
0

NUST COLLEGE OF

 ELECTRICAL AND MECHANICAL ENGINEERING

Perception Stack of a Self-driving car

A PROJECT REPORT

DE-40 (DEE)

 Submitted by

NC Ali Akram

NC Mirza Ahmed Aftab

NC Muhammad Umer Ahsan

BACHELORS

 IN

ELECTRICAL ENGINEERING

 YEAR 2022

PROJECT SUPERVISOR

Dr. Fahad Mumtaz Malik

NUST COLLEGE OF

ELECTRICAL AND MECHANICAL ENGINEERING

PESHAWAR ROAD, RAWALPINDI

D
E

-4
0
(D

E
E

)
Y

E
A

R
 2

0
2
2

1

 DECLARATION

We hereby declare that no portion of the work referred to in this Project Thesis

has been submitted in support of an application for another degree or

qualification of this of any other university or other institute of learning. If any

act of plagiarism found, we are fully responsible for every disciplinary action

taken against us depending upon the seriousness of the proven offence, even the

cancellation of our degree.

1. Ali Akram

NUST ID: Sign:

2. Mirza Ahmed Aftab

NUST ID: Sign:

3. Muhammad Umer Ahsan

NUST ID: Sign:

2

 COPYRIGHT STATEMENT

• Copyright in text of this thesis rests with the student author. Copies (by

any process) either in full, or of extracts, may be made only in

accordance with instructions given by the author and lodged in the

Library of NUST College of E&ME. Details may be obtained by the

Librarian.

• This page must form part of any such copies made. Further copies (by

any process) of copies made in accordance with such instructions may

not be made without the permission (in writing) of the author.

• The ownership of any intellectual property rights which may be

described in this thesis is vested in NUST College of E&ME, subject to

any prior agreement to the contrary, and may not be made available for

use by third parties without the written permission of the College of

E&ME, which will prescribe the terms and conditions of any such

agreement.

• Further information on the conditions under which disclosures and

exploitation may take place is available from the Library of NUST

College of E&ME, Rawalpindi.

3

 ACKNOWLEDGEMENTS

First and foremost, we thank Allah Almighty, the Most Merciful, for the strength

He has given upon us, the bounties He has bestowed upon us, and the well-being He

has bestowed upon us. All of these contributed to the project's timely and successful

completion, Alhamdulillah.

We wish to extend our sincere gratitude to our supervisor Dr Fahad Mumtaz malik

for his continuous support and mentoring. Without his constant counselling and

assurance, we would not have been able to make the progress we have.

This section would be incomplete without acknowledging the unwavering support

of our families and friends and most importantly our seniors. They encouraged us to

pursue our dreams and their endless faith in our abilities helped us achieve them.

Their acceptance for our field of choice, confidence in us during our difficult

moments and understanding of the strenuous work routine enabled us to reach the

position we have. We have been able to achieve this important milestone of our

professional lives today because of their love and support.

4

 ABSTRACT

Over 1.3 million people die in car crashes each year, according to the WHO (World Health

Organization), and it appears that most accidents are caused by driver error. Self-driving cars can

improve safety by drastically reducing collisions and saving lives. Because making self-driving

cars can remove human error, it gives some serious safety benefits to these sophisticated artificial

intelligence systems.

 The aim of our project is to develop algorithms for robotic perception. This includes main tasks

of static and dynamic object detection, object tracking, depth estimation, collision avoidance,

visual odometry and semantic segmentation for drivable surface area. This project is developed

on the extensive knowledge of computer vision, deep learning and robotics which employs

different AI algorithms to help the vehicle analyse the environment around it

 We used and integrated number of state-of-the-art algorithms such as YOLO and VGG that

gathers information around the vehicle using monocular and stereo cameras and process it in real

time on jetson development kit and enables our vehicle to move efficiently.

5

TABLE OF CONTENTS

Contents

DECLARATION ..1

COPYRIGHT STATEMENT ...2

ACKNOWLEDGEMENTS ..3

ABSTRACT ..4

ACRONYMS ..7

CHAPTER 1: INTRODUCTION ...8

1.1 Overview ... 8

1.2 Motivation.. 8

1.3 Objectives ... 9

1.4 Approach ... 9

CHAPTER 2: Literature Review ..10

2.1 Background .. 10

2.2 Deep Learning .. 10

2.2.1 Convolutional Neural Networks ... 11

2.2.2 Overview of Deep Convolutional Neural Networks ... 15

2.2.2.1 LENET ... 16

2.2.2.2 SINGLE SHOT DETECTORS .. 16

2.2.2.3 YOLO (YOU ONLY LOOK ONCE) .. 18

2.3 Hardware Selection .. 21

2.3.1 Device Chosen ... 22

2.3.2 NVIDIA JETSON XAVIER ... 22

2.3.3 Cameras ... 26

CHAPTER 3: Image Processing ...28

CHAPTER 4: Camera Calibration ..30

4.1 Camera Geometry and Image Formation .. 30

6

4.1.1 Pinhole Camera Model .. 30

4.1.2 Central Projection as Linear Mapping using Homogeneous Co-ordinates ... 31

4.1.3 Principal Point Offset .. 31

4.1.4 Rotation and Translation of camera.. 32

4.2 Camera Distortions ... 33

4.2.1 Radial Distortions: ... 33

4.2.2 Tangential Distortions: .. 33

4.3 Camera calibration methodology ... 33

CHAPTER 5: ..35

Lane Detection for Autonomous steering ...35

5.1 Computer Vision Approach .. 35

5.2 Deep Learning Approach .. 38

CHAPTER 6 : ...39

Traffic Signs & Light Detections ..39

1. YOLO V4 ... 39

2. Why we went for YOLO V4. ... 39

3. Dataset ... 40

4. Training with Google Collab .. 40

5. Setting up DARKNET Environment ... 40

6. Modifying YOLO V4 architecture ... 41

7. Creating YOLO V4 backup weights in Drive .. 42

• Visualizing training results... 43

CHAPTER 7: Object Detection ..45

7.1 introduction.. 45

7.2 MODES AND TYPES OF OBJECT DETECTION ... 45

7.3 Basic working structure .. 45

7.4 Results .. 46

CHAPTER 8: 3D Object Detection ..47

8.1. Introduction ... 47

8.2. Training Scheme and Loss Function ... 48

8.3. Inference of Yolo3D object Detection .. 48

CHAPTER 9: Depth Estimation ...49

7

9.1. Monocular Camera using deep learning Approach ... 49

9.2. Stereo Camera using computer vision Approach ... 50

Cv2.StereoSGBM function parameters: ... 51

CHAPTER 10: Hardware Optimization ...53

10.1. Tensor Rt ... 53

10.2. ONNX ... 54

CHAPTER 11: Robotic Operating System (ROS) ...56

11.1. Overview: .. 56

11.2. Tools : .. 56

11.2.1. rviz ... 57

11.2.2. rosbag .. 57

11.2.3. catkin ... 57

11.2.4. rosbash .. 57

11.2.5. roslaunch ... 57

Conclusion ..58

References ...58

ACRONYMS

TSR : Traffic Sign Recognition

CV : Computer Vision

GTSDB : German Traffic Sign Detection Benchmark.

CNN : Convolutional Neural Network.

DNN : Deep Neural Network.

YOLO : You Only Look Once.

 SSD : Single Shot Detector.

8

CHAPTER 1: INTRODUCTION

1.1 Overview

In self-driving automobiles, perception refers to how the vehicle perceives its

surroundings. It is both the most important and the most difficult thing. Because we

have eyes, hearing, and human intelligence, sensing the environment around us is a

simple process for humans, but it is the most difficult and complex work for cars. We

have eyes to see the surroundings, ears, noses, tactical sensors, internal sensors that

can monitor muscle defluxion with those sensors, and we can perceive the environment

around us with those sensors. We can accomplish a lot of things thanks to all of these

sensors, and the brain has made it all possible. Our brain is constantly processing

information. Most of our brain is dedicated to the perception i.e. for visual perception

and the sub-conscious so that we can know where we are in the world. When coming to

car they have somewhat different sensors they have cameras instead of eyes they also

have some magic sensors like radar and lidar which can help in measuring the raw

distances. so instead of knowing something in-front of me these sensors tell the exact

distance in centimeters. So here the complex task involved is to take the huge amount

of data from sensors and use the computer intelligence to evaluate data and make

something meaning of it.

1.2 Motivation

Smart driving is the upcoming trend, and the most basic level of autonomy is based on

environment perception and driver information. In the world of Artificial Intelligence and

advancement in technologies, many researchers and big companies like Tesla, Uber,

Google, Mercedes-Benz, Toyota, Ford, Audi, etc. are working on autonomous vehicles

and self-driving cars. So, for achieving accuracy in this technology, the vehicles should

be able to interpret traffic signs and make decisions accordingly. Since the world is

shifting towards AI, ML and CV (Computer Vision) technique hence our main motivation

9

for this project is that it finds its application in ADAS (Advanced Driver Assistance

System) in Pakistan. This is important because a prompt response to real-time traffic

events can prevent road accidents.

1.3 Objectives

• Object Detection

• Lane Keeping

• Collision Avoidance

• Traffic sign and light detection

• Depth Estimation

• Tracking

• Segmentation

• ROS Integration

1.4 Approach

Our group will work on perception in self-driving cars that uses a combination of high-

tech sensors and cameras, combined with state-of-the-art software to process and

comprehend the environment around the vehicle, in real-time. This includes to

implement both traditional and deep learning approach such as Lane keeping

assistance, 2D and 3D object detection and tracking, Traffic signs and traffic light

detection, collision avoidance system and behavior cloning. We will be using USB-

Camera for visual recognition of objects and Stereo-Camera for Stereo Vision and depth

estimation.

We did our project based on one of the latest deep learning models (YOLOV4) and

accomplish a comparison across the proposed algorithms.

10

CHAPTER 2: Literature Review

2.1 Background

Perception has benefited an outsized number of realistic applications, like driver

assistance system, autonomous vehicles, and intelligent mobile robots since they need

delivered the present state of the environment into various systems. However, there are

a couple of difficulties for computers to acknowledge, which are mainly from two

aspects: One is said to the complex scene, the opposite is about unbalanced class

frequencies within the datasets .

As for the problem of real-world scenes, traffic signs are always well designed for

drivers to simply read and recognize the signs during the driving time, including vivid

colors, strong and bolded words, also as various specific and simplified shapes, it is a

difficult task to style the features combined with contaminated conditions. For instance,

the conditions are with weak illumination, small-size signs in scenes, partial occlusions,

rotations and physical damages. All those factors will have an enormous impact on the

performance of computer algorithms to perceive environment.

2.2 Deep Learning

Deep learning is a machine learning technique used to build artificial intelligence

(AI) systems. It is based on the idea of artificial neural networks (ANN), designed to

perform complex analysis of large amounts of data by passing it through multiple layers of

neurons.

There is a wide variety of deep neural networks (DNN). Deep convolutional neural

networks (CNN or DCNN) are most commonly used to identify patterns in images and

video. DCNNs have evolved from traditional artificial neural networks, using a three-

dimensional neural pattern inspired by the visual cortex of animals.

Deep convolutional neural networks are mainly focused on applications like object

11

detection, image classification, recommendation systems, and are also sometimes used

for natural language processing.

The strength of DCNNs is in their layering. A DCNN uses a three-dimensional neural

network to process the red, green, and blue elements of the image at the same time. This

considerably reduces the number of artificial neurons required to process an image,

compared to traditional feed forward neural networks.

Deep convolutional neural networks receive images as an input and use them to train a

classifier. The network employs a special mathematical operation called a “convolution”

instead of matrix multiplication.

The architecture of a convolutional network typically consists of four types of layers:

convolution, pooling, activation, and fully connected.

Figure 1 Architecture

2.2.1 Convolutional Neural Networks

Neural networks are the computing systems comprising of numerous interconnected

elements that process the information by changing the response based upon the

external inputs. It is based upon basic neural structure of a mammal’s cerebral cortex.

The basic structure. It has organization of layers having interconnected nodes

representing an activation function. Communication is done through weighted

connection between input and hidden layer. Hidden layers are then connected to the

output layer that classifies the input. (Neural Networks, n.d.)

12

Figure 2 Neural Networks

Convolutional Neural Networks are in accordance with ANN. It is a technique of

Deep Learning common nowadays. Convolution involves a simple filter on the

input followed by an activation. With repetitive filter application an activation map

called the Feature Map is formed indicating the strengths of different features of

the input that is an image. CNN is involved in automatic learning and training of

large database. It has a set of layers which are explained.

2.2.1.1 Convolutional Layer

This layer takes in 3-D image as an input. Digital images have 3 channels.

Images move through the convolutional networks as a matrix of different

dimensions and

the dimensions lessen from layer to layer. Each pixel is represented in the form

of 30x30x3 and its intensity of Red, Green and Blue would be a number showing

element one of the three channels. Convolutional network has a filter and filter

moves on the image as a matrix as well. The filter falls on the patch of the image

and pixel wise multiplication take place in that region. The result is placed on

another matrix called activation map that equals the times dot product taken. The

profundity of the convolutional layer is equivalent to the profundity of an info

picture.

13

Figure 3 Convolutional Layer

2.2.1.2 Pooling Layer

For the reduction of spatial size of the Feature Map pooling layer is necessary. It

helps to reduce processing capacity required for the processing of data by the

reduction in dimensions. It is also helpful for the extraction of Key Features from

the input that are invariant to rotations and position as well. There are two kinds

of pooling:

• Max Pooling: Largest pixel intensity within a mask is returned.

• Average Pooling: This returns average (i.e., summation over total) of all

the values present under the mask.

It acts like a Noise Removal/Subdue as it removes the noise present. Max

pooling is better in this regard so mostly it is used. The convolutional layer along

with max pooling layer form a single layer of CNN. The complexities of the input

image define the number of layers required for the computation. These layers

help the model to understand the features of the input image correctly and follow

14

Flattening Fully Connected

forward to the next step of CNN.

2.2.1.3 Flattening

Flattening is the last part of the CNN model which coverts high dimensional array

to 1-D array. The output is flattened for the formation of a single long feature

vector.

2.2.1.4 Classification- Fully Connected Layer

It has Softmax or ReLU as their activation function at the output layer. Fully

connected means that every neuron of is connected to other layer coming next.

The main purpose of the layer is to use the features for the classification of the

input image. In addition to the classification, it is also a cheaper way out for the

learning of non-linear combinations of the features. The convolutional and

pooling layer may help in the classification, but the various combinations of the

features would work even better. The probabilities of this layer add up to 1 and to

make

sure, we use Softmax function as the activation function which converts the real

values in values between 0 and 1.

Figure 5 Fully Connected Layer

2.2.1.5 Real Time Object Detection Using CNN

The recognition and classification tasks can be easily solved using convolutional neural

15

networks. A neural network is some mathematical model that consists of

interconnected artificial neurons. The network accepts the characteristic vector as

input, and then sequentially passes them through the layers of the network. At the

output, the probabilities of belonging to the given classes are obtained. Usually, a

neural network operates with numeric, and not symbolic values.

Figure 6 Scheme of an artificial neuron

Figure 6 shows the scheme of an artificial neuron. As an input, it considers the

parameters, which are either initial data or output parameters of other neurons. Each

parameter has a weight, which is a multiplier of every parameter. Then the weighted

parameters are summed using some function. The resulting value is sent to the, which,

after calculating the result, decides whether to transmit the signal to the next neuron.

The output value will act as one of the parameters in another neuron. At present,

convolutional neural networks are most effective for image processing. A two-

dimensional image is applied to the input of the convolutional neural network, which is

then processed by convolutional layers. The convolutional layers transform the image

fragments into a feature map.

2.2.2 Overview of Deep Convolutional Neural Networks

To start off with recognition, we first investigated neural networks that could be used to

classify datasets accurately. Moreover, we investigated neural networks that could be

used to perform object detection within a natural scene and extract the required

16

objects. For this purpose, we came across a range of neural networks.

2.2.2.1 LENET

The presented method uses a modified LeNet-5 network to extract a deep

representation of traffic signs to perform the recognition. Lecun et al. [27] proposed the

well-known LeNet-5 convolutional neural network that is mostly used for handwritten

recognition. Besides it was introduced in 1998, it became popular to solve other

problems due to its simple and efficient architecture. It is composed of 7 layers, 3

Convolutional layers followed by Sub-sampling layers (except in the last), 1 Fully

connected layer and the final output layer composed of Euclidean RBF units. The input

size for this network is 32×32 pixels. Jung et al. [10] used LeNet-5 to classify 6 types of

Korean traffic signs obtaining an accuracy of 100% correctly recognizing 16 signs while

driving on the KAIST campus road. As the results were promising in their study, we also

trained the network with our proposed dataset for comparison. It is constituted of a

Convolutional Neural Network (CNN) modified by connecting the output of all

convolutional layers to the Multilayer Perceptron (MLP). The training is conducted using

the German Traffic Sign Dataset and achieves good results on recognizing traffic signs.

LeNet is a well-developed architecture developed by Yann Lucan. It is optimized for

processing images and can process most type of images which also includes classifying

traffic signs. It was also proven to work pretty good on the previous works carried out on

traffic signs.

2.2.2.2 SINGLE SHOT DETECTORS

In CNN approach, Image classification takes an image and predicts the object in an

image. Let’s say we built a cat-dog classifier with CNN and predict images. For instance

if there is an image with both cat and dog present, we need to identify the location of the

objects in image, with Object detection algorithm (e.g. RCNN). Unlike image

classification, detection requires localizing (likely many) objects within an image.

17

Classification+ Localization=Object Detection

The difference between object detection algorithms (e.g., RCNN) and classification

algorithms (e.g., CNN) is that in detection algorithms, we try to draw a bounding box

around the object of interest (localization) to locate it within the image.

From the above discussion we got to know that solutions for real-time image recognition

are divided into two general types: Region Proposal (one by one the regions of a frame

are proposed and classified) and Single Shot (all objects are simultaneously recognized

in the whole image). The first type includes such neural networks as R-CNN [4], Fast R-

CNN [4], Faster R-CNN

The second one includes YOLO CNN [5], SSD [6]. Neural networks using recognition by

region have a rather slow recognition time for qualitative detection of objects. However,

for mobile platforms, Single Shot CNNs are more suitable, as they are quite faster.

Since we did not want to compromise on speed and wanted to come up with both

detection and classification problems, we started to dig in Single Shot solution for both

localizing and recognizing traffic signs in images. In this regard we came across YOLO

CNN AND SSD MOBILE NET.

MOBILE-NET SSD

Mobilenet-SSD is an object detection model that computes the bounding box and

category of an object from an input image. This Single Shot Detector (SSD) object

detection model uses Mobilenet as backbone and can achieve fast object detection

optimized for mobile devices.

ARCHITECTURE:

Mobilenet-SSD takes a (3,300,300) image as input and outputs (1,3000,4) boxes and

(1,3000,21) scores. Boxes contains offset values (cx, cy,w,h) from the default box.

Scores contains confidence values for the presence of each of the 20 object categories,

the value 0 being reserved for the background.

18

Figure 7 SSD Framework

2.2.2.3 YOLO (YOU ONLY LOOK ONCE)

YOLO CNN is a convolutional neural network that allows to detect and classify objects

in the form of bounding boxes. Such bounding box is the minimum sized rectangle,

which will contain the whole found object. YOLO works on the principle of Single Shot.

This means that the network architecture is arranged in such a way that in one pass of

the frame, all objects are detected simultaneously.

ARCHITECTURE:

Figure 8 Architecture of YOLO CNN

19

Figure 8 shows the architecture of YOLO CNN. The YOLO input is provided with a

three- channel image, which is resized to 448x448. The first conversion is to run the

image through a portion of the modified GoogLeNet architecture. After this conversion,

we get the feature maps with the size 14x14x1024. Then, two convolutions are applied.

After the second convolution, the dimension decreases to 7x7x1024. Then, another

convolution is performed. The result is twice used in a fully connected layer, changing to

a dimension of 1470x1 and is transformed into a tensor of 7x7x30. The obtained tensor

is subjected to a detection procedure, at the output of which a resultant detection is

obtained. The tensor is a 7x7 mesh display in the image. 30 values carry information

about the cell: 10 values describe two possible frames; 20 values show the relation to

each of the 20 available classes. All this information is filtered, the filtered data is

displayed.

YOLO may be a refreshingly straightforward and effective model for visual object

detection. Firstly, YOLO as an easy convolutional neural network simultaneously

predicts multiple bounding boxes and sophistication probabilities. It initially is trained

supported full images and therefore the performance is optimized. Secondly YOLO is

extremely fast which may achieve quite twice of the mean average precision (mAP) of

other real-time systems.

2.2.2.3.1 YOLO Loss Function

YOLO uses one’s single loss function for both bounding box and the classification of

the object. The loss function is:

Figure 9 Loss function

20

The loss function can be parsed into 5 parts, where parts (1) and (2) are focusing on the

loss of the bounding box coordinates, parts (3) and (4) are penalizing the differences in

confidence of having an object in the grid and part (5) is penalizing for the difference in

class probability. It is interesting to note that the loss function for the bounding box size

is based on the square root of the dimensions. This is used to address that the small

deviations in larger bounding boxes should incur less of a penalty than in smaller

bounding boxes.

2.2.2.3.2 Yolo Versions

In 2020, three YOLO versions had been released, including YOLOv4, YOLOv5, and PP-

YOLO. While YOLOv4 was released, it had been considered the fastest and most

accurate real-time detection model. It inherits the Darknet and has obtained a definite

AP value (43.5%) on COCO dataset while achieved a quick detection speed on Tesla

V100. Compared with YOLOv3, the AP and FPS are effectively improved.

Figure 10 MS COCO Object Detection

21

Figure 11 Two Stage detector

2.3 Hardware Selection

As mentioned above, the aim of this project was to develop a perception stack

of a autonomous vehicle using deep learning and computer vision. We have

developed a large number of deep learning, image processing and computer

vision algorithms which need to be implemented real time for the intelligent

movement of vehicle. There is no use of any algorithms no matter how much

accuracy they gave or how much efficient they are if they cannot be

implemented real-time on a video input coming from camera.

For real time implementation we need powerful hardware device with high

computation power.

Several hardware devices were considered on the basis of the following factors:

• CPU and GPU specifications and functionalities

• Support for AI and deep learning frameworks

• Power

• Cost

These factors narrowed down the scope of hardware to choose our product

from. as per the GPU and CPU functionalities as well as compatibility with

IoT, AI and deep learning frameworks, NVIDIA’s available range of

22

products are:

1. Jetson Nano

2. Jetson Xavier NX

3. Jetson AGX Xavier

4. Jetson TX2

Raspberry Pi

1. Raspberry Pi 4- 4GB

2. Raspberry Pi 4 – 8GB

2.3.1 Device Chosen

After comparing the specifications of all the available devices, it was
found out that the NIVDIA JETSON AGX XAVIER best suits our
requirements since our project is more towards Deep learning having a
good GPU was the prime requirement and a hardware that can perform
complex computation in real time. Attributed to the analysis and study,
the NIVDIA JETSON AGX XAVIER was chosen.

2.3.2 NVIDIA JETSON XAVIER

 AGX Xavier is ideal for deploying advanced AI and computer vision to the edge,
enabling robotic platforms in the field with workstation-level performance and the ability
to operate fully autonomously without relying on human intervention and cloud
connectivity. Intelligent machines powered by Jetson AGX Xavier have the freedom to
interact and navigate safely in their environments, unencumbered by complex terrain
and dynamic obstacles, accomplishing real-world tasks with complete autonomy.
Jetson AGX Xavier’s high-performance can handle visual odometry, sensor fusion,
localization and mapping, obstacle detection, and path planning algorithms critical to
next-generation robots.

2.3.2.1 Introduction

 It’s an AI computer for autonomous machines, delivering the performance of
a GPU workstation in an embedded module under 30W. Jetson AGX Xavier
is designed for robots, drones, and other autonomous machines. With the
NVIDIA Jetson AGX Xavier developer kit, you can easily create and deploy
end-to-end AI robotics applications for manufacturing, delivery, retail,
agriculture, and more.

Supported by NVIDIA JetPack and DeepStream SDKs, as well as CUDA®,
cuDNN, and TensorRT software libraries, the kit provides all the tools you
need to get started right away. And because it’s powered by the new NVIDIA

23

Xavier processor, you now have more than 20X the performance and 10X
the energy efficiency of its predecessor, the NVIDIA Jetson TX2.

2.3.2.2 Specifications

Figure 13 NVIDIA JETSON AGX XAVIER

24

2.3.2.3 PORTS AND CONNECTIONS

Figure 14 FRONT AND REAR VIEW

25

Interface Details
This list highlights some of the Jetson AGX Xavier Developer Kit carrier board
interfaces. See the Jetson AGX Xavier Developer Kit Carrier Board Specification for
comprehensive information:

▪ [J1] M.2 Key M connector for high speed NVMe storage.
• To reach it, you must detach the combined module and thermal solution.

▪ [J2] Power available for peripherals is limited to power supply capability (65W from
included power supply) minus developer kit system power usage (maximum of 30W
in default configuration).

▪ [J4] Slot accepts either an SD Card or a UFS card.

▪ [J6] PCIe x16 connector routes to a x8 PCIe 4.0 controller.

▪ [J6] This connector is also where the lanes are connected for SLVS cameras.

▪ [J501] Micro-USB connector provides access to the UART console.

For example, you can access the serial console of the developer kit from a

terminal emulator on a computer connected to this micro-USB port.

▪ [J504] HDMI 2.0.

▪ [J505] M.2 Key E connector can be used for wireless networking cards, and includes

interfaces for PCIe (x1), USB 2.0, UART, I2S & I2C.

26

▪ [J507] Hybrid connector can be used for either eSATA or USB3 Type-A. The eSATA

connector can supply 5V.

▪ [J509] Camera connector supports up to six directly connected cameras via CSI-2, or

up to 16 cameras via the virtual channel feature of CSI-2.

▪ [J512, J513] USB Type-C connectors.

• J512 can be used to flash the developer kit.

• Either connector can be used to power the developer kit from USB Type-C power
supplies listed in Jetson AGX Xavier Supported Component List.

• Both connectors support DisplayPort, so you can run three displays at once
byusing these plus the HDMI adapter.

2.3.3 Cameras
We have identified, evaluated, and narrowed down all components
required in perception, to be utilized for development of autonomous
perception stack. We have selected the cameras appropriate for safe
and efficient operation with consideration to eliminate all blind spots for
the vehicle to be aware of its surroundings. An arrangement of six
cameras will be used to model the prototype vehicle, which include
Stereo cameras for depth perception, fish-eye cameras for wide field of
view, and high-speed cameras for object detection, and semantic
segmentation. The details for selected cameras are provided below:

Table 30. Description of Cameras

Camera Name Camera
Placement

View Camera Model

MYNT Eye S

Front and Back
Stereo
Camera

122 deg

Global Shutter
High Speed

120fps CS Mount
Varifocal 5-

50mm UVC Plug
Play Driverless
USB Camera

with Mini Case

ont 5-50mm Lens: CS

Mount Varifocal

High-FPS Camera

80-100

deg

The Stereo Camera provides accurate depth sensing with a flexible
range between 0.5 to 18 meters. It has optimized performance in normal
light conditions or low light conditions and precision with a wide field of
view. The Fish-Eye lens camera covers the entire side view and

27

supports the other cameras, leaving very little blind spot. The full-scale
arrangement of cameras and resulting field of view is shown:

Figure 131. Arrangement of Cameras (Full-scale)

Figure 132. Arrangement of Cameras (zoomed in)

The stereo camera is coupled with a six axis IMU combined with frame
synchronization which provide accuracy at less than one millisecond.
Complete package with SDK is simple to integrate providing easy
development and quick integration with the depth data created through
the EYE S sensor.

Figure 133. Benchmark Performance of MYNT Eye S camera (depth sensing)

28

CHAPTER 3: Image Processing

3.1 Pre-Processing

The images cannot be use directly by the CNN. With intelligent use of pre-

processing techniques over images collected, it can benefit us and easily solve

the problem. Image preprocessing is just like normalizing in the mathematical

data set which is one of main steps required for any type of feature description

methods. Raw images need to be directly enhanced for the use of training

purposes using the computer vision techniques.

3.1.1 Color conversion of image

An image consists of three levels of a single image. The three levels are based

upon the three primary colors Red, Blue and Green. In processing an image,

one must cater for all the three levels individually. This makes the processing

more difficult. All the three levels have range of 256 shades having additive

same level color. Grayscale image contains the intensity information of an

image. It has different shades of gray in it that range from 0-255. The feeblest

intensity is of black while that of white is the strongest. It has only one level, so

the image is easy for the processing as only 2D image matrix is to be

processed instead of 3D.

For every value of a pixel there are 3 channels in an image having color and

intensity information. The corresponding Grayscale pixel is found out by the

pixel value for all the 3 channels and the formula given for the conversion to

grayscale intensity (I) value is,

I = 0.299R + 0.587G + 0.144B

The OpenCV imports an image in BGR format but as we want to convert it into

RGB so we have to use cv2.Color_BGR2RGB (), than it can convert the image

from RGB to gray directly from its’ inbuilt function cv2.Color_RGB2GRAY () that

will give the input image as a gray image. This will help the training model for

29

img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

img = cv2.equalizeHist(img)

img = cv2.equalizeHist(img)

efficient predictions. OpenCV has many features that are oriented basically for

image processing purposes. Instead of writing a code for every pixel they have

made it easier by their in-built function. In the same way one may re-convert it

to RGB image.

3.1.2 Equalizing an Image

Histogram Equalization, as the name suggests, stretches the histogram to fill

the dynamic range and at the same time tries to keep the histogram uniform.

By doing this, the resultant image will have an appearance of high contrast and

exhibits a large variety of grey tones. Hence to standardize the lighting and

improve contrasts we equalize our grayscale images.

3.1.2 Reshaping Images

After images are equalized, we reshape our images using built in function of Numpy.

3.1.2 Data Augmentation

Next, we augment our images to make them more generic. Data Augmentation

is a technique of creating new data from existing data by applying some

transformations such as flips, rotate at a various angle, shifts, zooms and many

more. Training the neural network on more data leads to achieving higher

accuracy. In real-world problem, we may have limited data. Therefore, data

augmentation is often used to increase train dataset. We have used

ImageDataGenerator() class function to use a range of transformations.

30

CHAPTER 4: Camera Calibration

4.1 Camera Geometry and Image Formation

Stereo Vision is one of the passive ways to 3D reconstruct a scene, which uses

two simultaneous images of a same scene, with cameras in a displaced

position with respect to each other. The basic intuition of the technique is such

that similar objects in both images are displaced due to camera displacement,

the displacement of the objects is inversely proportional to the distance of the

object from the scene. Disparity of both objects in the scene is used for 3D re-

projection.

𝟏
𝒅 ∝

𝑫

Where d is the distance of the object, and D is the disparity of the object.

To understand the stereo reconstruction, we will look into camera geometry,

projective transformation, and stereo geometry.

4.1.1 Pinhole Camera Model

Figure 4: Pinhole Camera Model

The above image shows basic pinhole camera model, all the rays from the

point in space converge towards the camera center, and the imaging plane

where the image will be formed is between the point and the camera center. In

this pinhole model, any point 𝑿 = (𝑿, 𝒀, 𝒁) in space is mapped to a point in

imaging plane where the ray from X to C intersects the image plane namely𝒙' =

(𝒙, 𝒚). By similarity of triangles, we can find the relation:

31

The center at which all rays intersect is also known as optical center. The line

from the optical center perpendicular to the image plane is called principal axis

and the point where the principal axis intersects the image plane is called

principal point.

4.1.2 Central Projection as Linear Mapping using Homogeneous Co-ordinates

In projective geometry, we often work with homogenous coordinates, which is a

way to represent vectors with one additional dimension. If we have a point 𝑿 =

(𝒙, 𝒚, 𝒛) in Cartesian co-ordinate system then the same point using

homogenous coordinates will be

𝑿 = (𝒙, 𝒚, 𝒛, 𝟏) or the point 𝑿 = (𝑿, 𝒀, 𝒁, 𝑾) in homogenous coordinates will be

the point 𝑿 = (𝑿/𝑾, 𝒀/𝑾, 𝒁/𝑾) in Cartesian coordinates. Homogenous

coordinates allow us to represent quantities at infinity using finite numbers, as

this becomes very useful in projective geometry where we have to deal with

points and lines at infinity.

Now if we use homogenous coordinates, the transformation can be linearly described
as:

𝑿 𝒇𝑿 𝒇 𝟎 𝟎 𝟎
𝑿

(𝒀) ↦ (𝒇𝒀) = [𝟎 𝒇 𝟎 𝟎] (

𝒀
) 𝒐𝒓 𝒔𝒊𝒎𝒑𝒍𝒚 𝒙 = 𝑷𝑿

𝒁

𝟏 𝒁 𝟎 𝟎 𝟏 𝟎
𝒁

𝟏

Where P is the projection matrix, x is the three-dimensional image point in

homogenous coordinates and X is the four-dimensional world point in

homogenous coordinates.

4.1.3 Principal Point Offset

In the first initial derivation, we assumed camera center to be aligned with

image center, but there is case where there is a translation of image center

with respect to camera center.

Figure 5

32

4.1.4 Rotation and Translation of camera

It may happen that the world co-ordinate system may not align with the camera

co- ordinate system, and generally, points in 3D are represented in world co-

ordinate system. Now if we have a point 𝑿 = (𝑿𝒘, 𝒀𝒘, 𝒁𝒘) in world coordinate

system, the same point can be represented as 𝑿 = (𝑿𝒄, 𝒀𝒄, 𝒁𝒄) in camera

coordinate system, the two systems are related to each other by a rotation and

a translation matrix, as the camera may be displaced or its orientation may be

different (yaw, pitch, roll), the transformation is given as:

The transformation can be re-written as:

Figure 6: Transformation between world coordinate system and camera coordinate system

33

The complete camera transformation of a 3D point to an image point can be written as:

𝒙 = 𝑲[𝑹 |𝒕]𝑿

4.2 Camera Distortions

The pinhole camera model is an ideal camera model, but in real life, the lens

captures all the light rays, and due to the aperture of lens, there arise several

distortions, two significant distortions that are relevant to our project are

discussed below:

4.2.1 Radial Distortions:

This type of distortion arises due to bending of light rays at varied angles

around the center and edges of the lens, thus giving the effect that straight

lines in an image are no more parallel, but rather curved. Such distortions

should be addressed before processing images for stereo reconstruction.

4.2.2 Tangential Distortions:

Such distortion arises when the camera lens is not properly aligned with

respect to image sensor, thus giving a tilted or stretched effect, objects at the

same distance seems to appear at varied distance.

4.3 Camera calibration methodology

As in 3D reconstruction, the first step is to know the perspective projection

(camera projection). The purpose of camera calibration is to estimate the

camera internal matrix, camera external matrix is different for each camera

setting, thus the goal of single camera calibration is to estimate camera

internal matrix, it also allows us to estimate coefficients for distortions that

were discussed in chapter 3, the distortion coefficients will be later used in

the pipeline to undistort the images. The method OpenCV employ and we

used to calibrate camera is to capture pictures of a known pattern or object

whose dimensions are known and such as CHESSBOARD pattern that will

be used. We can arbitrarily assign 3D coordinates to the corners of

CHESSBOARD pattern and also easily locate the pixel location of those

corners in the images. Hence, we have 3D points and corresponding image

points available, thus we estimate our camera parameters.

34

Figure 14: Chessboard Pattern defining 3D world coordinates

We define our 3D world coordinate system by arbitrarily assigning origin to the top left

of the CHESSBOARD, and since the CHESSBOARD is planar hence for every point

on CHESSBOARD, we arbitrarily assign Z=0, and we can easily assign X, Y

coordinates to the corners as they are all equally spaced. The CHESSBOARD

pattern is widely used because the corners have high gradient in both directions and

can easily be localized with high accuracy.

Figure 15: Detected Corners in CHESSBOARD pattern

The next step in camera calibration is to take several pictures of the CHESSBOARD

pattern at varied angles, as the algorithm follows iterative approach to estimate

camera parameters, at least around 11 images are required for optimum calibration.

For every input image, corner points are detected which are the image points and the

corresponding object points are known, we get an estimate of internal matrix 𝑲, and a

relative rotation and translation matrix for every images. As discussed in the previous

chapter that there are some distortions due to the aperture of the lens, the calibration

also estimates parameters for distortions.

35

CHAPTER 5:

Lane Detection for Autonomous steering

There are several approaches utilized for the detection on lane lines which are either
based on computer vision approach or deep learning-based approach.

5.1 Computer Vision Approach
5.1.1 Introduction

Lane detection and tracking is one of integral aspects for the operation of a vehicle

within a constrained space. The lanes are useful for the guidance of both humans
and the autonomous vehicle to drive on the road. The control system effectiveness is
directly influenced by the efficiency of the lane tracking algorithm, along with the
execution time. The computer vision-based approach is effective in constrained
environment, with good lane visibility and predetermination of the illumination
conditions to design appropriate thresholding parameters. This approach is fast in
terms of execution time and relied primarily on vanishing point detection using canny
edge detectors and Hough transforms, or perspective detectors which project the
road in a birds-eye- view form and quadratic equations, or splines are fit to these
lines on the image pixels to determine curvature of the road and a measure of offset
from the center of the road. The initial step is the camera calibration, which is
achieved using a checkboard grid of size 6x9, which is printed on an A4 sheet, and
the camera matrices are determined. A calib file is created from these observations
which is used to undistort any incoming camera images. The calibration process is
performed using MATLAB camera calibration toolbox with multiple images of the
checkboard takes as dataset.

5.1.1 Used methods

• Perspective Transform

The next step in the process is perspective transform. In this project, we have the
camera at the car that has the front-view perspective. This perspective has provides
a lot of problem during the lane detection, First lane detection with front- view
perspective bring the lots of error to our vision and we see the all lanes in the images
the converge to one point at the end of the roads; this is cause of our vision system
that try to transform a 3D space into a 2D space so this error of view decrease our
performance in the detection of the lane and cause of error in our detection.
Therefore, with implementing the perspective transform, lanes of the image will be
seen parallel, and we do not have any convergence of the road in any parts of the
lane. Furthermore, perspective transform helps us to concentrate on the region of
interest instead of whole the image. In transform perspective we immigrate our vision
from front view to the eye-bird view, so this perspective helps us to delete

36

unnecessary part of the image and focus on the lane region. Hence, perspective
transform reduces our error and reprocess step for preparing the image for analyzing.
For implementing this technique, we need to choose the 4 points in the output of the
transform region. by doing this our input point will be warped to the new coordination
at the output, for instance, in straight line we choose two points on each lane as input
of image and the output will be imagine where image would be parallel; At the end
with inverse perspective transform we draw the lane on the original image or video
frames. After perspective transform, we should binarize our image and masking the
interested region to extract both yellow and white lane, for reaching this purpose we
convert our color space from RGB to the HSL to have better performance in
distinguishing the lanes from other regions. Afterward, we are masking the images for
yellow color and combine it with the masking of white lane and combine both of this
with these with our extractors of edges to have robust lane at the end we will find our
lanes based on the peaks of the histogram.

Fig.. The results of image after implementing the perspective transform, edge detect results
and histogram

• Polynomial fitting

The next step in lane detection after perspective transform is the polynomial fitting,
we should fit second order polynomial for both sides of the roads and for reaching
this purpose we should follow these steps. The first and important thing is calculating
the bottom half of the image and partitioning the image into several horizontal slices,
this slice has the performance like the searching method around their given scopes.
For finding the interested object in the images we start from the bottom slice and find
the pixels that is has similar feature to the lane of the road, specially we are finding
the region has the whitest pixel in horizontal coordination. Afterwards we iterate this
step vertically to segments of the image in vertical sides, after this traverse, in both x
and y direction for whole of the slice windows, we are fitting these points with the
polynomial functions. For implementing this scenario to the video, we have the
temporal correlation between video, so in this condition if our proposed algorithm
cannot find the lane features in specific frame in the video, it easily skips that frame
and postpone it to the next frames; Therefore, these techniques can improve the
computation time of the process. hence, to have algorithmic perspective from the
method we explain it as follow, Calculate a histogram of the bottom half of the image,

37

Partition the image into 9 horizontal slices Starting from the bottom slice in the image,
this slice size is 200 pixel wide window around the left peak and right peak of the
histogram we repeat this way up to the horizontal window slices to find pixels that are
similar to be part of the left and right lanes.
The results for lane detection in our environment are shown below:

Figure 151. Lane Detection Process and Perspective transform

 Figure: Results of lane detection

38

Figure: Results on Lahore Canal Road

5.2 Deep Learning Approach

The deep learning-based approach is an efficient tool for detection of multi-lane lines as opposed to only
single lane lines detected by the computer vision algorithms. Deep learning models are trained on
several readily available datasets such as CUlane and the benchmark is tested for efficient performance
for detection of lane lines.
This approach has the ability to generalize on the data – adapt to newly encounter lane markings, and
invariance to the scaling and rotation of lane, which could be present anywhere on the image, and
predicts the lane boundary equations for multi-lane tracking. However, this approach is computationally
expensive and could lead to higher utilization of memory due to large size of models, rendering the
effectiveness to be degraded due to large computational loads, and compromised run-time
performance. An approach proposed by Z. Qin et. in the paper “Ultra-Fast Structure-aware Deep Lane
Detection” proposes a highly efficient real-time implementation on deep learning approach which has
been implemented using Tensor-RT allowing effective utilization of resources and overall good results
on test datasets.

Figure: Results of lane detection

39

CHAPTER 6 :

Traffic Signs & Light Detections

6.1 Introduction

The detection and recognition of traffic lights is one of the most important components of any
autonomous vehicle. Outdoor perception is a major difficulty for driver-assisted and
autonomous vehicles, as the machine cannot recognize traffic signals, road signs,
obstructions, and other objects in the direction of motion unless it is taught to do so.
Autonomous vehicles must be able to detect traffic signals and recognize their present
condition, whereas humans can quickly recognize the relevant traffic signals. The detection
and recognition of traffic lights must be integrated with the autonomous car's CPU (which
controls the vehicle), resulting in the resolution of the traffic signal alignment issue. Obstacle
detection also necessitates the use of a solution. Machine learning's Open CV2 module is
effective in resolving traffic-related issues.

6.2 Traffic Sign Recognition Using Yolo V4

1. YOLO V4

For traffic sign detection, a Yolo based localization algorithm was used and a dark net based
classification algorithm was implemented. The weights of the traffic sign classification were
trained on Google Colab, with test data to validate the performance of the model. Turkish
traffic signs dataset was used for train purposes.

2. Why we went for YOLO V4.

• YOLO IS A REGRESSION BASED ALGORITHM

It will predict the classes and bounding boxes for the entire image at once. This makes

detection faster than classification algorithms. One of the BEST regression-based algorithms

is YOLO (“You Only Look Once“)

• VERY FAST

It is an efficient and powerful object detection model that enables anyone with a GPU to

train a super fast and accurate object detector. Light and faster version: YOLO is having a

smaller architecture version called Tiny-YOLO which can work at higher framerate (155

https://pjreddie.com/darknet/yolo/

40

frames per sec) with less accuracy compared to the actual model.

• THE YOLO OBJECT DETECTION IS FREE AND OPENSOURCE

YOLO ALGORITHM IS POPULAR DUE TO ITS REAL-TIME OBJECT DETECTION

CAPABILITY

The network understands a generalized object representation making the real- world image

prediction fairly accurate.

• COMPARED WITH THE PREVIOUS YOLOV3, YOLOV4 HAS THE FOLLOWING

ADVANTAGES:

It is an efficient and powerful object detection model that enables anyone with a 1080 Ti or

2080 Ti GPU to train a super fast and accurate object detector. The influence of state-of-

the-art “Bag-of-Freebies” and “Bag-of-Specials” object detection methods during detector

training has been verified. The modified state-of-the-art methods, including CBN (Cross-

iteration batch normalization), PAN (Path aggregation network), etc., are now more efficient

and suitable for single GPU training.

3. Dataset

We used TTSDB (Turkish Traffic Sign Detection Benchmark) preprocessed it

bring it into YOLO format. We uploaded the prepared dataset in our directory and

then downloaded it for training.

4. Training with Google Collab

For training YOLO V4 for traffic sign recognition we again went for GOOGLE

COLAB which is a Jupiter notebook environment that runs completely on a cloud.

5. Setting up DARKNET Environment

There are very few implementations of the YOLO algorithm that exists on the web. The

Darknet is one such open-source neural network framework written in C and CUDA and

https://pjreddie.com/darknet/

41

serves as the basis of YOLO. It is fast, easy to install, and supports CPU and GPU

computation. Darknet is used as the framework for training YOLO, meaning it sets the

architecture of the network. The first author of Darknet is the author of YOLO itself (J

Redmon). Darknet_for_colab is a darknet folder which was modified specifically to adapt

with Colab environment (no MAKEFILE change necessary). Repository for DARKNET

was cloned, downloaded, and compiled.

6. Modifying YOLO V4 architecture

Taking the advantage of the direct python editing feature on Colab, we defined training

parameters just by double click on yolov4_config.py and editing. For example, we set

classes=4 (our traffic sign dataset has 4 classes), max_batches=8000 (number of

training iterations), batch=64 (number of samples in one batch), subdivisions=16

(number of mini_batches in one batch), etc.

https://pjreddie.com/
https://pjreddie.com/

42

7. Creating YOLO V4 backup weights in Drive

6.3 Training with YOLO V4

We used yolov4_setup.py, a python script which automatically generates YOLOv4

architecture config files (yolov4_custom_train.cfg and yolov4_custom_test.cfg) based

on user-input parameters in yolov4_config.py.

43

• Visualizing training results

We initially defined max_batches=8000, but both accuracy and loss

from training result did not improve much after 2000 iterations as can be

seen from the graph.

Figure 37 Accuracy map of training result

44

 Figure: Results of traffic sign

 Figure: Results of traffic light

45

CHAPTER 7: Object Detection

7.1 introduction
Object detection is a computer vision technique that allows us to identify and locate objects in
an image or video. With this kind of identification and localization, object detection can be used
to count objects in a scene and determine and track their precise locations, all while accurately
labeling them.

7.2 MODES AND TYPES OF OBJECT DETECTION

Broadly speaking, object detection can be broken down into machine learning-based
approaches and deep learning-based approaches.

In more traditional ML-based approaches, computer vision techniques are used to look at
various features of an image, such as the color histogram or edges, to identify groups of pixels
that may belong to an object. These features are then fed into a regression model that predicts
the location of the object along with its label.

On the other hand, deep learning-based approaches employ convolutional neural networks
(CNNs) to perform end-to-end, unsupervised object detection, in which features don’t need to
be defined and extracted separately. For a gentle introduction to CNNs, check out this
overview.

Because deep learning methods have become the state-of-the-art approaches to object
detection, these are the techniques we’ll be focusing on for the purposes of this guide.

7.3 Basic working structure
Deep learning-based object detection models typically have two parts. An encoder takes an
image as input and runs it through a series of blocks and layers that learn to extract statistical
features used to locate and label objects. Outputs from the encoder are then passed to a
decoder, which predicts bounding boxes and labels for each object.

The simplest decoder is a pure regressor. The regressor is connected to the output of the
encoder and predicts the location and size of each bounding box directly. The output of the
model is the X, Y coordinate pair for the object and its extent in the image. Though simple, this
type of model is limited. You need to specify the number of boxes ahead of time. If your image
has two dogs, but your model was only designed to detect a single object, one will go
unlabeled. However, if you know the number of objects you need to predict in each image
ahead of time, pure regressor-based models may be a good option.

An extension of the regressor approach is a region proposal network. In this decoder, the
model proposes regions of an image where it believes an object might reside. The pixels
belonging to these regions are then fed into a classification subnetwork to determine a label (or
reject the proposal). It then runs the pixels containing those regions through a classification
network. The benefit of this method is a more accurate, flexible model that can propose
arbitrary numbers of regions that may contain a bounding box. The added accuracy, though,
comes at the cost of computational efficiency.

46

7.4 Results

Results of object detection on canal road

47

CHAPTER 8: 3D Object Detection

8.1. Introduction

3D object detection is a fundamental requirement of localization of static

and dynamic obstacles in an environment, and a crucial engineering problem

for autonomous vehicles and mobile robots. The algorithm processes the image

obtained through stereo cameras as estimates the depth of the scene by

triangulation using to the pin-hole camera model as a reference. The use of

binocular setup is generally much cheaper, and it is preferred for low-cost

operation for autonomous vehicles. The framework that is used for the purpose

of object detection is YOLOStereo3D . It is a lightweight one-stage stereo 3D

detection network. To efficiently produce powerful stereo features, the pixel-

wise correlation is reintroduced to construct the cost- volume, rather than

concatenation of features. The inference pipeline from one-stage monocular 3D

detection into stereo 3D detection is used during inference. YOLOStereo3D

produces competitive results on the KITTI 3D benchmark during inference on

stereo images and with an inference time of less than 0.1 seconds per frame.

The neural network architecture of YOLOStereo3D is shown below:

Figure 77. 3D Object Detection Convolution Neural Network Architecture

Data augmentation is useful to improve the generalization ability in

deep learning applications. However, the nature of stereo 3D detection

48

limits the number of possible augmentation choices. Photometric distortion

is concurrently applied on binocular images. This improves feature

matching, and the inference pipeline is optimized with multi-scale

correlation.

8.2. Training Scheme and Loss Function
During the training process the stereo feature map is fed into a

decoder to predict a disparity map trained with an auxiliary loss. The

auxiliary loss can regularize the training process. The network may not be

guided to produce local features useful in stereo matching to fully utilize

the geometric potential of binocular images, and the network could be

trapped in a local minimum like that of a monocular detection network. The

focal loss is applied on classification, and smoothed-L1 loss on bounding

box regression. The expected distribution of disparity is computed with a

hard-coded variance σ = 0.5:

8.3. Inference of Yolo3D object Detection
The inference of Yolo3DStereo Object Detection is performed on

Nvidia Jetson Xavier, with an inference time of 0.3 seconds. The code

is modified to create an inference node from the available test code

such that the python code takes real-time feed from the camera instead

of loading the images from database. The output of the inference node

is shown below indicating the position of the vehicle bounded by 3D

boxes. The output of the 3D object detection is passed to the

behavioral planner for planning of feasible trajectories.

Figure 78. 3D Object Detection Inference

49

× ×

CHAPTER 9: Depth Estimation

9.1. Monocular Camera using deep learning Approach

9.1.1. INTRODUCTION

 Depth sensing is essential to many robotic tasks, including mapping, localization,
and obstacle avoidance. Existing depth sensors (e.g., LiDARs, structured-light
sensors, etc.) are typically bulky, heavy, and have high power consumption. These
limitations make them unsuitable for small robotic platforms (e.g., micro aerial and
mini ground vehicles), which motivates depth estimation using a monocular camera,
due to its low cost, compact size, and high energy efficiency.

9.1.2. EMPLOYED METHODOLOGY

The current state-of-the-art depth estimation algorithms rely on deep learning based
methods, and while these achieve significant improvement in accuracy, they do so at
the cost of increased computational complexity.

Our approach employs MobileNet as an encoder and nearest neighbor interpolation
with depth wise separable convolution in the decoder. We apply state-of- the-art
network pruning, NetAdapt and use the TVM compiler stack to further reduce
inference runtime on a target platform. We show that our low latency network design,
Fast Depth, can perform real-time depth estimation on the NVIDIA Jetson AGX
Xavier operating at over 120 frames per second (fps). The Architecture diagram is
given as :

Fig. 2: Proposed network architecture. Dimensions of intermediate feature maps are given as height width # channels. Arrows
from encoding layers to decoding layers denote additive (rather than concatenative) skip connections.

9.1.3. INFERENCE

Figure: Result of Deep learning Approach

file:///C:/Users/Muhammad%20umer%20ahsan/Downloads/1903.03273.docx%23_bookmark25
file:///C:/Users/Muhammad%20umer%20ahsan/Downloads/1903.03273.docx%23_bookmark27

50

9.2. Stereo Camera using computer vision Approach

The flow diagram is given as:

After doing camera calibration as described earlier, we will do Stereo Rectification.

• Stereo Rectification:

there are several alternatives in OpenCV for rectification task, for example we

can use stereo calibrate function to calibrate cameras and recover relative

pose between cameras and then estimate fundamental matrix, through which

we can get rectification maps to rectify images. But stereo calibrate method

was not working well with our setups as it was not a dedicated stereo setup,

hence we followed another approach, we detected key points in left and right

images and based on those key points we recover the pose of two cameras

relative to each other also on the basis of matched key points we can estimate

essential matrix as well, when we have our R and t pose matrices and essential

matrix, fundamental matrix can be recovered. SIFT descriptors were used to

detect correspondence points in both images. Having all the matrices we can

make rectification maps in order to rectify images, the images are passed

through rectification maps, and we get our rectified images. The functions used

in the rectification pipelines were cv2.recoverPose, cv2.findEssentialMatrix,

cv2.stereoRectify, cv2.initUndistortRectifyMaps, cv2.remap.

The function parameters and their input and output can be known from

51

OpenCV documentation.

The rectification can destroy images if the setup is not accurately aligned,

hence many trials were done for rectification as the hardware is not dedicated,

and some of the rectification results will be displayed in the results heading at

the end of the chapter.

▪ Calculating Disparity Map

After we have obtained our rectified images, now we are at the stage to

compute disparities of the object in the two images, OpenCV provides several

functions to estimate disparity out of which two are the most popular

cv2.stereoBM and cv2.stereoSGBM. Now both functions apply some version of

block matching algorithm, we used cv2.stereoSGBM for block matching which

is the implementation of semi global matching algorithm. There are lot of tuning

parameters for this function; it is worth to mention the description of some.

Cv2.StereoSGBM function parameters:

NumDisparities: The parameter defines disparity value’s range. The range is

calculated from minimum disparity to maximum disparity, the value should be

the multiple of 16, increasing disparity range increases accuracy of depth map.

blockSize: Window size for block matching for stereo correspondence.

PreFilterType: Parameter to define any filter that is applied before image is

processed to calculate disparity.

A point to know that is that block-matching algorithm returns a 16-bit signed

single channel image with disparity values scaled by 16. Thus, to calculate the

actual disparity value division by 16 is necessary. It is also necessary to

understand that function does not returns depth map rather the disparity, which

is the relative displacement of the object in the two scenes. The map obtained

will be very noisy, because a matching is done and the map to be passed

through filter in order to smooth the transition and fill the untextured regions. In

order to smooth the disparity map, we used the implementation of WLS

(weighted least square) filter, for disparity smoothing in OpenCV.

Cv2.createDisparityWLSFilter takes input the actual object of StereoSGBM.

Note the disparity we calculated is respect to the left image but for filtering

using WLS filter, we need a disparity map with respect to right image as well.

Hence, we first computed right disparities using cv2.createRightMatcher, and

pass all the arguments to WLS filter object to filter the map.

▪ Reprojection from depth map

Now we can use the disparity map and the transformation of the form given

below to move from disparity to depth map.

52

𝑥 − 𝑥' = 𝐵𝑓/𝑍, where x and x’ are the correspondence points in the left and right

image respectively, B is the base line and f is the focal length, the parameter to

estimates is Z. Note we are too optimistic about all the parameters in the above

equation, the baseline can be fixed but the focal length of two cameras can

differ from each other in that case the equation does not hold and we have to

apply the approximation using SSD in order to estimate the optimum focal

length. However, we tried initial formula that gave us satisfactory results.

Figure: Result using stereo camera

53

CHAPTER 10: Hardware Optimization
10.1. Tensor Rt

10.1.1. Overview:
 One of the perpetual problems of deep neural networks is figuring out the speed of

learning and optimizing it which is often hit and trial. NVIDIA TensorRT is an SDK for
high-performance deep learning inference. It includes a deep learning inference
optimizer and runtime that delivers low latency and high throughput for deep learning
inference applications.

TensorRT-based applications perform up to 40X faster than CPU-only platforms during
inference. With TensorRT, you can optimize neural network models trained in all major
frameworks, calibrate for lower precision with high accuracy, and deploy to hyper-scale
data centers, embedded, or automotive product platforms.

TensorRT is built on CUDA, NVIDIA’s parallel programming model, and enables you to
optimize inference leveraging libraries, development tools, and technologies in CUDA-X
for artificial intelligence, autonomous machines, high-performance computing, and
graphics. With new NVIDIA Ampere Architecture GPUs, TensorRT also leverages sparse
tensor cores providing an additional performance boost.

TensorRT provides INT8 and FP16 optimizations for production deployments of deep
learning inference applications such as video streaming, speech recognition,
recommendation, fraud detection, and natural language processing. Reduced precision
inference significantly reduces application latency, which is a requirement for many real-
time services, as well as autonomous and embedded applications.

54

10.2. ONNX

The end result of a trained deep learning algorithm is a model file that efficiently represents

the relationship between input data and output predictions. A neural network is one of the

most powerful ways to generate these predictive models but can be difficult to build into

production systems. Most often, these models exist in a data format such as a .pth file or an

HD5 file. Oftentimes you want these models to be portable so that you can deploy them in

environments that might be different than where you initially trained the model.

10.1.2. Overview
At a high level, ONNX is designed to allow framework interoperability. There are many

excellent machine learning libraries in various languages — PyTorch, TensorFlow, MXNet,

and Caffe are just a few that have become very popular in recent years, but there are

many others as well.

The idea is that you can train a model with one tool stack and then deploy it using another

for inference and prediction. To ensure this interoperability you must export your model in

the model.onnx format which is serialized representation of the model in a protobuf file.

Currently there is native support in ONNX for PyTorch, CNTK, MXNet, and Caffe2 but

there are also converters for TensorFlow and CoreML.

10.1.3. ONNX in Practice

Let’s imagine that you want to train a model to predict if a food item in your refrigerator is

still good to eat. You decide to run a bunch of photos of food that is at various stages past

its expiration date and pass it into a convolutional neural network (CNN) that looks at

images of food and trains it to predict if the food is still edible.

Once you have trained your model, you then want to deploy it to a new iOS app so that

anyone can use your pre-trained model to check their own food for safety. You initially

trained your model using PyTorch but iOS expects to use CoreML to be used inside the

55

app. ONNX is an intermediary representation of your model that lets you easily go from

one environment to the next.

Using PyTorch you would normally export your model using

torch.save(the_model.state_dict(), PATH)

Exporting to the ONNX interchange format is just one more line:

torch.onnx.export(model, dummy_input, 'SplitModel.proto', verbose=True)

Using a tool like ONNX-CoreML, you can now easily turn your pre-trained model in to a

file that you can import in to XCode and integrate seamlessly with your app.

10.1.4. Conclusion

As more and more deep learning frameworks emerge and workflows become more

advanced, the need for portability is more important than ever. ONNX is a powerful and

open standard for preventing framework lock-in and ensuring that you the models you

develop will be usable in the long run.

56

CHAPTER 11: Robotic Operating System

(ROS)

11.1. Overview:

It is an open-source robotics middleware suite. Although ROS is not an operating system (OS)
but a set of software frameworks for robot software development, it provides services designed
for a heterogeneous computer cluster such as hardware abstraction, low-level device control,
implementation of commonly used functionality, message-passing between processes, and
package management. Running sets of ROS-based processes are represented in
a graph architecture where processing takes place in nodes that may receive, post,
and multiplex sensor data, control, state, planning, actuator, and other messages. Despite the
importance of reactivity and low latency in robot control, ROS is not a real-time operating
system (RTOS). However, it is possible to integrate ROS with real-time code.
Software in the ROS Ecosystem can be separated into three groups:

• language-and platform-independent tools used for building and distributing ROS-based
software.

• ROS client library implementations such as roscpp, rospy, and roslisp.

• packages containing application-related code which uses one or more ROS client
libraries.

Both the language-independent tools and the main client libraries (C++, Python, and Lisp) are
released under the terms of the BSD license, and as such are open-source software and free
for both commercial and research use. The majority of other packages are licensed under a
variety of open-source licenses. These other packages implement commonly used functionality
and applications such as hardware drivers, robot models, datatypes,
planning, perception, simultaneous localization and mapping, simulation tools, and other
algorithms.
The main ROS client libraries are geared toward a Unix-like system, primarily because of their
dependence on large collections of open-source software dependencies. For these client
libraries, Ubuntu Linux is listed as "Supported" while other variants such as Fedora
Linux, macOS, and Microsoft Windows are designated "experimental" and are supported by the
community. The native Java ROS client library, rosjava, however, does not share these
limitations and has enabled ROS-based software to be written for the Android OS. rosjava has
also enabled ROS to be integrated into an officially supported MATLAB toolbox which can be
used on Linux, macOS, and Microsoft Windows. A JavaScript client library, roslibjs has also
been developed which enables integration of software into a ROS system via any standards-
compliant web browser.

11.2. Tools :

ROS's core functionality is augmented by a variety of tools which allow developers to visualize
and record data, easily navigate the ROS package structures, and create scripts automating
complex configuration and setup processes. The addition of these tools greatly increases the
abilities of systems using ROS by simplifying and providing solutions to a number of common
robotics development problems. These tools are provided in packages like any other algorithm,
but rather than providing implementations of hardware drivers or algorithms for various robotic

https://en.wikipedia.org/wiki/Software_framework
https://en.wikipedia.org/wiki/Robot
https://en.wikipedia.org/wiki/Computer_cluster
https://en.wikipedia.org/wiki/Hardware_abstraction
https://en.wikipedia.org/wiki/Device_driver
https://en.wikipedia.org/wiki/Inter-process_communication
https://en.wikipedia.org/wiki/Graph_theory
https://en.wikipedia.org/wiki/Multiplexing
https://en.wikipedia.org/wiki/Low_latency
https://en.wikipedia.org/wiki/Real-time_operating_system
https://en.wikipedia.org/wiki/Real-time_operating_system
https://en.wikipedia.org/wiki/Real-time_computing
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/BSD_license
https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Open-source_license
https://en.wikipedia.org/wiki/Robotic_sensing
https://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
https://en.wikipedia.org/wiki/Unix-like
https://en.wikipedia.org/wiki/Ubuntu_(operating_system)
https://en.wikipedia.org/wiki/Fedora_(operating_system)
https://en.wikipedia.org/wiki/Fedora_(operating_system)
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Android_(operating_system)
https://en.wikipedia.org/wiki/MATLAB
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/JavaScript

57

tasks, these packages provide task and robot-agnostic tools which come with the core of most
modern ROS installations.

11.2.1. rviz

It is a three-dimensional visualizer used to visualize robots, the environments they work in, and
sensor data. It is a highly configurable tool, with many different types of visualizations and
plugins.

11.2.2. rosbag

It is a command line tool used to record and playback ROS message data. rosbag uses a file
format called bags,[71] which log ROS messages by listening to topics and recording
messages as they come in. Playing messages back from a bag is largely the same as having
the original nodes which produced the data in the ROS computation graph, making bags a
useful tool for recording data to be used in later development. While rosbag is a command line
only tool, rqt_bag provides a GUI interface to rosbag.

11.2.3. catkin

It is the ROS build system, having replaced rosbuild as of ROS Groovy. catkin is based
on CMake, and is similarly cross-platform, open-source, and language-independent.

11.2.4. rosbash

The rosbash package provides a suite of tools which augment the functionality of the bash
shell. These tools include rosls, roscd, and roscp, which replicate the functionalities of ls, cd,
and cp respectively. The ROS versions of these tools allow users to use ros package names in
place of the file path where the package is located. The package also adds tab-completion to
most ROS utilities, and includes rosed, which edits a given file with the chosen default text
editor, as well rosrun, which runs executables in ROS packages. rosbash supports the same
functionalities for zsh and tcsh, to a lesser extent.

11.2.5. roslaunch

It is a tool used to launch multiple ROS nodes both locally and remotely, as well as setting
parameters on the ROS parameter server. roslaunch configuration files, which are written
using XML can easily automate a complex startup and configuration process into a single
command. roslaunch scripts can include other roslaunch scripts, launch nodes on specific
machines, and even restart processes which die during execution.

https://en.wikipedia.org/wiki/Robot_Operating_System#cite_note-71
https://en.wikipedia.org/wiki/CMake
https://en.wikipedia.org/wiki/Bash_(Unix_shell)
https://en.wikipedia.org/wiki/Bash_(Unix_shell)
https://en.wikipedia.org/wiki/Ls
https://en.wikipedia.org/wiki/Cd_(command)
https://en.wikipedia.org/wiki/Cp_(Unix)
https://en.wikipedia.org/wiki/Z_shell
https://en.wikipedia.org/wiki/Tcsh
https://en.wikipedia.org/wiki/XML

For monocular camera

YOLO traffic sign

YOLO traffic light

For Stereo Camera

Conclusion
The main task was implementation of perception stack in real time. We faced a number of issues in doing

that because a large number of available algorithms work for images and does not give real time results

i.e. very low fps(frames per second are obtained).So optimization of available algorithms was required

for real time implementation. We have tested different algorithms with a number of parameters and

choose the one best suitable to our requirements. The state of the art algorithm of YOLO was optimized

using ONNX and TensorRT giving us 25 to 30 fps in object detection which was just giving 1 to 2 fps

before optimization. Finally all our algorithms for object detection, traffic signs, light detection, lane

detection and depth estimation working realtime.

References

www.coursera.org/learn/visual-perception-self-driving-cars

www.udacity.com/course/self-driving-car-engineer-nanodegree--nd0013

https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-devkit

https://pjreddie.com/darknet/yolo/

www.towardsdatascience.com/the-evolution-of-deeplab-for-semantic-

segmentation-95082b025571

https://.developer.nvidia.com/tensorrt

https://arxiv.org/abs/1903.03273

https://arxiv.org/abs/2103.09422

https://www.coursera.org/lecture/visual-perception-self-driving-cars/lesson-3-

part-2-visual-depth-perception-computing-the-disparity-Q00hg

https://en.wikipedia.org/wiki/Robot_Operating_System

https://www.ros.org/

https://ieeexplore.ieee.org/document/9327478

https://github.com/Owen-Liuyuxuan/visualDet3D

https://towardsdatascience.com/yolo-you-only-look-once-real-time-object-

detection-explained-492dc9230006

https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit

https://opencv.org/

https://www.mynteye.com/

https://arxiv.org/abs/2103.09422
https://www.coursera.org/lecture/visual-perception-self-driving-cars/lesson-3-part-2-visual-depth-perception-computing-the-disparity-Q00hg
https://www.coursera.org/lecture/visual-perception-self-driving-cars/lesson-3-part-2-visual-depth-perception-computing-the-disparity-Q00hg
https://en.wikipedia.org/wiki/Robot_Operating_System
https://www.ros.org/
https://ieeexplore.ieee.org/document/9327478
https://github.com/Owen-Liuyuxuan/visualDet3D
https://towardsdatascience.com/yolo-you-only-look-once-real-time-object-detection-explained-492dc9230006
https://towardsdatascience.com/yolo-you-only-look-once-real-time-object-detection-explained-492dc9230006
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://opencv.org/
https://www.mynteye.com/

