R1 moves two steps so it has a1 = 2. For other players it can

be written as, a2 = 1, b3 = 2, b4 = 1, a5 = 3 and measurement is done at m = 4 by the last player.

Similarly for round 2, the values of numbers are a′o = 1, b
′
1 = 3, b

′
2 = 1, b

′
3 = 1, a

′
4 = 1, a

′
5 = 3

and m′ = 2. Now we arrange the keys from two rounds and this arrangement is arbitrary, we can
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choose any order. We consider the order as defined in Eq. (4.23)

ko = (1, 1), k1 = (2, 3), k2 = (1, 1), k3 = (2, 1), k4 = (1,−1), k5 = (−1,−3), κ = (−4,−2).

Now the sum of these keys under the modulus of 2 is calculated as

= ko ⊕ k1 ⊕ k2 ⊕ k3 ⊕ k4 ⊕ k5 ⊕ κ,

= (1, 1)⊕ (2, 3)⊕ (1, 1)⊕ (2, 1)⊕ (1,−1)⊕ (−1,−3)⊕ (−4,−2),

= 0. (4.25)

In above equation, the sum of the first entries of all the keys is 2, which is zero under the modulo

2. Similarly the sum of all the second entries of all the keys is 0, and we lead to over all result to be

zero. As Alice is sender of secret (M) in this scheme to Bob, and she wants to send secret in such a

way that Bob is unable to attend her information without any third party. So that after the creation

of randomly shared keys between all the players, Alice combines secret information (M) with her

key in the form of M ⊕ ko and then sends this combination to Bob. Since Bob has access of his

own key kN as well as the measurement key κ, so that he first asks the keys of other members

(P1, P2, ..., PN−1) and then by using the Eq. (4.24), he can easily retrieve Alice’s message.
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Chapter5
Tools for Random Hopping of Continuous

Variables

In this Chapter, we will discuss some possible tools to generate the random hopping of states.

In the first section, random hopping of continuous variables is generated by the application of

Fourier and translation operators. In the second section, the displacement operator and squeezing

operator will be used for this purpose. The last section of this chapter, includes how any quantum

mechanical state is physically displaced.

5.1 Random hopping in continuous basis

In the last chapter, we have described an interesting secret sharing protocol for multi-party, which

is based on a single d-level states and free us for using entanglement. We inspired by a recent result

of [16] and go for any d-level state. The basic theme of the protocol is that we generate the random

hopping of state (state of lattice) by the operation of several operator by one after the other. After

validation of certain types of conditions we are able to establish a shared key and then this key is

used to sending the required information.

In this chapter, we are going to discuss the possible direction for continuation of this work. There

are some possible directions to continue this task, that is we can consider secret sharing with more
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general access structure having certain subset of players, which are authorized to retrieve the se-

cret. We can also consider three dimensional lattice, with more number of operators in order to

increase the security of the protocol. But here we extend this work to continuous variables that

is by considering the continuous lattice size and the X̂ẐF̂ c turns into Û(xo)Û(po)F̂ c, where xo

and po are continuous parameters and cε{0, 1}. Operators Û(xo) = e−ixop̂ and Û(po) = eipox̂ are

referred as the translational operators of position and momentum bases respectively. The operator

F̂ is Fourier operator that transforms position basis into momentum basis and vice versa.

In order to perform the random hopping in continuous bases, we have to follow a specific proce-

dure. For this, we have a squeezed wave function in position basis and we want to translate it in

the same basis

Ψ(x) =

(
2

π

) 1
4

exp(
r

2
) exp

[
− exp(2r)(x− xα)2 + 2ipαx− ixαpα

]
. (5.1)

As defined earlier, position translation operator contains momentum operator so that we have to

first take a Fourier transform of the given position wave function and convert it into the momentum

basis. Take Fourier transform by considering ~ = 1 and simplify the result

FΨ(x) =

∫ ∞
−∞

1√
2π

(
2

π

) 1
4

exp(
r

2
) exp(ipx) exp

[
− exp(2r)(x− xα)2 + 2ipαx− ixαpα

]
dx,

=
1√
2π

(
2

π

) 1
4

exp(
r

2
) exp(−ipαxα)

∫ ∞
−∞

exp(ipx) exp
[
− exp(2r)(x− xα)2 + 2ipαx

]
dx,

(5.2)

here we suppose A = 1√
2π

( 2
π
)
1
4 exp( r

2
) exp(−ipαxα) and exp(2r) = a for our convenience, so

after doing some mathematics and inserting FΨ(x) = ψ(p) above equation reduces to

ψ(p) = A

√
π

a
exp

[
−(2pα + p)((2pα + p− 4iaxα)

4a

]
.

Now apply position translation operator

Û(x0)ψ(p) = A

√
π

a
exp(−ix0p̂) exp

[
−(2pα + p)((2pα + p)− 4iaxα)

4a

]
,
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as we want to translation in position basis, so we must have take the inverse Fourier transform

Û(x0)F−1ψ(p) = A

√
π

a

1√
2π

∫ ∞
−∞

exp(−ix0p) exp(−ixp) exp

[
−(2pα + p)(2pα + p− 4iaxα)

4a

]
dp,

so after solving integral and simplification, we get

Û(x0)ψ(x) = A

√
1

2a
2
√
aπ exp

[
− exp2r(x+ x0 − xα)2 + 2ipα(x+ x0)

]
,

Now put back the values of constants A and a, we have

Û(x0)ψ(x) =

(
2

π

) 1
4

exp

(
r

2

)
exp

[
− exp(2r)(x+ x0 − xα)2 + 2ipα(x+ x0)− ixαpα

]
.

If we look at Eqs. (5.1) and (5.3), we can see that after the application of translation operator the

parameter x is translated into x+ xo, thus overall we can write as

Û(x0)ψ(x) = ψ(x+ x0). (5.3)

Similarly, the translation can be generated in momentum bases by the application of Û(po) operator

and as a result we will be able to perform a random hopping. Since we have three operators

F cÛ(p0)Û(x0)ψ(x) with c = 0, 1, which we apply on given state. As we have seen earlier

Û(x0)ψ(x) = ψ(x + x0) and after the application of first operator, second operator Û(po) is to be

applied on the translated state that is Û(p0)(ψ(x+ x0)) and the result of this application is

exp(ip0x̂)ψ(x+ x0) =

(
2

π

) 1
4

exp

(
r

2

)
exp (ip0x̂)

exp
[
− exp(2r)(x+ x0 − xα)2 + 2ipα(x+ x0)− ixαpα

]
,

= exp(ip0x)ψ(x+ x0).

Above equation shows that the application of momentum translation operator on the position bases

does nothing, it just adds a phase factor. Now the third operator which is to be applied is the

Fourier transform operator and its application totaly depends on the c number. If c = 0 then it

means that we are not going to apply it, and if c = 1 then we must apply the Fourier operator and
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its application will lead us into momentum bases

ψ(p) = F c=1Û(p0)Û(x0)ψ(x) =

√
1

2π

∫ ∞
−∞

exp(ipx) exp(ip0x)ψ(x+ x0)dx,

= C exp

[
1

4a

[
2a (xo − xα)− i (p+ po + 2pα)

]2]
, (5.4)

with a = exp(2r) andC =
√

1
2a

( 2
π
)
1
4 exp

[
−a (xo − xα)2 + 2ipαxα

]
exp

[
−a (xo − xα)2 + 2ipαxα

]
.

We are now shifted into momentum basis. Now by following the same procedure, as used earlier

for position basis, we will be resulting into the translation of momentum basis. As a result of the

above discussed procedure, we have a random hopping of the basis states and it can be further used

for secret sharing purpose.

5.2 Displacing the squeezed state

In this section, we are going to develop a scheme of random hopping in which a state is displaced by

the action of displacement operator in a specific bases, then squeezing operator changes the bases

into an other one and then again the application of displacement operator results into hopping in

that bases. This random hopping in the two bases will then be used for secret sharing process. The

scheme is that, suppose we have a state which may be squeezed in position bases or in momentum

bases. If it is squeezed in position bases, then the application of displacement operator displaces

this state by a specific number in the same bases and n times application of this operator results

in n times displacement in the same bases. When the squeezing operator acts on this state, this

changes into the momentum bases and now the application of displacement operator does the same

as it did in the position bases. In this way we can generate hopping in the given state and it can be

used for secret sharing purpose.

Since we want to deal with a state which is comprised of both position and momentum at the same

time, so we have to deal with Wigner function of state. But it is not easy to deal with the application

of any operator on the Wigner function, so we have to adopt a specific procedure. This procedure

is as follows: first of all we find the wave function (in position or momentum bases) of the given

state. Then, take the density matrix of that given state and displace it if it is required. Finally, find

the Wigner function and the resulting Wigner function will clearly show the hopping of state is
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done or not.

Now, let us start with the coherent state wave function in position bases. As the annihilation

operator of x̂ and p̂ is defined as

â =
1√
2~ω

(ωx̂+ ip̂) ,

to make it dimensionless we take ω = 1 and ~ = 1
2
, so that â = x̂+ ip̂. Since p̂ = −i~ ∂

∂x
= −i

2
∂
∂x

then above equation reduces to

â = x+
1

2

∂

∂x
. (5.5)

As the coherent state is an eigenstate of annihilation operator

â|α〉 = α|α〉,

take 〈x|

â〈x|α〉 = α〈x|α〉 ,Ψα(x) = 〈x|α〉,

using Eq. (5.5) we have

(x+
1

2

∂

∂x
)Ψα(x) = αΨα(x),

the solution of above differential equation is

ψα(x) = (
2

π
)
1
4 exp[−(x− Reα)2 + 2iImαx]. (5.6)

This is position wave function of coherent state. As density operator of coherent state is ρ̂α =

|α〉〈α|, so Wigner function is written as

W ′(x, p) =
2

π

∫ ∞
−∞
〈x− y|ρ̂α|x+ y〉 exp(4ipy)dy,

=
2

π

∫ ∞
−∞

ψα(x− y)ψ∗α(x+ y) exp(4ipy)dy. (5.7)
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Now using Eq. (5.6), we can calculate easily

ψα(x− y) = (
2

π
)
1
4 exp

[
[−(x− Reα)− y]2 + 2iImα(x− y)

]
,

and

ψ∗α(x+ y) = (
2

π
)
1
4 exp

[
[−(x− Reα) + y]2 − 2iImα(x+ y)

]
.

After doing some algebra, we have

Ψα(x− y)Ψα(x+ y) = (
2

π
)
1
2 exp

[
−2(x− Reα)2

]
exp

[
−2y2 − 4iImαy

]
,

using above equation, Eq. (5.7) reduces to

W ′(x, p) =
2

π
(
2

π
)
1
2

∫ ∞
−∞

exp
[
−2(x− Reα)2

]
exp

[
−2y2 − 4iImαy

]
exp [4ipy] dy,

= (
2

π
)
3
2 exp

[
−2(x− Reα)2

] ∫ ∞
−∞

exp
[
−2y2 + 4i(p− Imα)y

]
dy,

after solving the integral and simplification, we have

W ′(x, p) =
2

π
exp

[
−2(x− Reα)2 − 2(p− Imα)2

]
,

after using the scale transformation for squeezing, it may be written as

W ′(x, p) =
2

π
exp

[
−2ξ(x− Reα)2 − 2

(p− Imα)2

ξ

]
, (5.8)

where ξ is the squeezing parameter. Above equation represents the Wigner function of state, which

we want to take as an initial state. Now, we are going to calculate the Wigner function after the

application of displacment operator on the intial state. The displacement operator in terms of x̂

and p̂ is written as D̂(α) = exp [2ip0x̂− 2ix0p̂]. Since the operators x̂ and p̂ do not commute, so
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that

D̂(α) = exp [2ip0x̂] exp [−2ix0p̂] exp
−1

2
[2ip0x̂,−2ix0p̂] .

Then, after doing some steps of commutator algebra, we have

D̂(α) = exp [2ip0x̂] exp [−2ix0p̂] exp [−ip0x0] ,

and

D̂†(α) = exp [−2ip0x̂] exp [2ix0p̂] exp [ip0x0] .

The density operator for our intial state is ρ̂ = |α〉〈α|, so the displaced density operator is written

as

ρ̂′ = D̂†ρ̂D̂,

= exp[−2ip0x̂] exp[2ix0p̂] exp[ip0x0]ρ̂ exp[2ip0x̂] exp[−2ix0p̂] exp[−ip0x0],

= exp[−2ip0x̂] exp[2ix0p̂]|α〉〈α| exp[2ip0x̂] exp[−2ix0p̂].

Now the Wigner function for displaced coherent state is written as

W ′′(x, p) =
2

π

∫ ∞
−∞
〈x− y|ρ̂′|x+ y〉 exp[4ipy]dy,

=
2

π

∫ ∞
−∞

exp[−2ip0(x− y) + 2ip0(x+ y)]Ψα(x− y)Ψ∗α(x+ y) exp[4ipy]dy,

usning Eq. (5.6) and after simplifying we get

W ′′(x, p) =
2

π
exp

[
−2ξ(x− Reα)2 − 2

((p− Imα) + p0)2

ξ

]
. (5.9)

This equation shows that the displacement is done by a foctor po in the momentum basis by the

displacement operator. Similary, displacement by a factor of xo will be done, when we will repeat

the whole process by using the coherent state wave function in momentum bases. The n times
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application of displacement operator will add displacement of nxo and npo in the respective bases.

5.3 How a quantum state is displaced

In Chapter 4, we have learnt how a discrete state can be translated or displaced, and this idea is

used for implementation of a key to share a secret. In present Chapter, previous sections include

how the continuous bases can be translated with the application of some operators which depend

on continuous parameters. So far, we have not learnt any idea how any state, discrete or continu-

ous, can be physically displaced. In the present section, we are going to reviewe a method, which

is proposed by M.G.Paris [17], how any quantum mechanical state can be displaced and how we

can implement this idea.

As we know that the unitary operation of displacement operator D̂(α) on X̂ results in the dis-

Figure 5.1: Schematic diagram of beam splitter.

placement by a complex number α. The physical implementation of this result can be done with

the beam splitter [17]. We take input signal (which we want to displace ) on one of the input ports

and idler signal on the port of beam splitter which is a coherent state |z〉 with high intensity.

We can think of beam splitter as a linear medium where the polarization vector is simply propor-

tional to the incoming field P̂ = xÊ, where x = x1 is the linear first order susceptibility. The

relation for field of incoming beam of the device having a and b modes with frequency ω is
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Ê(r, t) = i

√
~ω

2ε0v

[
(a+ b) exp i(~k.~r − ωt) + h.c

]
. (5.10)

The interaction Hamiltonian in terms of field and polarization vectors is

ĤI = −P̂.Ê = −xÊÊ = −xÊ2, (5.11)

using value of Ê from Eq. (5.10) and doing some mathematics

ĤI = −xi
√

~ω
2vε0

i

√
~ω

2vε0

[
(a+ b)eiφ + (a† + b†)e−iφ

] [
(a+ b)eiφ + (a† + b†)e−iφ

]
,

=
x~ω
2vε0

[
a†b+ ab†

]
. (5.12)

In general the interaction Hamiltonian and evolution operator for beam splitter in interaction pic-

ture is defined as respectively [18]

ĤI = κ
(
a†b+ ab†

)
, (5.13)

Û = exp

[
iκ
(
a†b+ ab†

)]
, (5.14)

where κ is coupling constant of the two modes and transmitivity of the device is

τ = cos2 κ. (5.15)

In order to see the value of coupling constant in our case, comparing Eqs. (5.12) and (5.13), we

have

κ =
χ~ω
2vε0

, (5.16)

so the unitary evolution operator will be

Û = exp

[
i
χ~ω
2vε0

(a†b+ ab†)

]
. (5.17)

59



Now consider the Eq. (5.15) and insert value of κ from Eq. (5.16)

τ = cos2 κ = cos2 χ~ω
2vε0

, (5.18)

and by using the formula sin2 κ+ cos2 κ = 1, Eq. (5.18) can be written as

1− τ = sin2 χ~ω
2vε0

. (5.19)

From Eqs. (5.18)and (5.19) we can write

tan

(
χ~ω
2vε0

)
=

√
1− τ
τ

,

χ~ω
2vε0

= tan−1

√
1− τ
τ

. (5.20)

Using Eq. (5.20), the unitary evolution operator of Eq. (5.14) becomes

Û = exp

[
i tan−1

√
1− τ
τ

(a†b+ ab†)

]
. (5.21)

So the evolution equations of the field modes can be written as

c
d

 = U †

a
b

U. (5.22)

Now we consider a mode b is our signal and we want it to displace, the idler of the device is taken

on mode a which can be supposed a highly intense coherent state |z〉. The output of the device is

written as

output = Tra

(
U †ρ̂a ⊗ ÎbU

)
; a→ |z〉,

= 〈z|U †|z〉Îb〈z|U |z〉. (5.23)

From Eq. (5.23), we can see that to find the evolution of input mode, we have to find 〈z|U |z〉 and

〈z|U †|z〉. In order to find similarity transformation of operator Û , we need first to disentangled
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it. The evolution operator Û can be disentangle by using the Baker-Haussdorff relation for the

Schwinger realization of the SU(2) algebra. In SU(2) algebra, we have the following relations:

J+ = a†b ; J− = ab† and J3 = 1
2
[J+, J−], which leads to

J3 =
1

2

[
a†b, ab†

]
,

=
1

2

(
a†a− b†b

)
. (5.24)

For any operator Â = exp
[
z(J+, J−)

]
with z = φeiθ, the Baker-Haussdorff relation is define as

Â = exp

[
z

|z|
tan |z|J+

]
exp

[
log(1 + tan |z|2)J3

]
exp

[
−z∗

|z|
tan |z|

]
. (5.25)

In addition

z = |z| = i tan−1

√
1− τ
τ

and |z|2 = tan−1(
1− τ
τ

), (5.26)

so that the operator Û can be written as by using Eq. (5.25)

Û = exp

[
i

√
1− τ
τ

J+

]
exp

[
log

(
1 +

1− τ
τ

)
J3

]
exp

[
i

√
1− τ
τ

J−

]
, (5.27)

let us take ξ = i
√

1−τ
τ

and β = − log τ , above equation reduces to

Û = exp[ξJ+] exp[log(
τ + 1− τ

τ
)J3] exp[ξJ−] = exp[ξJ+] exp[log(

1

τ
)J3] exp[ξJ−],

= exp
(
ξa†b

)
exp

[
1

2
β
(
a†a− b†b

)]
exp

(
−ξ∗ab†

)
. (5.28)

Now consider the BCH formula in Heisenberg algebra

exp[t(X̂ + Ŷ )] = exp(tX̂) exp(tŶ ) exp(
−t2

2
[X̂, Ŷ ]). (5.29)
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and apply it to the term exp[1
2
β(a†a− b†b)], we have

exp

[
1

2
β(a†a− b†b)

]
= exp

(
1

2
βa†a

)
exp

(
−1

2
βb†b

)
,

Eq. (5.28) becomes

Û = A exp
[
ρa†b

]
exp

[
1

2
βa†a

]
exp

[
−1

2
βb†b

]
exp

[
−ρ∗ab†

]
= exp

[
ρa†b

]
exp

[
−ρ∗ab†

]
,

where A = exp
[

1
2
βa†a

]
exp

[−1
2
βb†b

]
. Consider the identities

exp(γa†a) exp(δa) exp(−γa†a) = exp(δa exp(−γ)), (5.30)

and

exp(γa†a) exp(δa†) exp(−γa†a) = exp(δa† exp(γ)), (5.31)

and taking ρba† → δ(a†) and −ρb+a→ δ(a), operator Û can have the form

Û = A exp(δa†) exp(δa).

After re-arranging

Û = A exp
−1

4
βa†a exp(δa†) exp

(
1

4
βa†a

)
exp

(
−1

4
βa†a

)
exp (δa) exp

(
−1

4
βa†a

)
.

After simplification, we have

Û = A exp
[
−ρ∗ab†τ

1
4

]
exp

[
ρτ

1
4a†b

]
,

= exp
[
−ρ∗ab†τ

1
4

]
exp

[
ρτ

1
4a†b

]
exp

[
1

2
βa†a

]
exp

[
−1

2
βb†b

]
.
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Now consider 〈z|Û |z〉 and putting value of Û from above equation, we have

〈
z|Û |z

〉
=

〈
z| exp

[
−ρ∗ab†τ

1
4

]
exp

[
ρτ

1
4a†b

]
exp

[
1

2
βa†a

]
exp

[
−1

2
βb†b

]
|z

〉
,

= exp
[
ρzb†τ

1
4

] [
−ρ∗τ

1
4 z∗b

]
exp

[
1

2
β|z|2

]
exp

[
−1

2
βb†b

]
. (5.32)

with ρ = −ρ∗. As the displacement operator for the complex amplitude α is defined as

D(α) = exp[αa† − α∗a],

similarly for ρτ
1
4 z, it can be written as

D(ρτ
1
4 z) = exp[ρτ

1
4 zb† − ρ∗z∗τ

1
4 b],

using formula defined in Eq. (5.29)

D(ρτ
1
4 z) = exp[ρτ

1
4 zb†] exp[−ρ∗z∗τ

1
4 b] exp(

−1

2
|ρ|2|z|2τ

1
2 ). (5.33)

So Eq. (5.32) can be written as

〈z|Û |z〉 = D(ρτ
1
4 z) exp(

1

2
|ρ|2|z|2τ

1
2 ) exp[

1

2
β|z|2] exp[

−1

2
βb†b]. (5.34)

As we supposed the idler is very intense coherent state so that trnasmitivity of the device aproches

to unity and a slight mixing of input signal and idler are allowed so that we can take the following

approximations: τ ≈ 1 ; 1 − τ ≈ 0 ; β|z| → ∞ and |z|
√

1− τ → constant. By using these

approximations, the terms from Eq. (5.34) are reduced as

exp(
1

2
β|z|2) = exp(

−1

2
log τ |z|2) ≈ 1,

exp(
−1

2
βb†b) ≈ 1,
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and

exp[
1

2
|ρ|2|z|2τ

1
2 ] ≈ 1.

Eq. (5.34), thus reduces to

〈z|Û |z〉 = D(iz
√

1− τ) = D(α). (5.35)

where α = iz
√

1− τ is the complex displacement that the incoming signal displaces. Similarly,

it can be proved that 〈z|Û †|z〉 = D†(α). Now consider the input signal state ρ̂in, which has to be

displaced at one of the ports b of beam splitter and other port a as the idler of the device is fed with

a highly coherent state |z〉 then, the evolution of ρ̂in is written as

ρ̂out = Tra[U
†ρ̂in ⊗ |z〉〈z|U ] = Trz[U

†|z〉ρ̂in〈z|U ],

= 〈z|U †|z〉ρ̂in〈z|U |z〉,

= D†(α)ρ̂inD(α). (5.36)

Above equation shows that, input state is displaced. Thus by following the same procedure we can

displace any quantum state by using beam splitter and we used a highly intese coherent state as an

idler of the device.
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Chapter6
Summary and Conclusion

In this thesis, we have studied the secret sharing schemes by using the discrete variables and contin-

uous variables. We have started our discussion by reviewing the theory of discrete and continuous

variables which includes quadratures of the electromagnetic field, the squeezing of these operators

and conclude that due to unitary evolution, the uncertainty in one of quadratures decreases with

the growth in the other one but revolving states remain minimum uncertain. We have also studied

the transformations of these variables in linear and non linear optics.

First scheme of secret sharing, which is reviewed, is the secret sharing by using the discrete vari-

able entanglement, where GHZ states are used as discrete states. In this scheme, there are three

members Alice, Bob and Charlie and they take one particle from the given triplet of GHZ. Alice,

who is the administrator of this protocol, splits the message among Bob, Charlie and herself in such

a way that she is able to make a key and then she uses that key to send the secret. In this scheme

whenever the eavesdropper, which may be the third party or the dishonest member of Bob-Charlie

pair, is trying to cheat, she will be detected.

In second scheme, which is secret sharing by the entanglement of continuous variables, we have

studied a particular symmetric variety of secret sharing known as threshold (k, n) secret sharing

protocols, and in this protocol a secret is distributed among a group of n parties and k members

from n parties are sufficient to retrieve the secret and players other than k get nothing about the

secret. The protocol that we studied is (k, 2k − 1) threshold, in which the dealer distributes the

secret into entangled state of the protocol. The entangled state of decoded secret is prepared in
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such a way that dealer performs a linear mapping and he defines a specific position for each player.

In order to reconstruct the secret, we explore an unitary operator ˆU(T ), which acts on the decoded

state and retrieves the secret to the authorized k players and the remaining members of the protocol

results into EPR states without any information about the secret.

Further we discussed the secret sharing schemes which are free of entanglement. In these schemes,

we studied sequential methods of secret sharing that include random hopping of the states by using

qdits and it is based on the mutually unbiased basis for the prime dimension as well as for any

general dimension. In the first case, we considered the lattice in the form d× d torus and we have

two operators and their application to the lattice (states) results in single step hopping in horizontal

and vertical and the state traveled the round trip of the torus. Random hopping of the states results

into a correlation in such a way that we end with a procedure for the formation of keys and then

these keys are used to send the secret and we conclude this case by a protocol of sharing the secret

without entanglement.

In the second case, we consider the torus of 4× d dimensions and d is any positive integer. In this

scheme two computational basis are considered, which are mutually unbiased with respect to each

other. A Fourier operator is applied on computation basis, which results into other and four times

action of Fourier operator results into same basis with the identity operator. We also considered

two generalized Pauli operators, which shift the state one step forward in the respective basis. Thus

with the application of these three operators, a random hopping is performed and results into the

formation of the key, which is used to share the secret. Further, we extend this idea in continuous

basis and we take the momentum and position basis as continuous basis. The Fourier transform

operator, position translation operator and the momentum translation operator do the same job as

we discussed in discrete case.

In the last of this thesis, we studied the experimental setup for the translation of any quantum state.

In this setup we have a beam splitter and its one port includes the state to be displaced and the other

port is fed by a highly excited coherent state, which results into the displacement of the quantum

state.
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AppendixA
Wigner Function for Single Particle

Wigner function for single particle is defined as

W ′(x, p) =
1

2π~

〈
x− 1

2
y |ρ̂|x+

1

2
y

〉
exp

(
ipy

~

)
dy,

her we take ~ = 1
2

to make dimension less quadrature operators and after replacing y to 2y and

dy = 2dy, we have

W ′(x, p) =
2

π
〈x− y|ρ̂|x+ y〉 exp(4ipy)dy,

for pure state, ρ̂ = |ψ〉〈ψ|, above equation reduces to

W ′(x, p) =
2

π

∫ ∞
−∞

ψ(x− y)ψ∗(x+ y) exp(4ipy)dy. (A.1)

Now consider the wave function

φ(x) = (
2

π
)
1
4 e

r
2 exp

[
−e2r(x− xα)2 + 2ipαx− ixαpα

]
.
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From Eq. (A.2), we can write easily

φ(x− y) = (
2

π
)
1
4 e

r
2 exp

[
−e2r(x− xα − y)2 + 2ipα(x− y)− ixαpα

]
,

φ∗(x+ y) = (
2

π
)
1
4 e

r
2 exp

[
−e2r(x− xα + y)2 − 2ipα(x+ y) + ixαpα

]
,

also

φ(x− y)φ∗(x+ y) = (
2

π
)
1
2 er exp

[
−e2r((x− xα − y)2 + (x− xα + y)2) + 2ipα(x− y − x− y)

]
,

= (
2

π
)
1
2 er exp

[
−2e2r(x− xα)2

]
exp

[
−2e2ry2 − 4ipαy

]
. (A.2)

Now insert Eq. (A.2) into Eq. (A.1) we have

W ′(x, p) = (
2

π
)
3
2 er exp

[
−2e2r(x− xα)2

] ∫ ∞
−∞

exp
[
−2e2ry2 + 4i(p− pα)y

]
dy,

let us take B = ( 2
π
)
3
2 er exp[−2e2r(x − xα)2] and solving the above equation by compleat square,

we have

W ′(x, p) = B

∫ ∞
−∞

exp[−2e2ry2 + 4i(p− pα)y]dy = B

∫ ∞
−∞

exp[−2e2r(y2 − 2e−2ri(p− pα)y]dy,

= B

∫ ∞
−∞

exp[−2e2r(y + ie−2r(p− pα))2 − 2e−2r(p− pα)2],

using the Gaussian integral formula
∫∞
−∞ e

−α(x+b)2dx =
√

π
α

, above equation reduces to

W ′(x, p) = B

√
π

2e2r
exp

[
−2e−2r(p− pα)2

]
,

after simplification

W ′(x, p) =
2

π
exp

[
−2e2r(x− xα)2 − 2e−2r(p− pα)2

]
. (A.3)
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AppendixB
Square of Fourier Operator

Fourier operator defined as

F̂ =
1√
d

d−1∑
m,j=0

ωmj|m〉〈j|. (B.1)

Take self multiplication of this operator

F̂ 2 = F̂ × F̂ =
( 1√

d

d−1∑
m,j=0

ωmj|m〉〈j|
)
×
( 1√

d

d−1∑
m′ ,j′=0

ωm
′
j
′

|m′〉〈j ′|
)
,

=
1

d

d−1∑
m,j=0

d−1∑
m′ ,j′=0

ωmjωm
′
j
′

|m〉〈j|m′〉〈j ′|,

=
1

d

d−1∑
m,j=0

d−1∑
m′ ,j′=0

ωmjωm
′
j
′

|m〉〈j ′ |δjm′ ,

as δjm′ in above equation goes to 1 for j = m
′ , so that

F̂ 2 =
1

d

d−1∑
m,m′=0

d−1∑
m′ ,j′=0

ωmm
′

ωm
′
j
′

|m〉〈j ′ |,

=
1

d

d−1∑
m′=0

d−1∑
m,j′=0

ωmm
′

ωm
′
j
′

|m〉〈j ′|,
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using definition of roots of unity ωmm
′

= exp
(
i2πmm

′

d

)
in above equation, we have

=
1

d

d−1∑
m′=0

d−1∑
m,j′=0

exp

[
i2πmm

′

d

]
ωm

′
j
′

|m〉〈j ′ |,

=
1

d

d−1∑
m′=0

d−1∑
m,j′=0

exp

[
−i2π(−mm′)

d

]
ωm

′
j
′

|m〉〈j ′ |,

here we consider exp

[
−i2π(−mm′ )

d

]
= ω−mm

′

=
1

d

d−1∑
m′=0

d−1∑
m,j′=0

ω−mm
′
ωm

′
j
′

|m〉〈j ′ |,

=
1

d

( d−1∑
m′=0

ω−mm
′
ωm

′
j
′) d−1∑

m,j′=0

|m〉〈j ′|, (B.2)

consider the identity of roots of unity

n−1∑
k=0

ω(jk)ωj
′
k = nδjj′ ,

using this identity, Eq. (B.2) becomes

=
1

d

(
dδ−mj

) d−1∑
m,j′=0

|m〉〈j ′ |,

=
d−1∑

m,j′=0

|m〉〈j ′|δ−mj,

=
d−1∑
j′=0

| − j ′〉〈j ′ |,

since m, j are dummy variables, so we can write as in general

F̂ 2 =
d−1∑
k=0

| − k〉〈k|. (B.3)
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Fourth Power of Fourier Operator

Now taking the self multiplication of the operator F̂ 2

F̂ 4 = F̂ 2 × F̂ 2, (B.4)

using Eq. (B.3), we have

F̂ 4 =
( d−1∑
k=0

| − k〉〈k|
)
×
( d−1∑
k′=0

| − k′〉〈k′|
)
,

=
d−1∑
k=0

d−1∑
k′=0

| − k〉〈k′〈k| − k′〉 =
d−1∑
k=0

d−1∑
k′=0

| − k〉〈k′ |δ−kk′ ,

=
d−1∑
k=0

|k〉〈k| = Î . (B.5)
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