
Page 1

DEPARTMENT OF COMPUTER

& SOFTWARE ENGINEERING

COLLEGE OF E&ME, NUST,

RAWALPINDI

 Air Quality Monitoring System Using LoRaWAN and Helium

Network

A PROJECT REPORT

DEGREE 41 (DC&SE)

Submitted By:

NS Sana Iftikhar

PC Amna Arif

PC Khadija Tul Kubra

PC Amanullah Naseer

BACHELORS

IN

COMPUTER ENGINEERING

YEAR 2023

PROJECT SUPERVISOR

Dr Sajid Gul Khwaja

Page 2

Table of Contents
Table of Contents .. 2

Table of Figures .. 5

DECLARATION .. 7

COPYRIGHT STATEMENT ... 8

ACKNOWLEDGEMENTS .. 9

ABSTRACT .. 10

Chapter 1: Introduction ... 12

Overview ... 12

1.1 Scope ... 13

1.2 Objectives .. 13

1.3 Methodology ... 13

1.4 Structure .. 14

Chapter 02: Literature Review .. 17

2.1 Main Pollutants ... 18

2.2 International Standard Air Quality Index .. 18

2.6 Background & Related Work ... 19

2.7 Sampling and Measurement Techniques ... 23

Chapter 03: System Design and Architecture ... 26

3.1 System Architecture .. 26

3.2 Hardware Components .. 28

3.2.1 Sensors: ... 28

3.2.2 Optical Dust Sensor - Gp2y1010au0f.. 28

3.2.3 MQ-135 Sensor: .. 28

3.2.4 Data Acquisition System: .. 29

3.2.5 LoRa-WAN Module STM-32: .. 29

3.2.6 Helium Gateway Raspberry Pi: ... 29

3.2.7 Working together: ... 29

3.2.8 Communication modules:.. 30

3.2.9 Processing Units: ... 30

3.2.10 Storage:.. 30

3.2.11 Power Supply: ... 30

3.2.12 Interface: .. 30

3.3 Software Components ... 31

3.3.1 Application Framework .. 31

3.3.2 User Interface (UI) ... 31

Page 3

3.3.3 Networking and Communication: .. 32

3.3.4 Data Visualization: .. 32

3.3.5 Data Storage: ... 33

3.3.6 Integration and APIs:... 34

3.4 Design Decisions ... 34

3.4.1 Sensor Selection .. 35

3.4.2 Sampling Methodology ... 35

3.4.3 Data Acquisition System ... 36

3.4.4 Data Processing and Analysis ... 36

3.4.5 Data Visualization and User Interface ... 36

3.4.6 Power Supply and Energy Efficiency ... 37

Chapter 04: ALGORITHM DESIGN AND DEVELOPMENT .. 39

4.1 Working: ... 39

4.1.1 Arduino: ... 39

4.1.2 Circuit with Arduino: ... 41

4.1.3 STM32 LORAWAN: ... 41

4.1.4 Circuit with STM32 LORAWAN: ... 42

4.1.5 Helium Gateway: .. 42

4.1.6 AWS: .. 43

4.1.7 Mobile App: ... 44

4.2 Algorithm: ... 45

4.3 Flowchart of code and output: ... 46

4.4 Flow Chart of Code: .. 46

4.5 Graph: .. 47

Chapter 05: AWS and HELIUM INTEGRATION ... 50

5.1 Creating AWS Account ... 50

5.2 DynamoDB Creation ... 51

5.3 HTTP Integration .. 53

5.3.1 Set up an HTTP Endpoint ... 54

5.3.2 Connect STM32 to an HTTP Endpoint ... 55

5.3.3 Store AQI data in DynamoDB table .. 56

5.4 Lambda Function ... 56

5.4.1 Addition of Trigger Events.. 58

5.5 API Gateways .. 58

Chapter 06: Software Application ... 61

6.1 Overview ... 61

6.2 Flutter Application .. 62

Page 4

Chapter 7: Conclusion and Future Work ... 67

7.1 Conclusion ... 67

7.2 Future Work .. 67

REFRENCES .. 69

Page 5

Table of Figures
Figure 1:AQM System Level Diagram .. 14

Figure 2: Effects of Air Pollution ... 18

Figure 3: Main Pollution .. 18

Figure 4: AQI Meter ... 19

Figure 5 :Aeroqual 500 Handheld Monitor Base ... 20

Figure 6: IQAir Map ... 20

Figure 7: Map of Rawalpindi in IQAir Web App .. 21

Figure 8: PurpleAir Flex Quality Monitor Device ... 21

Figure 9: List of Pollutants measured by Aclima. .. 22

Figure 10 :System Level Diagram .. 26

Figure 11 :Architecture Level Diagram ... 27

Figure 12 : Flow Diagram .. 28

Figure 13: Code of colored assigned according to AQI ranges. 33

Figure 14: Home pages with different AQI showing the color assigned within the ranges.

 .. 33

Figure 15: AWS Website .. 34

Figure 16:Wise Node PCB Layout ... 35

Figure 17 :AQI values calculated using Arduino. .. 36

Figure 18 : Search and Air Quality page .. 37

Figure 19 :MQ-135 sensor .. 39

Figure 20 :GP2Y1010AU ... 39

Figure 21: Datasheet of MQ-135 .. 40

Figure 22: Datasheet of GP2Y1010AU0F .. 40

Figure 23: Circuit with Arduino ... 41

Figure 24: Circuit with stm-32 LoRaWAN ... 42

Figure 25: Airify App ... 45

Figure 26: Output of Arduino Code ... 46

Figure 27 :Flow Diagram to show data on Application. .. 47

Figure 28 :Graphic Display of MQ-135 ... 47

Figure 29:Graphic Display of AQI with respect to time .. 48

Figure 30: AWS Login Console ... 50

Figure 31: Signing into the AWS Console as a root user. .. 51

Figure 32: Creating table. ... 51

Figure 33: Table Info .. 52

Figure 34: Table AQI created. .. 52

Figure 35: Overview of table .. 53

Figure 36: Table Items .. 53

Figure 37: Generating API keys. .. 54

Figure 38: Copy Assigned API key. ... 54

Figure 39: AQI end node added on Helium Console ... 55

Figure 40: AQI end node details .. 55

Figure 41: AQI HTTP integration .. 56

Figure 42: Helium Flows .. 56

Figure 43: Table items .. 56

file:///C:/Users/a/Downloads/FYP%20REPORTAQ%20v2%20(1)%20(1).docx%23_Toc135991717
file:///C:/Users/a/Downloads/FYP%20REPORTAQ%20v2%20(1)%20(1).docx%23_Toc135991718
file:///C:/Users/a/Downloads/FYP%20REPORTAQ%20v2%20(1)%20(1).docx%23_Toc135991727

Page 6

Figure 44: Lambda Function created for AQI value storage. ... 57

Figure 45: AQI Lambda function overview ... 58

Figure 46: API Gateway connected to Lambda. .. 58

Figure 47: Gateway having Helium API with API endpoint. .. 59

Figure 48: API Gateway Helium API .. 59

Figure 49: Project Class Diagram ... 61

Figure 50: Search of Application ... 62

Figure 51: Home of Application ... 62

Figure 52: Air Quality, Settings, and Notifications of Application 63

Figure 53: Privacy policy, Terms of Use and Profile pages of Application 63

Figure 54: FAQ, Feedback and Share app pages of Application 64

Figure 55: FAQ pages of Application .. 64

Figure 56: User Flow Diagram ... 65

Figure 57: Use case diagram .. 65

Page 7

DECLARATION

We herewith declare that no portion of the work stated during this Project Thesis has been

submitted in support of an application for the other degree or qualification of this for the other

university. If any act of plagiarism is found, we tend to are totally liable for each disciplinary

action taken against us relying upon the seriousness of the established offence.

Page 8

COPYRIGHT STATEMENT

• Copyright in text of this thesis rests with the student author. Copies are made

according to the instructions given by the author of this report.

• This page should be part of any copies made. Further copies are made in accordance with such

instructions and should not be made without permission (in writing) of the author.

• NUST College of E&ME entrusts the ownership of any intellectual property described in this

thesis, subject to any previous agreement to the contrary, and may not be made available for

use by any other person without the written permission of the College of E&ME, which will

prescribe the terms and conditions of any such agreement.

• Further information on the conditions under which exploitation and revelations may take place

is available from the Library of NUST College of E&ME, Rawalpindi.

Page 9

ACKNOWLEDGEMENTS

First and foremost, praises and because of the God, the Almighty, for his showers of blessings

throughout our project work to complete the project with success. We would be happy to

convey our project supervisor, Sir Sajid Gul, Professor, Department of computer Engineering,

NUST faculty of Electrical and Mechanical Engineering, Rawalpindi, for giving us the chance

to try to a project and providing priceless steering throughout this Project. His vision, sincerity,

and motivation have deeply impressed us. He has educated us the methodology to hold out

the project and to gift the project works as clearly as doable. It absolutely was an honor for us

to work with him and beneath his steering.

We would prefer to convey to our parents and friends, while not whose unthinkable support

and constant motivation, we'd not are able to complete our final year project. They played a

unique role throughout our journey, and we are ever more appreciative of them. Their constant

support intended us to do over what we tend to ever accomplish, and that they impressed new

hope in us, after we found none in ourselves.

Page 10

ABSTRACT

The aim of the project "Air Quality Monitoring” using low-cost sensor is to measure the air

quality index after measuring the concentration of air pollutants in a particular area and display

the results on mobile application. The proposed system architecture integrates these sensors

which are capable of measuring key air quality parameters, including particulate matter (PM),

carbon monoxide (CO), and nitrogen dioxide (NO2). These sensors wirelessly transmit the

collected data to a LoRaWAN gateway, which serves as a relay for the Helium network. The

Helium network, functioning as a decentralized infrastructure, ensures secure data

transmission and storage. The main feature of the project is to develop a mobile application

that displays the air quality index derived from the measured pollutant concentrations using

sensors. The application serves as user-friendly interface, allowing users to access real-time

air quality information and make decisions regarding their health and well-being.

Page 11

Chapter 01

Page 12

 Chapter 1: Introduction

Overview

With the increase of population in cities threats to its environments also increases. The

growth of population of cities consequently influences the increase in the air pollution.

The main source of Air Pollution in Earth's atmosphere is created by human beings

themselves, emissions from vehicles, power plants, factories, agricultural sources and

from wildfires, and volcanoes which are natural sources of air pollution. 1 The main

cause of air pollution is linked directly to increasing health issues like lungs and heart

diseases including stroke chronic and acute respiratory disorders also causing

premature deaths in many areas. High air quality is quite important to ensure the future

development of the city, considering attracting tourists and investors that would

increase businesses and economic growth of any country.

Air quality varies greatly on very close geographical levels, due to locally present

pollution emission sources. Air quality monitoring in most of the areas is usually

performed using public stations, but due to their costly and challenging maintenance,

the number of areas covered by these monitoring devices is very limited. Hence, most

of the places are left out of bound by these devices. To overcome this shortage, a

network of low-cost sensors is being developed which will expand spatial density of

air quality measurement, and hence monitoring air quality of most of the areas which

are left uncovered by public stations, some of the benefits of low-cost sensors and

deployment have been discussed by various authors and our work is also related to

this ,i.e. we are increasing the spatial density of the areas covered by air quality

monitoring devices which are in our case low-cost sensors hence providing the air

quality index of most of the areas which are not covered by public stations.

We are using low-cost sensors which are integrated on Lora-Wan device which

consists of an STM-32 microcontroller board which processes all the data from the

sensors and a Lora-Wan chip which is like Wi-Fi technology, i.e., it is only used to

transfer the processed data to the cloud and then the cloud is connected to the flutter

mobile application.

Our goal is to design low-cost sensors which will collect live data from sensors process

the data on end nodes, thus calculating air quality index and then transfer it using

LoRaWAN technology to the Cloud and then after fetching data from cloud it will be

displayed on our mobile application.

There are many benefits of using low-cost sensors along with their configuration,

adjustment techniques and accurateness. As we need to deploy large number of

sensors to create a dense pollution map that more locations are covered, but these

sensors should be low-cost to make the system more cost-effective, distributive and

could be deployed on large-scale. As we know that sensors are very sensitive to

humidity and temperature, we must create such algorithms that could eliminate

maximum error.

https://www.nps.gov/subjects/air/sources.htm#:~:text=mobile%20sources%20

Page 13

1.1 Scope
Our project aims to design a working device that can measure Air Quality Index

through the low-cost sensors that can measure concentrations of gases including CO,

NO2 and PM2.5. This device will be made in the form of a small node and can be carried

to any place from which we want to get air quality information very easily. i.e., And

that node we have made will be placed to different regions from where we want to get,

Air Quality Information And that node then will be shown as location in our mobile

application so that if we tap that location the real-time Air Quality Information from

that node will be shown to the user who is using our “Airify” app. This app will not

only show Air Quality Index and concentrations of different gases but also some

warnings and suggestions based on Air quality Index (AQI). For example, if AQI of a

specific location is high it indicates bad Air quality so for that warnings and

suggestions will be that You should avoid going outside and spend more time indoors,

etc.

1.2 Objectives
The main objectives that we have tend to achieve while doing this project must

include:

• To develop low-cost sensors which are integrated on-chip that collects real-time

data accurately from these integrated nodes.

• To process this data on end nodes and calculate Air Quality Index and

concentrations of different pollutants like Carbon Monoxide (CO), Nitrogen

Dioxide (NO2) and Particulate Matter (PM2.5).

• To transfer the real-time data gathered from sensors and hence displaying on to

mobile application the color-coded readings (Air Quality Index) AQI, (Common

Air Quality Index) CAQI, concentrations of gases like CO, NO2 and PM2.5 and the

warnings as per AQI.

• To ensure that our calculated readings are accurate as per standards defined.

• To raise awareness about the Air Quality and its causes among the people through

our mobile application and suggesting them different ways that can help them

reduce harmful effects caused by undesirably high Air Quality Index.

1.3 Methodology
Our whole project methodology can be shown from system level diagram from the

figure 1.

In figure 1we have system level diagram incorporating all the stages of development

of our project starting with the edge nodes comprising of the sensors and the

microcontroller integrated and hence, processing data on them and calculating Air

Quality Index (AQI).

Page 14

The values of PM2.5 and concentration of CO and NO2 will be used to calculate the air

quality index of that particular place accurately. The AQI values from 3 to 4 edge

nodes will be sent to the FOG nodes that will simply find the average AQI. The values

from the edge nodes can be used to display AQI of a specific region on our application

and the FOG nodes to display it for a larger region than one specific region.

Figure 1:AQM System Level Diagram

Since, we will have all the values of AQI coming on Helium Console from the Lora

WAN chip in the form of real-time packets, we will decode those packets to extract

the main values that we need and store them on a DynamoDB table created on Amazon

Web Services. We have used the Lambda Function for this cause since it allows us to

easily write functions and execute them on AWS without having to worry about

handling the server side. The documentation AWS Lambda Documentation (2022)

clearly explains the previous facts that we just need to upload our code to run any type

of backend or application in any suitable language of our choice and the rest is handled

by AWS. This makes our project way simpler and manageable, because now Lambda

will oversee everything from its running to scalability.

Through APIs we will store the AQI, CAQI, PM2.5, NO2 and CO values from Helium

to DynamoDB with Lambda Function to handle the flow, after the values have been

stored, they will be accessed by our Flutter Application using yet another Lambda

Function through API keys. The application will show real-time AQI values along

with notification, warnings and suggestions based on the current AQI value of the

area.

1.4 Structure
The structure that we followed while writing this report is as followed:

Page 15

• In chapter 1, we defined the general summary, aim range and importance of our project

and how the project will be structured.

• In chapter 2, we have described about the main pollutants in air, measuring and sampling

their concentration, background work and research on our project.

• Chapter 3 deals with the innovative and technical side of the project, explaining about the

design decisions taken to make it different, its architecture, hardware components,

software components and the integration between them.

• Chapter 4 deals with the design and development of the AQM device, the mobile

application and the end node consisting of the sensors to measure the pollutants with

explaining the underlying theory of operation and system integration.

• Chapter 5 deals with integration of STM32(microcontroller) with Helium which in turn is

integrated with Amazon Web Service in which database stores AQI information from

which Flutter application retrieves the values for visualization.

• Chapter 6 consists of a detailed analysis of the AQM application Airify, its properties, user

flow diagrams, user interface and assets.

• Chapter 7 deals with the Conclusion and Future Work in which we have concluded our

project and we have also written what we are tending to do in future.

Page 16

Chapter 02

Page 17

Chapter 02: Literature Review

Each day a person breaths 20,000 times and every breath carries in oxygen and brings

carbon dioxide away. In recent years it became clear that breathing affects mankind

to a great extent as COVID-19 spread around the globe. During a survey it was

revealed that 4.2 million people die because of air pollution annually. Air quality is

not the same everywhere; in rural areas it’s not as much an issue as it is in urban areas.

With traffic increasing every day, industrial sector expanding and global warming at

its peak, we are at a greater risk from air pollution than we were a few years back.

Environmental, health and safety professionals protect us from the threat of bad air

quality but now-a-days their systems are outdated, unconnected and inefficient. They

waste most of their time collecting, and then processing data on air quality – valuable

time that should be spent on accessing the results and taking precautionary measures

to avoid catastrophes.

Airify is on a task to revolutionize all that. We have built a real-time assessing air

quality monitoring system which could be deployed anywhere and takes out the

necessity of collecting and processing aqi data and frees our users to take actions that

matter.

Air Quality Monitoring systems are deployed in areas that need to be kept under

observation in terms of their environmental state such as industrial areas, places

having heavy traffic etc. The main pollutants now-a-days are ozone, particulate matter

PM2.5 and PM10, Sulphur dioxide, carbon dioxide, nitrogen dioxide, carbon monoxide,

to name a few.

When talking about the kind of audience our AQI monitoring system will be attracting,

one of the main are outdoor enthusiasts, people having trouble breathing, those with

respiratory or cardiovascular conditions and asthma patients. In addition to these,

environmental advocates, who constantly need to monitor the air quality of an area so

that they can adjust their policies and undertake certain actions in order to improve air

quality and protect public health, and urban residents who also need to make

appropriate decisions about going outside, or avoid it based on the current air quality

situation outside.

Most of such systems are focused towards making it more reliable, providing real-

time analysis of AQI and error correction, however, we aim to make our AQI

monitoring system more focused towards its scalability than any other aspect.

The literature analyzed in this chapter is structured in 3 main paradigms for AQI

detection. The first one is focused on Main Pollutants.

Page 18

Figure 2: Effects of Air Pollution

2.1 Main Pollutants

Almost half of the air pollution is caused by dust and construction shown in blue color

in Figure 3, i.e., 43%, 17% by waste burning, 14% by transport, 9, 8 and 7% by diesel

generator, and domestic cooking respectively.

All of these combines to cause extremely unhealthy living environments not only for

people with respiratory and breathing problems, but also for common urban residents.

Figure 3: Main Pollution

Thus, to monitor such unhealthy air quality and then take appropriate counter

measurements to prevent these conditions, we need a proper real-time assessment

system to access the concentration of these harmful gases and particulate matter in the

air and then calculate air quality index from those values.

2.2 International Standard Air Quality Index
AQI indicator is normally used by the ruler agencies to define how unhealthy the air

is in terms of a scale from 0 to 500; zero being the lowest AQI value(healthy), while

500 being extremely hazardous.

According to the AQI meter shown in Figure 4, the AQI value up to 100 is bearable

and almost healthy, but above that is considered harmful. From 100 up to 150 is

Page 19

unsuitable for sensitive groups as explained earlier. Above 150 up to 300 is extremely

unhealthy for all people and beyond that till 500 is considered hazardous and should

be avoided at all costs. This is the international standard AQI meter that is followed

in almost all the AQI monitoring systems around the world.

Figure 4: AQI Meter

2.6 Background & Related Work

When performing the research analysis, we studied in detail about the most widely

used AQI monitoring systems globally. There are a few that are most preferred in the

market:

Aeroqual, IQAir AirVisual, PurpleAir, Aclima, AirBeam, to name a few.

Each of the above listed AQI monitors are unique in their own special way and bring

out new technologies that are irreplaceable and important. We shall discuss them one

by one.

First, talking about Aeroqual, it’s one of the top global AQM systems and can be used

anywhere in the world. It has a system of alerts and notifications with which it gives

you warnings in case the air quality index of your area goes above the threshold AQI

that you have provided. The warnings given to you will be in the form of text or email.

In addition to that a user will be briefed in detail about the technical side of the system

and will be notified about updated required and the bugs that need to fix.

Its Series 500 Portable Air monitor 10, is a new step in innovation as it allows the user

to get to know about the AQI anywhere he desires. It is a small portable device that

can be easily carried around with you and displays the AQI around you.

https://www.aeroqual.com/products/s-series-portable-air-monitors/series-500-portable-air-pollution-monitor

Page 20

Figure 5 :Aeroqual 500 Handheld Monitor Base

Just as in Aeroqual, IQAir AirVisual 8, also covers all the areas of the world, but along

with that it also provides us with a 3D Air Visual Map which shows a detailed map of

the area you choose having pointers displaying the AQI of every station close to you.

These systems mostly use infrared light emitters that measure the concentration of

PM2.5 and PM10. IQ AirVisual provides both indoor and outdoor monitoring

accessibility and with air cleaning solutions.

Figure 6: IQAir Map

https://www.iqair.com/world-air-quality

Page 21

As shown in the figure 8, the PurpleAir AQM 9, provides you with small, highly

affordable AQI measuring devices that could be attached anywhere a user desires

whether its indoor or outdoor, and it easily gets connected with user’s Wi-Fi. After

that the AQI of the desired area is showed on a local-area map on PurpleAir

application.

Aclima, yet another latest invention in the field of IoT, is the most progressive and

innovative air quality measuring system in the market. The company has presented

Figure 7: Map of Rawalpindi in IQAir Web App

Figure 8: PurpleAir Flex Quality Monitor Device

https://www2.purpleair.com/products/purpleair-flex

Page 22

more ways to analyse several of the greenhouse gases and air pollutants that contribute

to the increasing AQI now-a-days.

It has introduced new and unparalleled network of stationary as well as roaming AQI

sensors which offers the user with a wide set of pollutant and AQI measurements with

block-by-block tenacity, the likes of which cannot be found anywhere else.

Figure 9: List of Pollutants measured by Aclima.

In addition to the AQM systems describes above, there are many others which make

use of edge and FOG computing instead of Cloud to lessen the complexity of the

network in cases when the area to cover is much diverse and continuous data is coming

to the cloud for further visualization on the pollution maps.

Some systems use Raspberry Pi as the main hardware platform to get the sensor

derived data onto the cloud with the means of built-in Wi-Fi connectivity 11. While

in others, manufacturers are utilizing both stationary and roaming sensors to collect

real-time data to train and create a ML algorithm which will then easily predict the

future AQI and CAQI values. This system is quite brilliant and innovative in the sense

Page 23

that no other company or project considered to take this approach while creating AQM

system 12.

A rare AQM project in Helsinki is a massive one in which tens of thousands of sensors

mainly of PM, CO, NO2, T and RH were integrated and deployed covering huge area.

In this project the maintenance and calibration were a serious issue, and the team was

seriously challenged in the design and deployment of that much devices and sensors

13.

To deal with big data and continuous data transmission and processing, FOG was

introduced so that there could be an edged platform between multiple end devices and

cloud that would serve as a filter and sort out the data that is important and needs to

be sent to the cloud from the one that could be discarded after certain computation.

This reduces complexity and the data load on cloud and makes the entire system more

efficient. Such approach was implemented in a AQM system that turned out to be

quite the success 14.

Below is the Table 1 that summarizes the above explained AQM system available in

the market, the approach they are taking in terms of Cloud or FOG and their Properties.

Research Approach Applicability Properties

[11] Cloud based IoT Sensor cloud application Monitoring and

Notifications

[12] Cloud based IoT Prediction on AQI values

using ML

Monitoring and

Predictions

[13] Cloud based IoT Large scale sensor

deployment and

maintenance

Accuracy and

Calibration

[14] FOG based IoT Distributed sensor cloud

application

Manageability

and Scalability

Table 1: A summarized review of the above proposed AQM system along with their

properties and applicability.

2.7 Sampling and Measurement Techniques

Particulate Matter (PM) Measurement:

There are three basic Particulate matter measurement techniques: Gravimetric

Sampling, Beta Attenuation Monitoring (BAM), and Laser Scattering.

In Gravimetric sampling, we need to have s special filter typically mage of glass to

collect dust particles in the air. After we have the particles, we measure their weight

to find out the actual concentration of PM2.5 or PM10.

https://ieeexplore.ieee.org/abstract/document/9090830
https://ieeexplore.ieee.org/document/8999428
https://link.springer.com/chapter/10.1007/978-981-13-8406-6_27

Page 24

In Beta Attenuation Monitoring (BAM), a small sample of air let inside the

instruments through a tiny inlet and beta radiation is emitted through a source. Mainly

strontium-90 is used as a beta radiation source. As a result of radiation emitted, when

the dust particles collide with the strontium-90 isotopes, their intensity is measured

and through this process the concentration of PM is estimated.

The process we are implementing in our project is Laser scattering. This involves

emitting a laser light and then implementing the principles of light scattering to easily

measure the size distribution and estimate the concentration of particulate matter in

the air.

Gaseous Pollutant Measurement:

The sensor we are using works on the principle of chemiresistive sensing in which the

concentration of the target gas is measured when the sensing element’s electrical

resistance changes due to its proximity with the target gas. Mainly, the sensing element

is tin dioxide (SnO2)

Page 25

Chapter 03

Page 26

Chapter 03: System Design and Architecture

3.1 System Architecture
 System Architecture of our project is shown from the system level diagram:

Figure 10 :System Level Diagram

Our integration and working of the whole system is shown from the above figure 10

i.e., We will be first making the hardware part which consists of integrating sensors

which consists of two sensors MQ-135 which can detect gases like NH3, NOx,

alcohol, Benzene, smoke, CO2, etc. but we are using it to measure concentrations of

only two gases which are NO and CO2 and gp2y1010au0f which is used measure

concentrations of dust particles which mainly includes PM2.5 these sensors are then

integrated Lora-WAN module which is a device made by the integration of Lora-

WAN technology and STM-32.The sensors that we used are attached to the pins of

the Lora-WAN module which are basically the pins attached to STM-32 So, it is the

microcontroller that controls all the processing we tend to do which includes

extracting concentrations of different gases from the values that we get from the sensor

and then calculating AQI(Air Quality Index) on the basis of concentrations of these

gases. But the point is that we must transfer this information wirelessly and for that

purpose we have used that LoRa-WAN technology which operates on low-power and

as the name shows it is Wide Area Networking protocol which has been built using

Long-Range radio modulation technique. This device connects wirelessly with the

internet using Helium Console and makes management and communication easier

communication between end-node devices which are collecting data to the Helium

Gateway. As this device has a Long Range and has a very low power consumption

with the benefit of bidirectional communication its use has increased vigorously where

smart city concept is used because this device has most of the benefits that one needs

Page 27

where IOT solutions are provided It uses the unlicensed ISM (Industrial, Scientific,

Medical) radio bands for deployment of networks.

When this information is transferred to the helium console it is in the form of packets

that are not readable by the humans as is, but they are decoded first to extract the main

information that we want by removing throughputs and payloads, etc. And when these

packets are decoded, we get our main information which in our case is concentrations

of gases and Air Quality Index. When these packets are decoded, the data goes on

Helium which is connected to AWS.

All the data is uploaded using helium gateway which provides connectivity between

IOT devices and to the internet hence allowing data to be uploaded to the internet and

on internet it uses helium console, and that helium console is already integrated with

AWS using API keys which are generated using lambda function in which we have

integrated helium console with Dynamo DB table that is service of AWS. And that

DynamoDB table is connected to flutter app using another API key which generated

through another lambda function. And then on flutter app API key is added to the code

and using http requests we get values stored on DynamoDB table.

We will also be implementing FOG computing structure by which we communicate

between our IOT device (LoRaWAN) which then apply an algorithm and take average

of the data gathered from nearby device to show overall AQI (Air quality Index) data

of a lager region. FOG computing only has its advantages when a large number of IOT

devices are deployed because it then increases speed, efficiency and provides more

reliable data transfer. So, we will implement this technology after we have enough

nodes to make its use beneficial.

Architectural Diagram is shown below:

Figure 11 :Architecture Level Diagram

All of what we have explained in the above section can be visually represented in the

form of an architecture diagram shown in figure 11. The architecture diagram shows

that the system has multiple layers: Acquisition Layer (Senor Nodes), IoT Network

Layer (including Cloud Interface), Application Layer (End Users).

Page 28

Also, we have a Flow Chart describing the whole functionality of our project as shown

in figure 12.

Figure 12 : Flow Diagram

The above flow diagram shows the overall flow of our project from start to end. First

collect the data from sensor nodes through code calculate the AQI. Upload the data on

cloud and then display it on Mobile App.

3.2 Hardware Components
3.2.1 Sensors:

The sensors we have used are chosen on the basis of their low-cost and concentrations

of the gases that we need while calculating Air quality index. Our chosen sensors for

this purpose are as follows:

3.2.2 Optical Dust Sensor - Gp2y1010au0f

The results of PM2.5 measurements with the Sharp sensors (simultaneous

measurement of 3 Sharp sensors connected on two Arduino platforms) were compared

with PM2.5 readings of the OSIRIS monitor over the whole measurements period (15-

min averages, Osiris vs. Sharp). Correlation analysis of measurement results shows

that there is a strong positive correlation between the mean 15-min PM2.5

concentrations measured with Sharp sensors and Osiris (rS1 = 0.820, rS2 = 0.947,

rS3= 0.738). The results of regression analysis (shown in Figs. 3-6. and in Tab. 1)

shows that measurements of Sharp sensors are in good agreement with the Osiris

measurements. On the other hand, Sharp sensors S1 and S3 underestimates while

sensor S2 overestimates the indoor PM2.5 concentrations relative to the Osiris

measurements. We assume that such differences are caused by the different

characteristics of photo elements that were built in the sensors. Namely, sensor S2 was

supplied from a different manufacturer than sensors S1 and S3.

3.2.3 MQ-135 Sensor:

The next component used in air quality control equipment is MQ-135 gas sensor and

which is used for detecting or measuring of NH3, Alcohol and Benzene. The sensor

Page 29

module comes with a Digital Pin. This means that this sensor will operate even without

a microcontroller and that comes in handy and is more suitable for detecting only a

particular gas. To measure the gases in PPM, the analog pin is used. The analog pin is

TTL driven and works on 5V and so can be used with the most common

microcontroller.

3.2.4 Data Acquisition System:

Hardware systems involved in Data Acquisition include specifically LoRa-WAN

module STM-32 and Helium gateway Raspberry Pi:

3.2.5 LoRa-WAN Module STM-32:

The LoRa-WAN module STM-32 is a microcontroller-based module that has a Long-

Range (LoRa) radio transceiver with microcontroller integrated on it, microcontroller

used is from STM-32 series. LoRa radio transceiver which is used for wireless

communication having long-range and low-power communication. And the

Microcontroller that is integrated and we have used handles all the processing on the

data that is acquired from the sensors and then extracting the main information that

we need. As we have used LoRaWAN module for this purpose hence the data

transferred will be using LoRa-WAN protocol. This protocol allows communication

between LoRaWAN gateways and LoRaWAN Network of LoRaWAN modules. This

LoRaWAN module is connected to two different sensors MQ 135 for detection of CO

and NO2 and gp2y1010au0f sensor which detects PM2.5 concentrations.

3.2.6 Helium Gateway Raspberry Pi:

Helium gateway is dependent on Raspberry Pi, which is single board low-cost

computer that provides computing power that has compulsory computing and

connectivity benefits. This Module runs on the Helium software that provides

communication between these LoRaWAN IOT devices and this Helium Network is

basically a wireless communication network which provides communication between

LoRaWAN devices and the Cloud through Helium Gateway. This Gateway is

connected with a LoRaWAN radio module, which can receive and transmit

LoRaWAN transmissions from these LoRaWAN devices. The packets received from

LoRaWAN devices, through this gateway are validated, decrypted, and are then

forwarded to the Helium Network server.

3.2.7 Working together:

The LoRaWAN module, with its Long-Range radio transceiver and Microcontroller

basically STM-32, gathers data from gas sensors and formats it into LoRaWAN

packets. These packets are then transmitted wirelessly using the LoRa modulation

technique and hence with LoRaWAN protocol. And these packets are then received

through the helium gateway from the LoRaWAN devices through the LoRa radio

transmitter. Helium Gateway software which runs on Raspberry Pi validates and

decrypts the received packets and then forwards the data to the helium network.

Helium network processes the data, store it, and make it available for further analysis

or consumption by your application. This architecture enables the acquisition of data

from the LoRaWAN devices its transmission by the Long-Range radio transceiver and

then transmission to the Helium Network for further processing and storing of data.

Page 30

3.2.8 Communication modules:

Communication between the LoRa-WAN module and Helium Network is mainly

through the radio transceiver integrated with it. But both LoRa-WAN module (with

STM-32 as processing unit) and the Helium Gateway itself acts as the communication

module for transmitting data wirelessly via LoRaWAN protocol. LoRaWAN module

collects air data from sensors, processes and calculate Air Quality Index, and formats

it into LoRaWAN packets. These LoRaWAN packets are then transmitted wirelessly

using the integrated LoRa radio transceiver. The provided LoRaWAN protocol allows

it to communicate with Helium gateways and join these networks through LoRa radio

transceiver.

The gateway receives and forwards the LoRaWAN packets from the LoRaWAN

modules to the Helium network. It does not serve as an independent communication

module as it relies on the packets received from the LoRaWAN module for

transmission of data.

To sum up the whole description, the LoRaWAN module consists of the

communication capabilities required for transmitting data through wirelessly using

LoRaWAN radio transceiver, whereas the Helium gateway serves as the device

responsible for forwarding the received packets to the Helium network.

3.2.9 Processing Units:

The processing units may include Microcontroller unit integrated on LoRaWAN

module which is STM-32 from STM Microelectronics. This is the device that will

handle all the processing happening on incoming data. i.e., the data from the sensors

will be acquired through processing that will be performed on STM-32 and the data

thus acquired is concentration of gases from the specific sensors and then for the

implementation of an algorithm to calculate Air Quality Index further processing will

take place and all of this processing will be taking place on STM-32 integrated on

LoRaWAN module.

3.2.10 Storage:

After all the processing the data will be transferred to the Helium Console through

Helium gateway and this helium console is then integrated with AWS all the data

storage and handling will be happened on Amazon Web Services servers.

3.2.11 Power Supply:

Power Supply is attached to the LoRaWAN devices in the form of two small cells total

of 5V.

3.2.12 Interface:

In this project, various hardware interfaces were utilized to connect the system to

external devices or peripherals. They are very important to communicate and

exchange data with the system.

 First of all, comes sensor interface which includes various air quality sensors and

displays value and concentration of multiple hazardous gases. These interfaces also

use protocols to transmit and receive data in a sequential manner such as I2C, UART,

and analog inputs to read sensor data. Then comes the microcontroller interface, which

Page 31

includes STM32 that connects sensor, store data and helps communicate with other

devices.STM32 interface provides GPIO pins for connection. The LORAWAN

interface enables transmitting data wirelessly to a gateway. Also, it has a wide range

up to 15km. Since the system includes displaying data on real-time chips it includes a

display interface which uses I2C to display data on screens. To burn the

code/instruction on the device a USB called ST-LINK was used which proved to be a

source of communication between STM32CUBE IDE code and the hardware attached

whereas to display the data converter USB was used which displayed the outputs on

Hercules.

3.3 Software Components

3.3.1 Application Framework

The application framework that we have used is Flutter. It is an open-source

framework developed by Google for building beautiful an open-source framework

by Google for building beautiful, natively composed, can develop multi-platform

applications from a single codebase. It is fast as it compiles to Intel, ARM machine

and also JavaScript, for fast performance on any device. Productive, as it can build

and can iteratively perform changes with Hot Reload, update the code, and see changes

almost as soon as code is reloaded, without losing state. Flexible, as it can control all

the pixels to create a very customed design that looks amazingly well on any screen.

And also, Integration is handled very easily when API keys are used. And there is

another Application that was used to interact with hardware named as

STM32CubeIDE. It is an advanced development platform using C/C++

with peripheral configuration, to generate code, compile it, and for debugging STM32

microcontrollers and microprocessors. This application is based on Eclipse®/CDT™

framework and toolchain named GCC for the development purposes, and GDB for

debugging purpose. So, we first generated a sample code and then uploaded it to the

STM-32 integrated chip using this software.

3.3.2 User Interface (UI)

User Interface (UI) was first designed on Figma. It is a collaborative web-based

application that is used for interface design, with added features that are also supported

offline enabled by desktop applications for mac Operating System and Windows.

Hence, due to this application benefits we used it and hence, our project was

collaborative it was very beneficial getting every member’s opinion while designing

it. Some of the UI elements were slightly changed while designing the application on

flutter to make it look even better than what we designed. The color theme that is used

in the application is very user-friendly look at as the color used is not very sharp as

the sharp color cause eye strain hence making it difficult for user to look at. So, the

color theme was also chosen very carefully. And the UI components. i.e., Buttons are

also rounded, not very sharp edges are used as sharp edges are not good for the eyes.

Also, there is a navigation bar in the app that makes the most used buttons very

approachable that makes the user experience better and for the textual information lists

Page 32

are used so that it makes every list easy to find on application and also the number of

elements each list has are not very filled. Also, Map is used to display Air Quality

Information which is accessible to use as it displays all the information very clearly.

Also, the Air Quality Index is shown by separated color bands based on the standards

of the ranges defined already. The Air Quality Index is shown in that specific color

band so that the information inside that is more targeted. And for the warnings the

color is changed according to the AQI of the boxes on which warnings and suggestions

are shown. User Interfaces with detailed description are attached in the Software

Section of this report.

3.3.3 Networking and Communication:

The software applications used for networking and communication include Helium

console and Cloud which is Amazon Web Services in our case. LoRaWAN devices

interact with each other through the gateway which is connected to helium console all

the data is uploaded to helium console which is connected to Amazon Webservices

and DynamoDB table is used for storing values and on Amazon Web Services we

have used another Service of them which is called as Lambda function. This service

allows us to write a function according to the use-case and connect different

applications. And we have used this service to connect Helium Console with our

DynamoDB table which was created by us and then we have used another lambda

function to connect DynamoDB table with flutter Application. These lambda

functions when compiled we generate an API key which is kind of a weblink. These

API keys are basically used for this purpose.

API keys so generated will be used inside the Helium Console and flutter application.

3.3.4 Data Visualization:

As the data is visualized on flutter application at the end of integration cycle All the

concentrations of different gases and the AQI value for the display of Air Quality

Index we have made a circle of the band assigned to a specific range of AQI values

and inside that circle the AQI (Air Quality Index) is shown and a word assigned to the

AQI is also shown i.e., For QI less than 25 we will show very low of the color band

assigned colored text. Following is the code shown with what will be displayed

Page 33

according to what value of AQI. Also, the screenshots are also attached which show

20 AQI and 56 AQI and displays colors and text according to that.

Figure 13: Code of colored assigned according to AQI ranges.

Figure 14: Home pages with different AQI showing the color assigned within the ranges.

3.3.5 Data Storage:

For data storage purposes the software used are Amazon Web Services and the

services we have used are DynamoDB table and the second Service that is basically

used to generate API keys that are used to connect the table with the Helium Console

and the Flutter application so the data coming from the Helium Console will be stored

Page 34

in AWS DynamoDB table and then from there it will be transferred to our flutter

application.AS we have used cloud for storage it has many benefits it allows us to

store as much data as we want according to our needs we will be charged and data

management on any amount of data will be handled by AWS itself. Hence making

data storage and retrieval easier as it manages all the infrastructure including data

replication, automatic scaling, automatic backups, and also seamless integration. Due

to various benefits of Cloud, we have used its services. And Amazon Web Services

are better than other cloud services according to different third-party consumers and

also, we had a little experience on AWS that is why have chosen AWS over other

cloud services.

Figure 15: AWS Website

3.3.6 Integration and APIs:

As all the data is stored on AWS by using its DynamoDB table and then we have used

yet another service called lambda functions, and this performs administration to

compute resources. This includes server and operating system management capacity

provisioning, automatic scaling, code monitoring and logging, code, and security

deployment. In our case we have used it for handling http and API requests as soon as

the data is uploaded through helium gateway it sends a trigger and then to the cloud.

i.e., DynamoDB table updates the value and whenever on flutter application the

homepage or air quality page is opened. It updates the value by using API keys

generated through the lambda function.

3.4 Design Decisions

Design decision is a vast subject of consideration when one is planning to start and

execute a project smoothly. It involves several important aspects of a project such as

scalability and flexibility, system optimization and performance, resource allocation

and optimization, technical considerations, error handling and testing.

When designing our project, we had to keep in mind the type of sensors we had to use,

their testing and reliability, their compatibility with STM32 and efficiency.

In the software domain we had to keep in mind what a common user is looking for in

such Air quality monitoring applications and what are his expectations. We needed to

make our application easy to navigate and informative.

Page 35

3.4.1 Sensor Selection

Since we are using STM32 as the main microcontroller, we first researched its I/O

pins, analog to digital converter protocols and its datasheet before selecting the

appropriate sensor to calculate the AQI.

STM32 uses advanced communication interfaces such as: two USART (supporting

LIN, smartcard, IrDA, modem control and ISO7816), I2C, two SPIs (up to 16 MHz,

one supporting I2S), and one low-power UART (LPUART).

These devices also have 12-bit ADC, a 12-bit DAC with which we can integrate a

large range of sensors to convert their analog input to digital data or vice versa.

MQ-135 and GP2Y1010AU0F sensor both can easily interface with STM32 using

GPIOs and UART protocol.

Figure 16:Wise Node PCB Layout

3.4.2 Sampling Methodology

In most weather and AQI monitoring applications, it’s not necessary for the system to

be continuously updated with new weather conditions or AQI values because they stay

the same for at least half an hour. Considering this assumption, we will be collecting

the data from sensors after every fifteen minutes, in other words we will only collect

sensor values 4 times in an hour. STM32 is programmed that way to have a time step

of 15 minutes before collecting samples again. This reduces the data load and also

meets our requirements.

Page 36

3.4.3 Data Acquisition System

UART (Universal Asynchronous Receiver-Transmitter) protocol, used for the serial

connection between two devices, TX, and RX pins to transmit and receive the data

from sensors and then calculate the AQI from them. We set appropriate baud rate, stop

bits, parity bits and data bits to align with the configuration of both the sensors we are

using.

3.4.4 Data Processing and Analysis

Shown below are the AQI values calculated using appropriate formula from the sensor

values. This output was derived from the testing stage of our project when we used

Arduino and integrated it with the sensors to check if they were functional. After

uploading the code written in C language, we got the results on Arduino output

terminal showing the time at which the sample was taken, concentration of PM2.5, CO,

NO2 and finally the air quality index calculated. Figure 17 shows the output of that

screen.

3.4.5 Data Visualization and User Interface

Data visualization and user interface are one of the most important fragments of our

project. Since it is an air quality application on which we are displaying the aqi of a

fixed area, we have the map of a specific area on our home screen; in our case it is the

map of EME. Red pointers will be placed on the locations where the sensors are

deployed to be precise about the air quality index of that location. On the other hand,

when the user selects the pointer, he will automatically display the Air Quality page

having the AQI index along with the concentration of each pollutant we are measuring,

in our case CO, NO2 and PM2.5.

Figure 17 :AQI values calculated using Arduino.

Page 37

Figure 18 : Search and Air Quality page

The screen snip of the application in figure 18 shows the Home Page and the Air

Quality Page.

3.4.6 Power Supply and Energy Efficiency

LoRaWAN is widely recognized because of its low-power consumption and log-range

data transmission proficiencies. Due to this, it is used in a lot of IoT projects that need

low-power efficiency.

In our project we needed to deploy those sensors which consumed minimum power

but had high accuracy. Also, we can apply the sleep modes available in the STM32

and keep it in low-power consumption sleep mode most of the time. Similarly, we can

have it send large data packets at long interval ls instead of sending multiple small

packets every other second. This improves its low power consumption ability and also

energy efficiency.

Page 38

Chapter 04

Page 39

Chapter 04: ALGORITHM DESIGN AND

DEVELOPMENT

We will talk about how to create the algorithm for our project in this chapter. We started

by extracting data from our sensors using an Arduino UNO and collecting the values from

them. We employed two sensors to measure carbon dioxide (CO2), nitrogen oxide (NOx),

and dust particles (PM2.5), utilizing the MQ-135 and GP2Y1010AU0F sensors,

respectively.

Figure 19 :MQ-135 sensor

Figure 20 :GP2Y1010AU

4.1 Working:
We will briefly explain how our project functions in this section. The project's main

objective is to monitor the air quality in a particular area using low-cost sensors such

as MQ-135 sensor, GP2Y1010AU sensor, and Arduino microcontroller board.

Principal Elements playing a significant role in the success of our project include:

4.1.1 Arduino:

The project first used an Arduino microcontroller board to read the sensor data and

analyze it to create the air quality index. 1. We followed the procedures below to

collect data from the MQ-135 and GP2Y1010AU0F sensors using Arduino:

The Arduino was initially coupled with sensors; MQ-135 sensor to a pin of the

analogue input shield utilized by the Arduino. GP2Y1010AU0F sensor to one of the

digital input pins of the Arduino. Afterwards, the computer's Arduino IDE (Integrated

Development Environment) was installed. Used a USB cable to link the Arduino board

to the computer. Selected the proper board and port from the Tools menu after starting

the Arduino IDE. To read the analogue input from the MQ-135 sensor, we used the

analogRead () method. A raw figure was received that represents the gas

concentration as a result. To read the digital output from the GP2Y1010AU0F sensor,

we used the digitalRead () method. A raw value was provided for the level of dust

particles. To translate the raw results into usable values such as gas concentrations and

PM levels, implement calibration methods or lookup tables relevant to each sensor.

Calculated the calibrated values using the interpolation or calibration equations found

Page 40

in the Arduino code. Due to the built-in serial communication features on Arduino

boards, data was transported using a USB cable attached to a computer.

Figure 21: Datasheet of MQ-135

Figure 22: Datasheet of GP2Y1010AU0F

To communicate the sensor data to a computer for additional processing or storage,

Arduino Serial Library was utilized. LED was used with Arduino to display the sensor

readings in real-time to visualize the data. Use appropriate power management

strategies, such as sleep modes or turning off unnecessary peripherals, to reduce power

consumption and, if necessary, lengthen battery life.

Page 41

4.1.2 Circuit with Arduino:

Figure 23: Circuit with Arduino

4.1.3 STM32 LORAWAN:

The entire hardware was swapped to STM32 after calculating the air quality index,

and ST-LINK was used to burn code in the STM32cube IDE and displayed using

UART protocol. All the data was kept on AWS (Amazon Web Services) by the helium

gateway. Since it receives data from the STM32 LoRaWAN device over a LoRaWAN

network and then transmits it to the internet using cellular or Ethernet connectivity.

The gateway also performs other duties like packet filtering, data routing, and network

management.

 An outline of the design and development process is provided below:STM32

Microcontroller: Selected an STM32 microcontroller that can communicate via

LoRaWAN and has enough GPIO pins and peripherals to integrate sensors. MQ-135

Gas Sensor: The MQ-135 is frequently used to identify numerous gases, including

benzene, ammonia, carbon dioxide, and other dangerous contaminants.

GP2Y1010AU0F Dust Sensor: The GP2Y1010AU0F monitors the amount of dust in

the air using a particulate matter (PM) sensor. Connect the STM32 microcontroller's

GPIO pins for the MQ-135 and GP2Y1010AU0F sensors. Make sure the STM32

microcontroller voltage levels and the sensor needs are matched by using the

appropriate voltage levels, such as voltage dividers or level shifters. To read data from

the sensors, implement the required interface protocols, such as analog-to-digital

conversion (ADC) or digital interfaces (e.g., UART or I2C). Set up the STM32

microcontroller's ADC module to read analogue sensor data from the

GP2Y1010AU0F and MQ-135 sensors. To translate the unprocessed sensor signals

into usable values, such as gas concentrations and PM concentrations, use the

calibration data or formulas specified in the sensor datasheets. Use data filtering

techniques to eliminate noise or outliers from the sensor measurements, if necessary.

To process the processed sensor data further, store or aggregate it in variables or data

structures. Use a LoRaWAN transceiver or module that is compatible with the STM32

microcontroller. To handle the communication protocol, implement the required

Page 42

LoRaWAN stack or library. Set the proper device credentials (such as the device EUI,

application EUI, and application key) in the LoRaWAN module. Send the sensor data

that has been processed to a LoRaWAN gateway or network server using the

LoRaWAN library functions. To shield the electronics from the elements, design or

choose an appropriate enclosure. Ensure adequate airflow so that the sensors can

accurately sample the air. Install the equipment where you want to monitor the air

quality. Create a LoRaWAN gateway and network server on the receiving end to

accept sensor data. Created a mobile-based application to display and analyze the data

on the air quality received. Create appropriate algorithms or models to analyze the

data and deliver insightful information, such as air quality indexes. Calibration is to

achieve precise and trustworthy data; it is critical to calibrate the sensors regularly.

The calibration processes listed in the sensor datasheets or the suggested calibration

methods for each type of sensor should be followed. Whereas Validation includes

Perform validation tests by contrasting sensor values with benchmark readings from

approved air quality monitoring apparatus. This process aids in confirming the

precision and consistency of the sensor data. To establish connection between the

STM32 microcontroller and the LoRaWAN gateway or network server, implement

LoRaWAN protocols and libraries. microcontroller, LoRaWAN module, and other

peripherals. For long-term data storage, analysis, and visualization, integrate the air

quality monitoring system with cloud computing platforms or data storage solutions.

Use the APIs or protocols that cloud computing platforms offer to securely send and

store sensor data. Use data processing techniques to perform advanced analytics or

produce real-time warnings depending on air quality thresholds on the cloud server or

edge devices. Also, 3.GPS systems were installed in the stm32 chip to locate the

defected node and to fix the bug.

4.1.4 Circuit with STM32 LORAWAN:

Figure 24: Circuit with stm-32 LoRaWAN

4.1.5 Helium Gateway:

Real-time visualization of the data, which was safely saved in the cloud, gave

insightful details on the local air quality. Additionally, the Helium gateway and AWS

Page 43

offer a scalable system that supports several devices and enormous amounts of data.

The function of Helium Gateway in this project is as follows. The local LoRaWAN

network and the decentralized Helium blockchain-based LoRaWAN network were

connected through a Helium gateway. It enables wireless long-distance transmission

of sensor data to the Helium network infrastructure. The local air quality monitoring

system sends sensor data to the Helium gateway, which aggregates it before sending

it to the Helium blockchain network. It acts as a central communication hub for

numerous devices, ensuring the effective collection and transmission of data from

various sensors. The local air quality monitoring system's sensor data is transformed

by the Helium gateway into the correct format needed by the LoRaWAN protocol of

the Helium network. It secures the transmission of the data to the Helium network

servers by encapsulating it in LoRaWAN packets. The sensor data is transmitted

securely and reliably to the Helium network servers through the Helium gateway.

Utilizing LoRaWAN security features, it encrypts the data to guard against hacking

and alteration of the sensor data while it is being transmitted. The local air quality

monitoring system was connected to the Helium network through the Helium gateway.

For the sensor data to be received by Helium network servers for additional processing

and storage, a link must be established with the infrastructure of the Helium network.

The Helium gateway keeps the servers of the Helium network coordinated, ensuring

the timely and correct transfer of sensor data. To plan transmissions and maximize

network resources, it works in tandem with the network servers. The ability to operate

a decentralized network enables the distribution of data processing jobs across many

network nodes. This implies that any node in your project, like a 3.STM32

microcontroller, can locally process air quality sensor data before sending it to the

Helium gateway. With the help of distributed processing, the workload placed on a

single central node is lessened, and data analysis and decision-making can be

completed more quickly. With decentralized network operation, other nodes in the

network can continue operating independently if one node fails or goes offline. This

fault tolerance ensures that the system keeps working even if a specific STM32

microcontroller or a Helium gateway has problems. It increases the accuracy of data

transmission and gathering for the project to monitor air quality.

4.1.6 AWS:

The STM32 LoRaWAN device sends data to the AWS platform, which provides

cloud-based infrastructure for storing and analyzing that data. Using HTTPS

protocols, the data obtained from the Helium gateway was safely sent to AWS. When

the data was finally received, it was stored in dynamo db. and processed and visualized

using AWS service AWS Lambda. The air quality monitoring system's sensor data

can be stored using AWS's storage services, such as Amazon S3 (Simple Storage

Service). The sensor data can be safely kept in the cloud for quick access and long-

term storage. Several data processing and analytics services are provided by AWS that

can be used to handle sensor data, analyze data, produce insights, and visualize trends

and patterns in air quality. You can manage real-time data streaming from the air

quality monitoring device using AWS. For real-time processing, the sensor data can

be fed into Kinesis streams, allowing for instant analysis, or setting off warnings based

Page 44

on predetermined thresholds. Sensor data from the air quality monitoring system may

be managed and processed using AWS IoT services. These services make it possible

to create IoT-based applications and automation by enabling secure device

connectivity, data intake, and rule-based processing. Create dynamic dashboards and

visualizations using the data from air quality sensors and can be visualized through

app services to understand and present for monitoring and analysis. Large volumes of

sensor data can be handled by the highly scalable and dependable cloud architecture

offered by AWS. The project used AWS services' scalability to prepare for potential

future increases in the number of sensors, data storage needs, and processing

resources.

4.1.7 Mobile App:

After that with API Gateway the results were displayed on mobile App using flutter.

Which will separately display all the gases as well. The data on air quality gathered

by the sensors may be monitored in real-time using the mobile app. On their mobile

devices, users can easily view the current gas concentrations, PM levels, and other

pertinent parameters. They can remain informed about the local air quality thanks to

this.

The smartphone app has access to and can provide historical sensor-collected data on

air quality. The app may show information about air quality on a map by utilizing the

geolocation features of mobile devices. Users can identify places with high or low

pollution levels and visualize the air quality in various locations. Users can plan their

travels or select healthier environments with mapping features. Based on established

air quality limits, the mobile app can send users customized alerts and notifications.

The software can alert users to take proper actions, such forgoing outside activities or

donning masks, when the air quality reaches harmful levels. This supports user

security and welfare. The smartphone app can display air quality data in an easy-to-

understand and aesthetically pleasing way. Users may compare various contaminants,

evaluate air quality trends, and gain insights into the data by using charts, graphs, and

visualizations. Users' comprehension and engagement were increased by clear visual

representations. Users may be able to comment on air quality data and report any

problems or inconsistencies using the mobile app's features. Users can contribute to

improving the system's overall accuracy and dependability by rating the local air

quality conditions, leaving comments, and providing feedback. A sample of the

created app's AQI value and other features are shown in figure 25.

Page 45

Figure 25: Airify App

4.2 Algorithm:
Certainly! Here are some algorithms that are implemented in this project:
1. Gas Concentration Estimation:

• Algorithm: Calculate gas concentrations using sensor data from the MQ-135.

Utilize the sensor datasheet's lookup tables or calibration methods to translate raw

sensor results into ppm (parts per million) gas concentrations.

• Implementation: To determine the gas concentrations based on sensor readings,

implement the calibration equations or interpolation algorithms in the firmware.

For additional investigation, this data can be transferred over LoRaWAN.

2. Particulate Matter (PM) Estimation:

• Algorithm: Calculate PM concentrations using sensor data from the

GP2Y1010AU0F. Based on the sensor calibration and sensitivity parameters, the

raw sensor translated measurements into relevant PM values.

• Implementation: To convert the sensor output to PM concentrations, use the

calibration equations or calibration curves supplied by the sensor manufacturer.

For additional investigation, this processed data was transmitted through

LoRaWAN.

3. Air Quality Index (AQI) Calculation:

• Algorithm: Based on the recorded gas concentrations and PM levels, calculate the

overall air quality index using a specified algorithm, Air Quality Index

computation.

• Implementation: By translating the recorded gas concentrations and PM levels to

the corresponding AQI ranges, the AQI calculation algorithm is implemented in

the firmware. To monitor and visualize, send the determined AQI value over

LoRaWAN.

4. Threshold Monitoring and Alerting:

Page 46

• Set predetermined threshold values for gas concentrations, PM levels, or AQI

categories using an algorithm. Monitor the observed values over time and send out

alerts when they go above certain criteria.

• Implementation: Contrast the in-the-moment sensor readings with the firmware's

predefined threshold values. Send an alarm or notification to users or

administrators via the LoRaWAN network or local interface if any parameter

crosses the cutoff to let them know about the bad air quality situation.

5. Data Aggregation and Statistical Analysis:

• Algorithm: Computed statistical measures like averages, minimums, and

maximums, as well as standard deviations, using the sensor data aggregated over

predetermined time intervals (e.g., hourly, daily).

• Implementation: Gather sensor data over the specified time intervals, then run

statistical analyses on the resulting data. This data can be used to analyze trends

or create historical air quality reports.

4.3 Flowchart of code and output:

Flow chart of the conditions in the code and its desired output is:

Figure 26: Output of Arduino Code

4.4 Flow Chart of Code:
The Flow Chart below shows the complete work done in the code. Starting from

collecting data from sensors to calculating the value of CAQI.

Page 47

Figure 27 :Flow Diagram to show data on Application.

4.5 Graph:
The graph below highlights the performance of air quality calculated by sensors in a

particular area and how much the value fluctuates over the period. Figure 28 shows

the graph showing IoT based air Quality and particulate matter concentration

monitoring system.

Result of MQ-135 channel:

Figure 28 :Graphic Display of MQ-135

Page 48

Figure 29:Graphic Display of AQI with respect to time

Page 49

Chapter 05

Page 50

Chapter 05: AWS and HELIUM INTEGRATION

Integration is the process of data collection from serverless, distributed system of

decoupled components and allowing them to be communicated over network for

combining them into a single view or result. In this chapter, we explained about the

most important aspect of our project i.e., Integration. This covers the integration of

Lora WAN with Helium, Helium with AWS DynamoDB table and then with Flutter

application for the visualization. Starting with creation of AWS account each part of

integration is explained in detail.

5.1 Creating AWS Account
Amazon Web Services is a sub element of AMAZON which provides user with a pay-

as-you-go list of services that could easily be scaled up or down based upon the needs.

Users such as large multinational companies, government as well as individuals, can

have unlimited access to various cloud computing platforms and APIs and pay only

for the services they are using.

The main advantage of using AWS is that one does not need to worry about the

storage, operating system, or the backend server maintenance because AWS handles

everything and provides infinite storage for data storage and processing.

In our project, we needed a platform that could fetch AQI values from Helium console

using HTTP request and store them in a database for further visualization on the

Flutter application. For implementing all this we first created an account of AWS on

student access.

Figure 30: AWS Login Console

We signed into the AWS console using a separate mail created solely for the purpose

of Air Quality Monitoring project management.

Root user sign is required when we are performing administrative tasks such as

changing root password, changing billing information etc, but for performing routine

tasks such as creating a database or a lambda function. In the Figure 31, we are signing

into the AWS console as a root user.

Page 51

Figure 31: Signing into the AWS Console as a root user.

5.2 DynamoDB Creation
From the AWS console proceed to the DynamoDB and select the option of create

table. Then you will be asked to enter certain details of the table such as table name,

partition key, sort key etc. After providing all information you create the table and

instantly it will be shown on the tables list.

Figure 32: Creating table.

The name of our table is ‘AQI_table’ and the partition key is ‘table key’. The main

purpose of a partition key is that it serves as a part of a table’s primary key and is used

to retrieve items from your table or allocate data across hosts for scalability and

accessibility.

Page 52

Figure 33: Table Info

After selecting the option of Create Table shown in Figure 32, we proceed to the options

shown in Figure 33 where we enter the name of our table and a partition key. In our case,

we named it ‘AQI_table’.

Figure 34: Table AQI created.

Once we have given the details of our table we selected the Save table option and our

table is created. Figure 34 shows the details of our AQI_table with its status as ‘active’,

and its partition key as ‘tablekey’.

Page 53

Figure 35: Overview of table

Figure 36: Table Items

When we have successfully created the table, several options are available to see

further details about it such as actions, explore table items. Selecting the explore table

items will show another screen in which we are displayed the items we created like

AQI, NO2, CO, location as seen in Figure 35 and Figure 36.

5.3 HTTP Integration
Helium console API is a set of HTTP requests that allow your devices monitored by

Helium Console to interact with any other platform for example AWS and is ideal for

Page 54

integrating with backend devices, just as explained in Helium Console API | Helium

Documentation (n.d.) 19.

To retrieve a Helium API, we go to console, My Account and then to ‘Your API Keys’

section as shown in Figure 37, 38.

Figure 37: Generating API keys.

Figure 38: Copy Assigned API key.

5.3.1 Set up an HTTP Endpoint

After getting Helium API key, we need to set up an HTTP endpoint to retrieve AQI

values from Helium and then store them in the DynamoDB table we created earlier.

In our project we are using AWS Lambda function as our HTTP endpoint to do this.

The lambda function we created takes HTTP requests that are carrying AQI values

and stores them in DynamoDB table.

https://docs.helium.com/api/console/

Page 55

5.3.2 Connect STM32 to an HTTP Endpoint

We connected STM32 device created in Helium Console with an HTTP integration

just as shown in the following Figure 39, 40, 41.

Figure 39: AQI end node added on Helium Console

Figure 40: AQI end node details

Page 56

Figure 41: AQI HTTP integration

In the above figures, we showed the created AQI end node device and the HTTP

integration on the Helium console. After that we connected both the device and

integration with each other using the Flows in Helium shown in Figure 42. Flows is a

view of the components in Helium and to comprehend the connection among devices,

functions, and integrations. It visually connects nodes and controls the flow of data.

Figure 42: Helium Flows

5.3.3 Store AQI data in DynamoDB table

In our lambda function we will write the code to parse the AQI data from the coming

HTTP request and the data is written in the DynamoDB table.

After parsing the data from payload request, we create a list of items in our table such

as NO2, CO, PM2.5, location of the node (the exact coordinates of the place we are

calculating the AQI of) and the AQI value, already shown in Figure 24.

Figure 43: Table items

5.4 Lambda Function

Page 57

The most brilliant concept of going ‘Serverless’ came into reality when AWS lambda

was launched. It helps the developers to write any function or code to manage any

type of application without having to worry about the backend or the server-side

infrastructure.

It can be programmed to start execution only on a trigger event such as on an HTTP

request, change in the database, emails from customers or on user authentication and

we only must pay for when the lambda function runs.

The biggest advantage of Lambda function is that it reduces the time that would

probably be spent on the underlying infrastructure management, saves both effort and

time. In addition to this it also enables building easy scalable solution to any project.

Figure 44: Lambda Function created for AQI value storage.

In the above Figure 44, we created two lambda functions; one for getting HTTP

requests from Helium Console and storing data (AQI values) in DynamoDB and

second for extracting the AQI values from the same DynamoDB table and sending

them to Flutter application using HTTP gateway. An overview of the first Lambda

function is shown in Figure 45.

Page 58

Figure 45: AQI Lambda function overview

 5.4.1 Addition of Trigger Events

We created an API gateway REST API which is mainly created to trigger the Lambda

Function for storing values. This REST API triggers the function when it receives an

HTTP request from Helium.

After that we deployed the API to make it publicly accessible and tested it to make

sure that it was working correctly and smoothly. The API Gateway triggers are shown

in Figure 46 and Figure 47.

Figure 46: API Gateway connected to Lambda.

5.5 API Gateways

In the lambda functions that we created; we now need to add the API key of Helium

Console that would send HTTP requests to the AWS console. Following actions are

taken to add a Helium API as a trigger for our Lambda function:

Go to the Lambda service in the AWS Management Console after opening it. Choose

the Lambda function to which a trigger should be added. Choose "API Gateway" as

the trigger type by clicking the "Add Trigger" button. Choose "REST API" as the API

type and "OpenAPI 3.0" as the protocol in the "Create API" section. Enter a name for

your API in the "API name" area, and depending on your needs, choose "Regional" or

"Edge optimised" for the "Endpoint Type" option. Select the proper authentication

method for your API in the "Security" section. Add the route(s) that correspond to the

endpoint(s) of your Helium API to the "Routes" section. Choose the Lambda function

Page 59

you wish to run whenever an API endpoint request is received from the "Configure

triggers" section. To make your API live, save your settings and deploy it.

Similarly, to fetch the AQI data from the DynamoDB table and show it on the Flutter

Application, we create another lambda function same as above but replace the Helium

API with the API key of our Flutter App.

Figure 47: Gateway having Helium API with API endpoint.

Figure 48: API Gateway Helium API

Page 60

Chapter 06

Page 61

Chapter 06: Software Application

6.1 Overview
In this project we have used applications like flutter, AWS, Helium Console and

STM32CubeMX, STM32CubeIDE.These are the software that we have used because of

the need of project. i.e., the need of using flutter was to develop a software to display all

the information and to provide it to the customers so they can use that app to get Air Quality

Information, AWS is used to store Information and to create a link between Helium

Console and Flutter Application. First DynamoDB table is created and then lambda

function is created then for flutter application and for helium console separately. Flutter

one is used to get values from Dynamo DB table and then by http request those values are

fetched in class of DynamoDB table and second one is used to connect AWS with Helium

Console So, it gets real time data from LoRaWAN (STM-32 integrated) devices and then

store into that DynamoDB table. Then comes helium console it basically is used to transfer

the Air Quality Information that we are getting from STM32 to the Internet and is

connected to AWS through API keys to it. And STM32CubeMX, STM32CubeIDE are

used for configuration of pins and for the generation and compilation of code for the

LoRaWAN (STM32 integrated) device. Following is the class diagram for the description

of above lines diagrammatically to make it easier to understand technically.

Figure 49: Project Class Diagram

Page 62

 6.2 Flutter Application
We have used flutter for development of our application as it easier to use, flexibility

and it supports iteratively seeing the development throughout the whole project. And

hence we have used and developed our app using dart as programming language. And

the application developed is shown by the following screenshots we took while

debugging it using USB cable.

Figure 50: Search of Application

It is the first screen that comes after the Log in screen and for this Page’s Development

we have used Google Map’s API for this purpose so as soon as we search for some

location it will give the value of AQI for that searched location but if we have no node

for searched location it will give the nearest location value of Air Quality Index and

concentrations of different gases that are used to calculate Air Quality Index. And

when a location is searched the AQI (Air Quality Index). It goes to the home page

hence displaying the Air Quality Index along with concentrations also we tend to make

a dashboard which displays graphs of concentrations along with the time. The home

page is shown in figure 51.

Figure 51: Home of Application

Page 63

And then we have Air Quality Page if the User wants to know suggestions according

to the Air Quality Index. Also, then there is a settings page which allows us to change

the settings of our app according to our needs and then and if we want to have different

suggestions and warnings, we can turn on notifications of the application by selecting

the list item named notification and then going to that Notifications Page. These pages

are shown in figure 52.

Figure 52: Air Quality, Settings, and Notifications of Application

And then going back to settings Page we have Privacy policy page which has a weblink in it and

that link contains privacy policy of that application. And then we have Terms of Use page which

contains text that is related to that page and will be shown in figure below. And a Profile page

which is another page with a list of other pages.

Figure 53: Privacy policy, Terms of Use and Profile pages of Application

As shown from the Figure 53 the profile consists of another list which contains items of pages

FAQ, write feedback and again the settings page and the share app page which generates link to

Page 64

the application to share it. FAQ page consists of the frequently Asked questions that could be

asked, and we will add more or remove according to the questions asked through feedback or

other sources.

Figure 54: FAQ, Feedback and Share app pages of Application

FAQ page consists of a list of Questions, and they refer to other pages that are linked through that

page, these questions include What is CAQI, where does our data comes from, what is PM, what

is NO and lastly is CO and they are shown below:

Figure 55: FAQ pages of Application

The above-described flow of pages is shown from the figure 56:

Page 65

Figure 56: User Flow Diagram

And the Use case diagram of our application is shown below which shows the use cases of our

project:

Figure 57: Use case diagram

Page 66

Chapter 07

Page 67

Chapter 7: Conclusion and Future Work

7.1 Conclusion

As a result, the "Air Quality Monitoring" project, which makes use of an STM32

microcontroller and a Helium gateway, provides an all-inclusive approach to

collecting and analyzing data on air quality. The project offers effective data

collecting, transmission, and processing by fusing the capabilities of the STM32

microcontroller with the Helium gateway. The following main ideas will serve as a

project summary:

 The STM32 microcontroller is fitted with air quality sensors that record pertinent

information, including pollution levels (CO, NO2, PM2.5) These sensors offer precise

and immediate air quality assessments.STM32 microcontrollers send data to the

Helium gateway, which acts as a central hub. It gathers the air quality data and creates

a wireless communication channel with the STM32 nodes for later processing and

analysis. The gathered air quality data can be processed and analyzed either locally on

the STM32 microcontroller or remotely via the Helium gateway to a server or cloud

platform. This makes it possible to analyze, visualize, and store data for a long time.

 There are several potential applications and effects for the "Air Quality Monitoring"

project. It can be used to monitor air quality levels, identify pollution sources, evaluate

health hazards, and support environmental decision-making in metropolitan areas,

industrial zones, or sensitive regions. The project may aid in establishing sustainable

and healthy living conditions.

 Overall, the "Air Quality Monitoring" project, which makes use of an

STM32microcontroller and a Helium gateway, offers a practical and expandable

method of air quality monitoring. It combines the strength of decentralized network

operation, sensor technology, and data analysis to supply insightful information on

the state of air quality and support initiatives aimed at improving environmental

management.

7.2 Future Work

Here are some potential plans and expansions for the "Air Quality Monitoring"

project:

 The possibilities of adding more sensors or more sophisticated sensor

technologies to gather more thorough data on air quality. Sensors for pollutants,

particulate matter, volatile organic compounds (VOCs), or gas sensors for detecting

certain gases of interest could fall under this category. Increase the project's

geographic reach by setting up additional STM32 nodes and Helium gateways to track

the quality of the air in various areas. This growth can entail collaborating with

Page 68

regional leaders, businesses, or communities to create a larger network of observation

points. To guarantee the dependability, accuracy, and effectiveness of the air quality

monitoring system, the hardware and software components of the project must be

updated and improved regularly.

However, we can also improve mobile app features as well. For instance:

 Provide individualized health advice based on the state of the air. The software can

recommend actions like staying indoors during times of high pollution, donning

masks, or choosing other routes with cleaner air. Enable users to use the mobile app

to share their air quality observations and reports. The accuracy and scope of the data

on air quality can be improved by using user-generated information, which can also

encourage community involvement in the fight against air pollution. To give

customers access to real-time air quality updates directly on their wearable devices,

integrate the mobile app with wearable gadgets like smartwatches or fitness trackers.

This enables easy mobile access to information about the quality of the air. By

pursuing these plans, the "Air Quality Monitoring" project can evolve into a

comprehensive and impactful initiative, contributing to better air quality management,

public health, and environmental sustainability.

Page 69

REFRENCES

[1] Where Does Air Pollution Come From? - Air (U.S. National Park Service). (2018,

January 17). Www.nps.gov.

https://www.nps.gov/subjects/air/sources.htm#:~:text=mobile%20sources%20

[2] Rutledge, K. (2022, July 1). Air Pollution. Education.nationalgeographic.org;

National Geographic. https://education.nationalgeographic.org/resource/air-

pollution/

[3] AWS Lambda Documentation. (2022). Amazon.com.

https://docs.aws.amazon.com/lambda/?icmpid=docs_homepage_compute

[4] Fog computing vs. cloud computing - javatpoint. (n.d.). Www.javatpoint.com.

Retrieved May 13, 2023, from https://www.javatpoint.com/fog-computing-vs-cloud-

computing#:~:text=The%20main%20difference%20between%20fog

[5] Optical dust sensor - gp2y1010au0f - COM-09689 - sparkfun electronics. (n.d.).

Www.sparkfun.com. https://www.sparkfun.com/products/9689

[6] Popović, I., Radovanovic, I., Vajs, I., Drajic, D., & Gligorić, N. (2022). Building

low-cost sensing infrastructure for air quality monitoring in urban areas based on fog

computing. Sensors, 22(3), 1026. https://doi.org/10.3390/s22031026

[7] Kumar, P.; Morawska, L.; Martani, C.; Biskos, G.; Neophytou, M.; Di Sabatino,

S.; Bell, M.; Norford, L.; Britter, L. The rise of low-cost sensing for managing air

pollution in cities. Environ. Int. 2015, 75, 199–205. [CrossRef] [PubMed]

 [8] World live air quality map | airvisual. (n.d.). Www.iqair.com. Retrieved May 16,

2023, from https://www.iqair.com/world-air-quality

 [9] PurpleAir Flex Air Quality Monitor. (n.d.). PurpleAir, Inc. Retrieved May 18,

2023, from https://www2.purpleair.com/products/purpleair-flex

 [10] Air quality sensor: Series 500 portable air monitor. (n.d.). Www.aeroqual.com.

Retrieved May 16, 2023, from https://www.aeroqual.com/products/s-series-portable-

air-monitors/series-500-portable-air-pollution-monitor

 [11] Srivastava, H.; Bansal, K.; Kumar Das, S.; Sarkar, S. An Efficient IoT Technology

Cloud-Based Pollution Monitoring System. In Advances in Systems, Control and

Automations; Lecture Notes in Electrical Engineering; Bhoi, A.K., Mallick, P.K.,

Balas, V.E., Mishra, B.S.P., Eds.; Springer: Singapore, 2021; Volume 708, pp. 109–

120.

 [12] Zhang, D., & Woo, S. S. (2020). Real Time Localized Air Quality Monitoring and

Prediction Through Mobile and Fixed IoT Sensing Network. IEEE Access, 8, 89584–

89594. https://doi.org/10.1109/ACCESS.2020.2993547

https://www.nps.gov/subjects/air/sources.htm%23:~:text=mobile%20sources
https://education.nationalgeographic.org/resource/air-pollution/
https://education.nationalgeographic.org/resource/air-pollution/
https://docs.aws.amazon.com/lambda/?icmpid=docs_homepage_compute
https://www.javatpoint.com/fog-computing-vs-cloud-computing%23:~:text=The%20main%20difference%20between%20fog
https://www.javatpoint.com/fog-computing-vs-cloud-computing%23:~:text=The%20main%20difference%20between%20fog
https://www.sparkfun.com/products/9689
https://doi.org/10.3390/s22031026
https://www.sciencedirect.com/science/article/abs/pii/S0160412014003547?via%3Dihub
https://pubmed.ncbi.nlm.nih.gov/25483836/
https://www.iqair.com/world-air-quality
https://www2.purpleair.com/products/purpleair-flex
https://www.aeroqual.com/products/s-series-portable-air-monitors/series-500-portable-air-pollution-monitor
https://www.aeroqual.com/products/s-series-portable-air-monitors/series-500-portable-air-pollution-monitor
https://doi.org/10.1109/ACCESS.2020.2993547

Page 70

 [13] Motlagh, N. H., Lagerspetz, E., Nurmi, P., Li, X., Varjonen, S., Mineraud, J., ...

& Tarkoma, S. (2020). Toward massive scale air quality monitoring. IEEE

Communications Magazine, 58(2), 54-59

 [14] Bharathi, P. D., Ananthanarayanan, V., & Bagavathi Sivakumar, P. (2020). Fog

computing-based environmental monitoring using nordic thingy: 52 and raspberry Pi.

In Smart Systems and IoT: Innovations in Computing: Proceeding of SSIC 2019 (pp.

269-279). Springer Singapore. Fog Computing-Based Environmental Monitoring

Using Nordic Thingy: 52 and Raspberry Pi | SpringerLink

[15] Kelechi, A. H., Alsharif, M. H., Agbaetuo, C., Ubadike, O., Aligbe, A.,

Uthansakul, P., ... & Aly, A. A. (2022). Design of a low-cost air quality monitoring

system using Arduino and ThingSpeak. Comput. Mater. Contin, 70, 151-169.

[16] Zhao, Z., Wang, J., Fu, C., Liu, Z., Liu, D., & Li, B. (2018). Design of a smart

sensor network system for real-time air quality monitoring on green roof. Journal of

Sensors, 2018.

[17] Li, D., Wu, T., Li, X., He, Q., & Cui, Z. (2020). A Wireless Multisensor Node

for Long-Term Environmental Parameters Monitoring. Journal of Electrical and

Computer Engineering, 2020, 1-12.

[18] Kaivonen, S., & Ngai, E. C. H. (2020). Real-time air pollution monitoring with

sensors on city. Digital Communications and Networks, 6(1), 23-30.

 [19] Helium Console API | Helium Documentation. (n.d.). Docs.helium.com.

Retrieved May 21, 2023, from https://docs.helium.com/api/console/

https://link.springer.com/chapter/10.1007/978-981-13-8406-6_27
https://link.springer.com/chapter/10.1007/978-981-13-8406-6_27
https://docs.helium.com/api/console/

