

i

NUST COLLEGE OF

 ELECTRICAL AND MECHANICAL ENGINEERING

Decentralized Machine Learning

A PROJECT REPORT

DE-40 (DEE)

 Submitted by

NC Haris Ghafoor

PC Awais Asghar

NC Malik Haseeb Haider

NC Haziq Ajam Malik

 BACHELORS

 IN

ELECTRICAL ENGINEERING

 YEAR 2022

PROJECT SUPERVISOR

Dr. Shahzor Ahmad

NUST COLLEGE OF ELECTRICAL AND MECHANICAL ENGINEERING,

PESHAWAR ROAD, RAWALPINDI

D
E

-4
0
(D

E
E

)
Y

E
A

R
 2

0
2
2

ii

Dedication

This project is dedicated to our parents, their efforts and all the prayers were with us

during the project. It is also dedicated to our teachers and all the technical staff who really

helped us for the completion of this project.

iii

Certificate of approval

It is to certify that the project ―Decentralized Machine Learning‖ was done by NC Haris

Ghafoor, PC Awais Asghar, NC Malik Haseeb Haider, NC Haziq Anjum Malik under the

supervision of Dr. Shahzor Ahmed.

This project is submitted to Department of Electrical Engineering, College of Electrical

and Mechanical Engineering (Peshawar Road Rawalpindi), National University of

Sciences and Technology, Pakistan in partial fulfillment of requirements for the degree of

Bachelors of Engineering in Electrical engineering.

Students:

1- Awais Asghar

NUST ID: _____28079_________________ Signature:

2- Haris Ghafoor

NUST ID: _____264474_________________ Signature:

3- Malik Haseeb Haider

NUST ID: ______244931________________ Signature:

4- Haziq Anjum Malik

NUST ID: ______258714________________ Signature:

APPROVED BY:

Project Supervisor: Dr. Shahzor Ahmad Date:

iv

Declaration

We hereby declare that no portion of the work referred to in this Project Thesis has been

submitted in support of an application for another degree or qualification of this of any

other university or other institute of learning. If any act of plagiarism is found, we are

fully responsible for every disciplinary action taken against us depending upon the

seriousness of the proven offense, even the cancellation of our degree.

5- Awais Asghar

NUST ID: _____28079_________________ Signature:

6- Haris Ghafoor

NUST ID: _____264474_________________ Signature:

7- Malik Haseeb Haider

NUST ID: ______244931________________ Signature:

8- Haziq Anjum Malik

NUST ID: ______258714________________ Signature:

vi

Copyright statement

● Copyright in the text of this thesis rests with the student author. Copies (by any

process) either in full, or of extracts, may be made only in accordance with

instructions given by the author and lodged in the Library of NUST College of

E&ME. Details may be obtained by the Librarian. This page must form part of

any such copies made. Further copies (by any process) of copies made in

accordance with such instructions may not be made without the permission (in

writing) of the author.

● The ownership of any intellectual property rights which may be described in this

thesis is vested in NUST College of E&ME, subject to any prior agreement to the

contrary, and may not be made available for use by third parties without the

written permission of the College of E&ME, which will prescribe the terms and

conditions of any such agreement.

● Further information on the conditions under which disclosures and exploitation

may take place is available from the Library of NUST College of E&ME,

Rawalpindi.

viii

Acknowledgements

It is a great pleasure to write a report acknowledging efforts of many people whose names

may not appear on the title page, but their hard work, friendship, cooperation, and

understanding were with us to the production of this report.

 Here we would like to mention the support and guidance given by our supervisor Dr.

Shahzor Ahmed. His availability and prompt responses to our issues aided us in

successfully finishing this job. Our department (Department of Electrical Engineering) is

responsible for enabling us to complete this project and produce outcomes.

ix

Table of Contents

Dedication .. ii

Certificate of approval ..iii

Declaration .. iv

Copyright statement .. vi

Acknowledgements ...viii

Abstract .. 1

Introduction .. 2

Literature Review... 4

What is Federated Learning? ... 4

Machine learning that protects your privacy ... 4

Federated Learning vs Distributed Machine Learning .. 5

Federated Learning vs Edge Computing .. 6

Federated Learning vs Federated Database System ... 6

DECENTRALIZED DEEP LEARNING: ... 6

Multi-Access Edge Computing .. 6

Data Privacy and Decentralized Deep Learning .. 7

Federated Learning from a Network System Perspective.. 8

Cross-functionality framework: ... 8

Client Selection Policy:.. 9

Synchronism: ... 9

Aggregation: .. 9

Deep Learning Models:.. 10

Client Server Network Security: .. 10

Privacy of Federated Learning: .. 10

Secure Multi-party Computation (SMC): .. 11

Differential Privacy:... 11

x

Privacy-preserving machine learning: ... 12

Methodology .. 13

Federated Averaging .. 13

Embedded systems & Edge ML: ... 15

Experimentation ... 17

TensorFlow‘s FedAvg and Limitations: .. 17

The Centralized Model‘s Performance: ... 20

Distributing Data to Nodes: ... 21

Parameters of the main model are sent to nodes .. 22

Federated main model vs. individual local models before 1st iteration (on distributed

test set) ... 22

Decentralized Machine Learning On Boston Housing Dataset: 24

server_aggregation() .. 27

Testing and Evaluation Results:... 29

Comparison of Centralized Model vs Decentralized Model 30

Decentralized Machine Learning on MNIST Dataset: .. 30

Testing and Evaluation Results:... 31

Comparison of Centralized Model vs. Decentralized Model 32

Future Work ... 33

Data incompleteness: ... 33

Data polarity... 33

Conclusion ... 35

References .. 36

Appendices ... 37

A: Generic Client‘s Code ... 37

xi

Lists of Figures

Figure 1: Jetson Nano 4 GB RAM ... 16

Figure 2: EMNIST Dataset's Visualization ... 18

Figure 3: Insight of EMNIST Data .. 18

Figure 4: Accuracy Table Before Ist Iteration ... 23

Figure 5: Accuracy Table after Ist Iteration ... 23

Figure 6: Mse and Mae on Test data .. 25

Figure 7: Testing of DML on Boston Housing Dataset ... 29

Figure 8: Testing of DML on EMNIST Dataset .. 31

1

Abstract

Decentralized Machine Learning is the distributed training of an ML model on more than

one device. It reduces the computational load on a device by distributing the centralized

training models over many devices. Distributed training models, in contrast to centralized

systems, utilize local datasets in a distributed network to ensure the confidentiality of user

data. Large datasets boost accuracy, according to research, but training them takes a long

time and a lot of computational power. As a result, decentralized machine learning is

advantageous for applications that demand huge datasets, such as 3D scene generation,

high image classification, and so on. There are two aspects of the problem: (1) Deploying

ML models on edge devices and (2) distributed training of ML models. So our initial

approach is to assume that both data and model are centralized and we need to

decentralize the model by distributing the data across each device. Each device will be

trained individually and will compute the model gradients. These gradients will be

aggregated by the master/central server. The results of this approach were not satisfying

as we observed disappointing results. After reviewing the recent work, we are working on

devising the algorithm which will assign some initial weights to each client‘s gradients.

Our initial investigation is that these effects impact the results strongly due to bias-

shuffling of samples while distributing the dataset among the client/devices. So we can

sum up the required research and development process as it involves (1) sending of the

distributed datasets to the local devices (2) parallel training of each device using local

datasets and (3) updating the hyper-parameters of local training models using dynamic

model averaging.

2

Introduction

Since 2016, artificial intelligence (AI) has progressed massively. We've seen the great

potential of AI since it defeated the world's best human Go players, and more

complicated, cutting-edge AI technology has become the norm in a range of areas, like

autonomous automobiles, medical care, and finance, among others. AI is now being used

in practically every sector of life.

However, when we look back on the evolution of AI, it is obvious that there have been

some ups and downs. Will AI see another downturn? When will it appear, and why will it

appear? The present public interest in AI is fueled in part by the availability of Big Data.

Using a total of 300,000 games as training data, AlphaGo obtained good results. People

instinctively expect that large data-driven Intelligence like Games will soon be realized in

many facets of our life as a result of AlphaGo's success. However, Because most

industries have limited or no data, we underestimated the complexity of AI technology..

Can we synthesize data from different companies in a single location? In many instances,

breaking down the barriers between data sources is extremely difficult, if not impossible.

In general, any AI project will require a variety of data kinds.

In a product suggestion service powered by AI, for example, the supplier of the service

possesses product information and data, but no information about the user's purchasing

skills or payment habits. In most sectors, data is distributed locally in data centers.

Sometimes data transformation across different departments in the same firm confronts

substantial opposition due to market rivalry, privacy concerns, and complicated and

expensive administrative regulations. It is either impossible or unreasonably expensive to

integrate data from across the regions and organizations. Cyber-security has become a

global concern as large organizations become more aware of the hazards of

compromising the protection of data. The issue of data leaks has sparked widespread

concern in the media and among governments. As a result, governments around the world

are enacting new regulations to protect data security and privacy. The European Union's

General Data Protection Regulation (GDPR) provides an example. GDPR is designed to

safeguard users' personal information and data security. It compels businesses to use clear

3

and unambiguous language in their user agreements, and it gives users the "right to be

forgotten," which allows them to remove and delete their personal data. Organizations

that violate the law will face penalties.

 For example, both China's Cybersecurity Law and General Principles of Civil Law state

that Online businesses should not release or start messing with private information they

collect, and when undertaking data communications with private entities, they must

always ensure that one‗s main strategic planning meets the requirements with legitimate

data security commitments [1].

 These constraints will surely contribute to the development of more civil society, but

they will also pose new challenges for The data transaction techniques that are currently

used in AI. To be more specific, basic data transaction models are often used in

traditional AI data processing models, in which one party gathers and sends data to

another, with the latter party performing the clearing and integration of data.

Consequently, private entities will use the stored data to create models that will be used

by other parties. Models are typically finished items that are sold as a service. With the

new data restrictions and laws mentioned above, this old approach confronts obstacles.

Furthermore, because consumers may be unsure about the models' future uses, the

transactions may be in violation of rules. We are faced with a conundrum in which our

information is recorded in the form of isolated islands, but we are prohibited from

collecting, fusing, and using the data in multiple places for AI processing in many

instances. Today's AI researchers have a significant challenge in determining how to

lawfully address data fragmentation and isolation. In this post, we'll look at a unique

perspective called federated learning, which has the solution to these problems.

Federated learning is a well-known distributed learning framework that was created for

edge devices. It allows an individual‘s data to remain local while taking advantage of

sizable processing provided by edge devices. In each federated, or communication, round,

the purpose is to learn a shared model by alternating the following: Clients conduct

numerous local changes after receiving a model from a server, while a server aggregates

models from a subset of clients. Because DML systems often contain millions of edge

devices, unknown diversity from multiple groups, restricted on-device capability,

dynamic memory deployments, and inadequately annotated datasets, they are extremely

hard to design [2] .

4

Literature Review

What is Federated Learning?

Define N data owners {F1, ...FN }, all of whom wish to train a machine learning model

by consolidating their respective data {D1, ...DN }. A conventional method is to put all

data together and use D = D1 ∪ ... ∪ DN to train a model . A federated learning

system is a learning

process in which the data owners collaboratively train a model . In addition, it is

expected that the performance of , and the performance of , denoted as

 should be very close. Let‘s assume that δ be a positive real number, if | −

|< δ , it can be called the accuracy loss of the model [2].

Federated learning enables multiple parties to collaboratively construct a machine

learning model while keeping their private training data private. As a novel technology,

federated learning has several threads of originality, some of which are rooted in existing

fields.

 Machine learning that protects your privacy

Federated learning and cross confidentiality machine learning are deeply linked because it

is decentralized collaborative machine learning with privacy preservation. There has been

a lot of research done in this field previously. For vertically segmented datasets, Vaidya

and Clifton proposed protected association mining rules, secure k-means, and the

Bayesian Classifier. An algorithm for data association rules with horizontal partitions.

Algorithms for vertically and horizontally partitioned data are built using Secure Support

Vector Machines. Multi-party linear regression and classification protocols that are

secure. Multi-party gradient descent methods that are secure.

All of the following works used secure multi-party computing to ensure anonymity.

Nikolaenko et al. used homomorphic encryption and Yao's garbled circuits to create a

privacy-preserving linear regression protocol for horizontally partitioned data, as well as a

linear regression technique for vertically partitioned data. These technologies provided a

direct solution to the linear regression problem. They demonstrated privacy-preserving

5

algorithms for logistic regression and neural networks, as well as using Stochastic

Gradient Descent to solve the challenge. A follow-up project with a three-server setup

was just completed.

Aono et al. suggested a homomorphic encryption-based safe logistic regression algorithm.

Shokri and Shmatikov proposed using updated parameters to train neural networks with

horizontally partitioned data. To protect the privacy of gradients and improve the system's

security, use additively homomorphic encryption. With recent advancements in deep

learning, secured neural network inference is attracting a lot of study attention [3].

Federated Learning vs Distributed Machine Learning

Horizontal federated learning appears to be comparable to distributed machine learning at

first glance. Many areas of distributed machine learning are covered, including

decentralized training storage space, distributed computing activities, and so on and

distributed delivery of model results, among others. In distributed machine learning, a

parameter server is a common component.

 And to increase the speed of the training process and train the model more efficiently, the

data is stored on multiple operating machines via the parameter server and it distributes

data and computational resources through the master or central server. The data owner is

represented by the working node in horizontally federated learning.

It has complete control over its local data and has the ability to decide when and how to

engage in distributed learning. Federated learning encounters a more difficult learning

environment since the central node frequently takes control of the parameter server.

Second, during the model training process, federated learning prioritizes the data owner's

privacy in the future, and effective data privacy protection measures will be better able to

cope with a regulatory environment that is becoming increasingly strict in terms of data

security and protection. Federated learning, like distributed machine learning, will have to

deal with non-IID data[6]. In, it was shown that federated learning performance can be

considerably degraded when using non-IID local data. In response, the authors proposed a

novel strategy for dealing with the problem, comparable to transfer learning.

6

Federated Learning vs Edge Computing

Federated learning,provides an invaluable mechanism for privacy and synchronization,

can be thought of as an operating system for computing at the edge. A broad category of

gradient-descent algorithms is used to train machine learning models. From a theoretical

standpoint, they investigate the decentralized stochastic gradient efficiency bound and

offer a control algorithm that calculates to minimize the loss function within a given

resource budget; it's important to achieve the correct balance between local updates and

parametric modeling aggregation.

Federated Learning vs Federated Database System

Federated Database Systems are systems that administer the entire system by combining

many database components. The federated database idea is used to enable interoperability

with several databases. In a federated database system, database units are frequently

stored in distributed storage and in reality, the data within every storage entity is

heterogeneous. It shares many characteristics with federated learning in terms of data

kind and storage. However, in the process of connecting with one another, there are no

privacy protection methods in place in the federated database system,and the information

system has total access to all separable datasets.Additionally, the distributed dbms

concentrates on fundamental data activities like adding, removing, querying, and

integrating, whereas distributed learning's aim is to construct a collaborative framework

for each data owner built on the idea of preserving confidentiality, so that the data's

diverse rights and regulations can benefit us.

DECENTRALIZED DEEP LEARNING:

Multi-Access Edge Computing

According to a Nokia annual report, the amount of telecommunications Internet - of -

things and essential Internet of things devices, like Augmented reality technology, Virtual

reality technology, and virtualized robotic systems, will greatly expand. Similarly, the

number of huge IoT devices, such as various types of meters and sensors, is expected to

skyrocket. Artificial Intelligence (AI) will be used to operate the majority of these

devices. In wireless communications, Artificial Intelligence has been employed to

7

optimize edge services for the Internet of Vehicles (IoV) and other appealing collective

intelligence applications. Traditionally, data created on a smart device is transferred to an

external processing server for processing.

Though 5G seeks to provide better connectivity for a variety of devices as well as a

significant increase in the speed with which large amounts of data can be handled, there is

still a need for more coverage to allow for efficient data processing. As a result,

combining MEC technology with latency reduction is preferable.

Data Privacy and Decentralized Deep Learning

A probabilistic model for storing information, the perceptron mathematical model is used.

Because of the multi-layer perceptron, neural networks are a more practical alternative to

traditional statistical modeling techniques.

 Deep learning (DL) is a technique for learning input representations at multiple levels of

abstraction using computer models with multiple processing layers. Convolutional neural

networks (CNNs), recurrent neural networks (RNNs), and other deep learning (DL)

models have been developed and are now widely used in a variety of fields.

Distributed data processing topologies can be divided into two categories:

● centralized DL

● decentralized DL

A centralized model takes data from a range of resources and employs a central powerful

computational capability to attain the expected performance of the model. In this

situation, the acquired data is typically accessible to a cloud-based AI system. A

distributed approach is considered a confidentiality architecture since it uses local model

training based on heterogeneous datasets on limited capability devices like mobile-

phones

The decentralized structure has spread throughout academia and industry since its

inception. Li et al. developed a stable, adaptable, and high-performance implementation

of the parameter server architecture, able to handle a variety of decentralized machine

learning approaches based on local data sets. Furthermore, federated learning (FL), which

was first proposed by Google to improve the performance of the Google Keyboard

8

(Gboard) in next word prediction, has become one of the most well-known decentralized

frameworks in recent years. FL's architecture lets users fully utilize an AI algorithm

without revealing their original local training data, thereby bridging the gap between

centralized computer resources and dispersed data sources. By employing a globally

shared model, FL achieves superior model parameters.

A completely decentralized machine learning framework, on the other hand, capable of

adapting to server-less systems based on blockchains, edge consensus, and ad hoc

networks. Swarm Learning (SL), for example, is a decentralized strategy for diagnosing

diseases with dispersed medical data that integrates edge computing, peer-to-peer sharing

on the smart contracts

The centralized data processing of a standard DL pipeline raises issues about data

privacy, necessitating further thought into privacy-preserving system architecture and

data security techniques. To that aim, the decentralized framework offers a viable data

privacy solution for large-scale multi-agent collaborative learning. Industrial Io,

environmental monitoring with a variety of sensors, from video surveillance to

automation, social behavior is observe,. connected autonomous vehicle control, as well as

multi-party decentralized network attacks detecting, for example, can all benefit from

massively decentralized nodes [8].

Federated Learning from a Network System Perspective

Cross-functionality framework:

In FL's cross-silo configuration, data is acquired for computation, and locally resided data

is sent to an internal edge server. In this process, a remote the server which is higher level

is used to perform additional calculations. Within business, the Data is visible to all

clients, but not to that outside of it. Healthcare institutions, for example, may use this

approach to communicate medical photos in order to diagnose a rare disease. In this

scenario, the cross-silo setup allows the institutes to share disease-related findings while

maintaining data security. A cross-device setting, on the other hand, is a more stringent

scenario in which data should not be allowed to leave a device. It demands effective on-

device computation and model manner, transmission manner transmission to a remote

server directly [3][10].

9

Client Selection Policy:

To reduce waiting time, at the end of each cycle, the Parametric Processor chooses a

limited set of k out of m clients randomly for training the localized model and transmits

the current global model w to a selected client.

The Client selection procedures are also used to lower the time cost of global model

convergence, cluster-based selection, and reinforcement learning-based selection are two

examples of this type of selection.

Synchronism:

We can categorize the scheduling of clients as:

● Synchronous FL

● Asynchronous FL.

 Before going on to the next cycle in synchronous FL, the PS waits for all allotted local

training to be finished. Because of large datasets, computing hardware restrictions, and

other factors, the slowest local training task becomes the training bottleneck in this case.

On the other hand, the asynchronous FL provides the opportunity to clients to provide the

local updates to the central server during any instance of the process. A client can also

provide a wide range of services, such as local model training, network traffic transit, and

so on.

Aggregation:

In the next round's global model, the previously stated value of all local model updates'

aggregate results is used. Because the amount of local training data differs per client,

federated averaging (FedAvg) calculates a weighted average to update the global model

(the contribution is varying) [2].

10

Where wt is the current global model's weights, wt+1 is the next round's updated global

model's weights, w is the client's trained local model's weights, and ni and nk are the

volume of the client's local training data and the total training data from all the selected

clients, respectively.

 Furthermore, strong aggregation algorithms compare local model changes for similarity

in order to detect a fraudulent update. At each round, only qualified updates are

aggregated into the global model, based on the integrity of a local update.

Deep Learning Models:

A supervised model is used in the majority of current FL research and implementations,

in which the model is trained using labeled data for a classification goal. In practice,

obtained data is frequently unlabeled, making a supervised model incompatible. Deep

learning models like unsupervised learning and reinforcement learning have received

little attention in the context of FL. For a robotics reinforcement problem, a global agent

could, for example, use FL to learn various action policies from multiple settings at the

same time.

Client Server Network Security:

As a network system, FL is challenged by three system components: the parameter server,

the client, and the transmission method. In comparison to edge devices, the PS is usually

adequately guarded and regularly maintained. Furthermore, end-to-end encryption is

typically used to protect communication between the PS and a client.

 Even if a client's integrity is certified in order for them to participate in FL training, an

edge still faces incursion from an adversary because its local defense methods are

relatively insufficient. The adversary has a large attack surface to compromise the

systems because all clients in FL have equal access to the global model via the aggregated

model broadcast at each round. As a result, we believe the primary threat to FL systems is

a compromised edge.

Privacy of Federated Learning:

11

The privacy aspect of federated learning is one of its most important features. To give

significant privacy guarantees, security models and analysis are required. This section

examines and compares alternative privacy solutions for federated learning, as well as

ways to limit indirect leakage and potential obstacles.

Secure Multi-party Computation (SMC):

Different individuals are inherently involved in SMC security mechanisms that give

secure proof with a well modeling tool with 100% having no idea. That implies every

participant just understands its very own inputs. Although nil is a good quality, it

typically requires complex computer techniques that are time-consuming to perform. In

certain cases, limited information exchange could be appropriate if security requirements

are met. In return for efficiency, it is to make sure to construct a secure model with SMC

that has reduced security criteria. Recently, research employing two servers and semi-

honest assumptions employed the SMC framework to train machine learning models.

Users can train and verify models using MPC protocols without revealing sensitive data.

One of the most advanced SMC frameworks on the market is Share Mind. With a 3-PC

model and a true majority, consider security under both semi-honest and malevolent

assumptions. Non-colluding servers must share participant data in secret in order for these

projects to succeed.

Differential Privacy:

Differential privacy or k-anonymity approaches are used in another line of work to

protect data privacy. Differential privacy, k-anonymity, and diversification approaches

entail introducing noise to the data or utilizing generalization methods to conceal certain

critical qualities until a third party cannot recognize the individual, rendering the data

unrecoverable and thereby protecting the user's privacy. The foundation of these methods

still necessitates the transmission of data to a third party, and this effort frequently entails

a trade-off between accuracy and privacy. A federated learning strategy that uses

differential privacy to secure client-side data by masking clients' involvement during

training.

12

 Homomorphic Encryption:

Homomorphic Encryption is also used to secure client data privacy during machine

learning by encrypting parameter exchange. Both the information and the models are not

transferred in differential information privacy, whereas they can be inferred by other

groups' data. There is a low risk of data leaking at the raw data level. Recently,

homomorphic encryption has been used to centralize and train data on the cloud. In

reality, Homomorphic Encryption is widely employed, yet ML algorithms need

polynomial estimates to assess non-linear functions, which leads to inefficiency and

security exchange.

Indirect information leakage:

There is no guarantee of security, and exposing intermediate results like weight updates

from an optimization technique like SGD may actually release vital data information

when combined with a data structure like image pixels. They also discussed numerous

countermelodies, demonstrating that they may determine membership and qualities

associated with a section of the training data from an antagonistic player, possibly

security risk linked to gradient interactions between different parties.

 Privacy-preserving machine learning:

Distributed learning is closely connected to multi-party confidentiality learning

algorithms, as it is a decentralized collaboration of machine learning which supports

security. techniques to establish a secure inter tree structure for diagonally split data.

Secret techniques are utilized for multiple linear regression supervised learning.

Techniques of inter stochastic gradients that are safe.

Federated learning allows numerous parties to work together to build a machine learning

model while maintaining the privacy of their training data. Federated learning, as a new

technology, contains various original threads, some of which are founded in established

domains. Shokri and Shmatikov proposed using updated parameters to train neural

networks with horizontally partitioned data. To protect the privacy of gradients and

improve the system's security, use additively homomorphic encryption. With recent

developments in deep learning, privacy-preserving algorithms are now possible.

13

Methodology

Federated Averaging

There are many custom server aggregation algorithms available on TensorFlow. The main

idea of server aggregation is to provide the aggregated weights which optimizes the local

models. We can categorize the aggregation as:

● Applying Weighted Average when the locally distributed datasets are not identical

in size or their datasets do not have balanced labels of all the classes. Those clients

are given more importance who contribute more samples in the dataset. While

other clients are multiplied by less than or equal to 0.5 coefficients to balance out

the averaging [2].

● Applying Simple Averaging when the locally datasets are IID and balanced. It can

be seen in the next chapter that these aggregated weights help local models to

reach global minima.

Techniques in distributed optimizing, in particular, should deal with datasets that have the

essential specifications:

• Massively Distributed: Large nodes K, are used to store sets of data. The node,

in particular, can be considerably more than the mean amount of training data kept on

each node (n/K).

• Non-IID: Every node's information could come from a unique distribution; in

other words, the data points available locally tend unlikely to be a random sample of the

total distribution.

 • Unbalanced: The amount of training set held by various nodes might vary by

orders of magnitude.

Sparsity data, where some attributes only appear on a tiny subset of nodes or data points,

is of special relevance. While it was not a required feature of the federated optimization

setup, we will demonstrate how the sparse framework may be utilized to design an

efficient federated optimization method. It's important to note that the data produced by

the major deep learning challenge presently being solved — predicting ad select rates —

14

is quite scarce.We're especially interested inside the situation wherein users' training data

is stored on their smartphones and the data is highly confidential. This information xi, yi

is created as a result of technology usage, such as application engagement. Identifying a

next phrase a client will write (linguistic modeling for intelligent keyboard applications),

forecasting what photographs a client would be most inclined to share, and forecasting

which alerts are most essential all are instances of predictive analytics.To build these

models utilizing typical distributed techniques, the training samples would've been

collected at a centralized place (cloud server) then jumbled and spread evenly between

different computing nodes. They suggest and investigate a different approach in which

the training data really aren't delivered to a centralized place, possibly conserving

network traffic and enhancing privacy and security.Clients agree to give up part of their

product's computational power in return for the model's training. We transmit an update R

d to a main system every round inside the communication system we utilize, whereby d is

the dimensionality of the models getting approximated. As an instance, this updating may

be a gradient vector. Although it is feasible for the may include significant confidential

data about the user in some apps, it's indeed expected to be much less critical (and orders

of magnitude less) than the source data. Think about the situation when the original

training data consists of a vast collection of video recordings stored on a smartphone. Its

feature's length will be unchanged by the size of the local training sample set. They

demonstrate that even a globally model may be trained with only a few communication

cycles, which decreases the network bandwidth required for training by orders of

magnitude when comparing to transferring the information to a central. Because remote

access may be restricted in a widely dispersed context, communication restrictions occur

automatically . As a result, in practical settings, individuals may only be able to

communicate once every day. Companies possess nearly infinite local processing

capacity within tolerable constraints. As a result, the only practicable goal is to reduce the

variety of communication cycles [7] . The work's major goal is to launch start

investigation on distributed optimization and create the first effective application. Our

results indicate that, also with right optimization techniques, n't yet getting an IID part of

the data usable causes very little loss, and even with many nodes, we could still

accomplish integration in some few cycles of communication. Google revealed recently

that this notion has been implemented under one of their programmes, which has over

500 million users.

15

Embedded systems & Edge ML:

Any piece of technology that regulates transmission of data just at the interface between

two connections is referred to as an edge device. Regardless of the type of equipment,

edge devices offer a range of functions, but they always act as network entrance — or exit

— points. The transfer, transit, computing, observation, screening, translating, and

storage of data moving through networks are all key tasks of edge devices. Organizations

and service companies employ edge devices.

Edge Machine Learning (Edge ML) is a method of decreasing dependency on Cloud

platforms by allowing the Significance Of having to analyze data locally (either utilizing

local servers or at the device level) using machine and deep learning techniques. The

word "edge" relates to both deep- and machine-learning techniques, which analyze data at

the device's or local level (closest to the components collecting the data). Edge devices

can transmit data to the Cloud as necessary, however, allowing users to handle certain

data locally enables collected data while also enabling real-time data processing.

The research makes more use of the NVIDIA Jetson Nano component. As a result, the

work's long-term viability is improved, and it may function on a real - time basis. All

components of the Jetson Nano card box are shown in the diagram following. Along with

software Etcher, the picture generated for Jetson Nano, which can be found on NVIDIA's

official website,This images makes the CUDA and cuDNN libraries for Ubuntu Linux as

well as NVIDIA products for the ARM64 processor available for usage.The deep learning

model's data preparations should be completed following installing and operating the sd

card on the Jetson Nano card. The which was before the set of data of the model to be

trained was uploaded on to Jetson Nano card via USB stick after preceding installations

have indeed been completed. Following this stage, any model may be executed with the

supplied data set and the model's training process can begin. It can also be used with a

pre-programmed model card [4] [9].

16

Figure 1: Jetson Nano 4 GB RAM

17

Experimentation

In this section, we will discuss the details of the experiments performed. Our work can be

divided into three parts:

● Implementation of FedAvg using TensorFlow and Comparison of results

obtained by Tensor flow’s API and our own decentralized model.

● Implementation of DML on different client‘s dataset

● Application on Boston Housing Dataset and EMNIST Dataset.

TensorFlow’s FedAvg and Limitations:

Researchers have used traditional MNIST training examples within that investigation to

implement TFF's Federated Learning (FL) Application layer, tff. learning - a collection of

relatively high integrations which can be used to function basic forms of federated

instructional strategies, including federated training, against client specific models in

TensorFlow. A federated training dataset, or data gathered from several users, is required

for federated learning. Non-i.i.d. data is common with federated data, which presents a

distinct set of issues. We populated our TFF library with some datasets to assist testing,

along with a distributed update of MNIST, which includes a copy of the old MNIST data

which has been re-processed utilizing Leaf such that the information is encrypted by the

unique writer of the digits. Because each user does have a distinct style, this dataset

demonstrates the non-IID behavior that federated datasets are known for. Distributed data

is often non-i.d., and users' data distribution varies based on their usage habits. Certain

users may well have fewer training sets on the devices due to a lack of data available,

whilst others would have more than enough. Let's take a look at the notion of being in a

federated system through using the EMNIST information we possess. It's essential to

remember that this in-depth study of a customer's information is only available to us since

we're in a simulation model with all the information at hand. In a real-world federated

setup, inside an actual federated configuration, we will not be able to validate the data of

a specific customer.

To begin, we took a sample of data from one user to have a feeling for such instances on a

single imagined device. The input of one user reflects the handwritten of one individual

for a sampling of the numbers 0 to 9, imitating the specific "usage behavior" of one user,

because the dataset we're utilizing was keyed by a single writer.

18

Figure 2: EMNIST Dataset's Visualization

They should see how many instances each MNIST character labeling has on every client.

Depending on user activity, the number of instances on every server in a federated system

might vary significantly.

Figure 3: Insight of EMNIST Data

We compress all 28x28 photos to 784-element arrays, mix the various samples, sort these

into groups, rebrand the attributes from pixels to x and y that can be used with Keras, We

include a repetition over data in order to run many iterations.

19

NUM_CLIENTS = 10

NUM_EPOCHS = 5

BATCH_SIZE = 20

SHUFFLE_BUFFER = 100

PREFETCH_BUFFER = 10

def preprocess(dataset):

 def batch_format_fn(element):

 """Flatten a batch `pixels` and return the features as an

`OrderedDict`."""

 return collections.OrderedDict(

 x=tf.reshape(element['pixels'], [-1, 784]),

 y=tf.reshape(element['label'], [-1, 1]))

 return dataset.repeat(NUM_EPOCHS).shuffle(SHUFFLE_BUFFER,

seed=1).batch(

 BATCH_SIZE).map(batch_format_fn).prefetch(PREFETCH_BUFFER)

We've got practically all the pieces in place to put together federated datasets.

Some other way to supply federation information to TFF in a model is as a Py lists, with

each item carrying information about a specific client.

There must be two optimizers inside the Federated Averaging technique below:

● Client optimizer

● Server optimizer

The client optimizer is only used to calculate local model updates on each client. The

server optimizer updates the global model by aggregating now at server level. This means

that the optimization or learning rates you chose today can be different from what you

used to build the machine on a normal i.i.d. dataset.

20

iterative_process = tff.learning.build_federated_averaging_process(

 model_fn,

 client_optimizer_fn=lambda:

tf.keras.optimizers.SGD(learning_rate=0.02),

 server_optimizer_fn=lambda:

tf.keras.optimizers.SGD(learning_rate=1.0))

TFF aims to design algorithms in such a manner that they'll be performed in actual

federated learning situations, although at the moment, just localized implementation

simulator runtime is available. You can use a simulator to run a calculation by calling it

like a Python function. This basic interpretation runtime is not optimised for speed, but it

will work for this lesson; in future editions, we plan to provide greater simulated runtimes

to enable greater studies.

The Centralized Model’s Performance:

Even though the model in this instance is basic, there are a variety of ways to increase the

performance of a model, such as utilizing more powerful models, extending iterations, or

feature subset optimization. The objective is to compare the productivity of a dominant

model formed by combining the attributes of localized models trained on their own data

with an integrated process trained on all training data. This is how researchers can

understand much more about the potential of distributed learning.

------ Centralized Model ------

epoch: 1 | train accuracy: 0.8725 | test accuracy: 0.9479

epoch: 2 | train accuracy: 0.9572 | test accuracy: 0.9663

epoch: 3 | train accuracy: 0.9710 | test accuracy: 0.9713

epoch: 4 | train accuracy: 0.9780 | test accuracy: 0.9715

epoch: 5 | train accuracy: 0.9833 | test accuracy: 0.9725

epoch: 6 | train accuracy: 0.9864 | test accuracy: 0.9780

epoch: 7 | train accuracy: 0.9900 | test accuracy: 0.9762

epoch: 8 | train accuracy: 0.9923 | test accuracy: 0.9811

21

epoch: 9 | train accuracy: 0.9933 | test accuracy: 0.9791

epoch: 10 | train accuracy: 0.9950 | test accuracy: 0.9779

------ Training finished ------.

Distributing Data to Nodes:

abel_dict_train=split_and_shuffle_labels(y_data=y_train, seed=1,

amount=train_amount)

sample_dict_train=get_iid_subsamples_indices(label_dict=label_dict_train

, number_of_samples=number_of_samples, amount=train_amount)

x_train_dict, y_train_dict =

create_iid_subsamples(sample_dict=sample_dict_train, x_data=x_train,

y_data=y_train, x_name="x_train", y_name="y_train")

label_dict_valid = split_and_shuffle_labels(y_data=y_valid, seed=1,

amount=train_amount)

sample_dict_valid =

get_iid_subsamples_indices(label_dict=label_dict_valid,

number_of_samples=number_of_samples, amount=valid_amount)

x_valid_dict, y_valid_dict =

create_iid_subsamples(sample_dict=sample_dict_valid, x_data=x_valid,

y_data=y_valid, x_name="x_valid", y_name="y_valid")

label_dict_test = split_and_shuffle_labels(y_data=y_test, seed=1,

amount=test_amount)

sample_dict_test =

get_iid_subsamples_indices(label_dict=label_dict_test,

number_of_samples=number_of_samples, amount=test_amount)

x_test_dict, y_test_dict =

create_iid_subsamples(sample_dict=sample_dict_test, x_data=x_test,

y_data=y_test, x_name="x_test", y_name="y_test")

22

Parameters of the main model are sent to nodes

Every one of these variables would be unique from one another, but since the main

model's parameters and the parameters of all model parameters inside the nodes are

randomly initialized. As just a result, even before the training of model parameters in the

nodes starts, the primary model communicates its parameters to the nodes.

model_dict=send_main_model_to_nodes_and_update_model_dict(main_model,·m

odel_dict,·number_of_sampless

Federated main model vs. individual local models before 1st iteration

(on distributed test set)

The efficiency of the primary model is quite low because it is randomly initialized and

also no action has been done on it yet. Maybe use before acc table as just a guideline.

before_acc_table=compare_local_and_merged_model_performance(number_of_sa

mples=number_of_samples)

before_test_loss, before_test_accuracy = validation(main_model, test_dl,

main_criterion)

main_model=

set_averaged_weights_as_main_model_weights_and_update_main_model(main_mo

del,model_dict, number_of_samples)

after_acc_table=compare_local_and_merged_model_performance(number_of_sam

ples=number_of_samples)

after_test_loss, after_test_accuracy = validation(main_model, test_dl,

main_criterion)

23

Figure 4: Accuracy Table Before Ist Iteration

Figure 5: Accuracy Table after Ist Iteration

We may transfer these weights of the primary model back to the nodes & continue the

procedures above if that was a single iteration. And then see how the primary model's

performance increases once we run this cycle ten times more.

for i in range(10):

model_dict=send_main_model_to_nodes_and_update_model_dict(main_model,

model_dict, number_of_samples)

 start_train_end_node_process_without_print(number_of_samples)

 main_model=

set_averaged_weights_as_main_model_weights_and_update_main_model(main_mo

del,model_dict, number_of_samples)

 test_loss, test_accuracy = validation(main_model, test_dl,

main_criterion)

 print("Iteration", str(i+2), ": main_model accuracy on all test

data: {:7.4f}".format(test_accuracy))

24

Iteration 2: main_model accuracy on all test data: 0.8973

Iteration 3: main_model accuracy on all test data: 0.9098

Iteration 4: main_model accuracy on all test data: 0.9173

Iteration 5: main_model accuracy on all test data: 0.9231

Iteration 6: main_model accuracy on all test data: 0.9295

Iteration 7: main_model accuracy on all test data: 0.9348

Iteration 8: main_model accuracy on all test data: 0.9370

Iteration 9: main_model accuracy on all test data: 0.9393

Iteration 10: main_model accuracy on all test data: 0.9427

Iteration 11: main_model accuracy on all test data: 0.9441

The centralized model's efficiency was estimated to be around 98 percent. The accuracy

of the primary model developed using the FedAvg approach increased from 85% to 94

percent. For instance, regardless of the fact that the FedAvg technique's fundamental

model was developed without observing the data, its efficiency can really be dismissed.

Decentralized Machine Learning On Boston Housing Dataset:

Our approach that can be matched to the TensorFlow API produced these findings. This

dataset covers housing statistics gathered by us Census Service in the Boston,

Massachusetts region. It was obtained from the StatLib archive

(http://lib.stat.cmu.edu/datasets/boston) .Such analyses, though, were conducted mostly

outside Delve and are hence doubtful. With only 506 instances, the dataset is tiny.

Without spreading the dataset to any nodes, we generated a neural network for the entire

dataset.

We have to be mindful not to develop an extremely complicated model due to the

minimal quantity of supplied data in our dataset, since this might lead to generalizing our

data. For this, we'll use a Dense layer design with two Dense layers, one with 128 neurons

and the other with 64 neurons, all with Activation functions. The output layer is a dense

layer with linear activity. We used a mean square loss function to determine if our model

is effectively learning, and we will utilize the mean average error metric to quantify its

http://lib.stat.cmu.edu/datasets/boston

25

effectiveness. We could say we've got a maximum of 10,113 parameters utilizing Keras'

overview approach, which is fine for us.

from keras.models import Sequential

from keras.layers import Dense

model = Sequential()

model.add(Dense(128, input_shape=(13,), activation='relu',

name='dense_1'))

model.add(Dense(64, activation='relu', name='dense_2'))

model.add(Dense(1, activation='linear', name='dense_output'))

model.compile(optimizer='adam', loss='mse', metrics=['mae'])

 The results of the centralized model is as follows:

Figure 6: Mse and Mae on Test data

For the decentralized model, data was equally distributed to the available clients

according to an independent and identically distributed random distribution. The pipeline

of the project from the client‘s perspective is as follows:

● Step 1: Weights Initialization with count=0

● Step 2: Obtaining Weights and Sending them for Averaging

● Step 3: Waiting for until we pull the averaged weights

● Step 4: Setting the weights and fitting the model again

● Step 5: Repeat 2 to 4 until the model reaches the global minima or performance

cannot be performed.

These Following definitions will explain the functions used in the client code:

26

pre_processing(df):

Input: This function takes a raw dataset as an input. The DataType of the dataset is the

pandas DataFrame.

Output: The output is the processed or cleaned splitted training and testing lists which is

done by exploratory data analysis and statistical operations to remove outliers and

anomalies.

Objective: The main objective of this function is to clean the dataset which can be then

fed into the neural network for the training/inference.

Return Data Type: The return datatype of all the variables are listed.

unpickling_weights(filename):

Input: This function takes json‘s filename as an input.

Output: The output is the list of weights and biases received from the server.

Objective: The main objective of this function is to load the updated weights received

from the server.

Return Data Type: The return datatype is the list.

Training_evaluating(X_train,y_train,X_test,y_test,count,features,json1=None,model

_name=None,weight_file_name=None)

Input: This function takes training and testing lists.Moreover, it also takes in the count

value which is very important. The variable ‗feature‘ decides the 1st layer shape of the

neural network. And it also takes in updated weights jsons as an input.

Output: The output is just the printed variables like mae and maps or accuracy.

Objective: This function performs both training and evaluation for each round of

communication. When the value of count = 0, the model starts training using randomly

initialized weights. When the value of count >1, the model trains on the updated weights

received by the central server.

27

sending_models_and_weights(model,model_name,weight_file_name)

Input: This function takes multiple strings (filenames) and model architecture pickled in

the form of json.

Output: None

Objective: The main objective of this function is to send the locally updated weights to

the server after retraining the model.

Return Data Type: None

main_function(count)

Input: This function takes the value of count which describes the round of

communication between the local machine and the server.

Output: None

Objective: The main objective of this function is to train and evaluate the model using

local optimization and global updates.

Return Data Type: None

server_aggregation()

This function is implemented on the server and only called once it receives all the weights

from local devices. The important thing to note here is that here the dataset satisfies IID

properties so that we did not have to use weighted averaging.

Input: This function takes the local weights in form of h5/jsons.

Output: The output is the weights and biases in the form of jsons.

28

Objective: The main objective of this function is to aggregate the local weights so that

model can be optimized on a global dataset irrespective of the fact that it has not seen the

data from other local devices.

Return Data Type: Updated Weights and Bias lists .

def server_aggregation():

 model_1=load_model(filename='emnist_client1.json')

 model_1.load_weights('emnist_client1.h5')

 model_2=load_model(filename="emnist_client2.json")

 model_2.load_weights('emnist_client2.h5')

 model_3=load_model(filename="emnist_client3.json")

 model_3.load_weights('emnist_client3.h5')

 averages=[

[[np.mean(np.array([l1.get_weights()[0],l2.get_weights()[0],l3.get_weigh

ts()[0]]),axis=0)],[np.mean(np.array([l1.get_weights()[1],l2.get_weights

()[1],l3.get_weights()[1]]),axis=0)]] for l1,l2,l3 in

zip(model_1.layers,model_2.layers,model_3.layers)]

 weight=[i[0][0]for i in averages]

 bias=[i[1][0] for i in averages]

 # Saving the Updated Weights and Sending the updates to Clients

Models:

 ls_layer_1=[]

 ls_layer_1.append(weight[0]) # Weights of layer 1

 ls_layer_1.append(bias[0]) # Bias of layer1

 ls_layer_2=[]

 ls_layer_2.append(weight[1]) # Weights of layer 1

 ls_layer_2.append(bias[1]) # Bias of layer1

 ls_layer_3=[]

 ls_layer_3.append(weight[2]) # Weights of layer 1

 ls_layer_3.append(bias[2]) # Bias of layer1

29

 saving_updated_weights(ls_layer_1,ls_layer_2,ls_layer_3)

 return ls_layer_1,ls_layer_2,ls_layer_3,

Testing and Evaluation Results:

The above explained algorithm was applied on two decentralized clients. The results

obtained by clients are as expected and the final optimized models gave better results than

the centralized model. Following are the plots of the clients vs the round of

communication.

From the plot of client 1, it can be observed that the final mae is less than the mae of the

centralized model. While client 2 does not give as best results as obtained from the

centralized model, this is due to unique and random distribution of dataset and their

underlying unique patterns.

Figure 7: Testing of DML on Boston Housing Dataset

30

Comparison of Centralized Model vs Decentralized Model

These are the results which we obtained after the final round of communication.

Evaluation Metrics Centralized Model Client 1 of DML Client 2 of DML

Mean Absolute

Error

2.53 1.99 3.006

Mean Squared

Error

18.77 8.20 14.6

Time Elapsed 10s 4.56 s / round 3.77 s / rounds

Decentralized Machine Learning on MNIST Dataset:

The preceding chapter explains how DML was successfully implemented for a supervised

regression task. In this topic, we will discuss the implementation of DML for

classification problems and will compare the results as compared to the centralized

model. This DML script was tested for three available clients.

For starters, the EMNIST dataset is a collection of handwritten character digits extracted

from EMNIST Special Collection 19 and transformed to a 28x28 frame JPG format with

such dataset architecture identical to the MNIST dataset.

The deep neural network architecture is defined as:

model = Sequential()

 model.add(Dense(128, input_shape=(features,),

activation='sigmoid', name='dense_1'))

 model.add(Dense(64, activation='sigmoid',

name='dense_2'))

 model.add(Dense(10, activation='softmax',

31

name='dense_output'))

model.compile(optimizer='adam',loss='sparse_categorical_cros

sentropy',metrics=['accuracy'])

 model.fit(X_train, y_train, epochs=5)

 model.summary(

The rest of the pipeline is the same as it was in the case of regression. The sequences of

the steps are as follows:

● Step 1: Weights Initialization with count=0

● Step 2: Obtaining Weights and Sending them for Averaging

● Step 3: Waiting for until we pull the averaged weights

● Step 4: Setting the weights and fitting the model again

● Step 5: Repeat 2 to 4 until the model reaches the global minima or performance

cannot be improved further.

Testing and Evaluation Results:

The above explained algorithm was applied on three decentralized clients. The results

obtained by clients are as expected and the final optimized models gave better results than

the centralized model. Following are the plots of the clients vs. the round of

communication.

Figure 8: Testing of DML on EMNIST Dataset

32

Comparison of Centralized Model vs. Decentralized Model

These are the results which we obtained after the final round of communication.

Evaluation

Metrics

Centralized

Model

Client 1 of

DML

Client 2 of

DML

Client 3 of

DML

Accuracy 97 % 94 % 95 % 89 %

Time Elapsed 1 min 30 s / round 28 s / round 30 s / round

33

Future Work

In the above sections, we explained that our algorithm assumes that locally distributed

datasets are labeled in the form of X and Y where X is the training data while Y is the

label of training data. But we cannot ignore the fact that there might be scenarios where

data might not be available in the standard form due to many possible reasons. These

challenging scenarios arise from collection obligations and limited resources. For

example Medical Centers can easily use DML without sharing sensitive data of clients

but there might be medical centers who don't have the resources to label the data or

organize it in the standard form. So we need to explore the issues which deal with

partially labeled X. partially labeled Y and irregular X respectively.

Data incompleteness:

Clients can't see all of the realistic labels in many FL implementations. For example, a

medical facility may seek to employ FL to increase diagnostic performance while

avoiding the transmission of confidential documents from clinics located in remote

locations. Clinics, on the other hand, lack modern healthcare capabilities to categorize all

or most of the data. Some recent research on semi-supervised learning in a centralized

environment already has demonstrated the enormous possibilities of using unsupervised

learning. An actual case of special relevance among the partially-labeled FL setups is the

"fully unlabeled clients," yet the server may contain some labeled data. To return to the

scenario, a health center would have a few labels due to its extensive facilities, whereas

distributed facilities would only have unlabeled data. Recent semi-supervised FL studies

have revealed encouraging initial findings, indicating that with appropriately designed

stability regularization techniques, performance comparable to centralized and fully-

labeled training might be achieved with unlabeled users [5].

Data polarity

Only data that contains a recognized keyword is stored by a computer based on natural

language processing for further recognition, thus only positive data is gathered while

negative sample is eliminated.

34

In such circumstances, the gathered training dataset does not reflect the entire distribution

of the data, which might lead to significant prediction biases.

35

Conclusion

Localization of data and a focus on consumer privacy have become the next obstacles for

AI technology in recent years, but DML has given us fresh opportunities. It may create a

unified paradigm for various businesses while keeping local information safe, allowing

businesses to compete with us on the basis of data privacy. This project analyzes the

possibilities of DML in numerous applications and covers the core concept, design, and

methodologies of federated learning. In the coming years, federated learning is projected

to break down boundaries across businesses and create a network where data and

expertise may be exchanged safely while the rewards are shared evenly based on each

user's contribution. AI benefits will eventually achieve all aspects of modern life.

 Several complex and fascinating scientific questions remain to be investigated, as we

mentioned throughout the study. The difficulties of information exchange among rounds,

customization, absence of categories, resilience, and prolongation in DML are not well

investigated from such an algorithmic perspective. Moreover, the issues of limitations at

the edge devices, privacy, and confidentiality are all important topics from a system

design perspective. FL research is quickly progressing in application areas outside

computer vision and computational linguistics in parallel to computational and system-

design challenges.

In the pharmaceutical research, social network, recommendation system, and

advertisement domains, graph-structured data and time-series data are examples.

36

References

1. A. Elgrabli, J. Park, A. S. Bedi, M. Bennis and V. Aggarwal, "Communication

Efficient Framework for Decentralized Machine Learning," 2020 54th Annual

Conference on Information Sciences and Systems (CISS), 2020, pp. 1-5, doi:

10.1109/CISS48834.2020.1570627384.

2. Tianyi Chen, Georgios Giannakis, Tao Sun, and Wotao Yin. Lag: Lazily

aggregated gradient for communication-efficient distributed learning. Advances in

Neural Information Processing Systems, 31:5055–5065, 2018.

3. S. S., J. I. Zong Chen, and S. Shakya, ―Survey on Neural Network Architectures

with Deep Learning,‖ Journal of Soft Computing Paradigm, vol. 2, no. 3, 2020,

doi: 10.36548/jscp.2020.3.007.

4. D. C. Nguyen et al., ―Federated Learning Meets Blockchain in Edge Computing:

Opportunities and Challenges,‖ IEEE Internet of Things Journal, vol. 8, no. 16,

pp. 12806–12825, 2021, doi: 10.1109/JIOT.2021.3072611.

5. A. Qayyum, K. Ahmad, M. A. Ahsan, A. Al-Fuqaha, and J. Qadir, ―Collaborative

Federated Learning For Healthcare: Multi-Modal COVID-19 Diagnosis at the

Edge,‖ Jan. 2021.

6. F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek, ―Robust and

Communication-Efficient Federated Learning from Non-IID Data,‖ Mar. 2019.

7. Y. Liu, X. Yuan, Z. Xiong, J. Kang, X. Wang, and D. Niyato, ―Federated learning

for 6g communications: Challenges, methods, and future directions,‖ China

Communications, vol. 17, no. 9, pp. 105–118, 2020.

8. Abadi, M. (2015), ‗TensorFlow: Large-Scale Machine Learning on

Heterogeneous Distributed Systems‘, Software available from tensorflow.org

9. Loukadakis, M., Cano, J. and O‘Boyle, M. (2018), ‗Accelerating Deep Neural

Networks on Low Power Heterogeneous Architectures‘, 11th Int. Workshop on

Programmability and Architectures for Heterogeneous Multicores.

10. L. Chu, L. Wang, Y. Dong, J. Pei, Z. Zhou, and Y. Zhang. Fedfair: Training fair

models in cross-silo federated learning. arXiv preprint arXiv:2109.05662, 2021.

37

Appendices

 A: Generic Client’s Code

from flask import Flask, request,jsonify

import pickle

import os

import tensorflow as tf

import keras

from keras.initializers import glorot_uniform

from werkzeug.utils import secure_filename

import requests

import json

from sklearn.datasets import load_boston

import pandas as pd

from keras.models import Sequential

from keras.layers import Dense

from keras.models import model_from_json

from time import sleep

#from sklearn.datasets import load_boston

#from sklearn.model_selection import train_test_split

import pickle

import tensorflow as tf

import numpy as np

import pandas as pd

from keras.models import Sequential

from keras.layers import Dense

from keras.models import model_from_json

#from sklearn.model_selection import train_test_split

#from sklearn.cross_validation import train_test_split

import pickle

import os

import tensorflow as tf

38

import winsound

def shuffle_split_data(X, y):

 arr_rand = np.random.rand(X.shape[0])

 split = arr_rand < np.percentile(arr_rand, 70)

 X_train = X[split]

 y_train = y[split]

 X_test = X[~split]

 y_test = y[~split]

 print (len(X_train), len(y_train), len(X_test), len(y_test))

 return X_train, y_train, X_test, y_test

def pre_processing(df):

 df = df.iloc[:250,:]

 X = df.iloc[:, :-1]

 y = df.iloc[:, -1]

 X_train,y_train, X_test, y_test = shuffle_split_data(X, y)

 mean = X_train.mean(axis=0)

 std = X_train.std(axis=0)

 X_train = (X_train - mean) / std

 X_test = (X_test - mean) / std

 return X_train,y_train,X_test,y_test

def unpickling_weights(filename):

 with open(filename, "rb") as fp:

39

 ls=pickle.load(fp)

 return ls

def

Training_evaluating(X_train,y_train,X_test,y_test,count,features,json

1=None,model_name=None,weight_file_name=None):

 # global count

 if count==0:

 model = Sequential()

 model.add(Dense(128, input_shape=(features,),

activation='relu', name='dense_1'))

 model.add(Dense(64, activation='relu', name='dense_2'))

 model.add(Dense(1, activation='linear', name='dense_output'))

 model.compile(optimizer='adam', loss='mse', metrics=['mae'])

 model.summary()

 history = model.fit(X_train, y_train, epochs=100,

validation_split=0.05)

 mse_nn, mae_nn = model.evaluate(X_test, y_test)

 print('Mean squared error on test data: ', mse_nn)

 print('Mean absolute error on test data: ', mae_nn)

 print('count: ', count)

 sending_models_and_weights(model,model_name,weight_file_name)

 count=1

 else:

 ls=unpickling_weights(json1)

 ls1=ls[0]

 ls2=ls[1]

 ls3=ls[2]

 with open(model_name, 'r') as json_file:

40

 json_savedModel= json_file.read()

 #json_savedModel

 #load the model architecture

 model = tf.keras.models.model_from_json(json_savedModel)

 model.summary()

 model.layers[0].set_weights(ls1)

 model.layers[1].set_weights(ls2)

 model.layers[2].set_weights(ls3)

 model.compile(optimizer='adam', loss='mse', metrics=['mae'])

 history = model.fit(X_train, y_train, epochs=100,

validation_split=0.05)

 mse_nn, mae_nn = model.evaluate(X_test, y_test)

 print('Mean squared error on test data: ', mse_nn)

 print('Mean absolute error on test data: ', mae_nn)

 print('count: ', count)

 count+=1

 #return model,history,mse_nn,mae_nn,count

def sending_models_and_weights(model,model_name,weight_file_name):

 # serialize model to json

 json_model = model.to_json()

 #json_model

 #save the model architecture to JSON file

 with open(model_name, 'w') as json_file:

 json_file.write(json_model)

41

 model.save_weights(weight_file_name)

count=0

def main_function(count):

 boston_dataset = pd.read_csv('BostonHousing.csv')

 df=boston_dataset

 X_train,y_train,X_test,y_test=pre_processing(df)

 rows,features=X_test.shape

 json1="updated_weights.json"

 model_name="client2_nn.json"

Training_evaluating(X_train,y_train,X_test,y_test,count,features=13,j

son1="updated_weights.json",model_name="client2_nn.json",weight_file_

name="client2_nn.h5")

donee= {}

def load_model(filename):

 # Creating a new model from the saved JSON file

 # reda the model from the JSOn file

 with open(filename, 'r') as json_file:

 json_savedModel= json_file.read()

 #json_savedModel

 #load the model architecture

 model = tf.keras.models.model_from_json(json_savedModel)

 model.summary()

 return model

app = Flask(__name__)

42

@app.route("/")

def hello_world():

 return request.remote_addr

@app.route("/initialise")

def intitialise():

 global count

 ipaddress_server= request.remote_addr

 main_function(count)

 data=open("client2_nn.h5","rb")

 jsonn=open("client2_nn.json","rb")

 dataaatogether={"data":data ,

 "json":jsonn}

 # print(hex(jsonn))

 # print((jsonn))

 # print(jsonn)

 # sleep(10)

 if count<7:

asd=requests.get(url="https://"+ipaddress_server+":5000/recvweights",

files=dataaatogether,verify=False)

 count=count+1

 return "a"

@app.route("/client_recieve_updated",methods=['GET', 'POST'])

def client_recieve_updated():

 global count

43

 ipaddress_server= request.remote_addr

 dataa=request.files["data"]

 dataa.save(secure_filename(dataa.filename))

 main_function(count)

 # ipaddress_server

 data=open("client2_nn.h5","rb")

 jsonn=open("client2_nn.json","rb")

 dataaatogether={"data":data ,

 "json":jsonn}

 # print(hex(jsonn))

 # print((jsonn))

 # print(jsonn)

 if count < 7:

asd=requests.get(url="https://"+ipaddress_server+":5000/recvweights",

files=dataaatogether,verify=False)

 count=count+1

 winsound.Beep(frequency=2500, duration=1000)

 return "a"

if __name__ == '__main__':

 app.run(host="0.0.0.0",port=5000,ssl_context="adhoc")

	Dedication
	Certificate of approval
	Declaration
	Copyright statement
	Acknowledgements
	Abstract
	Introduction
	Literature Review
	What is Federated Learning?
	Machine learning that protects your privacy
	Federated Learning vs Distributed Machine Learning
	Federated Learning vs Edge Computing
	Federated Learning vs Federated Database System

	DECENTRALIZED DEEP LEARNING:
	Multi-Access Edge Computing
	Data Privacy and Decentralized Deep Learning

	Federated Learning from a Network System Perspective
	Cross-functionality framework:
	Client Selection Policy:
	Synchronism:
	Aggregation:
	Deep Learning Models:
	Client Server Network Security:

	Privacy of Federated Learning:
	Secure Multi-party Computation (SMC):
	Differential Privacy:
	Homomorphic Encryption:
	Indirect information leakage:

	Privacy-preserving machine learning:

	Methodology
	Federated Averaging
	Embedded systems & Edge ML:

	Experimentation
	TensorFlow’s FedAvg and Limitations:
	The Centralized Model’s Performance:
	Distributing Data to Nodes:
	Parameters of the main model are sent to nodes
	Federated main model vs. individual local models before 1st iteration (on distributed test set)

	Decentralized Machine Learning On Boston Housing Dataset:
	pre_processing(df):
	unpickling_weights(filename):
	Training_evaluating(X_train,y_train,X_test,y_test,count,features,json1=None,model_name=None,weight_file_name=None)
	sending_models_and_weights(model,model_name,weight_file_name)
	main_function(count)
	server_aggregation()
	Testing and Evaluation Results:
	Comparison of Centralized Model vs Decentralized Model

	Decentralized Machine Learning on MNIST Dataset:
	Testing and Evaluation Results:
	Comparison of Centralized Model vs. Decentralized Model

	Future Work
	Data incompleteness:
	Data polarity

	Conclusion
	References
	Appendices
	A: Generic Client’s Code

