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  ABSTRACT 

 

Over 1.3 million people die in car crashes each year, according to the WHO (World Health 

Organization), and it appears that most accidents are caused by driver error. Self-driving cars can 

improve safety by drastically reducing collisions and saving lives. Because making self-driving 

cars can remove human error, it gives some serious safety benefits to these sophisticated artificial 

intelligence systems. 

 The aim of our project is to develop algorithms for robotic perception. This includes main tasks 

of static and dynamic object detection, object tracking, depth estimation, collision avoidance, 

visual odometry and semantic segmentation for drivable surface area. This project is developed 

on the extensive knowledge of computer vision, deep learning and robotics which employs 

different AI algorithms to help the vehicle analyse the environment around it 

 We used and integrated number of state-of-the-art algorithms such as YOLO and VGG that 

gathers information around the vehicle using monocular and stereo cameras and process it in real 

time on jetson development kit and enables our vehicle to move efficiently. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Overview 

In self-driving automobiles, perception refers to how the vehicle perceives its 

surroundings. It is both the most important and the most difficult thing. Because we 

have eyes, hearing, and human intelligence, sensing the environment around us is a 

simple process for humans, but it is the most difficult and complex work for cars. We 

have eyes to see the surroundings, ears, noses, tactical sensors, internal sensors that 

can monitor muscle defluxion with those sensors, and we can perceive the environment 

around us with those sensors. We can accomplish a lot of things thanks to all of these 

sensors, and the brain has made it all possible. Our brain is constantly processing 

information. Most of our brain is dedicated to the perception i.e. for visual perception 

and the sub-conscious so that we can know where we are in the world. When coming to 

car they have somewhat different sensors they have cameras instead of eyes they also 

have some magic sensors like radar and lidar which can help in measuring the raw 

distances. so instead of knowing something in-front of me these sensors tell the exact 

distance in centimeters. So here the complex task involved is to take the huge amount 

of data from sensors and use the computer intelligence to evaluate data and make 

something meaning of it. 

1.2 Motivation 

Smart driving is the upcoming trend, and the most basic level of autonomy is based on 

environment perception and driver information. In the world of Artificial Intelligence and 

advancement in technologies, many researchers and big companies like Tesla, Uber, 

Google, Mercedes-Benz, Toyota, Ford, Audi, etc. are working on autonomous vehicles 

and self-driving cars. So, for achieving accuracy in this technology, the vehicles should 

be able to interpret traffic signs and make decisions accordingly. Since the world is 

shifting towards AI, ML and CV (Computer Vision) technique hence our main motivation 
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for this project is that it finds its application in ADAS (Advanced Driver Assistance 

System) in Pakistan. This is important because a prompt response to real-time traffic 

events can prevent road accidents. 

1.3 Objectives 

• Object Detection 

• Lane Keeping 

• Collision Avoidance 

• Traffic sign and light detection 

• Depth Estimation 

• Tracking 

• Segmentation 

• ROS Integration 

 

1.4 Approach 

Our group will work on perception in self-driving cars that uses a combination of high-

tech sensors and cameras, combined with state-of-the-art software to process and 

comprehend the environment around the vehicle, in real-time. This includes to 

implement both traditional and deep learning approach such as Lane keeping 

assistance, 2D and 3D object detection and tracking, Traffic signs and traffic light 

detection, collision avoidance system and behavior cloning. We will be using USB-

Camera for visual recognition of objects and Stereo-Camera for Stereo Vision and depth 

estimation.  

We did our project based on one of the latest deep learning models (YOLOV4) and 

accomplish a comparison across the proposed algorithms. 
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CHAPTER 2: Literature Review 

 

2.1 Background 

Perception has benefited an outsized number of realistic applications, like driver 

assistance system, autonomous vehicles, and intelligent mobile robots since they need 

delivered the present state of the environment into various systems. However, there are 

a couple of difficulties for computers to acknowledge, which are mainly from two 

aspects: One is said to the complex scene, the opposite is about unbalanced class 

frequencies within the datasets . 

As for the problem of real-world scenes, traffic signs are always well designed for 

drivers to simply read and recognize the signs during the driving time, including vivid 

colors, strong and bolded words, also as various specific and simplified shapes, it is a 

difficult task to style the features combined with contaminated conditions. For instance, 

the conditions are with weak illumination, small-size signs in scenes, partial occlusions, 

rotations and physical damages. All those factors will have an enormous impact on the 

performance of computer algorithms to perceive environment. 

2.2 Deep Learning 

 
Deep learning is a machine learning technique used to build artificial intelligence 

(AI) systems. It is based on the idea of artificial neural networks (ANN), designed to 

perform complex analysis of large amounts of data by passing it through multiple layers of 

neurons. 

There is a wide variety of deep neural networks (DNN). Deep convolutional neural 

networks (CNN or DCNN) are most commonly used to identify patterns in images and 

video. DCNNs have evolved from traditional artificial neural networks, using a three-

dimensional neural pattern inspired by the visual cortex of animals. 

Deep convolutional neural networks are mainly focused on applications like object 
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detection, image classification, recommendation systems, and are also sometimes used 

for natural language processing. 

The strength of DCNNs is in their layering. A DCNN uses a three-dimensional neural 

network to process the red, green, and blue elements of the image at the same time. This 

considerably reduces the number of artificial neurons required to process an image, 

compared to traditional feed forward neural networks. 

Deep convolutional neural networks receive images as an input and use them to train a 

classifier. The network employs a special mathematical operation called a “convolution” 

instead of matrix multiplication. 

The architecture of a convolutional network typically consists of four types of layers: 

convolution, pooling, activation, and fully connected. 

 

 

Figure 1 Architecture 

 

2.2.1 Convolutional Neural Networks 

 
Neural networks are the computing systems comprising of numerous interconnected 

elements that process the information by changing the response based upon the 

external inputs. It is based upon basic neural structure of a mammal’s cerebral cortex. 

The basic structure. It has organization of layers having interconnected nodes 

representing an activation function. Communication is done through weighted 

connection between input and hidden layer. Hidden layers are then connected to the 

output layer that classifies the input. (Neural Networks, n.d.) 
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Figure 2 Neural Networks 
 

Convolutional Neural Networks are in accordance with ANN. It is a technique of 

Deep Learning common nowadays. Convolution involves a simple filter on the 

input followed by an activation. With repetitive filter application an activation map 

called the Feature Map is formed indicating the strengths of different features of 

the input that is an image. CNN is involved in automatic learning and training of 

large database. It has a set of layers which are explained. 

2.2.1.1 Convolutional Layer 

This layer takes in 3-D image as an input. Digital images have 3 channels. 

Images move through the convolutional networks as a matrix of different 

dimensions and 

the dimensions lessen from layer to layer. Each pixel is represented in the form 

of 30x30x3 and its intensity of Red, Green and Blue would be a number showing 

element one of the three channels. Convolutional network has a filter and filter 

moves on the image as a matrix as well. The filter falls on the patch of the image 

and pixel wise multiplication take place in that region. The result is placed on 

another matrix called activation map that equals the times dot product taken. The 

profundity of the convolutional layer is equivalent to the profundity of an info 

picture. 
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Figure 3 Convolutional Layer 

 

 

 

2.2.1.2 Pooling Layer 

For the reduction of spatial size of the Feature Map pooling layer is necessary. It 

helps to reduce processing capacity required for the processing of data by the 

reduction in dimensions. It is also helpful for the extraction of Key Features from 

the input that are invariant to rotations and position as well. There are two kinds 

of pooling: 

• Max Pooling: Largest pixel intensity within a mask is returned. 

 

• Average Pooling: This returns average (i.e., summation over total) of all 

the values present under the mask.  

 

It acts like a Noise Removal/Subdue as it removes the noise present. Max 

pooling is better in this regard so mostly it is used. The convolutional layer along 

with max pooling layer form a single layer of CNN. The complexities of the input 

image define the number of layers required for the computation. These layers 

help the model to understand the features of the input image correctly and follow 
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Flattening Fully Connected 

forward to the next step of CNN. 

2.2.1.3 Flattening 

Flattening is the last part of the CNN model which coverts high dimensional array 

to 1-D array. The output is flattened for the formation of a single long feature 

vector. 

2.2.1.4 Classification- Fully Connected Layer 

It has Softmax or ReLU as their activation function at the output layer. Fully 

connected means that every neuron of is connected to other layer coming next. 

The main purpose of the layer is to use the features for the classification of the 

input image. In addition to the classification, it is also a cheaper way out for the 

learning of non-linear combinations of the features. The convolutional and 

pooling layer may help in the classification, but the various combinations of the 

features would work even better. The probabilities of this layer add up to 1 and to 

make 

sure, we use Softmax function as the activation function which converts the real 

values in values between 0 and 1. 

Figure 5 Fully Connected Layer 
 
 

2.2.1.5 Real Time Object Detection Using CNN 

The recognition and classification tasks can be easily solved using convolutional neural 
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networks. A neural network is some mathematical model that consists of 

interconnected artificial neurons. The network accepts the characteristic vector as 

input, and then sequentially passes them through the layers of the network. At the 

output, the probabilities of belonging to the given classes are obtained. Usually, a 

neural network operates with numeric, and not symbolic values. 

 

Figure 6 Scheme of an artificial neuron 

 
 

Figure 6 shows the scheme of an artificial neuron. As an input, it considers the 

parameters, which are either initial data or output parameters of other neurons. Each 

parameter has a weight, which is a multiplier of every parameter. Then the weighted 

parameters are summed using some function. The resulting value is sent to the, which, 

after calculating the result, decides whether to transmit the signal to the next neuron. 

The output value will act as one of the parameters in another neuron. At present, 

convolutional neural networks are most effective for image processing. A two-

dimensional image is applied to the input of the convolutional neural network, which is 

then processed by convolutional layers. The convolutional layers transform the image 

fragments into a feature map. 

2.2.2 Overview of Deep Convolutional Neural Networks 

To start off with recognition, we first investigated neural networks that could be used to 

classify datasets accurately. Moreover, we investigated neural networks that could be 

used to perform object detection within a natural scene and extract the required 
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objects. For this purpose, we came across a range of neural networks. 

 

2.2.2.1 LENET 

 
The presented method uses a modified LeNet-5 network to extract a deep 

representation of traffic signs to perform the recognition. Lecun et al. [27] proposed the 

well-known LeNet-5 convolutional neural network that is mostly used for handwritten 

recognition. Besides it was introduced in 1998, it became popular to solve other 

problems due to its simple and efficient architecture. It is composed of 7 layers, 3 

Convolutional layers followed by Sub-sampling layers (except in the last), 1 Fully 

connected layer and the final output layer composed of Euclidean RBF units. The input 

size for this network is 32×32 pixels. Jung et al. [10] used LeNet-5 to classify 6 types of 

Korean traffic signs obtaining an accuracy of 100% correctly recognizing 16 signs while 

driving on the KAIST campus road. As the results were promising in their study, we also 

trained the network with our proposed dataset for comparison. It is constituted of a 

Convolutional Neural Network (CNN) modified by connecting the output of all 

convolutional layers to the Multilayer Perceptron (MLP). The training is conducted using 

the German Traffic Sign Dataset and achieves good results on recognizing traffic signs. 

LeNet is a well-developed architecture developed by Yann Lucan. It is optimized for 

processing images and can process most type of images which also includes classifying 

traffic signs. It was also proven to work pretty good on the previous works carried out on 

traffic signs. 

 

2.2.2.2 SINGLE SHOT DETECTORS 

 
In CNN approach, Image classification takes an image and predicts the object in an 

image. Let’s say we built a cat-dog classifier with CNN and predict images. For instance 

if there is an image with both cat and dog present, we need to identify the location of the 

objects in image, with Object detection algorithm (e.g. RCNN). Unlike image 

classification, detection requires localizing (likely many) objects within an image. 
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Classification+ Localization=Object Detection 

The difference between object detection algorithms (e.g., RCNN) and classification 

algorithms (e.g., CNN) is that in detection algorithms, we try to draw a bounding box 

around the object of interest (localization) to locate it within the image. 

From the above discussion we got to know that solutions for real-time image recognition 

are divided into two general types: Region Proposal (one by one the regions of a frame 

are proposed and classified) and Single Shot (all objects are simultaneously recognized 

in the whole image). The first type includes such neural networks as R-CNN [4], Fast R-

CNN [4], Faster R-CNN 

The second one includes YOLO CNN [5], SSD [6]. Neural networks using recognition by 

region have a rather slow recognition time for qualitative detection of objects. However, 

for mobile platforms, Single Shot CNNs are more suitable, as they are quite faster. 

Since we did not want to compromise on speed and wanted to come up with both 

detection and classification problems, we started to dig in Single Shot solution for both 

localizing and recognizing traffic signs in images. In this regard we came across YOLO 

CNN AND SSD MOBILE NET. 

 
MOBILE-NET SSD 

 
Mobilenet-SSD is an object detection model that computes the bounding box and 

category of an object from an input image. This Single Shot Detector (SSD) object 

detection model uses Mobilenet as backbone and can achieve fast object detection 

optimized for mobile devices. 

ARCHITECTURE: 

Mobilenet-SSD takes a (3,300,300) image as input and outputs (1,3000,4) boxes and 

(1,3000,21) scores. Boxes contains offset values (cx,   cy,w,h)   from   the   default box. 

Scores contains confidence values for the presence of each of the 20 object categories, 

the value 0 being reserved for the background. 
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Figure 7 SSD Framework 

 

2.2.2.3 YOLO (YOU ONLY LOOK ONCE) 

 
YOLO CNN is a convolutional neural network that allows to detect and classify objects 

in the form of bounding boxes. Such bounding box is the minimum sized rectangle, 

which will contain the whole found object. YOLO works on the principle of Single Shot. 

This means that the network architecture is arranged in such a way that in one pass of 

the frame, all objects are detected simultaneously. 

ARCHITECTURE: 
 

 
Figure 8 Architecture of YOLO CNN 
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Figure 8 shows the architecture of YOLO CNN. The YOLO input is provided with a 

three- channel image, which is resized to 448x448. The first conversion is to run the 

image through a portion of the modified GoogLeNet architecture. After this conversion, 

we get the feature maps with the size 14x14x1024. Then, two convolutions are applied. 

After the second convolution, the dimension decreases to 7x7x1024. Then, another 

convolution is performed. The result is twice used in a fully connected layer, changing to 

a dimension of 1470x1 and is transformed into a tensor of 7x7x30. The obtained tensor 

is subjected to a detection procedure, at the output of which a resultant detection is 

obtained. The tensor is a 7x7 mesh display in the image. 30 values carry information 

about the cell: 10 values describe two possible frames; 20 values show the relation to 

each of the 20 available classes. All this information is filtered, the filtered data is 

displayed. 

YOLO may be a refreshingly straightforward and effective model for visual object 

detection. Firstly, YOLO as an easy convolutional neural network simultaneously 

predicts multiple bounding boxes and sophistication probabilities. It initially is trained 

supported full images and therefore the performance is optimized. Secondly YOLO is 

extremely fast which may achieve quite twice of the mean average precision (mAP) of 

other real-time systems. 

 

2.2.2.3.1 YOLO Loss Function 

 
YOLO uses one’s single loss function for both bounding box and the classification of 

the object. The loss function is: 

 

 
Figure 9 Loss function 
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The loss function can be parsed into 5 parts, where parts (1) and (2) are focusing on the 

loss of the bounding box coordinates, parts (3) and (4) are penalizing the differences in 

confidence of having an object in the grid and part (5) is penalizing for the difference in 

class probability. It is interesting to note that the loss function for the bounding box size 

is based on the square root of the dimensions. This is used to address that the small 

deviations in larger bounding boxes should incur less of a penalty than in smaller 

bounding boxes. 

 

2.2.2.3.2 Yolo Versions 

 
In 2020, three YOLO versions had been released, including YOLOv4, YOLOv5, and PP- 

YOLO. While YOLOv4 was released, it had been considered the fastest and most 

accurate real-time detection model. It inherits the Darknet and has obtained a definite 

AP value (43.5%) on COCO dataset while achieved a quick detection speed on Tesla 

V100. Compared with YOLOv3, the AP and FPS are effectively improved. 

 
 

Figure 10 MS COCO Object Detection 
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Figure 11 Two Stage detector 

 

 
 

2.3 Hardware Selection 

As mentioned above, the aim of this project was to develop a perception stack 

of a autonomous vehicle using deep learning and computer vision. We have 

developed a large number of deep learning, image processing and computer 

vision algorithms which need to be implemented real time for the intelligent 

movement of vehicle. There is no use of any algorithms no matter how much 

accuracy they gave or how much efficient they are if they cannot be 

implemented real-time on a video input coming from camera. 

For real time implementation we need powerful hardware device with high 

computation power. 

Several hardware devices were considered on the basis of the following factors: 
 

• CPU and GPU specifications and functionalities 

• Support for AI and deep learning frameworks 

• Power 

• Cost 

 
These factors narrowed down the scope of hardware to choose our product 

from. as per the GPU and CPU functionalities as well as compatibility with 

IoT, AI and deep learning frameworks, NVIDIA’s available range of 
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products are: 

1. Jetson Nano 

2. Jetson Xavier NX 

3. Jetson AGX Xavier 

4. Jetson TX2 

 

Raspberry Pi  

 

1. Raspberry Pi 4- 4GB 

2. Raspberry Pi 4 – 8GB 
 

 

2.3.1 Device Chosen 

After comparing the specifications of all the available devices, it was 
found out that the NIVDIA JETSON AGX XAVIER best suits our 
requirements since our project is more towards Deep learning having a 
good GPU was the prime requirement and a hardware that can perform 
complex computation in real time. Attributed to the analysis and study, 
the NIVDIA JETSON AGX XAVIER was chosen. 

 

 

2.3.2 NVIDIA JETSON XAVIER 

 AGX Xavier is ideal for deploying advanced AI and computer vision to the edge, 
enabling robotic platforms in the field with workstation-level performance and the ability 
to operate fully autonomously without relying on human intervention and cloud 
connectivity. Intelligent machines powered by Jetson AGX Xavier have the freedom to 
interact and navigate safely in their environments, unencumbered by complex terrain 
and dynamic obstacles, accomplishing real-world tasks with complete autonomy. 
Jetson AGX Xavier’s high-performance can handle visual odometry, sensor fusion, 
localization and mapping, obstacle detection, and path planning algorithms critical to 
next-generation robots. 

2.3.2.1 Introduction 

 
 It’s an AI computer for autonomous machines, delivering the performance of 
a GPU workstation in an embedded module under 30W. Jetson AGX Xavier 
is designed for robots, drones, and other autonomous machines. With the 
NVIDIA Jetson AGX Xavier developer kit, you can easily create and deploy 
end-to-end AI robotics applications for manufacturing, delivery, retail, 
agriculture, and more. 

Supported by NVIDIA JetPack and DeepStream SDKs, as well as CUDA®, 
cuDNN, and TensorRT software libraries, the kit provides all the tools you 
need to get started right away. And because it’s powered by the new NVIDIA 
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Xavier processor, you now have more than 20X the performance and 10X 
the energy efficiency of its predecessor, the NVIDIA Jetson TX2. 

 

2.3.2.2  Specifications 
 

 

 
 

                                         

 

 

 

                                           
 

 

Figure 13 NVIDIA JETSON AGX XAVIER 
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2.3.2.3 PORTS AND CONNECTIONS 
 
 
 
 

 
 

 

 

 
Figure 14 FRONT AND REAR VIEW 
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Interface Details 
This list highlights some of the Jetson AGX Xavier Developer Kit carrier board 
interfaces. See the Jetson AGX Xavier Developer Kit Carrier Board Specification for 
comprehensive information: 

▪ [J1] M.2 Key M connector for high speed NVMe storage. 
• To reach it, you must detach the combined module and thermal solution. 

▪ [J2] Power available for peripherals is limited to power supply capability (65W from 
included power supply) minus developer kit system power usage (maximum of 30W 
in default configuration). 

▪ [J4] Slot accepts either an SD Card or a UFS card. 

▪ [J6] PCIe x16 connector routes to a x8 PCIe 4.0 controller. 

▪ [J6] This connector is also where the lanes are connected for SLVS cameras. 

▪ [J501] Micro-USB connector provides access to the UART console. 

For example, you can access the serial console of the developer kit from a 

terminal emulator on a computer connected to this micro-USB port. 

▪ [J504] HDMI 2.0. 

▪ [J505] M.2 Key E connector can be used for wireless networking cards, and includes 

interfaces for PCIe (x1), USB 2.0, UART, I2S & I2C. 
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▪ [J507] Hybrid connector can be used for either eSATA or USB3 Type-A. The eSATA 

connector can supply 5V. 

▪ [J509] Camera connector supports up to six directly connected cameras via CSI-2, or 

up to 16 cameras via the virtual channel feature of CSI-2. 

▪ [J512, J513] USB Type-C connectors. 

• J512 can be used to flash the developer kit. 

• Either connector can be used to power the developer kit from USB Type-C power 
supplies listed in Jetson AGX Xavier Supported Component List. 

• Both connectors support DisplayPort, so you can run three displays at once 
byusing these plus the HDMI adapter. 

 
 

2.3.3 Cameras 
We have identified, evaluated, and narrowed down all components 
required in perception, to be utilized for development of autonomous 
perception stack. We have selected the cameras appropriate for safe 
and efficient operation with consideration to eliminate all blind spots for 
the vehicle to be aware of its surroundings. An arrangement of six 
cameras will be used to model the prototype vehicle, which include 
Stereo cameras for depth perception, fish-eye cameras for wide field of 
view, and high-speed cameras for object detection, and semantic 
segmentation. The details for selected cameras are provided below: 

 
Table 30. Description of Cameras 

 

Camera Name Camera 
Placement 

View Camera Model 

 
 
 

MYNT Eye S 

 
 

Front and Back 
Stereo 
Camera 

 
 
 
122 deg 

 

Global Shutter 
High Speed 

120fps CS Mount 
Varifocal 5- 

50mm UVC Plug 
Play Driverless 
USB Camera 

with Mini Case 

 

 
ont 5-50mm Lens: CS 

Mount Varifocal 

High-FPS Camera 

 
 
 

80-100 

deg 

 

 
 

 

The Stereo Camera provides accurate depth sensing with a flexible 
range between 0.5 to 18 meters. It has optimized performance in normal 
light conditions or low light conditions and precision with a wide field of 
view. The Fish-Eye lens camera covers the entire side view and 
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supports the other cameras, leaving very little blind spot. The full-scale 
arrangement of cameras and resulting field of view is shown: 

 
Figure 131. Arrangement of Cameras (Full-scale) 

 
 

Figure 132. Arrangement of Cameras (zoomed in) 

 

The stereo camera is coupled with a six axis IMU combined with frame 
synchronization which provide accuracy at less than one millisecond. 
Complete package with SDK is simple to integrate providing easy 
development and quick integration with the depth data created through 
the EYE S sensor. 

 

 

Figure 133. Benchmark Performance of MYNT Eye S camera (depth sensing) 
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CHAPTER 3: Image Processing 

 
3.1 Pre-Processing 

 
The images cannot be use directly by the CNN. With intelligent use of pre-

processing techniques over images collected, it can benefit us and easily solve 

the problem.  Image preprocessing is just like normalizing in the mathematical 

data set which is one of main steps required for any type of feature description 

methods. Raw images need to be directly enhanced for the use of training 

purposes using the computer vision techniques. 

 

 

3.1.1 Color conversion of image 

An image consists of three levels of a single image. The three levels are based 

upon the three primary colors Red, Blue and Green. In processing an image, 

one must cater for all the three levels individually. This makes the processing 

more difficult. All the three levels have range of 256 shades having additive 

same level color. Grayscale image contains the intensity information of an 

image. It has different shades of gray in it that range from 0-255. The feeblest 

intensity is of black while that of white is the strongest. It has only one level, so 

the image is easy for the processing as only 2D image matrix is to be 

processed instead of 3D. 

For every value of a pixel there are 3 channels in an image having color and 

intensity information. The corresponding Grayscale pixel is found out by the 

pixel value for all the 3 channels and the formula given for the conversion to 

grayscale intensity (I) value is, 

I = 0.299R + 0.587G + 0.144B 
 
The OpenCV imports an image in BGR format but as we want to convert it into 

RGB so we have to use cv2.Color_BGR2RGB (), than it can convert the image 

from RGB to gray directly from its’ inbuilt function cv2.Color_RGB2GRAY () that 

will give the input image as a gray image. This will help the training model for 
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img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 

img = cv2.equalizeHist(img) 

img = cv2.equalizeHist(img) 

efficient predictions. OpenCV has many features that are oriented basically for 

image processing purposes. Instead of writing a code for every pixel they have 

made it easier by their in-built function. In the same way one may re-convert it 

to RGB image. 

 

 

3.1.2 Equalizing an Image 

Histogram Equalization, as the name suggests, stretches the histogram to fill 

the dynamic range and at the same time tries to keep the histogram uniform. 

By doing this, the resultant image will have an appearance of high contrast and 

exhibits a large variety of grey tones. Hence to standardize the lighting and 

improve contrasts we equalize our grayscale images. 

 
 

3.1.2 Reshaping Images 

After images are equalized, we reshape our images using built in function of Numpy. 

 

 

3.1.2 Data Augmentation 

Next, we augment our images to make them more generic. Data Augmentation 

is a technique of creating new data from existing data by applying some 

transformations such as flips, rotate at a various angle, shifts, zooms and many 

more. Training the neural network on more data leads to achieving higher 

accuracy. In real-world problem, we may have limited data. Therefore, data 

augmentation is often used to increase train dataset. We have used 

ImageDataGenerator() class function to use a range of transformations. 
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CHAPTER 4: Camera Calibration 

 
4.1   Camera Geometry and Image Formation 

Stereo Vision is one of the passive ways to 3D reconstruct a scene, which uses 

two simultaneous images of a same scene, with cameras in a displaced 

position with respect to each other. The basic intuition of the technique is such 

that similar objects in both images are displaced due to camera displacement, 

the displacement of the objects is inversely proportional to the distance of the 

object from the scene. Disparity of both objects in the scene is used for 3D re-

projection. 

 

𝟏 
𝒅 ∝ 

𝑫 

Where d is the distance of the object, and D is the disparity of the object. 

 
To understand the stereo reconstruction, we will look into camera geometry, 

projective transformation, and stereo geometry. 

4.1.1 Pinhole Camera Model 
 
 

Figure 4: Pinhole Camera Model 
 

The above image shows basic pinhole camera model, all the rays from the 

point in space converge towards the camera center, and the imaging plane 

where the image will be formed is between the point and the camera center. In 

this pinhole model, any point 𝑿 = (𝑿, 𝒀, 𝒁) in space is mapped to a point in 

imaging plane where the ray from X to C intersects the image plane namely𝒙' = 

(𝒙, 𝒚). By similarity of triangles, we can find the relation: 
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The center at which all rays intersect is also known as optical center. The line 

from the optical center perpendicular to the image plane is called principal axis 

and the point where the principal axis intersects the image plane is called 

principal point. 

 

4.1.2 Central Projection as Linear Mapping using Homogeneous Co-ordinates 

In projective geometry, we often work with homogenous coordinates, which is a 

way to represent vectors with one additional dimension. If we have a point 𝑿 = 

(𝒙, 𝒚, 𝒛) in Cartesian co-ordinate system then the same point using 

homogenous coordinates will be 

𝑿 = (𝒙, 𝒚, 𝒛, 𝟏) or the point 𝑿 = (𝑿, 𝒀, 𝒁, 𝑾) in homogenous coordinates will be 

the point 𝑿 = (𝑿/𝑾, 𝒀/𝑾, 𝒁/𝑾) in Cartesian coordinates. Homogenous 

coordinates allow us to represent quantities at infinity using finite numbers, as 

this becomes very useful in projective geometry where we have to deal with 

points and lines at infinity. 

Now if we use homogenous coordinates, the transformation can be linearly described 
as: 

 

𝑿 𝒇𝑿 𝒇 𝟎 𝟎 𝟎 
𝑿

 
(𝒀) ↦ (𝒇𝒀) =  [𝟎 𝒇 𝟎 𝟎] (

𝒀
) 𝒐𝒓 𝒔𝒊𝒎𝒑𝒍𝒚 𝒙 = 𝑷𝑿 

𝒁 

𝟏 𝒁 𝟎 𝟎 𝟏 𝟎 
𝒁

 
𝟏 

 

Where P is the projection matrix, x is the three-dimensional image point in 

homogenous coordinates and X is the four-dimensional world point in 

homogenous coordinates. 

4.1.3 Principal Point Offset 

In the first initial derivation, we assumed camera center to be aligned with 

image center, but there is case where there is a translation of image center 

with respect to camera center. 
 

Figure 5 
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4.1.4 Rotation and Translation of camera 

It may happen that the world co-ordinate system may not align with the camera 

co- ordinate system, and generally, points in 3D are represented in world co-

ordinate system. Now if we have a point 𝑿 = (𝑿𝒘, 𝒀𝒘, 𝒁𝒘) in world coordinate 

system, the same point can be represented as 𝑿 = (𝑿𝒄, 𝒀𝒄, 𝒁𝒄) in camera 

coordinate system, the two systems are related to each other by a rotation and 

a translation matrix, as the camera may be displaced or its orientation may be 

different (yaw, pitch, roll), the transformation is given as: 
  

 

                                                                           

The transformation can be re-written as: 
 

                                                                             
 

       

 

 

            
 

Figure 6: Transformation between world coordinate system and camera coordinate system
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The complete camera transformation of a 3D point to an image point can be written as: 

𝒙 = 𝑲[𝑹 |𝒕]𝑿 
 
 
 

4.2 Camera Distortions 

The pinhole camera model is an ideal camera model, but in real life, the lens 

captures all the light rays, and due to the aperture of lens, there arise several 

distortions, two significant distortions that are relevant to our project are 

discussed below: 

4.2.1 Radial Distortions: 

This type of distortion arises due to bending of light rays at varied angles 

around the center and edges of the lens, thus giving the effect that straight 

lines in an image are no more parallel, but rather curved. Such distortions 

should be addressed before processing images for stereo reconstruction. 

4.2.2 Tangential Distortions: 

Such distortion arises when the camera lens is not properly aligned with 

respect to image sensor, thus giving a tilted or stretched effect, objects at the 

same distance seems to appear at varied distance. 

 

4.3 Camera calibration methodology  

As in 3D reconstruction, the first step is to know the perspective projection 

(camera projection). The purpose of camera calibration is to estimate the 

camera internal matrix, camera external matrix is different for each camera 

setting, thus the goal of single camera calibration is to estimate camera 

internal matrix, it also allows us to estimate coefficients for distortions that 

were discussed in chapter 3, the distortion coefficients will be later used in 

the pipeline to undistort the images. The method OpenCV employ and we 

used to calibrate camera is to capture pictures of a known pattern or object 

whose dimensions are known and such as CHESSBOARD pattern that will 

be used. We can arbitrarily assign 3D coordinates to the corners of 

CHESSBOARD pattern and also easily locate the pixel location of those 

corners in the images. Hence, we have 3D points and corresponding image 

points available, thus we estimate our camera parameters. 
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Figure 14: Chessboard Pattern defining 3D world coordinates 

 

We define our 3D world coordinate system by arbitrarily assigning origin to the top left 

of the CHESSBOARD, and since the CHESSBOARD is planar hence for every point 

on CHESSBOARD, we arbitrarily assign Z=0, and we can easily assign X, Y 

coordinates to the corners as they are all equally spaced. The CHESSBOARD 

pattern is widely used because the corners have high gradient in both directions and 

can easily be localized with high accuracy. 
 

 

 

Figure 15: Detected Corners in CHESSBOARD pattern 

 

 

The next step in camera calibration is to take several pictures of the CHESSBOARD 

pattern at varied angles, as the algorithm follows iterative approach to estimate 

camera parameters, at least around 11 images are required for optimum calibration. 

For every input image, corner points are detected which are the image points and the 

corresponding object points are known, we get an estimate of internal matrix 𝑲, and a 

relative rotation and translation matrix for every images. As discussed in the previous 

chapter that there are some distortions due to the aperture of the lens, the calibration 

also estimates parameters for distortions. 
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CHAPTER 5:  

Lane Detection for Autonomous steering 
 

There are several approaches utilized for the detection on lane lines which are either 
based on computer vision approach or deep learning-based approach. 

 

 

5.1  Computer Vision Approach 
5.1.1 Introduction 

 

Lane detection and tracking is one of integral aspects for the operation of a vehicle 

within a constrained space. The lanes are useful for the guidance of both humans 
and the autonomous vehicle to drive on the road. The control system effectiveness is 
directly influenced by the efficiency of the lane tracking algorithm, along with the 
execution time. The computer vision-based approach is effective in constrained 
environment, with good lane visibility and predetermination of the illumination 
conditions to design appropriate thresholding parameters. This approach is fast in 
terms of execution time and relied primarily on vanishing point detection using canny 
edge detectors and Hough transforms, or perspective detectors which project the 
road in a birds-eye- view form and quadratic equations, or splines are fit to these 
lines on the image pixels to determine curvature of the road and a measure of offset 
from the center of the road. The initial step is the camera calibration, which is 
achieved using a checkboard grid of size 6x9, which is printed on an A4 sheet, and 
the camera matrices are determined. A calib file is created from these observations 
which is used to undistort any incoming camera images. The calibration process is 
performed using MATLAB camera calibration toolbox with multiple images of the 
checkboard takes as dataset. 

 

5.1.1 Used methods 

 
• Perspective Transform 

 

The next step in the process is perspective transform. In this project, we have the 
camera at the car that has the front-view perspective. This perspective has provides 
a lot of problem during the lane detection, First lane detection with front- view 
perspective bring the lots of error to our vision and we see the all lanes in the images 
the converge to one point at the end of the roads; this is cause of our vision system 
that try to transform a 3D space into a 2D space so this error of view decrease our 
performance in the detection of the lane and cause of error in our detection. 
Therefore, with implementing the perspective transform, lanes of the image will be 
seen parallel, and we do not have any convergence of the road in any parts of the 
lane. Furthermore, perspective transform helps us to concentrate on the region of 
interest instead of whole the image. In transform perspective we immigrate our vision 
from front view to the eye-bird view, so this perspective helps us to delete 
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unnecessary part of the image and focus on the lane region. Hence, perspective 
transform reduces our error and reprocess step for preparing the image for analyzing. 
For implementing this technique, we need to choose the 4 points in the output of the 
transform region. by doing this our input point will be warped to the new coordination 
at the output, for instance, in straight line we choose two points on each lane as input 
of image and the output will be imagine where image would be parallel; At the end 
with inverse perspective transform we draw the lane on the original image or video 
frames. After perspective transform, we should binarize our image and masking the 
interested region to extract both yellow and white lane, for reaching this purpose we 
convert our color space from RGB to the HSL to have better performance in 
distinguishing the lanes from other regions. Afterward, we are masking the images for 
yellow color and combine it with the masking of white lane and combine both of this 
with these with our extractors of edges to have robust lane at the end we will find our 
lanes based on the peaks of the histogram. 

 

 

    
 
Fig.. The results of image after implementing the perspective transform, edge detect results 
and histogram 

 
• Polynomial fitting 

 

The next step in lane detection after perspective transform is the polynomial fitting, 
we should fit second order polynomial for both sides of the roads and for reaching 
this purpose we should follow these steps. The first and important thing is calculating 
the bottom half of the image and partitioning the image into several horizontal slices, 
this slice has the performance like the searching method around their given scopes. 
For finding the interested object in the images we start from the bottom slice and find 
the pixels that is has similar feature to the lane of the road, specially we are finding 
the region has the whitest pixel in horizontal coordination. Afterwards we iterate this 
step vertically to segments of the image in vertical sides, after this traverse, in both x 
and y direction for whole of the slice windows, we are fitting these points with the 
polynomial functions. For implementing this scenario to the video, we have the 
temporal correlation between video, so in this condition if our proposed algorithm 
cannot find the lane features in specific frame in the video, it easily skips that frame 
and postpone it to the next frames; Therefore, these techniques can improve the 
computation time of the process. hence, to have algorithmic perspective from the 
method we explain it as follow, Calculate a histogram of the bottom half of the image, 
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Partition the image into 9 horizontal slices Starting from the bottom slice in the image, 
this slice size is 200 pixel wide window around the left peak and right peak of the 
histogram we repeat this way up to the horizontal window slices to find pixels that are 
similar to be part of the left and right lanes. 
The results for lane detection in our environment are shown below: 

 

Figure 151. Lane Detection Process and Perspective transform 

 

 
 

                                                                          Figure: Results of lane detection 
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Figure: Results on Lahore Canal Road 

 

 

5.2 Deep Learning Approach 
 

The deep learning-based approach is an efficient tool for detection of multi-lane lines as opposed to only 
single lane lines detected by the computer vision algorithms. Deep learning models are trained on 
several readily available datasets such as CUlane and the benchmark is tested for efficient performance 
for detection of lane lines. 
This approach has the ability to generalize on the data – adapt to newly encounter lane markings, and 
invariance to the scaling and rotation of lane, which could be present anywhere on the image, and 
predicts the lane boundary equations for multi-lane tracking. However, this approach is computationally 
expensive and could lead to higher utilization of memory due to large size of models, rendering the 
effectiveness to be degraded due to large computational loads, and compromised run-time 
performance. An approach proposed by Z. Qin et. in the paper “Ultra-Fast Structure-aware Deep Lane 
Detection” proposes a highly efficient real-time implementation on deep learning approach which has 
been implemented using Tensor-RT allowing effective utilization of resources and overall good results 
on test datasets. 
 

 
 

Figure: Results of lane detection 
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CHAPTER 6 : 

Traffic Signs & Light Detections 
 

6.1 Introduction  

The detection and recognition of traffic lights is one of the most important components of any 
autonomous vehicle. Outdoor perception is a major difficulty for driver-assisted and 
autonomous vehicles, as the machine cannot recognize traffic signals, road signs, 
obstructions, and other objects in the direction of motion unless it is taught to do so. 
Autonomous vehicles must be able to detect traffic signals and recognize their present 
condition, whereas humans can quickly recognize the relevant traffic signals. The detection 
and recognition of traffic lights must be integrated with the autonomous car's CPU (which 
controls the vehicle), resulting in the resolution of the traffic signal alignment issue. Obstacle 
detection also necessitates the use of a solution. Machine learning's Open CV2 module is 
effective in resolving traffic-related issues. 

 

6.2 Traffic Sign Recognition Using Yolo V4 

1. YOLO V4 

 
For traffic sign detection, a Yolo based localization algorithm was used and a dark net based 
classification algorithm was implemented. The weights of the traffic sign classification were 
trained on Google Colab, with test data to validate the performance of the model. Turkish 
traffic signs dataset was used for train purposes. 

2. Why we went for YOLO V4. 

 
• YOLO IS A REGRESSION BASED ALGORITHM 

 
It will predict the classes and bounding boxes for the entire image at once. This makes 

detection faster than classification algorithms. One of the BEST regression-based algorithms 

is YOLO (“You Only Look Once“) 

 

• VERY FAST 

 
It is an efficient and powerful object detection model that enables anyone with a GPU to 

train a super fast and accurate object detector. Light and faster version: YOLO is having a 

smaller architecture version called Tiny-YOLO which can work at higher framerate (155 

https://pjreddie.com/darknet/yolo/
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frames per sec) with less accuracy compared to the actual model. 

• THE YOLO OBJECT DETECTION IS FREE AND OPENSOURCE 

YOLO ALGORITHM IS POPULAR DUE TO ITS REAL-TIME OBJECT DETECTION 

CAPABILITY 

 
The network understands a generalized object representation making the real- world image 

prediction fairly accurate. 

 

• COMPARED WITH THE PREVIOUS YOLOV3, YOLOV4 HAS THE FOLLOWING 

ADVANTAGES: 

 
It is an efficient and powerful object detection model that enables anyone with a 1080 Ti or 

2080 Ti GPU to train a super fast and accurate object detector. The influence of state-of-

the-art “Bag-of-Freebies” and “Bag-of-Specials” object detection methods during detector 

training has been verified. The modified state-of-the-art methods, including CBN (Cross-

iteration batch normalization), PAN (Path aggregation network), etc., are now more efficient 

and suitable for single GPU training. 

 

3. Dataset 

 
We used TTSDB (Turkish Traffic Sign Detection Benchmark) preprocessed it  

bring it into YOLO format. We uploaded the prepared dataset in our directory and 

then downloaded it for training. 

 

4. Training with Google Collab 

 
For training YOLO V4 for traffic sign recognition we again went for GOOGLE 

COLAB which is a Jupiter notebook environment that runs completely on a cloud. 

5. Setting up DARKNET Environment 

 
There are very few implementations of the YOLO algorithm that exists on the web. The 

Darknet is one such open-source neural network framework written in C and CUDA and 

https://pjreddie.com/darknet/
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serves as the basis of YOLO. It is fast, easy to install, and supports CPU and GPU 

computation. Darknet is used as the framework for training YOLO, meaning it sets the 

architecture of the network. The first author of Darknet is the author of YOLO itself (J 

Redmon). Darknet_for_colab is a darknet folder which was modified specifically to adapt 

with Colab environment (no MAKEFILE change necessary). Repository for DARKNET 

was cloned, downloaded, and compiled. 

 

6. Modifying YOLO V4 architecture 

 
Taking the advantage of the direct python editing feature on Colab, we defined training 

parameters just by double click on yolov4_config.py and editing. For example, we set 

classes=4 (our traffic sign dataset has 4 classes), max_batches=8000 (number of 

training iterations), batch=64 (number of samples in one batch), subdivisions=16 

(number of mini_batches in one batch), etc. 

 

https://pjreddie.com/
https://pjreddie.com/
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7. Creating YOLO V4 backup weights in Drive 

 

6.3 Training with YOLO V4 

 
We used yolov4_setup.py, a python script which automatically generates YOLOv4 

architecture config files (yolov4_custom_train.cfg and yolov4_custom_test.cfg) based 

on user-input parameters in yolov4_config.py. 
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• Visualizing training results 

 
We initially defined max_batches=8000, but both accuracy and loss 

from training result did not improve much after 2000 iterations as can be 

seen from the graph. 

 

 

Figure 37 Accuracy map of training result 
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         Figure: Results of traffic sign 

 

 
          Figure: Results of traffic light 
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CHAPTER 7: Object Detection 
 

7.1 introduction 
Object detection is a computer vision technique that allows us to identify and locate objects in 
an image or video. With this kind of identification and localization, object detection can be used 
to count objects in a scene and determine and track their precise locations, all while accurately 
labeling them. 

7.2 MODES AND TYPES OF OBJECT DETECTION 

Broadly speaking, object detection can be broken down into machine learning-based 
approaches and deep learning-based approaches. 

 

In more traditional ML-based approaches, computer vision techniques are used to look at 
various features of an image, such as the color histogram or edges, to identify groups of pixels 
that may belong to an object. These features are then fed into a regression model that predicts 
the location of the object along with its label. 

 

On the other hand, deep learning-based approaches employ convolutional neural networks 
(CNNs) to perform end-to-end, unsupervised object detection, in which features don’t need to 
be defined and extracted separately. For a gentle introduction to CNNs, check out this 
overview. 

 

Because deep learning methods have become the state-of-the-art approaches to object 
detection, these are the techniques we’ll be focusing on for the purposes of this guide. 

7.3 Basic working structure 
Deep learning-based object detection models typically have two parts. An encoder takes an 
image as input and runs it through a series of blocks and layers that learn to extract statistical 
features used to locate and label objects. Outputs from the encoder are then passed to a 
decoder, which predicts bounding boxes and labels for each object. 

 

The simplest decoder is a pure regressor. The regressor is connected to the output of the 
encoder and predicts the location and size of each bounding box directly. The output of the 
model is the X, Y coordinate pair for the object and its extent in the image. Though simple, this 
type of model is limited. You need to specify the number of boxes ahead of time. If your image 
has two dogs, but your model was only designed to detect a single object, one will go 
unlabeled. However, if you know the number of objects you need to predict in each image 
ahead of time, pure regressor-based models may be a good option. 

 

An extension of the regressor approach is a region proposal network. In this decoder, the 
model proposes regions of an image where it believes an object might reside. The pixels 
belonging to these regions are then fed into a classification subnetwork to determine a label (or 
reject the proposal). It then runs the pixels containing those regions through a classification 
network. The benefit of this method is a more accurate, flexible model that can propose 
arbitrary numbers of regions that may contain a bounding box. The added accuracy, though, 
comes at the cost of computational efficiency. 
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7.4 Results  

 

 
Results of object detection on canal road 
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CHAPTER 8: 3D Object Detection 

 
8.1. Introduction 

3D object detection is a fundamental requirement of localization of static 

and dynamic obstacles in an environment, and a crucial engineering problem 

for autonomous vehicles and mobile robots. The algorithm processes the image 

obtained through stereo cameras as estimates the depth of the scene by 

triangulation using to the pin-hole camera model as a reference. The use of 

binocular setup is generally much cheaper, and it is preferred for low-cost 

operation for autonomous vehicles. The framework that is used for the purpose 

of object detection is YOLOStereo3D . It is a lightweight one-stage stereo 3D 

detection network. To efficiently produce powerful stereo features, the pixel-

wise correlation is reintroduced to construct the cost- volume, rather than 

concatenation of features. The inference pipeline from one-stage monocular 3D 

detection into stereo 3D detection is used during inference. YOLOStereo3D 

produces competitive results on the KITTI 3D benchmark during inference on 

stereo images and with an inference time of less than 0.1 seconds per frame. 

The neural network architecture of YOLOStereo3D is shown below: 

 

 
Figure 77. 3D Object Detection Convolution Neural Network Architecture 

 

Data augmentation is useful to improve the generalization ability in 

deep learning applications. However, the nature of stereo 3D detection 
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limits the number of possible augmentation choices. Photometric distortion 

is concurrently applied on binocular images. This improves feature 

matching, and the inference pipeline is optimized with multi-scale 

correlation. 

8.2. Training Scheme and Loss Function 
During the training process the stereo feature map is fed into a 

decoder to predict a disparity map trained with an auxiliary loss. The 

auxiliary loss can regularize the training process. The network may not be 

guided to produce local features useful in stereo matching to fully utilize 

the geometric potential of binocular images, and the network could be 

trapped in a local minimum like that of a monocular detection network. The 

focal loss is applied on classification, and smoothed-L1 loss on bounding 

box regression. The expected distribution of disparity is computed with a 

hard-coded variance σ = 0.5: 

 

8.3. Inference of Yolo3D object Detection 
The inference of Yolo3DStereo Object Detection is performed on 

Nvidia Jetson Xavier, with an inference time of 0.3 seconds. The code 

is modified to create an inference node from the available test code 

such that the python code takes real-time feed from the camera instead 

of loading the images from database. The output of the inference node 

is shown below indicating the position of the vehicle bounded by 3D 

boxes. The output of the 3D object detection is passed to the 

behavioral planner for planning of feasible trajectories. 

 

 
Figure 78. 3D Object Detection Inference 



49  

× × 

 

CHAPTER 9: Depth Estimation 

 
9.1. Monocular Camera using deep learning Approach 

9.1.1. INTRODUCTION 

 Depth sensing is essential to many robotic tasks, including mapping, localization, 
and obstacle avoidance. Existing depth sensors (e.g., LiDARs, structured-light 
sensors, etc.) are typically bulky, heavy, and have high power consumption. These 
limitations make them unsuitable for small robotic platforms (e.g., micro aerial and 
mini ground vehicles), which motivates depth estimation using a monocular camera, 
due to its low cost, compact size, and high energy efficiency. 

9.1.2. EMPLOYED METHODOLOGY  

The current state-of-the-art depth estimation algorithms rely on deep learning based 
methods, and while these achieve significant improvement in accuracy, they do so at 
the cost of increased computational complexity. 

Our approach employs MobileNet  as an encoder and nearest neighbor interpolation 
with depth wise separable convolution in the decoder. We apply state-of- the-art 
network pruning, NetAdapt and use the TVM compiler stack  to further reduce 
inference runtime on a target platform. We show that our low latency network design, 
Fast Depth, can perform real-time depth estimation on the NVIDIA Jetson AGX 
Xavier operating at over 120 frames per second (fps). The Architecture diagram is 
given as :  

 

 
Fig. 2: Proposed network architecture. Dimensions of intermediate feature maps are given as height width # channels. Arrows 
from encoding layers to decoding layers denote additive (rather than concatenative) skip connections. 

 

 

9.1.3. INFERENCE  
 

  

 

Figure: Result of Deep learning Approach 
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9.2. Stereo Camera using computer vision Approach 

The flow diagram is given as: 

 

 
 

After doing camera calibration as described earlier, we will do Stereo Rectification. 

 

• Stereo Rectification:  

there are several alternatives in OpenCV for rectification task, for example we 

can use stereo calibrate function to calibrate cameras and recover relative 

pose between cameras and then estimate fundamental matrix, through which 

we can get rectification maps to rectify images. But stereo calibrate method 

was not working well with our setups as it was not a dedicated stereo setup, 

hence we followed another approach, we detected key points in left and right 

images and based on those key points we recover the pose of two cameras 

relative to each other also on the basis of matched key points we can estimate 

essential matrix as well, when we have our R and t pose matrices and essential 

matrix, fundamental matrix can be recovered. SIFT descriptors were used to 

detect correspondence points in both images. Having all the matrices we can 

make rectification maps in order to rectify images, the images are passed 

through rectification maps, and we get our rectified images. The functions used 

in the rectification pipelines were cv2.recoverPose, cv2.findEssentialMatrix, 

cv2.stereoRectify, cv2.initUndistortRectifyMaps, cv2.remap. 

The function parameters and their input and output can be known from 
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OpenCV documentation. 

The rectification can destroy images if the setup is not accurately aligned, 

hence many trials were done for rectification as the hardware is not dedicated, 

and some of the rectification results will be displayed in the results heading at 

the end of the chapter. 

 

 
▪ Calculating Disparity Map 

After we have obtained our rectified images, now we are at the stage to 

compute disparities of the object in the two images, OpenCV provides several 

functions to estimate disparity out of which two are the most popular 

cv2.stereoBM and cv2.stereoSGBM. Now both functions apply some version of 

block matching algorithm, we used cv2.stereoSGBM for block matching which 

is the implementation of semi global matching algorithm. There are lot of tuning 

parameters for this function; it is worth to mention the description of some. 

Cv2.StereoSGBM function parameters: 

NumDisparities: The parameter defines disparity value’s range. The range is 

calculated from minimum disparity to maximum disparity, the value should be 

the multiple of 16, increasing disparity range increases accuracy of depth map. 

blockSize: Window size for block matching for stereo correspondence. 
 

PreFilterType: Parameter to define any filter that is applied before image is 

processed to calculate disparity. 

A point to know that is that block-matching algorithm returns a 16-bit signed 

single channel image with disparity values scaled by 16. Thus, to calculate the 

actual disparity value division by 16 is necessary. It is also necessary to 

understand that function does not returns depth map rather the disparity, which 

is the relative displacement of the object in the two scenes. The map obtained 

will be very noisy, because a matching is done and the map to be passed 

through filter in order to smooth the transition and fill the untextured regions. In 

order to smooth the disparity map, we used the implementation of WLS 

(weighted least square) filter, for disparity smoothing in OpenCV. 

Cv2.createDisparityWLSFilter takes input the actual object of StereoSGBM. 

Note the disparity we calculated is respect to the left image but for filtering 

using WLS filter, we need a disparity map with respect to right image as well. 

Hence, we first computed right disparities using cv2.createRightMatcher, and 

pass all the arguments to WLS filter object to filter the map. 

▪ Reprojection from depth map 

Now we can use the disparity map and the transformation of the form given 

below to move from disparity to depth map. 
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𝑥 − 𝑥' = 𝐵𝑓/𝑍, where x and x’ are the correspondence points in the left and right 

image respectively, B is the base line and f is the focal length, the parameter to 

estimates is Z. Note we are too optimistic about all the parameters in the above 

equation, the baseline can be fixed but the focal length of two cameras can 

differ from each other in that case the equation does not hold and we have to 

apply the approximation using SSD in order to estimate the optimum focal 

length. However, we tried initial formula that gave us satisfactory results. 

 

 

 

 
Figure: Result using stereo camera 
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CHAPTER 10: Hardware Optimization 
10.1. Tensor Rt 

10.1.1. Overview:  
 One of the perpetual problems of deep neural networks is figuring out the speed of 

learning and optimizing it which is often hit and trial. NVIDIA TensorRT is an SDK for 
high-performance deep learning inference. It includes a deep learning inference 
optimizer and runtime that delivers low latency and high throughput for deep learning 
inference applications. 

 

TensorRT-based applications perform up to 40X faster than CPU-only platforms during 
inference. With TensorRT, you can optimize neural network models trained in all major 
frameworks, calibrate for lower precision with high accuracy, and deploy to hyper-scale 
data centers, embedded, or automotive product platforms. 

 

TensorRT is built on CUDA, NVIDIA’s parallel programming model, and enables you to 
optimize inference leveraging libraries, development tools, and technologies in CUDA-X 
for artificial intelligence, autonomous machines, high-performance computing, and 
graphics. With new NVIDIA Ampere Architecture GPUs, TensorRT also leverages sparse 
tensor cores providing an additional performance boost. 

 

TensorRT provides INT8 and FP16 optimizations for production deployments of deep 
learning inference applications such as video streaming, speech recognition, 
recommendation, fraud detection, and natural language processing. Reduced precision 
inference significantly reduces application latency, which is a requirement for many real-
time services, as well as autonomous and embedded applications. 
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10.2. ONNX  

The end result of a trained deep learning algorithm is a model file that efficiently represents 

the relationship between input data and output predictions. A neural network is one of the 

most powerful ways to generate these predictive models but can be difficult to build into 

production systems. Most often, these models exist in a data format such as a .pth file or an 

HD5 file. Oftentimes you want these models to be portable so that you can deploy them in 

environments that might be different than where you initially trained the model. 

 

10.1.2. Overview 
At a high level, ONNX is designed to allow framework interoperability. There are many 

excellent machine learning libraries in various languages — PyTorch, TensorFlow, MXNet, 

and Caffe are just a few that have become very popular in recent years, but there are 

many others as well. 

The idea is that you can train a model with one tool stack and then deploy it using another 

for inference and prediction. To ensure this interoperability you must export your model in 

the model.onnx format which is serialized representation of the model in a protobuf file. 

Currently there is native support in ONNX for PyTorch, CNTK, MXNet, and Caffe2 but 

there are also converters for TensorFlow and CoreML. 

                                             

10.1.3. ONNX in Practice 

Let’s imagine that you want to train a model to predict if a food item in your refrigerator is 

still good to eat. You decide to run a bunch of photos of food that is at various stages past 

its expiration date and pass it into a convolutional neural network (CNN) that looks at 

images of food and trains it to predict if the food is still edible. 

Once you have trained your model, you then want to deploy it to a new iOS app so that 

anyone can use your pre-trained model to check their own food for safety. You initially 

trained your model using PyTorch but iOS expects to use CoreML to be used inside the 
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app. ONNX is an intermediary representation of your model that lets you easily go from 

one environment to the next. 

Using PyTorch you would normally export your model using 

torch.save(the_model.state_dict(), PATH)  

Exporting to the ONNX interchange format is just one more line: 

torch.onnx.export(model, dummy_input, 'SplitModel.proto', verbose=True) 

Using a tool like ONNX-CoreML, you can now easily turn your pre-trained model in to a 

file that you can import in to XCode and integrate seamlessly with your app. 

10.1.4. Conclusion 

As more and more deep learning frameworks emerge and workflows become more 

advanced, the need for portability is more important than ever. ONNX is a powerful and 

open standard for preventing framework lock-in and ensuring that you the models you 

develop will be usable in the long run. 
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CHAPTER 11: Robotic Operating System 

(ROS) 

 
11.1. Overview:  

It is an open-source robotics middleware suite. Although ROS is not an operating system (OS) 
but a set of software frameworks for robot software development, it provides services designed 
for a heterogeneous computer cluster such as hardware abstraction, low-level device control, 
implementation of commonly used functionality, message-passing between processes, and 
package management. Running sets of ROS-based processes are represented in 
a graph architecture where processing takes place in nodes that may receive, post, 
and multiplex sensor data, control, state, planning, actuator, and other messages. Despite the 
importance of reactivity and low latency in robot control, ROS is not a real-time operating 
system (RTOS). However, it is possible to integrate ROS with real-time code. 
Software in the ROS Ecosystem can be separated into three groups: 

• language-and platform-independent tools used for building and distributing ROS-based 
software. 

• ROS client library implementations such as roscpp, rospy, and roslisp. 

• packages containing application-related code which uses one or more ROS client 
libraries. 

  
Both the language-independent tools and the main client libraries (C++, Python, and Lisp) are 
released under the terms of the BSD license, and as such are open-source software and free 
for both commercial and research use. The majority of other packages are licensed under a 
variety of open-source licenses. These other packages implement commonly used functionality 
and applications such as hardware drivers, robot models, datatypes, 
planning, perception, simultaneous localization and mapping, simulation tools, and other 
algorithms. 
The main ROS client libraries are geared toward a Unix-like system, primarily because of their 
dependence on large collections of open-source software dependencies. For these client 
libraries, Ubuntu Linux is listed as "Supported" while other variants such as Fedora 
Linux, macOS, and Microsoft Windows are designated "experimental" and are supported by the 
community. The native Java ROS client library, rosjava, however, does not share these 
limitations and has enabled ROS-based software to be written for the Android OS. rosjava has 
also enabled ROS to be integrated into an officially supported MATLAB toolbox which can be 
used on Linux, macOS, and Microsoft Windows. A JavaScript client library, roslibjs has also 
been developed which enables integration of software into a ROS system via any standards-
compliant web browser. 
 

11.2. Tools : 

ROS's core functionality is augmented by a variety of tools which allow developers to visualize 
and record data, easily navigate the ROS package structures, and create scripts automating 
complex configuration and setup processes. The addition of these tools greatly increases the 
abilities of systems using ROS by simplifying and providing solutions to a number of common 
robotics development problems. These tools are provided in packages like any other algorithm, 
but rather than providing implementations of hardware drivers or algorithms for various robotic 
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tasks, these packages provide task and robot-agnostic tools which come with the core of most 
modern ROS installations. 

11.2.1. rviz 

It is a three-dimensional visualizer used to visualize robots, the environments they work in, and 
sensor data. It is a highly configurable tool, with many different types of visualizations and 
plugins. 

11.2.2. rosbag 

It is a command line tool used to record and playback ROS message data. rosbag uses a file 
format called bags,[71] which log ROS messages by listening to topics and recording 
messages as they come in. Playing messages back from a bag is largely the same as having 
the original nodes which produced the data in the ROS computation graph, making bags a 
useful tool for recording data to be used in later development. While rosbag is a command line 
only tool, rqt_bag provides a GUI interface to rosbag. 

11.2.3. catkin 

It is the ROS build system, having replaced rosbuild  as of ROS Groovy. catkin is based 
on CMake, and is similarly cross-platform, open-source, and language-independent. 

11.2.4. rosbash 

The rosbash package provides a suite of tools which augment the functionality of the bash 
shell. These tools include rosls, roscd, and roscp, which replicate the functionalities of ls, cd, 
and cp respectively. The ROS versions of these tools allow users to use ros package names in 
place of the file path where the package is located. The package also adds tab-completion to 
most ROS utilities, and includes rosed, which edits a given file with the chosen default text 
editor, as well rosrun, which runs executables in ROS packages. rosbash supports the same 
functionalities for zsh and tcsh, to a lesser extent. 

11.2.5. roslaunch 

It is a tool used to launch multiple ROS nodes both locally and remotely, as well as setting 
parameters on the ROS parameter server. roslaunch configuration files, which are written 
using XML can easily automate a complex startup and configuration process into a single 
command. roslaunch scripts can include other roslaunch scripts, launch nodes on specific 
machines, and even restart processes which die during execution. 
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For monocular camera 

 
 

YOLO traffic sign 

 
 

YOLO traffic light 

 
 

For Stereo Camera 

 
 

 

Conclusion  
The main task was implementation of perception stack in real time. We faced a number of issues in doing 

that because a large number of available algorithms work for images and does not give real time results 

i.e. very low fps(frames per second are obtained).So optimization of available algorithms was required 

for real time implementation. We have tested different algorithms with a number of parameters and 

choose the one best suitable to our requirements. The state of the art algorithm of YOLO was optimized 

using ONNX and TensorRT giving us 25 to 30 fps in object detection which was just giving 1 to 2 fps 

before optimization. Finally all our  algorithms for object detection, traffic signs, light detection, lane 

detection and depth estimation working realtime. 
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