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Abstract

This thesis reviews study of the quantum electrodynamics in 2+1 D. We will start with the discus-
sion of Dirac equation and Maxwell’s theory in 3+1 dimensions and then convert these theories in
2+1 D. We will show different aspects arising due to reduction of one spatial dimension. Solutions
for Dirac equation and their transformation properties are discussed. Basics of Chern-Simon’s the-
ory are presented in some detail. Then we will derive Gauge field propagator and from propagator
we will derive scalar and vector potentials for a static charge. In last chapter we will perform
some initial steps of quantization of the theories in different gauges and we will see that there are
a few differences in quantization results between 3 + 1 D and 2 + 1 D theories. We will also find
polarization vectors for photon field in different theories and compare them with usual 3 + 1 D
theory.
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Notations and conventions

µ, ν, ρ, ... spacetime indices

i, j, k, ... spatial indices

We use the minus timelike-convention to define spacetime interval as

ds2 := ηµνdx
µdxν , µ, ν = 0, 1, 2

such that the squared 4-momentum is positive for real particles (i.e. p2 = m2, on shell). In three
dimensions this implies the metric signature is −1.

ηµν =

1 0 0
0 −1 0
0 0 −1

⇒ ηij = −δij .

In natural units

~ = c = 1.

We define

xµ = (t, x1, x2) = (t, ~x)

pµ = (E, p1, p2) = (E, ~p),

where E is the energy of the particle. Space-time derivative is defined as

∂µ =
∂

∂xµ
=
( ∂
∂t
,−∇

)
,

and
∂µ∂µ = �

as d’Alembertian. Also the dot represents time derivative and prime denotes space derivative
(mentioned other wise). The totally antisymmetric tensor εµνρ is set as

ε012 = 1 ⇒ ε102 = −1.

All quantities are weighed in terms of mass dimensions e.g. the dimension of Compton wavelength

λc =
~
mc

=
1

m
becomes [M−1].

Pauli matrices are defined as

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(1)
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For 3-dimensional fourier transform we adopt the convention asymmetric in the factors of 2π such
that

φ(x− x′) =

∫
d3p

(2π)3
e−ip(x−x

′)φ(p)

φ(p) =

∫
d3xeip(x−x

′)φ(x− x′)

δ(x− x′) =

∫
d3p

(2π)3
eip(x−x

′).
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Chapter1
Introduction

In our observable universe there are four basic forces viz. gravity, electromagnetic force, weak
force, and strong force. Physicists have been curious about the origin of these forces and have
been trying to develop mathematical models in attempt to explain the interaction between different
types of particles. Quantum electrodynamics deals with how light and matter interact and is the
relativistic quantum field theory. It would be interesting to have a look at brief history of evolution
of quantum electrodynamics. After the synthesis of the phenomena of motion, sound and heat,
there was the discovery of a number of phenomena that we call electrical and magnetic. In 1873
these phenomena were synthesized with the phenomena of light and optics into a single theory
by James Clerk Maxwell, who proposed that light is an electromagnetic wave. A while later
electron theory of matter evolved and attempts were made to understand the motion of electron.
Newton’s laws were initially applied which proved to be wrong in this regime. Then there came
the quantum mechanics having concepts beyond the common sense which successfully explained
many experimental facts. But still the problem of real understanding of light and matter sustained.
Maxwell’s theory had to be modified to be in accord with the new principle of quantum mechanics
that had been developed. Hence the new theory, the quantum theory of interaction of light and
matter evolved which is now called "Quantum Electrodynamics".

On the other side Paul Dirac using the theory of relativity, made a relativistic theory of the electron
that did not completely take into account all the effects of the electron’s interaction with light
[1]. Later on it was observed that we need to combine Maxwell’s theory with Dirac’s theory to
have a full understanding. So there are two basic ingredients of quantum electrodynamics, 1st is
Maxwell’ theory and 2nd is Dirac’s theory.

The purpose of this study in 2 + 1 D is to understand the general behaviour of fields in a plane.
Once we learn about the behaviour of particles and fields in a plane we can apply it to different
phenomena to get a better understanding. Importance of this study can be understood by looking
at wide application of theory for example fractional quantum Hall effect, motion of electrons in
graphene and high temperature superconductivity. Another obvious motivation is the theoretical
interest of physicists in massive nature of photon. We give a brief introduction to Lagrangian
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formalism because all the theories are taken in Lagrangian form.
A system with N degrees of freedom can be described by a set of coordinates qi(t) with i =
0, 1, ..., N , which are denoted often simply by q. The Lagrangian L is a function of qi’s and their
first time derivatives L = L(q, q̇). Lagrangian1 is the difference of kinetic energy and potential
energy [2].

L(q, q̇) =
1

2
miq̇

2
i − V (q).

From a given Lagrangian we find Euler-Lagrange equations

∂L

∂qi
− d

dt

∂L

∂q̇i
= 0.

These are also known as equations of motion in Lagrangian formalism. Later in quantization we
shall need Hamiltonian which is defined as

H(p, q) = piq̇i − L,

where pi is known as conjugate momentum to qi for each corresponding index, found as

pi =
∂L

∂q̇i
.

Then q̇i is expressed in terms of pi or possibly qi, in Hamiltonian to make it purely a finction of
p and q. In field theory the Lagrangian is replaced by Lagrangian density, coordinates with fields
and velocities with space time derivatives of fields2.

L→ L
qi(t)→ φi(x

µ)

q̇i(t)→ ∂µφi(x
µ).

The importance of Lagrangian formalism was prominent because it was seen that various real-
istic theories can be cast in the canonical formalism (explained in later chapter). Lagrangian is
the starting point for canonical formalism as seen above that Hamiltonian is derived from La-
grangian. We need to choose a suitable Lagrangian for theory under consideration, which may
exhibit Lorentz/Poincaré invariance and some other symmetries. Symmetries in turn produce con-
served quantities which are of the most interest of physicists [3] [4]. Some symmetries and corre-
sponding conserved quantities are follows

Time translational symmetry implies energy conservation.
Space translational space symmetry implies momentum conservation.

Rotational symmetry implies angular momentum conservation.
Phase angle symmetry of wave-function implies charge conservation.

1Einstein summation convention on repeated indices is understood here and after wards.
2xµ in the parenthesis is usually written simply x while temporal and spatial parts are explicitly written when

required.
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The theoretical frame work we use, is known as Quantum field theory. Quantum field theory is
one of the most successful mathematical models to describe physical reality. It has a unifying
effect on many different areas of mathematics and physics [5]. It is widely used in condensed
matter physics and high energy physics. In one sense it is a field theoretic extension of relativistic
quantum mechanics.

We shall have a basics introduction of Maxwell and Dirac theories in 3 + 1 D and then in 3rd
chapter we shall convert these theories in 2 + 1 D. We shall study some characteristics of separate
Dirac and Maxwell’s theories and different combined theories like Dirac + Maxwell and Dirac +
Maxwell + Proca e.t.c.. In last chapter we shall see how can we quantize the theories in 2 + 1 D
and if there is some difference in quantization results.
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Chapter2
QED in 3+1 Dimensions

We shall have a brief review of conventional 3 + 1 D QED so that it becomes easy to make com-
parison of theories in two different dimensions. As we talked about invariance and symmetries of
the theory in previous chapter we need to have a review of Lorentz and Poincaré transformations
as these symmetries are fundamental requirements of validity of any theory1.

2.1 Lorentz and Poincaré Groups

A Lorentz transformation named after Henrik Lorentz was the result of efforts made by Lorentz and
many other physicists to explain how the speed of light c was observed to be independent of any
arbitrary frame of reference, and also to understand the symmetries of electromagnetic laws. The
whole structure of special relativity is based on Lorentz transformations. These transformations
describe that how the measurements for an event somewhere in space-time by two observers, in
inertial frame2 are related.
We define Lorentz Group whose elements are Lorentz transformations so that we could study the
characteristics of transformations in a compact form. Lorentz group O(1, 3) (Orthogonal) is a set
of 4× 4 real matrices which represent linear coordinate transformations,

xµ → x
′µ = Λµ

νx
ν ,

which preserve the following quadratic form

t2 − x2 − y2 − z2.

Since

t2 − x2 − y2 − z2 = ηµνx
µxν ,

1Theory must produce consistent results in all frames and it should not be position dependent.
2A frame that is at rest or moving with constant velocity with respect to any reference is inertial frame.

9



the matrix Λ should satisfy following condition to leave above mentioned form invariant

ηµνx
′µx′ν = ηµν(Λ

µ
ρx

ρ)(Λν
σx

σ) = ηρσx
ρxσ.

This must be true for any x, so we must have

ηρσ = ηµνΛ
µ
ρΛν

σ, (2.1)

or in matrix notation we write as

ΛTηΛ = η.

This implies that det(Λ) = ±1. The transformations with detΛ = +1 are called Proper Lorentz
Transformations. And the corresponding subgroup is denoted by SO(1, 3). Writing the 00 com-
ponent of eq. (2.1) explicitly we find

1 = (Λ0
0)2 −

3∑
i=1

(Λi
0)2, (2.2)

and this implies (Λ0
0)2 ≥ 1. So proper Lorentz group has two components that are disconnected. It

is convenient to separate out the transformations corresponding to Λ0
0 ≥ 1. We take infinitesimal

transformation as
Λµ
ν = δµν + ωµν , (2.3)

then eq. (2.1) gives
ωµν = −ωνµ. (2.4)

This shows that ω is an antisymmetric matrix which has six independent elements. Hence Lorentz
group has six parameters. These six elements are boosts and rotations3. To these rotations and
boosts correspond six generators which we label with Jµν with the pair of antisymmetric indices
µ, ν for convenience. A general Lorentz group element is represented as:

Λ = e−
i
2
ωµνJµν . (2.5)

A set of objects φi (i = 1, ..., n), transforms under a Lorentz transformation in representation R of
dimension n of the Lorentz group as

φi →
[
e−

i
2
ωµνJ

µν
R

]i
j
φj, (2.6)

where e−
i
2
ωµνJ

µν
R is the n-dimensional matrix representation. JµνR (n×nmatrices) are the generators

in corresponding representation. An infinitesimal transformation gives the variation

δφi = − i
2
ωµν(J

µν
R )ijφ

j, (2.7)

µ, ν identify the generator while i, j are the indices of matrix in particular representation. We can
classify physical quantities according to their transformation properties. A scalar is invariant under

3Transformations that leave t invariant are rotations and those which leave t2 − x2 e.t.c. are boosts.
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Lorentz transformation. For a scalar index i can have only one value, so the scalar representation
in one dimensional, means (JµνR )ij is a number (δφ = 0, Jµν = 0). A four vector V µ satisfies
transformation law

V µ → Λµ
νV

ν . (2.8)

In four vector representation i, j are also Lorentz indices, each generator Jµν is represented by a
4× 4 matrix (JµνR )ρσ. The explicit form is

(Jµν)ρσ = i(ηµρδνσ − ηνρδµσ). (2.9)

Under infinitesimal Lorentz transformation the variation in vector is δV µ = ωµνV
ν or

δV ρ = − i
2
ωµν(J

µν)ρσV
σ. (2.10)

We can use the explicit form to compute the commutators and get

[Jµ ν , Jρ σ] = i(Jµσην ρ − Jν σηµρ + Jµρην σ − Jν ρηµσ). (2.11)

We rearrange the six components of Jµν into following two spatial vectors for some convenience

Ki = J i0 , J i =
1

2
εijkJ jk. (2.12)

In terms of these vectors the commutation relation splits into following

[Ki, Kj] = −iεijkJk

[J i, J j] = iεijkJk

[J i, Kj] = εijkKk.

We also define
ηi = ωi0 , θi =

1

2
εijkωjk, (2.13)

then

1

2
ωµνJ

µν =
3∑
i=1

ω0iJ
0i + ω12J

12 + ω23J
23 + ω31J

31

= ~θ · ~J − ~η · ~K. (2.14)

Ultimately a Lorentz transformation can be written as

Λ = e−i
~θ · ~J+i~η · ~K . (2.15)

We shall derive the transformation law for spinor field in detail in next chapter.

Poincaré group extends the Lorentz group by involving space-time translations of the form

xµ 7→ xµ + aµ,
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aµ are the parameters of translation. A generic element of the translation group is written as:

Λ = e−iaµP
µ

,

where aµ are the translation parameters, and the 4-momentum P µ are its generators. Also,

[P µ, P ν ] = 0.

Note that energy P 0 = H is scalar under rotations but P i is a vector under rotations,

[J i, H] = 0, [J i, P j] = iεijkP k,

[Ki, P j] = iHδij, [Ki, H] = iP i,

and on combining we have

[P µ, Jρσ] = i(ηµρP σ − ηµσP ρ). (2.16)

Unlike J i, the boost generatorKi do not commute with the generator of time translationH . Hence
the eigenvalues of the operator K̂ cannot be used to label the physical states.

Now we look at the brief introduction to the constituents of electrodynamics that are Dirac theory
and Maxwell’s theory.

2.2 Dirac Theory

The theory of Paul Dirac is an attempt to unify the theories of special relativity and quantum
mechanics (A quantum mechanical theory demonstrating Lorentz invariance and hence consistent
with special relativity). Dirac started from Klein-Gordon (K.G.) equation. The Klein-Gordon
equation was an attempt to construct a relativistic version of Schrodinger wave equation, whose
solutions are scalar (Spin 0 particles) fields,

∂µ∂µψ +m2ψ = 0. (2.17)

This equation gave negative probabilities which was not acceptable in any sense and also negative
energy solutions, because it is second order in time. Dirac tried to solve these issues and made
factors of Klein-Gordon equation to make equation first order in time. The derivation of Klein-
Gordon equation and then Dirac equation is as follows. We start with Schrodinger equation,

− 1

2m
∇2ψ + V ψ = i

∂ψ

∂t
. (2.18)

We replace energy and momentum with corresponding operators p → −i∇, E → i ∂
∂t

and then
energy conservation relation E2 − p2 −m2 = 0 implies

− ∂2ψ

∂t2
+∇2ψ −m2ψ = 0. (2.19)
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Which in covariant form becomes

− ∂µ∂µψ −m2ψ = 0. (2.20)

For ψ, considering it is a solution to K-G. equation multiply equation 2.19 with −iψ∗, then taking
complex conjugate of K-G. equation and multiply with −iψ we get

iψ∗
∂2ψ

∂t2
− iψ∗∇2ψ + iψ∗m2ψ = 0, (2.21)

iψ
∂2ψ∗

∂t2
− iψ∇2ψ∗ + iψm2ψ∗ = 0. (2.22)

Subtracting we get

∂

∂t
[i(ψ∗

∂ψ

∂t
− ψ∂ψ

∗

∂t
)] +∇ · [−i(ψ∗∇ψ − ψ∇ψ∗)] = 0. (2.23)

This has the form of equation of continuity

∂ρ

∂t
+ ~∇ ·~j = 0, (2.24)

with
ρ = i(ψ∗

∂ψ

∂t
− ψ∂ψ

∗

∂t
) (2.25)

and
~j = i(ψ∗∇ψ − ψ∇ψ∗). (2.26)

Here we can see the problem mentioned before, if we suppose plane wave solutions ψ = Ne−ipµx
µ ,

we get ρ = 2E|N |2, means for negative energy probability density is negative. So Dirac attempted
to solve in the following way.

E2 − |~p|2 −m2 = pµpµ −m2. (2.27)

We can write
pµpµ −m2 = (βκpκ +m)(γλpλ −m), (2.28)

or expanding the product

(βκpκ +m)(γλpλ −m) = βκγλpκpλ −m2 +mγλpλ −mβκpκ. (2.29)

This is equal to pµpµ−m2, so we have to eliminate linear terms in p, this can be done by choosing
βκ = γκ. We get

pµpµ −m2 = γκγλpκpλ −m2. (2.30)

Expanding right hand side

γκγλpκpλ −m2 = (γ0)2p2
0 + (γ0γj + γjγ0)p0pj + γiγkpipk −m2, (2.31)
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where we should have pµpµ −m2 = p2
0 − p2

1 − p2
2 − p2

3 −m2, so we see that

(γ0)2 = 1 (2.32)

and
(γ1)2 = (γ2)2 = (γ3)2 = −1. (2.33)

We also need
γµγν + γνγµ = 0 if µ 6= ν. (2.34)

Dirac realised that γ are 4 × 4 matrices that satisfy {γµ, γν} = γµγν + γνγµ = 2ηµν . We also
define a useful γ5 matrix

γ5 = iγ0γ1γ2γ3, (2.35)

which follows
(γ5)2 = 1, {γ5, γµ} = 0. (2.36)

Some further properties are

γ0† = γ0, γ5† = γ5, γµ† = γ0γµγ0 = −γµ† for µ 6= 0. (2.37)

If the matrices satisfy above algebra we can make factors of energy momentum conservation equa-
tion as already suggested

pµpµ −m2 = (γκpκ +m)(γλpλ −m) = 0. (2.38)

Dirac equation contains one of the factors, conventionally

(γλpλ −m) = 0. (2.39)

Using pµ → i∂µ we get covariant form of Dirac equation

(iγµ∂µ −m)ψ = 0 (2.40)

or using Feynman notation γµ∂µ = 6∂ we finally get

(i6∂ −m)ψ = 0. (2.41)

Where ψ is a four component spinor and not a four vector, we shall skip further detailed description
of this field in 3+1 D but its characteristics are discussed in 2+1 D in later chapters. Dirac equation
is the whole story about free spin half massive particles for which parity symmetry holds and is the
first theory which accounts fully in context with quantum mechanical principles [6] [5].
Same equation can be derived from Dirac Lagrangian given as

L = iψ̄γµ∂µψ −mψ̄ψ. (2.42)

Where ψ̄ = ψ†γ0 is Dirac adjoint, required for Lorentz invariance of the theory [2] [7]. Electro-
magnetic interactions can be introduced in the lagrangian but first we shall see some basic aspects
of electromagnetic field.
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2.3 Maxwell’s Theory

The four source less equations contain basic laws of electricity and magnetism [8] are as follows

∇ ·E = 0 (2.43)

∇ ·B = 0 (2.44)

∇× E = −∂B
∂t

(2.45)

∇×B =
∂E

∂t
, (2.46)

known after the name James Clerk Maxwell represent the state of electromagnetic theory. The
physical contents of these equations were known earlier but deriving such a compact form was the
contribution of Maxwell [9]. These equations can be presented in a more compact, elegant and
explicitly covariant form as

∂µF
µν = 0 (2.47)

∂[αFβγ] = ∂αFβγ + ∂γFαβ + ∂βFγα = 0 where F µν = ∂µAν − ∂νAµ, (2.48)

by introducing gauge field Aµ.
The explicit form of Maxwell’s equations mentioned above can be obtained from a field La-
grangian. The simplest gauge invariant lagrangian for any gauge field Aµ can be written as

L = −1

4
FµνF

µν . (2.49)

Where gauge transformation4 is defined as [10]

Aµ → A′µ = Aµ − ∂µΛ(x). (2.50)

Gauge invariance is a leading principle in constructing the theories of fundamental interactions, and
these theories are called gauge theories [2] [10]. Concept of transformations and corresponding
symmetries5 plays a fundamental role in modern physics. Over the development of past years it
has become clear that the structure of elementary particles can be organized in terms of symmetry
principles [4].
This free field lagrangian gives ∂µF µν = 0 which gives 1st and 4th of Maxwell’s equations for
source free case. Also Fµν obeys Bianchi identity ∂[αFβγ] = 0 wich gives rest of the Maxwell’s
equations. Note that in source less Maxwell’s equations if we replace E → −B and B → E. we
get same equations again. Such a transformation is known as Dual Transformation. As in classical
electrodynamics we have a current source term which presents the presence of electric charges, we
put a source term in the lagrangian and it becomes

L = −1

4
FµνF

µν − JµAµ. (2.51)

4This is a local gauge transformation as Λ is an arbitrary function of x [2]
5Transformations under which the equations are invariant are referred to as symmetries.
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Euler Lagrange equation ∂µF µν = Jν for this lagrangian gives Maxwell’s equations with source
as∇ ·E = ρ,∇× B = ∂E

∂t
+ J.

Gauge invariance does not allow to write mass term for vector field so we do not have that term.
If we want to study the motion of fermions in external field we shall have to couple the external
field with fermionic field. First note that the Dirac Lagrangian is invariant under global phase
transformations6

ψ → ψ′ = eieθψ, (2.52)

but is non-invariant under local transformation when θ is a function of x. In order to make La-
grangian guage invariant, we define covariant derivative of ψ as

Dµψ = ∂µψ + ieAµψ. (2.53)

Under the combined transformations (2.50) and (2.52) we see that

Dµψ → eieθDµ(x)ψ, (2.54)

Dµψ transforms the same way as ψ transforms even for θ being a function of x. It becomes easy to
construct Lagrangian with local U(1) invariance. All we need to do is to replace all the derivatives
with covariant derivatives. This process is called minimal coupling [2].
Then the Lagrangian becomes

L = ψ̄(iγµDµ −m)ψ. (2.55)

We have introduced the electromagnetic interaction in Lagrangian. While writing a Lagrangian we
include all possible terms that do not spoil the required symmetries, containing the involved fields.
So to present complete picture of QED we add the kinetic term for electromagnetic field and get

L = −1

4
F µνFµν + ψ̄(iγµDµ −m)ψ. (2.56)

This is a complete and most successful theory for spin half particles and electromagnetic interac-
tions. This is an abelian gauge theory with symmetry group U(1). The beauty of theory lies in
complete correspondence with quantum mechanics and special relativity.
Finally we perform a brief dimensional analysis in 3+1 D to show the dimensions of above defined
Dirac and vector fields because when we switch to 2 + 1 D, we will see that dimensions of fields
are also reduced.
Lagrangian density has the dimensions [M ]4. We have [xµ] = [M−1] and [∂µ] = [M ]. So

[∂2A2] = [M4] gives [A] = [M+1]

[mψ̄ψ] = [M4] gives [ψ] = [M
+3
2 ].

(2.57)

Contents so far discussed are considered in 3 + 1 dimensions but if we confine our theories to
plane, different aspects arise which practically have very nice applications and are theoretically
important. In the next chapter we will see that in 2 + 1 D both the theories have considerably
different behaviours. We will study the basic characteristics of different theories and then in 4th
chapter we will see that how to proceed to quantization of different theories.

6“e” is coupling constant usually known as charge of the particle.

16



Chapter3
QED in 2+1 Dimensions

Behaviour of fermions and gauge fields is different than the usual behaviour in 3 + 1 D and spe-
cially a new gauge theory arises in 2 + 1 dimensions which is different from Maxwell’s theory,
known as Chern-Simon’s theory. In these dimensions Lorentz and Poincaré algebras are obviously
different from ordinary 3 + 1 D algebras. We will have a look at these algebras and then we will
study the 2 + 1 D theories.

3.1 Lorentz and Poincaré Algebras

Apparent form of element of Lorentz group is same as before (2.5),

Λ = e−
i
2
wµνJµν . (3.1)

As stated previously, general set of objects φi, i = 1.2.3...n transforms under representation R of
dimension n as

φi → [e−
i
2
wµνJ

µν
R ]ijφ

j. (3.2)

In our case n = 2 so i, j = 1, 2 while µ, ν = 0, 1, 2. For a scalar in space time, [JµνR ]ij is a number
while for a space time vector

(Jµν)ρσ = i(ηµρδνσ − ηνρδµσ). (3.3)

As this is an antisymmetric matrix 3× 3 it has 3 independent elements which are renamed as

J =
1

2
εijJ ij and Ki = J i0. (3.4)

We have two generators Ki of boost and only one generator J of rotation in plane so all the
rotations in a plane commute we can write the commutation relations as

[J,Ki] = iεijKj

[Ki, Kj] = −iεijJ,
(3.5)
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where εij is two dimensinal levi-civita tensor. It is convenient to rename the infinitesimal parame-
ter ω as

θ =
1

2
εijωij and ηi = ωi0. (3.6)

So a general element of Lorentz group is now given by

Λ = exp[−iθJ + i~η. ~K]. (3.7)

The Lorentz generators Jµν and the generators of translation P µ satisfy the standard Poincare
algebra commutation relations, which can be expressed in a more compact form as

[Jµ, Jν ] = −iεµνρJρ
[Jµ, P ν ] = −iεµνρPρ
[P µ, P ν ] = 0,

(3.8)

where Jµ is the pseudovector generator defined as

Jµ =
1

2
εµνρJνρ. (3.9)

The above form of Jµ is simply a more compact form of the three generators with no new physics
in it. Using P µ and Jµ we can make Casimir operators like

P 2 = P µPµ , W = P µJµ. (3.10)

Irreducible representations of the algebra can be characterized by the eigenvalues of these Casimir
operators [2]. We will not discuss Casimir operators further.

3.2 Dirac Theory in 2+1 D

The explicit form of Dirac equation is not changed in 2 + 1 D but we will see that solutions of
Dirac equation have very different form and different aspects arise here. The obvious difference
will be the irreducible set of Dirac matrices as the Dirac matrices are always irreducible in odd
dimensions [11] [12]. Here these matrices are 2×2 matrices, rather then usual 4×4 matrices [11].
Fermion fields are 2-component spinors that are irreducible and dirac gamma matrices are

γ0 = σ3, γ1 = iσ1, γ2 = iσ2, (3.11)

and obey
γµγν = ηµν − iεµναγα. (3.12)

σ′s are Pauli matrices. As the Dirac equation is

(i6∂ −m)ψ = 0. (3.13)

We take the plane wave solutions with constant u(p) of the form

ψ(x) = u(p)e−ip
µxµ . (3.14)
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Putting in (3.13) we get
(γµpµ −m)u(p) = 0 where µ = 0, 1, 2. (3.15)

Using the Dirac representation (say representation A) of Gamma matrices and writing u(p) as

u(p) =

(
u1

u2

)
(3.16)

We get (
E −m −ipx − py
−ipx + py −E −m

)(
u1

u2

)
= 0. (3.17)

This gives two equations out of which we get

u1 =
ipx + py
E −m

u2

u2 =
−ipx + py
E +m

u1.

(3.18)

So we can write solutions for u1 = 1 and u2 = 1 as

ψA =

(
1

−ipx+py
E+m

)
e−ip

µxµ = u+
1 e
−ipµxµ

ψA =

(
ipx+py
E−m

1

)
e−ip

µxµ = u+
2 e
−ipµxµ .

(3.19)

It is customary to re-define the solutions for particles and antiparticles as

uA(E, p) = u+
1 (E, p) =

(
1

−ipx+py
E+m

)

vA(E, p) = u+
2 (−E,−p) =

(
ipx+py
E+m

1

)
.

(3.20)

So the solutions are
ψPA(E, p) = uA(p)e−ip

µxµ

ψNA (−E,−p) = vA(p)eip
µxµ .

(3.21)

The first one corresponds to the particle and second is for antiparticle. The spin operator corre-
sponds to the generator of rotation iεijBij where Bij generator of rotation in spinor space, defined
in section (3.2.2). We define S as

S = iB12 =
i

2
γ1γ2 =

γ0

2
. (3.22)

We take the solutions at rest p = 0 because for p 6= 0 the states are not eigen states of spin operator.
Spin operator acts as

γ0

2
u(E, 0) =

1

2

(
1 0
0 −1

)(
1
0

)
=

1

2

(
1
0

)
γ0

2
v(E, 0) =

1

2

(
1 0
0 −1

)(
0
1

)
= −1

2

(
0
1

)
.

(3.23)
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We see that the solutions are eigenstates of spin operator only at rest and u has spin up while v has
spin down. So particle has spin up and antiparticle has spin down. Under parity transformation spin
changes the sign so particle has spin down and antiparticle has spin up after parity transformation
while these two particles are not the solution of equation. So to make the theory parity invariant we
need at the same time particles with spin down and antiparticles with spin up. These particles are
brought into the spectrum using another inequivalent Dirac representation. The particle spectrum
is incomplete but luckily we have another inequivalent representation (say representation B) of
Gamma matrices given as

γ0 = σ3 , γ1 = iσ1 , γ2′ = −iσ2 = −γ2. (3.24)

Under this representation we find solutions φPB and φNB and re-define transformed1 solutions [13]
[14]

ψPB = iγ2φPB =

(
ipx+py
E+m

1

)
e−ip

µxµ = uB(p)e−ip
µxµ

ψNB = iγ2φNB =

(
1

−ipx+py
E+m

)
eip

µxµ = vB(p)eip
µxµ .

(3.25)

In this way we get the particles with spin down and anti particles with spin up and hence our
particle spectrum is complete. The extended Dirac Lagrangian2 can be written as

L = ψ̄A(i6∂ −m)ψA + ψ̄B(i6∂ +m)ψB. (3.26)

This lagrangian is parity invariant [12]. So this way we reach a theory that is CPT invariant (as we
shall see further in transformation properties) and depicts complete physical reality as its particle
spectrum is complete.

The completeness property shows that the u’s and v’s can be taken as basis and any state can be
expanded in terms of us and vs [5]. The completeness relations in this case are

uAūA = 6p+m

vAv̄A = 6p−m.
(3.27)

Completeness relations are not changed although we have one particle and one anti-particle spinor.
We can define projection operators using above definations,

Λ± =
±6p+m

2m
, (3.28)

which project out the particle and anti-particle spinors respectively.

3.2.1 Conserved currents and Chirality in 2+1 D

Conserved current jµ is a current which satisfies the equation of continuity ∂µjµ = 0 [15]. A conti-
nuity equation expresses a conservation law. In other words the flow of the canonical conjugate of

1The solutions corresponding to representation B are expanded in basis corresponding to representation A.
2Only one of the representations is used, say representation A.
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a quantity that posses some continuous translational symmetry is the conserved current. Conserved
currents play consequential role in theoretical physics. Noether’s theorem connects the existence
of a symmetry to existence of conserved current [16], thats why sometimes called Noether cur-
rents.
An object is chiral if it can not be mapped by mare rotations and translations to its mirror image.
Chirality of a particle determines that how the particle state transforms under right or left handed3

representation of Poincaré group [2]. For massless particle, chirality and helicity are same but for
massive particle they should be distinguished. Dirac Lagrangian has chiral symmetry if it is mass-
less [17]. Regardless of being massive or massless of Dirac field ψ(x) in 3 + 1D, it is very useful
to decompose Dirac filed in to right and left handed fields,

ψ(x) = ψL(x) + ψR(x). (3.29)

Chirality for Dirac field is defined by operator γ5 =

(
−1 0
0 1

)
already defined, with eigen values

±1. So above relation can be written as

ψ(x) = ψL(x) + ψR(x) ≡ 1

2
(1− γ5)ψ(x) +

1

2
(1 + γ5)ψ(x). (3.30)

We can write Dirac Lagrangian as

L = ψ†Liσ̄
µ∂µψL + ψ†Riσ

µ∂µψR −m(ψ†LψR + ψ†RψL). (3.31)

We can see that kinetic energy term connects left-left and right-right fields but mass term connects
left-right fields [18].

Transformation ψ → eiθψ leaves the above Lagrangian invariant. Corresponding Noether’s current
is jµ = ψ̄γµψ. When we project the Dirac field into left and right handed fields, we see that they
also transform in this manner i.e. ψL → eiθψL and ψR → eiθψR.
If m = 0, Lagrangian exhibits an additional symmetry called chiral symmetry. Chiral transforma-
tion4 is defined as ψ → eiφγ

5
ψ. Noether’s theorem says, the conserved current is j5µ = ψ̄γµγ5ψ.

The left handed and right handed fields transform in opposite manner, ψL → e−iφψL and ψR →
eiφψR [18] [7]. Chiral transformation is a continuous transformation. Note that mass term breaks
chiral symmetry.

As in odd dimension we do not have an a gamma matrix like γ5 that anti commutes with all
other gamma matrices [11], we can not define chiral transformations in usual way. We look at the
symmetries of the extended lagrangian. We can see that we have an exchange symmetry ψA ↔ ψB

3Helicity or handedness of a particle is determined by the direction of component of angular momentum in the
direction of motion of particle [3], right-handed means they are in same direction and left-handed means they are in
opposite direction.

4Generally any symmetry that transforms the right and left handed fields differently is reffered to as chiral trans-
formation [17].
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for massless case. This is a discrete symmetry and can not be a candidate for chiral symmetry
which is continuous. So we go for some simultaneous continuous transformations like

ψA → ψ′A = ψA + αψB

ψB → ψ′B = ψB − αψA,
(3.32)

and
ψA → ψ′A = ψA + iαψB

ψB → ψ′B = ψB + iαψA,
(3.33)

where α is some real constant. The corresponding transformation in Lagrangian is

L′1 = L − 2mα(ψ̄AψB + ψ̄BψA), (3.34)

L′2 = L − 2imα(ψ̄AψB − ψ̄BψA). (3.35)

So we see that Lagrangian is invariant only in massless case. Using

jµ =
∂L

∂∂µψA
δψA +

∂L
∂∂µψB

δψB (3.36)

for massless case we can find corresponding conserved currents which are

jµ1 = (ψ̄Aγ
µψB − ψ̄BγµψA), (3.37)

jµ2 = (ψ̄Aγ
µψB + ψ̄Bγ

µψA). (3.38)

To check whether these are really chiral transformations we compare this with reducible 3 + 1 D
Dirac Lagrangian and its chiral transformations

L = ψ̄(i6∂ −m)ψ. (3.39)

Take the 4× 4 representation of gamma matrices

γ0 =

[
σ3 0
0 −σ3

]

γi =

[
iσi o
0 −iσi

]
.

(3.40)

Where i = 1, 2. Note that this is not usual 4 D gamma matrix representation which is irreducible
but a 3 D reducible 4 × 4 representation. Here we can define two matrices which anti-commute
with other matrices,

γ5 = i

[
0 I
−I 0

]

γ3 =

[
0 I
I 0

]
.

(3.41)
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We can define following transformations

ψ → ψ′ = eiαγ
5

ψ, (3.42)

ψ → ψ′ = eiαγ
3

ψ. (3.43)

The two corresponding chiral currents in massless limit are

jµ5 = ψ̄γµγ5ψ, (3.44)

jµ3 = ψ̄γµγ3ψ. (3.45)

If we write ψ as

ψ =

(
ψA
ψB

)
, (3.46)

the Lagrangian L = ψ̄(i6∂ −m)ψ reduces to the form given in (3.26). So ψA, ψB satisfy the Dirac
equation in the 2-D representation of gamma matrices. In this form the chiral currents can be
written as

jµ5 =
(
ψ̄A ψ̄B

)
γµ

(
0 1
−1 0

)(
ψA
ψB

)
, (3.47)

Which ultimately gives
jµ5 = (ψ̄Aγ

µψB − ψ̄BγµψA), (3.48)

similarly
jµ3 = (ψ̄Aγ

µψB + ψ̄Bγ
µψA). (3.49)

On comparison of (3.37,3.38) with (3.49,3.48) we see that currents obtained from chiral trans-
formation in 4-D representation and continuous transformations given in 2-D representation are
identical. Therefore transformations (3.32) and (3.33) are chiral transformations indeed [19].

3.2.2 Transformations Properties of Spinor Field

We will now derive the general transformation law for spinor field and then we can find all the
transformations from it. Then we will use it in discrete transformations of spinor field in next
chapter. Let field transforms as

ψ′(x′) = S(Λ)ψ(x) where x′ = Λx. (3.50)

Lorentz covariance of the Dirac equation suggests that

(i6∂′ −m)ψ′(x′) = 0. (3.51)

Since gamma matrices are same in all frames so we only need to find S(Λ) which satisfies above
relation

(iγµΛα
µ∂α −m)S(Λ)ψ(x) = 0. (3.52)
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Apply S−1.(∂ and S commute because S is a constant matrix and Λ is a number for given indices).
We get

iS−1γµSΛα
µ∂αψ(x)−mS−1Sψ(x) = 0. (3.53)

So we require
S−1γµSΛα

µ = γα, (3.54)

Apply Λν
α from right and get

S−1γνS = Λν
αγ

α. (3.55)

This is the condition that S has to obey. For S to be a spinor representation of Lorentz group we
should have

S(Λ1)↔ Λ1

S(Λ2)↔ Λ2

S(Λ1Λ2)↔ Λ1Λ2

S(Λ1)S(Λ2)↔ Λ1Λ2.

(3.56)

For transformations continuously connected to the identity S and Λ can be written in exponential
form using generators and the generators for S, Λ have same structure constants. So to find S we
need to know the generators. Let the generators of Λ are Jµν and that of S are Bµν and common
structure constants are aµν . Then

S(Λ) = e−
i
2
aµνBµν ↔ Λ = e−

i
2
aµνJµν . (3.57)

Expanding left and right hand side of equation (3.55) we get

S−1γµS = γµ − i

2
aαβ[γµ, Bαβ] + ..., (3.58)

Λν
αγ

α = γµ − i

2
aαβ(Jαβ)µνγ

ν + .... (3.59)

Comparing above two equations
[γµ, Bαβ] = (Jαβ)µνγ

ν . (3.60)

The solution is
Bαβ =

i

4
[γα, γβ]. (3.61)

or
Bαβ =

i

2
γαγβ where α 6= β. (3.62)

So the generators of boost and rotation can be written in terms of gamma matrices.

Parity, charge conjugation and time reversal are discrete transformations. Here we look at the
transformation characteristics of field in 2 + 1 D. As we have two different representations, the
transformations will give some interesting results.

In odd dimensional spaces if we reverse the signs of all the space coordinates it becomes similar to
a rotation so we reverse the signs of all space coordinates but one of them5. So in our case parity

5Parity transformation matrix should have determinant -1 as being an improper Lorentz transformation. The usual
definition of parity with all spatial coordinates flipped, corresponds to rotation.
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matrix is (orthochronous, but improper)

P =

1 0 0
0 −1 0
0 0 1

 . (3.63)

Spinor representation of Parity transformation must satisfy equation (3.55) as

S−1
P γνSP = P ν

αγ
α. (3.64)

The form of (3.63) suggests that SP should be such that

S−1
P γ0SP = P 0

αγ
α = γ0

S−1
P γ1SP = P 1

αγ
α = −γ1

S−1
P γ2SP = P 2

αγ
α = γ2.

(3.65)

In this representation we have
SP = γ1, (3.66)

such that ψ transfroms as
SPψ = γ1ψ

SPψ
† = ψ†γ1†

ψ̄ψ → −ψ̄ψ.
(3.67)

Note that fermionic mass term breaks the parity symmetry. Parity transformation mixes the spinors
in two inequivalent representations and converts the particle of one spin to the particle of opposite
spin, and the same is true for the antiparticle. It is demonstrated as follows

(ψPA)P =

(
1

ipx+py
E+m

)
e−ip

µxµ =

(
0 1
1 0

)(
ipx+py
E+m

1

)
e−ip

µxµ = −iγ1ψPB . (3.68)

This shows that parity transformation converts solution of one representation to solution of other
representation with some extra factor.

The charge conjugation in general is defined as ψC = SCψ
∗ where SC must satisfy in our case

(γµ)∗ = −S−1
C γµSC . (3.69)

In representation A, SC = γ2 and spinors transform as

SCψ = γ2γ0ψ∗ (3.70)

(ψPA)C = γ2γ0ψ∗PA = γ2γ0

(
1

ipx+py
E+m

)
eip

µxµ = γ2(ψ̄NA )T . (3.71)

The charge conjugation operation relates the particle of a given spin to the antiparticle of the same
representation. This particle is not there in the spectrum. Note that charge conjugation does not
mix the two representations. Also it is obvious that

(Aµ)C = −Aµ. (3.72)
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WhereAµ is the electromagnetic potential field which will be described in Maxwell’s theory. Time
reversal operation is defined as nonorthochronous and improper matrix

T =

−1 0 0
0 1 0
0 0 1

 . (3.73)

Under this transformation x0 → −x0, p0 → p0 and p → −p. Time reversal operator is different
from other transformation operators being anti-unitary. It can be written as product of a unitary
operator and an anti-unitary operator6.

ST = UTk. (3.74)

Where UT is a unitary operator and k is anti-unitary such that U−1
T UT = 1 = k−1k. k is in fact

complex conjugation operator defined as k−1ik = −i. ST , like other discrete transformations must
satisfy (3.55). So

S−1
T γµST = T µν γ

ν . (3.75)

Gamma matrices transform as
S−1
T γ0ST = T 0

αγ
α = −γ0

S−1
T γ1ST = T 1

αγ
α = γ1

S−1
T γ2ST = T 2

αγ
α = γ2.

(3.76)

We find that
UT = σ2 = −iγ2. (3.77)

Spinor transforms as
STψ = γ2ψ, (3.78)

or

(ψPA)T =

(
1

−ipx−py
E+m

)
e−ip

µxµ =

(
0 1
−1 0

)(
ipx+py
E+m

1

)
e−ip

µxµ = γ2ψPB . (3.79)

This shows that time reversal converts the particle of spin up in one representation into particle
of spin down of other representation. Also it can be seen that under time reversal A0 → A0 and
~A→ − ~A.

3.3 Maxwell’s Theory in 2+1 D

Maxwell’s theory holds in any dimensions all we need to do is to change the range of space-
time index. Maxwell lagrangian 2.49 and corresponding equations of motion do not change their
apparent form. All that changes is number of independent fields contained in antisymmetric tensor

6An anti-unitary operator can always be written as a product of a unitary and an anti-unitary operator.
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F µν . F µν is a d × d antisymmetric matrix, number of fields is 1
2
d(d − 1). Some comparison of

3 + 1 and 2 + 1 dimensions is as follows

for µ = 0, 1, 2, 3 F µν =


0 −Ex −Ey −Ez
Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0


for µ = 0, 1, 2 F µν =

 0 −Ex −Ey
Ex 0 −B
Ey B 0

 .

(3.80)

In 2 + 1 dimensions we have two electric field components E = −∇φ− ∂A
∂t

(vector potential A is
a two-dimensional vector) that lie in a plane, F 0i = −Ei which is usual but we have

B = εij∂iA
j. (3.81)

which shows that B here is a pseudo scalar7 instead of being a pseudo vector as in general case.

As we stated earlier that to describe a physical phenomena we write a proper Lagrangian which
includes all the possible term relevant to involved field. The thing so interesting in 2+1 dimensions
is the different gauge theory that has all the required properties (it is Lorentz invariant, gauge
invariant, and local8) but is different from Maxwell’s theory and is referred to as Chern-Simon’s
theory. Chern-Simon’s lagrangian is

L =
µ

4
εµναFµνAα, (3.82)

and Chern-Simon’s lagrangian with source term is

L =
µ

4
εµναFµνAα − JµAµ where Jµ = −eψ̄γµψ. (3.83)

Where µ is the mass parameter and indices run here from 0 to 2.
Several comments are to be made here that we shall discuss briefly.

This theory seems to be gauge non-invariant as the lagrangian (3.83) has explicit dependence on
gauge field but when we apply following gauge transformations

Aµ → Aµ +
1

e
∂µΩ

ψ → eiΩψ.
(3.84)

The lagrangian changes by a total derivative

∂α(
µ

4e
εαµνFµνΩ), (3.85)

7A scalar quantity that changes sign under parity transformation.
8A local theory is the one in which no coupling term like φ(~x)φ(~y) where ~x 6= ~y is present [20].

27



and finally while writing Chern-Simon’s action we can neglect boundary terms so action is invari-
ant. Also Fµν is manifestly invariant in all dimensions. Bianchi identity

εµνρ∂µFνρ = 0, (3.86)

is compatible with current conservation ∂µJ
µ = 0. Chern-Simon term is particular to 2 + 1

dimensions, gauge invariance does not allow such a term in 3+1 dimensions. It is possible to write
down a Chern-Simon’s theory in any odd space-time dimension, but it is only in 2 + 1 dimensions
that the Lagrangian is quadratic in the gauge field. For example the Lagrangian in five-dimensional
space-time is

L = εµνρστAµ∂νAρ∂σAτ . (3.87)

The equation of motion from (3.83) is

µ

2
εναβFαβ = Jν or equivalently Fµν =

1

µ
εµναJ

α. (3.88)

Pure Chern-Simon’s theory looks trivial for source free case as above equation reduces to Fµν = 0,
which gives pure gauges and nothing else. On contrary pure Maxwell’s theory gives physical so-
lution even when source free (plane waves).
Chern-Simon’s theory can be made interesting by coupling it to matter current or combining with
reduced form of Maxwell’s theory given above. Lets first see effects of source Jµ = (ρ, J). Equa-
tion (3.88) gives interesting results, in components form we see

µB = ρ and µεijEj = J j. (3.89)

This gives strange physical picture that the scalar magnetic field is associated with local charge
density with mass parameter as proportionality constant. So B varies with the charge density
locally and two dimensional current in plane are associated with electric field with proportionality
constant again the mass parameter µ.
Continuity equation ρ̇+ ∂iJ

i = 0 implies

µḂ + µεij∂iEj = 0. (3.90)

From above relation we can say the matter fields have their own dynamics and the effect of Chern-
Simon’s coupling is to attach magnetic flux to the matter charge density in such a way that it
follows the charge density wherever it moves.

3.3.1 Complete Gauge Field Theory of 2+1 D

Why not to see now the Maxwell and Chern-Simon coupling with a source

L = −1

4
F µνFµν +

µ

4
εµναFµνAα − JµAµ. (3.91)

This is complete gauge invariant theory in 2 + 1 D. The equation of motion it gives is

∂µF
µν +

µ

2
εναβFαβ = Jν . (3.92)
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It gives modified Maxwell’s equations

~∇ · ~E − µB = ρ (3.93)

∂0E
i + 2εji∂jB + µεijEj = −J i. (3.94)

First of all the mass µ associated with gauge field, arises only in 2+1 dimensions. It is a surprising
fact that gauge fields are massive in these dimensions. To make sure that µ is mass we may write
the equation in terms of dual field tensor

∗F µ =
1

2
εµαβFαβ, (3.95)

and then take divergence. Equation (3.92) can be written as

(ηµν + εµνα
∂α
µ

)∗Fν = Jµ/µ. (3.96)

We can operate on it with

(ηνµ − ενµρ
∂ρ

µ
). (3.97)

First for Jν = 0
(� + µ2)∗F µ = 0. (3.98)

This clearly demonstrates that fields are massive. Now for source we have

(� + µ2)∗Fν = µ2(ηνµ − ενµρ
∂ρ

µ
)Jµ. (3.99)

Moreover dual tensor is compatible with Bianchi identity ∂∗µF
µ = 0. It gives the third modified

Maxwell’s equation
~∇× ~E = −∂0B. (3.100)

Note that a Maxwell’s equation ~∇ · ~B = 0 is missing because B is a scalar in these dimensions.

We may add the gauge non-invariant massive termm2AµAµ for gauge field as for the photon being
a massive particle in 2 + 1 D is not a new issue related to this mass term9. This lagrangian is now

L = −1

4
F µνFµν +

µ

4
εµναFµνAα +

1

2
m2AµAµ, (3.101)

where m is the mass arising due to gauge field mass term and is different from Topological mass.
This theory if taken without topological term is a parity conserving theory. However the topological
term violates the parity.
The equation of motion satisfying Lorentz condition ∂µAµ = 0 is given as

∂µF
µν +m2Aν +

1

2
µεναβFαβ = 0. (3.102)

9But the theory obviously becomes ugly as being gauge non-invariant
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Let us first look at the massive properties of the gauge field. Using the notation of self dual field
already used we can write the above equation of motion as

∂µF
µν +m2Aν + µMAν = 0. (3.103)

or
∂µF

µν + (m2 + µM)Aν = 0. (3.104)

Massive guage field Aµ should satisfy an equation like

(� +M2)Aν = 0, (3.105)

comparing equations (3.105) and (3.104) we get

M± =
µ

2
± (m2 +

µ2

4
)
1
2 . (3.106)

This suggests that field may have two distinct masses M± [21]. A more rigourous detail about
these masses and degrees of freedom will be viewed in discussion under quantization.
One very odd thing about the Lagrangian we took is it is gauge non-invariant due to mass term.
The massive photon has one longitudinal polarization and one transverse polarization. We can
construct the gauge invariant Lagrangian by Stueckelberg prescription. Stueckelberg approach
consists of nice trick, introducing an extra physical scalar field θ in addition to three components
of gauge field we get total of four fields to describe the covariant polarization of massive field. We
shall see the covariant quantization using this field in later chapter. The gauge invariance of the
theory is proved [22] [23] and we shall skip this derivation and shall continue to quantization in
coming chapter.
Here again we perform a dimensional analysis to see how the dimensions of fields are changed in
2 + 1 D. Lagrangian density has the dimensions [M ]3 so we need to recheck the dimensions of
fields involved. We have [∂µ] = [M ]

[∂2A2] = [M3] gives [A] = [M
1
2 ]

[mψ̄ψ] = [M3] gives [ψ] = [M ]

and [µ] = [M ] in Chern-Simon’s term .

(3.107)

We can see that reducing one spatial dimension has effects on physical dimensions of the fields
involved.

3.4 Propagators in 2+1 D

In QFT and QM, a propagator represents the probability amplitude for a particle traveling from one
point to another in a given time. In the 1940s, Feynman emphasized on the importance of prop-
agators, considering their fundamental importance for quantum physics [5]. Feynman diagrams
calculate theoretically the rate of collisions of particles in quantum field theory, virtual particles
contribute their propagators to the rate of scattering of particles described by the diagram. They are
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also viewed as the inverse of the wave operator corresponding to the particle, and thats why they
are called Green’s Functions some times. Another physical explanation about propagators is that
they are the factors that represent the transfer or propagation of momentum in a scattering process
from one particle to another [24].
Mathematically propagators come from quadratic part of the Lagrangian [20]. We wish to compare
the gauge field propagators in 3 + 1 and 2 + 1 dimensions. The propagator in 3 + 1 dimensions is
given as [2]

D̃µν(p) =
−i

p2 + iε
(ηµν − (1− ξ)pµpν

p2
). (3.108)

We write (3.91) with generic ξ10 parameter11

L = −1

4
F µνFµν +

µ

4
εµναFµνAα − JµAµ −

1

2ξ
(∂µAµ)2. (3.109)

ξ plays role of a Lagrange multiplier. Euler-Lagrange equation is

(ησρ�− (1− 1

ξ
)∂σ∂ρ + µεµσρ∂µ)Aσ = Jρ. (3.110)

We define Gσν(x, x
′) such that

(ησρ�− (1− 1

ξ
)∂σ∂ρ + µεµσρ∂µ)Gσν(x, x

′) = δρνδ
3(x, x′). (3.111)

In Fourier space it reads as

(ησρ�−(1− 1

ξ
)∂σ∂ρ+µεµσρ∂µ)

∫
d3p

(2π)3
G̃σν(p)e

−ipµ(xµ−x′µ) = δρν

∫
d3p

(2π)3
e−ip

µ(xµ−x′µ). (3.112)

Operator gives us

(−ησρp2 + (1− 1

ξ
)pσpρ − iµεµσρpµ)G̃σν(p) = δρν , (3.113)

G̃σν(p) must be of the form (aησν + bpσpν + cεσνγp
γ) so that,

(−ησρp2 + (1− 1

ξ
)pσpρ − iµεµσρpµ)(aησν + bpσpν + cεσνγp

γ) = δρν . (3.114)

a,b and c are to be found by comparison on both sides. We get

G̃σν =
( ησν
µ2 − p2

+
p2(ξ − 1)− ξµ2

p4(µ2 − p2)
pσpν +

iµ

p2(µ2 − p2)
εσνγp

γ
)
. (3.115)

Aµ(p) can be found by taking Fourier transform of equation (3.110).

10The choice parameter determines the gauge. Most of the quantum field theory calculations are simple in Feynman
gauge ξ = 1.

11Propagator would not exist without the term associated with generic parameter [20], further aspects of this term
will be seen later in quantization.

31



(ησρ�− (1− 1

ξ
)∂σ∂ρ + µεµσρ∂µ)

∫
d3p

(2π)3
Aσ(p)e−ip

µxµ =

∫
d3p

(2π)3
Jρ(p)e−ip

µxµ . (3.116)

Applying the operator and then applying the G̃ρµ on both sides

G̃ρµ(−ησρp2 + (1− 1

ξ
)pσpρ − iµεµσρpµ)

∫
d3p

(2π)3
Aσ(p)e−ip

µxµ = G̃ρµ

∫
d3p

(2π)3
Jρ(p)e−ip

µxµ .

(3.117)
We get

δσµAσ(p) =
( ηρµ
µ2 − p2

+
p2(ξ − 1)− ξµ2

p4(µ2 − p2)
pρpµ +

iµ

p2(µ2 − p2)
ερµγp

γ
)
Jρ(p), (3.118)

or

Aµ(p) =
1

µ2 − p2

(
Jµ(p) +

p2(ξ − 1)− ξµ2

p4
pρpµJ

ρ(p) +
iµ

p2
ερµγp

γJρ(p)
)
. (3.119)

Now we look at the fermionic propagator. As the equation of motion from Dirac Lagrangian is

(i6∂ −m)ψ = 0. (3.120)

Repeating steps as above

(i6∂ −m)

∫
d3p

(2π)3
S̃(p)e−ip

µxµ =

∫
d3p

(2π)3
e−ip

µxµ , (3.121)

or
S̃(p) =

1

6p−m
=
6p+m

p2 −m2
. (3.122)

This propagator is same as in 3 + 1 D [20] [2]. So we see that apparent form of Dirac field remains
same in 2 + 1 D and so is the case of Dirac field propagator.

3.4.1 Scalar and vector potential in 2+1 D

As the current is conserved the second term in (3.119) pρJρ vanishes so we are left with

Aµ(p) =
1

µ2 − p2

(
Jµ(p) +

iµ

p2
ερµγp

γJρ(p)
)
. (3.123)

Lets take a static charge at position x′′

ρ(~x′) = eδ2(~x′ − ~x′′)
J = 0.

(3.124)

We have potential at observation point x as

Aµ(x) =

∫ ∞
0

Gµν(x− x′)Jν(x′)d3x′. (3.125)
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So scalar potential is

A0(x) =

∫ ∞
0

G00(x− x′)J0(x′)d3x′, (3.126)

A0(x) =

∫ ∞
0

∫ ∞
−∞

e

µ2 − p2
e−ip

µ(xµ−x′µ)δ2(~x′ − ~x′′)d3x′
d3p

(2π)3
. (3.127)

Using delta function and then integrating dx0′

=

∫ ∞
−∞

e

µ2 − p2
e−ip

0x0e−i~p.(~x−~x
′′)δ(p0)

d3p

2(2π)3
. (3.128)

Solving δ(p0) and going to spherical polar coordinates we reach

=
e

2(2π)3

∫ ∞
0

∫ 2π

0

1

~p2 + µ2
ei|~p||(~x−~x

′′)|cosθ|~p|d|~p|dθ. (3.129)

On solving this integration [25] we get12

=
e

2(2π)2
K0

(
µ|(~x− ~x′′)|

)
. (3.130)

We set x′′ = 0, means that charge is at origin. Then |~x| is just the distance from charge at the
origin. We can plot the function to see how the field changes with distance.

Further the vector potential is

Ai(x) =

∫ ∞
0

Gi0(x− x′)J0(x′)d3x′, (3.131)

12K0(x) is the modified Bessel function of the second kind which is the solution of equation of type x2y′′ + xy′ −(
n2 + x2

)
y = 0.
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or

Ai(x) =

∫ ∞
0

∫ ∞
−∞

iµeεi0jp
j

p2(µ2 − p2)
e−ip

µ(xµ−x′µ)δ2(x′ − x′′)d3x′
d3p

(2π)3
. (3.132)

Following the steps as before we get

Ai(x) = −
∫ ∞

0

∫ 2π

0

iµeεijp
j

~p2(~p2 + µ2)
e−i|~p||(~x−~x

′′)|cosθ|~p|d|~p| dθ

2(2π)3
, (3.133)

or
~A(x) = −

∫ ∞
0

∫ 2π

0

iµe|~p|p̂
~p2(~p2 + µ2)

e−i|~p||(~x−~x
′′)|cosθ|~p|d|~p| dθ

2(2π)3
, (3.134)

where p̂ is unit vector in the direction of p.

=

∫ ∞
0

∫ 2π

0

iµep̂

(~p2 + µ2)
e−i|~p||(~x−~x

′′)|cosθd|~p| dθ

2(2π)3
. (3.135)

By integration [25] we get13 14

= i
e

8π
[I0(µ|(~x− ~x′′)|)−LLL0(µ|(~x− ~x′′)|)]. (3.136)

We again set x′′ = 0 and then |~x| = x simply. The plots of these functions are

We plot the magnitude of vector potential by combining both functions as

13I[0, x] is modified Bessel function of first kind which satisfies the equation x2y′′ + xy′ − (x2 + n2) = 0.
14L[0, x] is modified Struve function, Struve functions Hα(x) are the solutions of inhomogeneous Bessel’s differ-

ential equation x2y′′ + xy′ − (x2 + α2) =
4( x2 )α+1

√
πΓ(α+ 1

2 )
and L[α, x] = −ie iαπ2 Hα(ix).
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In above figure we can see how the vector potential changes with distance from charge. This
behaviour is different from that in 3 + 1 D where scalar potential and vector potential change with
inverse of the distance from changes [8].
In next chapter we shall see how can we quantize the theories in different gauges and then proceed
to our conclusion.
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Chapter4
Quantization In 2 + 1 D

Quantization is a process by which we evolve our understanding of any physical phenomena from
classical to quantum mechanical understanding. A first quantization is the semi classical treatment
of any problem in quantum mechanics. In first quantization particles are represented by wave
functions but the interacting atmosphere like potential well or external fields are taken as clas-
sical. Our mathematical ingredients in this process are quantum states represented by bra’s and
kets, observables represented by Hermitian operators acting on Hilbert space [26]. In some cases
first quantization fails as for Klein-Gordon and free Dirac equation1. The proper interpretation
of these theories comes when we quantize the interacting atmosphere that are fields [2]. This is
called second quantization. This is the procedure to construct a quantum field theory starting from
classical field theory. For 2nd quantization we convert classical fields into operators acting on
quantized states of field theory. We define the lowest possible energy states called vacuum states.
The operators act on space and produce quanta of the fields that are usually the particles and an-
tiparticles [2] [3].
For quantization purposes we have different approaches like Canonical Formalism and Path Inte-
gral Formalism [2] [3] [6]. In our work we shall use canonical approach. Ever since the arrival of
Quantum Field theory, its development has been linked to canonical formalism and it is so much
that it seems natural to begin any treatment of some physical phenomena by writing a suitable La-
grangian and then applying to it the rules of canonical quantization [3]. Most of the book writers
have adopted same formalism in their texts. Canonical Quantization is similar as the construction
of quantum mechanics from classical mechanics. Fields are taken as dynamical variables and when
combined with their conjugate momenta we get a phase space. The step wise procedure is given
as [27]

Classical mechanics (Lagrangian, equations of motions e.t.c.).

↓
1As discussed earlier, we get the negative energy solutions.
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Convert classical mechanics in the Hamiltonian formalism, write Poisson brackets.

↓↓

Replace canonical variables by linear operators, replace {f, g} → i
~ [f̂, ĝ].

↓↓↓

Explicitly construct Hilbert space and operators acting on it.

↓↓↓↓

Construct quantum mechanics in Heisenberg picture.

In this chapter we have worked up to the third step for different theories. Before moving to quan-
tization we need to introduce some terms that are required to understand the adopted procedure.
To quantize an unconstrained theory we simply impose the Poisson brackets to fields and their
conjugate momenta, for any two functions f and g Poisson bracket is defined as

{f, g}PB =
N∑
i=1

[
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

]
. (4.1)

But when we have a constrained2 system we can not directly impose the Poisson brackets on phase
space variables. We need Poisson brackets that hold constraints and do not contradict. There are
different types of constraints, if system has holonomic3 constraints, one generally adds Lagrange
multipliers to Lagrangian [16]. The same procedure is adopted in Hamiltonian formalism [4]. To
understand types of holonomic constraints we need to know weak equality and strong equality.
Two functions on phase space A and B are called weakly equal if they are equal only when all
the constraints are satisfied. Weak equality is represented as A ≈ B. If A and B are equal to
each other independently of any constraints then these are called strongly equal. Strong equality is
represented by common equality sign, A = B [28].
As far as the constraints are concerned, these can be imposed on the system or some times they
appear naturally in system when we find canonical momenta and equations of motion, constraints
derived this way or imposed on the system are called primary constraints. These constraints
must vanish weakly φi(p, q) ≈ 0. These constraints must be stable with time, means their time-
derivatives must vanish. Some times these stability conditions result in new constraints which are
called secondary constraints [29] [28] (detailed description is avoided here).

2Constraint is a relation between field coordinates and their conjugate momenta or simply it is the restriction on
motion of particles in a system.

3Constraint is Holonomic provided it is given by equality on a set of functions which may depend on positions,
explicitly on time but not on velocities. All other constraints are non-holonomic [4] [16].
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Sometimes primary and secondry constraints are indiscriminately used and depend on Lagrangian
we are considering but there are two discriminating characteristics (first class and second class)
that should be counted. If the Poisson bracket of any constraint weakly vanishes with all other
constraints it is called first class constraint and if the Poisson bracket is non-zero with at least one
of other constraints it is called second class [29] [28] [30].
Some times a theory is quantized by imposing the commutation relations of creation and anni-
hilation operator and then finding the commutation/anti-commutation relations of involved fields
but this process is not the standard one and seems to be a reverse method [3]. We shall use this
method just once, only for quantization of pure Maxwell’s theory in Coulomb gauge because most
of the authors have quantized the 3 + 1 D theory in same fashion, it will make us realize that same
approach holds in 2 + 1 D. Then for other theories we shall use standard method of quantization.

4.1 Maxwell’s Theory

We start from non interacting Maxwell lagrangian

L = −1

4
FµνF

µν . (4.2)

As this theory holds in all space-time dimensions, the hamiltonian formalism is standard for it.
The equation of motion is

∂µF
µν = 0. (4.3)

In this lagrangian, field A0 has no kinetic term so it is not dynamical. The equation of motion can
be written as∇. ~E = 0 which on expanding becomes

∇2A0 +∇ · ∂
~A

∂t
= 0. (4.4)

So A0 is not independent of other components. It seems Aµ has 2 degrees of freedom unless we
see any other constraint. The equation of motion may be written as

[ηµν(∂
ρ∂ρ)− ∂µ∂ν ]Aν = 0. (4.5)

The conjugate momenta are as

π0 =
∂L
∂Ȧ0

= 0

πi =
∂L
∂Ȧi

= F i0 = Ei.

(4.6)

Here we see a primary constraint π0 = 0 and also from F i0 = Ei

∂iA0 − ∂0Ai = Ei

or

Ȧi = −Ei + ∂iA0.

(4.7)
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The hamiltonian can be written as

H =

∫
d2x[πiȦi − L]

=

∫
d2x

1

2
(E2 +B2 − 2A0(∇ · ~E)).

(4.8)

If we write lagrangian

L =

∫
d2xπiȦi −H

L =

∫
d2xEiȦi −

∫
d2x

1

2
(E2 +B2)−

∫
d2xA0(∇ · ~E),

(4.9)

the first term shows that Ei and Aj are conjugate and but we can not define Poison bracket as

{Ei(~x), Aj(~y)} = δijδ
2(~x− ~y), (4.10)

because we have to deal with constraint in the system. A0 can be seen as lagrange multiplier
explicitly which imposes Gauss’ law

∇ · ~E = 0. (4.11)

This is another constraint on our supposed system. Let’s see how can we use different gauge fixing
schemes.

4.1.1 Coulomb Gauge

Coulomb Gauge implies A0 = 0 and is useful to show explicitly the degrees of freedom of gauge
field. Equation of motion in this gauge is

∂µ∂
µ ~A = 0. (4.12)

This has solutions of the form
~A(x) =

∫
d2p

(2π)2
~ε(~p)eipx, (4.13)

at p2
0 = |~p|2. As we have constraint∇ · ~A = 0, ~ε(~p) must satisfy,

~p ·~ε = 0. (4.14)

Here we have only one dimension orthogonal to momentum in a plane, so there is only one polar-
ization direction which makes sense because electric field is confined to one plane only. We can
write ~A as

~A(x) =

∫
d2p

(2π)2
√

2|~p|
~ε(~p)[a~pe

−ipx + a†~pe
ipx]. (4.15)

Electric field or conjugate momentum is

~E(x) = −i
∫

d2p

(2π)2

√
|~p|
2
~ε(~p)[a~pe

−ipx − a†~pe
ipx]. (4.16)
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We impose
[a~pλ, a

†
~qλ′ ] = (2π)2δ2(~p− ~q)δλλ′

[a~pλ, a~qλ′ ] = 0

[a†~pλ, a
†
~qλ′ ] = 0,

(4.17)

to find equal time commutation relations as these are the defining quantization rules in radiation
gauge [2],

[Ai(~x), Ej(~y)]

=
−i
2

∫
d2pd2q

(2π)4
εi(~p)εj(~q)

[
[a~pe

−i~p · ~x + a†~pe
i~p · ~x], [−a~qe−i~q · ~y + a†~qe

i~q · ~y]
]

= −i
∫
d2pd2q

(2π)2

1

2

(
εi(~p)εj(~p) + εi(−~p)εj(−~p)

)
e−i~p · (~x−~y)

= −i
∫

d2p

(2π)2

(
δij − pipj

p2

)
e−i~p · (~x−~y)

= −iδijtr(~x− ~y).

(4.18)

Where we have used completeness relation

1

2

(
εi(~p)εj(~q) + εi(−~p)εj(−~q)

)
=
(
δij − pipj

p2

)
. (4.19)

This can be trivially checked taking ~p = (0, p) and ~ε(~p) = (1, 0).

4.1.2 Lorenz Gauge

We can work in Lorenz Gauge starting from a gauge non-invariant Lagrangian. This approach is
different from previous (Coulomb Gauge) method. Here we take the Lagrangian such that proper
equation of motion arises directly from it,

L = −1

4
F µνFµν −

1

2ξ
(∂µAµ)2. (4.20)

with arbitrary constant ξ. Equation of motion is

∂µ∂
µAν = 0. (4.21)

The quantization is independent of this parameter. Different choices of ξ are referred to different
gauges,

ξ = 1 Feynman gauge
ξ = 0 Landau gauge.

(4.22)

We take the Feynman gauge for simplicity of calculation. In this approach we quantize the theory
first and then impose the constraint on Hilbert space in a suitable manner. First of all we will see
that by taking this form of Lagrangian we get both π0 and πi dynamical which enables us to impose
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the poison brackets without any hurdle.
Conjugate momenta are

π0 =
∂L
∂Ȧ0

= −∂µAµ

πi =
∂L
∂Ȧi

= F i0 = ∂iA0 − Ȧi.
(4.23)

We have defined the lagrangian so that conjugate momenta are non-vanishing. So we can impose
equal time commutation relations

[Ai(~x), πj(~y)] = −iδijδ2(~x− ~y), (4.24)

[A0(~x), π0(~y)] = iδ2(~x− ~y), (4.25)

[Ai(~x), Aj(~y)] = 0. (4.26)

These relations have covariant generalizations [2]

[Aµ(~x), πν(~y)] = iηµνδ2(~x− ~y), (4.27)

[Aµ(~x), Aν(~y)] = 0. (4.28)

As the equation of motion is simply
�Aµ = 0, (4.29)

we can expand Aµ as usual creation and annihilation operators with 3 polarization vectors εµ(~p, λ)
with λ = 0, 1, 2 so Aµ can be written as

Aµ(x) =

∫
d2p

(2π)2
√

2|~p|

2∑
λ=0

εµ(~p, λ)[a~p,λe
−ipx + a†~p,λe

ipx], (4.30)

for p2 = 0. Note that there is no constraint on εµ because lagrangian is not gauge invariant and
hence there is no constraint on Aµ. Therefore there are three independent solutions for εµ(~p, λ)
where λ = 0, 1, 2. In the frame pµ = (p0, 0, p) we can have the basis as

µ = (0, 1, 2)

εµ(~p, 0) = (1, 0, 0)

εµ(~p, 1) = (0, 1, 0)

εµ(~p, 2) = (0, 0, 1).

(4.31)

These basis vectors satisfy following relation

1

2

(
εi(~p, λ)εj(~q, λ) + εi(−~p, λ)εj(−~q, λ)

)
= δij. (4.32)

Again we see that only εµ(~p, 1) = (0, 1, 0) is transverse to pµ that is εµpµ = 0 and for εµ(~p, 0), εµ(~p, 2)
we get εµpµ 6= 0. Conjugate momentum is given by
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πν(x) = i

∫
d2p

(2π)2

√
|~p|
2

2∑
λ=0

εν(~p, λ)[a~p,λe
−ip ·x − a†~p,λe

ip ·x]. (4.33)

Note that momentum πµ appears with factor +i instead of usual−i factor. This can be traced from
eq. (4.23). We can find the commutation relations for creation and annihilation operators using the
commutator of field and conjugate momenta

[Aµ(~x), πν(~y)] =

i

2

∫
d2pd2q

(2π)4

2∑
λ,λ′=0

εµ(~p, λ)εν(~q, λ
′)
[
[a~p,λe

−i~p · ~x + a†~p,λe
i~p · ~x], [−a~q,λ′e−i~q · ~y + a†~q,λ′e

i~q · ~y]
]

=
i

2

∫
d2pd2q

(2π)4

2∑
λ,λ′=0

εµ(~p, λ)εν(~q, λ
′)
[
[a~q,λ′ , a~p,λ]e

−i(~p · ~x+~q · ~y)+

[a~p,λ, a
†
~q,λ′ ]e

−i(~p · ~x−~q · ~y) + [a~q,λ′ , a
†
~p,λ]e

i(~p · ~x−~q · ~y) + [a†~p,λ, a
†
~q,λ′ ]e

i(~p · ~x+~q · ~y)
]
,

(4.34)

is equal to
iηµνδ

3(~x− ~y), (4.35)

only if
[a~pλ, a

†
~qλ′ ] = −(2π)2δ2(~p− ~q)ηλλ′

[a~pλ, a~qλ′ ] = 0

[a†~pλ, a
†
~qλ′ ] = 0.

(4.36)

We have achieved the commutation relations but when we explore further we find some issues that
are not acceptable and must be solved in order to make the theory valid.
Every thing looks fine for space like λ = 1, 2,

[a~pλ, a
†
~qλ′ ] = (2π)2δ2(~p− ~q)δλλ′ , (4.37)

but for time like part we get,
[a~p0, a

†
~q0] = −(2π)2δ2(~p− ~q). (4.38)

This is odd. And why is this odd?, can be seen as follows.
If we define vacuum |0〉 by

a~pλ|0〉 = 0, (4.39)

we can create particle states in usual way

a†~pλ|0〉 = |~p, λ〉. (4.40)

For space like λ = 1, 2 we can calculate the norm as

〈~p, λ|~q, λ〉 = 〈0|a~pλa†~qλ|0〉 = (2π)2δ2(~p− ~q), (4.41)

it seems well but for time like part

〈~p, 0|~q, 0〉 = 〈0|a~p0a†~q0|0〉 = −(2π)2δ2(~p− ~q). (4.42)
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Negative norm is not really sensible. As earlier we mentioned that we shall quantize the theory
first and then apply the constraint on Hilbert space. This constraint is going to be our rescue. We
shall see that the constraint will remove the negative norm states. Also it will separate the physical
polarizations and non-physical one. And hence the problem of extra degrees of freedom will be
solved.
We can write Aµ(x) as

Aµ(x) = A+
µ (x) + A−µ (x), (4.43)

where,

A+
µ (x) =

∫
d2p

(2π)2
√

2|~p|

2∑
λ=0

εµ(~p, λ)a~p,λe
−ipx

A−µ (x) =

∫
d2p

(2π)2
√

2|~p|

2∑
λ=0

εµ(~p, λ)a†~p,λe
ipx.

(4.44)

We take ∂µAµ as an operator on Hilbert space. Let |Ψ〉 be any state, we can define physical states
as

∂µA+
µ (x)|Ψ〉 = 0, (4.45)

what this ensures is,
〈Ψ|∂µAµ|Ψ〉 = 0. (4.46)

So operator ∂µAµ has elements that are vanishing between physical states.
What we have done above is, we have imposed constraint on Hilbert space instead of field opera-
tors. In other words we have split Hilbert states into two parts one containing physical states that
we require and other non-physical states that we do not like to keep with us. This method was
proposed by Gupta-Bleuler and is know after their name [2] [31] [20]. The equation 4.45 is called
Gupta-Bleuler condition. We shall not discuss the further consequences of this procedure as our
purpose was to quantize the theory.

4.2 Chern-Simons Theory

Consider now the pure Chern-Simon theory i.e. without Maxwell term

L =
µ

4
εµναFµνAα, (4.47)

or
L =

µ

2
εµνρAµ∂νAρ. (4.48)

The canonical form is

L =
µ

2
ε0ij∂0AiAj +

µ

2
εi0j∂iA0Aj +

µ

2
εij0∂iAjA0, (4.49)

writing the second term as total divergence and using

B = −εij∂iAj, (4.50)
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we get
L =

µ

2
εijȦiAj − µA0B. (4.51)

A0 again appears as lagrange multiplier and imposes the Gauss law B = 0. The above lagrangian
is 1st order in time so it is already in Legendre transformed form

L = pq̇ −H, (4.52)

with H = 0. So there is no dynamics found in the system. Dynamics would come from coupling
to some dynamical (matter) fields. The momentum conjugate to Ai is

πi =
µ

2
εijAj. (4.53)

The first term in lagrangian and above equation shows that components of gauge fields are canon-
ically conjugate and would imply

[Ai(~x), πj(~y)] = [Ai(~x),
µ

2
εjkAk(~y)] = iδji δ

2(~x− ~y), (4.54)

or
[Ai(~x), Aj(~y)] =

2i

µ
εijδ

2(~x− ~y). (4.55)

This behaviour is different from Maxwell’s theory. In Maxwell theory the components of gauge
field commute and As and Es are canonically conjugate. So pure Chern-Simon theory has this
different behaviour of having components of gauge field not commuting.

4.3 Maxwell-Chern-Simon’s Theory

Now we consider the combined theories, the lagrangian can be written as

L = −1

4
F µνFµν +

µ

2
εµνρAµ∂νAρ. (4.56)

Canonical form can be written as

L =
1

2
E2
i −

1

2
B2 +

µ

2
εijȦiAj + µA0ε

ij∂iAj. (4.57)

Different gauges can be used for quantization as shown in following subsections.

4.3.1 Weyl Gauge:

In A0 = 0 gauge, the momentum corresponding to Ai is

πi = Ȧi +
µ

2
εijAj, (4.58)
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and Hamiltonian is

H = πiȦi − L

=
1

2
(πi − µ

2
εijAj)

2 +
1

2
B2 − A0(∂iπ

i − µ

2
B).

(4.59)

As before A0 is again non-dynamical and appears as lagrange multiplier. It implies extended form
of Gauss law

∇ ·π − µ

2
B = 0. (4.60)

For A0 = 0

H =
1

2
(πi − µ

2
εijAj)

2 +
1

2
B2. (4.61)

The equation of motion (3.110) (in source-less and without arbitrary gauge case) is

(ηνβ�− ηµβ∂µ∂ν + µεναβ∂α)Aβ = 0. (4.62)

In Weyl gauge we have
(ηνi�− ηµi∂µ∂ν + µεναi∂α)Ai = 0. (4.63)

The fields and their conjugate momenta satisfy canonical equal time Poisson brackets which be-
come equal time canonical commutation relations in quantum theory.

[Ai(~x), πj(~y)] = iδji δ
2(~x− ~y). (4.64)

This implies
[Ei(~x), Ej(~y)] = −iµεijδ2(~x− ~y), (4.65)

which shows that electric fields do not commute in massive case. Further we have

[Ei(~x), B(~y)] = iµεij∂jδ
2(~x− ~y), (4.66)

[B(~x), B(~y)] = 0. (4.67)

The Hamiltonian equations of motion are

Ȧi = i[H, Ai] = πi − µ

2
εijAj, (4.68)

π̇i = i[H, πi] = −µ
2
εijπj +

µ2

4
Ai − 1

2
εij∂jB, (4.69)

which give the spatial components of the field equation. As for time component we got the ex-
tended form of Gauss law

G ≡ ∇ · π − µ

2
B = 0. (4.70)

This constraint must be imposed as a condition on physical states and hence we can construct
physical states of the theory [32].
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4.3.2 Lorenz Gauge

In ∂µAµ = 0 gauge we have equation of motion

(ηνβ� + µεναβ∂α)Aβ = 0. (4.71)

As we know that in Lorenz gauge we have physical and non-physical degrees of freedom as well.
We look at the polarization vector and its characteristics first of all. We take the general form of
(on shell) solution to equation of motion,

Aβ(p) = εβ(~p)eipx. (4.72)

εβ(p) is constrained as
pβεβ(~p) = 0. (4.73)

By putting the solution in equation of motion we get

(−p2ηνβ + iµεναβpα)εβ(p) = 0. (4.74)

Let us define a matrix Mνβ as

Mνβ = −p2ηνβ + iµεναβpα. (4.75)

The necessary and sufficient condition for

Mνβεβ(p) = 0, (4.76)

to have non trivial solutions εβ(p) = 0 is

detMνβ = 0. (4.77)

The matrix is a 3× 3 matrix whose determinant is

detMνβ = p4(p2 − µ2) = 0. (4.78)

We shall have two types of solutions corresponding to p2 = 0 and (p2 − µ2) = 0. For p2 = 0 we
solve

Mνβεβ(~p) = 0

pβεβ(~p) = 0,
(4.79)

we get
εναβpαεβ(~p) = 0. (4.80)

Any function of the type
εβ(~p) = pβχ(~p), (4.81)

is the solution of above equation where χ(p) is some arbitrary function of p. This shows that
massless solutions are pure gauge artifacts that is they have redundancy in their nature. These
modes can be ignored, this is somewhat same as gauge fixing eliminates some of the spurious
degrees of freedom. Now we consider the case (p2 − µ2) = 0, which implies the excitations of
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mass |µ|. The massive mode enables us to take rest frame for the sake of simplicity of calculations.
So we take

pµ = (|µ|, 0, 0). (4.82)

In this frame, equations (4.79) gives

ε0(0) = 0

ε2(0) = −i µ
|µ|
ε1(0).

(4.83)

So the polarization vector in rest frame is

εµ(0) =
(
ε0(0), ε1(0), ε2(0)

)
=
(
0, ε1(0),−i µ

|µ|
ε1(0)

)
.

(4.84)

We need to fix ε1(0) which we do by considering normalization and following condition for space-
like nature of vector εµ.

εµ(0)ε∗µ(0) = −1. (4.85)

Normalization condition fixes
|ε1(0)|2 =

1

2
. (4.86)

Hence we get normalized polarization vector in rest frame

εµ(0) =
1√
2

(
0, 1,−i µ

|µ|
)
. (4.87)

Here we see an important distinction from Maxwell case that polarization vector has complex en-
tries so that the norm is real. Further more this vector has U(1) invariance that means if εµ is a
solution then eiθεµ is also a solution [33].

We can perform an equivalent gauge independent derivation in which without imposing the gauge
we shall reach above result. Consider again the equation of motion

(ηνβ�− ηµβ∂µ∂ν + µεναβ∂α)Aβ = 0. (4.88)

When we put the solution (4.72) in this equation, we get

− p2εν + εµpµp
ν + iµεναβεβpα = 0. (4.89)

We solve it for ε for both massive and massless cases. For p2 = 0

εµpµp
ν = −iµεναβεβpα. (4.90)

Multiplying both sides with ενρσpρ

0 = iµpσερp
ρ, (4.91)

which gives the condition
ερp

ρ = 0. (4.92)
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We see this condition arising from the system itself, when we solve the equation of motion for
massless case with this condition we get again solution of type

εµ = Ξ(~p)pµ. (4.93)

f(p) is arbitrary function so massless excitations are pure gauge artifacts and should be ignored.
Next we consider massive case and as before take rest frame pµ = (m, 0, 0). Equation becomes

εν =
1

p2

[
εµpµp

ν + iµεναβεβpα
]
. (4.94)

Suppose the polarization vector is

εµ(0) =
(
ε0(0), ε1(0), ε2(0)

)
. (4.95)

Then (4.94) yields
ε1(0) = i

µ

m
ε2(0) (4.96)

ε2(0) = −i µ
m
ε1(0). (4.97)

Put (4.97) back into (4.96)
µ2 = m2. (4.98)

So we again get
m = |µ|. (4.99)

ε0(0) can be set equal to zero because of gauge invariance of the model [33]. We end up with the
same earlier result. This result is compatible with covariance although the covariant condition was
not imposed explicitly on the system. This is an important aspect of this theory which is different
from that of Maxwell theory where polarization vector does not satisfy this. Now it is straight
forward to calculate polarization vector in moving frame, all we need is the boost matrixε0(p)

ε1(p)
ε2(p)

 =


γ γβ1 γβ2

γβ1 1 + (γ−1)(β1)2

(~β)2
(γ−1)β1β2

(~β)2

γβ2 (γ−1)β1β2

(~β)2
1 + (γ−1)(β2)2

(~β)2


ε0(0)
ε1(0)
ε2(0)

 , (4.100)

where ~β = ~p
p0

and γ = p0

|µ| . Ultimately the vector in boosted frame is

εµ(p) =
(~ε(0) · ~p
|µ|

,~ε(0),
~ε(0) · ~p

(p0 + |µ|)|µ|
~p
)
, (4.101)

where ~ε(0) stands for space part of the polarization vector.
For quantization we take the lagrangian with arbitrary gauge

L = −1

4
F µνFµν +

µ

4
εµναFµνAα −

1

2ξ
(∂µAµ)2 (4.102)

and then different gauges can be use for quantization.
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4.3.3 Feynman Gauge

In Feynman gauge ξ = 1 the lagrangian can be rewritten as follows

L = −1

2
∂µAν∂

µAν +
1

2
∂µ
[
Aν∂

νAµ − Aµ∂νAµ
]

+
µ

2
εµνρAµ∂νAρ. (4.103)

We can ignore the total divergence term and write as

L = −1

2
∂µAν∂

µAν +
µ

2
εµνρAµ∂νAρ, (4.104)

conjugate momenta are

π0 =
∂L
∂Ȧ0

= −Ȧ0

πi =
∂L
∂Ȧi

= F i0 = −Ȧi +
µ

2
εijAi.

(4.105)

The corresponding Hamiltonian is

H =

∫
d2x
[
− 1

2
πµπµ +

1

2
∂kAν∂

kAν
]

+

∫
d2x
[
− µ

2
εij(Aiπj + A0∂iAj + Ai∂jA0) +

1

8
µ2A2

i

]
.

(4.106)

We can simply write the Poisson bracket as there are no unsolved constraints.

{Aµ(x), πν(y)} = ηµνδ(x− y). (4.107)

The Hamiltonian equations are
Ȧµ = {Aµ, H} (4.108)

and
π̇µ = {Aµ, H}. (4.109)

We have a more general approach to perform explicitly covariant quantization through Nakanishi-
Lautrup auxiliary field. Since we know that gauge transformations act as symmetries on the theory
and gauge degrees of freedom are irrelevant to the final outcome of the theory. Due to gauge
transformations we have redundancy in our theory. So most often in gauge invariant theories, one
usually deals with local fields that has exceeding number of degrees of freedom then the physical
degrees of freedom. As we see that in electrodynamics in order to maintain manifest Lorentz
invariance we use the four component vector potential Aµ(x), while photon has only two degrees
of freedom in 3 + 1 D (Polarizations). Thus we need a suitable mechanism to get rid of the
unphysical degrees. In order to deal with the issue of redundancy , Fadeev and Popov introduced
the concept of Ghost-Fields [34]. These are fictitious fields and this is an other way of achieving
our goal. Nakanishi-Laurtup field is also a ghost scalar field. We can introduce an auxiliary field
say B which linearizes the gauge fixing term as

La = −1

4
F µνFµν +

µ

4
εµναFµνAα + B∂µAµ +

ξ

2
B2. (4.110)
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We can see that lagrangian does not contain Ḃ and also it is linear in Ȧ0. It is an auxiliary field
as its quadratic term did not appear with derivatives, hence this field appears without it’s own
dynamics [35]. Introducing the auxiliary field plays an important role in imposing subsidiary
conditions that are constraint relations [36]. We will skip further details about this auxiliary field
and continue to quantization.
The Euler-Lagrange equations for photon field and auxiliary field are

�Aµ − ∂µ(∂νA
ν + B) + µεµνρ∂νAρ = 0 (4.111)

and
B = −1

ξ
∂νA

ν . (4.112)

With choice ξ = 1 we can eliminate B and rewrite

L = −1

2
∂µAν∂

µAν +
µ

2
εµνρAµ∂νAρ, (4.113)

which is same as we got earlier in Feynman case. Conjugate momenta to the fields A0, Ai and B
are respectively given as

π0 = B, (4.114)

πi = ∂iA0 − Ȧi +
µ

2
εijAj, (4.115)

πB = 0. (4.116)

The Hamiltonian that we can get from La

Ha =
1

2

∫
d2x
[
πi2 + µεijπiAj +

µ2Ai2

4
+

1

2
F ijFij

]
+

∫
d2x
[
A0(∂iπi − µ

2
εij∂iAi)− B∂iAj −

1

ξ
B2
]
.

(4.117)

We have seen the constraints from equations of motion as

C1 = π0 − B ≈ 0 (4.118)

and
C2 = πB ≈ 0. (4.119)

By setting the first constraint strongly equal to zero we get π0 = B and we get rid of auxiliary field
so Hamiltonian becomes

Ha =
1

2

∫
d2x
[
πi2 + µεijπiAj +

µ2Ai2

4
+

1

2
F ijFij

]
+

∫
d2x
[
A0(∂iπi − µ

2
εij∂iAi)− π0∂iAj − 1

ξ
(π0)2

]
.

(4.120)

We have eliminated the auxiliary field and also we have non-zero conjugate momenta so we can
write the brackets between fields and their conjugate momenta as

{Aµ(~x), πν(~y)} = ηµνδ(~x− ~y). (4.121)
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This is the same result as we had in previous section. The procedure adopted here is the most
general procedure for manifest covariant quantization. Procedure in previous section was a special
case of this procedure [33].
Now the Hamilton’s equations can be written as

Ȧµ = {Aµ, Ha}, (4.122)

π̇µ = {πµ, Ha}. (4.123)

We know the benefit of Hamilton’s equations i.e. they are first order in time derivative.

4.3.4 Coulomb Gauge

As the equation of motion from MCS Lagrangian is

�Aµ − ∂µ(∂νA
ν) + µεµνρ∂νAρ = 0. (4.124)

The gauge condition is
∂iA

i = 0. (4.125)

In this gauge above equation reduces to

�Aµ − ∂µ(∂0A
0) + µεµνρ∂νAρ = 0. (4.126)

This case, in Hamiltonian language, possesses two first-class constraints so we need two subsidiary
conditions to fix the gauge completely [37]. Thus we shall be left with only two (independent)
variables in phase space, one momentum and one coordinate. In other words we say that theory
exhibits one degree of freedom in configuration space. For this reason it should be possible to
write the plane wave solution of reduced equation in terms of a single polarization vector,

Aβ = εβ(~p)eip ·x. (4.127)

Same as we did before but this time the polarization vector is constrained by

piεi(~p) = 0. (4.128)

We define a matrix Mνβ

Mβα = −p2ηβα + pβp0η0α + iµεβραpρ, (4.129)

so
Mβαεβ(~p) = 0. (4.130)

It is necessary and sufficient condition for the the determinant of the matrix to vanish to have
non-trivial solutions εi(p) = 0,

detM = |~p2|p2(p2 − µ2) = 0. (4.131)
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This gives three independent solutions for the system while we should have only one degree of
freedom. This obviously contradicts our previously conclusion. Polarization vector associated
with massless mode p2 = 0 is possible only if pµ = 0 which in turn implies that the gauge field is
just a constant. Same argument can be made for ~p2 = 0. So only one of the solutions is dynamical
which is associated with massive mode p2 = µ2. Gauge condition is satisfied if we take the solution
as

εi(~p) = εijpjf(~p). (4.132)

If we replace this solution in equation for α = 0 we obtain

ε0(~p) = iµf(~p) (4.133)

and for α = i
(−p2 + µ2)εijpjf(~p) = 0. (4.134)

We can not find f(~p) from any of above equations, even normalization condition of space-like
polarization vector can not be used to find this function. However through this device one can only
find the modulus of f(~p). This difficulty is arising due to massive nature of the theory. The reason
behind this is the existence of rest frame of reference for these particles and in such frame the
Coulomb condition ∂iAi = 0 is ambiguous. This is obviously a new situation as compared with
ordinary massless Coulomb gauge formulation. We can adopt a different strategy which consists
of reaching Coulomb gauge through Lorenz gauge.
For this purpose we should have some transformation Λ(x) which links the Lorenz gauge and
Coulomb gauge. It must be such that

εµ(~p) = εµL(~p) + ipµχ(~p). (4.135)

We have already found the polarization vector in Lorenz gauge which from here on will be denoted
by εµL(p). The transformation is given as

Λ(x) = χ(~p)eipx. (4.136)

Whether we are dealing with massive of massless case we can find from (4.135)

χ(p) = i
~p ·~εL(~p)

~p2
. (4.137)

According to the relation εµL(~p) = pµf(~p), χ(~p) in massless case reduces to

χ(~p) = if(~p). (4.138)

When we put this result back into (4.135) we get εµ = 0, which indicates that massless solutions
are pure gauges and are not present in Coulomb gauge. It is well known that Coulomb gauge is
faithful gauge as it explicitly shows only physical solutions, same result should we get here. In
massive case we put (4.101) into (4.137) and obtain

χ(p) = i
~p ·~εL(0)

p2
+ i

~p ·~εL(0)

(p0 + |µ|)|µ|
. (4.139)
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From equations (4.101),(4.135) and (4.139) we find

ε0(p) = −µp
jεiL(0)

p2
(4.140)

and

εi(p) =
(
δij − pipj

p2

)
εjL(0). (4.141)

Now Free MCS theory (without arbitrary gauge term) in Hamiltonian frame work is given as

Ha =
1

2

∫
d2x
[
πi2 − µεijπiAj +

µ2

4
Ai2 +

1

2
F ijFij

]
. (4.142)

Primary 1st class constraint is
C1 = π0 ≈ 0 (4.143)

and secondary 1st class constraint is

C2 = ∂iπi +
µ

2
εij∂iAj ≈ 0. (4.144)

A0 and π0 as usual can be eliminated from phase space, π0 is fixed by the first constraint condition
(4.143) by changing it to strong equality while A0 is a lagrange multiplier of C2 and can be deter-
mined after the gauge fixing as a function of remaining canonical variables. So we can get rid of
both A0 and π0.
In Coulomb gauge we take the final constraint as already mentioned C3 = ∂iA

i = 0. The set of
constraint C2 ≈ 0 and C3 ≈ 0 is second class by its construction and when we have second class
constraints we can use Dirac brackets for quantization in usual manner. Then we can promote the
phase space variables Ai, πi to operators which obey set of equal time commutation relations that
are abstracted from the corresponding Dirac brackets.
The Dirac bracket quantization procedure yields

[Ai(~x), Aj(~y)] = 0, (4.145)

[Ai(~x), πj(~y)] = iδijT δ(~x− ~y), (4.146)

[πi(~x), πj(~y)] = −iµ
2
εijδ(~x− ~y). (4.147)

Where transverse delta function δijT in this case is defined as

δijT = −µ2ηij + pipj. (4.148)

in momentum space.

4.4 Maxwell-Chern-Simon-Proca Theory

As discussed earlier the equation of motion for this theory is

∂µF
µν +m2Aν +

1

2
µεναβFαβ = 0 (4.149)
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or
∂µF

µν +m2Aν + µεναβ∂αAβ = 0. (4.150)

In Lorenz gauge it becomes [
(� +m2)ηµν + µεµαν∂α

]
Aν = 0. (4.151)

We let the solution as before Aβ = εβ(~p)eipx which when plugged in, gives[
(−p2 +m2)ηµν + iµεµανpα

]
εν = 0 (4.152)

and from Lorenz or transversality condition we get

pνεν = 0. (4.153)

Let us define Mµν

Mµν = (−p2 +m2)ηµν + iµεµανpα. (4.154)

Equation of motion becomes
Mµνεν = 0, (4.155)

for εν to have non-trivial solutions we have the condition

detM = 0 (4.156)

or
(−p2 +m2)

[
(−p2 +m2)2 − µ2p2

]
= 0. (4.157)

This implies, either we have
− p2 +m2 = 0 (4.158)

or
(−p2 +m2)2 − µ2p2 = 0 (4.159)

If we put (4.158) in (4.152) we get solution of the form εν(~p) = pµf(~p). Where f(~p) is an arbitrary
function but we see that this solution does not satisfy Lorenz condition as

pµpµf(~p) 6= 0 (4.160)

hence this solution must be ignored. The second possibility leads to

p2 = m2
± = [(m2 +

µ2

4
)
1
2 ± µ

2
]2 (4.161)

or we can write

m± = (m2 +
µ2

4
)
1
2 ± µ

2
(4.162)

Some nice characteristics of above solutions are

µ = m+ −m− (4.163)
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and
m2 = m+m− (4.164)

Let us introduce different notation, we say ε±(~p±) are the polarization vectors corresponding to
p2 = m2

±. As we did earlier, we can find polarization vectors ε±(0) in rest frame pµ = (p0, 0, 0) =
(|m±|, 0, 0) and then boost to get a general result. So in rest frame equation of motion (4.152)
gives

(m2 −m2
±)ε1±(0) = 0 (4.165)

− (m2 −m2
±)ε1±(0)− imm±ε2±(0) = 0

− (m2 −m2
±)ε2±(0) + imm±ε

1
±(0) = 0

The result derived from above equations is

ε0±(0) = 0 (4.166)

ε2±(0) =
imm±

m2 −m2
±
ε1±(0) = ∓iε1±(0) (4.167)

using the normalization condition ε±µ(0)ε∗µ± (0) = −1 and fixing ε1±(0)

|ε1±(0)|2 =
1

2
(4.168)

finally we reach

εµ±(0) =
1√
2

(0, 1,∓i) (4.169)

This solution can be checked to verify the gauge condition pνεν = 0. Polarization vectors corre-
spond to two massive modes m± in boosted frame are

εµ±(p±) =
(p1 ∓ ip2

√
2m±

,
1√
2

+
p1 ∓ ip2

√
2(p0
± +m±)m±

p1,∓ i√
2

+
p1 ∓ ip2

√
2(p0
± +m±)m±

p2
)

(4.170)

These vectors show some very nice properties. First of all both polarization vectors are related
with parity transformation with condition p0

− → p0
+ which implies m− → m+.

ε0+(p0
+, p

1, p2) = ε0−(p0
− → p0

+, p
1 → −p1, p2 → p2) (4.171)

ε1+(p0
+, p

1, p2) = −ε1−(p0
− → p0

+, p
1 → −p1, p2 → p2)

ε2+(p0
+, p

1, p2) = ε2−(p0
− → p0

+, p
1 → −p1, p2 → p2)

Also they are related with complex conjugation

εµ+(p+) = ε∗µ− (p−) (4.172)

Polarization vectors satisfy
ε±µ(0)εµ±(0) = 0 (4.173)

and
ε−µ(0)ε∗µ+ (0) = 0 (4.174)

orthogonality relations. Now we move towards the quantization of the theory.
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4.4.1 Quantization

Canonical momenta corresponding to MCSP Lagrangian are defined as

π0 ≈ 0 (4.175)

πi = −
(
F i0 +

µ

2
εijAj

)
(4.176)

Equation (4.175) is primary constraint. Canonical Hamiltonian can be written as

H =
1

2

∫
d2x
[
πi2 − µεijπiAj +

(µ2

4
+m2

)
Ai2 +

1

2
F ijFij +m2A02

]
+

∫
d2x
[
A0(∂iπi − µ

2
εij∂iAj −m2A0)

] (4.177)

The Lagrange multiplier A0 implies another constraint

∂iπi − µ

2
εij∂iAj −m2A0 ≈ 0 (4.178)

We use eq. (4.178) to eliminate A0 from (4.177) and obtain a reduced hamiltonian say HR

HR =
1

2

∫
d2x
[
πi2 − µεijπiAj +

(µ2

4
+m2

)
Ai2 +

( µ2

8m2
+

1

2

)
F ijFij

]
+

1

2m2

∫
d2x
[
(∂iπi)2 − µ∂iπiεij∂iAj

] (4.179)

Now we can write the only non vanishing bracket between phase space variables [33]

{Ai(~x), πi(~y)} = −δijδ(~x− ~y) (4.180)

Hamilton’s equations are as
Ȧi = {Ai, HR} (4.181)

π̇i = {πi, HR} (4.182)

Let us discuss now the gauge invariant MSCP theory. As discussed earlier, we need to introduce
Stueckelberg scalar field θ and define the following extended Lagrangian as

L = −1

4
F µνFµν +

µ

4
εµναFµνAα +

m2

2
(Aµ − ∂µθ)(Aµ − ∂µθ) (4.183)

We calculate conjugate momenta
π0 = m2θ (4.184)

πi = −Ȧi + ∂iA0 −
µ

2
εijAj (4.185)

πθ =
∂L
∂θ̇

= m2θ (4.186)
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We can impose Poisson brackets

{Aµ(x), πν(y)} = −ηµνδ(x− y) (4.187)

{θ(x), πθ(y)} = δ(x− y) (4.188)

A nice aspect of Stueckelburg’s formalism is that the derivatives are absent from commutation
relations. On the other hand we saw that number of degrees of freedom has increased to four,
instead of required two for massive planer vector field. This issue can be solved by taking a
subsidiary condition on Hilbert space (same as we did in Gupta-Bleuler formalism) which separates
the physical and non physical states [23]. Also we may take the theory to some other gauges by
gauge transformations as we did earlier that we shall not discuss here [22] [38].
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Chapter5
Conclusion

We learned that the planer QED is different from 3 + 1 D QED in many aspects. There was no
difference found in apparent forms of Dirac and Maxwell’s theory from their usual forms but in-
deed there was difference in the structure of involved fields. Dirac equation was solved for two
representations and it was found that we need to combine both types of solutions to complete the
particle spectrum of the theory. It was shown that extended Dirac Lagrangian has two continuous
symmetries that were proved to be chiral symmetries of Lagrangian. The transformation rules for
two component spinor field differ as they relate together the solutions of two different representa-
tions. In planer Maxwell’s theory we saw that magnetic field is pseudo scalar and Chern-Simon’s
theory as a different theory that made the 2 + 1 D more interesting. We saw that a local magnetic
field was attached to charge with mass as a proportionality constant. The photon field is massive
and propagator has a different form from that in 3 + 1 D. As a consequence the behaviour of scalar
and vector potential is also different.

Lastly in final chapter we performed initial steps of quantization of different theories in Feynman,
Coulomb, Weyl and Lorenz gauges e.t.c. and saw that there were a few differences in quantization
results that appeared in quantization of Chern-Simon’s theory. The main difference found was, field
components were canonically conjugate and did not commute in massive case. All other theories
had same results of quantization as in 3 + 1 D. For covariant quantization of Maxwell’s and Proca
theory we used ghost fields suggested by Nakanishi and Stueckelburg respectively. Finally we can
say, the results of quantization in both 2 + 1 and 3 + 1 dimensions are almost same.
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