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Preface

You are holding the first in a hopefully long and successful series of RSA Cryp-
tographers’ Track proceedings.

The Cryptographers’ Track (CT-RSA) is one of the many parallel tracks
of the yearly RSA Conference. Other sessions deal with government projects,
law and policy issues, freedom and privacy news, analysts’ opinions, standards,
ASPs, biotech and healthcare, finance, telecom and wireless security, developers,
new products, implementers, threats, RSA products, VPNs, as well as crypto-
graphy and enterprise tutorials.

RSA Conference 2001 is expected to continue the tradition and remain the
largest computer security event ever staged: 250 vendors, 10,000 visitors and
3,000 class-going attendees are expected in San Francisco next year.

I am very grateful to the 22 members of the program committee for their hard
work. The program committee received 65 submissions (one of which was later
withdrawn) for which review was conducted electronically; almost all papers had
at least two reviews although most had three or more. Eventually, we accepted
the 33 papers that appear in these proceedings. Revisions were not checked on
their scientific aspects and some authors will write final versions of their papers
for publication in refereed journals. As is usual, authors bear full scientific and
paternity responsibilities for the contents of their papers.

The program committee is particularly indebted to 37 external experts who
greatly helped in the review process: André Amègah, Mihir Bellare, Carine Bour-
sier, Fabienne Cathala, Jean-Sébastien Coron, Nora Dabbous, Jean-François
Dhem, Serge Fehr, Gerhard Frey, Pierre Girard, Benôıt Gonzalvo, Shai Halevi,
Helena Handschuh, Martin Hirt, Markus Jakobsson, Marc Joye, Neal Koblitz,
François Koeune, Phil MacKenzie, Keith Martin, Alfred John Menezes, Victor
Miller, Fabian Monrose, Mike Mosca, Pascal Paillier, Mireille Pauliac, Béatrice
Peirani, David Pointcheval, Florence Quès, Ludovic Rousseau, Doug Schales,
Jean-François Schultz, Joseph Silverman, Christophe Tymen, Mathieu Vavas-
sori, Yongge Wang and Robert Zuccherato. Special thanks are due to Julien
Brouchier for skillfully maintaining and updating the program committee’s web-
site.

It is our sincere hope that our efforts will contribute to reduce the distance
between the academic community and the information security industry in the
coming years.

November 2000 David Naccache
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Detlef Hühnlein (secunet Security Networks AG)

New Key Agreement Protocols in Braid Group Cryptography . . . . . . . . . . . . 13
Iris Anshel (Arithmetica Inc.), Michael Anshel (City College of New
York), Benji Fisher (Boston College), Dorian Goldfeld
(Columbia University)

RSA

Improving SSL Handshake Performance via Batching . . . . . . . . . . . . . . . . . . . 28
Hovav Shacham (Stanford University), Dan Boneh
(Stanford University)

From Fixed-Length Messages to Arbitrary-Length Messages Practical RSA
Signature Padding Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
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Alfred Menezes (University of Waterloo, Certicom Research)

Multivariate Cryptography

The Security of Hidden Field Equations (HFE) . . . . . . . . . . . . . . . . . . . . . . . . 266
Nicolas T. Courtois (Université de Toulon et du Var)
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Faster Generation of NICE-Schnorr-Type
Signatures

Detlef Hühnlein

secunet Security Networks AG
Mergenthalerallee 77-81

D-65760 Eschborn, Germany
huehnlein@secunet.de

Abstract. In [7] there was proposed a Schnorr-type signature scheme
based on non-maximal imaginary quadratic orders, which signature ge-
neration is – for the same conjectured level of security – about twice as
fast as in the original scheme [15].
In this work we will significantly improve upon this result, by speeding up
the generation of NICE-Schnorr-type signatures by another factor of two.
While in [7] one used the surjective homomorphism IF∗

p⊗IF∗
p → Ker(φ−1

Cl )
to generate signatures by two modular exponentiations, we will show that
there is an efficiently computable isomorphism IF∗

p
∼= Ker(φ−1

Cl ) in this
case, which makes the signature generation about four times as fast as
in the original Schnorr scheme [15].

1 Introduction

In todays electronic commerce applications, digital signatures are widely applied
for providing integrity, authentication and non-repudiation services. Especially
for the latter goal(s) it seems to be crucial to store and apply the secret keys
in a secure environment, like a smartcard or any other tamper-resistant device.
While hardware-technology is continously improving, the computing power of
such devices – compared to stationary equipment – is still rather limited. The-
refore it is important to search for new signature schemes which allow more
efficient signature generation or improve the efficiency of exisiting ones.

In [7] there was proposed a Schnorr-type signature scheme based on non-
maximal imaginary quadratic orders. In this scheme one basically replaces the
group IF∗

p by the group Ker(φ−1
Cl ), which is a subgroup of the class group Cl(∆p2)

of the non-maximal imaginary quadratic order O∆p2 . For the necessary basics
of imaginary quadratic orders we refer to section 2. In contrary to the original
scheme [15], this scheme essentially relies on the hardness of factoring the public
discriminant ∆p2 < 0, where |∆| and p are primes with (say) 300 bits.

As the signature generation in this scheme is – for the same conjectured level
of security – more than twice as fast as in the original scheme [15], this seems
to be a good candidate for applications in which fast signature generation in

D. Naccache (Ed.): CT-RSA 2001, LNCS 2020, pp. 1–12, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



2 D. Hühnlein

constrained environment is crucial. The signature generation in this scheme, i.e.
essentially one exponentiation in the group Ker(φ−1

Cl ), is reduced to two modular
exponentiations modulo the conductor p. This reduction is possible by applying
the efficiently computable surjective homomorphism

IF∗
p ⊗ IF∗

p −→ Ker(φ−1
Cl ), (1)

which follows from [7, Proposition 4 and Theorem 3].

In this work we will show how the – already remarkably efficient – signature
generation in this scheme can be speeded up by another factor of two. More
precisely we will prove the following:

Theorem 1 (Main result). Let O∆ be an imaginary quadratic maximal order
of discriminant ∆ < −4, p prime,

(
∆
p

)
= 1, φ−1

Cl : Cl(∆p2) → Cl(∆) like in
Proposition 2 and the two roots ρ, ρ̄ ∈ IF∗

p of the polynomial f(X), like in (6),
be given. Then it is possible to compute the isomorphism

ψ : IF∗
p

∼−→ Ker(φ−1
Cl )

and its inverse ψ−1 in O(log(p)2) bit operations.

Using this theorem, the signature generation is obviously reduced to only one
modular exponentiation modulo the conductor p. As the bitlength of p (and |∆|)
is only about one third of the bitlength of the modulus in the original scheme,
our signature generation is more than four times as fast. Note that – as shown
in [7, Section 4] – a direct analogue in (ZZ/nZZ)∗, n composite, would be totally
insecure.

The paper is organized as follows: Section 2 will provide the necessary back-
ground and notations of non-maximal imaginary quadratic orders used in this
work. In Section 3 will carry together the relevant work concerning the efficient
implementation of cryptosystems working in Ker(φ−1

Cl ). In Section 4 we will prove
Theorem 1 and show how this result can be applied for fast signing. In Section 5
we will provide timings of a first implementation, which shows that the signature
generation in this scheme is – for the same conjectured level of security – more
than four times as fast as in the original scheme [15].

2 Necessary Preliminaries and Notations of Imaginary
Quadratic Orders

The basic notions of imaginary quadratic number fields may be found in [1,2].
For a more comprehensive treatment of the relationship between maximal and
non-maximal orders we refer to [3,4,5,6,9].

Let ∆ ≡ 0, 1 (mod 4) be a negative integer, which is not a square. The
quadratic order of discriminant ∆ is defined to be

O∆ = ZZ + ωZZ,



Faster Generation of NICE-Schnorr-Type Signatures 3

where

ω =

{√
∆
4 , if ∆ ≡ 0 (mod 4),

1+
√

∆
2 , if ∆ ≡ 1 (mod 4).

(2)

The standard representation of some α ∈ O∆ is α = x+ yω, where x, y ∈ ZZ.

If∆ is squarefree, thenO∆ is the maximal order of the quadratic number field
Q(
√
∆) and ∆ is called a fundamental discriminant. The non-maximal order of

conductor p > 1 with (non-fundamental) discriminant ∆p2 is denoted by O∆p2 .
We will always assume in this work that the conductor p is prime.

The standard representation of an O∆-ideal is

a = q

(
ZZ +

b+
√
∆

2a
ZZ

)
= q(a, b), (3)

where q ∈ Q>0, a ∈ ZZ>0, c = (b2−∆)/(4a) ∈ ZZ, gcd(a, b, c) = 1 and −a < b ≤
a. The norm of this ideal is N (a) = aq2. An ideal is called primitive if q = 1. A
primitive ideal is called reduced if |b| ≤ a ≤ c and b ≥ 0, if a = c or |b| = a. It
can be shown, that the norm of a reduced ideal a satisfies N (a) ≤√|∆|/3 and
conversely that if N (a) ≤ √|∆|/4 then the ideal a is reduced. We denote the
reduction operator in the maximal order by ρ(·) and write ρp(·) for the reduction
operator in the non-maximal order of conductor p.

The group of invertible O∆-ideals is denoted by I∆. Two ideals a, b are
equivalent, if there is a γ ∈ Q(

√
∆), such that a = γb. This equivalence relation

is denoted by a ∼ b. The set of principal O∆-ideals, i.e. which are equivalent to
O∆, are denoted by P∆. The factor group I∆/P∆ is called the class group of O∆

denoted by Cl(∆). We denote the equivalence class of an ideal a by [a]. Cl(∆)
is a finite abelian group with neutral element O∆. Algorithms for the group
operation (multiplication and reduction of ideals) can be found in [2]. The order
of the class group is called the class number of O∆ and is denoted by h(∆).

The signature scheme in [7] makes use of the relation between the maxi-
mal and non-maximal orders. Any non-maximal order may be represented as
O∆p2 = ZZ + pO∆. If h(∆) = 1 then O∆p2 is called a totally non-maximal ima-
ginary quadratic order of conductor p. An O∆-ideal a is called prime to p, if
gcd(N (a), p) = 1. It is well known, that all O∆p2-ideals prime to the conduc-
tor are invertible. In every class there is an ideal which is prime to any given
number. The algorithm FindIdealPrimeTo in [4] will compute such an ideal. Let
I∆p2(p) be the set of all O∆p2-ideals prime to p and let P∆p2(p) be the principal
O∆p2-ideals prime to p. Then there is an isomorphism

I∆p2(p)
/
P∆p2(p)

∼= I∆p2
/
P∆p2

= Cl(∆p2). (4)

Thus we may ’neglect’ the ideals which are not prime to the conductor, if we
are only interested in the class group Cl(∆p2). There is an isomorphism between
the group of O∆p2-ideals which are prime to p and the group of O∆-ideals, which
are prime to p, denoted by I∆(p) respectively:
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Proposition 1. Let O∆p2 be an order of conductor p in an imaginary quadratic
field Q(

√
∆) with maximal order O∆.

(i.) If A ∈ I∆(p), then a = A ∩ O∆p2 ∈ I∆p2(p) and N (A) = N (a).
(ii.) If a ∈ I∆p2(p), then A = aO∆ ∈ I∆(p) and N (a) = N (A).
(iii.) The map ϕ : A 7→ A ∩ O∆p2 induces an isomorphism I∆(p) ∼→I∆p2(p).

The inverse of this map is ϕ−1 : a 7→ aO∆.

Proof : See [3, Proposition 7.20, page 144] . 2

Thus we are able to switch to and from the maximal order. The algorithms
GoToMaxOrder(a, p) to compute ϕ−1 and GoToNonMaxOrder(A, p) to compute
ϕ respectively may be found in [4].

It is important to note that the isomorphism ϕ is between the ideal groups
I∆(p) and I∆p2(p) and not the class groups.

If, for A,B ∈ I∆(p) we have A ∼ B, it is not necessarily true that ϕ(A) ∼
ϕ(B).

On the other hand, equivalence does hold under ϕ−1. More precisely we have
the following:

Proposition 2. The isomorphism ϕ−1 induces a surjective homomorphism
φ−1

Cl : Cl(∆p2)→ Cl(∆), where a 7→ ρ(ϕ−1(a)).

Proof: This immediately follows from the short exact sequence:

Cl(∆p2) −→ Cl(∆) −→ 1

(see [12, Theorem 12.9, p. 82]). 2

It is easy to show that the kernel Ker(φ−1
Cl ) of this map is a subgroup of

Cl(∆p2).

If ∆ < −4 and p is prime, then it follows from [3, Theorem 7.24, page 146]
that the order of this kernel is given as

∣∣Ker(φ−1
Cl )
∣∣ = p−

(
∆

p

)
. (5)

3 Related Work

As many results concerning (the implementation of) cryptosystems based on
non-maximal imaginary quadratic orders appeared fairly recently, it seems wor-
thwile to recall the most important results which are relevant in our context.

In Section 3.1 we will briefly introduce the available cryptosystems operating
in the kernel Ker(φ−1

Cl ) of the above map φ−1
Cl : Cl(∆p2) → Cl(∆). In Section

3.2 we will focus on fast arithmetic in Ker(φ−1
Cl ), as it is applied for generating

Schnorr-like signatures.
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3.1 Cryptosystems Utilizing Ker(φ−1
Cl )

In the following we will briefly recall some cryptosystems working in Ker(φ−1
Cl ).

We will distinguish between encryption- and signature-schemes.

NICE-encryption-scheme. The first – and probably most popular – cryp-
tosystem, which utilizes Ker(φ−1

Cl ) in a crucial way is the NICE1-cryptosystem
[13]. This cryptosystem is essentially an ElGamal-encryption scheme, where the
message is embedded in an element of Cl(∆p2) and the mask which hides this
message is a random power of an element of Ker(φ−1

Cl ). Therefore the decryption
essentially consists of computing φ−1

Cl , which only takes quadratic time. It should
be noted, that the chosen ciphertext attack [10] is no real threat in practice, as it
is easily prevented by appending a hash-value of the plaintext to the ciphertext.

NICE-signature-schemes. While it would be easy to set up a DSA-like sig-
nature scheme in the classgroup Cl(∆p2) = Ker(φ−1

Cl ) of a totally non-maximal
imaginary quadratic order, e.g. in O−8p2 where h(∆) = 1, it was shown in [6]
that the discrete logarithm problem in this case can be reduced from Cl(−8p2)
to either IF∗

p or IF∗
p2 – depending on

(
∆
p

)
. Because of this reduction, there is no

advantage in using NICE-DSA instead of the regular DSA in finite fields.

A crucial difference between DSA and the original Schnorr-scheme [15] is,
that in the latter scheme it is not necessary that the verifying party knows the
group order q.

Therefore it was proposed in [7] to use conventional non-maximal orders to
set up a NICE-Schnorr-type signature scheme, which primarily gets its security
from the hardness of factoring ∆p2 instead of solely from the DL-problem in
Ker(φ−1

Cl ) ⊂ Cl(∆p2). Thus an attacker is only able to apply the reduction
from [6] after factoring the public discriminant ∆p2, which is considered to be
infeasible for the proposed parameter sizes.

The system setup for Alice consists of the following steps:

1. Choose a random prime r and set ∆ = −r if r ≡ 3 (mod 4) or ∆ = −4r
otherwise.

2. Choose a random prime q, which will later on serve as the order of the used
subgroup of Ker(φ−1

Cl ) ⊂ Cl(∆p2).
3. Choose a random prime p, such that

(
∆
p

)
= 1, q|(p− 1) and compute ∆p2.

4. Choose a random α = x+yω such that g = ϕ(αO∆) is of order q in Cl(∆p2).
5. Choose a random integer a < q and compute the public key a = ρp(ga).
6. The secret key of Alice is the tuple (x, y, a, p, q, r).

Note that Alice will keep these values secret and only publishes ∆p2, g, a.
Now the signature generation and verification procedure is analogous to the
1 New Ideal Coset Encryption
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original Schnorr-scheme [15]. The only difference is that Alice may speed up
the signature generation process using some more sophisticated arithmetic for
Ker(φ−1

Cl ), which utilizes the knowledge of x, y and p. In Section 3.2 we will
return to this issue and recall what has been known so far. In Section 4 we show
that these results can be significantly improved.

To sign a message m ∈ ZZ, Alice performs the following steps:

1. Choose a random integer 1 < k < q and compute k =Gen-ISO(x, y, p, k),
where the algorithm Gen-ISO() is given in Section 4.

2. Compute2 e = h(m||k) and s = ae+ k.
3. Alice’s signature for m is the pair (e, s).

The verification is completely analogous to the original scheme [15] using
standard ideal arithmetic (see e.g. [2]) in the non-maximal order:

1. Compute v = ρp(gsa−e) and e′ = h(m||v).
2. The signature is valid if and only if e′ = e.

It is clear that the verification works if the signature was generated by Alice,
because v ∼ gsa−e ∼ gsg−ae ∼ gk ∼ k. Thus h(m||k) = h(m||v) and hence e′ = e.

For security issues of this scheme and the proposed parameter sizes we refer
to [7, Section 4] and [14].

3.2 Fast Arithmetic in Ker(φ−1
Cl )

In this section we will study the kernel Ker(φ−1
Cl ) of the above map φ−1

Cl , i.e. the
relation between a class in the maximal order and the associated classes in the
non-maximal order, in more detail. A thorough understanding of this relation
is crucial for the development of a fast arithmetic for the group Ker(φ−1

Cl ), like
proposed in [5,6,7] and Section 4.

We start with yet another interpretation of the class group Cl(∆p2).

Proposition 3. Let O∆p2 be an order of conductor p in a quadratic field. Then
there are natural isomorphisms

Cl(∆p2) ' I∆p2(p)
/
P∆p2(p) ' I∆(p)

/
P∆,ZZ (p),

where P∆,ZZ (p) denotes the subgroup of I∆(p) generated by the principal ideals
of the form αO∆ where α ∈ O∆ satisfies α ≡ a (mod pO∆) for some a ∈ ZZ
such that gcd(a, p) = 1.
2 Note that in [7] it was proposed to return the residue of s modulo q, which makes

the signature slightly smaller and saves some time for the verifying party. While in
[7] there were given ad-hoc-arguments that this is no security threat, it might be
more satisfying to return s = ae + k, as the detailed security analysis of [14] applies
in this case.
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Proof: See [3, Proposition 7.22, page 145]. 2

The following corollary is an immediate consequence.

Corollary 1. With notations as above we have the following isomorphism

Ker(φ−1
Cl ) ' P∆1(f)

/
P∆1,ZZ (f).

Now we will turn to the relation between (O∆/pO∆)∗ and Ker(φ−1
Cl ):

Proposition 4. The map (O∆/pO∆)∗ → Ker(φ−1
Cl ), where α 7→ ϕ (αO∆) is a

surjective homomorphism.

Proof: This is shown in the more comprehensive proof of Theorem 7.24 in [3]
(page 147). 2

From these results it is clear that for all ideal classes [a] ∈ Ker(φ−1
Cl ) ⊆

Cl(∆p2) there is a generator representation:

Definition 1. Let α = x+ωy ∈ (O∆/pO∆)∗, such that [a] ∼ ϕ (α). Then (x, y)
is called a generator representation of the class [a] ∈ Ker(φ−1

Cl ).

For simple conversion routines between the standard representation (3) and
this generator representation we refer to [9, Algorithmus 16 (Gen2Std) and Al-
gorithmus 17 (Std2Gen)]. These algorithms require the conductor p as input and
run in O(log(p)2) bit operations.

Remark 1. It should be noted that this generator representation (x, y) for a class
[a] is not unique. From Proposition 3 we see that (sx, sy), where s ∈ IF∗

p, is yet
another generator representation of the class [a]. We will return to this issue in
the proof of Theorem 1.

The central point in using this generator representation instead of the stan-
dard ideal representation (3) is that one may reduce the arithmetic in Ker(φ−1

Cl )
to much more efficient computations in (O∆/pO∆)∗. This is precisely what was
proposed in [5]. Using the naive ”generator-arithmetic”, i.e. naive computation
in (O∆/pO∆)∗, as proposed there, one is able to perform an exponentiation in
Ker(φ−1

Cl ) about twenty times as fast as by using standard ideal arithmetic, like
given in [2] for example.

But, as shown in [6,7], one can even do better; in Section 5 we will provide
concrete timings of a first implementation.

The following simple result explains the structure of the ring (O∆/pO∆):

Proposition 5. Let O∆ be the maximal order and p be prime. Then there is an
isomorphism between rings

(O∆/pO∆) ∼= IFp[X]
/
(f(X)),
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where (f(X)) is the ideal generated by f(X) ∈ IFp[X] and

f(X) =
{
X2 − ∆

4 , if ∆ ≡ 0 (mod 4),
X2 −X + 1−∆

4 , if ∆ ≡ 1 (mod 4).
(6)

Proof: See [6, Proposition 5]. 2

Using this auxilliary result one obtains the following Proposition 6, which –
together with Proposition 2 – is responsible for the fast signature generation in
[7].

Proposition 6. Assume that
(

∆
p

)
= 1 and the roots ρ, ρ̄ ∈ IFp of f(X) ∈

IFp[X] as given in (6) are known. Then the isomorphism

ψIF : (O∆/pO∆)∗ ∼−→ IF∗
p ⊗ IF∗

p

can be computed with O(log(p)2) bit operations.

Note that this result essentially uses the chinese remainder theorem in the
ring (O∆/pO∆) to speed up the computation. Compared to the standard ideal
arithmetic (e.g. in [2]), this approach yields an approximately forty-fold speedup.

While this arithmetic is already remarkable efficient, we will show in the next
section that one can even do better.

4 The Main Result and Its Application to Fast Signing

In this section we will show that for an exponentiation in Ker(φ−1
Cl ), where(

∆
p

)
= 1, it is sufficient to perform a single modular exponentiation modulo

the conductor p.

This significant improvement essentially follows from the fact that in our case
we have

(
∆
p

)
= 1 and there is an isomorphism IF∗

p
∼= Ker(φ−1

Cl ), which can be
computed efficiently.

While, because of
∣∣Ker(φ−1

Cl )
∣∣ = p− 1, the existence of such an isomorphism

was already suspected earlier – and in fact follows immediately from [3, (7.27),
page 147] – the crucial point for our application is that this isomorphism can be
computed in O(log(p)2) bit operations.

Proof (of Theorem 1). Let
(

∆
p

)
= 1. Then Proposition 6 shows that

(O∆/pO∆)∗ ∼= IF∗
p ⊗ IF∗

p and our claimed isomorphism Ker(φ−1
Cl )

∼= IF∗
p follows

immediately from the exact sequence [3, (7.27), page 147]

1 −→ IF∗
p −→ (O∆/pO∆)∗ ∼= IF∗

p ⊗ IF∗
p −→ Ker(φ−1

Cl ) −→ 1.
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It remains to give a constructive version of this isomorphism and show that
the runtime is bound by O(log(p)2) bit operations.

Let (x, y) be a generator representation of the ideal class [a] ∼ ϕ(α) ∈
Ker(φ−1

Cl ), where α = x + yω ∈ (O∆/pO∆)∗, and ρ, ρ̄ are the roots of f(X)
like in (6). Then the isomorphism ψIF : (O∆/pO∆)∗ → IF∗

p ⊗ IF∗
p from Proposi-

tion 6 maps α = x+ yω ∈ (O∆/pO∆)∗ to (x1, x2) ∈ IF∗
p ⊗ IF∗

p, x1 = x+ yρ and
x2 = x+ yρ̄.

Let s ∈ IF∗
p, such that s(x+ yρ̄) ≡ 1 (mod p). From Proposition 3 (see also

Remark 1) it follows, that ϕ(α) ∼ ϕ(s · α) and (sx, sy) is another generator
representation of the class [a] ∼ ϕ(α) ∼ ϕ(s · α). Using ψIF we map s · α to the
pair (s(x + yρ), 1), which induces the desired isomorphism ψ−1 : Ker(φ−1

Cl )
∼→

IF∗
p ⊗ 1 ∼= IF∗

p,

a = ϕ(x+ yω)

∼ ϕ

(
x+ yω

x+ ρ̄y

)

7→ ψ−1
(
ϕ

(
x+ yω

x+ ρ̄y

))

=
(
x+ ρy

x+ ρ̄y
,
x+ ρ̄y

x+ ρ̄y

)

=
(
x+ ρy

x+ ρ̄y
, 1
)

' x+ ρy

x+ ρ̄y
. (7)

The inverse map ψ : IF∗
p

∼→ Ker(φ−1
Cl ) is – like shown in the proof of Proposi-

tion 6 and [7, Gen-CRT (Algorithm 4)] – given by

x 7→ ψ(x)
' ψp2(x, 1)

= ϕ

(
x− 1− x

ρ̄− ρρ+
1− x
ρ̄− ρω

)

= ϕ

(
x(ρ̄− ρ)− (1− x)ρ

ρ̄− ρ +
1− x
ρ̄− ρω

)

= ϕ

(
xρ̄− xρ− ρ+ xρ

ρ̄− ρ +
1− x
ρ̄− ρω

)

= ϕ

(
xρ̄− ρ
ρ̄− ρ +

1− x
ρ̄− ρω

)

∼ ϕ (xρ̄− ρ+ (1− x)ω) . (8)
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Because we assume that the two roots ρ, ρ̄ ∈ IF∗
p of f(X), like in (6), are

known, we immediately see that the isomorphism ψ and its inverse can be com-
puted in O(log(p)2) bit operations. 2

Using the constructive version of this isomorphism in (7) and (8), it is
straightforward to construct an efficient exponentiation algorithm for elements
in Ker(φ−1

Cl ).

Algorithm 1 Gen-Iso
Require: A generator representation (x, y) of the class [a] ∼ ϕ(x + yω) ∈

Ker(φ−1
Cl ), where x + yω ∈ (O∆/pO∆)∗, the conductor p, where

(
∆
p

)
= 1,

the roots ρ, ρ̄ ∈ IF∗
p of f(X), like in (6), and the exponent n ∈ ZZ>0.

Ensure: The standard representation (a, b) of the reduced representative of the

class of [an] = aZZ + b+
√

∆p2

2 ZZ ∈ Ker(φ−1
Cl ).

{Compute ψ−1 (ϕ(x+ yω)), like in (7)}
g ← x+ρy

x+ρ̄y (mod p)
{Exponentiation in IF∗

p}
g ← gn (mod p)
{Compute ψ(g), like in(8)}
x← gρ̄− ρ (mod p)
y ← 1− g (mod p)
(a, b)← Gen2Std(x, y)
return(a, b)

Furthermore it is clear that a complete signing routine would use this al-
gorithm to compute k = ρp

(
gk
)

and then compute the signature (e, s) by
e = h(m||k) and s = ae + k. For a rough estimate of the signing efficiency,
we may savely ignore the time for computing the values e and s and only take
care of the exponentiation time.

5 Timings

We conclude this work by providing the timings of a first implementation.

The timings are given in microseconds on a Pentium with 133 MHz using
the LiDIA-library [11]. It should be noted that in all algorithms there is used
a naive square and multiply strategy. It is clear that in real world applications
one would use some more sophisticated (e.g. window-) exponentiation strategy
– possibly using precomputed values. All timings correspond to random 160 bit
exponents.
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Table 1. Timings for exponentiations in Ker(φ−1
Cl )

Arithmetic modular ideal Gen-Exp, [5] Gen-CRT, [7] Gen-ISO
bitlength of p ∆p2 = −rp2 ∆p2 = −rp2 ∆p2 = −rp2 ∆p2 = −rp2

600 188 3182 159 83 42
800 302 4978 234 123 60
1000 447 7349 340 183 93
1200 644 9984 465 249 123
1600 1063 15751 748 409 206
2000 1454 22868 1018 563 280

The timings in Table 1 show the impressive improvement. Compared to an
exponentiation in Ker(φ−1

Cl ) ⊂ Cl(∆p2) using the standard ideal arithmetic (see
e.g. [2]), the generator arithmetic from [5, Gen-Exp] is already about twenty times
as fast. This arithmetic makes the signature generation in the NICE-Schnorr-
scheme [7] – considering the different algoritms for solving the underlying pro-
blem, like in [8] – about as efficient as in the original scheme [15]. The application
of the chinese remainder theorem in (O∆/pO∆) in [7, Gen-CRT] roughly leads to
a two-fold speedup. Finally, using the isomorphism IF∗

p
∼= Ker(φ−1

Cl ) leads to yet
another two-fold speedup. This arithmetic is about eighty times as fast as the
conventional ideal arithmetic.

Most importantly, the signature generation in the NICE-Schnorr-scheme [7]
now is about four times as fast as the signing in the original scheme [15].
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6. D. Hühnlein, T. Takagi: Reducing logarithms in totally non-maximal ima-
ginary quadratic orders to logarithms in finite fields, Advances in Cryptology -
ASIACRYPT’99, Springer, LNCS 1716, 1999, pp. 219–231
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Abstract. Key agreement protocols are presented whose security is ba-
sed on the difficulty of inverting one-way functions derived from hard
problems for braid groups. Efficient/low cost algorithms for key trans-
fer/extraction are presented. Attacks/security parameters are discussed.

1 Introduction

A public key cryptosystem is an algorithmic method for securely sending pri-
vate information over an insecure channel in which the communicating parties
have no common shared secret. At the heart of a public key cryptosystem is a
two-party secure computation referred to as a protocol. The major public key
cryptosystems in use today, and their associated protocols, are based on finite
abelian groups [12]. There have been various attempts to employ infinite non-
abelian groups and semigroups as a basis for public key algorithms and protocols
([1], [7], [14], [15]).

Recently, in [2] a general method was introduced for constructing key ag-
reement protocols based on combinatorial group theory, the study of groups
by means of generators and defining relators [9]. The computational security of
the protocols was based on the difficulty of solving conjugacy and commutator
equations in suitably chosen groups. The authors employ two non-commuting
one-way functions from which a common commutator is computed. They observe
that braid groups ([3], [8]) are a particularly promising class of groups for the
construction of such protocols due to recent results of Birman-Ko-Lee [4]. This
observation was taken up by [11] who specify a Diffie-Hellman type key agre-
ement protocol employing commuting one-way functions on braid groups. The
simplicity of these methods has ignited interest among researchers for exploring
the potential of a public key cryptography based on braid groups.

Braid groups provide a thread linking combinatorial problems in knot theory
[10] to fundamental questions in computational complexity [16]. One line of rese-
arch has focused on polynomials associated with knots and closed braids. It is our
purpose to extend the methodology of [2] and [11] by employing a group-theoretic
construction evolved from a study of the multivariate Alexander polynomial of
a closed braid [13]. Inherent in this method are certain virtually linear groups

D. Naccache (Ed.): CT-RSA 2001, LNCS 2020, pp. 13–27, 2001.
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associated with braid groups, which we call colored Burau groups. (Remark: a
group G is virtually linear provided it possesses a linear subgroup H of finite
index).

New key agreement protocols based on colored Burau groups are presented.
Algorithms specifying key transfer and key extraction are carefully presented and
analyzed and are shown to be highly efficient and run, respectively, in quadratic
and linear time. The cost of implementating these protocols is low due to the
simplicity of the symbolic and algebraic primitives employed in the required
computations. The computational security of these protocols is based on specific
one-way functions defined on braid groups or colored Burau groups employed in
our constructions.

2 Presentations of Groups

A finitely generated group G is specified by a finite set of generators

g1, g2, . . . , gn

where every g ∈ G is a word in the generators and their inverses (product of
gi’s and their inverses). Further, a group is termed finitely presented provided
there are finitely many words

r1, r2, . . . , rm

(each of which is equal to the identity element e) called relators, so that any
word w in the generators g1, g2, . . . , gn that defines the identity in the group
G can be expressed as a product of conjugates of the ri’s and their inverses.
Note that a conjugate of ri is an element of the group of the form wriw

−1 (with
w ∈ G), which must always equal e.

It is usual to suppress the trivial relators such as

gig
−1
i = g−1

i gi = e.

A presentation is written:

〈g1, g2, . . . , gn | r1, r2, . . . , rm〉.

We now give some examples of presentations of groups.

2.1 The Finite Cyclic Group

The finite cyclic group of order n has presentation: 〈g | gn〉.

2.2 The Projective Special Linear Group

The infinite matrix group SL(2,Z) (i.e., 2 × 2 matrices with integer coefficients
and determinant one), modulo its center, is a group with two generators and
presentation: 〈g1, g2 | g2

1 , g3
2〉.
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2.3 The Braid Group

The braid group was first systematically studied by Emil Artin. He introduced
the Artin generators x1, x2, . . . , xN for the N + 1 strand Braid group (denoted
BN+1).

The defining relations for the Braid group BN+1 are given by

xixjxi = xjxixj , ; if |i − j| = 1,

xixj = xjxi, if |j − i| ≥ 2.

2.4 The Symmetric Group

A particular finite image of the braid group is the symmetric group SN+1 with
N generators, which satisfy the braid group relations

xixjxi = xjxixj , if |i − j| = 1,

xixj = xjxi, if |j − i| ≥ 2.

and the additional relations

x2
i = e for ≤ i ≤ N.

The symmetric group SN+1 consists of all permutations of N +1 elements under
composition. A transposition interchanges two distinct elements and leaves the
others fixed. We write (i j) as the transposition that interchanges i and j. The
generator xi may be realized as a transposition that interchanges i and i+1 and
leaves all other elements fixed.

3 The Colored Burau Group

For i = 1, . . . , N , let yi =
(
Ci(ti), (i i + 1)

)
where

(i i + 1)

denotes the transposition (when i = N the transposition is defined to be (i 1)),
and

Ci(t) =




1
1

t −t 1

1



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with ones on the diagonal, zeros elsewhere, except in the ith row where we have

0 0 · · · 0 t −t 1 0 · · · 0 0

with −t on the diagonal. The elements y1, . . . , yN generate a group CBN+1. A
generic element in CBN+1 is of the form (M, σ) where M is an N × N matrix
with coefficients that are finite Laurent polynomials in the variables t1, . . . , tN
over the integers, and σ is a permutation in the symmetric group SN+1.

For example, if N = 4, we have:

C1(t1) =




−t1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , C2(t2) =




1 0 0 0
t2 −t2 1 0
0 0 1 0
0 0 0 1




C3(t3) =




1 0 0 0
0 1 0 0
0 t3 −t3 1
0 0 0 1


 , C4(t4) =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 t4 −t4


 .

Note that

C1(t1)−1 =




−1
t1

1
t1

0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , C2(t2)−1 =




1 0 0 0
1 −1

t2
1
t2

0
0 0 1 0
0 0 0 1




C3(t3)−1 =




1 0 0 0
0 1 0 0
0 1 −1

t3
1
t3

0 0 0 1


 , C4(t4)−1 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 −1

t4


 .

This explains why we get Laurent polynomials (i.e., polynomials in the variables
t1, . . . , tN and their inverses t−1

1 , . . . , t−1
N ).

Multiplication (denoted ·) of two ordered pairs (M, σ) and (M ′, σ′) in the
group CBN+1 is given by

(M, σ) · (M ′, σ′) = (M ∗ σ(M ′), σ σ′),

where M , M ′ are matrices; ∗ means matrix multiplication; σ, σ′ are permutati-
ons; and σ(M ′) denotes the matrix obtained from M ′ by permuting the variables
t1, . . . , tN appearing in the coefficients of M ′ by the permutation σ.

As an example, we compute
(
C2(t2), (2 3)

) · · · (
C3(t3), (3 4)

)
=

(
C2(t2) ∗ C3(t2), (2 3)(3 4)

)
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=







1 0 0 0
t2 −t2 1 0
0 0 1 0
0 0 0 1


 ∗




1 0 0 0
0 1 0 0
0 t2 −t2 1
0 0 0 1


 , (2 3) (3 4)




=







1 0 0 0
t2 0 −t2 1
0 t2 −t2 1
0 0 0 1


 , (2 3 4)


 .

One easily checks that the elements yi (for i = 1, . . . , N) satisfy the braid
relations, and this gives a homomorphism from the braid group BN+1 to the
colored Burau group CBN+1. It follows that to every element of the braid group
we can associate an element of the colored Burau group.

3.1 The Colored Burau Key Extractor

In general, a keyspace K of order k is a set of bit strings (each of length at
most k), where each bit string is called a key. The elements of the keyspace can
be used for cryptographic applications. A key extractor on a group G is a
function that assigns a unique key in a keyspace to every element of G.

Fix an integer N ≥ 3 and a prime number p. We define the keyspace KN,p

to be the set of pairs (M, σ) where M denotes an N × N matrix with coeffi-
cients in Fp, the finite field of p elements, and σ is a permutation in SN+1. Note
that this keyspace is of order N2 · · · log2(p) + log2

(
(N + 1)!

)
= O

(
N2 log2(p)

)
.(

N2 · · · log2(p)
)

· · ·
(
(N + 1)! · · ·N · · · log2(N)

)
. We shall now define a key ex-

tractor E from the Braid group BN+1 to the keyspace KN,p. The key extractor
depends on a choice τ1, . . . , τN of distinct and invertible integers (mod p) and
is defined as follows. Let w ∈ BN+1 be an element of the braid group. Associated
to w there is a unique element (M, σ) ∈ CBN+1, where M = M(t1, . . . , tN ) is a
matrix with coefficients in the ring Z[t1, . . . , tN , 1/t1 · · · tN ] of Laurent polyno-
mials in N variables over the integers, and σ is a permutation.

Definition 1. The key extractor E : BN+1 → KN,p is defined by

E(w) := E
(
(M(t1, . . . , tN )), σ

)
=

(
M(τ1, . . . , τN ) (mod p), σ

)
,

where reduction (mod p) means reduction of every entry in the matrix.

A very rapid and efficient algorithm for computing the key extractor defined
above will now be given. The input is an element of the braid group BN+1 of
the form g1g2· · ·g`, where each gi is an Artin generator (i.e., one of x1, . . . , xN )
or its inverse (i.e., one of x−1

1 , . . . , x−1
N ) and the output is a pair (M, σ) ∈ KN,p.

We now give the key extractor algorithm. The symbol gk will denote an Artin
generator (gk = xi for some i) or its inverse (gk = x−1

i ). Note that Steps 5, 8
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are the most time consuming and can each be done with only three column
operations (i.e., three scalar multiplications and two additions in Fp

N ). The
running time for this algorithm is O

(
N` · · · log2(p)2

)
.

Input: A braid word w = g1g2 · · · g` of length `

a prime p

{τ1, τ2, . . . , τN} are invertible distinct integers (mod p).

Initialization: M = N × N Identity Matrix
k = 0
σ = Identity Permutation.

STEP 1: IF k = ` then STOP

STEP 2: k := k + 1

STEP 3: IF gk = xi then GO TO STEP 5

STEP 4: IF gk = x−1
i then GO TO STEP 8

STEP 5: M := M ∗ Ci(τσ(i)) (mod p)

STEP 6: σ := σ· · ·(i i + 1)

STEP 7: GO TO STEP 1

STEP 8: M := M ∗ Ci(τσ(i))−1 (mod p)

STEP 9: σ := σ· · ·(i i + 1)

STEP 10: GO TO STEP 1

Output: (M, σ).

4 Dehornoy’s Fully Reduced Form of a Braid

Consider the braid group BN+1 with N > 6. Let u ∈ BN+1 be publicly known.
The conjugacy function is the function

x 7→ x−1ux.

This function is expected to be very hard to invert (candidate one-way func-
tion) provided that the word x−1ux is suitably rewritten using the braid relators
so that it becomes unrecognizable. It is conjectured that finding x will take at
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least exponential time in N : at present there is no known polynomial time algo-
rithm (with respect to the word length of x in the Artin generators) to find x
for N > 6.

There are two well known methods to rewrite a braid word so that it be-
comes unrecognizable: the canonical form algorithm of Birman-Ko-Lee [4] and
the Dehornoy reduction algorithm [6]. A braid word w ∈ BN+1 of length ` (in
the Artin generators) can be put into Birman-Ko-Lee canonical form in time
O(`2N log N). At present, it is not possible to prove that the Dehornoy al-
gorithm running time is as good as the Birman-Ko-Lee running time, but in
practice, it seems to be much faster. We now focus on the Dehornoy reduction
algorithm.

Let xi denote the ith Artin generator of the braid group BN . A braid word is
a word in the Artin generators and their inverses and represents a braid. Many
different words may represent the same braid.

Dehornoy refers to a braid word of the form

x1· · ·
(
a word with no x1 nor x−1

1

)
· · · x−1

1

or
x−1

1 · · ·
(
a word with no x1 nor x−1

1

)
· · · x1

as an x1-handle.

More generally, an xi-handle is a braid word of the form

xi· · ·
(
a word with no xi, xi−1, nor x−1

i , x−1
i−1

)
· · · x−1

i

or
x−1

i · · ·
(
a word with no xi, xi−1, nor x−1

i , x−1
i−1

)
· · · xi.

A handle may occur as a sub-word of a longer braid word. If a braid word
contains no x1-handles then it is called x1-reduced. This means that either x1
or x−1

1 may appear in the word, but not both. (I assume that one or the other
does appear.)

An x1-reduced word thus has one of the forms

w0x1w1x1 · · ·x1wk

or
w0x

−1
1 w1x

−1
1 · · ·x−1

1 wk

where the wi for i = 0, 1, . . . k are words that do not contain x1 nor x−1
1 . A word

is termed fully reduced provided it does not contain any handles. We think of
a fully reduced braid word as a standard form for the braid, although it is not
standard in the strong sense (i.e. canonical): there are still many different fully
reduced braid words that represent the same braid.

One can apply the braid relations to replace a handle xiwx−1
i by an equivalent

braid word. The key point is that one must first ensure that w does not contain
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any xi+1-handles. It may contain xi+2-handles and so on. This makes reduction
a somewhat complicated process. For a justification of the following algorithm,
see [6].

4.1 Dehornoy Reduction Algorithm

We now describe Dehornoy’s full handle reduction algorithm. The symbol gk will
denote an Artin generator (gk = xi for some i) or its inverse (gk = x−1

i ). The
subroutine denoted ReduceHandle in STEP 5 is described further below.

Input: A braid word w = g1g2· · ·g` of length `

Initialization:

k = 0, n = `

I = e (the empty word) I = g1g2 · · · gk (When k = 0, I is the empty word.)

A = w

n = ` = Length(A)

Loop Invariants:

A = g1g2 · · · gn

I = g1g2 · · · gk is fully reduced.

STEP 1: If k = n, then STOP

STEP 2: k := k + 1

STEP 3: I := I · · · gk

STEP 4: Determine the largest 1 ≤ j < k such that H = gjgj+1 · · · gk is a
handle.

If there is no such j then GO TO STEP 1.

STEP 5: U := ReduceHandle[H]

STEP 6: Replace the handle H by the reduced handle U in the word A.

STEP 7: n := Length(A)

STEP 8: k := j − 1

STEP 9: Rewrite A = g1g2 · · · gn and let I = g1g2 · · · gk.

STEP 10: GO TO STEP 1.

Output: The fully reduced braid word A.



New Key Agreement Protocols in Braid Group Cryptography 21

4.2 The Subroutine ReduceHandle

We now describe the subroutine ReduceHandle. This is single handle reduction.

Input: t = an integer.
H = gjgj+1· · ·gk (H = xt-handle)

Initialization: U = H.

STEP 1: U = gj+1· · ·gk−1. STEP 1: U = g−1
j Ag−1

k (i.e. Remove gj and gk

from U).

STEP 2: If gj = xt, gk = x−1
t and there are xt+1’s in U then replace each one

by x−1
t+1xtxt+1. If there are x−1

t+1’s, replace each one by x−1
t+1x

−1
t xt+1.

STEP 3: If gj = x−1
t , gk = xt and there are xt+1’s in U then replace each one

by xt+1xtx
−1
t+1. If there are x−1

t+1’s, replace each one by xt+1x
−1
t x−1

t+1.

Output: The reduced handle U .

4.3 Data Structures

The above algorithms are described in [6], but no attention is paid there to
the data structure used to store the braids. In general, using the wrong data
structure can have an unfortunate effect on the running time of an algorithm,
so we shall discuss this point here.

Consider the operations used in the two algorithms above. In STEP 4 of the
main routine, we must locate a handle (if one exists) ending at a given point in
the braid word A = g1g2· · ·gn. Then, in STEP 6, the sub-word H of A must be
replaced by another word, U , which may be of different length. The subroutine
requires us to find all occurrences of xt+1 or xt+1

−1 between an xt and an xt
−1,

and replace each of these with a subword of length 3.
The need for replacements suggests that a doubly-linked list (such as the

list class in the C++ standard library) is a more appropriate choice than a
simple array of Artin generators. There is yet another data structure, which is
asymptotically more efficient, and seems to be faster to use in practice when
dealing with braids that contain more than 10,000 Artin generators.

To describe this new data structure, start with a doubly-linked list, in which
the node containing the datum gi = xt or xt

−1 contains pointers to the nodes
corresponding to gi−1 and gi+1. Next, add a pointer to the next node, say the
j’th one, such that gj = xt, xt

−1, xt−1, or xt−1
−1. It is then easy to determine

whether there is a handle beginning at gi: follow this pointer and check whether
gj = gi

−1. (If so, then gi· · ·gj is a handle.) Similarly, add a pointer to the previous
such node, so that it is easy to determine whether there is a handle ending at gi.
It turns out that one must also include pointers to the next and previous nodes
contain one of the Artin generators xt or xt+1 or their inverses.
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With this data structure, all the operations described above can be done
in constant time. The subroutine ReduceHandle takes time proportional to the
number of occurrences of xt+1 or xt+1

−1, rather than the length of the input
braid word.

The profusion of pointers makes this data structure expensive to use for
relatively short braids. One can reduce the number of pointers by two, if desired:
the original pointers from the linked-list structure, pointing to the nearest two
nodes, are not needed. If one removes these pointers, the data structure closely
resembles the geometric picture of the braid it represents: there is a node for each
crossing on the braid, and a pointer for each strand coming out of the crossing.

5 Cryptographic Protocols

In this section, we describe two key-exchange protocols based on the braid group.
The new feature here is to use the key extractor E, described in Sect. 3.1, which
is extremely efficient. It runs in time O(N`· · · log2(p)2), where ` is the number
of Artin generators in the braid word from which the key is to be extracted.

As discussed in §4, the public keys must be rewritten in order to protect
the private keys. The most secure rewriting method is to use a canonical form.
For a braid word w ∈ BN+1 of length ` in the Artin generators, this takes
time O(l2N log N) (see [4]). Rewriting the braid in a fully reduced form (as
described in §4) also seems very secure. Although it has not been fully analyzed,
the Dehornoy reduction algorithm seems to run in near linear time on average.

The security of these protocols is tied to the conjugacy problem in the braid
groups, a well known hard problem that has been studied for many years.

5.1 Commutator Key Agreement Protocol

This protocol was first introduced in [2].

PublicInformation:

An integer N > 6. A prime p > N .
Distinct and invertible integers τ1, τ2, . . . , τN (mod p).
The key extractor E : BN+1 → KN,p.

Two subgroups of BN+1:

SA = < a1, a2, . . . , am >,

SB = < b1, b2, . . . , bn > .

Secretkeys:

Alice’s secret key X ∈ SA.

Bob’s secret key Y ∈ SB .
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Publickeys:

Alice’s public key X−1b1X, X−1b2X, . . . , X−1bnX,

Bob’s public key Y −1a1Y, Y −1a2Y, . . . , Y −1amY .

SharedSecret:
E(X−1Y −1XY ).

5.2 Diffie-Hellman Type Key Agreement Protocol

This protocol, without the key extractor E, was presented in [11] and is a special
case of the general algorithm first presented in [2].

PublicInformation:

An odd integer N > 6. A prime p > N .
Distinct and invertible integers τ1, τ2, . . . , τN (mod p).
The key extractor E : BN+1 → KN,p.
A publicly known element u ∈ BN+1.

Two subgroups of BN :

SA = < x1, x2, . . . , xN−1
2

>,

SB = < xN+3
2

, xN+5
2

, . . . , xN > .

Here x1, x2, . . . , xN denote the Artin generators of BN+1.

Secretkeys:

Alice’s secret key X ∈ SA.

Bob’s secret key Y ∈ SB .

Publickeys:

Alice’s public key X−1uX

Bob’s public key Y −1uY .

SharedSecret:
E(X−1Y −1uXY ).

6 Key Length and Known Attacks

In this section, we consider the security of the protocols described in Sect. 5.
The main point is that it should be hard to determine the secret key X ∈ BN+1
from the public information w and w′ = X−1wX (which are also elements
of the braid group BN+1). The parameters that effect how hard this is are the
braid index N (the number of generators of BN+1) and the length of the braids
X and w as words in the Artin generators xi.
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6.1 The General Conjugacy Problem

The conjugacy problem is to find a braid X ∈ BN+1 such that w′ = X−1wX,
where w and w′ ∈ BN+1 are given. (More precisely, this is the conjugacy search
problem. There is also the conjugacy decision problem: given w and w′ decide
whether such an X exists.) Even is this can be solved. the two protocols de-
scribed in Sect. 5 are not necessarily insecure. The commutator key agreement
protocol (see Sect. 5.1) requires the simultaneous solution of several conjugacy
problems, whereas the Diffie-Hellman type key agreement protocol (see Sect. 5.2)
requires that the conjugating braid X lie in a specified subgroup of BN+1. To be
conservative, we will assume that these protocols are insecure if the conjugacy
problem can be solved in polynomial time.

There are solutions to the conjugacy problem, although none are polynomial
in the length of the braid words. We will describe the one presented in [4]. This
solution is based on the canonical form of a braid. Other canonical forms lead
to similar algorithms. Any braid w ∈ BN+1 can be written in the form

w = δuA1, · · ·Ak,

where δ ∈ BN+1 is a fixed braid (the “fundamental word”), u is an integer, and
each Ai is a canonical factor, of which there are

CN+1 =
1

N + 2

(
2N + 2
N + 1

)
≈

√
2
π

4N

N3 .

(Cn is the n–th Catalan number.) There is also a restriction on the sequence of
canonical factors, but we will not discuss it here. We refer to the integer k as
the canonical length of the braid w.

Given conjugate words w and w′, the first step is to replace them with con-
jugates that have minimal canonical length. This step can be done fairly easily.
This reduces the conjugacy problem to a finite search: among all braids of cano-
nical length k, start with w and keep conjugating until you reach w′. At. present,
there is no more effective method for doing this than to take a random walk in
this set of braids (or to take random walks, one starting from w and the other
from w′).

Of all the braids having canonical length k, we do not know how many are
conjugate to a given braid. All we can do is choose n and k large enough that
this set is likely to be too large for the search problem to be feasible, Because
not every product of canonical factors is the canonical form of a braid, there are
somewhat fewer than Ck

N+1 braids of canonical length k, but this gives roughly
the right order of magnitude. A reasonable guess is that, for the average braid
w, the number of these braids that are conjugate to w is the square root of the
total number. We will, therefore, assume that this search problem is on a set
with CN+1

k
2 ≈ 2Nk elements.
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6.2 The Length Attack

Probabilistically speaking, braids tend to get longer when they are multiplied or
conjugated. That is, the product w w′ tends to be longer than either w or w′ and
the conjugate X−1wX tends to be longer that w. This is true whether “length”
means the canonical length, as in Sect. 6.1, or the number of Artin generators
that describe the braid. If this tendency were a certainty then it would be easy
to solve the conjugacy problem: think of X as the product of many small pieces
Xi (Artin generators or canonical factors, for example) and guess these pieces
by finding those that take us from the “long” braid w′ = X−1wX to the short
braid w.

Let pN denote the probability that the conjugate X−1
i wXi is longer that the

original braid w, where Xi is chosen randomly from the set of “small pieces.”
Empirical data suggest that pN decreases as the braid index N gets larger and
the length (in Artin generators) of the pieces Xi decrease. To defeat this attack,
we should first choose N to be fairly large and the average length of Xi to be
sufficiently small. Depending on how far from 1 the probability pN is, we then
choose X to be composed of sufficiently many pieces Xi that peeling off the right
factor does not reliably decrease the length.

6.3 Linear Algebraic Attacks on the Key Extractor E

The question arises as to whether it is possible to attack the suggested key
agreement protocols by methods of linear algebra based on the fact that the
key extractor E maps braid words to pairs (M, σ), where M is a matrix and σ
is a permutation. One has to be careful to choose the secret keys X, Y in the
key agreement protocol of Sect. 5) so that their associated permutations are not
close to the trivial permutation. In general, if the associated permutations of the
secret keys X, Y are sufficiently complex, there will be so many permutations of
τ1, . . . , τN that the standard methods of linear algebra to attack the system will
be futile. In fact, the representation of the braid group into the colored Burau
group induces a representation of the braid group with rank > N · (N + 1)!,
which is super–exponential in the braid index N , making it infeasible to attack
the system in this manner.

6.4 Recommended Key Lengths

Much further study in needed, but for now we make the following suggestions.
The only restriction on the prime p used in the key extractor (see Sect. 3.1)

is that p > N , so that one can choose distinct, invertible integers τ1, τ2, . . . , τN

(mod p). One can choose p < 1000, given the values of N suggested below.
First, consider the commutator key agreement protocol (see Sect. 5.1). For

the braid index, take N = 80 or larger. Choose m = n = 20 generators for
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each of the public subgroups SA and SB , and let each of these generators be
the product of 5 to 10 Artin generators, taking care that each set of public
generators involves all the Artin generators of BN+1. Each private key should
be the product of 100 public generators.

For the Difffie-Hellman type key agreement protocol (see Sect. 5.2) we follow
the suggestions in [11]: take N = 44 and take all braids (u and the private keys)
to have canonical length at least 3. (Note that this is a slightly different notion of
canonical length from that in [4].) The number of Artin generators in a canonical
factor is not fixed, but this means that u will be composed of about 1450 Artin
generators and the private keys, which lie in subgroups isomorphic to BN+1

2
, will

each have about 360 Artin generators. The public braid u should involve all the
Artin generators.
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Abstract. We present an algorithmic approach for speeding up SSL’s
performance on a web server. Our approach improves the performance of
SSL’s handshake protocol by up to a factor of 2.5 for 1024-bit RSA keys.
It is designed for heavily-loaded web servers handling many concurrent
SSL sessions. We improve the server’s performance by batching the SSL
handshake protocol. That is, we show that b SSL handshakes can be
done faster as a batch than doing the b handshakes separately one after
the other. Experiments show that taking b = 4 leads to optimal results,
namely a speedup of a factor of 2.5. Our starting point is a technique
due to Fiat for batching RSA decryptions. We improve the performance
of batch RSA and describe an architecture for using it in an SSL web
server. We give experimental results for all the proposed techniques.

1 Introduction

The Secure Socket Layer (SSL) is the most widely deployed protocol for securing
communication on the World Wide Web (WWW). The protocol is used by most
e-commerce and financial web sites. It guarantees privacy and authenticity of
information exchanged between a web server and a web browser. Unfortunately,
SSL is not cheap. A number of studies show that web servers using the SSL
protocol perform far worse than web servers who do not secure web traffic. This
forces web sites using SSL to buy significantly more hardware in order to provide
reasonable response times.

Here we propose a software-only approach for speeding up SSL: batching
the SSL handshakes on the web server. The basic idea is as follows: the web
server waits until it receives b handshake requests from b different clients. It then
treats these b handshakes as a batch and performs the necessary computations
for all b handshakes at once. Our experiments show that, for b = 4, batching the
SSL handshakes in this way results in a factor of 2.5 speedup over doing the b
handshakes sequentially, without requiring any additional hardware.

Our starting-point is a technique due to Fiat [5] for batch RSA decryption.
Fiat suggested that one can decrypt multiple RSA ciphertexts as a batch faster
than decrypting them one by one. Unfortunately, our experiments show that
Fiat’s basic algorithm, naively implemented, does not give much improvement
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c© Springer-Verlag Berlin Heidelberg 2001
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for key sizes commonly used in SSL handshakes. Our first set of results, given in
Section 3, shows how to batch RSA decryption in a way that gives a significant
speedup with common RSA keys.

In Section 4 we present an architecture for a batching web server and discuss
several scheduling issues. As we will see, a batching web server must manage
multiple public key certificates. Consequently, a batching web server must em-
ploy a scheduling algorithm that assigns certificates to incoming connections,
and picks batches from pending requests, so as to optimize server performance.

Finally, in Section 5 we describe our experiments and give running times for
various key sizes and various loads on the web server.

1.1 Preliminaries

As discussed above, this paper focuses on improving the performance of the
SSL handshake protocol. The handshake protocol is part of the bottleneck that
significantly degrades server performance.

SSL Handshake. For completeness we briefly describe the SSL handshake
protocol. We note that SSL supports several handshake mechanisms. The one
described below is the simplest and is the most commonly used. More informa-
tion can be found in [4].
Step 1: the web browser connects to the web server and sends a client-hello.
Step 2: the web server responds with a server-hello message sequence. These mes-
sages contain the server’s certificate, which in turn contains the server’s RSA
public key.
Step 3: The browser picks a random 48-byte string R and encrypts it using the
web server’s public RSA key. Let C be the resulting ciphertext. The web browser
sends a client-key-exchange message which contains C. The string R is called the
pre-master-secret.
Step 4: The web server obtains the pre-master-secret R by using its private RSA
key to decrypt C. Both the browser and server then derive the session keys
from R and some other shared information.

RSA Public Keys. Step 4 above is the expensive step in the SSL handshake
since it requires the server to perform an RSA decryption. To describe our spee-
dup of the SSL handshake we must first briefly review the RSA cryptosystem [9].
We refer to [8] for a complete description.

An RSA public key is made of two integers 〈N, e〉. Here N = pq is the
product of two large primes, and is typically 1024 bits long. The value e is called
the encryption exponent and is typically some small number such as e = 3 or
e = 65537. Both N and e are embedded in the server’s public-key certificate.
The RSA private key is an integer d satisfying e · d = 1 mod (p− 1)(q − 1).

To encrypt a message M using an RSA public key 〈N, e〉, one first formats
the message M to obtain an integer X in {1, . . . , N}. This formatting is often
done using the PKCS1 standard [1,7]. The ciphertext is then computed as C =
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Xe mod N . Recall that the web browser does this in Step 3 of the SSL handshake
protocol.

To decrypt a ciphertext C the web server uses its private key d to compute
the e’th root of C in ZN . The eth root of C is given by Cd mod N . Since both
d and N are large numbers (each 1024 bits long) this is a lengthy computation
on the web server. We note that d must be taken as a large number (i.e., on the
order of N) since otherwise the RSA system is insecure [2,11].

2 Review of Fiat’s Batch RSA

Fiat [5] is the first to propose speeding up RSA decryption via batching. We
briefly review Fiat’s proposal and describe our improvements in the next section.
For the rest of the paper all arithmetic is done moduloN , except where otherwise
noted.

Fiat observed that when using small public exponents e1 and e2 it is possible
to decrypt two ciphertexts for approximately the price of one. Suppose v1 is a
ciphertext obtained by encrypting using the public key 〈N, 3〉. Similarly, v2 is
a ciphertext obtained by encrypting using the public key 〈N, 5〉. To decrypt v1
and v2 we must compute v1/3

1 and v
1/5
2 mod N . Fiat observed that by setting

A = (v5
1 · v3

2)1/15 we obtain

v
1/3
1 =

A10

v3
1 · v2

2
and v

1/5
2 =

A6

v2
1 · v2

Hence, at the cost of computing a single 15’th root we are able to decrypt both
v1 and v2. Note that some extra arithmetic is required.

This batching technique is only worthwhile when the public exponents e1 and
e2 are very small (e.g., 3 and 5). Otherwise, the extra arithmetic required is too
expensive. Also, notice that one can only batch-decrypt ciphertexts encrypted
using distinct public exponents. This is essential. Indeed, in Appendix A we show
(using simple Galois theory) that it is not possible to batch when the same public
key is used. That is, it is not possible to batch the computation of v1/3

1 and v1/3
2 .

Fiat generalized the above observation to the decryption of a batch of b
RSA ciphertexts. We have b distinct and pairwise relatively prime public keys
e1, . . . , eb, all sharing a common modulus N = pq. Furthermore, we have b
encrypted messages v1, . . . , vb, one encrypted with each key, which we wish to
decrypt simultaneously, to obtain the plaintexts mi = v

1/ei

i .
The batch process is implemented around a complete binary tree with b lea-

ves, with the additional property that every inner node has two children. Our
notation will be biased towards expressing locally recursive algorithms: Values
will be percolated up and down the tree. With one exception noted later, quan-
tities subscripted by L or R refer to the corresponding value of the left or right
child of the node, respectively. For example, m is the value of m at a node; mR
is the value of m at that node’s right child.

Some values necessary to batching depend only on the particular placement
of keys in the tree, and may be precomputed and reused for multiple batches.
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We will denote precomputed values in the batch tree with capital letters, and
values that are computed in a particular decryption with lower-case letters.

Fiat’s algorithm consists of three phases: an upward-percolation phase, an
exponentiation phase, and a downward-percolation phase. We consider each in
turn.

Upward-percolation. In the upward-percolation phase, we seek to combine
the individual encrypted messages vi to form, at the root of the batch tree, the
value v =

∏b
i=1 v

e/ei

i , where e =
∏b
i=1 ei.

In preparation, we assign to each leaf node a public exponent: E ← ei. Each
inner node then has its E computed as the product of those of its children:
E ← EL ·ER. (The root node’s E will be equal to e, the product of all the public
exponents.)

Each encrypted message vi is placed (as v) in the leaf node labeled with its
corresponding ei. The v’s are percolated up the tree using the following recursive
step, applied at each inner node:

v ← vER
L · vEL

R . (1)

Exponentiation-phase. At the completion of the upward-percolation phase,
the root node contains v =

∏b
i=1 v

e/ei

i . In the exponentiation phase, the eth
root of this v is extracted. (In the basic Fiat scheme, this is the only point at
which knowledge of the factorization of N is required.) The exponentiation yields
v1/e =

∏b
i=1 v

1/ei

i , which we store as m in the root node.

Downward-percolation. In the downward-percolation phase, we seek to break
up the product m into its constituent subproducts mL and mR, and, eventually,
into the decrypted messages mi at the leaves.

Fiat gives a method for accomplishing this breakup. At each inner node we
choose an X satisfying the following simultaneous congruences:

X = 0 (mod EL) X = 1 (mod ER)

We construct X using the Chinese Remainder Theorem. Two further numbers,
XL and XR, are defined at each node as follows:

XL = X/EL XR = (X − 1)/ER

Both divisions are done over the integers. (There is a slight infelicity in the
naming here: XL and XR are not the same as the X’s of the node’s left and
right children, as implied by the use of the L and R subscripts, but separate
values.)

As Fiat shows, X, XL, and XR are such that, at each inner node, mX equals
vXL
L · vXR

R ·mR. This immediately suggests the recursive step used in downward-
percolation:

mR ← mX
/(
vXL
L · vXR

R

)
mL ← m/mR (2)
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At the end of the downward-percolation process, each leaf’s m contains the
decryption of the v placed there originally. Only one large (full-size) exponentia-
tion is needed, instead of b of them. In addition, the process requires a total of
4 small exponentiations, 2 inversions, and 4 multiplications at each of the b− 1
inner nodes.

3 Improved Batching

Basic batch RSA is fast with very large moduli, but not a big improvement with
moderate-size moduli. This is because batching is essentially a tradeoff: more
auxiliary operations in exchange for fewer full-strength exponentiations.

Since we are experimenting with batching in an SSL-enabled web server we
must focus on key sizes generally employed on the web, e.g., n = 1024 bits. We
also limit the batch size b to small numbers, on the order of b = 4, since collecting
large batches can introduce unacceptable delay. For simplicity of analysis (and
implementation), we further restrict our attention to values of b that are powers
of 2.

In this section we describe a number of improvements to batch RSA that
lead to a significant speedup in a batching web server.

3.1 Division Speedups

Fiat’s scheme presented in the previous section performs two divisions at each
internal node, for a total of 2b−2 required modular inversions. Modular inversions
are asymptotically faster than large modular exponentiations [6]. In practice,
however, modular inversions are costly. Indeed, our first implementation (with
b = 4 and a 1024-bit modulus) spent more time doing the inversions than doing
the large exponentiation at the root.

We present two techniques that, when combined, require only a single modu-
lar inversion throughout the algorithm. The cost is an additional O(b) modular
multiplications. This tradeoff gives a substantial running-time improvement.

Delayed Division. An important realization about the downward-percolation
phase given in Equation (2) is that the actual value of m for the internal nodes
of the tree is consulted only for calculating mL and mR. An alternative repre-
sentation of m that allows the calculation of mL and mR and can be evaluated
at the leaves to yield m would do just as well.

We convert a modular division a/b to a “promise,” 〈a, b〉. We can operate on
this promise as though it were a number, and, when we need to know its value,
we can “force” it by actually computing b−1a.

Operations on these promises work in the obvious way (similar to operations
in projective coordinates):

a/b = 〈a, b〉 〈a, b〉c = 〈ac, bc〉
c · 〈a, b〉 = 〈ac, b〉 〈a, b〉 · 〈c, d〉 = 〈ac, bd〉
〈a, b〉/c = 〈a, bc〉 〈a, b〉/ 〈c, d〉 = 〈ad, bc〉
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Multiplications and exponentiations take twice as much work as otherwise, but
division can be computed without resort to modular inversion.

If, after the exponentiation at the root, we express the root m as a promise,
m ← 〈m, 1〉, we can easily convert the downward-percolation step in (2) to
employ promises:

mR ←mX
/(
vXL
L · vXR

R

)
mL ←m/mR (3)

No internal inversions are required. The promises can be evaluated at the leaves
to yield the decrypted messages.

Batching using promises requires b− 1 additional small exponentiations and
b−1 additional multiplications, one each at every inner node, and saves 2(b− 1)−
b = b− 2 inversions.

Batched Division. To reduce further the number of inversions, we use batched
divisions. When using delayed inversions (as described in the previous section)
one division is needed for every leaf of the batch tree. We show that these b
divisions can be done at the cost of a single inversion with a few more multipli-
cations.

Suppose we wish to invert three values x, y, and z. We can proceed as follows:
we form the partial products yz, xz, and xy; and we form the total product
xyz and invert it, yielding (xyz)−1. With these values, we can calculate all the
inverses:

x−1 = (yz) · (xyz)−1 y−1 = (xz) · (xyz)−1 z−1 = (xy) · (xyz)−1

Thus we have obtained the inverses of all three numbers, at the cost of only a
single modular inverse along with a number of multiplications. More generally,
we obtain the following lemma:

Lemma 1. Let x1, . . . , xn ∈ ZN . Then all n inverses x−1
1 , . . . , x−1

n can be ob-
tained at the cost of one inversion and 3n− 3 multiplications.

Proof. A general batched-inversion algorithm proceeds, in three phases, as fol-
lows. First, set A1 ← x1, and Ai ← xi · Ai−1 for i > 1. It is easy to see, by
induction, that

Ai =
i∏

j=1

xj . (4)

Next, invert An =
∏
xj , and store the result in Bn: Bn ← (An)−1 =

∏
x−1
j .

Now, set Bi ← xi+1 ·Bi+1 for i < n. Again, it is easy to see that

Bi =
i∏

j=1

x−1
j . (5)

Finally, set C1 ← B1, and Ci ← Ai−1 · Bi for i > 1. We have C1 = B1 = x−1
1 ,

and, combining (4) and (5), Ci = Ai−1 · Bi = x−1
i for i > 1. We have thus

inverted each xi.
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Each phase above requires n− 1 multiplications, since one of the n values is
available without recourse to multiplication in each phase. Therefore, the entire
algorithm computes the inverses of all the inputs in 3n − 3 multiplications and
a single inversion. ut

Batched division can be combined with delayed division: The promises at the
leaves of the batch tree are evaluated using batched division. Consequently, only
a single modular inversion is required for the entire batching procedure. We note
that the batch division algorithm of Lemma 1 can be easily modified to conserve
memory and store only n intermediate values at any given time.

3.2 Global Chinese Remainder

It is standard practice to employ the Chinese Remainder Theorem (CRT) in
calculating RSA decryptions. Rather than compute m← vd (mod N), one eva-
luates modulo p and q:

mp ← vdp
p (mod p) mq ← vdq

q (mod q)

Here dp = d mod p − 1 and dq = d mod q − 1. Then one uses the CRT [6]
to calculate m from mp and mq. This is approximately 4 times faster than
evaluating m directly [8].

This idea extends naturally to batch decryption. We reduce each encrypted
message vi modulo p and q. Then, instead of using a single batch tree modulo N ,
we use two separate, parallel batch trees, modulo p and q, and then combine the
final answers from both using the CRT. Batching in each tree takes between a
quarter and an eighth as long as in the original, unified tree (since the number-
theoretical primitives employed, as commonly implemented, take quadratic or
cubic time in the bit-length of the modulus), and the b CRT steps required
to calculate each mi mod N afterwards take negligible time compared to the
accrued savings.

3.3 Simultaneous Multiple Exponentiation

Simultaneous multiple exponentiation (see [8], §14.6) provides a method for cal-
culating au · bv mod m without first evaluating au and bv. It requires approxi-
mately as many multiplications as does a single exponentiation with the larger
of u or v as exponent.

For example, in the percolate-upward step, V ← V ER
L · V EL

R , the entire
right-hand side can be computed in a single multiexponentiation. The percolate-
downward step involves the calculation of the quantity V XL

L ·V XR
R , which can be

accelerated similarly.
These small-exponentiations-and-product calculations are a large part of the

extra bookkeeping work required for batching. Using Simultaneous multiple ex-
ponentiation cuts the time required to perform them by close to 50%.
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3.4 Node Reordering

There are two factors that determine performance for a particular batch of keys.
First, smaller encryption exponents are better. The number of multiplications

required for evaluating a small exponentiation is proportional to the number of
bits in the exponent. Since upward and downward percolation both require O(b)
small exponentiations, increasing the value of e =

∏
ei can have a drastic effect

on the efficiency of batching.
Second, some exponents work well together. In particular, the number of mul-

tiplications required for a simultaneous multiple exponentiation is proportional
to the number of bits in the larger of the two exponents. If we can build batch
trees that have balanced exponents for multiple exponentiation (EL and ER, then
XL and XR, at each inner node), we can streamline the multi-exponentiation
phases.

With b = 4, optimal reordering is fairly simple. Given public exponents
e1 < e2 < e3 < e4, the arrangement e1–e4–e2–e3 minimizes the disparity between
the exponents used in simultaneous multiple exponentiation in both upward and
downward percolation. Rearranging is harder for b > 4.

4 Architecture for a Batching Web Server

Building the batch RSA algorithm into real-world systems presents a number of
architectural challenges. Batching, by its very nature, requires an aggregation of
requests. Unfortunately, commonly-deployed protocols and programs were not
designed with RSA aggregation in mind. Our solution is to create a batching
server process that provides its clients with a decryption oracle, abstracting
away the details of the batching procedure.

With this approach we minimize the modifications required to the existing
servers. Moreover, we simplify the architecture of the batch server itself by freeing
it from the vagaries of the SSL protocol. An example of the resulting web server
design is shown in Figure 1. Note that batching requires that the web server
manage multiple certificates, i.e., multiple public keys, all sharing a common
modulus N . We describe the various issues with this design in the subsections
below.

Web server
process #1
using hN; 3i

Web server
process #2
using hN; 5i

Web server
process #3
using hN; 7i

Web server
process #4
using hN; 11i

Batch server process. Will batch any two distinct requests.

Fig. 1. A batching web server using a 2-of-4 batching architecture
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4.1 The Two-Tier Model

For a protocol that calls for public-key decryption, the presence of a batch-
decryption server induces a two-tier model. First is the batch server process,
which aggregates and performs RSA decryptions. Next are client processes that
send decryption requests to the batch server. These client processes implement
the higher-level application protocol (e.g., SSL) and interact with end-user agents
(e.g., browsers).

Hiding the workings of the decryption server from its clients means that ad-
ding support for batch RSA decryption to existing servers (such as ApacheSSL)
engenders roughly the same changes as adding support for hardware-accelerated
decryption. The only additional challenge is in assigning the different public keys
to the end-users; here the hope is to obtain roughly equal numbers of decryp-
tion requests with each ei. End-user response times are highly unpredictable, so
there is a limit to the cleverness that may be usefully employed in the public
key distribution.

One solution that seems to work: If there are k keys (each with a correspon-
ding certificate), spawn ck web server processes, and assign to each a particular
key. This approach has the advantage that individual server processes need not
be aware of the existence of multiple keys. The correct value for c depends on
factors such as the load on the site, the rate at which the batch server can
perform decryption, and the latency of the communication with the clients.

We discuss additional ways of accommodating workload unpredictability in
the next subsection.

4.2 Decryption Server Scheduling

The batch server performs a set of related tasks. It receives requests for decryp-
tion, each of which is encrypted with a particular public exponent ei; it aggrega-
tes these into batches as well as it can; it performs the batch decryption described
in Section 3, above; finally, it responds to the requests with the corresponding
plaintexts.

The first and last of these tasks are relatively simple I/O problems; the
decryption stage has already been discussed. What remains is the scheduling
step: Of the outstanding requests, which should we batch? This question gives
rise to a related one: If no batch is available, what action should we take?

We designed our batching server with three scheduling criteria: maximum
throughput, minimum turnaround time, and minimum turnaround-time vari-
ance. The first two criteria are self-evident; the third may require some mo-
tivation. Lower turnaround-time variance means the server’s behavior is more
consistent and predictable, and helps prevent client timeouts. It also tends to
prevent starvation of requests, which is a danger under more exotic scheduling
policies.

Under these constraints, a batch server’s scheduling should implement a
queue, in which older requests are handled first, if possible. At each step, the
server seeks the batch that allows it to service the oldest outstanding requests.

We cannot compute a batch that includes more than one request encrypted
with any particular public exponent ei. This immediately leads to the central
realization about batch scheduling: It makes no sense, in a batch, to service a
request that is not the oldest for a particular ei; substituting the oldest request
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for a key into the batch improves the overall turnaround-time variance and makes
the batch server better approximate a perfect queue.

Therefore, in choosing a batch, we need only consider the oldest pending
request for each ei. To facilitate this, the batch server keeps k queues Qi, one for
each key. When a request arrives, it is enqueued onto the queue that corresponds
to the key with which it was encrypted; this takes O(1) time. In choosing a batch,
the server examines only the heads of each of the queues.

Suppose that there are k keys, with public exponents e1, . . . , ek, and that
the server decrypts requests in batches of b messages each. (We will see a reason
why we might want to choose k larger than b in Section 4.4, below.) The correct
requests to batch are the b oldest requests from amongst the k queue heads. If
we keep the request queues Qi in a heap (see, for example, [3]), with priority
determined by the age of the request at the queue head, then batch selection
can be accomplished thus: extract the maximum (oldest-head) queue from the
heap; dequeue the request at its head, and repeat to obtain b requests to batch.
After the batch has been selected, the b queues from which requests were taken
may be replaced in the heap. The entire process takes O(b lg k) time.

4.3 Multi-Batch Scheduling

Note that the process described above picks only a single batch to perform. It
would be possible to attempt to choose several batches at once; this would allow
more batching in some cases. For example, with b = 2, k = 3, and requests for
the keys 3–3–5–7 in the queues, the one-step lookahead may choose to do a 5–7
batch first, after which only the unbatchable 3–3 remain. A smarter server could
choose to do 3–5 and 3–7 instead.

The algorithms for doing lookahead are somewhat messier than the single-
batch ones. Additionally, since they take into account factors other than request
age, they can worsen turnaround-time variance or lead to request starvation.

There is a more fundamental objection to multi-batch lookahead. Performing
a batch decryption takes a significant amount of time; accordingly, if the batch
server is under load, additional requests will have arrived by the time the first
chosen batch has been completed. These may make a better batch available than
was without the new requests. (If the batch server is not heavily loaded, batching
is not important, as explained in Section 4.4, below.)

4.4 Server-Load Considerations

Not all servers are always under maximal load. Server design must take different
load conditions into account.

Our server reduces latency in a medium-load environment as follows: we use
k public keys on the web server and allow batching of any subset of b of them,
for some b < k. This has some costs: we must pre-construct and keep in memory
the constants associated with

(
k
b

)
batch trees, one for each set of e’s.

However, we need no longer wait for exactly one request with each e before
a batch is possible. For k keys batched b at a time, the expected number of
requests required to give a batch is

E[# requests] = k ·
b∑
i=1

1
k − i+ 1

. (6)
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Here we are assuming each incoming request uses one of the k keys randomly
and independently. With b = 4, moving from k = 4 to k = 6 drops the expected
length of the request queue at which a batch is available by more than 31%,
from 8.33 to 5.70.

The particular relationship of b and k can be tuned for a particular server. The
batch-selection algorithm described in Section 4.2, above, has time-performance
logarithmic in k, so the limiting factor on k is the size of the kth prime, since
particularly large values of e degrade the performance of batching.

In low-load situations, requests trickle in slowly, and waiting for a batch
to be available may introduce unacceptable latency. A batch server must have
some way of falling back on unbatched RSA decryption. Conversely, if a batch is
available, batching is a better use of processor time than unbatched RSA. So, by
the considerations given in Section 4.3, above, the batch server should perform
only a single unbatched decryption, then look for new batching opportunities.

Scheduling the unbatched decryptions introduces some complications. The
obvious algorithm — when requests arrive, do a batch if possible, otherwise do
a single unbatched decryption — leads to undesirable real-world behavior. The
batch server tends to exhaust its queue quickly. Then it responds immediately
to each new request, and so never accumulates enough requests to batch.

We chose a different approach, which does not exhibit the performance de-
generation described above. The server waits for new requests to arrive, with
a timeout. When new requests arrive, it adds them to its queues. If a batch
is available, it evaluates it. The server falls back on unbatched RSA decrypti-
ons only when the request-wait times out. This approach increases the server’s
turnaround-time under light load, but scales gracefully in heavy use. The timeout
value is, of course, tunable.

The server’s scheduling algorithm is given in Fig. 2.

Batch-Server()
1 while true
2 do Request-Wait-With-Timeout()
3 if Requests-Arrived()
4 then Enqueue-Requests()
5 b← Pick-Batch()
6 if b 6= nil
7 then Do-Batch(b)
8 else b← Pick-Batch()
9 if b 6= nil

10 then Do-Batch(b)
11 else r ← Pick-Single()
12 if r 6= nil
13 then Do-Single(r)

Fig. 2. Batch server scheduling algorithm
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5 Performance

We measured the performance of the batch RSA decryption method described
in Section 3, and of the batch server described in Section 4. These tests show a
marked improvement over unbatched RSA and SSL at standard key sizes.

Timing was performed on a machine with an Intel Pentium III processor
clocked at 750 MHz and 256 MB RAM. For SSL handshake measurements the
client machine (used to drive the web server) featured dual Intel Pentium III pro-
cessors clocked at 700 MHz and 256 MB RAM. The two machines were connected
via switched fast Ethernet. The underlying cryptography and SSL toolkit was
OpenSSL 0.9.5.

5.1 RSA Decryption

Since modular exponentiation is asymptotically more expensive than the other
operations involved in batching, the gain from batching approaches a factor-
of-b improvement only when the key size is improbably large. With 1024-bit
RSA keys the overhead is relatively high, and a naive implementation is slower
than unbatched RSA. The improvements described in Section 3 are intended to
lower the overhead and improve performance with small batches and standard
key-sizes. The results are described in Table 1. In all experiments we used the
smallest possible values for the encryption exponent e.

batch key size
size 512 768 1024 1536 2048

(unbatched) 1.53 4.67 8.38 26.10 52.96
2 1.22 3.09 5.27 15.02 29.43
4 0.81 1.93 3.18 8.63 16.41
8 0.70 1.55 2.42 6.03 10.81

Table 1. RSA decryption time, in milliseconds, as a function of batch and key size

Batching provides almost a factor-of-five improvement over plain RSA with
b = 8 and n = 2048. This is to be expected. More important, even with standard
1024-bit keys, batching improves performance significantly. With b = 4, RSA
decryption is accelerated by a factor of 2.6; with b = 8, by a factor of almost 3.5.
These improvements can be leveraged to improve SSL handshake performance.

At small key sizes, for example n = 512, an increase in batch size beyond
b = 4 provides only a modest improvement in RSA performance. Because of the
increased latency that large batch sizes impose on SSL handshakes, especially
when the web server is not under high load, large batch sizes are of limited utility
for real-world deployment.

5.2 SSL Handshake

To measure SSL handshake performance improvements using batching, we wrote
a simple web server that responds to SSL handshake requests and simple HTTP
requests. The server uses the batching architecture described in Section 4. The
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batch load
size 16 32 48

(unbatched) 105 98 98
2-of-2 149 141 134
4-of-4 218 201 187
4-of-6 215 198 185
8-of-8 274 248 227

Table 2. SSL handshakes per second as a function of batch size. 1024 bit keys.

web server is a pre-forked server, relying on “thundering herd” behavior for sche-
duling [10, §27.6]. All pre-forked server processes contact an additional batching
server process for all RSA decryptions, as described in Section 4.

Our multi-threaded SSL test client bombards the web server with concurrent
HTTP HEAD requests. The server sends a 187-byte response. Handshake through-
put results for 1024-bit RSA keys are summarized in Table 2, above. Here “load”
is the number of simultaneous connections the client makes to the server. The
“b-of-k” in the first column refers to a total of k distinct public exponents on
the server where any subset of b can be batched. See Section 4.4.

The tests above measure server performance under a constant high load, so
moving from k = 4 to k = 6 provides no advantage.

Batching is clearly an improvement, increasing handshake throughput by a
factor of 2.0 to 2.5, depending on the batch size. At better than 200 handshakes
per second, the batching web server is competitive with hardware-accelerated
SSL web servers, without the need for expensive specialized hardware.

6 The Downside of Batch SSL

As we saw in previous sections, batching SSL handshakes leads to a significant
improvement on the web server. Nevertheless, there are a few issues with using
the batching technique. Below, we discuss these issues, by order of severity.
1. When using batching, the web-server administrator must obtain multiple

certificates for the web site. In the previous section we gave the example of
obtaining four or six certificates (all using the same RSA modulus). We note
that these certificates are used by the same site and consequently have the
same X.500 Distinguished Name. In an ideal world, Certificate Authorities
(CA’s) would issue multiple certificates (using a single RSA modulus) for
the same site at no extra charge. Unfortunately, currently CA’s charge per
certificate regardless of whether the certificate is for the same site.

2. Batching relies on RSA with very small public exponents, namely e =
3, 5, 7, 11, etc. Although there are no known attacks on the resulting hands-
hake protocol, web sites commonly use a slightly larger public exponent,
namely e = 65537. This is not a serious concern, but is worth mentioning.

3. One might wish to further speed up batching by using a commercial off-the-
shelf crypto hardware accelerator. This works fine — the accelerator can be
used to perform the full RSA decryption at the top of the batching tree.
However, the main CPU has to perform all the other computations involved
in batching. The main CPU has to percolate values up the tree and back
down the tree. Consequently, when using batching, the CPU has to work
harder per handshake, compared to regular RSA, where the entire decryption
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is done on the card. Hence, although handshake time is reduced, the CPU
has less time for other web tasks. Ideally, one would expect the accelerator
card to perform the entire batching process.

7 Conclusions

We presented the first implementation of batch RSA in an SSL web server. Our
first set of results describes several substantial improvements to the basic batch
RSA decryption algorithm. We showed how to reduce the number of inversions
in the batch tree to a single inversion. We obtained a further speedup by proper
use of the CRT and use of simultaneous multiple exponentiation.

We also presented an architecture for building a batching SSL web server.
The architecture is based on using a batch server process that functions as a fast
decryption oracle for the main web server processes. The batching server process
includes a scheduling algorithm to determine which subset of pending requests
to batch.

Our experiments show a substantial speedup to the SSL handshake. We hope
these results will promote the use of batching to speed up secure web servers.
We intend to make our code available for anyone wishing to experiment with it.
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Appendix A: Impossibility of Batching with a Single
Public Key

Fiat showed that when using relatively prime public exponents e1, e2, with a
common modulus, it is possible to batch the decryption of v1, v2. The fact that
batching only works when different public exponents are used forces batching
web servers to manage multiple certificates. It is natural to ask whether one
can batch the decryption of two ciphertexts encrypted using the same RSA
public key. More precisely, can we batch the computation of v1/e

1 and v
1/e
2 ? We

show that batching using a single public key is not possible using arithmetic
operations.

Given an RSA public key 〈N, e〉 we say that batch decryption of ciphertexts
v1, v2 is possible if there exist rational functions f , g1, g2 over ZN and an integer
m such that

v
1/e
1 = g1(A, v1, v2) ; v

1/e
2 = g2(A, v1, v2) where A =

[
f(v1, v2)

]1/m
For efficiency one would like the functions f , g1, g2 to be of low degree. Fiat
gives such f , g1, g2 when relatively prime exponents e1, e2 are used. Fiat uses
m = e1 · e2. Note that batch RSA works in any field — there is nothing specific
to ZN .

We show that no such f , g1, g2,m exist when a single public key is used. More
precisely, we show that no such expressions exists when all arithmetic is done in
characteristic 0 (e.g., over the rationals). Since batching is generally oblivious to
the underlying field, our inability to batch in characteristic 0 indicates that no
such batching exists in ZN either.

Let Q be the field of rational numbers, and v1, v2 ∈ Q. The existence of g1,
g2 implies that Q[v1/e

1 , v
1/e
2 ] is a subfield of Q[A] for all v1, v2. This cannot be,

as stated in the following lemma:

Lemma 2. For any e > 1 and f , g1, g2, m as above, there exist v1, v2 ∈ Q such
that Q[v1/e

1 , v
1/e
2 ] is not a subfield of Q[f(v1, v2)1/m]

Proof Sketch. Let f, g1, g2,m be a candidate batching scheme. Let v1, v2 be di-
stinct integer primes and set A = f(v1, v2). We show that Q[v1/e

1 , v
1/e
2 ] is not a

subfield of Q[A1/m]. Consequently, f, g1, g2,m is an invalid batching scheme.
Let K = Q[v1/e

1 , v
1/e
2 ] and L = Q[A1/m]. We know that [K : Q] = e2.

Similarly [L : Q] = m′ for some m′ dividing m. Assume, towards a contradiction,
that K is a subfield of L. Then [K : Q] divides [L : Q]. Hence, e divides m.

Define L0 as an extension of L by adjoining a primitive m’th root of unity.
Then L0 is a Galois extension of Q. Similarly, let K0 be an extension of K
by adjoining a primitive m’th root of unity. Then K0 is a Galois extension of
Q (since by assmuption e divides m). Observe that if K ⊆ L then K0 ⊆ L0.
Consequently, to prove the lemma it suffices to show that K0 6⊆ L0.

Let T be an extension of Q obtained by adjoining a primitive m’th root
of unity. Then K0 and L0 are Galois extensions of T . To show that K0 is not
contained in L0 we consider the Galois group of K0 and L0 over T .

Let G be the Galois group of K0 over T and let H be the Galois group of
L0 over T . If K0 ⊆ L0 then the fundamental theorem of Galois theory says that
there exists a normal subgroup H0 of H such that G = H/H0. Hence, it suffices
to prove that G does not arise as a factor group of H.
The lemma now follows from the following three simple facts:
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1. The Galois group G is isomorphic to Ze × Ze.
2. The Galois group H is isomorphic to Zm′ .
3. For any pair m′, e the group Zm′ does not have a factor group isomorphic

to Ze × Ze.

Fact 3 follows since all factor groups of Zm′ are cyclic, but Ze × Ze is not. ut
To conclude, we note that the proof shows that any batching scheme f , g1,

g2, m will fail to work correctly in characteristic 0 for many inputs v1, v2.
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Geneviève Arboit1? and Jean-Marc Robert2

1 School of Computer Science, McGill University, Montréal, CANADA
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Abstract. We show how to construct a practical secure signature pad-
ding scheme for arbitrarily long messages from a secure signature pad-
ding scheme for fixed-length messages. This new construction is based
on a one-way compression function respecting the division intractability
assumption. By practical, we mean that our scheme can be instantia-
ted using dedicated compression functions and without chaining. This
scheme also allows precomputations on partially received messages. Fi-
nally, we give an instantiation of our scheme using SHA-1 and PKCS #1
ver. 1.5.
Keywords: Digital signature, padding scheme, provable security, atomic
primitive, RSA, hash-and-sign, division intractability, smooth numbers.

1 Introduction

A common practice for signing with RSA is known as the hash-and-sign pa-
radigm. First, a hash or redundancy function, which usually consists of a com-
pression function and a chaining function, is applied to the message. Then some
padding is added to the result, and this value is exponentiated using the sig-
nature exponent. This is the basis of several existing standards many of which
have been broken (see [Mis98] for a survey).

Security reductions for RSA signature padding schemes are presented in
[CKN00]. These reductions permit to go from fixed-length messages to arbitrary-
length messages RSA signature padding schemes. Moreover, these new schemes
also allow one to make precomputations on partially received messages, as in the
case of IP packets, which are typically received in a random order. In [CKN00],
a hash function µ is an atomic primitive that is assumed to be a secure padding
scheme for RSA. However, µ takes a k + 1 bit input and returns a k bit output
where k is the length of the RSA modulus. This particularity of the scheme is
not significantly modifiable: the bit length of the µ output has to have about the
same bit length as the RSA modulus. This limitation on the choice of µ forces
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either to instantiate it with a non-dedicated hash function, or with a dedicated
hash function that uses both compression and chaining primitives.

In this paper, with a similar construction, we give a practical instantiation
based on the compression function of SHA-1 without any chaining function. Our
solution has the great advantage over [CKN00] of removing the relation of the
length of µ output to the length of the RSA modulus. We are able to achieve
this result simply by making an additional assumption about µ, namely division
intractability. This property is slightly stronger than collision intractability.

2 Definitions

2.1 Signature Schemes

The following definitions are based on [GMR88].

Definition 1. A digital signature scheme is defined by the following:

– The key generation algorithm Gen is a probabilistic algorithm which given
1k, outputs a pair of matching public and secret keys, (pk, sk).

– The signing algorithm Sign takes the message m to be signed and the secret
key sk and returns a signature s = Signsk(m). The signing algorithm may
be probabilistic.

– The verification algorithm V erify takes a message m, a candidate signature
s′ and the public key pk. It returns a bit V erify(m, s′), equal to 1 if the
signature is accepted, and 0 otherwise. We require that if Signsk(m) was
indeed assigned to s, then V erify(m, s) = 1.

2.2 Security of Signature Schemes

The security of signature schemes was formalized in [GMR88] for the asymptotic
setting. We will prove security against existential forgery by adaptive chosen
plaintext attackers. The following definitions for the exact security of signature
schemes are taken from [BR96].

Definition 2. A forging algorithm F is said to (t, qsign, ε)-break the signature
scheme given by (Gen, Sign, V erify) if after at most qsign adaptively chosen
signature queries and t processing time, it outputs a valid forgery with probability
at least ε. The probability is taken over the random bits of F , and given that the
random bits in the signature are correctly distributed.

Definition 3. A signature scheme (Gen, Sign, V erify) is (t, qsign, ε)-secure if
there is no forging algorithm which (t, qsign, ε)-breaks the scheme.

To construct µ from a dedicated hash function without chaining, we make
an additional assumption, which is strong but constructible. We use a definition
of [GHR99] slightly modified for our purposes.



46 G. Arboit and J.-M. Robert

Definition 4. Let Hl be a collection of compression functions that map strings
of length t into strings of length l. Such a collection is said to be division in-
tractable if for µ ∈ Hl, it is infeasible to find distinct inputs X1, ..., Xn, Y such
that µ(Y ) divides the product of the µ(Xi)’s. Formally, for every probabilistic
polynomial time algorithm A, there exists a negligible function negl() such that:

Pr
µ∈Hl


A(µ) = 〈X1, ..., Xn, Y 〉

s.t. Y 6= Xi for i = 1, ..., n,
and µ(Y ) divides the product

∏n
i=1 µ(Xi) mod 2t


 = negl(l)

If µ is randomized, the adversary A can choose both the input and the ran-
domness. Given a randomly chosen function µ from Hl, A needs to find pairs
(R1, X1), ..., (Rn, Xn), (R, Y ) such that Y 6= Xi for i = 1, ..., n, but µ(R, Y )
divides the product

∏n
i=1 µ(Ri, Xi) mod 2t.

2.3 The RSA Cryptosystem

The RSA cryptosystem can be used to obtain both public key cryptosystems
and digital signatures [RSA78].

Definition 5. The RSA cryptosystem is a family of trapdoor permutations. It
is specified by:

– The RSA generator RSA, which on input 1k, randomly selects 2 distinct
k/2-bit primes p and q and computes the modulus N = p · q. It randomly
picks an encryption exponent e ∈ Z∗

φ(N) and computes the corresponding
decryption exponent d such that e · d = 1 mod φ(N). The generator returns
(N, e, d).

– The encryption function f : Z∗
N → Z∗

N defined by f(x) = xe mod N .
– The decryption function f−1 : Z∗

N → Z∗
N defined by f−1(y) = yd mod N .

2.4 A Practical Standard RSA Signature Scheme

Let µ be a randomized compression function taking as input a message of size
t, using r random bits, and outputting a message digest of length l:

µ : {0, 1}r × {0, 1}t → {0, 1}l

and enc be an encoding function taking as input a message digest of size l, and
outputting an encoded message of length k:

enc : {0, 1}l → {0, 1}k

Overall:

enc ◦ µ : {0, 1}r × {0, 1}t → {0, 1}k

We consider in Figure 1 the classical RSA signature scheme (Gen, Sign,
V erify) which signs fixed-length t-bits messages. This is a modification of
[CKN00, Figure 1].
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System parameters
an integer k > 0
a function µ : {0, 1}r × {0, 1}t → {0, 1}l
a function enc : {0, 1}l → {0, 1}k

Key generation : Gen

(N, e, d)← RSA(1k)
public key: (N, e)
private key: (N, d)

Signature generation : Sign
R←U {0, 1}r
m ∈ {0, 1}t
y ← enc ◦ µ(R, m)
return

〈
R, yd mod N

〉

Signature verification : V erify
y ← xe mod N
y′ ← enc ◦ µ(R, m)
if y = y′ then return 1 else return 0

Fig. 1. The classical RSA scheme using enc ◦ µ for signing fixed-length messages

3 The Improved Construction

We construct in Figure 2 a new signature scheme (Gen′, Sign′, V erify′) using
the function enc◦µ. The new construction allows the signing of messages of size
2a(t − a) bits where a is between 0 and t − 1. This is a modification of [CKN00,
Figure 2].

Theorem 1. Fix ε such that for all negl(l) functions, ε > negl(l), and suppose
that qsign and t are polynomial in l. For a fixed negl(l) function, if the signature
scheme (Gen, Sign, V erify) is (t, qsign, ε)-secure and if µ is negl(l)-division in-
tractable, then the signature scheme described in Fig. 2 (Gen′, Sign′, V erify′)
is (t′, qsign, ε)-secure, where:

t′ = t − 2a · qsign · O (
t2

)

proof : Suppose there is a forger F ′ that (t′, qsign, ε)-breaks the scheme (Gen′,
Sign′, V erify′). Then, we can construct a forger F that (t, qsign, ε)-breaks the
scheme (Gen, Sign, V erify) using F ′. The forger F has oracle access to a signer
S for the scheme (Gen, Sign, V erify) and its goal is to produce a forgery for
(Gen, Sign, V erify).

The forger F answers the queries of F ′. When F ′ needs the signature of the
jth message mj , F queries S to obtain the signature si of αi (refer to Fig. 2).
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System parameters
an integer k > 0
an integer a ∈ [0, k − 1]
a function µ : {0, 1}r × {0, 1}t → {0, 1}l
a function enc : {0, 1}l → {0, 1}k

Key generation : Gen′

(N, e, d)← RSA(1k)
public key: (N, e)
private key: (N, d)

Signature generation : Sign′

Split the message m into b blocks of size k − a bits
such that m = m[1]||...||m[b]
Ri ←U {0, 1}r for i = 1, ..., b

α←∏b
i=1 µ(Ri, i||m[i]) mod 2t

where i is the a-bit string representing i
R←U {0, 1}r
y ← enc ◦ µ(R, α)
return

〈
R, 〈Ri〉 , yd mod N

〉

Signature verification : V erify′

y ← xe mod N

α←∏b
i=1 µ(Ri, i||m[i]) mod 2t

y′ ← enc ◦ µ(R, α)
if y = y′ then return 1 else return 0

Fig. 2. The new construction using enc ◦ µ for signing long messages

Eventually, F ′ outputs a forgery (m′, s′) for the signature scheme (Gen′,
Sign′, V erify′), from which F computes, for j = 1, ..., qsign:

αj =
bj∏

i=1

µ(Rj
i , i||mj [i]) mod 2t

α′ =
b′∏

i=1

µ(R′
i, i||m′[i]) mod 2t

which takes additional time
∑qsign

j=1 bj + b′ ≤ qsign · 2a+1, multiplied by the time
necessary to compute multiplications modulo 2t, which is in time quadratic in t
(upper bound).

We distinguish two cases:

First case: α′ /∈ {α1, ..., αqsign
}. In this case, F outputs the forgery (α′, s′)

and halts. This is a valid forgery for the signature scheme (Gen, Sign, V erify)
since s′ = 〈R′, enc ◦ µ(R′, α′)〉 and the signature of α′ was never signed by the
signer S. This contradicts our assumption that the signature scheme is secure.
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Second case: α′ ∈ {α1, ..., αqsign
}, so there exists a c such that α′ = αc. Let

us denote m = mc, 〈Ri〉 = 〈Rc
i 〉, α = αc, and b = bc. We have:

b′∏
i=1

µ(R′
i, i||m′[i]) mod 2t =

b∏
i=1

µ(Ri, i||m[i]) mod 2t

Wlog, suppose b′ = b, since m′ 6= m, for some i we have i||m′[i] /∈ {1||m[1], ...,
b||m[b]} and µ(R′

i, i||m′[i]) divides the product
∏b

i=1 µ(Ri, i||m[i]) mod 2t. Since
ε > negl(l), and t′ and qsign are polynomial in l, this contradicts our assumption
that µ is negl(l)-division intractable. �

4 Implementing a Practical Hashing Family H3·160

We define the function µ by using the following standard dedicated primitives:

h = SHA − 1 : {0, 1}512 → {0, 1}160

enc = PKCS #1 ver. 1.5 : {0, 1}480 → {0, 1}k

and where enc = PKCS #1 ver. 1.5 is a feasible randomized alternative.
Let R be a uniformly distributed 2 · 160-bit string and m the message to

sign. Then µ is the compression function derived by [GHR99, Section 6] from
the heuristic given in [BP97]:

µ(R, m) = 2320 · h(m) + R

which is defined only when µ(R, m) is a prime. Overall:

µ : {0, 1}320 × {0, 1}512 → {0, 1}480

enc ◦ µ : {0, 1}320 × {0, 1}512 → {0, 1}k

That µ(R, m) is a prime guarantees division intractability, and the standard
hashing lemma [GHR99, Lemma 9] provides a proof of efficiency, through a
smooth numbers argument, with the parameter k = 160 (which is l/3 in our
notation). Our Definition 4 is a modified version of their Definition 2, but division
intractability holds, and their Lemma 9 applies nonetheless, as we show next.

Lemma 1. The function µ(R, m) = 2320 · h(m) + R as defined above is division
intractable.

Pr
µ∈Hl


A(µ) = 〈X1, ..., Xn, Y 〉

s.t. Y 6= Xi for i = 1, ..., n,
and µ(Y ) divides the product

∏n
i=1 µ(Xi) mod 2512




= Pr [a 480-bit prime divides a random 512-bit number]

≤ maximum number of 32-bit quotients
total number of 512-bit numbers

=
232

2512 =
1

2480 =
1

23l
= negl(l)
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The function µ effectively outputs a random odd prime from the set f−1

(h(X)) for an input message X. The following lemma shows that this can be
done efficiently.

Lemma 2. [GHR99, Lemma 9] Let U be a universal family from {0, 1}l to
{0, 1}l/3. Then, for all but a 2−l/3 fraction of the functions f ∈ U , for every
Y ∈ {0, 1}l/3, a fraction of at least 3/cl of the elements in f−1(Y ) are primes,
for some small constant c.

5 Improved Communication Complexity

The signature scheme (Gen′, Sign′, V erify′) described in Section 3 has signifi-
cant overhead communication complexity: the number of random bits transmit-
ted is proportional to the number of message blocks. This problem represents
the main open problem of this paper.

However, we can sketch a first solution to this open problem using a (conjec-
tured) pseudo-random number generator. The following definition is based on
[Lub96, p.50-51].

Definition 6. Let g : {0, 1}r → {0, 1}(b+1)r be a P-time function. We say g
is a (δ, t)-secure pseudo-random number generator for which adversary A has
success probability:

δ =
∣∣∣∣ Pr
X∈{0,1}r

[A(g(X)) = 1] − Pr
Z∈{0,1}(b+1)r

[A(Z) = 1]
∣∣∣∣

if every adversary A has a probability of success no less than δ and a running
time of at least t.

The modified scheme would involve the transmission of r random bits, which
would be stretched into (b + 1)r random bits via a pseudo-random number ge-
nerator g, by both the signer and the verifier. The pseudo-random bits take the
place of their random counterparts in the original scheme described in Figure 2.
The security of this modified scheme is implied by the one of the original scheme,
and of the pseudo-random number generator.

For the practical implementation described in the previous section, µ(Ri, mi)
= 2320·h(mi)+Ri where Ri is the smallest integer greater than the integer defined
by the ith 320-bit block such that µ(Ri, mi) is prime. To quicken the verification
process, Ri can be defined as ith 320-bit block + inci. In such a case, only the
value of inci is transmitted with the message block trading time for space.

6 Conclusion

In [CKN00], the problem of designing a secure general-purpose padding scheme
was reduced to the problem of designing a one-block secure padding scheme
by providing an efficient and secure tool to extend the latter into the former.
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By modifying their construction for arbitrary-length messages, and adding one
reasonable computational assumption, we provide a practical method of instan-
tiating the secure padding function for short messages using the compression
function of dedicated hash functions as well as dedicated encoding functions.
We have presented an implementation that uses SHA-1 and PKCS #1 ver.
1.5. This implementation is independent of the size of the RSA modulus. This
was not true in [CKN00].

Dedicated hash functions usually consist of two primitive functions, one of
compression and one of chaining. This paper presents an improvement on prac-
ticality, since it reduces the potential attacks on the one-block padding scheme
to the ones on the hash function’s compression function, eliminating all worries
about the chaining function, or its interactions with the compression function.
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Abstract. Let N = pq denote an RSA modulus of length n bits. Call
N an (m − LSbS) RSA modulus if p and q have exactly m equal Least
Significant (LS) bits . In Asiacrypt ‘98, Boneh, Durfee and Frankel (BDF)
described several interesting ‘partial key exposure’ attacks on the RSA
system. In particular, for low public exponent RSA, they show how to
recover in time polynomial in n the whole secret-exponent d given only
the n/4 LS bits of d. In this note, we relax a hidden assumption in the
running time estimate presented by BDF for this attack. We show that
the running time estimated by BDF for their attack is too low for (m −
LSbS) RSA moduli by a factor in the order of 2m. Thus the BDF attack is
intractable for such moduli with large m. Furthermore, we prove a general
related result, namely that if low-exponent RSA using an (m − LSbS)
modulus is secure against poly-time conventional attacks, then it is also
secure against poly-time partial key exposure attacks accessing up to 2m
LS bits of d. Therefore, if low-exponent RSA using (n/4(1 − ε) − LSbS)
moduli for small ε is secure, then this result (together with BDF’s result
on securely leaking the n/2 MS bits of d) opens the possibility of fast
and secure public-server-aided RSA decryption/signature generation.

1 Introduction

Let N = pq denote an RSA modulus of length n bits, with p and q primes each
of length about n/2 bits. In this paper we restrict our attention to low public
exponent variants of the RSA public key system [11]. For these variants the
public exponent e is chosen to be a small value (e.g. 3), independent of the the
modulus length n. Then a user generates an RSA modulus N and computes his
secret exponent d to satisfy ed = 1 mod φ(N), where φ(N) = N + 1 − (p + q) is
Euler’s phi function evaluated at N . When used properly, low public exponent
RSA (which we hereafter refer to simply as low exponent RSA) is currently
considered secure and in fact is in wide use because the encryption operation
x 7→ xe mod N can be performed very quickly, i.e. in time quadratic rather than
cubic in n. However, the decryption operation x 7→ xd mod N still needs cubic
time in n and remains a computational bottleneck when it is performed in a low
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speed device such as a smart card. In many such cases, a possible solution is
to find a way for the low-speed device (which we hereafter refer to as the card)
to use a powerful but publicly observable external server to perform some of
the decryption computation, without leaking any secret knowledge (such as the
prime factors of N) to the server. Such a scheme has been called a ‘Server-Aided-
Secret-Computation’ (SASC), with the first such schemes for RSA proposed by
Matsumoto, Kato and Imai [5]. Many such schemes have been proposed, but
many have been shown to be insecure (see [7] for a recent example).

In AsiaCrypt ‘98, Boneh, Durfee and Frankel (BDF) described several inte-
resting partial key exposure attacks on the RSA system [1]. In particular, for
low exponent RSA, they show how to factor N (and hence recover the whole
secret exponent d) in time polynomial in n, given only the n/4 Least Significant
(LS) bits of d. They also showed the useful result that knowing the n/2 most
significant (MS) bits of d cannot help an attacker if low-exponent RSA is secure
(because these bits are ‘leaked’ out by the public information). In the context
of SASC, these bits can therefore be made available to the public server, which
can perform half the decryption exponentiation computation. This gives a re-
duction by a factor of 2 of the computation performed by the card (possessing
the LS bits of d), compared with the unaided case when the card performs the
standard exponentiation with the full-length d (from hereon all computation sa-
ving factors will be stated with respect to this full-length exponentiation case).
However, in cases where the card is able to store the prime factors of N , the
Chinese Remainder Theorem (CRT) can be used to reduce the decryption com-
putation by a factor of 4 without any server aid (see, for example [6], section
14.75). When CRT is used by the card, the BDF server-aided technique does
not achieve additional savings (i.e. also gives a reduction by a factor of 4) and
hence is not useful in these cases.

In this note, we relax a hidden assumption in the running time estimate pre-
sented by BDF for their low public exponent key exposure attack (our comments
do not apply to the other attacks presented by BDF for large public exponents).
Call N = pq an m-LS bit Symmetric (or (m − LSbS) for short) RSA modulus,
if p and q are primes having exactly m equal LS bits, i.e. p − q = r · 2m for some
odd integer r. We show that the running time estimated by BDF for their attack
is too low for (m − LSbS) RSA moduli by a factor in the order of 2m. Thus the
BDF attack is intractable for such moduli if m increases proportionally with
n. Furthermore, we prove a general result on (m − LSbS) RSA moduli which
can have applications in fast RSA SASC, namely that if a low-exponent RSA
system using an (m−LSbS) RSA modulus is secure against arbitrary poly-time
‘conventional’ attackers (i.e. attackers having no access to secret bits), then the
system is also secure against arbitrary poly-time partial key exposure attackers
having access to up to 2m LS bits of the secret exponent d.

Therefore, if low-exponent RSA systems using (n/4(1 − ε) − LSbS) moduli
with small ε are secure (implying in particular that (n/4(1 − ε) − LSbS) moduli
are hard to factor), then our result, together with BDF’s result on securely
leaking the n/2 MS bits of d, opens the possibility of fast and secure RSA
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SASC for decryption or signature generation. In particular, this means that
one can reveal to the public server the majority of bits of d except for the
block of about n/2 − 2m = (n/2)ε ‘middle’ bits in positions n/2 − 1 down
to 2m. Since exponentiation time is linear in the length of the exponent, the
computational cost for the card is reduced by a factor of around 2/ε, which can
be very significant, especially for ε < 1/2. Unlike the BDF case, this technique is
also useful when CRT is used by the card, achieving in these cases a computation
saving for the card by a factor 4/ε.

2 Review of Boneh-Durfee-Frankel Attack

In this section we review the BDF partial key exposure attack on low public
exponent RSA. The attack can be simply described as it relies on the following
theorem due to Coppersmith [2], which is proved using Lattice Basis Reduction
techniques.

Theorem 1. (Coppersmith) Let N = pq denote an RSA modulus of length n
bits. In polynomial time we can factor N if we know the n/4 LS bits of p.

The BDF attack takes as input the public modulus N of length n bit, the
low public exponent e, and an integer d0 of length n/4 bits, consisting of the
n/4 LS bits of the secret exponent d, i.e. d0 = d (mod 2n/4). It then computes
in turn each element of a set X = {x1, ..., x|X|} of trial values for the n/4 LS
bits of p or q, running Coppersmith’s algorithm of Theorem 1 to try to factor N
with each trial value xi. The set X is guaranteed by construction to contain p0
and q0, the n/4 LS bits of p and q respectively. Hence by Theorem 1 (since the
algorithm terminates with failure in polynomial time even when xi 6= {p0, q0}
(mod 2n/4)), the attack factors N within time bound |X| · TCop(n), where |X|
denotes the cardinality of X and TCop(n) is the polynomial running time bound
for Coppersmith’s algorithm.

The central part of the attack is the construction of the set X since it must
have a cardinality small enough (i.e. polynomial in n) to make the attack trac-
table. It is constructed as the set of solutions to a quadratic modular equation
as follows. The modular key generation equation ed = 1 mod φ(N) implies the
integer equation ed = 1 + kφ(N) for some unique positive integer k. Since the
function f(x) = N + 1 − (x + N/x) evaluates to φ(N) at x = p and x = q, it
follows that p and q are roots of the quadratic equation (ed−1) ·x−k ·xf(x) = 0.
Thus, using the fact that d0 = d mod 2n/4 is known, we see that p0 = p mod 2n/4

and q0 = q mod 2n/4 are roots of the modular equation:

kx2 + (ed0 − 1 − k(N + 1))x + kN = 0 (mod 2n/4) (1)

All the parameters defining (1) can be computed by the attacker with the
exception of k. However, assuming that both e and d are smaller than φ(N), it
is easy to see that k ∈ {1, 2, ..., e − 1}. Since e is small, this set can be searched.
So the set X of candidates is generated as follows: for each candidate k′ ∈
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{1, ..., e − 1} for the true value of k, the attacker computes (in time polynomial
in n, by lifting solutions modulo 2 to solutions modulo higher powers of 2 until
the modulus 2n/4 is reached) up to S(k′) solutions of (1) with the unknown k
replaced by k′. Here S(k′) is an upper bound on the number of solutions to
(1) expected if k was equal to k′. Thus the cardinality |X| =

∑e−1
k′=1 S(k′). The

number of solutions S(k′) is found by noting that the linear coefficient of (1)
is equal to (k − k′)φ(N) − k′(p + q) modulo 2n/4, which for k = k′ reduces to
−k′(p + q), so S(k′) is the number of solutions to:

k′(x2 − (p + q)x + N) = 0 (mod 2n/4) (2)

Dividing (2) by m2(k′) (where m2(z) denotes the 2-multiplicity of z) and mul-
tiplying by the multiplicative inverse of odd(k′) = k′/2m2(k′), we find that
S(k′) = 2m2(k′)T (m2(k′)), where T (m2(k′)) is the number of solutions to:

x2 − (p + q)x + pq = 0 (mod 2n/4−m2(k′)). (3)

Thus we have:

|X| =
e−1∑
k′=1

2m2(k′) · T (m2(k′)) (4)

In their paper [1], BDF make the following incorrect deduction:

T (m2(k′)) ≤ 2 for all k′ ∈ {1, ..., e − 1} (5)

It is the estimate (5) that we wish to correct in this paper. Putting (5) in (4)
leads to the conclusion that

|X| < 2 ·
blog2 ec∑

m=0

2m · (
∑

k′∈H(m)

1) < 2eblog2 ec, (6)

where the set H(m) def= {k′ ∈ {1, ..., e − 1} : m2(k′) = m}. This gives a total
running time bound 2eblog2 ec · TCop(n) which is necessarily polynomial in n
since e is small.

We remark here that the above description differs slightly from that presented
by BDF to fix an independent minor problem of the analysis presented by BDF.
In particular, BDF used the same symbol to represent both the true value k
which is hidden and fixed ‘inside’ ed0 = 1 + kφ(N) mod 2n/4, and the trial k′

which is swept in the set {1, ..., e− 1}, and hence were led to the incorrect claim
that the number of solutions to (1) with k replaced by any k′ ∈ {1, ..., e − 1} is
the same as that when k = k′, namely S(k′) using the above notation. We fix
this without affecting the analysis by making the attacker reject a value of k′ as
clearly not equal to k if for this value (1) has more than S(k′) solutions (while
BDF suggested to try all solutions for each k′, which would require a separate
proof that this number is not greater than S(k′)).
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3 A Lemma

We first present a lemma on taking square-roots modulo 2γ , which will be useful
in the next two sections.

Lemma 1. The set of solutions to the modular equation x2 = c (mod 2γ) is
summarised as follows. Let m = m2(c) and d = odd(c).

(i) For the case γ ≤ m, there are 2bγ/2c solutions of the form x = r · 2dγ/2e

(mod 2γ) for r ∈ {0, ..., 2bγ/2c − 1}.
(ii) For the case γ > m, there are no solutions if m is odd. Otherwise, if m

is even, there are three subcases.
For γ = m + 1 there are 2m/2 solutions.
For γ = m + 2, there are 2 · 2m/2 solutions if d = 1 (mod 4) and none
otherwise.
For γ ≥ m + 3, there are 4 · 2m/2 solutions if d = 1 (mod 8) and none
otherwise.

These solutions have the form x = r · 2m/2 (mod 2γ), where r = ±s + δ ·
2γ−m−1 + t · 2γ−m (mod 2γ−m/2), δ ∈ {0, 1} (δ = 0 when γ = m + 1), t ∈
{0, ..., 2m/2 − 1} and s is any solution to s2 = d (mod 2γ−m).

Proof. First we note that the given equation x2 = c (mod 2γ) is equivalent to

m2(x2 − c) ≥ γ, (7)

where m2(z) denotes the 2-multiplicity of z. For the case γ ≤ m, we have c = 0
(mod 2γ), so x2 = 0 (mod 2γ) which is equivalent to m2(x2) = 2m2(x) ≥ γ,
or m2(x) ≥ dγ/2e, as stated. For the case γ > m, it can be verified that (7) is
equivalent to the conditions (i) m2(x2) = m and (ii) m2(r2 − d) ≥ γ − m, where
r

def= odd(x). From (i) we have that m is even and x = r · 2m/2 (mod 2γ) for
odd r, and (ii) has the equivalent form (iii) r2 = d (mod 2γ−m). Each distinct
solution r0 to (iii) modulo 2γ−m gives rise to exactly 2m/2 distinct solutions of
(7) modulo 2γ of the form r02m/2 + l · 2γ−m/2 for any l ∈ {0, ..., 2m/2 − 1}. For
γ − m = 1 and γ − m = 2 one can check that (iii) has the only solutions r = 1
(mod 2) and r = ±1 (mod 4) respectively, and no solutions in the latter case
if d = 3 (mod 4). For γ − m ≥ 3, suppose that s is a solution of (iii). Then it
is readily verified that r = ±s + δ · 2γ−m−1 for δ ∈ {0, 1} are 4 distinct solutions
to (iii) modulo 2γ−m. The lack of any additional solutions and the existence of
a solution s is shown in ([10], pages 182-184). One can check that for γ −m = 3,
(iii) has no solutions if d 6= 1 (mod 8), from which the stated result follows for
γ − m ≥ 3. This completes the proof of the lemma. ut

4 Correction to BDF Attack Time Estimate

We now give the correct estimate for the number of solutions T (m2(k′)) to (3).
In their analysis, BDF state correctly that (3) has at most 2 solutions modulo 2
(in fact it has exactly 1 such solution x = 1 mod 2), but then suggest the use of
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Hensel lifting to show that this number of solutions is preserved modulo arbitrary
high powers of 2, including in particular 2n/4−m2(k′). However, for a polynomial
f(.), Hensel’s lemma(see [8]) applies only for lifting non-singular solutions x of
f(x) = 0 mod 2, i.e. those for which f ′(x) 6= 0 mod 2, where f ′(.) denotes the
derivative of f(.). But in the case of (3), all solutions are singular.

Theorem 2. Define tk′
def= m2(k′) and tp−q

def= m2(p − q). The number of solu-
tions to Equation (3) is given by

T (tk′) =
{

2tp−q+υ if tk′ < n/4 − 2(tp−q − 1)
2b(n/4−tk′ )/2c if tk′ ≥ n/4 − 2(tp−q − 1)

(8)

where υ = −1 when t(k′) = n/4 − 2(tp−q − 1) − 1, υ = 0 when t(k′) = n/4 −
2(tp−q − 1) − 2, and υ = +1 when t(k′) ≤ n/4 − 2(tp−q − 1) − 3.

Let η = n/4 − tk′ . In the case tk′ < n/4 − 2(tp−q − 1), the solutions have
the form x = ({p, q} mod 2η−tp−q ) + r′ · 2η−tp−q (mod 2η). In the case tk′ ≥
n/4 − 2(tp−q − 1), the solutions have the form x = (p mod 2bη/2c) + r′ · 2dη/2e

(mod 2η).

Proof. By ‘completing the square’, since p + q is even, we can write (3) in the
equivalent form (x − (p + q)/2)2 = 1/4((p + q)2 − 4pq) = ((p − q)/2)2 mod 2η.
Applying Lemma 1 with γ = n/4− tk′ and c = ((p− q)/2)2, the claimed number
of solutions follows immediately. Writing p = l+pH ·2tp−q and q = l+ qH ·2tp−q ,
where exactly one of pH and qH is odd (so that l < 2tp−q represents the tp−q

shared LS bits of p and q) we have that (p + q)/2 = l + (pH + qH) · 2tp−q−1

and (p − q)/2 = (pH − qH) · 2tp−q−1. From Lemma 1, the solutions in the case
tk′ ≥ n/4 − 2(tp−q − 1) are x = (p + q)/2 + r · 2dη/2e (mod 2η) and since
r is arbitrary, we have x = (p + q)/2 mod 2dη/2e + r′ · 2dη/2e (mod 2η) for
arbitrary r′, which gives the stated result x = l + r′ · 2dη/2e (mod 2η) since
dη/2e ≤ tp−q and (pH + qH)2(tp−q−1) = 0 (mod 2tp−q ). Similarly, for the case
tk′ < n/4 − 2(tp−q − 1), we apply Lemma 1 with the solution s = odd(p − q)
(mod 2η−2(tp−q−1)) to s2 = odd((p − q)2/4) (mod 2η−2(tp−q−1)), giving x =
l+(pH +qH)2tp−q−1 +(±(pH +qH)+δ ·2η−2(tp−q−1)−1 + t ·2η−2(tp−q−1)) ·2tp−q−1

(mod 2η), which simplifies to the desired result x = l +({pH , qH}) · 2tp−q +(2t+
δ)2n/4−tp−q (mod 2η). ut

With this result, we see that the BDF attack becomes intractable for (m −
LSbS) moduli with sufficiently large m = tp−q. Specifically, the running time
bound stated by BDF must be increased, and we can state the following corrected
running time estimate for the BDF attack.

Corollary 1. Given the (n/4) LS bits of d, the BDF attack factors N within
the following time bound:

TBDF (n) ≤
{

2eblog2 ec2tp−q+1TCop(n) if 2(tp−q − 1) < n/4
2eblog2 ec2n/8TCop(n) if 2(tp−q − 1) ≥ n/4

(9)
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Proof. Recall that TBDF (n) ≤ |X| · TCop(n). From (4), we have the following
bound on the cardinality of the set X constructed by the BDF attack:

|X| =
blog2ec∑
m=0

2mT (m) db(e − 1)/2mc/2e (10)

<

blog2ec∑
m=0

2mT (m)(e/2m + 1)/2 (11)

< e ·
blog2ec∑
m=0

T (m). (12)

Now from Theorem 2 we see that if 2(tp−q − 1) < n/4, then, defining α1
def=

min(blog2ec, n/4 − 2(tp−q − 1) − 1), we have:

blog2ec∑
m=0

T (m) =
α1∑

m=0

2tp−q+1 +
blog2ec∑

m=α1+1

2b(n/4−m)/2c (13)

≤
blog2ec∑
m=0

2tp−q+1 < 2blog2ec2tp−q+1, (14)

where the second term in the right hand side of (13) is defined to be zero for α1 =
blog2ec. From (14), the first case of the corollary follows using (12). Similarly,
for the second case 2(tp−q − 1) ≥ n/4 we have

blog2ec∑
m=0

T (m) =
blog2ec∑
m=0

2b(n/4−m)/2c (15)

<

blog2ec∑
m=0

2n/8 < 2blog2ec2n/8 (16)

This gives, using (12), the second claim, which completes the proof. ut
We note that when the prime factors p and q of N are chosen randomly

and independently, one would heuristically expect that Pr[tp−q = m] = 1/2m

for m ≥ 1. Therefore in this case tp−q would be small with high probability,
so our result does not imply the intractability of the BDF attack in this (most
common) case.

The above results can be generalized in a straightforward way to the case
when the attacker is given any number z ≥ n/4 of LS bits of d. In this case, the
number of arbitrary MS bits in the solutions to Equation (3) with n/4 replaced
by z is about z/2 when z ≤ 2tp−q and about tp−q when z ≥ 2tp−q. However,
since only the n/4 LS bits of the correct solutions are needed by Coppersmith’s
algorithm, only n/4 − z/2 bits and n/4 + tp−q − z bits need be searched in the
two cases, respectively, and so the power of 2 in the running time estimate for



An Advantage of Low-Exponent RSA with Modulus Primes Sharing LSBs 59

the attack is about 2n/4−z/2 for z ≤ 2tp−q and about 2n/4+tp−q−z for z ≥ 2tp−q.
Therefore, the attack requires about z = n/4 + tp−q LS bits of d in order to be
tractable.

5 Properties of (m-LSbS) RSA Moduli

In the previous section we showed that the BDF partial key exposure attack for
a low-exponent RSA system using (m − LSbS) RSA moduli is intractable (i.e.
requires time exponential in the modulus length n), if m is large, i.e. increases
proportionally to n. However, it is natural to ask whether it is possible to modify
the BDF attack or find another attack which, given the n/4 LS bits of d, factors
N in time polynomial in n even for large m. We have not found such an attack
when m ≤ n/4(1 − ε), where ε is a positive constant. Such an attack may exist,
but the following result shows that finding such an attack for low-exponent RSA
systems using (m − LSbS) moduli with m ≥ n/8 implies finding a poly-time
factoring algorithm for these (m − LSbS) moduli.

Theorem 3. Let (N, e, d) be an RSA key pair, where N = pq is a (m − LSbS)
RSA modulus of length n bits. Let A(., ., .) denote a partial key exposure attack
algorithm that, given up to 2m LS bits of d and the public pair (N, e), factors N
in time TA. Then we can construct a factoring algorithm F(., .), that given only
(N, e), factors N with time bound O(n) · (e · (TA + O(n2)) + O(n2)).

Proof. We show how to construct the factoring algorithm F(., .). Given (N, e),
F simply computes d0, the 2m LS bits of d, and runs A on input (N, e, d0). To
find d0, F does the following. First, F guesses the number of shared bits m (at
most n/2 guesses suffice to find the right value). Then, F solves

x2 = N (mod 2m) (17)

Writing p = l+pH ·2m and q = l+qH ·2m with l < 2m representing the m shared
LS bits of p and q, we see that N = pq = l2 (mod 2m). Applying Lemma 1, the
equation (17) has 4 solutions modulo 2m of the form x = ±l+δ2m−1 (mod 2m)
with δ ∈ {0, 1}. Thus l can be guessed correctly after at most 4 trials (we note
that (17) can be solved by lifting solutions modulo 2 to higher powers in time
O(m2)). Since N = (l+pH ·2m)(l+qH ·2m) = l2+l(pH +qH)2m+pHqH22m then
l(pH + qH) = (N − l2)/2m (mod 2m) and since l is odd, it has a multiplicative
inverse l−1 modulo 2m. So F can compute sH

def= l−1(N − l2)/2m = pH + qH

(mod 2m). Therefore F knows s0
def= sH · 2m + 2l = p + q (mod 22m), from

which the desired LS bits of d can be computed using d0 = e−1 · (1 + k(N + 1 −
s0)) mod 22m, where e−1 is the multiplicative inverse of e modulo 22m, which
exists since e is odd. Since it is known that k ∈ {1, ..., e − 1}, F can guess k
correctly using less than e guesses. The computation time per guessed value of
k is bounded as O(n2)+TA (we assume that the bound TA is easily computable
by F so that it can halt A after time TA regardless of A’s behaviour on inputs
with an incorrect trial value for d0), and the time for all other computations per
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guessed value of m are bounded as O(n2). Hence, since the number of guesses
needed to find m is O(n), we conclude that F factors N within the claimed time
bound. ut

The proof of the above result shows that for low-exponent RSA, (m−LSbS)
RSA moduli ‘leak’ the 2m LS bits of d. Therefore, it is easily generalized (by
changing A from a factoring attacker to any RSA attacker) to show that under
the sole assumption that low-exponent RSA using an (m − LSbS) modulus is
secure against conventional poly-time attackers (with no access to secret bits),
the 2m LS bits of d can be made public without compromising the security of the
system against poly-time attackers, who can compute these bits by themselves
(within a small set of uncertainty).

If the assumption that low-exponent RSA with (m−LSbS) moduli is secure
holds for some m, then as mentioned in Sect. 1, this result can be useful (in
conjunction with BDF’s result that low-exponent RSA also leaks the n/2 MS
bits of d) in the construction of a fast SASC protocol for securely speeding up
the RSA decryption operation with an (m − LSbS) modulus N . To be specific,
we illustrate this for the most common SASC application, namely server-aided
signature generation by a card on a message M (in practice M would be an
element of ZZ∗

N , obtained from the real message by one-way hashing). We write
the binary representation of the secret exponent as d =

∑n−1
i=0 di2i, where di ∈

{0, 1} represents the i’th significant bit of d. Define dsec
def= (1/22m) ·∑n/2−1

i=2m di2i

and dpub
def= d − 22mdsec. The SASC protocol for computing the signature s =

Md mod N consists of the following steps: (1) The card forwards the quadruple
(M, dpub, m, N) to the server. (2) The server computes β1

def= Mdpub mod N and

β2
def= M22m

mod N . (3) The server forwards the pair (β1, β2) to the card. (4)
The card computes s

def= β1β
dsec
2 mod N . (5) The card checks if se = M mod N .

If not, the card discards s and terminates with an error. (6) The card outputs the
signature s on message M . The length of the exponent in the exponentiation (4)
performed by the card is only (n/2−2m) bits. By use of CRT, this exponentiation
can be sped up by a factor of 2. The verification step (5) is required only in order
to provide security against active attacks by servers whose responses deviate from
the protocol, and can be omitted in cases when the server is trusted to respond
correctly. In any case, step (5) increases the computation for the card by only a
small fraction since e is small. The communication required by the card is about
2.5n + 2m transmitted bits and 2n received bits.

A remaining consideration is the security of low-exponent RSA with (m −
LSbS) moduli against conventional attacks, in particular factoring of the modu-
lus. It is clear from the proof of Theorem 3 that (m − LSbS) RSA moduli also
leak the m shared LS bits of p and q. Therefore one must be careful in choosing
m small enough to prevent the use of a factoring algorithm which makes use of
this knowledge. As far as we know, the best such algorithm is that of Coppers-
mith (see Theorem 1), which shows that (m − LSbS) moduli are easy to factor
when m ≥ n/4(1 − ε), where 2ε·n/4 is small enough to exhaustively search for
the ε · n/4 unknown bits of p or q. In fact, Theorem 3 shows that in the case



An Advantage of Low-Exponent RSA with Modulus Primes Sharing LSBs 61

m ≥ n/4 one can simply guess an e relatively prime to φ(N), compute the n/2
LS bits of d using the algorithm F above and then the n/2 MS bits of d as shown
by BDF, then knowing all of d and e, one has a multiple of φ(N), so it is easy
to factor N using Miller’s algorithm (see e.g. [9]). But when ε is sufficiently
large so that a set of size 2ε·n/4 is infeasible to search, we know of no algorithm
which can efficiently factor (n/4(1−ε)−LSbS) RSA moduli. We emphasize that
(m−LSbS) RSA moduli satisfy p− q = r ·2m, which does not imply that |p− q|
is small, a property which is known to allow easier factorization of N (see [12]
and [3]).

In practice, generating (m − LSbS) RSA moduli in the natural way, i.e.
picking one of the primes (say p) randomly, and then testing candidate integers
for q of the form q = p mod 2m+2m+r ·2m+1 (with a randomly chosen r) for pri-
mality, is asymptotically expected to be as efficient as the ‘standard’ independent
primes generation algorithm, where each candidate is chosen as a random odd
integer. This is due to a quantitative version of Dirichlet’s Theorem (see [10]),
which implies that the density of primes less than a bound x in any arithmetic
progression q = a (mod z) (with gcd(a, z) = 1) converges to (z/φ(z)) ·(1/ lnx).
For the case z = 2α, we have 2α/φ(2α) = 2 for all α ≥ 1. Therefore, the density
of primes converges to 2/ lnx for both the standard modulus generation search
(where α = 1 and a = 1 mod 2), as well as the (m − LSbS) modulus generation
search (where α = m + 1 and a = p + 2m mod 2m+1).

Finally, we mention that Lenstra [4] discusses techniques for generating RSA
moduli with portions of the modulus bits fixed to a desired value. These tech-
niques also allow computational savings in certain cases (e.g. by using moduli
which are close to a power of 2). However, unlike the moduli discussed by Len-
stra, our proposed (m − LSbS) moduli have a potential speedup advantage by
leaking bits of d.

6 Conclusions
We have shown that the Boneh-Durfee-Frankel partial key exposure attack on
low public exponent RSA systems becomes intractable for (m − LSbS) RSA
moduli having prime factors sharing m LS bits, for sufficiently large m. We
then proved that if low exponent RSA with an (m − LSbS) modulus is secure
against conventional attacks, then it is also secure against partial key exposure
attacks accessing up to 2m LS bits of the secret exponent d. This can have
applications in fast public-server-aided RSA decryption or signature generation.
An important problem left open is to characterize the largest m for which low-
exponent RSA with an (m−LSbS) modulus is secure, since this defines the limit
on the effectiveness of the technique.
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On the Strength of Simply-Iterated Feistel
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Abstract. Recent work by Biryukov and Wagner on developing the slide
attack technique has revealed it to be a powerful tool in the analysis
of block cipher designs. In this paper the technique is used to analyze
a particular construction of balanced Feistel block cipher that features
identically keyed round functions but with independent pre- and post-
whitening keys. It is shown that for an n-bit block size this class of
cipher can be broken using n2n/2+1 chosen plaintexts in O(n2n/2) time
and space, and that this is irrespective of both the size of the key and the
number of rounds of the algorithm. Comparisons are then drawn against
the DESX and Even-Mansour constructions.

1 Introduction

Consider the n-bit iterated block cipher with pre- and post-whitening that has
an encryption function given by C = EK;X;Y (P ) = Y +Gr

K(P +X) where P and
C are plaintext and ciphertext, X and Y are the whitening keys and ‘+’ denotes
XOR. Also note that the permutation G = GK remains constant in each of the
r rounds of the cipher and this is what is meant by the term “simply-iterated”
in this paper.

G G

G GG DQ

X Y

GP C

X Y

Fig. 1. A slid pair.

Following the terminology of [1] and [2], let the ordered pair (P; Q) be a slid
pair such that G(P +X) = Q+X, as shown in figure 1, and assume that G has a

D. Naccache (Ed.): CT-RSA 2001, LNCS 2020, pp. 63{69, 2001.
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balanced-Feistel structure with keyed round function F = FK . The relationship
between the plaintext and ciphertext of the slid pairs is shown in figure 2.

P L P R

QL QR

X L

X L

X R

X R

DL DR

Y L Y R

Y L Y R

CL RC

a b
F F

Fig. 2. Plaintext-ciphertext relationship of a slid pair.

When (P; Q) is a slid pair then the following relation holds,

CL + DR = YL + YR (1)

and so the output of the round function of the ciphertexts of figure 2 is given by

b = (CR + YR) + (DL + YL) = CL + CR + DL + DR (2)

Also, the following holds,

(P; Q) is a slid pair , (P 0; Q0) is a slid pair (3)

where P = hPL; PRi, Q = hQL; QRi and P 0 = hPL; PR +�i, Q0 = hQL +�; QRi
for all � 2 f0; 1gn=2.

2 Finding a Slid Pair (P;Q)

Let
S = fpi : i = 1 : : : 2n=2g

be a set of 2n=2 randomly chosen plaintexts pi = hpi;L; pi;Ri indexed by i, and
let

T = fci : ci = EK;X;Y (pi)g
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be the set of corresponding ciphertexts ci = 〈ci,L, ci,R〉.
For any ∆ ∈ {0, 1}n/2 define

S
(∆)
L = {〈pi,L + ∆, pi,R〉 : pi ∈ S}

S
(∆)
R = {〈pi,L, pi,R + ∆〉 : pi ∈ S}

to be the plaintexts from S modified left and right by difference ∆, and similarly
define

T
(∆)
L = {ci : ci = EK,X,Y (pi), pi ∈ S

(∆)
L }

T
(∆)
R = {ci : ci = EK,X,Y (pi), pi ∈ S

(∆)
R }

to be their corresponding ciphertexts.
Now, from (3), if (pi, pj) is a slid pair then (p′

i, p
′
j) is a slid pair (where pi, pj ∈

S and p′
i ∈ S

(∆)
R , p′

j ∈ S
(∆)
L ) and considering their corresponding ciphertexts and

(1) gives
ci,L + cj,R = c′

i,L + c′
j,R = YL + YR

for ci, cj ∈ T , c′
i ∈ T

(∆)
R , c′

j ∈ T
(∆)
L . This in turn implies that

ci,L + c′
i,L = cj,R + c′

j,R

and so by constructing the sets

L(∆) = {ci,L + c′
i,L : ci ∈ T, c′

i ∈ T
(∆)
R }

R(∆) = {cj,R + c′
j,R : cj ∈ T, c′

j ∈ T
(∆)
L }

we have the following relation

(pi, pj) a slid pair ⇒ li = rj

where li ∈ L(∆), rj ∈ R(∆) and ∆ is any element of {0, 1}n/2. We can use
this relation to find a slid pair by probabilistically reversing the direction of
the implication. This can be achieved by finding multiple collisions for li and rj

under different values of ∆, such that the probability of a non-slid pair implying
these simultaneous multiple collisions is negligable. Since the li and rj are n/2-
bit quantities arranged in sets of cardinality 2n/2, choosing three different values
of ∆ and requiring simultaneous collisions in each of the sets gives an expected
number of random collisions of 2−n/2. This compares to the expected number
of slid pair induced collisions of 1. So, with high probability, a slid pair can be
found as follows.

Choose arbitrary nonzero ∆1, ∆2, ∆3 ∈ {0, 1}n/2 and through chosen plain-
text queries construct the sets

L = {l
(∆1)
i ‖l

(∆2)
i ‖l

(∆3)
i }

R = {r
(∆1)
j ‖r

(∆2)
j ‖r

(∆3)
j }
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where ‖ denotes concatenation and l
(∆1)
i is the i’th element of L(∆1), r

(∆1)
j is

the j’th element of R(∆1), etc. We will now look for collisions such that li = rj

where li ∈ L, rj ∈ R and 1 ≤ i, j ≤ 2n/2 which can be done by constructing
a 2 · 2n/2 entry hash table and using a suitable hash function h as follows. For
each i ∈ {1, 2, . . . , 2n/2} store i in locations h(li) and h(ri)+2n/2 and then check
to see if there is an entry, call it j, in locations h(li) + 2n/2 or h(ri). If there is
then li = rj if the entry was found in the first location, or ri = lj if found in the
second.

When a collision is found between the i’th element of L and the j’th element
of R then this implies, with overwhelming probability, that (pi, pj) is a slid pair.
Thus we are able to find a single slid pair (P, Q) in S using 7 · 2n/2 chosen
plaintexts in O(2n/2) time and space.

3 Recovering the Keys K, X, Y

Given one slid pair we can immediately find more slid pairs using (3). For all
∆ ∈ {0, 1}n/2 let P (∆), Q(∆) be the slid pairs generated by (3) from the origi-
nal slid pair (P, Q) found in the previous section, and let C(∆), D(∆) be their
corresponding ciphertexts. i.e.

P (∆) = 〈PL, PR + ∆〉
Q(∆) = 〈QL + ∆, QR〉

so that P = P (0), Q = Q(0). Similarly, from (2), let

a(∆) = C
(∆)
L + YL

b(∆) = C
(∆)
L + C

(∆)
R + D

(∆)
L + D

(∆)
R

and note that, since the ∆ cover all values in {0, 1}n/2 and the secret round
function FK is assumed to uniformly distribute its output over the same range
(though not necessarily be a permutation), then by the diffusion properties of the
Feistel construction we expect the a(∆) to be spread uniformly at random over
{0, 1}n/2. Recovering these 2n/2 slid pairs therefore requires 7 · 2n/2 + 2 · 2n/2 <
2n/2+4 chosen plaintexts.

Recovering the whitening keys X, Y and the round key K can now be achie-
ved in one of two ways depending upon the characteristics of the round function
FK .

For FK a weak round function (that is, a function for which it is possible to
recover K efficiently given just a few input-output pairs) then the attack can
proceed by guessing YL. Thus, for example, each ŶL ∈ {0, 1}n/2 yields values
for ŶR and the input-output pairs â(∆), b(∆), and so using just a few of these
enables us to compute in constant time a potential round key K̂. The keys K̂,
Ŷ can then be checked by testing whether

E−1
K̂,·,Ŷ (C) + E−1

K̂,·,Ŷ (C ′) = P + P ′
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on a few plaintext-ciphertext pairs and the search stopped if they are correct.
Since X can be trivially recovered once K and Y are known the total attack
requirements therefore are 2n=2+4 chosen plaintexts and O(2n=2) time and space.

For FK a strong round function then we can proceed by guessing a, the input
to the round function, and brute forcing K. Figure 3 shows the problem to be
solved, where C

(�)
L and b(�) are known but YL, a(�) and K are not known.

CL
(D)

F

Y L

K

a
(D)

b
(D)

Fig. 3. Recovering YL and K.

Let a� be an arbitrary fixed value from f0; 1gn=2. Now since the a(�) range
randomly over f0; 1gn=2 then the 2n=2 values for a(�) implied by the C(�) and
D(�) are expected to cover a fraction of 1 − e−1 of all the values in f0; 1gn=2.
There is therefore a probability of 1−e−1 that a� = a(�) for some � 2 f0; 1gn=2.
Assuming this equality holds then K can be found by, for each K̂ 2 f0; 1gk,
k = jKj, comparing FK̂(a�) with all b(�) and if a match is found for some
� = �� computing C

(��)
L + a� = ŶL and testing the resultant K̂, Ŷ on a few

plaintext-ciphertext pairs. Since the comparison can be done in constant time
with ordered or hash-based sorting of the b(�) the expected work required in
this phase of the attack is (1 − e−1)−1 � 2k invocations of the round function
FK and so the total requirements of the attack are 2n=2+4 chosen plaintexts,
O(maxf2k; 2n=2g) time and O(2n=2) space.

4 Extension to an Arbitrary Round Function F

In this section it is assumed that F can be any arbitrary function, not necessarily
a keyed function. For example, F could be constructed using secret S-boxes or
perhaps initialised by a complex, one-way algorithm, as in [5], using a master
key not explicitly involved in the data enciphering process. Thus the goal of
the attack in this instance is to fully characterise F by recovering all possible
input-output pairs.

Let the number of randomly chosen plaintexts of S be increased to 2n=2+�,
then the number of slid pairs expected to be found in S is 22�. Using 2 � 2n=2

chosen plaintext queries per slid pair, and assuming for the moment that YL = 0,
then the number of input-output pairs of F obtained is 2n=2+2�. Now, for any
fixed � 2 f0; 1gn=2 considered as an input to F , the probability that � is not
covered by one of the collected input-output pairs is (1 − 2−n=2)2

n=2+2�

which is
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less than e−22ρ

for ρ < n/4. Therefore, the probability that all inputs are covered
is

Prob[all inputs covered] >
(
1 − e−22ρ

)2n/2

> 1 − 2n/2−22ρ log2 e+1

and so, for a > 99% success probability it is sufficient to ensure that

ρ >
1
2

log2

(
n/2 + 8
log2 e

)

The total number of plaintexts used to achieve this full coverage is 7·2n/2+ρ+
2 · 2n/2+2ρ and if we set ρ = 1

2 log2
n
2 then this simplifies to n2n/2+1. For YL 6= 0

then the table of input-output pairs just constructed will differ from F simply
by an XOR with YL on its input, therefore, by trying all ŶL ∈ {0, 1}n/2 and
testing the resultant Ŷ and the F table on a few plaintext-ciphertext pairs we
can recover the correct Y , and then trivially X, in O(2n/2) time.

Thus, using n2n/2+1 chosen plaintexts and O(n2n/2) time and space any
further plaintext or ciphertext can be encrypted or decrypted at will; the cipher
has been broken without recovering K — if any such quantity indeed exists.

5 Conclusions

If we ignore the simply-iterated Feistel structure of the cipher and set EK,X,Y (P )
= Y + HK(P + X), treating HK as a “black-box” keyed permutation, then it
is known from the DESX construction of [3] and [4] that a lower bound on the
key recovery attack is 2m plaintext and O(2k+n−m) time. Setting m = n/2 + 4,
as in Section 3, yields a time complexity of O(2k+n/2−4), and so, if k > 4 the
attacks described in this paper achieve a lower time complexity than that of the
stated bound. Therefore it must be the case that the construction of HK as a
simply-iterated, balanced-Feistel permutation considerably weakens the strength
of the cipher in comparison to the ideal model.

Furthermore, it has been shown, in Section 4, that any simply-iterated,
balanced-Feistel cipher with pre- and post-whitening can be broken using just
n2n/2+1 chosen plaintexts and O(n2n/2) time and space, and that this is irre-
spective of the size of the cipher key and of the number of rounds. Compare this
to the Even-Mansour construction of [6], where H = HK is a publicly known,
non-keyed, “black-box” permutation with a lower bound on recovering the whi-
tening keys X, Y of 2m plaintext and O(2n−m) time. Consideration of the results
presented here show that the use of a secret, simply-iterated, balanced-Feistel
permutation cannot result in a cipher much stronger than this most basic model.
Indeed, in a practical implementation where the round function F will not be
realised as a single random function, but as a combination of smaller functions
and combining elements, then it could easily be the case that F is reconstruc-
table from a fraction 1 − e−1 of its input-output pairs. Under these conditions
the current attack requires just 2n/2+4 chosen plaintexts and O(2n/2) time, in-
dicating a level of strength of the construction that is at best only on a par with
Even-Mansour.
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Abstract. This paper analyses the cryptographic hash function SHA-
1 in encryption mode. A detailed analysis is given of the resistance of
SHA-1 against the most powerful known attacks today. It is concluded
that none of these attacks can be applied successfully in practice to
SHA-1. Breaking SHA-1 in encryption mode requires either an unreali-
stic amount of computation time and known/chosen texts, or a major
breakthrough in cryptanalysis. The original motivation for this analysis
is to investigate a block cipher named SHACAL based on these princi-
ples. SHACAL has been submitted to the NESSIE call for cryptographic
primitives.

1 Introduction

Many of the popular hash functions today are based on MD4 [8]. MD4 was
built for fast software implementations on 32-bit machines and has an output
of 128 bits. Because of Dobbertin’s work [5,4] it is no longer recommended to
use MD4 for secure hashing, as collisions have been found in about 220 com-
pression function computations. In 1991 MD5 was introduced as a strengthened
version of MD4. Other variants include RIPEMD-128, and RIPEMD-160. SHA
was published as a FIPS standard in 1993.

SHA was introduced by the American National Institute for Standards and
Technology in 1993, and is known as SHA-0. In 1995 a minor change to SHA-0
was made, this variant known as SHA-1. We refer to this standard for a detailed
description of the algorithm [10].

The best attack known on SHA-0 when used as a hash function is by Cha-
baud and Joux [3]. They show that in about 261 evaluations of the compression
function it is possible to find two messages hashing to the same value. A brute-
force attack exploiting the birthday paradox would require about 280 evaluations.
There are no attacks reported on SHA-1 in the open literature. In the following
we shall consider only SHA-1.

D. Naccache (Ed.): CT-RSA 2001, LNCS 2020, pp. 70–83, 2001.
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1.1 Using SHA in Encryption Mode

SHA was never defined to be used for encryption. However, the compression
function can be used for encryption. Each of the 80 steps of SHA-1 (divided into
four rounds, each of 20 steps) are invertible in the five A, B, C, D, and E variables
used for compression. Therefore, if one inserts a secret key in the message and a
plaintext as the initial value, one gets an invertible function from the compression
function by simply skipping the last forward addition with the input. This is the
encryption mode of SHA considered in this report. The resulting block cipher is
named SHACAL and has been submitted to NESSIE by Naccache and the first
author.

1.2 Attacking SHA in Encryption Mode

The two best known attacks on systems similar to SHA in encryption mode
are linear cryptanalysis [7] and differential cryptanalysis [1]. There has been a
wide range of variants of the two attacks proposed in the literature but the basic
principles are roughly the same. Also, many other attacks on encryption schemes
have been suggested but they are less general than the two above mentioned ones.
Furthermore we believe any potential weak key properties, related key attacks [2]
or the like may be efficiently converted into collision attacks on the underlying
compression function; thus we conclude that there are no such shortcuts to
attacking SHA in encryption mode. In this report we shall consider only linear
cryptanalysis and differential cryptanalysis. These attacks apply to SHACAL,
but as we shall see, the complexities of attacks based on these approaches are
completely impractical, if possible at all.

SHA uses a mix of two group operations, modular additions modulo 232 and
exclusive-or (bitwise addition modulo 2). If we use the binary representation
of words, i.e., A = aw−12w−1 + · · · + a12 + a0, and similarly for S, the binary
representation of the sum Z = A + S may be obtained by the formulae

zj = aj + sj + σj−1 and σj = ajsj + ajσj−1 + sjσj−1, (1)

where σj−1 denotes the carry bit and σ−1 = 0 (cf. [9]). This formulae will be
used in the sequel several times.

2 Linear Cryptanalysis

Linear cryptanalysis attempts to identify a series of linear approximations Ai to
the different operational components in a block cipher, be they S-boxes, integer
addition, boolean operations or whatever. The individual linear approximations
are then combined to provide an approximation for the greater proportion of
the encryption routine. The combination of approximations is by simple bitwise
exclusive-or so the final approximation is A1 ⊕ A2 ⊕ · · · ⊕ An.

In the analysis that follows we will typically only consider single-bit approxi-
mations across the different operations. Practical experience shows that attempts
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to use heavier linear approximations very soon run into trouble. While it is con-
ceivable for some operations that heavier linear approximations will have a larger
bias individually, it is usually much harder to use them as part of an attack and
as such they are typically not useful. We will use the notation ei to denote the
single-bit mask used to form a linear approximation. Thus ei is a 32-bit word
that has zeros in all bit positions except for bit i. We will set the least significant
bit position to be bit zero.

In all rounds there are four integer additions. However two of these are with
constants; one is key material the other a round constant. At first it is tempting
to ignore these two additions, but in fact the value of the key material has an
important impact on the bias of the approximation.

Even without this consideration, using linear approximations across two (or
more) successive additions is a complex problem. As an example, we might con-
sider addition across two integer additions x = (a + b) + c. Consider the first
integer addition y = a + b in isolation. Then the bias for the linear approxima-
tions a[i] ⊕ b[i] = y[i] (0 ≤ i ≤ 31) is 2−(i+1). If we were then to consider the
second integer addition x = y + c we might be tempted to use the Piling-Up
Lemma directly, but that would give us misleading results.

For example, in bit position i = 2, the Piling-Up Lemma would tell us that
the approximation holds with bias 2−3 × 2−3 × 2 = 2−5. But note that the
output from one integer addition is used directly as the input to the second
integer addition thus this two operations are not independent. Instead, if we
evaluate the boolean expressions directly using the least significant three bits of
a, b, and c then we find that the bias is in fact 2−3.

In the case of SHA-1 we have an even more complicated situation. We have
the following string of additions that we need to approximate x = (a+ b)+k + c
where k is a key- (and round-) dependent constant. The approximation we plan
to use is x[i] = a[i] + b[i] + k[i] + c[i] (0 ≤ i ≤ 31). The bias that is observed will
depend on the value of k.

Let us consider a simplified case, x = k + y. Imagine we make the approxi-
mation x[i] = k[i] + y[i] (0 ≤ i ≤ 31), where y[i] is plaintext dependent bit and
where k[i] is a (fixed) key bit. Clearly if we consider only the least significant
bit, i = 0, then the approximation always holds. For bit i = 1, the approxima-
tion holds always if k[0] = 0, but only with probability 0.5, that is bias zero,
if k[0] = 1. If we are using bit i ≥ 1 for the approximation then integers k for
which (k & (2i − 1)) = 0 give a maximum bias, since there will be no carry
bits in bit positions lower than i, and the approximation holds always, see for-
mulae (1). Note that the number of these “weaker” keys that give a maximal
bias is dependent on the bit position i. When i = 2 we have that one in four
keys gives the maximal bias. If i = 30 then we have that only one key in 230

gives this maximal bias. We also note that some values of k give a zero bias.
Namely values of k that satisfy (k & (2i − 1)) = 2i−1. For such values there are
no carry bits for positions less than i − 1. But since k[i − 1] = 1 in this case,
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there will be a carry bit in position i if and only if y[i − 1] = 1. If y is allowed
to vary over all values (the approach usually taken in linear cryptanalysis) then
the approximation x[i] = k[i] + y[i] holds with probability 0.5, thus zero bias.

2.1 All Rounds

The cyclical structure of SHA-1 means that in all four rounds we can readily
identify a family of linear approximations that always hold over four steps. We
use Γ to denote a general pattern of bits to be used in the approximation and
xc to denote the left rotation of a 32-bit word x by c bit positions.

A B C D E bias

Γ - - - -
↓ 1/2

- Γ - - -
↓ 1/2

- - Γ 30 - -
↓ 1/2

- - - Γ 30 -
↓ 1/2

- - - - Γ 30

This is a “perfect” linear approximation over any four steps of SHA-1. In
extending this approximation we will need to take into account the effects of the
different boolean functions that are used in the different rounds.

2.2 Rounds 2 and 4

In these rounds the boolean function fxor used to combine the words is the
simple bitwise exclusive-or b⊕ c⊕ d. This function in fact poses some difficulty
to the cryptanalyst in terms of trying to manage the number of bits used in the
approximations.

In Rounds 2 and 4 we can extend the basic “perfect” linear approximation
that we have already shown for all rounds in the following way. This gives a
linear approximation that acts over seven steps and holds with probability one
(i.e. the bias is 1/2). In anticipation of its extension, we set Γ = e0.
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A B C D E bias

e2 - - - -
↓ 1/2

- e2 - - -
↓ 1/2

- - e0 - -
↓ 1/2

- - - e0 -
↓ 1/2

- - - - e0
↓ 1/2

e0 e27 e30 e0 e0
↓ 1/2

e0 e27 ⊕ e0 e30 ⊕ e25 e30 ⊕ e0 -
↓ 1/2

- e0 e25 ⊕ e30 e25 ⊕ e30 e30 ⊕ e0

We conjecture that this is the longest “perfect” linear approximation over
the steps in Rounds 2 and 4. If we are to use this in an attack then we will need
to extend it. If we consider the only extension that is possible at the top then
we have the following one-step linear approximation:

A B C D E

e29 e2 e2 e2 e2
↓

e2 - - - -

At the foot of the seven-step linear approximation we need to use the follo-
wing one-step approximation:

A B C D E

- e0 e25 ⊕ e30 e25 ⊕ e30 e30 ⊕ e0
↓

e30 ⊕ e0 e27 ⊕ e25 e28 e25 ⊕ e0 e25 ⊕ e0

Using the techniques mentioned in the preliminary section, we estimate that
the maximum bias for this nine-step linear approximation (taking into account
the best possible value for the key material) is less than 2−2 ×2−2 ×2 = 2−3 and
more than 2−3×2−3×2 = 2−5. This bias would apply to one in 232 keys since we
require a key condition on the approximation in step one and a key condition on
the approximation in step nine. For roughly one in 22 keys there will be no bias
to this linear approximation. The expected value of the bias might be expected
to lie between 2−3 × 2−3 × 2 = 2−5 and 2−4 × 2−4 × 2 = 2−7. Experiments
give that the bias using the best key conditions is around 2−4.0 and that the
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average bias over all keys is 2−5.6. For one in four keys there is no bias in the
approximation.

We have identified a nine-step linear approximation. To facilitate our overall
analysis we will add a step to this nine-step approximation. We could add a
step at the beginning or at the end. It seems to be easier for the cryptanalyst
to add the following one-step approximation to the beginning of the existing
approximation.

A B C D E

e24 ⊕ e2 e29 ⊕ e4 e29 ⊕ e2 e29 ⊕ e2 e29
↓

e29 e2 e2 e2 e2

Following our previous methods we will estimate that that maximum bias
(under the most propitious key conditions for the analyst) lies in the range
(2−4, 2−7) and that the average bias lies in the range (2−7, 2−10). For a little
over one in four keys there will be no bias. Experiments demonstrate that the
best key values (which might occur for one in 229+30+2 random keys) give a bias
of 2−5.4 but that the bias for the average key is performing a little better than
expected with a bias of 2−6.7. Since the case of the best key values is so rare, we
propose to use 2−6 as a conservative representative of the bias of this ten-step
linear approximation in Rounds 2 and 4.

2.3 Round 1

As in our analysis of Rounds 2 and 4 we consider the best extension to the basic
four-step “perfect” approximation that applies in all rounds. Here the boolean
function fif is bc ⊕ (1 ⊕ b)d. There are no perfect approximations across this
operation, though there are several approximations with bias 2−2.

Immediately we can see the following four-step extension to the existing basic
linear approximation:

A B C D E

- - - - e0
↓ 1/4

e0 e27 - e0 -
↓ 1/2

- e0 e25 - e0
↓ 1/4

e0 e27 - e25 ⊕ e0 -
↓ 1/2

- e0 e25 - e25 ⊕ e0
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The bias for this extension can be computed as 2−3. In extending further
we need to approximate across the addition operation in a bit position other
than the least significant. We will consider that the bias of this approximation
is perhaps around 2−2.

The following two-step extension allows us to form a ten-step approximation
to the steps in Round 1 that holds with a bias of no more than 2−6 in the best
case and in the range (2−7, 2−8) on average.

A B C D E
- e0 e25 - e25 ⊕ e0

↓
e25 ⊕ e0 e27 ⊕ e20 - e0 -

↓
- e25 ⊕ e0 e25 ⊕ e18 - e0

Experiments confirm the ten-step linear approximation. The average bias was
2−7.2 and with the best key conditions (which hold for one in 225 random keys)
the bias over twenty trials was 2−6.4.

We will conservatively use 2−6 as the estimate for the bias for this ten-step
linear approximation to the steps in Round 1.

2.4 Round 3

Once again we consider extensions to the basic linear approximation that ap-
plies in all rounds. Here the boolean function fmaj is bc ⊕ cd ⊕ bd. There are no
perfect approximations across this operation, though there are several approxi-
mations with bias 2−2.

Immediately we can see the following four-step extension to the existing basic
linear approximation:

A B C D E

- - - - e0
↓ 1/4

e0 e27 - e0 -
↓ 1/2

- e0 e25 - e0
↓ 1/4

e0 e27 - e25 -
↓ 1/2

- e0 e25 - e25

The bias for this extension can be computed as 2−3. In extending further
we need to approximate across the addition operation in a bit position other



Analysis of SHA-1 in Encryption Mode 77

than the least significant. We will consider that the bias of this approximation
is perhaps around 2−2 for this particular integer addition.

The following two-step extension allows us to form a ten-step approximation
to the steps in Round 1 that holds with a bias of no more than 2−5 in the best
case (for the analyst) and in the range (2−6, 2−7) on average.

A B C D E
- e0 e25 - e25

↓
e25 e20 e30 - -

↓
- e25 e18 e30 -

Experiments confirm this ten-step linear approximation and for the best key
conditions (which hold for one in 225 random keys) the bias was 2−5.6 and for
the average case the bias was 2−6.4 on average.

We will conservatively use 2−5 as the estimate for the bias for this ten-step
linear approximation to the steps in Round 3.

2.5 Putting Things Together

The ten-step linear approximation we identified for Rounds 2 and 4 is valid over
40 steps of the full SHA-1. Therefore we estimate that in using this approxima-
tion the bias as at most (2−6)4×23 = 2−21. This of course is a highly conservative
estimate. Among the many favorable assumptions for the cryptanalyst is that
this ten-step linear approximation can be joined to itself. It cannot. Extending
this approximation in either direction is likely to provide a severe drop in the
exploitable bias of the linear approximation.

For Round 1 we might conservatively estimate that the 20 steps can be
approximated using a linear approximation with bias no more than (2−6)2 ×
2 = 2−11. Likewise we might estimate that the 20 steps in Round 3 can be
approximated using an approximation with bias no more than (2−5)2 ×2 = 2−9.

Under the most favorable conditions for the cryptanalyst (conditions that
we believe cannot actually be satisfied) if SHA-1 is to be approximated using a
linear approximation then the bias will be no more than 2−21 × 2−11 × 2−9 ×
22 = 2−39. Note that the key conditions necessary to give the best bias for the
approximations in Rounds 1 and 3 hold exceptionally rarely and so we ignore
this case and we deduce that the bias is overwhelmingly likely to fall beneath
2−40. On the other hand, note that the approximation outlined has a zero-bias
for many keys and so other approximations would have to be used by the analyst
in these cases giving a reduced working bias.

Thus a linear cryptanalytic attack on SHA-1 requiring less than 280 known
plaintexts is exceptionally unlikely.
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3 Differential Cryptanalysis

What makes differential cryptanalysis difficult on SHA is first, the use of both
exclusive-ors and modular additions, and second, the functions fif , fxor, fmaj .

First we consider the relation between exclusive-or differences and integer
addition. Integer addition of a constant word K to the 32-bit words A and
B which only differ in few bits does not necessarily lead to an increase of bit
differences in the sums A+S and B+S. This may be illustrated by the following
special case: Suppose the words A and B only differ in the i-th bit, i < 31. Then
it holds that with probability 1

2 , A+S and B +S also differ in only the i-th bit.
Using formulae (1) one sees that A + S and B + S with probability 1

4 differ in
exactly two (consecutive) bits. There is a special and important case to consider,
namely when A and B differ in only the most significant bit, position 31. In that
case A + S and B + S differ also only in the most significant bit.

The functions fif , fxor, fmaj all operate in the bit-by-bit manner. Thus, one
can easily find out how the differences in the outputs of each of the functions
behave depending of the differences of the three inputs. Namely, one can con-
sider three inputs of one bit each and an output of one bit. Table 1 shows this
for all three functions. The notation of the table is as follows. The first three
columns represent the eight possible differences in the one-bit inputs, x, y, z. The
next three columns indicate the differences in the outputs of each of the three
functions. A ‘0’ denotes that the difference always will be zero, a ‘1’ denotes that
the difference always will be one, and a ‘0/1’ denotes that in half the cases the
difference will be zero and in the other half of the cases the difference will be
one. Note that the function fxor is linear in the inputs, i.e. the difference in the
outputs can be determined from the differences in the inputs. However, as we
shall see, fxor helps to complicate differential cryptanalysis of SHA.

Table 1. Distribution of exor differences through the f -functions.

x y z fxor fif fmaj

0 0 0 0 0 0
0 0 1 1 0/1 0/1
0 1 0 1 0/1 0/1
0 1 1 0 1 0/1
1 0 0 1 0/1 0/1
1 0 1 0 0/1 0/1
1 1 0 0 0/1 0/1
1 1 1 1 0/1 1

In the following we consider some characteristics for all rounds and for each
of the three different rounds.
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Table 2. 5-step characteristic.

A B C D E prob

e26 0 0 0 e31

↓ 1
0 e26 0 0 0

↓ 1
? 0 e24 0 0

↓ 1
? ? 0 e24 0

↓ 1
? ? ? 0 e24

↓ 1
? ? ? ? 0

3.1 All Rounds

The characteristic of Figure 2 holds with probability one over (any) five steps
in any of the four rounds. The question mark (?) indicates an unknown value.
Thus, a pair of texts which differ only in the first words in bit position 26 and in
the fifth words in bit position 31, result in texts after five steps which are equal
in the fifth words. The difference in the other words of the texts will depend on
the particular round considered and of the texts involved.

3.2 Rounds 1 and 3

First we consider the five step characteristic of the previous section. With the
functions fif and fmaj this gives the following characteristic over five steps.

A B C D E prob

e26 0 0 0 e31
↓ 1

0 e26 0 0 0
↓ 1

2
0 0 e24 0 0

↓ 1
2

0 0 0 e24 0
↓ 1

2
0 0 0 0 e24

↓ 1
2

e24 0 0 0 0

This characteristic can be concatenated with a three-step characteristic in
the beginning and a two-step characteristic at the end, yielding the following
ten-step characteristic.
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A B C D E prob

0 e1 e26 0 0
↓ 1

4
0 0 e31 e26 0

↓ 1
4

0 0 0 e31 e26
↓ 1

4
e26 0 0 0 e31

↓ 1
0 e26 0 0 0

↓ 1
2

0 0 e24 0 0
↓ 1

2
0 0 0 e24 0

↓ 1
2

0 0 0 0 e24
↓ 1

2
e24 0 0 0 0

↓ 1
2

e29 e24 0 0 0
↓ 1

4
e2 e29 e22 0 0

This ten-step characteristic has a probability of 2−13. As is clearly indicated,
extending this characteristic to more steps, e.g., 20, will involve steps with bigger
Hamming weights in the differences in the five words than in the first above 10
steps.

We conjecture that the above is one of the characteristics with the highest
probability over 10 steps, and that any characteristic over 20 steps of Round 1
or Round 3 will have a probability of less than 2−26.

3.3 Rounds 2 and 4

With respect to differential cryptanalysis the function fxor used in Rounds 2
and 4 behaves significantly different from the functions used in Rounds 1 and 3.
First note that if we replace all modular additions with exclusive-ors, the steps
in Rounds 2 and 4 are linear for exclusive-or differences, in other words, given
an input difference one can with probability one determine the output difference
after any number of maximum 20 steps. As indicated above, the mixed use of
exclusive-ors and modular additions has only little effect for pairs of texts with
differences of low Hamming weights. Therefore good characteristics for these
steps should have low Hamming weights through as many steps as possible.
Consider first the 5-step characteristic of Table 2. The first four steps will evolve
as shown in Table 3.



Analysis of SHA-1 in Encryption Mode 81

Table 3.

A B C D E prob

e26 0 0 0 e31

↓ 1
0 e26 0 0 0

↓ 1
2

e26 0 e24 0 0
↓ 1

2
e24,31 e26 0 e24 0

↓ 1
16

e4,24,26,29 e24,31 e24 0 e24

Here we have used the notation ea1,...,ar
for ea1 ⊕ · · · ⊕ ear . It can be seen

that for this characteristic the Hamming weights of the differences in the ci-
phertext words will increase for subsequent steps. Consider as an alternative the
characteristic shown in Table 4.

This characteristic was found by a computer search. Of all possible input
differences with up to one-bit difference in each of the five input words, totally
335 −1 characteristics, the last 9 steps of the above characteristic has the lowest
Hamming weights in the ciphertexts differences of all steps. For this search we
replaced modular additions by exclusive-ors. The nine steps can be concatenated
with a one-step characteristic in the beginning, as shown above. In real SHA the
probability of these 10 steps is approximately 2−26, where we have used the above
estimates for the behaviour of exclusive-or differences after modular additions.
This may not give a bound for the best characteristics over 10 steps of SHA,
but a complete search seems impossible to implement, moreover it gives sufficient
evidence to conclude that there are no high probability characteristics over 20
steps of Rounds 2 and 4. We conjecture that the best such characteristic will
have a probability of less than 2−32.

3.4 Putting Things Together

Using the estimates for best characteristics for Rounds 1, 2, 3, and 4 of the
previous section, we get an estimate of the best characteristic for all 80 steps
of SHA, namely 2−26 ∗ 2−32 ∗ 2−26 ∗ 2−32 = 2−116. We stress that this estimate
is highly conservative. First of all, the estimates for each round were conserva-
tive, and second, there is no guarantee that high probability characteristics for
each round in isolation, can be concatenated to the whole cipher. Therefore we
conclude that differential cryptanalysis of SHA is likely to require an unrealistic
amount of chosen texts if it is possible at all.
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Table 4.

A B C D E
e1 e3 e1 e11 e1,3,11

↓ 1
16

e6 e1 e1 e1 e11

↓ 1
4

e1 e6 e31 e1 e1

↓ 1
4

e31 e1 e4 e31 e1

↓ 1
4

e31 e31 e31 e4 e31

↓ 1
2

e31 e31 e29 e31 e4

↓ 1
4

e29 e31 e29 e29 e31

↓ 1
4

e2 e29 e29 e29 e29

↓ 1
4

e7 e2 e27 e29 e29

↓ 1
16

e2,12,27 e7 e0 e27 e29

↓ 1
32

e17,27,29 e2,12,27 e5 e0 e27

4 Conclusions

In the previous section we deduced that a linear cryptanalytic attack on SHA-1
as an encryption function would require at least 280 known plaintexts and that
a differential attack would require at least 2116 chosen plaintexts. Note that we
are explicitly considering constructable linear approximations and differential
characteristics. It may well be that there are other approximations and charac-
teristics over SHA-1 that are not revealed by this type of analysis. Instead they
would have to be searched for using brute-force. Since there is no known short-
cut to such a search this possibility has to be viewed as being so unlikely as to
not merit practical consideration.

Our techniques in constructing the approximations and characteristics were
ad hoc, but based on considerable practical experience. We have been very cau-
tious in our estimates and feel very confident in asserting that a linear or dif-
ferential cryptanalytic attack using less than 280 plaintext blocks is infeasible.
We note that at this point a 160-bit block cipher is beginning to leak plaintext
information anyway when used to encrypt this much text with the same key.

Finally we mention that additional cryptanalytic considerations such as li-
near hulls, multiple linear approximations, and various kinds of differentials are
unlikely to make any significant difference to our analysis and estimates. There-
fore they make no practical difference to the conclusion we have already drawn.
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Abstract. The results of fast implementations of all five AES final candidates
using Virtex Xilinx Field Programmable Gate Arrays are presented and
analyzed. Performance of several alternative hardware architectures is discussed
and compared. One architecture optimum from the point of view of the
throughput to area ratio is selected for each of the two major types of block
cipher modes. For feedback cipher modes, all AES candidates have been
implemented using the basic iterative architecture, and achieved speeds ranging
from 61 Mbit/s for Mars to 431 Mbit/s for Serpent. For non-feedback cipher
modes, four AES candidates have been implemented using a high-throughput
architecture with pipelining inside and outside of cipher rounds, and achieved
speeds ranging from 12.2 Gbit/s for Rijndael to 16.8 Gbit/s for Serpent. A new
methodology for a fair comparison of the hardware performance of secret-key
block ciphers has been developed and contrasted with methodology used by the
NSA team.

1. Introduction

Advanced Encryption Standard (AES) is likely to become a de-facto worldwide
encryption standard commonly used to protect all means of secret communications
during the next several decades [1]. Ever growing speed of communication networks,
combined with the high-volume traffic and the need for physical security, creates a
large demand for efficient implementations of AES in hardware.

The efficiency of hardware implementations of the AES candidates has been one of
the major criteria used by NIST to select the new federal standard from among five
final candidates. In the absence of any major breakthroughs in the cryptanalysis of
final candidates, and because of the relatively inconclusive results of their software
performance evaluations, hardware evaluations presented during the Third AES
conference [2] provided almost the only quantitative measure that clearly
differentiated AES candidates. The importance of this measure was reflected by a
survey performed among the participants of the AES conference, in which the ranking
of the candidate algorithms [2] coincided almost exactly with their relative speed in
hardware (compare Fig. 1 with Figs. 9 and 11). In October 2000, NIST announced its
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selection of Rijndael as the winner of the AES contest. The NIST final report
confirmed the importance of  the hardware efficiency studies [3].

The issue of implementing AES candidates in hardware will remain important long
after the AES selection process is over. The  winner of the AES contest, Rijndael, will
be in common use for many years. The remaining AES finalists are likely to be
included in products of selected vendors. New architectures developed as a part of the
AES candidate comparison effort will be used in implementations of other secret-key
block ciphers.

In this paper, we focus on implementing and comparing AES candidates using the
reconfigurable hardware technology based on Field Programmable Gate Arrays
(FPGAs). Our work supplements and extends other research efforts based on the same
technology [4], [5], [6], and on the use of semi-custom Application Specific
Integrated Circuits (ASICs) [7], [8], [9].

2. Field Programmable Gate Arrays

Field Programmable Gate Array (FPGA) is an integrated circuit that can be bought
off the shelf and reconfigured by designers themselves. With each reconfiguration,
which takes only a fraction of a second, an  integrated  circuit  can  perform  a
completely  different  function.   From several FPGA families available on the
market, we have chosen the high performance Virtex family from Xilinx, Inc. [10].
FPGA devices from this family consist of  thousands of universal building blocks,
known as Configurable Logic Blocks (CLBs), connected using programmable
interconnects, as shown in Fig. 2a. Reconfiguration is able to change a function of
each CLB and connections among them, leading to a functionally new digital circuit.
A simplified internal structure of a CLB slice (1/2 of a CLB) in the Virtex family is
shown in Fig. 2b. Each CLB slice contains a small block of combinational logic,
implemented using programmable look-up tables, and two one-bit registers [10].
Additionally, Virtex FPGAs contain dedicated memory blocks called Block Select
RAMs.
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For implementing cryptography in hardware, FPGAs provide the only major
alternative to custom and semi-custom Application Specific Integrated Circuits
(ASICs), integrated circuits that must be designed all the way from the behavioral
description to the physical layout, and sent for an expensive and time-consuming
fabrication.

3. Assumptions, Compared Parameters, and Design Procedure

The general block diagram of the hardware implementation of a symmetric-key block
cipher is shown in Fig. 3. All five AES candidates investigated in this paper have
been implemented using this block diagram.
Our implementations are intended to support only one key size, 128 bits. To simplify
comparison, the key scheduling is assumed to be performed off-chip. In order to
minimize circuit area, the encryption and decryption parts share as many resources as
possible by the given cipher type. At the same time, an effort was made to maximally
decrease the effect of resource sharing on the speed of encryption and decryption.
The implementations of AES candidates are compared using the following three
major parameters:
a. Encryption (decryption) throughput, defined as the number of bits encrypted

(decrypted) in a unit of time.
b. Encryption (decryption) latency, defined as the time necessary to encrypt

(decrypt) a single block of plaintext (ciphertext).
c. Circuit size (area).
The encryption (decryption) latency and throughput are related by

Throughput = block_size × #_of_blocks_processed_simultaneously / Latency (1)

In FPGA implementations, the only circuit size measures reported by the CAD tools
are the number of basic configurable logic blocks and the number of equivalent logic
gates. It is commonly believed that out of these two measures, the number of basic
configurable logic blocks approximates the circuit area more accurately.
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The design flow and tools used in our group for implementing algorithms in
FPGA devices are shown in Fig. 4. All five AES ciphers were first described in
VHDL, and their description verified using the Active-HDL functional simulator from
Aldec, Inc. Test vectors and intermediate results from the reference software
implementations were used  for debugging and verification of the VHDL source
codes. The revised VHDL code became an input to the Xilinx toolset, Foundation
Series 2.1i, performing the automated logic synthesis, mapping, placing, and routing.
These tools generated reports describing the area and speed of implementations, a
netlist used for timing simulations, and a bitstream to be used to program actual
FPGA devices. The speed reports were verified using timing simulation.

4. Cipher Modes

Symmetric-key block ciphers are used in several operating modes. From the point of
view of hardware implementations, these modes can be divided into two major
categories:
a. Non-feedback modes, such as Electronic Code Book mode (ECB) and counter

mode (CTR).
b. Feedback modes, such as Cipher Block Chaining mode (CBC), Cipher Feedback

Mode (CFB), and Output Feedback Mode (OFB).
In the non-feedback modes, encryption of each subsequent block of data can be

performed independently from processing other blocks. In particular, all blocks can be
encrypted in parallel. In the feedback modes, it is not possible to start encrypting the
next block of data until encryption of the previous block is completed. As a result, all
blocks must be encrypted sequentially, with no capability for parallel processing. The
limitation imposed by the feedback modes does not concern decryption, which can be
performed on several blocks of ciphertext in parallel for both feedback and non-
feedback operating modes.

According to current security standards, the encryption of data is performed
primarily using feedback modes, such as CBC and CFB. As a result, using current
standards does not permit to fully utilize the performance advantage of the hardware
implementations of secret key ciphers, based on parallel processing of multiple blocks
of data [12]. The situation can be remedied by including in the NIST new standard on
the AES modes of operation a counter mode and other non-feedback modes of
operation currently under investigation by the cryptographic community [12].

5. Implementation of the AES Candidates in Feedback Cipher
Modes

5.1 Choice of an Architecture

5.1.1 Basic Iterative Architecture

The basic hardware architecture used to implement an encryption/decryption unit of a
typical secret-key cipher is shown in Fig. 5a. One round of the cipher is implemented
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as a combinational logic, and supplemented with a single register and a multiplexer.
In the first clock cycle, input block of data is fed to the circuit through the
multiplexer, and stored in the register. In each subsequent clock cycle, one round of
the cipher is evaluated, the result is fed back to the circuit through the multiplexer,
and stored in the register. The two characteristic features of this architecture are:

• Only one block of data is encrypted at a time.
• The number of clock cycles necessary to encrypt a single block of data is

equal to the number of cipher rounds, #rounds.
The throughput and latency of the basic iterative architecture, Throughputbi and

Latencybi, are given by

Throughputbi = block_size / #rounds × clock_period (2)

Latencybi = #rounds × clock_period (3)

5.1.2 Partial and Full Loop Unrolling

An architecture with partial loop unrolling is shown in Fig. 5b. The only difference
compared to the basic iterative architecture is that the combinational part of the circuit
implements K rounds of the cipher, instead of a single round. K must be a divisor of
the total number of rounds, #rounds.
The number of clock cycles necessary to encrypt a single block of data decreases by a
factor of K. At the same time the minimum clock period increases by a factor slightly
smaller than K, leading to an overall relatively small increase in the encryption
throughput, and decrease in the encryption latency, as shown in Fig. 6. Because the
combinational part of the circuit constitutes the majority of the circuit area, the total
area of the encryption/decryption unit increases almost proportionally to the number
of unrolled rounds, K. Additionally, the number of internal keys used in a single clock
cycle increases by a factor of K, which in FPGA implementations typically implies
the almost proportional growth in the number of CLBs used to store internal keys.
Architecture with full loop unrolling is shown in Fig. 5c. The input multiplexer and
the feedback loop are no longer necessary, leading to a small increase in the cipher
speed and decrease in the circuit area compared to the partial loop unrolling with the
same number of rounds unrolled.

In summary, loop unrolling enables increasing the circuit speed in both feedback
and non-feedback operating  modes.  Nevertheless  this  increase  is  relatively  small,
and  incurs a large area penalty.  As a result, choosing this architecture can be
justified only for feedback cipher modes, where none other architecture offers speed
greater than the basic iterative architecture, and only for implementations where large
increase in the circuit area can be tolerated.

5.1.3 Resource Sharing

For majority of ciphers, it is possible to significantly decrease the circuit area by
time sharing of certain resources (e.g., function h in Twofish, 4x4 S-boxes in
Serpent). This is accomplished by using the same functional unit to process two (or
more) parts of the data block in different clock cycles, as shown in Fig. 7. In Fig. 7a,
two parts of the data block, D0 and D1, are processed in parallel, using two
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independent functional units F. In Fig. 7b, a single unit F is used to process two parts
of the data block sequentially, during two subsequent clock cycles.
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5.1.4 Deviations from the Basic Iterative Architecture

Three final AES candidates, Twofish, RC6, and Rijndael, can be implemented using
exactly the basic iterative architecture shown in Fig. 5a. This is possible because all
rounds of these ciphers perform exactly the same operation. For the remaining two
ciphers, Serpent and Mars, this condition is not fulfilled, and as a result, the basic
iterative architecture can be defined in several different ways.

Serpent consists of 8 different kinds of rounds. Each round consists of three
elementary operations. Two of these operations, key mixing and linear transformation
are identical for all rounds; the third operation, S-Boxes, is different for each of the
eight subsequent rounds.

Two possible ways of defining the basic iterative architecture of Serpent are shown
in Fig. 8. In the first architecture, we call Serpent I1, shown in Fig. 8a, the
combinational part of the circuit performs a  single regular cipher round. To enable
switching between 8 different types of rounds, the combinational part includes 8 sets
of S-boxes, each fed by the output from the key mixing. Based on the current round
number, the output of only one of the eight S-boxes is selected using the multiplexer
to feed the input of the linear transformation. In this architecture, Serpent is treated
literally as a cipher with 32 rounds.

In the second architecture, we call Serpent I8, shown in Fig. 8b, eight regular
cipher rounds are treated as a single implementation round, and implemented one
after the other using a combinational logic. The implementation round needs to be
computed only 4 times, to implement all 32 regular cipher rounds. Thus, in this
architecture, Serpent is treated as a cipher with 4 extended cipher rounds.

Both conventions have their advantages and disadvantages. The first architecture
takes less area (especially taking into account the area required for key scheduling
and/or key storage). The second architecture is significantly faster.

5.1.5 Our Choice

We chose to use the basic iterative architecture in our implementations. The reasons
for this choice were as follows:
• As shown in Fig. 6, the basic iterative architecture assures the maximum

speed/area ratio for feedback operating modes (CBC, CFB), now commonly used
for bulk data encryption. It also guarantees near optimum speed, and near
optimum area for these operating modes. Therefore it is very likely to be
commonly used in majority of practical implementations of the AES candidates.

• The basic architecture is relatively easy to implement in a similar way for all
AES candidates, which supports fair comparison.

• Based on the performance measures for basic architecture, it is possible to derive
analytically approximate formulas for parameters of more complex architectures.

For Serpent, we chose to implement its basic iterative architecture shown in Fig.
8b, we refer to as Serpent I8.

5.2 Our Results and Comparison with Other Groups

The results of implementing AES candidates, according to the assumptions and
design procedure summarized in section 3, are shown in Figs. 9 and 10.  All
implementations were based on Virtex XCV-1000BG560-6, one of the largest
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currently available Xilinx Virtex devices. For comparison, the results of
implementing the current NIST standard, Triple DES, are also provided.
Implementations of all ciphers took from 9% (for Twofish) to 37% (for Serpent I8) of
the total number of 12,288 CLB slices available in the Virtex device used in our
designs. It means that less expensive Virtex devices could be used for all
implementations. Additionally, the key scheduling unit could be easily implemented
within the same device as the encryption/decryption unit.

In Figs. 11 and 12, we compare our results with the results of research groups from
Worcester Polytechnic Institute and University of Southern California, described in
[4] and [5]. Both groups used identical FPGA devices, the same design tools and
similar design procedure. The order of the AES algorithms in terms of the encryption
and decryption throughput is identical in reports of all research groups. Serpent in
architecture I8 (see Fig. 8b) and Rijndael are over twice as fast as remaining
candidates. Twofish and RC6 offer medium throughput. Mars is consistently the
slowest of all candidates. Interestingly, all candidates, including Mars are faster than
Triple DES. Serpent I8 (see Fig. 8b) is significantly faster than Serpent I1 (Fig. 8a),
and this architecture should clearly be used in cipher feedback modes whenever the
speed is a primary concern, and the area limit is not exceeded.

The agreement among circuit areas obtained by different research groups is not as
good as for the circuit throughputs, as shown in Fig. 12. These differences can be
explained based on the fact that the speed was a primary optimization criteria for all
involved groups, and the area was treated only as a secondary parameter. Additional
differences resulted from different assumptions regarding sharing resources between
encryption and decryption, key storage, and using dedicated memory blocks. Despite
these different assumptions, the analysis of results presented in Fig. 12 leads to
relatively consistent conclusions. All ciphers can be divided into three major groups:
1) Twofish and RC6 require the smallest amount of area; 2) Rijndael and Mars
require medium amount of area (at least 50% more than Twofish and RC6); 3)
Serpent I8 requires the largest amount of area (at least 60% more than Rijndael and
Mars). Serpent I1 belongs to the first group according to [5], and to the second group
according to [4].

The overall features of all AES candidates can be best presented using a two-
dimensional diagram showing the relationship between the encryption/decryption
throughput and the circuit area. In Fig. 13, we collect our results for the Xilinx Virtex
FPGA implementations, and in Fig. 14 we show for comparison the results obtained
by the NSA group for ASIC implementations [7], [8]. Comparing diagrams shown in
Fig. 13 and Fig. 14 reveals that the speed/area characteristics of the AES candidates is
almost identical for the FPGA and ASIC implementations. The primary difference
between the two diagrams comes from the absence of the ASIC implementation of
Serpent I8 in the NSA report [8].

All ciphers can be divided into three distinct groups:
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• Rijndael and Serpent I8 offer the highest speed at the expense of the relatively
large area;

• Twofish, RC6, and Serpent I1 offer medium speed combined with a very small
area;

• Mars is the slowest of all AES candidates and second to last in terms of the
circuit area.

Looking at this diagram, one may ask which of the two parameters: speed or area
should be weighted more during the comparison? The definitive answer is speed. The
primary reason for this choice is that in feedback cipher modes it is not possible to
substantially increase encryption throughput even at the cost of a very substantial
increase in the circuit area (see Fig. 6). On the other hand, by using resource sharing
described in section 5.1.3, the designer can substantially decrease circuit area at the
cost of a proportional (or higher) decrease in the encryption throughput. Therefore,
Rijndael and Serpent can be implemented using almost the same amount of area as
Twofish and RC6; but Twofish and RC6 can never reach the speeds of the fastest
implementations of Rijndael and Serpent I8.

6. Implementation of the AES Candidates in Non-feedback Cipher
Modes

6.1 Choice of an Architecture

6.1.1 Alternative Architectures

Traditional methodology for design of high-performance implementations of secret-
key block ciphers, operating in non-feedback cipher modes is shown in Fig. 15. The
basic iterative architecture, shown in Fig. 15a is implemented first, and its speed and
area determined. Based on these estimations, the number of rounds K that can be
unrolled without exceeding the available circuit area is found. The number of unrolled
rounds, K, must be a divisor of the total number of cipher rounds, #rounds. If the
available circuit area is not large enough to fit all cipher rounds, architecture with
partial outer-round pipelining, shown in Fig. 15b, is applied. The difference between
this architecture and the architecture with partial loop unrolling, shown in Fig. 5b, is
the presence of registers inside of the combinational logic on the boundaries between
any two subsequent cipher rounds. As a result, K blocks of data can be processed by
the circuit at the same time, with each of these blocks stored in a different register at
the end of a clock cycle. This technique of paralell processing multiple streams of
data by the same circuit is called pipelining. The throughput and area of the circuit
with partial outer-round pipelining increase proportionally to the value of K, as shown
in Fig. 17, the encryption/decryption latency remains the same as in the basic iterative
architecture, as shown in Fig. 18. If the available area is large enough to fit all cipher
rounds, the feedback loop is not longer necessary, and full outer-round pipelining,
shown in Fig. 15c, can be applied.
Our methodology for implementing non-feedback cipher modes is shown in Fig. 16.
The primary difference is that before loop unrolling, the optimum number of pipeline
registers is inserted inside of a cipher round, as shown in Fig. 16b. The entire round,
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including internal pipeline registers is than repeated K times (see Fig. 16c). The
number of unrolled rounds K depends on the maximum available area or the
maximum required throughput.

The primary advantage of our methodology is shown in Fig. 17. Inserting registers
inside of a cipher round significantly increases cipher throughput at the cost of only
marginal increase in the circuit area. As a result, the throughput to area ratio increases
until the number of internal pipeline stages reaches its optimum value kopt. Inserting
additional registers may still increase the circuit throughput, but the throughput to
area ratio will deteriorate. The throughput to area ratio remains unchanged during the
subsequent loop unrolling. The throughput of the circuit is given by

Throughput (K, k) = K × block_size / #rounds × TCLKinner_round (k) (4)

where k is the number of inner-round pipeline stages, K is the number of outer-round
pipeline stages, and TCLKinner_round (k) is the clock period in the architecture with the k-
stage inner-round pipelining.
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For a given limit in the circuit area, mixed inner- and outer-round pipelining shown
in Fig. 16c offers significantly higher throughput compared to the pure outer-round
pipelining (see Fig. 17). When the limit on the circuit area is large enough, all rounds
of the cipher can be unrolled, as shown in Fig. 16d, leading to the throughput given by

Throughput (#rounds, kopt) = block_size / TCLKinner_round (kopt) (5)

where kopt is the number of inner-round pipeline stages optimum from the point of
view of the throughput to area ratio.

The only side effect of our methodology is the increase in the
encryption/decryption latency. This latency is given by

Latency(K, k) = #rounds × k × TCLKinner_round (k) (6)

It does not depend on the number of rounds unrolled, K.
The increase in the encryption/decryption latency, typically in the range of single

microseconds, usually does not have any major influence on the operation of the high-
volume cryptographic system optimized for maximum throughput. This is particularly
true for applications with a human operator present on at least one end of the secure
communication channel.

6.1.2 Our Choice
In our opinion, a fair methodology for comparing hardware performance of the

AES candidates should fulfill the following requirements.
a) It should be based on the architecture that is likely to be used in practical

implementations, because of the superior throughput/area ratio.
b) It should not favor any group of ciphers or a specific internal structure of a

cipher.
For feedback cipher modes, both conditions are very well fulfilled by the basic

iterative architecture, and this architecture was commonly used for comparison. For
non-feedback cipher modes, the decisions about the choice of the architecture varied
and no consensus was achieved.

The NSA team chose to use for comparison the full outer-round pipelining [7], [8].
In our opinion, this choice does not fulfill either one of the formulated above
requirements. As shown in Fig. 17, the outer-round pipelining offers significantly
worse throughput to area ratio compared to the architecture with the mixed inner- and
outer-round pipelining. Therefore, the use of this architecture may lead to
suboptimum designs, which are not likely to be used in practice. Secondly, the choice
of the outer-round pipelining favors ciphers with a short and simple cipher round,
such as Serpent and Rijndael. The AES candidates with  more complex internal
rounds, such as Mars, RC6, and Twofish, are adversely affected.

Throughputfull_outer_round = block_size /TCLKbasic (7)

where TCLKbasic is a delay of a single round.
The throughput does not depend any longer on the number of cipher rounds, but is

inversely proportional to the delay of a single round. Ciphers with the large number of
simple rounds are favored over ciphers with the small number of complex rounds.

On the other hand, the throughput in the full mixed inner and outer-round
pipelining is given by



96         K. Gaj and P. Chodowiec

Throughputfull_mixed = block_size /TCLKinner_round (kopt) (8)

where TCLKinner_round(kopt) is the delay of a single pipeline stage for the optimum number
of registers introduced inside of a single round. In FPGA implementations, this delay
is determined by the delay of a single CLB slice and delays of interconnects between
CLBs. As a result, the throughput does not depend on the complexity of a cipher
round and tend to be similar for all AES candidates. Based on these observations, we
have decided that full mixed inner- and outer-round pipelining should be the
architecture of choice for comparing hardware performance of the AES candidates in
non-feedback cipher modes.

6.2 Our Results and Comparison with Results of Other Groups

The results of our implementations of four AES candidates using full mixed inner-
and outer-round pipelining and Virtex XCV-1000BG560-6 FPGA devices are
summarized in Figs. 19, 21, and 22. Because of the timing constraints, we did not
attempt to implement Mars in this architecture, nevertheless, we plan to pursue this
project in the future. In Fig. 20, we provide for comparison the results of
implementing all five AES finalists by the NSA group, using full outer-round
pipelining and semi-custom ASICs based on the 0.5 mm CMOS MOSIS library [8].

To our best knowledge, the throughputs of the AES candidates obtained as a result
of our design effort, and shown in Fig. 17, are the best ever reported, including both
FPGA and ASIC technologies. Our designs outperform similar pipelined designs
based on the use of identical FPGA devices, reported in [4], by a factor ranging from
3.5 for Serpent to 9.6 for Twofish. These differences may be attributed to using a
suboptimum number of inner-round pipeline stages and to limiting designs to single-
chip modules in [4]. Our designs outperform NSA ASIC designs in terms of the
encryption/decryption throughput by a factor ranging from 2.1 for Serpent to 6.6 for
Twofish (see Figs. 19 and 20). Since both groups obtained very similar values of
throughputs for the basic iterative architecture (see Figs. 13 and 14), these large
differences should be attributed primarily to the differences between the full mixed
inner- and outer-round round architecture employed by our group and the full outer-
round architecture used by the NSA team.
By comparing Figs. 19 and 20, it can be clearly seen that using full outer-round
pipelining for comparison of the AES candidates favors ciphers with less complex
cipher rounds. Twofish and RC6 are over two times slower than Rindael and Serpent
I1, when full outer-round pipelining is used (Fig. 20); and have the throughput greater
than Rijndael, and comparable to Serpent I1, when full mixed inner- and outer-round
pipelining is applied (Fig. 19). Based on our basic iterative architecture
implementation of Mars, we predict that the choice of the pipelined architecture
would have the similar effect on Mars.

The deviations in the values of the AES candidate throughputs in full mixed
inner- and outer-round pipelining do not exceed 20% of their mean value. The
analysis of critical paths in our implementations has demonstrated that all critical
paths contain only a single level of CLBs and differ only in delays of programmable
interconnects. Taking into account already small spread of the AES candidate
throughputs and potential for further optimizations, we conclude that the
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demonstrated differences in throughput are not sufficient to favor any of the AES
algorithms over the other. As a result, circuit area should be the primary criterion of
comparison for our architecture and non-feedback cipher modes.

As shown in Fig. 21, Serpent and Twofish require almost identical area for their
implementations based on full mixed inner- and outer-round pipelining. RC6 imposes
over twice as large area requirements. Comparison of the area of Rijndael and other
ciphers is made difficult by the use of dedicated memory blocks, Block SelectRAMs,
to implement S-boxes. Block Select RAMs are not used in implementations of any of
the remaining AES candidates, and we are not aware of any formula for expressing
the area of Block Select RAMs in terms of the area used by CLB slices. Nevertheless,
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we have estimated that an equivalent implementation of Rijndael, composed of CLBs
only, would take about 24,600 CLBs, which is only 17 and 25 percent more than
implementations of Twofish and Serpent.



98         K. Gaj and P. Chodowiec

Additionally, Serpent, Twofish, and Rijndael all can be implemented using two
FPGA devices XCV-1000; while RC6 requires four such devices. It should be noted
that in our designs, all implemented circuits perform both encryption and decryption.
This is in contrast with the designs reported in [4], where only encryption logic is
implemented, and therefore a fully pipelined implementation of Serpent can be
included in one FPGA device.

Connecting two or more Virtex FPGA devices into a multi-chip module working
with the same clock frequency is possible because the FPGA system level clock can
achieve rates up to 200 MHz [10], and the highest internal clock frequency required
by the AES candidate implementation is 131 MHz for Serpent. New devices of the
Virtex family, scheduled to be released in 2001, are likely to be capable of including
full implementations of Serpent, Twofish, and Rijndael on a single integrated circuit.

In Fig. 22, we report the increase in the encryption/decryption latency resulting
from using the inner-round pipelining with the number of stages optimum from the
point of view of the throughput/area ratio. In majority of applications that require
hardware-based high-speed encryption, the encryption/decryption throughput is a
primary performance measure, and the latencies shown in Fig. 22 are fully acceptable.
Therefore, in this type of applications, the only parameter that truly differentiates
AES candidates, working in non-feedback cipher modes, is the area, and thus the cost,
of implementations. As a result, in non-feedback cipher modes, Serpent, Twofish, and
Rijndael offer very similar performance characteristics, while RC6 requires over
twice as much area and twice as many Virtex XCV-1000 FPGA devices.

7. Summary

We have implemented all five final AES candidates in the basic iterative architecture,
suitable for feedback cipher modes, using Xilinx Virtex XCV-1000 FPGA devices.
For all five ciphers, we have obtained the best throughput/area ratio, compared to the
results of other groups reported for FPGA devices. Additionally, we have
implemented four AES algorithms using full mixed inner- and outer-round pipelining
suitable for operation in non-feedback cipher modes. For all four ciphers, we have
obtained throughputs in excess of 12 Gbit/s, the highest throughputs ever reported in
the literature for hardware implementations of the AES candidates, taking into
account both FPGA and ASIC implementations.

We have developed the consistent methodology for the fast implementation and
fair comparison of the AES candidates in hardware. We have found out that the
choice of an optimum architecture and a fair performance measure is different for
feedback and non-feedback cipher modes.

For feedback cipher modes (CBC, CFB, OFB), the basic iterative architecture is
the most appropriate for comparison and future implementations. The
encryption/decryption throughput should be the primary criterion of comparison
because it cannot be easily increased by using a different architecture, even at the cost
of a substantial increase in the circuit area. Serpent and Rijndael outperform three
remaining AES candidates by at least a factor of two in both throughput and latency.
Our results for feedback modes have been confirmed by two independent research
groups.
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For non-feedback cipher modes (ECB, counter mode), an architecture with full
mixed inner- and outer-round pipelining is the most appropriate for comparison and
future implementations. In this architecture, all AES candidates achieve
approximately the same throughput. As a result, the implementation area should be
the primary criteria of comparison. Implementations of Serpent, Twofish, and
Rijndael consume approximately the same amount of FPGA resources; RC6 requires
over twice as large area. Our approach to comparison of the AES candidates in non-
feedback cipher modes is new and unique, and has yet to be followed, verified, and
confirmed by other research groups.

Our analysis leads to the following ranking of the AES candidates in terms of the
hardware efficiency: Rijndael and Serpent close first, followed in order by Twofish,
RC6, and Mars. Combined with rankings of the AES candidates in terms of the
remaining evaluation criteria, such as security, software efficiency, and flexibility, our
study fully supports the choice of Rijndael as the new Advanced Encryption Standard.
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Abstract. In this paper we provide protocols for fair lottery and ca-
sino games. These fair protocols enable to remove the trust from the
casino/lottery without resorting to another trusted third party, by allo-
wing the user playing the game to participate in the generation of the
specific run of the game. Furthermore, the user is able to verify the cor-
rectness of the execution of the game at the end of the run. On-line
lotteries and on-line casinos have different properties and we address the
needs of the two different types of games.

Keywords: e-lotteries, e-casinos, delaying functions, fair lotteries, publicly
verifiable lotteries

1 Introduction

On-line gaming is a multi-billion dollar, growing industry. There are hundreds
of web sites that offer various kinds of games ranging from simple lotteries to
full online-casinos (where you can find most of the games that are found in real
casinos like blackjack, video-poker, slot-machines etc.). The basic question that
is addressed in this work is how can a user trust such a site for playing in a “fair”
way. On an intuitive level, a game is fair if the chances of the user to “win” are
as published by the casino owner (unfortunately, some web sites do not even
bother to publish this information). In some cases, users trust the particular on-
line casino based on its reputation. We note however that this should be done
with caution.1

The first distinction that we make is between interactive games and lotteries.
The typical scenario in an interactive game is a player who plays a game with
the casino (a typical, popular game is blackjack). The fact that the game is
interactive by its nature allows for using (interactive) protocols so as to guarantee
? Most of this research was done while the author was a visiting scientist at the IBM

T.J. Watson Research Center.
1 For example, the official web site of the New-York lottery is www.nylottery.org while

if you enter www.nylottery.com you get a different web-site that until recently used
to offer lotteries.

D. Naccache (Ed.): CT-RSA 2001, LNCS 2020, pp. 100–109, 2001.
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the fairness of the game. Such protocols are presented in Section 2. The main,
simple idea is to let the player influence the choice of randomness for the game.
Lotteries, on the other hand, are characterized by very large number of users
participating (potentially, in the millions); moreover, these users are not on-line
for the whole duration of the game. Hence, the type of protocols that one can
employ is much more restricted. Another difference is that lotteries usually span
a relatively long time (e.g., a week from the time that users can start buying
tickets until the time that the winner is announced). It is therefore required that
the “fairness” of the game will withstand the long time that is available for the
“bad” players or lottery house to bias the outcome (and that the fact that a user
is not on-line at a certain time cannot be used to discriminate against her).

The issue of fair (or “publicly verifiable”) lotteries, was addressed by Gold-
schlag and Stubblebine [3]. They use so-called “delaying functions” to design
a lottery protocol. Informally, delaying functions are functions which are not
hard to compute but still require a “significant” amount of time to complete
the computation. It is assumed that by appropriately selecting the parameters
of the function it can be tuned so that its evaluation will take, e.g., a few hours
(and that different parameters can set the evaluation time to, say, few minutes).
One significant disadvantage of the protocol of [3] is that it requires an early
registration step of the users that by itself requires either the use of certificates
or the use of a special hardware. This registration step is later used to control
the identity of users who buy tickets during the ”critical phase” of the lottery
and to make sure that no small group of players ”blocks” this critical phase so
that other players cannot buy tickets at this time. For this, [3] put a limit on the
number of tickets a user can buy (e.g., one). Clearly, it is a desirable property to
enable purchases of multiple tickets, as people tend to buy more than one lottery
ticket (especially in lotteries where the jackpot is large). We note that in our
protocol each user can buy many tickets but is discouraged to buy a really large
number of tickets since he will not be able to check whether it holds a winning
ticket during the limited time it has (because it needs to evaluate a delaying
function for each ticket that it checks).

In Section 3.3, we present our protocol for fair lotteries, which allows each
user to buy more than one ticket, while withstanding the attacks described
in Section 3.2. We also make use of delaying functions; however, while [3] use
delaying functions for computing the winning ticket, we use delaying functions
in the winning verification stage. The transfer of the delay to the verification
process enables us to allow users to purchase more than a single ticket. Yet,
this transfer should be done in such a manner that will not render the lottery
useless. Furthermore, the delaying functions of [3] are required to have a long
delay – they may require this period to be measured in hours. In contrast, our
delaying functions can be of minutes. We note that setting bounds of security for
delaying functions would require a large overhead for the long delaying functions
while maintaining a low overhead for the short delaying functions. As we show,
our use of delaying functions can substitute that of [3] and still achieve all the
needed securities, but if it is desired then they can be combined within the same



102 E. Kushilevitz and T. Rabin

protocol (i.e., use delays both in the computation of the winning ticket and in
the winning verification stage).

Related Work: The idea of using delaying functions is not new and goes back
to [4] (where the terminology of “puzzles” is used). Other papers, e.g. [7,1,2],
also discuss both the construction of such functions and their applications in
various contexts. Syverson ([9]) presents another protocol for fair lotteries, these
protocols rely on weak bit commitment. Some of the issues which are orthogonal
to the specific design of the lottery which are discussed in [9] can also be added
to our design. Yet, the basic protocol and the method by which it achieves its
goal varies greatly from the protocol presented in this paper.

Lotteries are useful not only for their own sake but have various applications;
e.g., in [6] lotteries are used to design a probabilistic micropayment scheme.

2 Interactive Games

In this section we discuss interactive games. In such a game the casino C and
a user U participate in a protocol. In our protocol, we need to know very little
about the specific game to be played. We do assume however that `, the length of
the game (e.g., the number of rounds in a blackjack game), is fixed and known
to all; otherwise, fixing ` can be added as part of the protocol. Also, all the
games are based on randomness; it is common to generate this randomness via
a pseudorandom generator. We assume that the algorithm that implements the
game based on this randomness (including the pseudorandom generator itself)
is publicly known and hence can be tested to meet the published winning proba-
bilities (again, if the algorithm is not known in advance then the protocol below
can be slightly modified so that the casino publishes and sign this algorithm as
part of the protocol).

The key idea in our protocol is that the casino and the players will jointly
choose the randomness (in fact, for efficiency purposes, they choose a seed for
the pseudorandom generator). During the game, the user does not know the
randomness (this keeps the game fair and fun) but after the game ends it can be
verified that the “correct” randomness was used; only then the player makes his
payments or claims his earnings. The protocol offers user U the guarantee that
even if the casino C tries to cheat by biasing the randomness it cannot do so.

As a central building block in our protocol, we use a commitment scheme
commit. We denote by commitC(r, ξ) the commitment of C to a value r using ran-
domness ξ, and we require that it satisfies the following properties: (a) security:
given y = commitC(r, ξ) the value r is semantically secure. (b) decommitment:
given r and the randomness ξ used by C in commitC it is easy to verify that
indeed y = commitC(r, ξ). (c) collision resistant: for all r′ 6= r it is hard (even for
C) to find randomness ξ′ such that y = commitC(r′, ξ′). In addition, we assume a
non-forgeable signature scheme. We denote by SIGA(m) the signature of player
A on the message m.
The protocol works as follows:
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1. C picks a random seed r. It sends to U the value SIGC(commitC(r), idgame),
where idgame is a unique identifier for the game.

2. User U chooses at random a value rU and sends C the value SIGU (rU ).
3. C and U play the game while C uses r? = r ⊕ rU as a seed for the pseudoran-

dom generator.
4. When the game is over (but before payment) the casino C de-commits its r.

User U computes r? = r ⊕ rU and verifies that all the moves made by C are
consistent with r? and the algorithm that C uses. If any of these tests fail (or
if C refuses to de-commit) then the user U complains against the casino, by
presenting the casino’s randomness (and signature on this value) and its own
random value rU . If the value which the user submits, rU , is not the value
which it had given the casino, then the casino presents the user’s signature
on a different value.

The analysis of the above protocol is simple, given the security of the com-
mitment scheme. The basic idea is that after Step 2 nobody can change its mind
regarding its share of r?. Moreover, the choices made by a “bad” casino are
independent of those made by the good U . And a faulty user clearly cannot
influence the value of r? as he sends and signs his value rU after seeing only a
commitment to the casino’s value. As the commitment is semantically secure it
does not expose any information of the value of r.

3 Lotteries

In this section we study fair on-line lotteries. We start by formalizing the pro-
perties which we would require from a fair lottery (Section 3.1). We then proceed
to describe (in Section 3.2) various attacks which can make the lottery unfair. In
Section 3.3 we describe our protocol. We conclude by proving that our protocol
satisfies the requirements of a fair lottery system.

3.1 Fair On-line Lotteries

For simplicity, we consider lotteries in which there is a single prize. This prize
may be shared among several winners (or there may be no winner at all). Let β
be such that the winning probability of a ticket is ≈ 2−β (e.g., β = 24 reflects
the winning probability in several popular lotteries). The setting is as follows:
there is a lottery agency L and some k ≥ 1 users U1, . . . ,Uk who participate in
the lottery.

The basis of our requirements for a fair lottery are taken from [3] yet we
expand them to include requirements for the case in which each participant can
purchase more than a single ticket.

Assuming an adversary A who controls some subset of the users and possibly
the lottery agency L and given β, the distribution parameter, we would require
the following.

Uniform distribution: Each ticket has probability of ≈ 2−β to be chosen regard-
less of the actions of A.
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Independence of ticket values: The tickets purchased by A are independent of
the tickets purchased by the non-corrupted users (e.g., it is impossible for A
to intentionally buy the same tickets as user Ui).

Total purchase: Holding 2β tickets does not guarantee winning with probability
1. Furthermore, there is a bound on the number of tickets which a user and/or
the lottery agency L could verify as a winning ticket (the desired bound
can be tuned by appropriately choosing the parameters for the delaying
function).

Fixed set of tickets: Tickets cannot be changed or added after some predefined
set time.

We further adopted the definition of [3] for publicly verifiable and closed
lotteries. The first means that the lottery can be verified by all people at the
termination of the lottery. The second means that the lottery computation does
not require the participation of a trusted third party.

3.2 Possible Attacks

Here are several methods by which a lottery can be made unfair (some of these
attacks are easier to protect against than others).

Biasing the winning number: The lottery agency, L, might try to bias the choice
of the winning number. In doing so L might have different goals each of which
violates the fairness of the lottery: for example, it may try to pick a winning
number that no user has picked, or it may try to pick a winning number different
than the number that a specific user Ui has picked, or it may try to pick a winning
number that matches a ticket that it (or a specific user Uj of its choice) bought.

Duplication: The lottery agency can “buy” (e.g., have a user Uj act on its behalf)
the same ticket(s) as user Ui does. This means that if Ui wins the lottery he will
not be a single winner, and thus will not be able to claim the full prize.

Buying all the tickets: Given that there is a possibility to purchase multiple
tickets the lottery may claim that it has all possible ticket numbers. Thus, it is
guaranteed to be a winner (whether or not L is the only winner depends on the
choices made by other users). This mode of attack might be especially attractive
for the lottery agency in weeks where the prize is large. It is important to note
that L has an advantage over other users: it does not actually pay for the tickets.
Even if the rules of the lottery guarantee that a certain percentage of the income
is funneled into the prize it still can be viewed as if the lottery agency can buy
the tickets at a discount price.

Forgery: After the winning number is chosen a user (and especially the lottery
agency) may try to forge a winning ticket. We note that L has an extra advantage
since it may know the winning number before it is announced. In addition, L
may try to combine this attack with the Biasing attack described above.
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3.3 Our Lottery Protocol

The protocol has three phases: Buying Phase, in which each user Ui who is
interested in buying lottery ticket(s) is involved in a protocol with the lottery
agency, L; Termination Phase, in which L computes the winning number;
and Claiming Phase, in which each user Ui can check whether his ticket is a
winning one, and if so claim the prize (claiming the prize requires a protocol
between each such winning user and L; no interaction is required between non-
winning users and L, nor between the users).

Each lottery is characterized by the following information published by L
in advance: tstart (the time after which users can start buying lottery tickets),
tend (the time after which users cannot buy lottery tickets), wval (a string to
be used for determining the winning ticket), and a commitment scheme commit
and signature scheme as required in the previous section. In addition there is a
parameter ∆1 which is the amount of time that L has in order to publish the
list of tickets bought, that is to commit (by signing) the set of tickets which are
part of the current lottery. Similarly ∆2 determines the length of the period,
after the results are published, in which users can claim their prize. ∆1 should
be very short; e.g., a few seconds, and it should specifically be tuned so as to
make sure that L can complete the computation of the hash and signature but
not much more than that (for further discussion on how to set the value of ∆1
see Section 3.4).

For concreteness, we present our protocol using the function SHA1 (see [8]) as
a building block. However, the protocols do not rely on properties of this specific
function and can be replaced by other functions. In particular, as our protocols
call for a “short-delaying function”, i.e. one that takes minutes (rather than
hours) to compute, we assume that we can use the following as such a function:
Given as input a number α, a block B of size at most (512−α) bits and a target
value wval (of length at most 160 bits), find whether there is a string A of length
α such that the output of SHA1(B ◦ A) starts with a prefix wval (we choose the
length of wval to be α+β bits so as to make the probability that such A exists be
≈ 2−β). For α ≈ 20, this computation will take a few minutes on a “reasonable”
machine (by simply checking all the 2α possible A’s). Furthermore, it is assumed
that the security of SHA1 implies that a few minutes are not only “sufficient”
but also “necessary” for this computation; in particular, there is no significant
shortcut that circumvents exhaustively trying the 2α SHA1 evaluations.2

Below we describe the three phases of the lottery. We start by describing the
Buying Phase that allows users to buy tickets in the period between tstart and
tend. We use Ui to denote the i-th user to buy a ticket; note that these users are
not necessarily distinct (in other words, one user may buy more than one ticket.
As we shall see below, a user should clearly limit the number of tickets he buys
to the number of tickets he will be able to check during the Claiming Phase).
2 Again, we emphasize that this particular implementation is for sake of concreteness

only. In particular note that the search for the value of A in this implementation
can be parallelized; if we wish to eliminate this option we need to implement the
delaying function in an “inherently sequential” way; see [7] for discussion.
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In the following description we assume that there is a single execution of the
lottery, and thus omit details of the identification number of the lottery.

Buying Phase: (Between time tstart and tend)

1. User Ui chooses a value vi and randomness ξi (vi is the actual ticket value and
ξi is the randomness used by the commitment; the length of vi is 512−160−α
bits3). It computes a ticket Ti = commit(Ui, vi, ξi) and sends Ti (together
with the payment for the ticket) to L.

2. The user receives from L a signature on the ticket Ti, i.e. SIGL(Ti,Ui).

Termination Phase:

1. By time tend + ∆1, the lottery agency L publishes the list of all m tickets
that were bought T1, . . . , Tm. It also publishes the hash of this list r =
SHA1(T1 ◦ T2 ◦ . . . ◦ Tm) and its signature on r; i.e., SIGL(r). 4

Claiming Phase: (Between time tend + ∆1 and tend + ∆2)

1. Let r be the value computed by L in the Termination Phase, let vi be the
value chosen by Ui for his ticket value in the Buying Phase, and let f be
an α-bit string referred to as the “free bits”. For all values f ∈ {0, 1}α user
Ui computes SHA1(r ◦ vi ◦ f); if the output starts with a prefix wval then this
ticket is a winner.
To claim his prize, user Ui presents to L the values Ui, vi and ξi (i.e., Ui de-
commits the value given in the Buying Phase), the corresponding free-bits
string, f , and the signature generated by L for this ticket.

2. The lottery verifies that a claimed ticket is in fact a winner, by verifying the
signature on the ticket, the commitment value, and that the “free bits” and
the ticket compute the needed value.

3. L publishes the information related to all the winning tickets and announces
the prize amount.

4. In addition, user Ui devotes some time to verify that L behaves properly. In
particular, Ui should verify that his own ticket(s) appear in the list (other-
wise, using the signature(s) it received during the Buying Phase as evidence
of misconduct it complains against L). Ui can also verify the computation of
r from the list of tickets. The user also verifies that all the winning tickets
announced by L indeed appear in the list of tickets and are valid winning
tickets.

3 This length was chosen so as to make the input to SHA1, in the Claiming Phase,
exactly 512. We note however that one can choose the length of the vi’s to be much
smaller and use some fixed string for padding; on the other hand, if the size of the
vi’s is too small we will start getting collisions between users.

4 If one wishes to combine a delaying function in the computation of r it can be done
in this step.
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If the computation of r is done using a delaying function (e.g., [3] suggest to
do so with a function whose evaluation takes a few hours) we may not want the
users to repeat the whole computation (in Step 4 above). This can be circum-
vented by using “witnesses”; that is, mid-point evaluation values some of which
can be selected randomly and checked by the users.

The above protocols can be easily extended in various ways. For example, to
allow a user to buy more than one ticket in a single Buying Phase; to include
the serial number i in the ticket; to distribute the role of the lottery agency L
among several agents L1, . . . ,Lk (to decrease the load in the Buying Phase)
etc.

3.4 Security of the Lottery

Theorem 1. The protocol described above satisfies the requirements of a fair
lottery (as appear in Section 3.1).

Proof. In the following we prove that our protocol satisfies the requirements for a
fair lottery. We shall do so by showing how each component in our construction
helps in achieving this goal. As in the case of [3], we assume for the security
of the scheme that there is a ticket which was purchased by a user who is not
controlled by the adversary A close to the time tend, i.e. at time tend − ε. This
limits the time that the adversary has for attacking the lottery.

1. The role of the commitment in the Buying Phase is two folded: on the one
hand it disallows the users to change their mind with respect to their values;
on the other hand, the fact that A does not know the value vi of user Ui

ensures that L cannot discriminate against Ui (in other words, if vi appears
in the clear then L may duplicate this value, or make sure that this value
will not be the winning value). Thus, the values of the tickets purchased by
A are independent of the ticket values of the non-corrupted users. Note, that
A could duplicate the value Ti of user Ui, and if this is a winning ticket, Ui

will de-commit the ticket, which would enable A to de-commit his ticket as
well. But the commitment includes in it the user’s name (that is, Ui) hence
it does not help A to duplicate Ti.

2. Publishing (and signing) the list of tickets during the Termination Phase
guarantees that L will not be able to manipulate the list of tickets in order
to get a value r of its choice. Note that if L tries to add to the list a ticket
which is a winning ticket with respect to a specific r, then due to the way
by which r is computed (and the assumed avalanche properties of SHA1) this
will immediately influence the value of r and so the new added ticket will
(most likely) become useless, i.e. not a winning ticket.

3. Assume that L has computed a pair r, vi such that vi is a winning ticket
given the value r, then in order to force the lottery to have vi as a winner it
must have r as the randomness. It is assumed due to the collision-resistant
property of SHA-1 that given a value r it is hard to find a value x such that
SHA1(x) = r. Note, that in this specific case the problem is even harder as x
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must include in it all the tickets which were actually purchased by legitimate
users.

4. Assume that L has a set of tickets and it wishes to find an r which would
make one of the tickets a winner. The time which the lottery has to try to
generate the needed r is ε+∆1. Thus it chooses some r at random, with the
limitation that it is generated at least from all the legally purchased tickets,
and for a given ticket vi which it holds it needs to determine whether they
are a winning pair. This computation is done using the delaying function.
The value ∆1 will be set so that it is much smaller than a single computation
for determining whether vi and r are a winning pair (in fixing the value for
∆1 we should also make a more precise assumption regarding ε).

5. The delay in the Claiming Phase puts a limit on the number of tickets a
single user can buy (i.e., the number of tickets it will be able to check in time
∆2−∆1 which would bring him to the cut-off time of the Claiming Phase).
This delay also protects against an attempt of L to buy all the tickets (or
even just “too many” of them) – L will not have enough time to check which
of its tickets is a winner. Also note that the method of determining the
winning number disallows systematically buying all possible tickets. Thus, a
much larger number of tickets, as determined by “coupon collector” bounds,
are needed to cover all the possible values.5 The issue of “blocking” the
lottery, i.e. preventing users from purchasing tickets, is outside the scope of
this paper and needs to be dealt with by other means, e.g. user’s complaining
to an appropriate authority.
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Abstract. We study lightweight and secure gambling methods, and pro-
pose a general framework that is secure against various “disconnection”
and “payment refusal” attacks. Our method can be employed for single-
and multi-player games in which players are independent, such as slot
machines, roulette and blackjack. We focus on “open card” games, i.e.,
games where the casino’s best game strategy is not affected by know-
ledge of the randomness used by the players (once both or all parties
have committed to their random strings.) Our method allows players as
well as casinos to ascertain that the game is played exactly according to
the rules agreed on, including that the various random events in fact are
random. Given the low computational costs involved, we can implement
the games on cellular phones, without concerns of excessive computation
or power consumption.

Keywords: Fair, gambling, lightweight, Merkle, publicly verifiable, ro-
bust

1 Introduction

It is anticipated that a large part of the future revenue in the communication
industry will come from services related to entertainment. It is believed that
cell phones will play an increasingly important role in this trend, given their
large market penetration and portable nature (making them available whenever
boredom arises.) Entertainment-related services can be categorized into services
that locate entertainment, and services that are entertainment. In this paper, we
will only consider the latter type, and in particular, only one particular type of
entertainment services, namely gambling.

Putting local legal restrictions aside for a moment, we argue that cell phones
are perfect vehicles for gambling, since they by nature are portable, can com-
municate, and have some computational abilities. Furthermore, cellular phones
are already connected to a billing infrastructure, which could easily be augmen-
ted to incorporate payments and cash-outs. With improved graphical interfaces
– which we can soon expect on the market – cellular phones can become very
desirable “gambling terminals.” However, if mobile gambling were to proliferate,
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there is a substantial risk that some providers would skew the probabilities of
winning in their favor (and without telling the gamblers). While this problem
already exists for “real-world” casinos, it is aggravated in an Internet and wire-
less setting. The reason is that with many small service providers, some of which
may reside in foreign jurisdictions, and some of which may operate from gara-
ges, auditing becomes a more difficult task. On-line services can also change their
physical location if “the going gets rough”, making the task of law enforcement
more difficult.

On the other hand, while the honesty of real-world casinos can only be ve-
rified using auditing methods, it is possible to guarantee fairness in an on-line
setting using cryptographic methods, allowing for public verifiability of outco-
mes. The idea is first to let the randomness that decides the outcome of the
game be generated by both the casino and the portable device of the consumer,
according to the principles of coin-flipping over the phone [4]. Then, in order to
avoid problems arising from disconnections (both accidental and intentional), it
is necessary to allow for an efficient recovery of the state of an interrupted game.
This state recovery must be secure against replay attacks (in which a winner at-
tempts to collect twice), and must be auditable by third parties. Finally, in order
to make the service feasible, it must be computationally lightweight, meaning
that it will not demand excessive resources, and that it can be run on standard
cellular devices.

We propose a framework that allows games to be played on computationally
restricted devices, and automatically audited by all participants. Our solution
can in principle be applied to obtain any game – expressed by a function f on
the random inputs. (However, due to considerations aimed at avoiding game
interruptions caused by disconnected players, we only consider games in which
the players are independent.) While in theory this functionality can be obtained
from a scheme in which signatures are exchanged (potentially using methods
for a fair exchange [2,14]), such a solution is not computationally manageable
in the model we work. Thus, our solution is based on the use of hash function
evaluations alone for all but the setup phase, and utilizes a particular graph
structure for optimal auditing speed and minimal communication bandwidth.
The use of number theoretic building blocks is limited to the setup phase as
far as players are concerned. Players may either perform this computation on
a computationally limited device such as a cellular phone, where it takes time
but is still feasible, or on a trusted computer, such as a home computer. Our
main contribution lies in proposing the problem, elaborating on the model and
architecture, and proposing efficient protocols to achieve our goals.

We show how to make payments implicit, by causing the function f to output
digital currency according to the outcome of the game. That is, the output will
constitute one digital payment to the casino and another to the player(s), where
the amounts depend on the outcome of the game, and may be zero. We say
that a game is fair if it guarantees all parties involved that the outcome of a
completed game will be generated according to the rules agreed upon, including
a correct distribution of the random outcomes.
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Moreover, given the risk for disconnection – both accidental and intentional
– we must make sure that this does not constitute a security loophole. Conse-
quently, an interrupted game must always be possible to restart at the point of
interruption, so that neither casinos nor players can profit from disconnections
by interrupting and restarting games to their favor. We say that a solution is ro-
bust if it always allows the completion of a game for which one party has received
a first transcript from the other party – independently of whether a disconnected
party agrees to restart the protocol or not. (We note that the completion of the
game is not the point at which the participants learn about the outcome, but
rather, the point at which their corresponding payments are issued.) Thus, in-
stead of considering an opponent’s strategy for the game played (e.g., blackjack),
we must consider the “meta game” played. One component of the meta game
is the actual game; other components are the strategies for disconnection, state
reporting, and profit-collection. We show our solution to be robust and fair.

Our solution allows the transfer of state between various devices operated
by one and the same player. We describe how to transfer the state securely, and
without direct interaction between the devices in question. (In other words, the
state is transferred via the casino, posing us with additional security considera-
tions, in that we must guarantee a continuous sequence of events, and prohibit
“rewinding”.)

Outline: In section 2, we present the constraints we must observe, correspon-
ding to our model for communication, computation, and trust. We also detail
the goals of our efforts, and discuss practical problems. In section 3, we explain
the required setup. In section 4, we show how a game is played (including how
players perform game-dependent decisions, cash in profits, and perform conflict
resolution, if necessary.) We also explain how to transfer the state between va-
rious devices operated by one and the same player, e.g., a home computer and a
cell phone. We note that the transfer does not require any interaction between
the devices between which the state is transferred. We elaborate on the security
properties of our scheme in section 5.

2 Constraints and Goals

Device Constraints. There are two types of constraints: those describing the
typical setting of the game, and those describing the computational model. While
the former relates to efficient implementations (and corresponds to maximum
costs of building blocks), the latter is concerned with the security of the protocol
(and therefore the minimum security of the building blocks.)

In terms of typical device constraints, we assume that players have very limi-
ted computational capabilities. Without clearly describing what operations we
consider feasible, we exclude the common use of all number theoretic operations
for all but a setup phase. Also, we assume a limited storage space for players,
limiting the amount of storage required by the application to a few hundred
bytes. We may achieve this by shifting the storage requirements to the casino,
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on which we will assume no typical device constraints. Alternatively, we may
construct the randomness associated with each node as the output of a pseudo-
random number generator taking a seed and the node identifier as its input. This
allows a local reconstruction of values, either routinely or in case of conflict. See
[3] for a good overview of possible constructions.

In terms of security, we make standard cryptographic assumptions (as descri-
bed by poly-time Turing Machines) for both players and casinos. In particular,
we will make standard assumptions regarding the hardness of inverting or fin-
ding collisions for particular functions, as will be apparent from the protocol
description.

Adversarial Model. The aim of an adversary may either be to increase its
expected profit beyond what an honest set of participants in the same games
would obtain or to minimize the expected gains of a victim in relation to an
honest setting.

We consider players and casinos as mutually distrustful parties, and assume
that any collusion of such participants is possible. In particular, we allow any
such collusion of participants to perform any sequence of malicious operations,
including setups, game rounds, disconnections, and bank deposits. We do not
allow the adversary to consistently deny a player access to casinos, but do allow
temporary access refusals. (This corresponds to a sound business model, since the
casino’s profits depend on continuous availability.) We assume that the bank will
transfer funds between accounts in accordance with the protocol description. We
also assume that the state kept by the different participants will not be erased,
as is reasonable to assume by use of standard backup techniques. However, and
as will be clear from our protocol description, we do not require the recoverable
state to be constantly updated, as we allow recovery of a current state from an
old state.

Game Constraints. We focus on games in which a player can play with “open
cards” without this reducing his expected profit. Here, open cards corresponds
to publicly known randomness, and not necessary to cards per se, and means
that as soon as the player learns the random outputs or partial outputs of the
game, so does the casino (in a worst case.) We do allow the participants to
introduce random information during the course of the game, as we allow the
use of values associated with the decisions to derive random values. However,
this only allows the drawing from known distributions, and so, cannot model
drawing card from a deck from which some cards have already been drawn, but
it is not known which ones. This constraint would rule out games such as poker,
where it is important that the hand is secret. However, our constraint is one
purely motivated by efficiency considerations, and it is possible to implement
poker, and any game in which one cannot play with open cards, by means of
public key based protocols. (A mix network [6,1,9], may, for example, be used
to shuffle a deck of cards.)
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3 Setup

To optimize the game with respect to the communication and computation
overhead, we use a tree-based hash structure for commitments to randomness
and game decisions. For each player, and each type of game offered by the ca-
sino, two such structures will be computed – one for the player, and one for the
casino. (We note that it is possible to construct a new game from two or more
traditional games, where the first decision of the player in the new game selects
what traditional game to play. This would allow the use of the same structure
for multiple games.)

To minimize the amount of storage required by the players, the casino may
store these structures, and send over portions of them as required. We note
that the player structures will be stored in an encrypted manner, preventing the
casino from evaluating the game function on the structures until the game is
initiated by the player. In case of conflict (where the player believes that he got
the incorrect data from the casino) it is important that the player can locally
generate the data himself, given his secret seed and a counter corresponding to
the contested data.

Building Blocks. Let (E,D) be a secure probabilistic symmetric cipher [7,10],
with semantic security. Furthermore, let h be a hash function for which collisions
are intractable to find, and which therefore constitutes a one-way function [12],
hence it is hard to invert on average (i.e., for any poly-time ensemble A, the
probability that A(h(X)) is an inverse of h(X) is small, where X is drawn
uniformly from the domain of h). Furthermore, let C be a perfect commitment.
This may be a hash function which hides all partial information [5]. Finally, we
assume the use of some signature scheme that is existentially unforgeable [8].

Nomenclature: We use game type to correspond to the rules governing the
interaction between players and casino. An example of a game type is therefore
blackjack. We refer to particular instances of a game type as games, or game
rounds (where the latter signifies that a complete instance of a game corresponds
to multiple rounds, between which there are state dependences.) Each game, or
game round, may consist of some number of consecutive moves, each one of
which allows the players and the casino to commit to a decision. A game node is
a block of data that determines the randomness contributed to a game round by
its holder. We refer to values of a game node that encode possible decisions to be
made as the decision preimages for the game. Finally, a game tree is a collection
of game nodes, arranged in the hierarchy of a tree for purposes of efficiency.

At the time of setup, the player and the casino agree on the size of the tree,
where the number N of nodes corresponds to the maximum number of rounds of
the game type in question that they can play without re-performing the setup.

Game Nodes. (See figure 1a) Different games require different numbers of user
choices to be made. Slot machines allow for few or none; blackjack for several;
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Fig. 1. Game Structures

and roulette for a tremendous number – given the vast number of combinations
with which a player can bet. We use a method inspired by Merkle signatures ([13,
11]) to encode and implement player decisions. More particularly, for each type
of game in question, we let players and casinos commit to decisions by revealing
decision preimages according to some encoding scheme, and similar to how bits
are committed to in Merkle signatures. In the setup-phase, the player selects
some n uniformly distributed random numbers di1; : : : ; din, for each node i of
the tree (each such node corresponding to one round of the game); these allow
him later to make choices by revealing preimages in one or more moves, according
to some scheme encoding his decisions. The player also selects a random number
ri uniformly at random for each node. All of these random values are assumed
to be of size 160 bits or more, to avoid the birthday paradox problem. Indeed,
in case of a collision, the opponent could claim that another decision has been
taken by the player. The player computes a value gamei = hh(Di1; : : : ; Din); Rii,
where Dij = h(dij) and Ri = C(ri). We denote preimagei = (di1; : : : ; din; ri)
the secret preimage to gamei.

Game Trees. (See figure 1b) The player computes a structure Splayer consisting
of N nodes, each one of which is connected to one parent node (except the root);
two children nodes (except the leaves), and one game node, which is described by
the value gamei (described above) for the ith such node. We enumerate game
nodes according to their depth-first traversal order in the tree. Each node in
the tree has a value which is the hash of all its children’s values; of its game
node value; and of a descriptor game that describes what game type that it
corresponds to. Let root(player;game) be the value describing the root of the tree
for the game in question.

Each player constructs one such value root(player;game) for each game type
he wishes to be able to play, and the casino prepares a similar structure (unique
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to the game type and the player in question) for each player structure. Let
root(casino,game) describe the root of this tree. (We note that the structures may
be of slightly different formats if the player and casino have different number of
maximum choices per round.)

Let agreement(casino,player) be a document consisting of the above root va-
lues for the player and the casino, a hash value on the game function fgame,
and of signatures on this information by both the casino and the player – see
figure 1c (We assume the use of certified or otherwise publicly registered public
keys.)

Storage. The above mentioned value, agreement(casino,player), along with rele-
vant certificates, is stored by both the player and the casino. The player needs
not store the value on his portable device, but only in some manner that allows
him to retrieve it in case of a conflict.

The player may store his game trees on his device, or may encrypt these
in portions corresponding to game nodes, and have these stored by the casino.
We focus on the latter case, and let Ei = EKplayer

(preimagei, redi) be the
encryption of preimagei under the symmetric key Kplayer, using redundancy
redi of sufficient length to determine with an overwhelming probability whether
a ciphertext is correctly decrypted. We may choose |redi| = 80, and assume that
the counter i be a part of redi.

The casino stores records of the format (i, Ei, gameplayer,i, gamecasino,i)
along with a counter cnt indicating what games have been played. This counter
is specific to the player and the type of game associated with the node. (We sim-
plify our denotation by considering only one counter, but note that the scheme
tolerates any number of these.) The casino also stores all the functions fgame.

The key Kplayer is stored by the player in his portable device, along with
the counter cnt. The player also keeps a backup of the symmetric key, whether
in the form of a file on his home computer, or in terms of a passphraze used
to generate the key. Furthermore, the player stores either the functions fgame
of the games he is interested in playing, or merely hash values of these. It is
possible (but not necessary) for the player also to have the value cnt backed up
with regular intervals, e.g, on a home computer.

The bank will store elements corresponding to payment requests, allowing it
to detect duplicates and inconsistencies. We will elaborate on the format of this
later, after having presented our suggested integrated payment scheme.

State Compression. If the preimage preimagei = (di1, . . . , din, ri) is selected
by the player as the output of a PRNG whose input is (seedplayer, gamei), then
it can be generated (and re-generated) locally when required. Depending on
the difference in speed and power consumption between the PRNG and the
decryption function, and taking the communication costs into consideration, it
may be beneficial not to use the casino as a repository for encrypted game nodes,
but always to recreate these locally, from the seed, when needed.
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Certificates of Fairness. Our model allows auditing organizations and other
entities to review the game functions fgame (or crucial portions of these) to
ascertain that they correspond to fair games. Here, fair is simply used to mean
“in accordance with the disclosed rules”. The rules specify the different events
corresponding to the outcomes of the games, their probabilities of occurrence,
and the costs and payoffs associated with the game. If an auditing entity decides
that the game described by fgame is fair in this sense, it can issue a digital
certificate on fgame along with a description of the rules. This certificate may
either be publicly verifiable, or verifiable by interaction with some entity, such
as the auditing organization. Users may verify the fairness of games by verifying
the validity of the corresponding certificates.

4 Playing

Request. To initiate a game, the player sends a request (player, game) to the
casino, where player is the name or pseudonym of the player, and game is the
name of the game the player wishes to initiate. We note that the request is not
authenticated. We also note that games will be selected in a depth-first manner
(which we show will minimize the communication requirements.) The games will
be enumerated correspondingly.

If player has performed a setup of the game game and some unplayed game
nodes of this type remain, then the casino returns a message

(Ecnt, gameplayer,cnt, gamecasino,cnt);

otherwise he returns a random string of the same length and distribution.
The player decrypts Ecnt to obtain preimagecnt and cnt, and verifies the

correctness of the redundancy.

Playing a Game. A game is executed by performing the following steps (we
later consider what to do in case of communication disconnection):

1. The player initiates a game by sending the value rplayer,cnt to the casino.
The casino verifies that this is the correct preimage to Rplayer,cnt and halts
if not. (We note that Rplayer,cnt is part of gameplayer,cnt, which is available
to the casino.)

2. The casino and the players take turn making moves:
a) The casino reveals decision preimages encoding its move.
b) A man-machine interface presents the choices to the human user, collects

a response, and translates this (according to some fixed enumeration)
into what decision preimages to reveal. These values are sent to the
casino.

The above two steps are executed one or more times, corresponding to the
structure of the game. In the above, the recipient of values verifies the correc-
tness of these. If any value is incorrect, then the recipient requests that the
value is resent. All preimages are temporarily stored (until the completion
of step 4 of the protocol) by both casino and player.
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3. The casino responds with rcasino,cnt, which is verified correspondingly by the
player.

4. The function fgame is evaluated on the disclosed portions of pre-
imagepayer,cnt and preimagecasino,cnt. (We discuss requirements on the fun-
ction below.) The output is presented to the player and the casino, and the
appropriate payment transcripts are sent to the bank. (We elaborate on this
aspect later.)

5. The player and the casino updates the counter cnt, along with other state
information.

Evaluation. The outcome of the function fgame depends on some portion of the
values in preimageplayer,cnt and on rcasino,cnt. In games where the randomness
is not public until the end of the game (e.g., when the hand is shown) it also
depends on the actual values of the decision preimages given by the players and
the casino (as opposed to the choices alone). This also holds if step 2 above
consists of several moves (i.e., an iteration of the two participants’ disclosing of
decisions). In such a case, h needs to satisfy the same requirements as C does, i.e.,
be a perfect commitment that hides all partial information. Using the decision
preimages to derive randomness (used in combination with values disclosed in
step 3 to avoid predictability), allows the introduction of new random values
throughout the game.

When we say that a result depends on a value, we mean that one cannot com-
pute any non-trivial function of the result value without access to the value on
which it depends. (This is meant in a computational sense, and not in an infor-
mation theoretical sense, and so, is relative to the hardness of the cryptographic
primitives employed.)

Example: Slot Machines. Slot machines provide the probably simplest setting
in that one only needs two random strings, one for the player and one for the
casino, where an XOR of these values may be used to directly determine the
outcome of the game. For slot machines that allow one or more wheels to be
locked and the other rotated again, this simply corresponds to letting a first-
round decision of a game node encode “keeping” an outcome from the previous
game node. The result of stopping a wheel from spinning at some point can
be ignored in terms game impact, as it does not alter the distribution of the
outcome.

Example: Variable Length Decisions. In roulette, the player can place bets
on various portions of the board, in a large number of configurations. It is possible
either to limit the maximum bet to keep the number of combinations down, or
to use several consecutive game nodes to express one bet. Let us consider how
to do the latter in a secure fashion.

Let one of the decision preimages, when revealed, mean ”link with next game
node”, and let another decision preimage mean ”do not link with the next game
node”. Clearly, the player will only reveal one of these. After the conclusion of
the game, one has to deposit all game nodes in a sequence, along with the game
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node of the previous game (unless already known by the bank), and each of these
game nodes need to have exactly one of the above mentioned preimages revealed.
This allows the player to encode arbitrary-length decisions, as his decision will
be encoded by all the preimages of all the “linked” game nodes.

Whether multiple game nodes are linked or not, we have that if a game allows
variable length decisions, then either there must be some decision preimages that
encode the length of the decision, or both casino and players need to submit game
transcripts to the bank, to avoid that only a prefix decision is submitted.

Example: Multi-Player Games. In our main construction, we only consider
games where the strategies and games of different players are independent of
each other. This, however, is purely for reasons of service continuity (recogni-
zing that users relatively often get disconnected when using mobile devices.) To
play a multi-player game where the outcome of each player’s game depends on
the strategies of other players, each player may use one portion of the decision
preimage field to encode the public values of the game nodes of the other players
participating in the game. The game would then start by a round in which all
players open up preimages corresponding to their view of the game nodes of the
other players, and then by the game, as previously described.

Example: Drawing Cards Face-Down. In poker, the players of the game (of
which the casino may be one) take turns making decisions (specifying what cards
to keep, and how many new cards to request), and obtain cards from a common
deck. The values of these cards are not publicly available until the end of the
game. The decision preimages are therefore used both to commit to the decisions
and to provide randomness determining what cards are drawn. In a situation
where the casino plainly deals, and is trusted not to collude with other players,
it is possible to let the casino know the hands of the different players, which
allows for a simple solution, but which raises the concern of collusions between
players and casino. To avoid this, it appears necessary to employ public key based
methods. We do not consider such solutions herein, due to the computational
restrictions we set forth, but notice that with more computational resources,
such solutions would be possible.

Handling Disconnections. As will be seen from the description of the pay-
ment generation, the player commits to performing the game in step 2 of the
protocol for playing the game. Therefore, disconnections are handled differently
depending on the stage of the protocol execution.

The casino will take a relatively passive role in reacting to disconnections, as
it will ignore disconnections before the execution of step 2 of the protocol (and
merely rewind its internal state to what it had before the initiation of the first
protocol step). Disconnections during step 2 are handled by the bank acting as
an intermediary between the player and casino (if wanted by the player), or by
charging the player according to the most expensive outcome given the transcript
seen (if the player refuses connection.) The casino will handle disconnections
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after step 2 by executing its parts of steps 4 and 5 of the protocol. It also stores
the player’s decision preimages, if received.

If the player detects a disconnection of the game before executing step 2 of
the protocol, then he will rewind his state to the state held at the beginning
of the protocol. If the player detects the disconnection after that stage, then he
will request a replay, and perform the following protocol:

1. The player sends the casino the string

(player, cnt, rplayer,cnt,Dcasino,Dplayer).
In the above, Dcasino represents the decision preimages of the casino (record-
ed by the player), and Dplayer those of the player. (Note that these are the
choices that have already been made. The player does not get to make a new
game decision for the reconnected game, as this is just a continuation of the
disconnected game.)

2. The casino verifies the correctness of the received values with respect to the
game nodes gamecasino,cnt and gameplayer,cnt. If not all values are correct,
then it halts.

3. If the casino has previously recorded decision preimages other than those
received in the current protocol, then it selects the setD′

player that maximizes
its benefit.

4. The participants perform steps 3-5 of the game-playing protocol, both of
them sending payment invoking transcripts to the bank. (If the bank receives
different transcripts, it will perform a particular type of conflict resolution
before performing the payments – we describe this below.)

If the above fails, the player will attempt it with the bank as an intermediary.

Payment Generation. In the following, we show how the bank can determine
the charges and the credits by evaluating the game function on the provided
transcripts. The transcripts determine both who won, and how much – the latter
may depend both on the outcome of the game, and on decisions by players and
casino (such as how much is bet.)

A payment request by the casino consists of

1. the player identifier (player), the value cnt, the value gameplayer,cnt, and
the player decision preimages Dplayer,cnt,

2. all values on the path from the game node gameplayer,cnt up to the root
rootplayer,game; the game nodes gameplayer,i of every node in the tree that is
a sibling with any of the nodes on the above mentioned path; and the value
agreementcasino,player.

The bank checks the consistency of all of these, and verifies that they have not
already been submitted (in which case it runs a particular conflict resolution
protocol, detailed below). The bank then transfers funds from the player’s ac-
count to the casino in accordance with the cost of playing a game as governed by
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the rules, the decision preimages Dplayer,cnt. (We note that the verification does
not include verifying who won the game, as we take the approach of charging
for each game, including games in which the user wins.)

In the above, only the first triple of values (player, cnt,Dplayer,cnt) is sent,
unless the other values are requested by the bank. The bank stores all values
received, and only requests the further information if it is not available.

A payment request by the player consists of

1. the player identifier (player), the value cnt, the value gameplayer,cnt, and
the player decision preimages Dplayer,cnt,

2. the values rplayer,cnt, rcasino,cnt, and the casino decision preimages Dcasino,cnt
3. all values on the path from the game node gameplayer,cnt up to the root
rootplayer,game; the game nodes gameplayer,i of every node in the tree that is
a sibling with any of the nodes on the above mentioned path; and the value
agreementcasino,player.

As above, the last portion is not sent unless requested. If the casino is storing
information for the player, and the information is requested by the bank, then
the casino will be contacted to give the information. If it refuses, then a special
conflict resolution is run, see below. When all the necessary information is re-
ceived, the bank verifies the same, evaluates the function fgame, and determines
what the pay-out is. It then verifies whether this transcript has already been de-
posited. If it has, then it runs the conflict resolution protocol below. Otherwise,
it credits the accounts accordingly.

In the above, the bank indexed payment requests by the value rplayer,cnt,
which has to be submitted for all requests. We note that the bank may require
both casino and player to deposit the transcript corresponding to a game in
order to avoid “partial” transcripts to be deposited. (With a partial transcript
we mean a transcript where some of the decision preimages revealed by player
or casino are not reported.) Depending on the nature of the game, deposits may
routinely be performed by both parties, or be performed on demand by the bank.

Conflict Resolution. Conflict resultion is performed in the following cases:

– Two or more identical “deposits” for the same game.
If more than one payment request for a particular game is deposited, then
only the first is honored, and all duplicates are ignored.

– Two or more different “deposits” for the same game.
If the bank receives correct transcripts corresponding to two or more different
outcomes of a game, i.e., transcripts for which there are different sets of
decision preimages recorded, then it decides as follows. If there are two or
more different decision transcripts of the casino, but consistent versions for
the player decision transcripts, then it judges in favor of the player. If, on
the other hand, the casino preimages are consistent, but the player images
are not, then it judges in favor of the casino. If neither is consistent, then
alternate resolution mechanisms (not described herein) are necessary.
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– Incomplete deposit.
If a transcript does not contain all decision preimages required to complete
the game, then the bank will rule in favor of the participant submitting
the transcript after having tried to obtain the transcript from the other
participant, and failed to have the participants complete the game with the
bank as an intermediary.

– The casino refuses to disclose values.
If the bank requests path information from a casino during the deposit by a
player, and the casino refuses to provide this information, then the player’s
account is credited with the amount corresponding to the deposited game
transcript (possibly after some reasonable hold period.) The casino’s account
is charged the same amount, plus possible fines.

– Player out of funds.
If the casino deposits a game transcript for which there are insufficient funds,
it is notified about this, and may (but is not required to) temporarily lock
the access of the player to the games. (In fact, the bank can alert the casino
of a low player balance if this falls below a particular preset level, which has
to be established by agreement between the player ad casino during account
establishment, or by implicit agreement for playing any particular game.)
Any deposits made after the casino has been notified of the player being out
of funds are put on hold, and are credited and charged only after a sufficient
balance is available.

– Casino out of funds.
If the casino’s balance falls below a preset level, then each player depositing
transcripts is paid according to the outcome, but barred from any further
deposits from the casino (until service by the casino is re-established). The
player is notified of this condition, and his device temporarily disables the
gambling service. If the casino’s balance falls below a second and lower le-
vel, then all registered players are notified that no further deposits will be
accepted after some cut-off time, and the player devices disable the service.

Transferring State. We note that there are only two parameters that need to
be transferred between devices in order to allow the user to transfer the state
between devices. One is the secret master key used to decrypt the received tran-
scripts; the other is the counter determining what games have been played and
which ones remain to be played. The master key can be installed on both user
devices during setup, or may be generated on the fly from a passphrase. We can
allow the casino to store the counter, and send this to the player for when re-
quested. While this would enable the casino to perform rewinding attacks, these
can be defended against as follows: If the player notifies the bank of the counter
at the end of each game or sequence of games, the bank can verify that the cor-
responding transcripts are deposited by the casino within some short period of
time (shorter than the period between two game sessions with an intermediary
state transfer.) If the casino deposits two different game nodes (potentially with
different outcomes) then only the first is accepted. This prevents the bank from
abstaining from performing deposits, and performing a rewind attack. To avoid
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the user from blocking casino deposits by the above mechanism, one can require
the casino to verify with the bank that they have a consistent state before the
casino allows the transfer of state.

5 Security

We state the security properties of our scheme, and provide correctness argu-
ments.

Public Verifiability. Assuming the non-forgeability of the signature scheme
and that the hash function is a one-way function [12], our scheme satisfies public
verifiability. This means that a third party (such as the bank) is always able to
determine who won a particular game, given the corresponding game nodes with
appropriate preimages revealed, and the paths from the game nodes to the root.

Since all game nodes are connected to a binary tree (each node of which
is associated with a game node by means of a hash image of the latter), it is
not possible to replace or alter a game node without finding a hash collision
for at least one place on the path from the game node to the root. Therefore,
since the signature on the set of roots cannot be forged, it is not possible for
one party to replace a game tree signed by the other. Furthermore, he can also
not replace a game tree signed by himself, since the opponent has a copy of
his original signature, and can submit that to the bank as evidence of the bait-
and-switch attempt. Therefore, a completed game (corresponding to an honestly
submitted transcript of the game) can always be evaluated by a third party, who
can determine the outcome of the game.

Fairness. Assuming the collision-freeness of the hash function h employed for
the hash-tree, a hash function C the hides any partial information for committing
the random coins, and the semantic security of the cipher, the game will be fair
in that its outcome will be determined based on the agreed-upon rules, and on
random strings of the correct distribution.

A participant commits to a game (without committing to play the game)
by selecting a string, chosen uniformly at random from the set of strings of
the appropriate length. The game is evaluated by evaluating the agreed-upon
function (whether certified or merely recorded with the bank) on the two or more
random strings provided by the two or more participants. The game function uses
a random string that is a combination of the provided random strings. Therefore,
if at least one of the strings is chosen uniformly at random, the output will be
generated according to the agreed rules. If a participant does not select his
string uniformly at random, this only provides an advantage to the opponent.
Assuming that the cipher is semantically secure, it is infeasible for the casino to
determine the preimages of a player’s game node from the information he stores;
therefore, the casino cannot obtain an advantage (in making his decisions) from
analysis of the stored information. Assuming the partial information hiding of
the commitment C, it is not possible for either party to perform a bait-and-
switch operation, having seen part of the game.
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Robustness. As soon as a participant has committed to playing a game, it
is possible for the bank to determine how to transfer funds according to the
outcome of the game. If a participant withholds information from the bank, this
cannot financially benefit him.

We have already established that the game is publicly verifiable. If a player
halts the game before step 2 of the protocol for playing a game, he cannot guess
the outcome of the game with a better probability than what he could before
the beginning of the game. If he halts during step 2, the deposited transcript can
be evaluated by the bank, and will be charged according to the worst possible
outcome for the player, unless the player submits information that allows the
continuation of the game (in which case we say that the game is not halted,
but merely executed with the bank as an intermediary.) If the player halts after
step 2, the casino has all information required to perform a correct deposit. The
casino cannot guess the outcome of the game with better probability than before
the beginning of the game after having executed the first step of the protocol for
playing a game. If the casino halts in the middle of step 2 or before concluding
step 3, the game can be continued (if desired by the player) with the bank as
an intermediary, and so, there is no financial incentive for the casino to do so. If
the casino does not send the correct encrypted game node from its repository,
the player will generate the information locally.

Conclusion

We have proposed an architecture allowing a wide array of games to be played
on devices with severe computational limitations. Our model is rather cautious
in that it allows arbitrary disconnections, an aspect seldomly factored into high-
level protocol design. Our solution, which is shown to be robust under these
circumstances, allows for both single-player and multi-player games.

Instead of considering the security and robustness of the game played, we
consider these aspects of the meta-game in which the actual game played is one
portion, and other decisions form another portion. Aspects belonging to this
latter portion is whether to disconnect, and how to report profits to the bank,
among other things.

An open problem is how to efficiently implement games based on drawing
cards without repetition, and where there are at least two participants, both of
whom keep their hands secret for some portion of the game.
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Abstract. The Pintsov-Vanstone signature scheme with partial mes-
sage recovery (PVSSR) is a signature scheme with low message expansion
(overhead) and variable length recoverable and non-recoverable message
parts. The scheme uses three cryptographic primitives: a symmetric ci-
pher, hash function and an elliptic curve group. We give three security
proofs for PVSSR in this paper. Each proof makes a concrete and ne-
cessary assumption about one primitive, and models the other two pri-
mitives by idealizations. Thus, PVSSR with a strong cipher may offer
greater security than other common variants of ElGamal signatures.

1 Introduction

Several signature schemes with appendix, such as DSA, ECDSA, and those based
on RSA, are considered to be both computationally efficient and heuristically
or provably secure against existential forgery by adaptive chosen-message ad-
versaries. However, when bandwidth is at a premium, a potential problem with
such schemes is that the combined length of the message and signature is too
large. An example of such a constrained environment is digital postage [11,14].
Signature schemes with total or partial message recovery provide a solution to
this problem by embedding all or part of the message within the signature itself.

In this paper, we examine the security a signature scheme, PVSSR, described
in [14]. This scheme is similar in many ways to the signature scheme of [11], but
has a few efficiency advantages, which we will discuss. The scheme of [11] is
also proved secure in [11], and we now prove the security for the scheme of
[14]. However, the security proof of [11] depends on the random oracle model,
which is an idealization of the hash function. Thus, [11] gives no specific security
properties required of the hash function. This paper includes one proof that
does not model the hash function by a random oracle, but more simply makes
some concrete assumptions about the hash function that are somewhat weaker
than some standard assumptions such as collision resistance. On the other hand,
each of the proofs given here relies on two models, rather than just one. We
consider concrete necessary security properties for each of the three primitives
used in PVSSR. The best possible proof would only assume these three security
properties to prove the PVSSR. That is, the proof would show that the necessary
properties of the primitives are sufficient properties. Unfortunately, we have not

D. Naccache (Ed.): CT-RSA 2001, LNCS 2020, pp. 126–142, 2001.
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found such a proof. Instead, we have found three separate proofs, one for each
primitive. We show that the necessary property for each primitive is a sufficient
property, if the other primitives are modeled by idealized primitives.

Signature schemes with message recovery specify that some message repre-
sentative is recovered from the signature. For verification to be complete, the
message representative must have a certain prescribed redundancy. Roughly spe-
aking, redundancy means that the message representative belongs to a particular
small subset of all possible bit strings that can be recovered from candidate sig-
nature data. Signature schemes with message recovery may specify some of the
redundancy and leave some of it to the application.

One form of redundancy is padding. For example, the recovered message
representative could be required to have 80 bits of a specific padding. To sign,
a message is first padded with 80 bits and then the signature is generated.
However, the added bandwidth of such a full padding method can negate the
bandwidth advantage of using message recovery. A better choice of redundancy
is the existing redundancy intrinsic to the application-dependent set of messages.

In typical applications, messages that are signed belong to a “meaningful”
subset of bit strings. In other words, they have intrinsic redundancy. Thus, mes-
sage recovery is particularly advantageous for applications that only use messages
where the intrinsic redundancy can be precisely and easily specified and veri-
fied. For example, in a digital postage mark, certain postage information must
always be present and constitutes the necessary intrinsic redundancy [14]. If this
redundancy is insufficient for the required security level, then this redundancy
may be combined with the added redundancy of padding.

Some signature schemes with total or partial message recovery have restric-
tions on the length of the message representative to be recovered. For example,
in the Nyberg-Rueppel scheme [13], the length is fixed. This restriction has two
disadvantages. First, for very short messages, the fixed-length message repre-
sentative contains more redundancy than necessary and thus wastes bandwidth.
Second, messages that are slightly too long may not fit within the space provided
for the message representative. It would be preferable to use a signature scheme
with message recovery without this restriction, because the scheme would then
be usable within a wider class of applications.

The Pintsov-Vanstone Signature Scheme with Recovery (PVSSR) [14] is an
adaptation of the Nyberg-Rueppel signature scheme with message recovery [13].
It provides partial message recovery without restriction on the message represen-
tative length. When used with elliptic curves, it has low bandwidth overhead.
For example, at a security level of 80 bits, the cryptographic overhead of an
elliptic curve PVSSR signature is 160 bits plus the number of bits of padding
redundancy. In comparison, an ECDSA signature over the same elliptic curve
domain parameters would have an overhead of about 320 bits.

PVSSR’s flexibility allows the total amount of redundancy (intrinsic plus
padding) to be set quite low in order to save bandwidth. This provides for very
low bandwidth as a tradeoff for security against forgery. Although this low re-
dundancy mode compromises the resilience against forgery, it does not seem



128 D.R.L. Brown and D.B. Johnson

to compromise the signer’s private key. Therefore, for messages of low impor-
tance, low redundancy PVSSR signatures could be useful for their bandwidth
efficiency, without compromising the signer’s private key. This paper will not
directly pursue any further security analysis of PVSSR used in this mode.

This paper provides three separate proofs of security for PVSSR. The first
proves that in certain models, PVSSR is as secure as the elliptic curve discrete
log problem (ECDLP). The second proves in certain models that PVSSR is as
secure as the degree of a special form of collision-resistance and one-wayness of
a hash function. The third proves in certain models, that PVSSR is as secure as
a certain relationship between a cipher and the selected choice of redundancy.

The remainder of the paper is organized as follows. The PVSSR scheme is
presented in §2. Two scenarios where PVSSR may be useful are described in §3.
The security models used in this paper are outlined in §4. The proofs of security
are presented in §5, §6, and §7. §8 makes some concluding remarks.

Related works. Abe and Okamoto [1] give a security proof of a signature
scheme with partial message recovery. Their proof is based on the random oracle
model and the discrete log assumption. Naccache and Stern [11] also give a se-
curity proof of a signature scheme with partial message recovery. Their proof is
based on the random oracle model, the discrete log assumption, and a specializa-
tion of the generic group model where it is assumed that the conversion from an
elliptic curve point to an integer is modeled as another random oracle function.
Jakobsson and Schnorr [10] prove that the Schnorr signature scheme is secure
in the generic group and random oracle model. They do not address signatures
with partial message recovery. In both [1] and [11], the security proofs differ
from the proofs here in that they rely on different assumptions and models. In
particular, both their proofs rely on the random oracle model.

The schemes of both [1] and [11] have the feature that the length of the
recoverable message plus the length of any added padding must sum to the
length of a point in the group, which leads to two disadvantages: unnecessary
message expansion from filler padding and an upper bound on the length of the
recoverable message part.

Other types of threats. In analyzing the security of PVSSR in this paper,
we have assumed that the verifier will perform the verification correctly without
assistance. Certain general attacks are known against signature schemes, where
the verifier can be persuaded to verify the signature in an insecure manner. For
example, the verifier may be persuaded to use a weak hash function, and then a
forgery attack may be possible. Similar attacks might also be launched against
a signer. It requires a very careful security analysis to evaluate various proposed
methods to prevent such attacks. Such methods often include additional data
being included in the signature to notify the verifier of which hash function to use.
Regardless of the effective security of such methods, it seems that these methods
increase the overhead of the signature scheme. Since the goal of PVSSR is to
reduce overhead, such methods may be not cost-effective for PVSSR. Rather, to
obtain security against this class of attacks, we assume that there is no room
for flexibility in the signing and verification procedures of PVSSR. That is, the
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hash function may be fixed to SHA-1, the cipher to AES and so on, simply
because it is too expensive to communicate this choice per every signature in
the bandwidth-constrained environments where PVSSR would be useful.

2 The PVSSR Signature Scheme

Let W = sG, be the signer’s public key, where s is the signer’s private key, and
G is the generator of a subgroup of an elliptic curve group of prime order r.
The key length is blog2 rc+1 bits. To circumvent Pollard’s rho algorithm for the
ECDLP, we assume that the key length is at least 160 bits. In the following, S.(·)
is a cipher, i.e., a keyed (parameterized) family of one-to-one transformations,
H(·) is a hash function, and KDF(·) is a key derivation function. If V is the
representation of a group point, we shall write V ′ = KDF(V ).

Signature generation. To sign a message m, the signer divides m into two
parts, l and n, according to application dependent criteria. The use of the verifi-
cation part l will be discussed later. The message part n belongs to N ⊆ {0, 1}b,
where |N | = 2a. Therefore n effectively has redundancy of b − a bits. For ex-
ample, N could be all n that consist of an address, or all n that consist of an
English phrase, or all n that consist of an executable fragment of some computer
language. If necessary, n can be created by the signer using some message data
and padding it. Signature generation proceeds as follows:

1. If n 6∈ N , stop and return “invalid”.
2. Select u ∈R [1, r − 1], and compute V = uG and V ′ = KDF(V ).
3. Compute c = SV ′(n), h = H(c||l), and d = sh+ u mod r.
4. Convey the resulting signature (c, d) and l to the verifier.

Signature verification and message recovery. We assume that the verifier
has authentic copies of the elliptic curve domain parameters including G, r and
the elliptic curve group, and the signer’s public key W . We also assume that
the verifier can test for membership in the redundancy space N . Let (c, d) be a
purported signature, and l a purported verification portion of the message m,
with the given signature. Verification and recovery proceeds as follows:

1. Compute h = H(c||l), and V = dG− hW , V ′ = KDF(V ), and n = S−1
V ′ (c).

2. If n 6∈ N , then stop and reject; if n ∈ N , then accept the signature.
3. Recover the message as m = l||n.

If n includes padding added by the signer, then the verifier removes the
padding from n. The padding method should be unambiguous and its form
authentically pre-established between the signer and verifier. The security of the
scheme depends on 2a−b being a negligibly small probability.

The importance of the redundancy variable b−a. The number b−a is the
number of redundancy bits in the message part n. This is a scalable parameter
of PVSSR, and is independent of the key length. For example, with key length
of 160 bits and redundancy parameter b − a = 10, then existential forgery is
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possible with probability of about 2−10. Users of PVSSR should determine the
level of resistance desired against existential forgery, based on the importance of
messages being signed. Of course, more redundancy requires larger values of b,
and thus longer signatures, so there is a trade-off to be decided.

In PVSSR, the choice of N is intentionally left open. For a high-speed appli-
cation, the test for n ∈ N should be automated. If the messages are such that
the part n initially does not have the desired level of redundancy, it is possible to
expand n by padding, or adding redundancy by some other means. For example,
there may be 40 bits of natural redundancy and 40 bits of inserted redundancy,
for a total of b−a=80, which makes forgery roughly as difficult as extracting the
private key. The source of the redundancy is not important, provided that the
signer and verifier use the same N . The first two proofs in this paper (§5.2 and
§6.3) are applicable for any fixed choice of N , while the third requires that the
cipher S be “independent” from N in a sense defined in §7.1.

Flexible recovered message length. Unlike the scheme of Naccache and
Stern [11], the length b of the recovered part n of the message in PVSSR is not
tied to any other parameters of the scheme. For example, the length b can be
80, 160, or 800 bits when PVSSR is used with a 160-bit group, 160-bit hash,
64-bit block cipher (such as 3DES). There is only one requirement that affects
the length b of n: b− a must be sufficiently large to prevent existential forgery.

Elliptic curves and certificates. The PVSSR scheme can be described in the
setting of any finite cyclic group, however we recommend using elliptic curve
groups because of the resulting smaller public key sizes than equivalent-strength
multiplicative groups of finite fields. Although the public key size does not ne-
cessarily affect the size of the signature (c, d), signatures are often sent together
with a certificate containing the signer’s public key. If certificates are required, it
is likely that the need for a short signature implies the need for a short certificate.
The more than 1024 bits of an integer public key (e.g. a DSA key) would elimi-
nate the bandwidth efficiency gained from message recovery. Therefore, elliptic
curve groups are well suited for signature schemes with message recovery.

3 Concrete Examples

In the following examples, the overhead of a signature is considered. Overhead
means here the difference in length of the data resulting from signature genera-
tion and the length of the original message data. For PVSSR, we are particularly
interested in reducing the overhead, that is, PVSSR is intended for the niche of a
bandwidth constrained environment where every bit counts. Therefore, to keep
the overhead low, we shall consider examples where the natural redundancy of
the message is exploited. While the security of many other signature schemes
such as ECDSA, Schnorr and [11] also benefit from natural message redundancy,
they are often not flexible enough to reduce the overhead to the bare minimum.

Ideally, the cryptographic security should not rely on some non-cryptographic
redundancy of the message. That is, it would be preferable to control the redun-
dancy by entirely cryptographic means. However, the application PVSSR are
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for non-ideal situations, where it is necessary to exploit natural redundancy. Ne-
vertheless, PVSSR exploits natural redundancy in a provably secure way, given
the correct assumptions. It is the prerogative of the user of PVSSR to be aware
of the amount of redundancy in the message space, and to add any padding
necessary to meet the level of redundancy needed for the desired security level
against forgery. Thus, a good level of care is needed when using PVSSR, or any
signature scheme with message recovery that exploits natural redundancy.

In the examples below, the added padding necessary to achieve the desired
security level is included in the overhead. This is because the added padding is
not part of the original message.

Digital postage marks at 23 bytes of overhead. Digital postage marks
need to convey postal data [8,17]. For practical reasons, some parts of the postal
data, including date, postage value and postal code of originating location are
sent in the clear verification part l. Other parts of the postal data, such as serial
number of postage accounting device, message identification number, value of
ascending register in the accounting unit, or e-mail address of the sender, are
sent within the message part n [14], which at minimum include 13 bytes of data.
The natural redundancy within these 13 bytes could be 7 bytes. To get 10 bytes
of redundancy, 3 bytes of redundancy could be inserted by padding with 3 bytes.
Then, n would have 16 bytes.

We recommend using a 20-byte elliptic curve key, SHA-1, and 3DES (or
AES). Since c would have the same length of 16 bytes as n it does not introduce
any further overhead. The total overhead is 20 bytes for d and 3 bytes of added
redundancy, for a total of 23 bytes of overhead at 2−80 level of security.

Signing extremely short messages at 24 bytes of overhead. Consider
signing a short 1-byte message, such as yes/no, buy/hold/sell, etc. To prevent
replay attacks, such short messages often need to be sent together with a 3-byte
sequence number. For the purposes of increasing forgery resistance, 4 bytes of
padding redundancy could be added. This results in an 8-byte message part n.
(Let l have 0 bytes.) With DES, SHA-1 and 20-byte elliptic curve, the signature
(c, d) has 28 bytes, 24 of which constitute the cryptographic overhead over the
message and sequence number. There are 7 bytes of redundancy in n, which
gives 2−56 level of security against existential forgery. The use of DES rather
than 3DES in this example also gives at most 56 bits of security. (The total
break resistance, i.e. against private key recovery, may still be 2−80.)

Signing and recovering longer messages at 20 bytes of overhead. If
the message to be recovered is 20 bytes or longer, it is reasonable to expect that
certain formatting requirements or meaningfulness of the message will result in at
least 10 bytes of natural redundancy. This obviates the need to insert additional
redundancy. Therefore the only overhead is the 20 bytes of d. In the worst case,
when the message to be recovered has zero redundancy, 10 bytes of redundancy
could be added and 20 bytes for the integer d, for a total of 30 bytes.

Additional overhead reduction methods. Two methods given in [11] may
allow further reduction in the overhead of a signature scheme such as PVSSR.
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One method uses the ephemeral public key, the point V , as a subliminal channel
to transmit part of the message. This methods may increase the time to generate
the signature because many V must be randomly generated until one of the
correct form is found. The other method truncates the integer contained in
the signature. This method may increase the time used by the verifier, because
various completions of the integer must be tried. It is not certain how either of
these methods will affect the overall security of the signature. We do not include
a precise security analysis of the effect of these methods on PVSSR or other
signature schemes. However, if these methods are used with PVSSR, if indeed
they can be used with PVSSR both effectively and securely, then additional
savings could be possible, perhaps up to the 4 bytes of savings described in [11].
Thus, in the best case, the overhead of PVSSR could be reduced to 16 bytes.

To keep the overhead of PVSSR low, care is needed in using the symmetric
cipher. If the cipher is a block cipher such as Triple-DES or AES, we make
the following recommendations. Ciphertext-stealing is a very useful method of
ensuring that no message expansion occurs, and we recommend considering its
use. We recommend the CBC mode of encryption rather than ECB because it
better approximates an ideal cipher. The IV of the CBC mode should be fixed
and not included in the signature, unless necessary for the ciphertext stealing.

4 Security Models

Overview of security features. The security of PVSSR depends on the se-
curity of four of its components: (i) the security of the elliptic curve group (in
particular, the difficulty of the elliptic curve discrete logarithm problem), (ii)
the security of the hash function, (iii) the security of the cipher and the key
derivation function, (iv) the security of the set N (i.e. the size of 2a−b).

Furthermore, the security of PVSSR depends on the independence of these
four components. For example, the hash function should not be defined in terms
of the elliptic curve group, and the set N should not be contained in the set of
all n such that SV ′(n) = c for some fixed c.

Ideally, a security proof of PVSSR would reduce its security to the secu-
rity and independence of the individual components. We do not know of such a
reduction. The reduction proofs given in this paper work with certain models,
where some idealizations of two components are used. The common principle in
these models is that a component is “maximally random”, i.e., fully random up
to being constrained by the definition of the component’s class (group, hash or
cipher). Implementing such maximally random components is not practical. Ne-
vertheless such proofs do provide some assurance of security for practical imple-
mentations, if the known attacks against the implemented component, whether
it be the group, the hash or the cipher, are only as good as attacks against a
maximally random object in the class. More details of each of the three models
are given in the next subsections. We reiterate that the three reduction proofs
of this paper each work in a combination of two out of the three models.

The random oracle model. In the random oracle model [4], the hash func-
tions invoked by a cryptographic scheme are replaced by a random oracle, i.e,
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an algorithm with random output subject to the constraint of behaving like a
function. That is, the random oracle’s outputs are chosen randomly from its
range of outputs, unless the input is a previous input, in which case the previous
output to the input is given again.

The random oracle model enables security proofs to be given for certain effi-
cient cryptographic schemes. Such proofs are typically reductions from successful
attacks on the scheme to solutions of difficult mathematical problems, such as
the discrete logarithm problem, which are conjectured to be intractable.

The random oracle paradigm asserts that “secure hash functions”, such as
SHA-1, can securely replace random oracles in cryptographic schemes that are
secure in the random oracle model. Although there are known limitations to
this model [7], a successful attack on a scheme that is secure in the random
oracle model must exploit the specific hash function used to instantiate (replace)
the random oracle. No such attacks are known when using cryptographic hash
functions such as SHA-1.

The generic group model. The generic group model, introduced in [16], in-
volves a cyclic group of known order where there are random distinct represen-
tations of the group elements, and an oracle is given that can add and invert
these representations. If a scheme is secure in the generic group model, but not
secure with a specific group, then the successful attack against the scheme must
somehow exploit the specific group (i.e. utilize the group by means other than by
invoking its operations as an oracle). In a generic group, the discrete logarithm
problem is known to be exponentially hard [16]. Prime order subgroups of gene-
ral elliptic curve groups (with secure parameters) are good examples of groups
for which all known attacks against the discrete log problem are not significantly
better than attacks in the generic group.

The ideal cipher model. In the ideal cipher model of Shannon, see [2] for
example, a cipher is a parameterized (keyed) family of bijections, which is ma-
ximally random in the sense that for each key the bijection is randomly chosen
and computed by means of an oracle. The oracle that evaluates the cipher may
be asked to evaluate the cipher in either direction, forward or backward. In other
words, inverses may be computed, provided that the consistency and randomn-
ess of the functions are maintained. Proposed substitutes for ideal ciphers are
deterministic symmetric encryption primitives, such as 3DES or AES. When a
key derivation function is considered, the combined action of key derivation and
ciphering should be considered to be ideal. In other words, for each point V in
the group, the particular cipher with the key V ′ = KDF(V ) derived from V
should be as random as possible, and independent for each choice of V . (Thus,
a trivial KDF of a constant value would not qualify.)

Asymptotic and concrete security. The security proofs in this paper are of
the asymptotic variety: they use the notions of polynomial time and negligible
probability. A more detailed analysis of the proofs could be given, to give concrete
reductions of the kind found in [3] for example. A concrete security analysis is
not given here.
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5 Reduction of Security to the Discrete Log Problem

5.1 The Forking Lemma

This section briefly describes Pointcheval and Stern’s forking lemma [15]. Con-
sider a signature scheme which invokes one evaluation of a hash function in the
verification operation. For the following purposes, call this hash function evalua-
tion the critical hash. Let F be an adversary of the signature scheme, which is an
algorithm with input consisting of only the signer’s public key that produces sig-
natures in the random oracle model with non-negligible probability. Adversary
F is also able to query an honest signer for signatures of a sequence of messages
adaptively chosen by F .

The forking lemma asserts that it is possible to use algorithm F to obtain,
with non-negligible probability, two signatures s and s′ related in the following
manner. The arguments to the hash function involved in the verification ope-
ration for each of s and s′ are identical. The outputs of the hash function on
these identical inputs are unequal with non-negligible probability. The method
by which F can be used to obtain such a pair of signatures is as follows. Run the
algorithm F twice. In each run, F will query the random oracle for a sequence
of hash function evaluations. Supply identical random answers to F in each run,
except for one answer, the tth answer, where t is chosen at random before both
runs of F . Note that before the tth random oracle query, the two runs of F
are identical. Therefore, the inputs to the tth hash evaluation are identical in
both runs of F . But, on the other hand, there is a non-negligible probability
that the hash evaluated in the verification operation on the output of F , that
is, the critical hash, is the same as the tth random oracle query, because of two
reasons. First, if F had never queried the random oracle for the critical hash,
then there is negligible probability that the signature will verify. Second, F can
only query the random oracle a polynomial number of times, so, since t is chosen
at random, and one of the random oracle queries of F is the critical hash, there
is a non-negligible probability that it will be the tth random oracle query.

The adversary F may be probabilistic: it may use random tape. For the
forking lemma to apply, repeated applications of F must use the same random
tape. A probability analysis accounts for this. The forking lemma may appear
less convincing than proofs such as those in [5], because the forking lemma
seems to require two different hash functions. In implementations, signature
schemes invoke one fixed hash function. However, the forking lemma requires
a random oracle forger, which is successful over many different hash functions.
Thus, it is rigorous to consider two hash functions (both with outputs generated
at random). The reductions in [5] also require a random oracle. In this respect,
the reductions in [5] should not be regarded as more realistic. However, our
reductions may not be as tight.

5.2 Proof in the Combined Random Oracle and Ideal Cipher Model

Theorem 1. In the combined random oracle and ideal cipher model, PVSSR
is asymptotically secure against existentially forgery (for messages where n ∈
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N) by an adaptive chosen-message attack, if the discrete logarithm problem is
intractable and 2a−b is negligible.

Proof. Suppose F is an adversary that achieves forgery and outputs ((c, d), l).
With non-negligible probability, we can assume that F queries both H and S.
In particular, F queries for the value of H(c||l) and either SV ′(n) or the inverse
S−1
V ′ (c). Based on the order of the queries, and whether the inverse was queried,

we consider the following three cases.

1. Suppose that S−1
V ′ (c) was queried before SV ′(n). In this case, n = S−1

V ′ (c)
must be chosen randomly, so Prob(n ∈ N) = 2a−b, which is negligible.

2. Suppose that H(c||l) was queried before SV ′(n). The value SV ′(n) is chosen
at random, so there is negligible probability that it equals the value c which
was seen in the hash query.

3. Suppose that SV ′(n) was queried before H(c||l). Use Pointcheval and Stern’s
forking lemma technique. At random, choose an index t, and run F twice,
but change the tth random value of H as queried by F . Since the total
number of queries is polynomial, there is a non-negligible chance that the
tth query of H by F is the critical query of H by F for the value of H(c||l),
in both runs of F . If h and h′ are the random values returned by H in
the critical queries, and (c, d) and (c, d′) are the resulting signatures, then
dG− hW = V = d′G− h′W , because the value of V was produced by F in
the first query. Since sG = W and (h − h′)W = (d − d′)G it follows that
s = (h− h′)−1(d− d′) mod r.

Thus F cannot succeed non-negligibly often.
It remains to show how to answer the signature queries of F . With knowledge

of s, the signature generation algorithm can be applied, but knowledge of s is
what is sought. Since H and S need only be random, proceed by choosing the
signature responses (c, d) to the queries of F randomly as below, and then answer
subsequent queries of F for values of H and S in a manner consistent with this
random signature. Generate (c, d) as follows:

1. Choose h, randomly from the range of H, and select d ∈R [1, r − 1].
2. Compute V = dG− hW and choose random c = SV ′(n).
3. Answer the query of F for the signature of m = l||n with (c, d).

In order to be consistent, if F subsequently queries for the hash H(c||l), the
response must be h. Since h was chosen randomly, this complies with H being
a random oracle. If F queries for SV ′(n) or S−1

V ′ (c) then the response must be c
or n respectively. From the perspective of F , the hash oracle, cipher oracle and
signing oracle seem as they should be, and thus F should have no less chance of
generating a forgery. ut
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6 Reduction of Security to the Hash Function Strength

6.1 Strong Hash Property

We now leave the random oracle model, and consider an actual specific, arbitrary,
deterministic hash function. Some of these may have a security property that
we define below. This is analogous to a specific group having the property the
discrete log problem is hard.

Definition 1. A hash function H is strong if there does not exist a probabilistic
polytime algorithm A which first finds a value h or l0 and then finds, for random
c, some l 6=l0 s.t. H(c||l)=h or H(c||l)=H(c||l0), with non-negligible probability.

We call the problem of finding such l the target value problem and target
collision problem. If the value c is regarded as a key for a family of hash functions
H(c, ·), then the collision part of the above hash strength is called target collision
resistance (TCR) by Bellare and Rogaway [6], and is equivalent to Naor and
Yung’s notion of universal one-way security [12]. We call the other part of the
above hash strength target value resistance (TVR). In other words, “strong =
TCR + TVR”. We propose that SHA-1 is a good candidate for a strong hash.

6.2 Observable Combination Argument

In a generic group of order r, where r is a prime, the observable combination
argument, adapted from Shoup [16], is the following. (Note: in [10], a similar ar-
gument with the generic group model has also been used to prove that a signature
scheme is secure.) Let A be any algorithm which starts with representations of
two points, G and W , and subsequently in its operation, submits queries to the
generic group oracle. Assume that the number of queries A makes is polynomial
in log r. If V is any representation, seen either as the input or output by the
group oracle, then either

(i) V is an observable integer combination of G and W , say V = xG+ yW , in
the following sense: V is either G or W , or was the output of the generic
group oracle in response to a query by A for group operation on two previous
observable representations and integers x and y are determined by summing
the corresponding integers for the observable inputs; or

(ii) V is non-observable and over the random space of choices made by the
generic group oracle, then u, where u is the unique integer in [1, r − 1] such
that V = uG, is uniformly distributed over the integers in the range [1, r−1]
excluding the values x+ ys mod r for all points P 6= V that are observable
integer combinations of G and W where P = xG + yW and x and y are
determined as above.

If A chooses a new representation V (neither G, W nor any past outputs) to
input to the generic group algorithm, then neither V , nor the output given by
the oracle is “observable”.

A difference between the generic group model and the real world with a
specific group such as an elliptic curve group is that an adversary is capable of
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off-line computations and thus property (ii) above cannot be assumed to hold
for the specific group. Shoup [16] essentially demonstrated that there is no such
algorithm A as above that can find s such that W = sG, in time less than
O(r1/2). We use this fact in the proof below.

6.3 Proof in the Combined Ideal Cipher and Generic Group Model

Theorem 2. In the combined generic group and ideal cipher model, PVSSR is
asymptotically secure against existentially forgery (for messages where n ∈ N)
by an adaptive chosen-message attack, if the hash function H is strong and 2a−b

is negligible.

Proof. Suppose F is an adversary that produces forged signature (c, d) with
corresponding verification message portion l. With non-negligible probability, we
can assume that F queries both the generic group and S, because otherwise there
is negligible probability that the signature will be accepted by the verification
operation. In particular, the representation V = dG−H(c||l)W must appear as
the input or the output of a query to the generic group algorithm and either the
query SV ′(n) or the query for the inverse S−1

V ′ (c) must be made. The order and
the nature of the queries lead to the following cases:

1. Suppose V is non-observable. Then by the observable combination argument,
V = uG, where u is almost uniformly distributed. But F finds c, d, l such
that uG = dG − H(c||l)W , which fixes u at a particular (albeit unknown)
value u = d−H(c||l)s, which contradicts the non-observability of V .

2. Suppose V is observable and that SV ′(n) or S−1
V ′ (c) was queried before V

appeared as the representation of a point in the context of the generic group
algorithm. Then V is determined in the cipher oracle query before it is given
as the response by the generic group oracle. But the generic group oracle
chooses its responses randomly, so there is negligible chance that its response
will equal any previous value occurring in a query to the cipher oracle.

3. Suppose that V appeared as the observable output of a query by F to the
generic group algorithm before F ’s query SV ′(n) or S−1

V ′ (c). Suppose the
latter query was S−1

V ′ (c). The response n, which is chosen randomly, has a
negligible probability of falling into N , which is a contradiction.

4. Suppose that V appeared as the observable output of a query by F to the
generic group algorithm, prior to the F ’s query SV ′(n) or S−1

V ′ (c). Suppose
that the latter query was SV ′(n). Since V is observable, V = gG + hW for
some observable integers g and h. Choose the response c = SV ′(n) randomly,
as required. Then F finds d, l such that V = dG−H(c||l)W .
a) If (g,−h) 6= (d,H(c||l)), then solve for s = (h+H(c||l))−1(d− g) mod r,

which contradicts Shoup’s result that s cannot be found in polytime.
b) If (g,−h) = (d,H(c||l)), and V is not an ephemeral key of a signing

query, then F has first found h, and then found, for random c, an l
such that H(c||l) = h. This contradicts the assumption that H is strong
because H is TVR-broken.
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c) If (g,−h) = (d,H(c||l)), and V is an ephemeral key of a signing query of
message l0||n0, then F has first found l0, and then found, for given ran-
dom c, an l such thatH(c||l) = H(c||l0). This contradicts the assumption
that H is strong because H is TCR-broken.

In all the above cases, there is only a negligible chance of success for F , so
no F with non-negligible chance of success exists, under the given models and
assumptions.

It remains to show how the signature queries of F can be answered. Since
the group and S need only be random, proceed by choosing the signature (c, d)
randomly as below, and then answer subsequent queries of F for values of H and
S in a manner consistent with this random signature. Generate (c, d) as follows:

1. Choose c, randomly from the range of S, and compute h = H(c||l).
2. Choose d ∈R [1, r − 1], and choose random V = dG− hW .
3. Answer the query of F for the signature of m = l||n, with (c, d).

In order to be consistent, if F subsequently queries the cipher with SV ′(n), the
response must be c, and vice versa. If F queries the group oracle for the sum of
two observable inputs xG + yW and uG + wG such that x + u = d mod r and
y+ v = −h mod r then the response must be V . Thus, the signing oracle can be
simulated as necessary if F is an adaptive chosen-message forger. ut

7 Reduction of Security to the Cipher Strength

7.1 Uniform Decipherment Property

The third proof works in the combined generic group and random oracle model,
in order to reduce the security of PVSSR to the strength of the cipher. Thus,
rather than work in an ideal model where the cipher S is chosen from a ran-
dom space, assume that the specific cipher S (together with the key derivation
function) has the following very plausible property with respect to the set N of
redundant message portions.

Definition 2. Let S be a cipher (including a key derivation function). Let N ⊆
{0, 1}b with |N | = 2a. Then S is uniform with respect to N if for each fixed
value of c, the probability over random V that S−1

V ′ (c) ∈ N is O(2a−b) where
V ′ = KDF(V ). If it is infeasible to find c such that S−1

V ′ (c) ∈ N with probability
significantly greater than 2a−b, then S has weak uniform decipherment with
respect to N .

In other words, S is uniform with respect to N if there does not exist a
ciphertext which deciphers to a plaintext in N with significantly higher proba-
bility than expected over the random space of keys V . If S is 3DES and N is
ASCII encoding of English text, this type of uniformity is plausible. Indeed, for
the one-time pad, S = XOR, uniformity is true if b is at most the key length of
V . If the key space of S is smaller than 2b then, for each c, the set

Nc = {n|n = S−1
V (c) for V in the key space of S}
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is such that S is not uniform with respect to Nc because the probability in
Definition 2 is 1, which is not O(2a−b). Therefore the property of weak uniform
decipherment depends on the choice of N .

Unlike the previous two proofs, the following security proof can be applicable
for S = XOR, provided the key lengths are appropriate and the KDF used
has certain security properties. Use of XOR provides greater time-efficiency, so
the following security proof is a desirable assurance for those implementations
needing the speed of XOR.

If a cipher S is assumed to be pseudorandom, as is suggested for 3DES in [6],
then the following argument shows that S has weak uniform decipherment for
all N for which membership can be efficiently determined. Suppose otherwise:
that S is pseudorandom, but S does not have weak uniform decipherment with
respect to N . Then some c can be found such that S and a truly random cipher
R can be distinguished as follows. Let f = SV or else f be some random per-
mutation (generated by R), where the choice is unknown to the distinguisher.
If f−1(c) ∈ N , the distinguisher guesses that f = SV and otherwise guesses
that f was generated by the truly random cipher. The distinguisher has a good
chance of being correct because if f was chosen randomly, then f−1(c) ∈ N with
probability 2a−b, which is much smaller than the probability that S−1

V (c) ∈ N .

7.2 Proof in the Combined Random Oracle and Generic Group
Model

Theorem 3. In the combined random oracle and generic group model, PVSSR
is asymptotically secure against existential forgery (for messages where n ∈ N)
by an adaptive chosen-message attack, if the cipher S has weak uniform deci-
pherment with respect to N and 2a−b is negligible.

Proof. Suppose F is an adversary that achieves forgery and outputs ((c, d), l).
With non-negligible probability, we can assume that F queries both the generic
group and the random oracle (hash function) because otherwise there is negligible
probability that the signature will be accepted by the verification operation. In
particular, the representation V = dG−H(c||l)W must appear as the input or
the output of a query to the generic group algorithm, and the hash query for
the value H(c||l) must be made. The order and the nature of the queries leads
to the following cases:

1. Suppose that V was not an observable integer combination ofG andW . Then
V = uG for some u and V = dG − H(c||l)W , according to the verification
operation. This means that u = d−H(c||l)s, which contradicts the observable
combination argument.

2. Suppose that V is an observable integer combination, where it can be ob-
served that V = gG − hW , at the time V is first processed by the ge-
neric group algorithm. Suppose that (g, h) 6= (d,H(c||l)). This implies that
s = (h−H(c||l))−1(d−g) mod r, which contradicts the fact that the discrete
logarithm cannot be solved in the generic group in polynomial time.
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3. Suppose that V is an observable integer combination, where it can be obser-
ved that V = gG−hW , at the time V is first processed by the generic group
algorithm. Suppose that (g,−h) = (d,H(c||l)). Suppose that the hash query
H(c||l) occurs after the first observation of V . Then, h = H(c||l) occurs with
negligible probability.

4. Suppose that V is an observable integer combination, where it can be ob-
served that V = gG − hW , at the time V is first processed by the generic
group algorithm. Suppose that (g,−h) = (d,H(c||l)). Suppose that the hash
query H(c||l) occurs before the first observation of V . Then, the represen-
tation V is chosen randomly by the generic group algorithm, but is such
that S−1

V ′ (c) ∈ N , with non-negligible property. Thus, F has found a value
of c that demonstrates that S is not uniform with respect to N , which is a
contradiction.

In all above cases, there is only a negligible chance of success for F , so no F with
non-negligible chance of success exists, under the given models and assumption.

It remains to show how the queries of F for signatures can be answered.
Choose the signature (c, d) randomly as below, and then answer subsequent
queries of F for values of H and group operations in a manner consistent with
this random signature. Generate (c, d) as follows:

1. Choose h, randomly from the range of H, and select d ∈R [1, r − 1].
2. Compute V = dG− hW and c = SV ′(n).
3. Answer the query of F for the signature of m = l||n with (c, d).

In order to be consistent, if F subsequently queries for the hash H(c||l), the
response must be h. Since h was chosen randomly, this complies with H being a
random oracle. If F queries the group oracle for the sum of two observable inputs
xG+ yW and uG+wG such that x+ u = d mod r and y + v = −h mod r then
the response must be V . In this manner, the signing oracle can be simulated as
necessary if F is an adaptive chosen-message forger. ut

8 Conclusions

Each of the three security assumptions is necessary for any implementation of
PVSSR. If any of the cipher, the group, or the hash fails to meet its security
assumption, then forgery of the implementation of PVSSR is immediate from
this security flaw. Thus the weak uniform decipherment property, difficulty of
the discrete logarithm problem, and a strong hash function (especially a TCR
hash function) are each necessary for a secure instantiation of PVSSR. Because
the attacks identified above are based on the same assumptions upon which the
security proofs are based, it can be concluded that the assumptions in the secu-
rity proofs cannot be weakened. Our three proofs thus establish three security
conditions on each the three primitives of PVSSR that are necessary and partly
sufficient for PVSSR to be secure against adaptive chosen-message existential
forgery. One obvious direction in which our results could be strengthened is to
prove the security of PVSSR based on one out of the three models and two out
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of three assumptions. Ultimately, a security proof not based on any idealized
models, such as the security proof for encryption given in [9], would be desirable
for a signature scheme such as PVSSR. Based on our two proofs using the ideal
cipher model, when used with a strong cipher, PVSSR may offer better security
assurances than other signature schemes, such as Schnorr signatures and other
common variants of ElGamal signatures. Indeed, unlike the security proved [5,
10,11,15] for signature schemes, in which the proofs rely on one of the primitives
only as an idealized model (such as the random oracle model of the hash func-
tion), the security of PVSSR given here includes a proof for each primitive that
does not rely on an idealized model of that primitive.
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Abstract. This paper provides security analysis for the public-key en-
cryption scheme DHIES (formerly named DHES and DHAES), which
was proposed in [7] and is now in several draft standards. DHIES is a
Diffie-Hellman based scheme that combines a symmetric encryption me-
thod, a message authentication code, and a hash function, in addition to
number-theoretic operations, in a way which is intended to provide secu-
rity against chosen-ciphertext attacks. In this paper we find natural as-
sumptions under which DHIES achieves security under chosen-ciphertext
attack. The assumptions we make about the Diffie-Hellman problem are
interesting variants of the customary ones, and we investigate relations-
hips among them, and provide security lower bounds. Our proofs are in
the standard model; no random-oracle assumption is required.
Keywords: Cryptographic standards, Diffie-Hellman key exchange, El-
Gamal encryption, elliptic curve cryptosystems, generic model, provable
security.

1 Introduction

DHIES is an extension of the ElGamal encryption scheme. It was suggested in
[7] and is now in the draft standards of ANSI X9.63, SECG, and IEEE P1363a
[2,12,22]. In this paper we prove the security of DHIES against chosen-ciphertext
attacks based on some new variants of the Diffie-Hellman assumption. (We do
not appeal to the random-oracle model.) We then look at relationship of the
new Diffie-Hellman assumptions to standard ones, and prove a complexity lower
bound, in the generic model, about one of them.

Background. The name DHIES stands for “Diffie-Hellman Integrated Encryp-
tion Scheme.” It is “integrated” in the sense of using several different tools, inclu-
ding private-key and public-key encryption primitives. The scheme was formerly
known as DHES and as DHAES. It is all the same scheme. DHIES was designed
to be a natural extension of the ElGamal scheme, suitable in a variety of groups,
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and which enhanced ElGamal in a couple of ways important to cryptographic
practice. First, the scheme needed to provide the capability of encrypting ar-
bitrary bit strings (ElGamal requires that message be a group element). And
second, the scheme should be secure against chosen-ciphertext attack (ElGamal
is not). The above two goal had to be realized without increasing the number
of group operations for encryption and decryption, and without increasing key
sizes relative to ElGamal. Within these constraints, the designers wanted to pro-
vide the best possible provable-security analysis. But efficiency and practicality
of the scheme could not be sacrificed in order to reduce assumptions.

The DHIES scheme uses a hash function. In [7] a claim is made that DHIES
should achieve plaintext awareness if this hash function is modeled as a public
random oracle and one assumes the computational DH assumption. In fact,
technical problems would seem to thwart any possibility of pushing through
such a result.

Our approach. Our main goal has been to provide a security analysis of
DHIES. We want to understand what assumptions suffice to make that par-
ticular scheme secure.

As indicated above, DHIES is a very “natural” scheme. (See Section 3 for
its definition.) The method follows standard ideas and practice. Intuitively, it is
secure. Yet it seems difficult to prove security under existing assumptions about
the Diffie-Hellman problem.

This situation seems to arise frequently. It seems often to be the case that
we think certain methods are good, but we don’t know how to prove that they
are good starting from “standard” assumptions. We suggest that we are seeing
with DHIES is a manifestation of hardness properties of Diffie-Hellman problems
which just haven’t been made explicit so far.

In this paper we capture some of these hardness properties as formal as-
sumptions. We will then show how DHIES can then be proven secure under
these assumptions. Then we further explore these assumptions by studying their
complexity in the generic model [29], and by studying how the assumptions relate
to one other.

Results. First we formalize three new DH assumptions (though one of them, the
hash DH assumption, is essentially folklore). The assumption are the hash DH
assumption (HDH), the oracle DH assumption (ODH), and the the strong DH
assumption (SDH). The HDH and ODH assumptions measure the sense in which
a hash function H is “independent” of the underlying Diffie-Hellman problem.
One often hears intuition asserting that two primitives are independent. Here
is one way to define this. The SDH assumption formalizes, in a simple manner,
that the “only” way to compute a value guv from gv is to choose a value u and
compute (gv)u. The definitions for both ODH and SDH have oracles which play
a central role. See Section 4.

In Section 5 we show that DHIES is secure against chosen-ciphertext at-
tacks. The ODH assumption is what is required to show this. Of course this
means that DHIES is also secure against chosen-plaintext attacks [4] based on the
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ODH assumption, but in fact we can prove the latter using the HDH assumption
(although we do not show it here), a much weaker one.

(These two results make additional cryptographic assumptions: in the case
of chosen-plaintext attacks, the security of the symmetric encryption scheme; in
the case of chosen-ciphertext attacks, the security of the symmetric encryption
scheme and the security of the message authentication code. But the particular
assumptions made about these primitives are extremely weak.)

The ODH assumption is somewhat technical; SDH is rather simpler. In
Section 6 we show that, in the random-oracle model, the SDH assumption im-
plies the ODH assumption.

In Section 6 we give a lower bound for the difficulty of the SDH assumption
in the generic model of Shoup [29]. This rules out a large class of efficient attacks.

Related work. The approach above is somewhat in contrast to related sche-
mes in the literature. More typical is to fix an assumption and then strive to
find the lowest cost scheme which can be proven secure under that assumption.
Examples of work in this style are that of Cramer and Shoup [13] and that of
Shoup [31], who start from the decisional Diffie-Hellman assumption, and then
try to find the best scheme they can that will resist chosen-ciphertext attack un-
der this assumption. In fact, the latter can also be proved secure in the RO model
based on the weaker computational Diffie-Hellman assumption. These schemes
are remarkable, but their costs are about double that of ElGamal, which is al-
ready enough to dampen some practical interest. A somewhat different approach
was taken by Fujisaki and Okamoto [18], starting from weaker asymmetric and
symmetric schemes to construct a stronger hybrid asymmetric scheme. Their
scheme can be quite practical, but the proof of security relies heavily on the use
of random oracles.

2 Preliminaries

Represented Groups. DHIES makes use of a finite cyclic group G = 〈g〉.
(This notation indicates that G is generated by the group element g.) We will
use multiplicative notation for the group operation. So, for u ∈ N, gu denotes
the group element of G that results from multiplying u copies of g. Naturally,
g0 names the identity element of G. Note that, if u ∈ N, then, by Lagrange’s
theorem, gu = gu mod |G|.

Algorithms which operate on G will be given string representations of ele-
ments in G. We thus require an injective map : G→ {0, 1}gLen associated to G,
where gLen is some number (the length of the representation of group elements).
Similarly, when a number i ∈ N is an input to, or output of, an algorithm, it
must be appropriately encoded, say in binary. We assume all necessary encoding
methods are fixed, and do not normally write the operators.

Any “reasonable” group supports a variety of computationally feasible group
operations. Of particular interest is there being an algorithm ↑ which takes
(the representations of) a group element x and a number i and computes (the
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representation of) xi. For clarity, we write this operator in infix, so that (x) ↑ (i)
returns xi. We will call the tuple G = (G, g, , ↑) a represented group.

Message Authentication Codes. Let Message = {0, 1}∗ and let mKey =
{0, 1}mLen for some number mLen. Let Tag = {0, 1}tLen for some number tLen
(a superset of the possible tags). A message authentication code is a pair of
algorithms MAC = (MAC.gen, MAC.ver). Algorithm MAC.gen (the MAC gene-
ration algorithm) takes a key k ∈ mKey and a message x ∈ Message and returns
a string MAC.gen(k, x). This string is called the tag. Algorithm MAC.ver (the
MAC verification algorithm) takes a key k ∈ mKey, a message x ∈ Message,
and a purported tag τ ∈ Tag. It returns a bit MAC.ver(k, x, τ) ∈ {0, 1}, with 0
indicating that the message was rejected (deemed unauthentic) and 1 indica-
ting that the message was accepted (deemed authentic). We require that for all
k ∈ mKey and x ∈ Message, MAC.ver(k, x,MAC.gen(k, x)) = 1. The first argu-
ment of either algorithm may be written as a subscript. Candidate algorithms
include HMAC [3] or the CBC MAC (but only a version that is correct across
messages of arbitrary length).

Symmetric Encryption. Let Message be as before, and let eKey = {0, 1}eLen,
for some number eLen. Let Ciphertext = {0, 1}∗ (a superset of all possible cipher-
texts). Let Coins be a synonym for {0, 1}∞ (the set of infinite strings). A sym-
metric encryption scheme is a pair of algorithms SYM = (SYM.enc, SYM.dec).
Algorithm SYM.enc (the encryption algorithm) takes a key k ∈ eKey, a plaintext
x ∈ Message, and coins r ∈ Coins, and returns ciphertextSYM.enc(k, x, r). Algo-
rithm SYM.dec (the decryption algorithm) takes a key k ∈ eKey and a purported
ciphertext y ∈ Ciphertext, and returns a value SYM.dec(k, y) ∈ Message∪{BAD}.
We require that for all x ∈ Message, k ∈ Key, and r ∈ Coins

SYM.dec(k, SYM.enc(k, x, r)) = x.

Usually we omit mentioning the coins of SYM.enc, thinking of SYM.enc as a
probabilistic algorithm, or thinking of SYM.enc(k, x) as the induced probability
space. A return value of BAD from SYM.dec is intended to indicate that the
ciphertext was regarded as “invalid” (it is not the encryption of any plaintext).
The first argument of either algorithm may be written as a subscript. One candi-
date algorithms for the symmetric encryption are CBC encryption and Vernam
cipher encryption.

Asymmetric Encryption. Let Coins, Message, Ciphertext be as before and
let PK ⊆ {0, 1}∗ and SK ⊆ {0, 1}∗ be sets of strings. An asymmetric encryp-
tion scheme is a three-tuple of algorithms ASYM = (ASYM.enc, ASYM.dec,
ASYM.key). The encryption algorithm ASYM.enc takes a public key pk ∈ PK,
a plaintext x ∈ Message, and coins r ∈ Coins, and returns a ciphertext y =
ASYM.enc(k, x, r). The decryption algorithm ASYM.dec takes a secret key sk ∈
SK and a ciphertext y ∈ Ciphertext, and returns a plaintext ASYM.dec(sk, y) ∈
Message∪{BAD}. The key generation algorithm ASYM.key takes coins r ∈ Coins
and returns a pair (pk, sk) ∈ PK × SK. We require that for all (pk, sk) which
can be output by ASYM.key, for all x ∈ Message and r ∈ Coins, we have that
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Fig. 1. Encrypting with the scheme DHIES. We use a symmetric encryption algorithm,
SYM.enc; a MAC generation algorithm, MAC.gen; and a hash function, H. The shaded
rectangles comprise the ciphertext.

ASYM.dec(sk, ASYM.enc(pk, x, r)) = x. The first argument to ASYM.enc and
ASYM.dec may be written as a subscript.

3 The Scheme DHIES

This section recalls the DHIES scheme. Refer to Figure 1 for a pictorial repre-
sentation of encryption under DHIES, and Figure 2 for the formal definition of
the algorithm. Let us explain the scheme in reference to those descriptions.

Let G = (G, g, , ↑) be a represented group, where group elements are repre-
sented by strings of gLen bits. Let SYM = (SYM.enc, SYM.dec) be a symmetric
encryption scheme with key length eLen, and let MAC = (MAC.gen, MAC.ver)
be a message authentication code with key length mLen and tag length tLen.
Let H : {0, 1}2gLen → {0, 1}mLen+eLen be a function. From these primitives we
define the asymmetric encryption scheme DHIES = (DHIES.enc, DHIES.dec,
DHIES.key). If we want to explicitly indicate the dependency of DHIES on its
associated primitives, then we will write DHIES [[G, SYM, MAC, H]]. The com-
ponent algorithms of DHIES are defined in Figure 2.
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Algorithm DHIES.key
v ← {1, . . . , |G|} ; pk ← g ↑ v ; sk ← v
return (pk, sk)

Algorithm DHIES.enc(pk, M)
u← {1, . . . , |G|}
X ← pk ↑ u
U ← g ↑ u
hash← H(X)
macKey ← hash[1 .. mLen]
encKey ← hash[mLen + 1 ..

mLen + eLen]
encM ← SYM.enc(encKey , M)
tag ← MAC.gen(macKey , M)
EM ← U ‖ encM ‖ tag
return EM

Algorithm DHIES.dec(sk, EM)
U ‖ encM ‖ tag ← EM
X ← U ↑ sk
hash← H(X)
macKey ← hash[1 .. mLen]
encKey ← hash[mLen + 1 ..

mLen + eLen]
if MAC.ver(macKey , encM , tag) = 0
then return BAD

M ← SYM.dec(encKey , encM)
return M

Fig. 2. The scheme DHIES = (DHIES.enc, DHIES.dec, DHIES.key), where: SYM is
a symmetric encryption scheme using keys of length eLen; MAC is a message aut-
hentication code with keys of length mLen and tags of length tLen; G = (G, g, , ↑)
is a represented group whose group elements encoded by strings of length gLen; and
H : {0, 1}2 gLen → {0, 1}eLen+mLen.

Each user’s public key and secret key is exactly the same as with the ElGamal
scheme: gv and v, respectively, for a randomly chosen v. (Here we will not bother
to distinguish group elements and their bit-string representations.) To send a user
an encrypted message we choose a random u and compute an “ephemeral public
key,” gu. Including gu in the ciphertext provides an “implicit” Diffie-Hellman
key exchange: the sender and receiver will both be able to compute the “secret
value” guv. We pass guv to the hash function H and parse the result into two
pieces: a MAC key, macKey , and an encryption key, encKey . We symmetrically
encrypt the message we wish to send with the encryption key, and we MAC the
resulting ciphertext using the MAC key. The ciphertext consists of the ephemeral
public key, the symmetrically encrypted plaintext, and the authentication tag
generated by the MAC.

The group G is of prime order. We henceforth assume that |G| is prime.
This is extremely important to ensure the security of DHIES or otherwise the
scheme could be malleable. The reason stems from the fact that in groups where
|G| is not a prime (e.g., Z∗

p), guv and gv together might not uniquely determine
gu. That is, there may exist two values u and u′ such that u 6= u′ but guv = gu′v.
As a result, both u and u′ would produce two different valid ciphertexts for the
same plaintext. Therefore, if one can compute gu′ , given gu and gv, such that
guv = gu′v holds with high probability, then we would break the scheme in the
malleability sense. To prevent such attacks in groups not of prime order, one can
feed gu to H.
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4 Diffie-Hellman Assumptions

This section specifies five versions of the Diffie-Hellman assumption. The first
two are standard (included here only for completeness); the next one is straight-
forward/folklore; and the last assumptions are new.

Computational Diffie-Hellman Assumption: CDH. We refer to the “stan-
dard” Diffie-Hellman assumption as the computational Diffie-Hellman assump-
tion, CDH. It states that given gu and gv, where u, v were drawn at random from
{1, . . . , |G|}, it is hard to compute guv. Under the computational Diffie-Hellman
assumption it might well be possible for the adversary to compute something
interesting about guv given gu and gv; for example, the adversary might be able
to compute the most significant bit, or even half of the bits. This makes the
assumption too weak to directly use in typical applications. For example, the
ElGamal scheme is not semantically secure given only this assumption.

DDH: Decisional Diffie-Hellman Assumption. A stronger assumption
that has been gaining popularity is the decisional Diffie-Hellman assumption,
DDH. (For a nice discussion, see Boneh’s survey [10].) It states, roughly, that
the distributions (gu, gv, guv) and (gu, gv, gw) are computationally indistinguis-
hable when u, v, w are drawn at random from {1, . . . , |G|}. This assumption
can only hold in a group G whose order does not contain small prime factors
(e.g., subgroup of order q of Z∗

p for large primes p and q). In such groups the
assumption suffices to prove the semantic security of the ElGamal scheme.

Hash Diffie-Hellman Assumption: HDH. The assumption we make to
prove security for DHIES under chosen-plaintext attack is weaker than DDH but
stronger than CDH. It is called the hash Diffie-Hellman assumption, HDH. The
assumption is a “composite” one—it concerns the interaction between a hash
function H and the group operations in G. Here is the definition.

Definition 1. [Hash Diffie-Hellman: HDH] Let G = (G, g, , ↑) be a repre-
sented group, let hLen be a number, let H : {0, 1}∗ → {0, 1}hLen, and let A be an
adversary. The advantage of A in violating the hash Diffie-Hellman assumption
is

Advhdh
G,H(A) = Pr [u, v←{1, . . . , |G|} : A(gu, gv, H(guv)) = 1]−

Pr
[
u, v←{1, . . . , |G|}; r←{0, 1}hLen : A(gu, gv, r) = 1

]
.

The decisional Diffie-Hellman assumption says that guv looks like a random
group element, even if you know gu and gv. The hash Diffie-Hellman assumption
says that H(guv) looks like a random string, even if you know gu and gv. So if you
set H to be the identity function you almost recover the decisional Diffie-Hellman
assumption (the difference being that in one case you get a random group element
and in the other you get a random string). When H is a cryptographic hash
function, like SHA-1, the hash Diffie-Hellman assumption would seem to be a
much weaker assumption than the decisional Diffie-Hellman assumption.

We now move on to some more novel assumptions.
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Oracle Diffie-Hellman Assumption: ODH. Suppose we provide an ad-
versary A with gv and an oracle Hv which computes the function Hv(X) = Xv.
Think of v ∈ {1, . . . , |G|} as having been chosen at random. Now if we give the
adversary gu (where u ∈ {1, . . . , |G|} is chosen at random) then the oracle will
certainly enable the adversary to compute guv: the adversary need only ask the
query gu and she gets back Hv(gu) = guv. Even if we forbid the adversary from
asking gu, still she can exploit the self-reducibility of the discrete log to find the
value of guv. For example, the adversary could compute Hv(ggu) = guvgv and
divide this by Hv(1) = gv.

But what if instead we give the adversary an oracle Hv which computes
Hv(X) = H(Xv), for H a cryptographic hash function such as SHA-1? Suppose
the adversary’s goal is to compute H(guv), where gu and gv are provided to the
adversary. Now, as long as the oracle Hv can not be queried at gu, the oracle
would seem to be useless. We formalize this as follows.

Definition 2. [Oracle Diffie-Hellman: ODH] Let G = (G, g, , ↑) be a re-
presented group, let hLen be a number, let H : {0, 1}∗ → {0, 1}hLen, and let A
be an adversary. Then the advantage of A in violating the oracle Diffie-Hellman
assumption is

Advodh
G,H(A) = Pr

[
u, v←{1, . . . , |G|} : AHv(·)(gu, gv, H(guv)) = 1

]
−

Pr
[
u, v←{1, . . . , |G|}; r←{0, 1}hLen : AHv(·)(gu, gv, r) = 1

]
.

Here Hv(X) def= H(Xv), and A is not allowed to call its oracle on gu.

We emphasize that the adversary is allowed to make oracle queries that depend
on the target gu, with the sole restriction of not being allowed to query gu itself.

Strong Diffie-Hellman Assumption: SDH. Suppose A is an algorithm
which, given gv, outputs a pair of strings (gu, guv), for some u ∈ {1, . . . , |G|}.
One way for A to find such a pair is to pick some value u and then compute gu

and guv. Indeed, we expect this to be the “only” way A can compute such a pair
of values. We capture this idea as follows.

Given a represented group G = (G, g, , ↑) and a number v, let Ov be an
oracle, called a restricted DDH oracle, which behaves as follows:

Ov(U, X) =
{

1 if X = Uv

0 otherwise

That is, the oracle tells whether the second argument equals the first argument
raised to v-th power. This oracle can be seen as a restricted form of a DDH
oracle for which we fix one of its arguments as being gv. Our next definition
speaks to the uselessness of having a restricted DDH oracle.

Definition 3. [Strong Diffie-Hellman: SDH] Let G = (G, g, , ↑) be a re-
presented group, and let A be an adversary. Then the advantage of A in violating
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the strong Diffie-Hellman assumption is G is

Advsdh
G (A)

= Pr
[
u, v←{1, . . . , |G|}; Ov(U, X) def= (X = Uv) : AOv(·,·)(gu, gv) = guv

]
.

The intuition is that the restricted DDH oracle is useless because the adversary
already “knows” the answer to almost any query it will ask.

Similar intuition was captured in [21] by saying that for every non-uniform
probabilistic polynomial-time algorithm A that, on input gv, outputs (gu, guv),
there exists a non-uniform probabilistic polynomial-time algorithm S (the “ex-
tractor”) that not only outputs (gu, guv), but also u. Our approach avoids the
complexity of a simulator-based formulation. We emphasize that our oracle does
not return a value u (the discrete log of its first argument) but only a bit indi-
cating whether a given pair has the right form.

Resource Measures. We have defined several different senses of adversarial
advantage. For each notion xxx we overload the notation and define

Advxxx
Π (R) = max

A
{Advxxx

Π (A) }

where R is a resource measure and the maximum is taken over all adversaries
that use resources at most R. The resources of interest in this paper are time
(denoted by t) and, when appropriate, number of queries (denoted by q). Any
other resources of importance will be mentioned when the corresponding no-
tion is described. Here and throughout this paper “running time” is understood
to mean the maximal number of steps that the algorithm requires (relative to
some fixed model of computation) plus the size of the encoding of the algorithm
(relative to some fixed convention on writing algorithms).

We comment that we are considering the complexity of adversaries who try
to attack a specific represented group G. Such an adversary may depend on G,
so explicitly providing a description of G to A is unnecessary.

5 Security against Chosen-Ciphertext Attack

We show that DHIES [[G, SYM, MAC, H]] meets the notion of indistinguishability
under an adaptive chosen-ciphertext attack, as in Definition 3.

Theorem 1. Let G = (G, g, , ↑) be a represented group, let SYM be a sym-
metric encryption scheme, and let MAC be a message authentication scheme.
Let DHIES be the asymmetric encryption scheme associated to these primitives
as defined in Section 3. Then for any numbers t, q, µ, m, and m′,

Advcca
DHIES(t, q, µ, m) ≤ Advsym

SYM(t1, 0, m, m′) + 2 ·Advodh
G,H(t2, q) +

2 · q ·Advmac
MAC(t3, q − 1) ,

where t1 ∈ O(t + TIME↑ + TIMEMAC.gen(m′)), t2 ∈ O(t + TIMESYM.enc(m) +
TIMEMAC.gen(m′)), and t3 ∈ O(t+TIME↑+TIMEMAC.gen(m′)+TIMESYM.enc(m)
+q).
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Idea of Proof. The assumption is that both symmetric encryption scheme
SYM and the message authentication scheme MAC are secure and H is hard-
core for the Diffie-Hellman problem on G under adaptive DH attack. The proof
considers an adversary A who defeats the adaptive chosen-ciphertext security of
the scheme. Let gv be the recipient public key; let y = U ‖ encM ‖ tag be the
challenge ciphertext that algorithm A gets in its guess stage. Let us call a Type 1
query a ciphertext of the form U ‖ encM ′ ‖ tag ′. A Type 2 query have the form
U ′ ‖ encM ′ ‖ tag ′ with U ′ 6= U . We consider three cases depending on whether
the output of H looks random and on whether there was a Type 1 query y′ to
the decryption oracle DHIES.decsk such that DHIES.decsk(y′) 6= BAD.

• Case 1 — The output of H does not look random. In this case we present
an algorithm C that breaks the hardcoreness of H on G under adaptive
DH attack.

• Case 2 — The output of H looks random and there was a Type 1 query y′

to DHIES.decsk such that DHIES.decsk(y′) 6= BAD. In this case we present
an adversary F which breaks the message authentication scheme MAC.

• Case 3 — The output of H looks random and there was not a Type 1
query y′ to DHIES.decsk such that DHIES.decsk(y′) 6= BAD. In this case
we present an adversary B which breaks the encryption scheme SYM.

Refer to the full version of this paper [1] for the actual proof of Theorem 1.

6 ODH and SDH

The following theorem shows that, in the RO model, the strong Diffie-Hellman
assumption implies the oracle Diffie-Hellman assumption. The proof is omitted
here, but can be found in the full version of this paper [1].

Theorem 2. Let G = (G, g, , ↑) be a represented group and let the associated
hash function H be chosen at random. Let q be the total number of queries to
H-oracle. Then for any numbers t, q, µ,

Advodh
G,H(t, µ, q) ≤ 2 ·Advsdh

G (t1, (q + µ)2) ,

where t1 ∈ t + O(gLen + hLen).

In this section, we prove a lower bound on the complexity of the Diffie-
Hellman problem under SDH with respect to generic algorithms.

Generic Algorithms. Generic algorithms in groups are algorithms which do
not make use of any special properties of the encoding of group elements other
than assuming each element has a unique representation. This model was intro-
duced by Shoup [29] and is very useful in proving lower bounds (with respect to
such algorithms) for some problems. In fact, Shoup proved that in such a model
both the discrete logarithm and the Diffie-Hellman problems are hard to solve as
long as the order of the group contains at least one large prime factor. Following
the same approach, we also use this model here to prove lower bounds for some



The Oracle Diffie-Hellman Assumptions and an Analysis of DHIES 153

new problems we introduce. Let us proceed now with the formalization of this
model.

Let Zn = {1, . . . ,n} be the additive group of integers modulo n, the order of
the group. Let S be a set of bit strings of order at least n. We call an injective
map from Zn to S an encoding function. One example for such a function would
be the function taking u ∈ Z|G| to gu mod |G|, where G is a finite cyclic group of
order |G| generated by the group element g.

A generic algorithm is a probabilistic algorithm A which takes as input a list

(σ(x1), σ(x2), . . . , σ(xk)),

where each xi ∈ Zn and σ is a random encoding function, and outputs a bit
string. During its execution, A can make queries to an oracle σ. Each query
will result in updating the encoding list, to which A has always access. σ gets
as input two indices i and j and sign bit, and then computes σ(xi ± xj) and
appends it to the list. It is worth noticing that A does not depend on σ, since it
is only accessible by means of oracle queries.

We need to extend the original generic model to allow queries to the restricted
DDH oracle Ov. In this case, Ov gets as input two indices i and j and returns 1 if
xj = v ·xi and 0, otherwise. In general lines, our result shows that the restricted
DDH oracle Ov does not help in solving the Diffie-Hellman problem whenever
the group order contains a large prime factor. One should note, however, that
our result has no implications on non-generic algorithms, such as index-calculus
methods for multiplicative groups of integers modulo a large prime. Let us state
this more formally.

Definition 4. [SDH in generic model] Let Zn be the additive group of in-
tegers modulo n, let S be a set of strings of cardinality at least n, and let σ
be a random encoding function of Zn on S. In addition, let Ω be the set of all
mappings Zn to S. Let A be an generic algorithm making at most q queries
to its oracles. Then the advantage of A in violating the strong Diffie-Hellman
assumption is

Advsdh
A (n, q) = Pr

[
u, v←{1, . . . , |G|}; σ←Ω; Ov(i, j) def= (xj = vxi) :

AOv(·,·),σ(σ(1), σ(u), σ(v)) = σ(uv)
]

.

Theorem 3. Let Zn be the additive group of integers modulo n, let S be a
set of strings of cardinality at least n, and let A be a generic algorithm. Then,
for any number q,

Advsdh
A (n, q) ≤ O(q2/p)

where p is the largest prime factor of n.

A corollary of Theorem 3 is that any generic algorithm solving the Diffie-Hellman
problem under SDH with success probability bounded away from 0 has to per-
form at least Ω(p1/2) group operations.
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Proof. Here we just present a proof sketch using a technique used by Shoup
in [29]. Let n = spt with gcd(s, p) = 1. Since additional information only reduces
the running time, we can assume that solving the Diffie-Hellman problem in the
subgroup of order s is easy. Hence, let n = pt wlog.

We start by running algorithm A. Hence, we need to simulate all its oracles.
Then we play the following game. Let U and V be indeterminants. During the
execution of the algorithm, we will maintain a list F1, . . . , Fk of polynomials in
Zpt [U, V ], along with a list σ1, . . . , σk of distinct values in S. Initially, we have
F1 = 1, F2 = U , and F3 = V ; and three distinct values σ1, σ2, and σ3 chosen
at random from S. When the algorithm makes a query (i, j,±) to its σ-oracle,
we first compute Fk+1 = Fi ± Fj ∈ Zpt [U, V ] and check whether there is some
l ≤ k such that Fk+1 = Fl. If so, then we return σl to A. Else we pick choose
a random but distinct σk+1, return it to A, and update both lists. When the
algorithm makes a query (i, j) to its Ov, we return 1 if Fj = V · Fi else 0.

We can assume that A outputs an element in the encoding list (otherwise
Advsdh

A (n, q) ≤ 1/(p − m)). Then, let us choose u and v at random from Zpt .
Notice that Advsdh

A (n, q) can be upper bounded by the probability of one of the
following happening: Fi(u, v) = Fj(u, v) for some Fi and Fj ; or Fi(u, v) = uv
for some i; or Fj 6= Vi but Fj(u, v) = vFi(u, v). Otherwise, the algorithm cannot
learn anything about u or v except that Fi(u, v) 6= Fj(u, v) for every i and j.
But, using results from [29], for fixed i and j, the probability of Fi−Fj vanishes
is at most 1/p; the probability of Fi − UV vanishes is at most 2/p; and the
probability of Fj − V Fi vanishes is at most 2/p. It follows that the probability
of one these happening is O(q2/p).
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A Security Definitions

Symmetric Encryption. Security of a symmetric encryption scheme is defined
as in [5], in turn an adaptation of the notion of polynomial security as given in
[20,25]. We imagine an adversary A that runs in two stages. During either stage
the adversary may query an encryption oracle SYM.enc(K, ·) which, on input x,
returns SYM.enc(K, x, r) for a randomly chosen r. In the adversary’s find stage
it endeavors to come up with a pair of equal-length messages, x0 and x1, whose
encryptions it wants to try to tell apart. It also retains some state information s.
In the adversary’s guess stage it is given a random ciphertext y for one of the
plaintexts x0, x1, together with the saved state s. The adversary “wins” if it
correctly identifies which plaintext goes with y. The encryption scheme is “good”
if “reasonable” adversaries can’t win significantly more than half the time.

Definition 1 [5] Let SYM = (SYM.enc, SYM.dec) be a symmetric encryption
scheme and let A be an adversary. The advantage of A in attacking SYM is

Advsym
SYM(A) = 2 · Pr

[
K ← eKey; (x0, x1, s)← ASYM.enc(K,·)(find); b←{0, 1};

y ← SYM.enc(K, xb) : ASYM.enc(K,·)(guess, y, s) = b
]
− 1 .
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We define

Advsym
SYM(t, µ, m, m′) = max

A
{Advsym

SYM(A)} ,

where the maximum is taken over all adversaries A running in time at most
t, asking queries which total at most µ bits, and whose output x0 (and x1)
has length at most m bits, and m′ bounds the length of a SYM.enc-produced
ciphertext whose plaintext is of length m.

It is understood that, above, A must output x0 and x1 with |x0| = |x1|. The
multiplication by 2 and subtraction by 1 are just scaling factors, to make a
numeric value of 0 correspond to no advantage and a numeric value of 1 corre-
spond to perfect advantage. As a reminder, “time” for an adversary A is always
understood to be the sum of the actual running time and the length of A’s
description.

Candidate algorithms were discussed in Section 2.

Message Authentication Codes. The security of a MAC is defined by an
experiment in which we first choose a random key K ∈ mKey and then give an
adversary F a MAC.genK(·) oracle, we say that F ’s output (x∗, τ∗) is unasked
if τ∗ is not the response of the MAC.genK(·) oracle to an earlier query of x∗.
Our definition of MAC security follows.

Definition 2 Let MAC = (MAC.gen, MAC.ver) be a message authentication
scheme and let F be an adversary. Then the success (or forging probability) of
F on MAC is

Advmac
MAC(A) = Pr

[
K ← mKey; (x∗, τ∗)← FMAC.gen(K,·) :

MAC.verK (x∗, τ∗) = 1 and (x∗, τ∗) is unasked
]

.

The security of MAC is the function

Advmac
MAC(t, q) = max

F
{Advmac

MAC(F )} ,

where the maximum is taken over all adversaries F running in time at most t
and asking at most q oracle queries.

Adversary F is said to have forged when, in the experiment above, F outputs
an (x∗, τ∗) such that MAC.verK (x∗, τ∗) = 1 and (x∗, τ∗) is unasked.

This definition is stronger than the usual one as given in [6]. There, one
asks that the adversary not be able to produce MACs of new messages. Here
we require additionally that the adversary not be able to generate new MACs
of old messages. However, if the MAC generation function is deterministic and
verification is done by simply re-computing the MAC (this is typically true) then
there is no difference.

Candidate algorithms were discussed in Section 2.
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Privacy Against Adaptive Chosen-Ciphertext Attack. Our definition
of chosen-ciphertext security of an asymmetric encryption mimics the find-then-
guess notion of [5] and follows [20,25,19], in which the the adversary is given
access to a decryption oracle in both the find and guess stages. So we state it
without further discussion.

Definition 3 Let ASYM = (ASYM.enc, ASYM.dec, ASYM.key) be an asym-
metric encryption scheme and let A an adversary for its chosen-ciphertext secu-
rity. The advantage of A in attacking ASYM is

Advcca
ASYM(A)

= 2 · Pr
[
(sk, pk)← ASYM.key; (x0, x1, s)← AASYM.decsk (find, pk) ;

b←{0, 1}; y ← ASYM.encpk(xb) : AASYM.decsk (guess, pk, s, y) = b
]
− 1 .

Here A is not allowed to call its decryption oracle on y. The security of ASYM
is the function

Advcca
ASYM(t, q, µ, m) = max

A
{Advcca

ASYM(A)} ,

where the maximum is taken over all adversaries A running in time t, making at
most q queries to its ASYM.decsk-oracle, all these totaling at most µ bits, and
whose output x0 (and x1) has length at most m bits.
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Abstract. Seven years after the optimal asymmetric encryption pad-
ding (OAEP) which makes chosen-ciphertext secure encryption scheme
from any trapdoor one-way permutation (but whose unique application
is RSA), this paper presents REACT, a new conversion which applies
to any weakly secure cryptosystem, in the random oracle model: it is
optimal from both the computational and the security points of view.
Indeed, the overload is negligible, since it just consists of two more has-
hings for both encryption and decryption, and the reduction is very tight.
Furthermore, advantages of REACT beyond OAEP are numerous:
1. it is more general since it applies to any partially trapdoor one-way

function (a.k.a. weakly secure public-key encryption scheme) and
therefore provides security relative to RSA but also to the Diffie-
Hellman problem or the factorization;

2. it is possible to integrate symmetric encryption (block and stream
ciphers) to reach very high speed rates;

3. it provides a key distribution with session key encryption, whose
overall scheme achieves chosen-ciphertext security even with weakly
secure symmetric scheme.

Therefore, REACT could become a new alternative to OAEP, and even
reach security relative to factorization, while allowing symmetric inte-
gration.

1 Introduction

For a long time many conversions from a weakly secure encryption scheme into
a chosen-ciphertext secure cryptosystem have been attempted, with variable
success. Such a goal is of greatest interest since many one-way encryption sche-
mes are known, with variable efficiency and various properties, whereas chosen-
ciphertext secure schemes are very rare.

1.1 Chosen-Ciphertext Secure Cryptosystems

Until few years ago, the description of a cryptosystem, together with some heuri-
stic arguments for security, were enough to convince and to make a scheme to be
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widely adopted. Formal semantic security [18] and further non-malleability [13]
were just seen as theoretical properties. However, after multiple cryptanalyses of
international standards [7,10,9], provable security has been realized to be impor-
tant and even became a basic requirement for any new cryptographic protocol.
Therefore, for the last few years, many cryptosystems have been proposed. Some
furthermore introduced new algebraic problems, and assumptions [25,1,2,19,26,
29,31,34], other are intricate constructions, over old schemes, to reach chosen-
ciphertext security (from El Gamal [20,41,40,11], D-RSA [33] or Paillier [32]),
with specific security proofs.

Indeed, it is easy to describe a one-way cryptosystem from any trapdoor pro-
blem. Furthermore, such a trapdoor problems is not so rare (Diffie-Hellman [12],
factorization, RSA [37], elliptic curves [22], McEliece [24], NTRU [19], etc). A
very nice result would be a generic and efficient conversion from any such a
trapdoor problem into a chosen-ciphertext secure encryption scheme.

1.2 Related Work

In 1994, Bellare and Rogaway [5] suggested such a conversion, the so-called
OAEP (Optimal Asymmetric Encryption Padding). However, its application
domain was restricted to trapdoor one-way permutations, which is a very rare
object (RSA, with a few variants, is the only one application). Nevertheless, it
provided the most efficient RSA-based cryptosystem, the so-called OAEP-RSA,
provably chosen-ciphertext secure, and thus became the new RSA standard –
PKCS #1 [38], and has been introduced in many world wide used applications.

At PKC ’99, Fujisaki and Okamoto [15,17] proposed another conversion with
further important improvements [16,35]. Therefore it looked like the expected
goal was reached: a generic conversion from any one-way cryptosystem into a
chosen-ciphertext secure encryption scheme. However, the resulting scheme is not
optimal, from the computational point of view. Namely, the decryption phase is
more heavy than one could expect, since it requires a re-encryption.

As a consequence, with those conversions, one cannot expect to obtain a
scheme with a fast decryption phase (unless both encryption and decryption are
very fast, which is very unlikely). Nevertheless, decryption is usually implemen-
ted on a smart card. Therefore, cryptosystem with efficient decryption process
is a challenge with a quite practical impact.

1.3 Achievement: A New and Efficient Conversion

The present work provides a new conversion in the random oracle model [4]
which is optimal from the computational point of view in both the encryption
and decryption phases. Indeed, the encryption needs an evaluation of the one-
way function, and the decryption just makes one call to the inverting function.
Further light computations are to be done, but just an XOR and two hashings.
Moreover, many interesting features appear with integration of symmetric en-
cryption schemes.
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The way the new conversion works is very natural: it roughly first encrypts a
session key using the asymmetric scheme, and then encrypts the plaintext with
any symmetric encryption scheme, which is semantically-secure under simple
passive attacks (possibly the one-time pad), using the session key as secret key.
Of course this simple and actually used scheme does not reach chosen-ciphertext
security. However, just making the session key more unpredictable and adding a
checksum, it can be made so:

C = Easym
pk (R) and c = E sym

K (m), where K = G(R)
Epk(m) = C||c||H(R, m, C, c),

where G and H are any hash functions. Therefore, this conversion is not totally
new. Moreover, in [4], a similar construction has been suggested, but in the
particular setting where Easym is a trapdoor permutation (as in OAEP) and
the one-time pad for E sym. Thus, our construction is much more general, and
we provide a new security analysis. Moreover, if one uses a semantically secure
symmetric encryption scheme against basic passive attacks (no known-plaintext
attacks), the last two parts of the ciphertext, which are very fast since they only
make calls to a hash function and to a symmetric encryption, can be used more
than once, with many messages. This makes a highly secure use of a session key,
with symmetric encryption E sym which initially just meets a very weak security
property:

C = Easym
pk (R) and K = G(R)

Epk(mi) = C||ci = E sym
K (mi)||H(R, mi, C, ci) for i = 1, . . .

1.4 Outline of the Paper

We first review, in Section 2, the security notions about encryption schemes (both
symmetric and asymmetric) required in the rest of the paper, with namely the
semantic security. Then, in the next section (Section 3), we describe a new attack
scenario, we call the Plaintext-Checking Attack. It then leads to the introduction
of a new class of problems, the so-called Gap-Problems [28]. Then in Section 4, we
describe our new conversion together with the security proofs. The next section
(Section 5) presents some interesting applications of this conversion. Then comes
the conclusion.

2 Security Notions for Encryption Schemes

2.1 Asymmetric Encryption Schemes

In this part, we formally define public-key encryption schemes, together with the
security notions.

Definition 1 (Asymmetric Encryption Scheme). An asymmetric encryp-
tion scheme on a message-spaceM consists of 3 algorithms (Kasym, Easym,Dasym):
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– the key generation algorithm Kasym(1k) outputs a random pair of secret-public
keys (sk, pk), relatively to the security parameter k;

– the encryption algorithm Easym
pk (m; r) outputs a ciphertext c corresponding to

the plaintext m ∈M (using the random coins r ∈ Ω);
– the decryption algorithm Dasym

sk (c) outputs the plaintext m associated to the
ciphertext c.

Remark 1. As written above, Easym
pk (m; r) denotes the encryption of a message

m ∈ M using the random coins r ∈ Ω. When the random coins are useless in
the discussion, we simply note Easym

pk (m), as done above in the introduction.

The basic security notion required from an encryption scheme is the one-
wayness, which roughly means that, from the ciphertext, one cannot recover the
whole plaintext.

Definition 2 (One-Way). An asymmetric encryption scheme is said to be one-
way if no polynomial-time attacker can recover the whole plaintext from a given
ciphertext with non-negligible probability. More formally, an asymmetric encryp-
tion scheme is said (t, ε)-OW if for any adversary A with running time bounded
by t, its inverting probability is less than ε:

Succow(A) = Pr
m

R←M
r

R←Ω

[(sk, pk)← Kasym(1k) : A(Easym
pk (m; r)) ?= m] < ε,

where the probability is also taken over the random coins of the adversary.

A by now more and more required property is the semantic security [18] also
known as indistinguishability of encryptions or polynomial security since it is the
computational version of perfect security [39].

Definition 3 (Semantic Security). An asymmetric encryption scheme is said
to be semantically secure if no polynomial-time attacker can learn any bit of in-
formation about the plaintext from the ciphertext, excepted the length. More for-
mally, an asymmetric encryption scheme is said (t, ε)-IND if for any adversary
A = (A1, A2) with running time bounded by t,

Advind(A) = 2× Pr
b

R←{0,1}
r

R←Ω

[
(sk, pk)← Kasym(1k), (m0, m1, s)← A1(pk)
c← Easym

pk (mb; r) : A2(c, s)
?= b

]
− 1 < ε,

where the probability is also taken over the random coins of the adversary,
and m0, m1 are two identical-length plaintexts chosen by the adversary in the
message-space M.

Both notions are denoted OW and IND respectively in the following.
Another security notion has been defined, called non-malleability [13]. It

roughly means that it is impossible to derive, from a given ciphertext, a new
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ciphertext such that the plaintexts are meaningfully related. But we won’t de-
tail it since this notion has been proven equivalent to semantic security against
parallel attacks [6].

Indeed, the adversary considered above may obtain, in some situations, more
informations than just the public key. With just the public key, we say that she
plays a chosen–plaintext attack since she can encrypt any plaintext of her choice,
thanks to the public key. It is denoted CPA. But she may have, for some time,
access to a decryption oracle. She then plays a chosen–ciphertext attack, which
is either non-adaptive [27] if this access is limited in time, or adaptive [36] if
this access is unlimited, and the adversary can therefore ask any query of her
choice to the decryption oracle, but of course she is restricted not to use it on the
challenge ciphertext. It has already been proven [3] that under this latter attack,
the adaptive chosen-ciphertext attacks, denoted CCA, the semantic security and
the non-malleability notions are equivalent, and this is the strongest security
notion that one could expect, in the standard model of communication. We
therefore call this security level in this scenario the chosen–ciphertext security.

2.2 Symmetric Encryption Schemes

In this part, we briefly focus on symmetric encryption schemes.

Definition 4 (Symmetric Encryption Scheme). A symmetric encryption
scheme with a key-length k, on messages of length `, consists of 2 algorithms
(E sym,Dsym) which depends on the k-bit string k, the secret key:

– the encryption algorithm E sym
k (m) outputs a ciphertext c corresponding to the

plaintext m ∈ {0, 1}`, in a deterministic way;
– the decryption algorithm Dsym

k (c) gives back the plaintext m associated to the
ciphertext c.

As for asymmetric encryption, impossibility for any adversary to get back
the whole plaintext just given the ciphertext is the basic requirement. However,
we directly consider semantic security.

Definition 5 (Semantic Security). A symmetric encryption scheme is said
to be semantically secure if no polynomial-time attacker can learn any bit of
information about the plaintext from the ciphertext, excepted the length. More
formally, a symmetric encryption scheme is said (t, ε)-IND if for any adversary
A = (A1, A2) with running time bounded by t, Advind(A) < ε, where

Advind(A) = 2× Pr
kR←{0,1}k

b
R←{0,1}

[(m0, m1, s)← A1(k), c← E sym
k (mb) : A2(c, s)

?= b]− 1,

in which the probability is also taken over the random coins of the adversary,
and m0, m1 are two identical-length plaintexts chosen by the adversary in the
message-space {0, 1}`.
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In the basic scenario, the adversary just sees some ciphertexts, but nothing else.
However, many stronger scenarios can also be considered. The first which seemed
natural for public-key cryptosystems are the known/chosen-plaintext attacks,
where the adversary sees some plaintext-ciphertext pairs with the plaintext pos-
sibly chosen by herself. These attacks are not trivial in the symmetric encryption
setting, since the adversary is unable to encrypt by herself.

The strongest scenario considers the adaptive chosen-plaintext/ciphertext
attacks, where the adversary has access to both an encryption and a decryption
oracle, such as in the so-called boomerang attack [42].

However, just the security against the basic no-plaintext/ciphertext attacks
(a.k.a. passive attacks) is enough in our application. Therefore, one can remark
that it is a very weak requirement. Indeed, if one considers AES candidates,
cryptanalysts even fail in breaking efficiently semantic security using adaptive
chosen plaintext/ciphertext attacks: with respect to pseudo-random permuta-
tions, semantic security is equivalent to say that the family (E sym

k )k is (t, ε)-
indistinguishable from the uniform distribution on all the possible permutations
over the message-space, after just one query to the oracle which is either E sym

k
for some random k or a random permutation (cf. universal hash functions [8])!

Remark 2. One should remark that the one-time pad provides a perfect seman-
tically secure symmetric encryption: for any t it is (t, 0)-semantically secure, for
` = k.

3 The Plaintext-Checking Attacks

3.1 Definitions

We have recalled above all the classical security notions together with the classi-
cal scenarios of attacks in the asymmetric setting. A new kind of attacks (parallel
attacks) has been recently defined [6], which have no real practical meaning, but
the goal was just to deal with non-malleability. In this paper, we define a new
one, where the adversary can check whether a message-ciphertext pair (m, c) is
valid: the Plaintext-Checking Attack.

Definition 6 (Plaintext-Checking Attack). The attacker has access to a
Plaintext-Checking Oracle which takes as input a plaintext m and a ciphertext
c and outputs 1 or 0 whether c encrypts m or not.

It is clear that such an oracle is less powerful than a decryption oracle. This
scenario will be denoted by PCA, and will be always assumed to be fully adaptive:
the attacker has always access to this oracle without any restriction (we even
allows her to include the challenge ciphertext in the query.) It is a very weak
security notion.

Remark 3. One can remark that semantic security under this attack cannot be
reached. Thus, we will just consider the one-wayness in this scenario. Moreover,
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for any deterministic asymmetric encryption scheme, the PCA-scenario is equi-
valent to the CPA-one. Indeed, the Plaintext-Checking oracle does just give an
information that one can easily obtain by oneself. Namely, any trapdoor one-way
permutation provides a OW-PCA-secure encryption scheme (eg. RSA [37]).

3.2 Examples

Let us consider some famous public-key encryption schemes in order to study
their OW-PCA-security.

The RSA Cryptosystem. In 1978, Rivest–Shamir–Adleman [37] defined the
first asymmetric encryption scheme based on the RSA–assumption. It works as
follows:

– The user chooses two large primes p and q and publishes the product n = pq
together with any exponent e, relatively prime to ϕ(n). He keeps p and q
secret, or the invert exponent d = e−1 mod ϕ(n).

– To encrypt a message m ∈ Z?n, one just has to compute c = me mod n.
– The recipient can recover the message thanks to d, m = cd mod n.

The one-wayness (against CPA) of this scheme relies on the RSA problem. Since
this scheme is deterministic, it is still one-way, even against PCA, relative to the
RSA problem: the RSA-cryptosystem is OW-PCA relative to the RSA problem.

The El Gamal Cryptosystem. In 1985, El Gamal [14] defined an asymmetric
encryption scheme based on the Diffie-Hellman key distribution problem [12]. It
works as follows:

– An authority chooses and publishes an Abelian group G of order q, denoted
multiplicatively but it could be an elliptic curve or any Abelian variety,
together with a generator g. Each user chooses a secret key x in Z?q and
publishes y = gx.

– To encrypt a message m, one has to choose a random element k in Z?q and
sends the pair (r = gk, s = m× yk) as the ciphertext.

– The recipient can recover the message from a pair (r, s) since m = s/rx,
where x is his secret key.

The one-wayness of this scheme is well-known to rely on the Computational
Diffie-Hellman problem. However, to reach semantic security, this scheme requi-
res m to be encoded into an element in the group G. And then, it is equivalent
to the Decision Diffie-Hellman problem, where the Diffie-Hellman problems are
defined as follows:

– The Computational Diffie-Hellman Problem (CDH): given a pair (ga, gb),
find the element C = gab.

– The Decision Diffie-Hellman Problem (DDH): given a triple (ga, gb, gc), de-
cide whether c = ab mod q or not.
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– The Gap–Diffie-Hellman Problem (GDH): solve the CDH problem with the
help of a DDH Oracle (which answers whether a given triple is a Diffie-
Hellman triple or not).

Proposition 1. The El Gamal encryption scheme is OW-PCA relative to the
GDH problem.

Proof. The proof directly comes from the fact that a Plaintext-Checking Oracle,
for a given public key y = gx and a ciphertext (r = gk, s = m × yk), simply
checks whether the triple (y = gx, r = gk, s/m) is a DH-triple. It is exactly a
DDH Oracle. ut

Since no polynomial time reduction (even a probabilistic one) is known from
the CDH problem to the DDH problem [23], the GDH assumption seems as
reasonable as the DDH assumption (the reader is referred to [28] for more details).

4 Description of REACT

4.1 The Basic Conversion

Let us consider (Kasym, Easym,Dasym), any OW-PCA–secure asymmetric encryp-
tion scheme, as well as two hash functions G and H which output k1-bit strings
and k2-bit strings respectively. Then, the new scheme (K, E ,D) works as follows:

– K(1k): it simply runs Kasym(1k) to get a pair of keys (sk, pk), and outputs it.
– Epk(m; R, r): for any k1-bit message m and random values R ∈ M and

r ∈ Ω, it gets c1 = Easym
pk (R; r), then it computes the session key K = G(R),

c2 = K ⊕m as well as c3 = H(R, m, c1, c2). The ciphertext consists of the
triple C = (c1, c2, c3).

– Dsk(c1, c2, c3): it first extracts R from c1 by decrypting it, R = Dasym
sk (c1). It

verifies whether R ∈ M. It can therefore recover the session key K = G(R)
and m = K ⊕ c2 which is returned if and only if c3 = H(R, m, c1, c2) and
R ∈M. Otherwise, it outputs “Reject”.

The overload is minimal. Actually, if we consider the encryption phase, it
just adds the computation of two hash values and an XOR. Concerning the
decryption phase, which had been made heavy in previous conversions [15,16,35]
with a re-encryption to check the validity, we also just add the computation of
two hash values and an XOR, as in the encryption process. Indeed, to compare
with previous conversions, the validity of the ciphertext was checked by a full
re-encryption. In our conversion, this validity is simply checked by a hash value.

4.2 The Hybrid Conversion

As it has already been done with some previous encryption schemes [15,16,
30,33,35], the “one-time pad” encryption can be generalized to any symmetric



REACT: Rapid Enhanced-security Asymmetric Cryptosystem Transform 167

encryption scheme which is not perfectly secure, but semantically secure against
passive attacks.

Let us consider two encryption schemes, (Kasym, Easym,Dasym) is a OW-PCA–
secure asymmetric scheme and (E sym,Dsym) is a IND–secure symmetric scheme
on `-bit long messages, which uses k1-bit long keys, as well as two hash functions
G and H which output k1-bit strings and k2-bit strings respectively. Then, the
hybrid scheme (Khyb, Ehyb,Dhyb) works as follows:

– Khyb(1k): exactly has above, for K(1k).
– Ehyb

pk (m; R, r): for any `-bit message m and random values R ∈M and r ∈ Ω,
it gets c1 = Epk(R; r) and a random session key K = G(R). It computes c2 =
E sym
K (m) as well as the checking part c3 = H(R, m, c1, c2). The ciphertext

consists of C = (c1, c2, c3).
– Dhyb

sk (c1, c2, c3): it first extracts R from c1 by decrypting it, R = Dasym
sk (c1).

It verifies whether R ∈ M or not. It can therefore recover the session key
K = G(R) as well as the plaintext m = Dsym

K (c2) which is returned if and
only if c3 = H(R, m, c1, c2) and R ∈M. Otherwise, it outputs “Reject”.

The overload is similar to the previous conversion one, but then, the plaintext
can be longer. Furthermore, the required property for the symmetric encryption
is very weak. Indeed, as it will be seen in the security analysis (see the next sec-
tion), it is just required for the symmetric encryption scheme to be semantically
secure in the basic scenario (no plaintext/ciphertext attacks).

4.3 Chosen-Ciphertext Security

Let us turn to the security analysis. Indeed, if the asymmetric encryption scheme
(Kasym, Easym,Dasym) is OW-PCA–secure and the symmetric encryption scheme
(E sym,Dsym) is IND-secure, then the conversion (Khyb, Ehyb,Dhyb) is IND-CCA in
the random oracle model. More precisely, one can claim the following exact
security result.

Theorem 1. Let us consider a CCA–adversary Acca against the “semantic se-
curity” of the conversion (Khyb, Ehyb,Dhyb), on `-bit long messages, within a time
bounded by t, with advantage ε, after qD, qG and qH queries to the decryption
oracle, and the hash functions G and H respectively. Then for any 0 < ν < ε,
and

t′ ≤ t + qGΦ + (qH + qG)O(1)

(Φ is the time complexity of E sym
K ), there either exists

– an adversary Bpca against the (t′, ϕ)-OW-PCA-security of the asymmetric
encryption scheme (Kasym, Easym,Dasym), after less than qG + qH queries to
the Plaintext-Checking Oracle, where

ϕ =
ε− ν

2
− qD

2k2
.



168 T. Okamoto and D. Pointcheval

– or an adversary B against the (t′, ν)-IND–security of the symmetric encryp-
tion scheme (E sym,Dsym).

Proof. More than semantically secure against chosen-ciphertext attacks, this
converted scheme can be proven “plaintext–aware” [5,3], which implies chosen-
ciphertext security. To prove above Theorem, we first assume that the symme-
tric encryption scheme (E sym,Dsym) is (t′, ν)-IND–secure, for some probability
0 < ν < ε.

Semantic Security. The semantic security of this scheme intuitively comes
from the fact that for any adversary, in order to have any information about the
encrypted message m, she at least has to have asked (R, ?, c1, c2) to H (which
is called “event 1” and denoted by E1) or R to G (which is called “event 2” and
denoted by E2). Therefore, for a given c1 = Easym

pk (R; r), R is in the list of the
queries asked to G or H. Then, for any candidate R′, one asks to the Plaintext
Checking Oracle whether c1 encrypts R′ or not. The accepted one is returned as
the inversion of Easym

pk on the ciphertext c1, which breaks the OW-PCA.
More precisely, let us consider A = (A1, A2), an adversary against the se-

mantic security of the converted scheme, using an adaptive chosen-ciphertext
attack. Within a time bound t, she asks qD queries to the decryption oracle and
qG and qH queries to the hash functions G and H respectively, and distinguishes
the right plaintext with an advantage greater than ε. Actually, in the random
oracle model, because of the randomness of G and H, if neither event 1 nor
event 2 happen, she gets c2 = E sym

K (mb), for a totally random key K. Indeed,
to the output (m0, m1, s) from A1, A2 is given c1, the challenge ciphertext one
wants to completely decrypt under Dasym

sk , c2 ← E sym
K (mb) where K is a random

k1-bit string and b a random bit, and c3 is a random k2-bit string. During this
simulation, the random oracles are furthermore simulated as follows:

– for any new query R′ to the oracle G, one first checks whether this R′ is the
searched R (which should lead to the above random K). For that, one asks
to the Plaintext-Checking Oracle to know whether c1 actually encrypts R′.
In this case, above K value is returned. Otherwise, a new random value is
sent.

– for any new query (R′, m′, c′
1, c

′
2) to the oracle H, if (c′

1, c
′
2, m

′) = (c1, c2, mb),
and R′ is the searched R, which can be detected thanks to the Plaintext-
Checking Oracle, above c3 is returned. Otherwise, a random value is sent.

Then, she cannot gain any advantage greater than ν, when the running time
is bounded by t′: Prb[A2(Ehyb

pk (mb; r), s) = b | ¬(E1 ∨ E2)] ≤ 1/2 + ν/2. Ho-
wever, splitting the success probability, according to (E1 ∨ E2), one gets the
following inequality, 1/2 + ε/2 ≤ 1/2 + ν/2 + Prb[E1 ∨ E2], which leads to
Pr[E1 ∨ E2] ≥ (ε− ν)/2. If E1 or E2 occurred, an R′ will be accepted and re-
turned after at most (qG + qH) queries to the Plaintext Checking Oracle.

Plaintext–Extractor. Since we are in an adaptive chosen-ciphertext scenario,
we have to simulate the decryption oracle, or to provide a plaintext-extractor.
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When the adversary asks a query (c1, c2, c3), the simulator looks for all the
pairs (m, R) in the table of the query/answer’s previously got from the hash
function H. More precisely, it looks for all the pairs (m, R) such that R ∈ M
and the query (R, m, c1, c2) has been asked to H with answer c3. For any of
theses pairs, it computes K = G(R), using above simulation, and checks whether
c2 = E sym

K (m) and asks to the Plaintext-Checking Oracle whether c1 encrypts
the given R (therefore globally at most qH queries to this oracle, whatever the
number of queries to the decryption oracle, since R and c1 are both included
in the H-query). In the positive case, it has found a pair (m, R) such that,
R ∈ M, K = G(R) and for some r′, c1 = Easym

pk (R; r′), c2 = E sym
K (m) and

c3 = H(R, m, c1, c2). The corresponding plaintext is therefore m, exactly as
would have done the decryption oracle. Otherwise, it rejects the ciphertext.

Some decryptions may be incorrect, but only rejecting a valid ciphertext: a
ciphertext is refused if the query (R, m, c1, c2) has not been asked to H. This
may just leads to two situations:

– either the c3 has been obtained from the encryption oracle, which means
that it is a part of the challenge ciphertext. Because of R, m, c1 and c2 in
the quadruple H-input, the decryption oracle query is exactly the challenge
ciphertext.

– or the attacker has guessed the right value for H(R, m, c1, c2) without having
asked for it, but only with probability 1/2k2 ;

Conclusion:
Finally, a (c1, c2, c3) decryption-oracle query is not correctly answered with

probability limited by 1/2k2 . Therefore, using this plaintext-extractor, we obtain,

Pr[(E1 ∨ E2) ∧ no incorrect decryption] ≥ ε− ν

2
− qD

2k2

in which cases one solves the one-wayness, simply using the Plaintext-Checking
Oracle to check which element, in the list of queries asked to G and H, is the
solution. The decryption simulation will just also require Plaintext-Checking
on some (R, c1) which appeared in the H queries. If one memorizes all the
obtained answers from the Plaintext-Checking Oracle, putting a tag to each H-
input/output values, less than qG + qH queries are asked. The running time of
adversary, B or Bpca, is bounded by the running time of A, qG executions of E sym

K ,
and (qG + qH)O(1) queries to (G, H and Plaintext-Checking) oracles. That is,
t′ ≤ t + qGΦ + (qH + qG)O(1). ut

5 Some Examples

We now apply this conversion to some classical encryption schemes which are
clearly OW-PCA under well defined assumptions.
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5.1 With the RSA Encryption Scheme: REACT–RSA

We refer the reader to the section 3.2 for the description and the notations used
for the RSA cryptosystem. Let us consider two hash functions G and H which
output k1-bit strings and k2-bit strings respectively, and any semantically secure
symmetric encryption scheme (E sym,Dsym).

– K(1k): it chooses two large primes p and q greater than 2k, computes the
product n = pq. A key pair is composed by a random exponent e, relatively
prime to ϕ(n) and its inverse d = e−1 mod ϕ(n).

– Ee,n(m; R): with R ∈ Z?n, it gets c1 = Re mod n, then it computes K = G(R)
and c2 = E sym

K (m) as well as c3 = H(R, m, c1, c2). The ciphertext consists of
the triple C = (c1, c2, c3).

– Dd,n(c1, c2, c3): it first extracts R = cd1 mod n. Then it recovers K = G(R)
and m = Dsym

K (c2) which is returned if and only if c3 = H(R, m, c1, c2).
Otherwise, it outputs “Reject”.

Theorem 2. The REACT–RSA encryption scheme is IND-CCA in the random
oracle model, relative to the RSA problem (and the semantic security of the
symmetric encryption scheme under the basic passive attack).

Proof. We have just seen before that the plain-RSA encryption is OW-PCA,
relative to the RSA problem, which completes the proof. ut

This becomes the best alternative to OAEP–RSA [5,38]. Indeed, if one sim-
ply uses the “one-time pad”, the ciphertext is a bit longer than in the OAEP
situation, but one can also use any semantically secure encryption scheme to
provide high-speed rates, which is not possible with OAEP.

5.2 With the El Gamal Encryption Scheme: REACT–El Gamal

We also refer the reader to the section 3.2 for the description and the notations
used for the El Gamal cryptosystem. Let us consider two hash functions G and H
which output k1-bit strings and k2-bit strings respectively, and any semantically
secure symmetric encryption scheme (E sym,Dsym).

– K(1k): it chooses a large prime q, greater than 2k, a group G of order q and
a generator g of G. A key pair is composed by a random element x in Z?q and
y = gx.

– Ey(m; R, r): with R a random string, of the same length as the encoding
of the G-elements, and r ∈ Zq, it gets c1 = gr and c′

1 = R ⊕ yr, then it
computes K = G(R) and c2 = E sym

K (m) as well as c3 = H(R, m, c1, c
′
1, c2).

The ciphertext therefore consists of the tuple C = (c1, c
′
1, c2, c3).

– Dx(c1, c
′
1, c2, c3): it first extracts R = c′

1 ⊕ cx1 . Then it recovers K = G(R)
and m = Dsym

K (c2) which is returned if and only if c3 = H(R, m, c1, c
′
1, c2).

Otherwise, it outputs “Reject”.
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Theorem 3. The REACT–El Gamal encryption scheme is IND-CCA in the ran-
dom oracle model, relative to the GDH problem (and the semantic security of the
symmetric encryption scheme under the basic passive attack).

Proof. We have seen above that the plain-El Gamal encryption scheme is OW-
PCA, relative to the GDH problem [28], which completes the proof. ut

5.3 With the Okamoto-Uchiyama Encryption Scheme

Description of the Original Scheme. In 1998, Okamoto–Uchiyama [29] de-
fined an asymmetric encryption scheme based on a trapdoor discrete logarithm.
It works as follows:

– Each user chooses two large primes p and q and computes n = p2q. He also
chooses an element g ∈ Z?n such that gp = gp−1 mod p2 is of order p and
computes h = gn mod n. The modulus n and the elements g and h are made
public while p and q are kept secret.

– To encrypt a message m, smaller than p, one has to choose a random element
r ∈ Zn and sends c = gmhr mod n as the ciphertext.

– From a ciphertext c, the recipient can easily recover the message m since

m = L(cp)/L(gp) mod p,

where L(x) = (x− 1)/p mod p for any x = 1 mod p, and cp = cp−1 mod p2.

The semantic security of this scheme relies on the p-subgroup assumption (a.k.a.
p-residuosity or more generally high-residuosity), while the one-wayness relies
on the factorization of the modulus n. The OW-PCA relies on the gap problem,
the Gap–High-Residuosity problem, which consists in factoring an RSA modulus
with access to a p-residuosity oracle.

Remark 4. Since the encryption process is public, the bound p is unknown. A
public bound has to be defined, for example n1/4 which is clearly smaller than
p, or 2k where 2k < p, q < 2k+1 (see some remarks in [21] about the EPOC
application of this scheme [30].)

The Converted Scheme: REACT–Okamoto-Uchiyama. Let us consider
two hash functions G and H which output k1-bit strings and k2-bit strings respec-
tively, and any semantically secure symmetric encryption scheme (E sym,Dsym).

– K(1k): it chooses two large primes p and q greater than 2k, as well as g as
described above. It then computes n = p2q and h = gn mod n.

– En,g,h(m; R, r): with R < 2k and r ∈ Zn, it computes c1 = gRhr mod n, then
it gets K = G(R) and c2 = E sym

K (m) as well as c3 = H(R, m, c1, c2). The
ciphertext consists of the triple C = (c1, c2, c3).

– Dp(c1, c2, c3): it first extracts R = L(c1p)/L(gp). Then it recovers K =
G(R) and m = Dsym

K (c2) which is returned if and only if R < 2k and c3 =
H(R, m, c1, c2). Otherwise, it outputs “Reject”.
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Theorem 4. The REACT–Okamoto-Uchiyama cryptosystem is IND-CCA in the
random oracle model, relative to the Gap–High-Residuosity problem (and the se-
mantic security of the symmetric encryption scheme under the basic passive
attack).

Proof. We have just seen that the plain-Okamoto-Uchiyama encryption scheme
is OW-PCA, relative to the Gap–High-Residuosity problem. ut

6 Conclusion

This paper presents REACT, a new conversion which applies to any weakly
secure cryptosystem: the overload is as negligible as for OAEP [5], but its ap-
plication domain is more general. Therefore, REACT provides a very efficient
solution to realize a provably secure (in the strongest security sense) asymme-
tric or hybrid encryption scheme based on any practical asymmetric encryption
primitive, in the random oracle model.
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Abstract. We point to three types of potential vulnerabilities in the
Bluetooth standard, version 1.0B. The first vulnerability opens up the
system to an attack in which an adversary under certain circumstances
is able to determine the key exchanged by two victim devices, making
eavesdropping and impersonation possible. This can be done either by
exhaustively searching all possible PINs (but without interacting with
the victim devices), or by mounting a so-called middle-person attack. We
show that one part of the key exchange protocol – an exponential back-
off method employed in case of incorrect PIN usage – adds no security,
but in fact benefits an attacker. The second vulnerability makes possible
an attack – which we call a location attack – in which an attacker is
able to identify and determine the geographic location of victim devices.
This, in turn, can be used for industrial espionage, blackmail, and other
undesirable activities. The third vulnerability concerns the cipher. We
show two attacks on the cipher, and one attack on the use of the cipher.
The former two do not pose any practical threat, but the latter is serious.
We conclude by exhibiting a range of methods that can be employed to
strengthen the protocol and prevent the newly discovered attacks. Our
suggested alterations are simple, and are expected to be possible to be
implemented without major modifications.

1 Introduction

The ubiquity of cellular phones turn them into a commerce platform of unpre-
cedented importance. While personal computers have allowed e-commerce to
flourish within a rather limited socio-economic segment of society, cell phones
promise an expansion of electronic commerce to virtually the entire population.
At the same time, and given their portable nature, cell phones also promise to ex-
tend the possibilities of commerce to what is popularly called mobile commerce,
or m-commerce. An important step towards the development and penetration of
m-commerce is the employment of short-range wireless LANs, such as Bluetooth.

Bluetooth [5,7,8] is a recently proposed standard for local wireless communi-
cation of (potentially mobile) devices, such as cellular phones, wireless headsets,
printers, cars, and turn-stiles, allowing such devices in the proximity of each
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other to communicate with each other. The standard promises a variety of im-
provements over current functionality, such as hands-free communication and
effortless synchronization. It therefore allows for new types of designs, such as
phones connected to wireless headsets; phones connected to the emergency sy-
stems of cars; computers connected to printers without costly and un-aesthetical
cords; and phones connected to digital wallets, turn-stiles and merchants.

However, the introduction of new technology and functionality can act as
a double-edged sword. While the new technology certainly provides its users
with increased possibilities, it can also provide criminals with powerful weapons.
Recently, the public has started to pay attention to the need for privacy for ap-
plications relating to telephony, with fears of vulnerabilities and abuse mounting.
It is likely that public opinion will further strengthen if there is some high-profile
case in which somebody’s privacy is abused. For some recent concerns, see, e.g.,
[1,11,13]; for some independent work on the analysis of Bluetooth security, see
[4,12]. (The latter of these references present findings of a very similar nature to
ours.)

Thus, we argue that careful analysis and prudent design is vital to the success
of products. In keeping with this, we exhibit vulnerabilities in the Bluetooth 1.0B
specifications, allowing attacks to be mounted on security mode 1 through 3
(where 3 is the most secure mode). We also suggest counter-measures limiting
the success of the discovered attacks. These measures are easily implementable
– some in software on the application layer, others by relatively simple hardware
modifications.

In the first type of attack, we show how an adversary can steal unit keys, link
keys and encryption keys from victim devices of his choice. This, in turn, allows
the adversary both to impersonate the parties and to eavesdrop on encrypted
communication. This can be done either by exhaustively searching through PINs,
or by mounting a middle-person attack. The former can be prevented by means of
sufficiently long PINs (more than around 64 bits); the latter by means of public
key mechanisms on the application layer, or by means of easily implemented
security policies.

In the second type of attack, we show how an organization can map the
physical whereabouts of users carrying Bluetooth-enabled devices by planting
“Bluetooth detecting devices” at locations of interest. Even if the location itself
may appear to be innocent, it may be undesirable for users if their whereabouts
can be repeatedly correlated with the whereabouts of other users, which would
indicate some relation between the users, given sufficient statistic material. In
other cases, such as those involving stalkers, users would feel uncomfortable with
their location being known, no matter what the location is. We note that while
existing phones can be located in terms of what cell they are in, the precision is
lower than what our attack would provide, and it is only cell towers and service
providers that can determine the position. Moreover, it is impractical to attack
existing systems by building a rogue network. On the other hand, our attack
could allow virtually anybody to install a large number of listening nodes, thus
allowing an attacker to determine the location of devices.
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While it could be argued that this second attack needs a tremendous invest-
ment in terms of the infrastructure, we mean that this is not so. In order to derive
useful information, it is sufficient for an attacker to place his eavesdropping de-
vices at well chosen locations, such as airport gates (allowing him automatically
to determine where people of interest travel). The information obtained could be
correlated to user identities by means of side information, such as what can be
obtained during a credit card transaction in which the payer carries a Bluetooth
device. It may also be obtained by manual effort of the attacker (i.e., by deter-
mining the Bluetooth identities of all congressmen by walking around outside
congress).

Furthermore, the attacker could leverage his attack off an already existing
infrastructure, e.g., one that he legally builds for another – and socially more
acceptable – purpose. If, for example, a company provides entertainment advice
and directions in a city, and employs a vast grid of Bluetooth devices for this
purpose, then the same infrastructure could be used for a second purpose without
any additional cost.

Finally, our third type of attack is on the cipher and the use of the cipher.
First, we show how an attacker can break the security of the cipher requiring 2100

bit operations. Then, we show another attack, with time and memory complexity
of 266. While neither of these constitute a practical threat, it exposes a weakness
in the cipher, which uses 128-bit keys. Second, we show how the use of the
cipher trivially allows an attacker to obtain the XOR of plaintexts communicated
between two devices. This is serious since an attacker may know one of the
plaintexts already (e.g., by sending it to the phone, and waiting for the phone
to transmit it to the headset), and will then be able to determine the other
plaintext.

After detailing our attacks, we show how to prevent against them by perfor-
ming only minor modifications to the Bluetooth specifications.

Outline: We begin by providing an overview of the ideal and actual functio-
nality of Bluetooth (Section 2). This section also includes a brief overview of
our attacks. Then, in Section 3, we describe relevant aspects of the standard
in detail. In Section 4 we detail our attacks, and in Section 5 we discuss some
counter-measures.

2 Overview

The Bluetooth protocol allows portable as well as stationary devices to commu-
nicate using short-range wireless methods, forming wireless local area networks
of permanent or temporary nature. Let us first consider how these devices ideally
should operate. First of all, we see that it is important for devices to be able to
somehow address each other to ensure that the information goes to the appro-
priate device. To this end, some identifying information must be associated with
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each device, and this information must – in an ideal world – be unique1 to the
device in question to avoid “collisions”. When one device wants to transmit some
information to another device, the intended recipient should receive the message,
but ideally, no other device should. (This relates to encryption of information,
and is discussed in more detail below.) Furthermore, in an ideal world, no other
device should even be able to determine the identity of the sender or the receiver
of the information. (This relates to user privacy, and so-called traffic analysis.)
More technically, each time two or more Bluetooth-enabled devices are to set up
a communication link between each other, they need to generate and exchange
one or more keys. These are later used to encrypt the information sent, if desi-
red. In order to allow the participants to control who obtains what information
(and the rights associated with the same) it may be that several such keys are
exchanged by various groups of devices. It is important that the keys used for
purposes of encryption are only known by the parties agreeing to communicate
with each other, or attackers would be able to eavesdrop on the communication
of honest users.

In order to conform to local jurisdictions, some restrictions are sometimes
placed on the type of encryption used. While it is possible that local authorities
may require that all communication can be decrypted by some escrow authori-
ties, it is more common that they put bounds on the size of the key used for
encryption purposes.

Turning now to the actual behavior of Bluetooth, we note that there are two
modes of operation for Bluetooth-enabled devices. When a device operates in the
first mode, the so-called discoverable mode, it responds to queries made by un-
known devices, such as potential new piconet (e.g., Bluetooth LAN) group mem-
bers. On the other hand, while in the second mode, the non-discoverable mode, a
device only responds to devices with whom it has already set up communication.
Furthermore, each device is given a unique identity when manufactured. It is an-
ticipated that the first generation of devices will be able to communicate with
other devices that are within an approximate radius of 10 meters (or 30 feet).
The range of a second generation of devices is believed to be a tenfold.

When communication is initiated between two devices who have not yet been
exposed to each other, they begin by negotiating a key which is later used for
purposes of encryption. At the starting point of the key exchange protocol, each
device only knows its own keys and other local data. After the termination of the
key establishment protocol, the devices have agreed on a link key that they will
later use when communicating with each other. Since the devices by definition
do not share a cryptographic key until the end of the key exchange protocol, the
payload of the packets sent in the course of the communication that takes place

1 We note that it would, in principle, be possible for one device to use several different
identities over time, and for two different devices to use the same identity at different
times, while it must not be likely for two different devices to use the same identity
at the same time. The uniqueness of identities is therefore per point in time and not
per device. This distinction, however, is not made in the Bluetooth specifications.
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during the key exchange protocol is sent in cleartext2. When two devices who
previously have negotiated a key re-initiate communication after the conclusion
of a previous session, they may set up a link key using either an old shared key, or
(as when they meet for the first time) negotiate a new one. In the Bluetooth 1.0B
specifications, all of the above mentioned keys are symmetric keys.

Before going into closer detail of the Bluetooth specifications and our attacks
on the same, we will present a brief overview of our attacks. The first of these
leverages on the fact that keys are essentially sent in the clear, the second uses the
fact that all packets contain identifying information, and the third uses existing
techniques to attack the cipher.

Eavesdropping and Impersonation. An example of a situation relevant to
this attack is when a customer of a cyber café wishes to read email, access
her files and possibly print them, using a Bluetooth-enabled laptop or PDA.
Her computer would establish a connection to the local computer system and
the available printer. An attacker who is able to eavesdrop on our user can
therefore listen to the messages exchanged during pairing of the devices. Thus,
if no application layer encryption is performed, or the attacker can perform a
middle-person attack [6] on this layer, he can consequently obtain a copy of the
document she accesses. By impersonating the user, the attacker could possibly
alter the emails resp. the data to be printed, which could result in incorrect
decisions being made by the user. In another situation, an attacker may try to
eavesdrop on the voice data sent between a cell phone and a wireless headset.
It is clear that it is not desirable for a system to allow an attacker to eavesdrop
and impersonate on the physical layer, independently of whether the application
layer introduces further security mechanisms.

Turning to the Bluetooth specifications, we note that these offer two possible
ways to establish keys between two devices. A first protocol is used in situations
when one of the devices involved in the key exchange has insufficient memory
resources to run the second protocol; the second protocol is run if no device
involved in the key exchange requests that the first protocol be used.

The objective of the first protocol is to keep down the number of keys stored
by the device with limited memory resources. This is achieved by using the unit
key3 of this device as a link key4 between the two devices. Thus, the other party
will learn the unit key of the first party as a result of the key establishment
2 While it in principle is possible to support public key cryptography on the application

layer, and use this for the key establishment protocol on the physical layer, this is
not advocated in the specifications. Furthermore, taking this approach still allows
middle-person attacks [6] unless certification methods are employed. A related issue
is the PIN, which is a form of shared key. If this is communicated out of band, i.e.,
verbally between users, then an attacker needs to obtain it by exhaustive search,
which will succeed as long as short or moderately long PINs are employed.

3 The unit key is the unique symmetric long-term private key of a device, and is stored
in non-volatile memory.

4 The link key can be described as a temporary symmetric key that is used for one or
more sessions.
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protocol. While this is the specified functionality, we note that it allows the
second device to impersonate the first device at any future point. It also allows
him to eavesdrop on all communication between the first device and other devices
(including past communication, if recorded).

In the second protocol, the devices select a link key different from their unit
keys. The key establishment involves several steps: First, the two devices choose
an “initialization key” as a function of the address of one of the device identi-
ties, a PIN, and a random number. The length of the PIN code – which directly
determines the security – can be chosen between 8 and 128 bits. Typically, it
will consist of four decimal digits. The PIN can either be fixed or be arbitrarily
selected and entered by the user through a user interface. If no PIN is avai-
lable, zero is taken as a default value. The PIN and the random numbers are
either communicated in the clear; out of band (e.g., entered by the users); or
in an encrypted fashion (where the encryption and decryption take place in the
application layer). In a second step, the devices each select a random number
(different from the one chosen for the computation of the initialization key) and
send these to each other, encrypted using the initialization key. In a final step,
the devices compute the link key as a function of the two random numbers.

If an attacker can determine the initialization key, then he can also compute
the link key. Moreover, because all encryption keys are generated from the link
keys, once an attacker knows the link key, he can also decrypt encrypted infor-
mation between the devices, and impersonate these to each other. If an attacker
learns the unit key of a device – we will show how it can be done – then he will
be able to impersonate this device in all aspects to any other device, and at any
time.

Location and Correlation. For our second type of attack, assume that the
attacker has Bluetooth-enabled devices distributed over a city or neighborhood
of interest. He may either own these devices (that according to estimates will
cost on the order of $10 per each) or he may lease or otherwise gain control over
devices owned by others.

In a first attack, an attacker determines how a victim Bluetooth device within
some area moves. Given timing information, the attacker can determine the cor-
relation between different devices, i.e., determine who meets whom, and where.
A first version of this attack is mounted from the application layer of a Blue-
tooth compliant device, and therefore uses standard Bluetooth devices without
any need for hardware retrofit. The attacker attempts to initiate communication
with all devices entering within the reach of the devices he controls. Once a
device responds, it will give its identity, which is recorded by the attacker. Thus,
the attacker will learn the identities of the victim devices in the vicinity of the
devices he controls. The drawback of the attack is that it will only detect vic-
tim devices that are in discoverable mode – we elaborate on this later. However,
this attack could be turned around to let the victim device attempt to initiate
communication with nearby devices, and these – controlled by the adversary –
report the identity of the victim device if the adversary could somehow control
the victim device (e.g., by means of a virus or a corrupt website the victim has
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connected to). Moreover, it would have the advantage – to the attacker – that it
would not require the victim to be in discoverable mode, as given control over
the victim device would also allow the adversary to switch the victim’s mode
of operation. Also, it would potentially only require the attacker to control one
device – the victim device – assuming this could be made to report the Blue-
tooth identities of responding devices, and that some of these are geographical
fix-points with identities and locations known to the attacker. While it can be
argued that if the attacker already controls a device, the security is already lost,
this is not so, as being able to execute code on a device is not necessarily the
same as knowing the device’s location.

A second version of the location attack succeeds independently of whether
victim devices respond to communication requests by strangers, and is simply
based on the fact that two devices that have established their relationship and
agreed to communicate will address each other when communicating, and this
address can be intercepted by the adversary. An example of possible devices is a
cellular phone and its wireless headset: When a phone call is received, the phone
will transmit a message to the headset, setting up communication between the
two. The two devices will then communicate on some pre-selected bands (accor-
ding to the hopping sequence), and each message they send will have a channel
identifier (or Channel Access Code, CAC) attached to it. The CAC is computed
from the unique Bluetooth device identifier (the Bluetooth device address) of the
master device. In our attack, the adversary determines the whereabouts of users
by intercepting network traffic in his proximity, extracting the CAC, and using
this to identify the master device of the piconet. We note that for this type of
location attack to work, the attacker’s devices must report information to the
application layer not typically reported by Bluetooth devices, and so, the Blue-
tooth devices performing the attack must either be manufactured to perform the
attack, or later modified to do so. This is an important restriction, as it rules
out attacks in which proper Bluetooth devices under the control of improper
software are used to mount the attack.

Linking Bluetooth identities to human identities. The device identifiers
can be linked to the identities of their owners in several ways. One straight-
forward way presents itself in situations where a consumer identity is known –
for example, during a credit card purchase or other identification – and where a
Bluetooth device is present and active in the sense needed for the attack to work.
However, it is not necessary to perform “certain matches”, but it is sufficient
that there is a match with some probability, allowing the attacker to infer the
identity from several such “likely matches”.

Cipher Vulnerabilities. In a third type of attack, we exhibit weaknesses of
the cipher and of the use of the cipher. We pose a first attack on the cipher,
allowing an attacker to break its security requiring 2100 bit operations and a
mere 128 bits of known plaintext. Our attack works by guessing the contents
of the three smaller LFSRs and the summation register and then determine
the contents of the fourth LFSR by means of observing the output string. A
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second attack uses a known birthday-type attack to break the cipher in time
and memory complexity 266. While these attacks are not of practical relevance,
they exhibit vulnerabilities in the cipher that may allow for other and stronger
attacks. Finally, we show how the attacker can trivially obtain the XOR of two
plaintexts, merely by eavesdropping on the encrypted data. This is possible due
to a reuse of the stream cipher output, causing an encryption of a plaintext using
the other plaintext.

Remark: We note that some security claims within the Bluetooth community
have relied to some extent on the unpredictability of the bandwidth hopping
sequence to an outsider [9]. We show that this security assumption is incorrect.

3 Details of the Bluetooth Specification

In the following exposé, we present the details of the Bluetooth specifications
that are relevant to our attacks. For simplicity, we refer to the page numbers
of the document containing the official 1.0B specifications [7,8] for each piece of
supporting information we present.

Device Modes. Devices may be in one out of two modes, the so-called disco-
verable and non-discoverable modes (see [8], pp. 29-31). When in the former, the
device in question will respond to discovery inquiries ([8], p. 29). Furthermore,
a device can either be in connectable or non-connectable mode (see [8] p. 39).
When it is in connectable mode, then it will respond to messages it receives from
“already discovered” devices ([7], pp. 99-112).

Addressing. Each device is associated with a unique identifier called the Blue-
tooth device address ([8], p. 25) which is used to establish all communication. If in
connectable mode, the so-called device access code (DAC) is used to address the
device. Moreover, for each point-to-point or point-to-multipoint communication
a particular channel is used. We note that the channel identifier, the so-called
channel access code (CAC) as well as the DAC are determined as a deterministic
function of the master’s unique Bluetooth device address ([7], pp. 143-147) and
are always transmitted in the clear ([7], p. 159).

Establishment of Initialization Key. The following protocol is executed
before the commencement of the link key generation protocol, and exchanges a
temporary initialization key that will be used for encryption and decryption of
information in the link key generation protocols. The protocol is as follows:

1. At first, one device chooses a random number and transmits it to the other
device. Then, both Bluetooth devices compute an initialization key as a
function of a shared PIN, the Bluetooth device address of the device that
chose the random number, and the random number itself ([7], p. 153).
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2. In order to confirm the success of the transaction (i.e., to confirm that both
devices hold the same key), a mutual verification5 is performed. This is ba-
sed on a challenge response scheme in which a first unit chooses a random
number and computes a function of the other device’s Bluetooth address,
the random number and the newly generated key ([7], p. 154). The chosen
random number is transmitted to the other device, who computes the fun-
ction on its Bluetooth address, the random number received, and the keys,
and responds to the first device with the result of the computation. The
first device verifies that the received value is the same value as it computed.
Then, the roles are switched. The verification is deemed successful if the
corresponding results in each round match.

Link Key Generation I. When one of the devices involved in the link key
generation protocol has a shortage of memory, it requests that this first link key
generation protocol is employed (see [7], p. 197 for the format of the request).
The protocol ([7], pp. 153-155) is as follows:

1. The devices establish an initialization key using the above protocol.
2. The Bluetooth device with restricted memory capabilities encrypts its unit

key using the initialization key. The resulting ciphertext is transmitted to
the other device ([7], p. 155).

3. The receiving unit decrypts the received message using the initialization
key, and uses the resulting key as a link key ([7], p. 155). The sender of
the message uses his unit key as a link key – note that the two devices
consequently use the same link key, as the plaintext the receiver obtains
after decrypting the received ciphertext is the unit key of the sender.

Link Key Generation II. This second link key generation protocol is run when
both devices have sufficient memory resources (see [7], p. 197 for the format of
the request to use this protocol). The protocol (described on pp. 155-156 of [7])
is as follows:

1. The devices establish an initialization key using the previously detailed pro-
tocol.

2. Both devices, call these A and B, choose random numbers, randA and randB
respectively. The device A (B) then computes the number LK KA (LK KB)
as a function of randA (randB) and its unique device address. (We refer to
[7], p. 155 for the exact format of the computation, which, however, is not
of importance to understand our attack.)

3. A and B encrypt their random numbers randA and randB using the initia-
lization key. The resulting ciphertexts are exchanged.

4. Both units decrypt the received ciphertexts using the symmetric initializa-
tion key. Since both units know each others’ unique device identifiers they
can compute the other party’s number LK KB (LK KA).

5. Both units compute the link key as LK KA ⊕ LK KB .
5 This step is called authentication in the Bluetooth 1.0B specifications.
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6. A mutual verification is performed to confirm the success of the link key
generation as in step 2 of the initialization key establishment protocol.

Cipher Use. Let A and B be two devices that have set up a link key, from which
an encryption key is computed. The encryption key is (along with other data)
used to seed the stream cipher (as described in [7], p. 163, fig. 14.6, and onwards).
The output of the stream cipher is used to encrypt the plaintexts. Turning to
figure 14.5 on page 162 of [7], we see that the stream Kc is XORed with plaintext
dataA−B in device A, to form a ciphertext which we will call cipherA−B . This
ciphertext is sent from A to B. Device B then decrypts cipherA−B by XORing
the same stream Kc to it, obtaining dataA−B . Note that this output is fed to
the second XOR gate in device B, and XORed with dataB−A. The result, let
us call it cipherB−A is sent to device A, where it is further processed to obtain
dataB−A.

4 Attacks

Eavesdropping and Impersonation. The basis of both key generation pro-
tocols is the protocol for establishment of the initialization key. This key is
computed as a function of a PIN, a random number and the Bluetooth device
address of the so-called claimant ([7], p. 153). If no PIN is available (in which
case zero is taken as the default) or if it is transmitted in clear between the units,
then the PIN is known to the attacker. If the PIN is communicated out of band
(e.g., entered on each device by the user) then the attacker can still learn it by
exhaustive search over all possible PINs, if weak or not sufficiently long PINs
are used. This can be done as follows:

Offline PIN crunching. Let us first consider the setting where the attacker
eavesdrops on two devices and wishes to determine what key they establish. We
then consider a version in which the attacker starts the key exchange process
with one victim device, determines what PIN this device used, and establishes
a key with the victim device based on this “stolen” PIN.

1. Case I: Eavesdropping. The attacker exhaustively guesses all PINs up to a
certain length. The adversary verifies the correctness of each guess plainly
by performing the verification step of the initialization key protocol (i.e., the
second step) based on his guess, and the random strings communicated in
the clear (see [7], p. 195). If the result is correct then his guess is correct
with an overwhelming probability. We note that the adversary is passive in
that he only receives, and does not transmit.

2. Case II: Stealing by participation. The attacker first performs one PIN guess,
and performs step 1 of the protocol for establishment of the initialization
key. He then performs step 2 with the victim device. Let our attacker be
the party that initiates the first round of the challenge - response protocol.
(These are performed sequentially.) With an overwhelming probability, the
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response verification will output ’correct’ if and only if the victim device does
not cheat, and the attacker has guessed the correct PIN. (Since the inten-
tion of the challenge - response protocol is to output ’correct’ if and only if
a given initialization key is consistent with the PIN and the random strings
sent.) After obtaining the challenge - response transcript from the victim,
the attacker computes the corresponding initialization key for each PIN he
wishes to verify (according to the function used in step 1 of the protocol
for establishment of the initialization key) and then (locally and without in-
teraction) runs the verification algorithm on the computed initialization key
and the obtained challenge - response transcript. If the verification algorithm
outputs ’incorrect’, then the attacker performs the verification computation
on the keys corresponding to the next PIN he wishes to verify. This is re-
peated until the verification algorithm outputs ’correct’, at which time the
attacker has found the PIN used by the victim device. He then continues the
key establishment protocol as before using the found key.

We note that the attack is performed off-line once the attacker obtains a
challenge - response pair. Therefore, the back-off method employed to avoid PIN
guessing does not add any security. In fact, the exponential back-off benefits the
attacker as it gives him extra time to exhaustively search PINs.

Thus, the attacker can learn the symmetric initialization key for several com-
mon scenarii. Since the security of the subsequent steps of the key establishment
rely on the secrecy of the initialization key ([7], p. 153), the attacker can decrypt
the communication in this phase if he knows the initialization key. If the attacker
obtains the initialization key, he will therefore also obtain the link key. Further-
more, since the encryption keys are computed from the link keys ([7], p. 156),
he will be able to obtain these as well.

While the above attack extracts link and encryption keys, it is also possible
for an attacker to obtain the unit key of a device (after which he can impersonate
the device, and obtain the resulting link keys.) Namely, if a device has limited
memory resources, it will request the use of the first key establishment protocol,
in which its unit key is used as the link key ([7], p. 154). Consequently, an
attacker will be able to obtain unit keys plainly by initiating communication
with such a device and record what key this device proposes. It is also possible
for an attacker to obtain this key merely by eavesdropping. By first obtaining
the initialization key as above, merely by eavesdropping, he can then obtain the
unit key as well.

We will now consider a third attack, in which an attacker might have already
obtained the link key used by two devices, and where these two devices have
completed the communication. Our attacker now contacts each one of them
(posing to be the other) and sets up two new link keys6. This is therefore a
middle-person attack [6]. The two devices will still believe that they talk to each
other, and that the other one initiated the communication. The attacker will
6 If the attacker has not obtained the previously used link key, he can pretend its loss

and thus enforce the negotiation of an initial link key.
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either make both of them slaves of their end of the communication, or both
masters. (This is done in a protocol negotiating who is slave vs. master, and is
executed right before the key establishment, see [7], p. 95, 123 and 1042.) The
victim devices will therefore follow different hop sequences, since a device will
follow the hop sequence based on the identity of the device he believes is the
piconet master. Therefore, they will not see the messages they transmit for each
other (since they are listening and transmitting in an unsynchronized manner)
but only the messages the attacker chooses to send them. Consequently, the
attacker is able to impersonate the two devices to each other.

Location Attacks. If a device is in discoverable mode ([7], p. 29-31) then it
will respond to inquiries unless other baseband activity prohibits it ([7], p. 29).
(To find each other, two or more devices scan the frequencies in some pseudo-
random orders, and at different relative speeds, causing the slaves to eventually
detect the master’s signal and to respond with their respective identities. They
then establish a frequency hopping sequence, which is a pseudo-random sequence
whose seed is the master’s clock and identity. (See [7], p. 43 and p. 127 for more
details.)

When responding to an inquiry, a slave transmits its identity on the baseband
([7], p. 56 and p. 110). Therefore, an attacker can determine the location and
movements of victim devices by maintaining geographically distributed devices
that continuously inquire all devices entering within their reach, and recording
the identities given in the responses. Since devices will use the same identities
all the time ([7], p. 143), this allows the attacker to determine their movements.
Given timing information, the attacker can quite simply establish what devices
travel together for longer periods of time, or repeatedly meet.

Similarly, the attacker might (by means of corrupt software or websites)
be able to induce the victim device to scan for devices to connect to, causing
the victim device to reveal its identity to these devices. If we assume that the
adversary has control over the victim device, it does not matter what mode the
latter is in, given that this is switchable from the application layer.

Also regardless of whether a device is in discoverable mode or not, an attacker
who is eavesdropping on the baseband can determine the CAC associated with
each message he intercepts. Since the CAC is deterministically computed from
the master unit’s unique Bluetooth device address7 he can then index victims
by their CACs. Alternatively, he can determine the relationship between device
identifiers and CACs using a database of pre-computed relations.

We note that several devices will map to the same CAC, since the CAC is
computed only from 24 out of the relevant 32 bit Bluetooth device address of
the master. However, this is not a big practical limitation to the attacker, since
collisions between two randomly selected devices only occur with probability one
over sixteen millions, making them very unlikely. Also, the attacker may have
sales or other information that can narrow down the remaining possibilities. It
7 Bit 39 to 62 of the CAC equal bit 1 to 24 of the Bluetooth device address ([7],

p. 143-145).
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is also likely that the attacker would be willing to tolerate some probability of
misclassification as long as he is right most of the time.

Hopping Along. In order for an adversary to be able to follow a conversation
within a piconet, he needs either to listen in to all the bands or follow the master
and slaves on the frequencies on which they communicate.

In the U.S. and most other countries 79 bands have been assigned for use by
Bluetooth devices, in Spain and France only 23 ([7], p. 43). Therefore, a simple
device consisting of 79 (23) “listeners” in parallel can easily be built, and scan
all bands.

In order to follow the communication using a single Bluetooth device, the
attacker needs to establish what seed is used for the pseudo-random hopping
sequence. For devices in the inquiry substate (page substate), the seed is deter-
ministically derived from the inquiring device’s own clock and the general inquiry
access code8 (an estimate of the paged device’s clock and its DAC) whereas in
the connection substate, the seed is determined by the clock and Bluetooth de-
vice address of the master ([7], pp. 127-138). For inquiry, only 32 dedicated hop
frequencies are used. By responding to an inquiry, a device reveals its clock as
well as its Bluetooth device address. Thus, the attacker can determine the seed
for the paging hopping sequence by scanning through the inquiry frequencies
and eavesdropping on the response messages. Subsequently, he can derive the
seed for the hopping sequence of the piconet as the master will reveal his identity
and clock during paging.

A Combined Attack. If an attacker first obtains the unit or link keys of a
device, and later can pinpoint its position, it can also eavesdrop on its communi-
cation in a very effective manner. (In jurisdictions where only weak encryption is
permitted, or no encryption at all, then the attack could be performed without
knowledge of the keys.)

More specifically, the attacker would determine the device identifier and clock
of his targeted victim, which we assume is a master device. From this, he can
obtain the hopping sequence. By intercepting traffic on the corresponding bands,
the attacker can obtain large portions of the communication, if not all. If the
victim device moves out of reach of one attacker device, then nearby attacker
devices would search for its appearance.

Cipher Attacks. Let us start by our attack on the cipher. An attacker can
guess the content of the registers of the three smaller LFSRs and the summation
register with a probability of 2−93, given the sizes of these registers. He then
computes the contents of the 39-bit register by “reverse engineering” this from
the outputs of the other LFSRs and the summation register. Finally, the attacker
determines whether his guess is correct by comparing a string of the actual
output to the generated output. (In total, this needs approximately 128 bits
of ciphertext and known plaintext.) The reverse engineering and the verification
8 The general inquiry access code (GIAC) is common for all devices.
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takes approximately 27 bit operations, making the total complexity of the attack
2100, which is less than the complexity of 2128 encryptions for a brute force attack.
We note that the above attack only obtains the key used for one frame. However,
since the key used for a frame is computed in the same way as the sequence itself,
we could obtain the master key by applying the attack twice.

Another known attack against this kind of ciphers has previously been de-
scribed by Golic [3]. In a precomputation phase, an attacker randomly selects
N internal states of the cipher, and computes the corresponding output key
stream. These N key streams are sorted and stored in a database. Then M bits
of the actual keystream are observed. If M ∗ N > 2132 then one expects to see
a collision between the actual keystream and a keystream in the database. By
choosing M = N = 266, this shows that the cipher can be broken with time and
memory complexity 266.

Turning to our attacks on the use of the cipher, it is clear from our previous
description that cipherB−A = dataA−B XOR dataB−A (with some potential
shifting of one of them due to clocking.) Therefore, an attacker eavesdropping
on the encrypted data sent between the devices will learn this value without any
further action. If he knows one of the plaintexts, or parts of this, he will be able
to derive the other, or parts of this.

5 Counter-Measures to Our Attacks

It is important to note that the disclosed vulnerabilities can be avoided by re-
latively simple modifications, some of which we will review here (but without
making any claims of these being the most suitable methods of avoiding the
attacks).

PIN length. In order to avoid a situation in which an attacker is able to
obtain the secret keys of victim devices, it is important to use sufficiently long
and sufficiently random PINs. If users chose PINs uniformly at random, then
64 bit PINs appear to be secure. (We note that an attacker will not expend
more effort to derive the keys than to target some other point of the system,
such as the encryption scheme [4] or the cell phone-to-base station link.)

Protecting unit keys. In order to avoid that devices learn the unit key of
devices (in the first key establishment protocol), the device with the low me-
mory capabilities may use some large-enough set of keys, one for each device it
communicates with, or may generate such keys by using its unit key as the input
to a pseudo-random generator. (If the seed is also based on the Bluetooth device
address of the other party, it can easily be recomputed every time it is needed,
limiting the amount of necessary storage.)

Application layer security. One may use application layer key exchange and
encryption methods to secure the communication, on top of the existing Blue-
tooth security measures. We note that if standard certificate-based methods are
employed, it is possible to defend against middle-person attacks.
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Policies protecting against middle-person attacks. Recall that our
middle-person attack relies on convincing both devices to become masters, or
both become slaves, in order to avoid jamming of the communication channel
by the attacker. Therefore, certain aspects of the middle-person attack may be
avoided by means of policies governing what device may take the role of master
vs. slave, and under what circumstances.

Physical protection. Our attacks on the key exchange rely on the attacker
being able to detect the signals transmitted by the victim devices. The use of
a Faraday’s cage (with the form factor of a metal coated plastic bag) may be
useful to obtain security against this attack.

Pseudonyms against CAC location attacks. If two devices use different
and random pseudonyms for each session, in lieu of the deterministically gene-
rated CACs, then it will not be possible for an attacker to perform the CAC
location attack. For even finer granularity, one may change the CACs pseudo-
randomly from packet to packet, much like the hopping sequence is derived. The
devices may determine what pseudonym or pseudonym seed to use at the time
of their first key exchange, or at any subsequent initiation of communication.
While this modification cannot be software based (as it has to be performed on
the Bluetooth chip itself) it is hoped and anticipated not to require any major
modifications of the design.

Cipher. The attacks against the cipher can be avoided by replacing the cipher,
e.g., with AES [2], and not to use plaintexts to encrypt plaintexts.

Conclusion

We have exhibited three types of vulnerabilities in the current version of the Blu-
etooth specifications. While the designers of the standard have been aware of the
existence of eavesdropping and impersonation attacks per se, the specifications
do not seem to anticipate or be concerned with location attacks, nor the presen-
ted attacks against the cipher. We hope that our findings will raise the awareness
of threats to Bluetooth and that future versions of the standard are modified to
defend against our attacks. (We note with sadness that such modifications have
not been made to the upcoming version 1.1 of the specifications.)
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Abstract. We analyse timing variations in an implementation of modu-
lar multiplication which has certain standard characteristics. This shows
that squarings and multiplications behave differently when averaged over
a number of random observations. Since power analysis can reveal such
data, secret RSA exponents can be deduced if a standard square and
multiply exponentiation algorithm is used. No knowledge of the modu-
lus or input is required to do this. The technique generalises to the m-ary
and sliding windows exponentiation methods since different multipliers
can be distinguished. Moreover, only a small number of observations (in-
dependent of the key size and well under 1k) are required to perform the
cryptanalysis successfully. Thus, if the modular multiplication algorithm
cannot be made any safer, the exponent must be modified on every use.
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attack, power analysis.

1 Introduction

Smart cards may contain sensitive data, such as private RSA keys [7], which
may be of great value to an attacker if they can be retrieved. These may well
be used for all authentication and key exchange processes, and so must not be
compromised. However, we illustrate how one likely source of timing variation
during modular multiplication can be exploited to reveal such keys with very
few observations.

Kocher [5] wrote one of the earliest, relevant, publicly available documents on
time-based attacks and he relies for success on knowing the plaintext inputs. The
causes of time variations are explicit conditional statements in the software, and
implicit conditionals introduced by the compiler or hardware, most usually in the
cause of optimisation. Skipping a multiplication by 0 is a typical example of the
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latter which causes unexpected time variation. An example of the former is that
the standard modular multiplication algorithms make conditional subtractions
of the modulus to keep the result within a fixed upper bound. It is this extra
subtraction that is the subject of study here. Dhem et al. [2] provided practical
details for using it in Kocher’s attack to obtain RSA keys. They repeatedly
assume the next unknown exponent bit is 1 and partition the known plaintext
inputs into two sets according to whether or not the extra subtraction occurs for
them in the corresponding multiplication of the exponentiation routine. With
enough observations, if different average times occur for the two sets, the bit
must be 1 and otherwise it is 0. For 512-keys 300,000 timings must be collected
for the attack to succeed.

Recent independent work at Platform7 Seven [1] and by Schindler [8] has
provided theoretical justification for this. Both show that in Montgomery’s mo-
dular multiplication algorithm [6], the need for a final subtraction to obtain a
result less than the modulus is different for squares and multiplications. Borovik
and Walter [1] used this in the way described here to read secret RSA exponent
bits directly using unknown plaintexts. Schindler [8] used it to attack imple-
mentations which make use of the Chinese Remainder Theorem to reduce the
arithmetic. However, Schindler’s is a chosen plaintext attack.

Here we develop the attacks to a much wider setting and, in particular,
to unknown or blinded inputs with unknown modulus and more general expo-
nentiation algorithms. The paper commences with theoretical explanation of the
observed frequency of modular subtractions, enabling predictions about the aver-
age behaviour of squares and multiplies. This provides a much clearer picture
of how to use timing measurements to reveal a secret RSA exponent. A little
more strongly than Schindler, it is assumed that power, timing, or other mea-
surements during each exponentiation are clear enough to enable the presence
or absence of an extra modular subtraction to be detected for each individual
multiplication. For each multiplication or squaring in an exponentiation scheme,
the frequency of subtractions can then be computed for a set of observations
and used to differentiate between the two operations.

If the usual square and multiply exponentiation algorithm has been used, this
process yields the exponent bits immediately. Indeed, straightforward statistics
can be applied to noisy data to deduce how many observations need to be made to
obtain the exponent with a given probability. For clean data, this number turns
out to be so small as to make the smart card totally insecure, and therefore
useless, unless adequate counter-measures are employed.

By carefully selecting appropriate subsets of observations, the same techni-
ques can be applied to any sequence of multiplications which only uses multipliers
from a small set, in order to identify which multiplier has been used. As a result,
the usual m-ary [3] or sliding window methods [4] of exponentiation are also
vulnerable to this attack. For m = 4, under 1000 observations suffice. Moreo-
ver this result is independent of the key length because the exponent digits are
determined independently, not sequentially.
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The conclusion is clear: if sufficient timing information can be gleaned, then
either such numerous conditional modular adjustments must be avoided (as they
can be − e.g. see [9]) or the exponent must be adjusted before each new decryp-
tion in order to confound the averaging process [5].

2 Timing Variations in Modular Multiplication

2.1 Initial Assumptions

For the purpose of this paper we consider a generic multi-precision implementa-
tion of Montgomery multiplication [6] used in the context of an RSA decryption,
but similar timing attacks can be mounted against other modular multiplication
algorithms which display the same weakness as is exploited here.

We assume that arithmetic is based on an m-bit architecture. Hence all num-
bers are presented in radix r = 2m. Let k be the fixed number of digits used to
represent the arguments and intermediate results of the exponentiation. Then
l = mk is the number of bits in such numbers. For convenience and because it is
to be expected, we will assume the modular multiplication algorithm performs
l addition cycles so that the Montgomery scaling constant is R = 2l [10]. It is
natural to use as large a modulus N as possible, and so

– We assume that R/2 < N < R.

This is perhaps the major drawback of many implementations, because it forces
a conditional modular subtraction to be made if an overflow bit is to be avoided.

2.2 Analysis of the Modular Reduction

Let R−1 be the integer uniquely determined by the conditions R·R−1 ≡ 1 mod N
and 0 < R−1 < N . This exists because R is a power of 2, ensuring that it
has no non-trivial common factor with the odd modulus N . Given non-negative
integers A < R and B < R, the main loop of Montgomery multiplication returns
a number

M ≡ ABR−1 mod N

in the range 0 ≤ M < B+N . Hence an extra subtraction of N or even of 2N
may be required to get a residue less than N because B < 2N . In particular, this
subtraction might be deemed worthwhile to avoid the result overflowing into an
extra digit position.

In this paper we perform a cryptanalysis based on the conditions under which
such extra subtractions are performed at the end of each modular multiplication.
Since M−N < B < R, we concentrate on the version of the algorithm for which
the reduction is made at most once to a level below R:

– We assume the modular multiplication algorithm includes a final conditional
statement for modular subtraction, namely

M :=
{

M if M < R
M−N if M ≥ R .
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This reduction is easier and faster to implement in hardware than obtaining the
least non-negative residue, and it suffices for RSA exponentiation which employs
repeated modular multiplication. However, the version of the algorithm with the
modular reduction to a level below N (as in [8]) can be analysed analogously and,
from the practical point of view, the analysis yields similar results in exactly the
same way. Of course, obtaining such a tight bound, i.e. the minimal non-negative
residue mod N , is computationally more expensive and so is often performed only
at the very end of the exponentiation.

Hardware limitations require that both multiplicands A and B and the mo-
dulus N are smaller than R. So, written to the base r, they have the forms

A = (ak−1ak−2 . . . a1a0)r,

B = (bk−1bk−2 . . . b1b0)r and

N = (nk−1nk−2 . . . n1n0)r

where 0 ≤ ai < r, 0 ≤ bi < r and 0 ≤ ni < r.
Let n′ := (r−n0)−1 mod r. Then the Montgomery multiplication routine

runs as follows:

S0 := 0 ;
for i := 0 to k − 1 do

Si+1 := {Si + aiB + ((Si + aiB) · n′ mod r) · N}/r
end

Here (Si+aiB) mod r is given by the rightmost digit of Si+aiB to the base r
which is, of course, equal to (si0+aib0) mod r. Si+1 is clearly always an integer.

Notice that, by induction,

riSi ≡ (ai−1 . . . a0)r · B mod N

and we can also prove by induction on i that Si < B + N . Indeed S0 = 0 gives
us the basis of induction, and

0 ≤ Si+1 =
1
r
Si +

ai

r
B +

(Si+aiB)0 · n′ mod r

r
· N

<
1
r
(B+N) +

r−1
r

B +
r−1
r

N

= B+N

Hence
Sk−1 ≡ ABR−1 mod N

and
Sk−1 < B+N < R+N < 2R

Note the asymmetry between multiplicand A and multiplier B in this bound.
To return a value of M = ABR−1+κN which is strictly less than R, we need to
set

M :=
{

Sk−1 if Sk−1 < R
Sk−1 − N if Sk−1 ≥ R
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This last adjustment is a possible cause of time variations in modular multiplica-
tions. It might be avoided by performing the subtraction whether it is necessary
or not, and then selecting one of the two results. However, timing variations
may still creep in here because of compiler optimisations or because a different
number of register movements is performed. Be warned!

– We assume that timing or other variations enable all or almost all occurrences
of this final subtraction to be observed.

Notice now that the value of Sk−1 has very strong dependence on B through
the middle term of the expression for it:

Sk−1 =
1
r
Sk−2 +

ak−1

r
B +

(Sk−2+ak−1B)0 · n′ mod r

r
N

So one has to expect much more frequent “long” multiplications (that is, mul-
tiplications which involve the final modular adjustment) for larger values of B.
These can be expected particularly as N approaches R.

2.3 Analytical Approximation

The modular adjustment happens when the random variable σ = Sk−1/R is
greater than or equal to 1. Then σ can be expressed in terms of other random
variables, namely

σ = α·β + ν + γ

where

α =
ak−1+ 1

2

r
≈ A

R
,

β =
B

R
,

ν =
(Sk−2+ak−1B)0 · n′ mod r

r
· N

R
+

N

2rR
,

γ =
Sk−2

rR
− B+N

2rR

are random variables distributed in some way over the intervals (0,1), [0,1),
(0,N/R) and (− 1

r , 1r ) respectively. Let us investigate the distributions that these
random variables might have in the context of exponentiation. For this,

– We assume that A and B are uniformly distributed mod N .

This may not hold for the initial one or two operations of an exponentiation
because of the manner in which the initial input is formed. But, the whole value
of modular exponentiation as an encryption process is its ability to give what
appears to be a uniform, random output mod N no matter what the input has
been. Since 3 is accepted as a suitable encryption exponent, we can reasonably
assume that after two or three multiplicative operations, the inputs to further
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operations in an exponentiation are close enough to being uniform modulo N
for our purposes.

Since the coefficient

0 ≤ (Sk−2 + ak−1B)0 · n′ mod r

r
≤ 1 − 1

r

of N/R in the expression for ν is sufficiently randomised by modulo r arithmetic,
we can assume that ν is independent of α and β and is uniformly distributed in
the interval (0, N/R). (It is easy to deduce from earlier multiplications that this
is the case even if B has been shifted up to make the computation easier.) We
will argue that A and B are piecewise uniformly distributed on their intervals
so that the same is true for α and β. Clearly α and β are not independent
for squaring operations since then A = B, but we will justify that they are
essentially independent for almost all of the multiplications.

We will now prove that γ is smaller than αβ+ν by a factor of order 1
r so that

its contribution to σ may be neglected. Since A is assumed uniformly distributed
mod N , for non-small i, Si can also be expected to be randomly and uniformly
distributed mod N because its residue class is determined by a (large) suffix of
A times B. As Si belongs to the interval [0, B+N) but can achieve both end
points, and the added multiple of N is essentially random, the most reasonable
expectation is that Si is piecewise uniformly distributed over the three subinter-
vals [0, B), [B, N) and [N, B+N) with probabilities 1

2N , 1
N and 1

2N respectively.
This leads to an average of 1

2 (B+N) for Si and therefore to an expected average
of 0 for γ.

Consider the case when B+N < R. Then Sk−1 < B+N ensures that no
final subtraction takes place. Hence, under the uniformity assumption mod N ,
the distribution of the output will be identical to that of Sk−1 given above. So,
such output provides a mean of 1

2 (B+N), which is less than 1
2R. Otherwise, to

preserve uniformity mod N , when the subtraction takes place the output distri-
bution will be close to uniform on each of the subranges [0, R−N), [R−N, N)
and [N, R), yielding instead an average of 1

2R for the output. Thus,

– For a given input B, the output from a modular multiplication is approxima-
tely piecewise uniform on the interval [0, R). For B+N < R the intervals of
uniformity depend on B. In both cases there are three intervals with non-zero
probabilities 1

2N , 1
N and 1

2N respectively.

By the above, if modular multiplier outputs are used for the inputs A and
B of a subsequent multiplication, then their average values match or exceed
1
2 (B+N), which is bounded below by 1

4R. Thus we obtain lower bounds of at
least 1

4 for each of α and β. So, α and β are at least r
4 times larger than γ on

average. Hence, we can ignore the contribution of γ providing:

– We assume that the radix r is not too small.

Commonly used bases such as r = 28, 216 and 232 are quite acceptable here.
From the above, we can expect that the statistics for final adjustments in the
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Montgomery multiplication

(A, B) −→ A⊗NB ≡ ABR−1 mod N

are sufficiently close to the statistics of occurrences of the subtraction in the
product

α ⊗ β =
{

αβ + ν if αβ + ν < 1
αβ + ν − ρ if αβ + ν ≥ 1

where ρ = N/R. The radix r is large enough for the discreteness of the original
problem to make only a marginal difference to the calculations if we substi-
tute continuous random variables for the discrete ones: the relative errors will
invariably be bounded above by at most about 1

r which, by assumption, is small.

2.4 Heuristic Estimates for Multiplications

In order to get some intuition regarding the behaviour of Montgomery multipli-
cation, let us assume, like Schindler [8], that

– α is uniformly distributed on (0, 1)

The previous section clearly shows that this is a simplification. The average
output of the modular multiplier is less than R/2 so that the distribution of
α over [0, R) cannot be uniform. However, providing N is close to R, such an
assumption is only slightly frayed at the edges.

- α
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Fig. 1. Computation of P (αβ+ν ≥ 1).

Suppose β has the fixed value β = B/R. (So this is not a squaring.) The
modular adjustment takes place when the point (α, ν) belongs to the upper
right corner cut from the rectangle [0, 1]×[0, N/R] by the line αβ+ν = 1 (see
Figure 1). The probability of this event is the ratio of the area of the triangle to
that of the rectangle, namely

Pmult(B) = P (αβ+ν ≥ 1) ≈
{

0 if N+B < R
(B+N−R)2

2BN if N+B ≥ R.



Distinguishing Exponent Digits by Observing Modular Subtractions 199

As expected, the reductions occur more frequently the larger B+N is, and, in
particular, they normally occur in a sizeable proportion of all observations.

It is possible to obtain a more precise formula for Pmult as a function of B
using the piecewise uniform probability function described in the previous sec-
tion. However, this detail is unnecessary for the attack which we describe. It is
sufficient to note that when we select a set of observations involving smaller than
average values of B then we can expect fewer subtractions to occur. This will
happen, paradoxically, if such B are the outputs of previous modular multipli-
cations for which the extra subtraction did not occur (since we saw the average
was 1

2R after a subtraction, but only 1
2 (B+N) < 1

2R otherwise).

2.5 Probability Estimates for Multiplications & Squarings

With the same definitions as before, the probability of modular adjustment in a
Montgomery multiplication of independent arguments is

Pmult ≈ P (αβ+ν ≥ 1) =
∫ 1

1−N/R

∫ 1

(1−N/R)/x

∫ N/R

1−xy

p(x, y, z)dzdydx

where p is the probability density function for α×β×ν. The randomising effect of
raising to an odd power of at least 3 means that most operands in the multiplica-
tions of an encryption or decryption will be effectively independently distributed
mod N . Hence, assuming this is the case, we could write p as a product of three
functions of a single variable, representing the individual density functions for
α, β and ν respectively. As noted above, ν is uniform on [0,N/R]. If we simplify
by assuming pα(x) = pβ(x) = 1 then

Pmult ≈ R

N

∫ 1

1−N/R

∫ 1

(1−N/R)/x

∫ N/R

1−xy

dzdydx

=
R

N

∫ 1

1−N/R

{
1
2
x − (1−N

R
) +

1
2
(1−N

R
)2

1
x

}
dx

=
R

4N
(1 − (1−N

R
)2) − (1−N

R
) − R

2N
(1−N

R
)2log(1−N

R
)

In the same way, the probability of a modular adjustment in a Montgomery
square is

Psquare ≈ P (α2+ν ≥ 1) =
∫ 1

√
1−N/R

∫ N/R

1−x2
p(x, y)dydx

where p is now the probability density function for α×ν. Since α and ν are
independent and ν is uniform on [0,N/R], we can re-write this as

Psquare ≈ P (α2+ν ≥ 1) =
∫ 1

√
1−N/R

∫ N/R

1−x2
pα(x)R/Ndydx
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=
R

N

∫ 1

√
1−N/R

(
N

R
− 1 + x2)pα(x)dx

Once more, we will simplify by assuming that A is uniformly distributed on
[0,R). Then pα(x) = 1, so that

Psquare ≈ 1 − 2R

3N

(
1 − (1−N

R
)3/2

)

At the upper end of the range for N , namely N close to R, we see that the
expression for the square is approximately 1

3 , while that for the multiplication
is only about 1

4 . Hence squares can easily be distinguished from multiplications
with independent arguments by the frequencies of the extra subtractions. Alt-
hough the density functions become progressively more badly approximated by
1 as N decreases, the piecewise linear nature of the true density function can be
used to obtain accurate formulae which demonstrate a similar difference for all
values of N in the interval ( 1

2R,R).
These formulae display a potentially useful dependence on N which might

be exploited to deduce an approximate value for N from observing the actual
value of Psquare or Pmult. Moreover, if input A can be restricted in some way,
the density function may be modified enough to provide detectable changes in
Psquare or Pmult.

For example, suppose the multiplicative operation Op1 (square or multiply)
generates the input A to the multiplicative operation Op2 as part of some process,
such as an exponentiation. Partition a set of observations of the process into two
subsets, one for which Op1 applies the extra adjustment and the other for which
it does not. The study in a previous section shows the related density functions
for A are sufficiently different to yield distinct averages for A and so will usually
yield two different values for the frequencies of extra subtractions at the end
of Op2. This enables us to determine which multiplicative operation Op1 has
generated the argument used in Op2. If the wrong operation Op1 is selected, we
expect a much lower difference between the density functions so that there is
little difference between the observed frequencies for the two subsets.

3 Attacks on Exponentiation with Unknown Modulus

3.1 Unknown Plaintext Attack on the Square & Multiply Method

The standard square and multiply method of exponentiation uses the binary
representation

e =
n∑

j=0

ej2j

of the exponent e. It scans the bits of e in descending order and applies a Horner-
style evaluation

Xe = ((. . . ((Xen)2Xen−1)2 . . .)2Xe1)2Xe0 .



Distinguishing Exponent Digits by Observing Modular Subtractions 201

Multiplication by Xei is performed conditionally whenever the bit ei is 1.
When computing Xe mod N using modular Montgomery exponentiation we

first replace X by XR mod N using a Montgomery multiplication by R2. After
that, the identity

AR · BR · R−1 ≡ ABR mod N

allows us to carry out the multiplication of (Montgomery) powers of XR until
we get XeR mod N . Montgomery multiplying this result by 1, we obtain the
desired power Xe of X modulo N .

Thus, in this section and the next section all multiplications are understood
as Montgomery multiplications modulo N . To make notation more transparent,
we write X⊗NY instead of XY R−1 mod N and assume that the final modular
reduction is done, when required, within the computation of X⊗NY . Thus all
the intermediate products are smaller than R and satisfy the conditions for the
arguments of the modular Montgomery multiplication as set out in the previous
section.

An immediate corollary from the statistical analysis of the previous section
is that the probabilities of modular adjustments in a Montgomery square and a
Montgomery multiplication are sufficiently large to make the adjustment detec-
table from only a few power traces, assuming that the timing differences can be
seen. They should be noticeably more frequent in the positions of squares than
those of multiplication. This makes it possible to read directly the bits of the
exponent from the observational data since, except perhaps for the first multi-
plication, we can expect the arguments of each multiplication to be sufficiently
independent of each other. So a timing attack is easy to perform on the square
and multiply algorithm using unknown inputs.

3.2 Unknown Plaintext Attack on the m-ary Method

The m-ary method for the exponentiation X −→ Xe [3, pp. 441–466] is a ge-
neralisation of the square and multiply method. The exponent e is expressed in
terms of a base m,

e =
n∑

j=0

ejm
j .

The powers Xi for i = 1, 2, . . . , m−1 are precomputed and stored for multiplying
into the partial result when required. The corresponding evaluation rule is

Xe = ((· · · ((Xen)mXen−1)m · · ·)mXe1)mXe0 .

In the process, whenever the non-zero digit ej = i is encountered, the stored po-
wer Xi is multiplied in. For example, for m = 4, X, X2 and X3 are precomputed
and stored.

The base m is usually a power of 2, so that computation of the m-th power of
the partial result consists of several consecutive squarings. The sliding windows
method [4] employs some recoding of the exponent and, among other things,
performs a squaring when the next exponent bit is 0. This means that the even
powers of X need not be stored. Now we describe our attack.
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– We assume that we do not know the modulus N of the exponentiation, nor
have control or knowledge of plaintext inputs.

Suppose we observe k runs of the exponentiation procedure involving dif-
ferent unknown plaintexts A = A1, A2, . . . , Ak. These plaintexts should have
been randomly generated in some manner but need not be uniformly distribu-
ted mod N . The initialisation process generates Xi = AiR mod N for input into
the exponentiation. After this multiplication (by R2), the numbers Xi will be
more or less random mod N and belong to the interval [0, R). Hence, after any
necessary modular subtraction, the Xi will be distributed fairly uniformly over
each of three sub-intervals according to the value of R2 mod N .

As before, assume that we can detect whether or not the modular adjustment
has taken place during the j-th multiplicative operation. If k is not too small,
then these observations of essentially independent random encryptions enable
fairly accurate determinations of the probabilities for the jth operation to require
the modular adjustment. The previous section describes how these data can then
be used to distinguish squares from multiplies.

– Now assume also that the initially generated powers of X are used as the B
inputs to the Montgomery modular multiplication process.

Recall that the frequency of extra subtractions depends on the value of the
B input. Because multiplications corresponding to the same exponent digit will
make use of the same multiplier B, the expected frequency of extra subtrac-
tions will be the same for both multiplications whatever the set of observations.
However, the randomness of these multipliers means that for different exponent
digits, the multipliers will generally have different values and individually lead to
different probabilities for an extra subtraction. So, if a subset of observations can
be identified in which the multipliers corresponding to two exponent digit values
have different properties, then potentially this will be reflected in different aver-
age frequencies for the extra subtractions in the multiplications corresponding
to occurrences of these two digits.

In fact, it is possible to determine such observation subsets from any multi-
plication and, in particular, from behaviour during the initialisation stage when
the powers Xi (i = 1, 2, . . . , m) are formed. For example, for an exponent di-
git i, partition the observations into two subsets according to whether or not
the generating modular multiplication for Xi included an extra subtraction. We
noted before that the average values for Xi must be different for the two sets.
This will result in different frequencies for the extra subtraction when Xi is used
as a multiplier in the exponentiation and when it is not. Hence, occurrences of
exponent digit i should stand out. We illustrate this in Section 4.

Suppose this process has already been applied for each i to identify which
exponent digits are most likely to be equal to i. Any pair of multiplications
during the exponentiation can then be compared in the same way, providing a
cross-check on the initial assignment.

Let M be the total number of multiplicative operations in the pre-compu-
tation and exponentiation combined. Then we could form a k×M observation
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matrix Z = (zij) by writing zij = 1 if there was a modular adjustment in the
j-th operation (a multiplication or squaring) of the i-th exponentiation, and
zij = 0 otherwise. We have argued that there are strong dependencies between
the columns Zs and Zt of the matrix Z if the s-th and t-th multiplication in
the exponentiation routine are multiplications by the same power X

ej

i of Xi and
which correspond to the same digit ej in the exponent. Moreover, there are also
strong dependencies between the column corresponding to the precomputations
of X

ej

i and X
ej+1
i and the columns Zs, Zt corresponding to digit ej . This, again,

allows us to perform more advanced statistical analysis and deduce effectively
the digits of the exponent from observation of adjustments.

3.3 The Danger of Signing a Single Unblinded Message

In this section we describe how it is possible to attack the exponent of a Montgo-
mery based exponentiation, without the statistical analysis described in sections
2.3 to 2.5, if the modulus and a single plaintext input are known. This would
be the case if an RSA signature were computed directly without use of the
Chinese Remainder Theorem or appropriate counter-measures. The attack may
be applied to both the square and multiply and m-ary methods although, for
simplicity, only the square and multiply attack is described here.

Consider the single sequence of modular operations, squares and multiplies,
formed by exponentiation of a known input A with secret exponent e and
known modulus N . For any t, denote the most significant t bits of e by e(t) =
enen−1, . . . , en−t+1. Let f(t) denote the number of modular operations (including
precomputations) that result from using e(t) as the exponent and let Z = (zj)
be the observation vector indicating the extra subtractions. (We don’t make use
of any initial elements representing the precomputations.)

A binary chop on e may now proceed as follows. Suppose the t most significant
bits of the exponent are known. We want to establish the value of the next bit.
So far, X = AR mod N and Y = Ae(t)R mod N can be computed independently
of the target device. Therefore Y is known and the observation vector Z ′ = (z′

j)
obtained from this exponentiation with e(t) should match the first f(t) elements
of Z exactly.

To determine e(t+1) compute the two Montgomery operations Y := Y ⊗NY
followed by Y = Y ⊗NX. Extend the observation vector Z ′ = (z′

j) by adding
the two extra elements associated with these operations. Elements f(t)+1 should
match in Z and Z ′ since the same square is being performed. If they don’t match,
a previous bit of e has been incorrectly assigned and backtracking is necessary
to correct it [5]. Assuming the elements match and earlier bits were correctly
assigned, if elements f(t)+2 do not match in both vectors then certainly en−t =
0 since different operations must be being performed for the two observation
vectors. Otherwise, we assume en−t = 1 and continue.

Backtracking to fix incorrect bits is not expensive, and one simply has to
choose exponent bits which are consistent with the vector Z. The average number
of incorrect bits chosen before an inconsistency is discovered is very small. For
simplicity, suppose that a subtraction occurs 1 in 4 times for both multiplications
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and squares, and that the numbers of subtractions required in two successive
operations are independent. (As noted in section 2, this is close to what happens
in reality.) Then the probability of a match between two elements is about 5

8 when
a previous bit has been incorrectly assigned. So the average number of matching
elements after picking an incorrect bit is just (1− 5

8 )−1 = 8
3 . This shows that a

single power trace suffices to determine e completely except perhaps for the final
two or three bits − and they are easily determined by comparing final outputs,
which should equal Y = Ae mod N ≡ 1⊗N (AeR).

We conclude that, as a matter of routine, any document digest should be
combined with an unseen random component prior to signing. In particular [5],
if v is random and d is the public key associated with e, then the attack is
confounded by first replacing A with ARvd, exponentiating as before, and then
dividing by v mod N . However, such a blinding process fails to disrupt the
attacks of §3.1 and §3.2 since they do not depend on knowledge of the inputs.

4 Computer Simulation

We built a computer simulation of 4-ary exponentiation for 384-bit exponents
using 8-, 16- and 32-bit arithmetic and an implementation of Montgomery mul-
tiplication which included the final conditional modular adjustment which has
been assumed throughout. The size of the arithmetic base made no difference to
the results, as one can easily ascertain.

First, a random modulus and exponent were generated and fixed for the set of
observations. Then a random input in the range (0,N) was generated and scaled
by R in the usual way, namely Montgomery-multiplying it by R2. This first
scaling enabled the observations to be partitioned according to whether or not
an extra subtraction occurred. If X was the output from this, the next process
computed and stored X2 and X3. The output data was partitioned according
to whether or not subtractions were observed here too, giving 8 subsets in all.
The exponentiation algorithm then repeatedly squared the running total twice
and, according to the value of the next pair of exponent bits, multiplied in either
X, X2 or X3. These three initial powers of X were always chosen as the “B”
argument in the modular multiplication. The A input was the accumulating
partial product and therefore the output from two successive squares. For each
of the 8 subsets, the total number of extra subtractions were recorded for each
multiplicative operation in the exponentiation.

As in Schindler [8], squares showed up clearly from multiplications by their
lower number of subtractions when the full set of all observations (the union of
the 8 subsets) was considered. To complete the determination of the exponent,
it was necessary to establish which of X, X2 or X3 had been used in each
multiplication. Already, a sequence of 4 successive squares indicated the positions
of all the 00 bit pairs in the exponent. The partitioning into 8 subsets resulted
in values for the B inputs which had different average properties. Consequently,
for each subset, different frequencies of extra subtractions were observed. For
multiplications with the same value of B the proportion of extra reductions in
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the subset tended to the same limit, but for those with different values of B,
as expected, the limits were different. Selecting different subsets of the partition
accentuated or diminished these differences. Combining the results from the best
differentiated subsets, it was easy to determine which exponent bit pair had
been used. Not only did the investigation enable the deduction of equivalence
classes of equal digits, but knowledge of which subset was associated with which
combination of subtractions in the initialisation process enabled the digits to
be correctly assigned. Only the first one or two exponent digits were unclear,
and this was because of the lack of independence between the arguments in the
corresponding multiplications.

Fig. 2. Simulation: Set for Squares with Subtraction

Fig. 3. Simulation: Subset for Cubes without Subtraction

It turned out that it was most helpful to look at the one third of observations
for which the initial computation of X2 generated an extra subtraction and
partition this set according to whether the initial formation of X3 had an extra
subtraction or not. For both subsets, exponent digit 1 = 014 generated the largest
number of extra subtractions, digit 2 = 104 the next largest and digit 3 = 114
the smallest number. So a graph of digit positions marked along a frequency
axis showed the digit positions clustering around three distinct sites. Switching
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between the two sets shifted the relative position of the digit 3 = 114 instances
in relation to the other two, making it possible to distinguish those digits from
the others.

This is illustrated in Figures 2 and 3, where the three thick lines under the
graph bracket together the positions of equal digits. The two sets enable an im-
mediate, clear, correct association of digits with exponent positions. The illustra-
tions are for 1000 samples when N/R ≈ 0.99. Certainly, a smaller sample would
have sufficed: half this number can almost be done by eye. For N/R ≈ 0.51, ab-
out twice these sample sizes are required for the same degree of resolution. Notice
that these sample sizes are independent of the key size because the probability
of an extra subtraction is independent of the key size.

We did not attempt to perform a thorough analysis of the simulation out-
put to see how few observations were necessary to guarantee that the correct
exponent could be obtained. The digits which were most likely to be incorrectly
assigned were those with subtraction frequencies furthest from the average for
the digit. With sufficient observations to separate most of the non-zero digits into
one of three classes, the potentially incorrect digits were clearly visible. Then,
providing the number of such digits was small enough, every alternative could
have been tested individually using other known data. Of course, in the presence
of noisy readings, many more observations may need to be made, whilst if the
data is clean enough, the results show that, in the absence of counter-measures,
the safe lifetime of the key is too short for practical purposes.

5 Discussion

Any modular multiplication algorithm used in a smart card may suffer a proble-
matic conditional subtraction of the type considered here in order to keep the
result from overflowing. This is true not just for Montgomery modular multipli-
cation but also for the classical algorithm, where the multiple of the modulus for
subtraction is estimated from the top two or three digits of the inputs. Since the
result is an approximation, a further conditional subtraction may be requested
to obtain a least non-negative result. This subtraction is also open to attack in
the above manner.

If the conditional modular reduction is performed every time and the previous
value or new value is selected as appropriate, the movement of data may still
betray whether or not the reduction is happening. Alternatively, an overflow
bit can be stored and processed like another digit of the operand. This may
cause exactly the timing variation that we should be trying to avoid. If not, then
processing a top digit of 0 or 1 might still be easily recognised.

A general conclusion is therefore that N should be reduced away from a word
boundary or register working length sufficiently for the modular multiplication
algorithm to avoid any overflow to an extra word.
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6 Counter-Measures & Conclusion

A detailed analysis has been presented showing how conditional subtractions
at the end of Montgomery modular multiplications can be used very effectively
to attack an RSA exponentiation with unknown modulus and secret exponent.
The attack does not require knowledge of the plaintext input and can be applied
successfully to the m-ary and sliding windows methods of exponentiation as well
as to the standard square-and-multiply methods. Moreover, it applies in the
same way to many other implementations of modular multiplication.

Computer simulations showed that if the data is clean enough to pick out
each subtraction with high accuracy, then very few encryptions (under 1000)
need to be observed before the exponent can be determined as a member of a
small enough set for all possibilities to be tested individually. Furthermore, this
number is independent of the key length.

There are simple counter-measures to avoid the problem. One of these is to
modify the exponent by adding a random multiple of φ(N) before each expo-
nentiation [5] so that the exponent digits are changed every time. This defeats
the necessary averaging process over many observations which is the usual key
to a successful side-channel attack.

Acknowledgment. The authors would like to thank A. V. Borovik who contribu-
ted to the key ideas presented here through a private communication [1].
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marc.joye@gemplus.com

2 UCL Crypto Group, Louvain-la-Neuve, Belgium
jjq@dice.ucl.ac.be

3 CertCo, New York NY, U.S.A.
moti@certo.com, moti@cs.columbia.edu

Abstract. Nowadays, since modern cryptography deals with careful
modeling and careful proofs, there may be two levels of cryptanaly-
sis. One, the traditional breaking or weakness demonstration in schemes
which are not provably secure. The second level of cryptanalysis, geared
towards provably secure schemes, has to do with refining models and
showing that a model was either insufficient or somewhat unclear and
vague when used in proving systems secure. The best techniques to per-
form this second type of investigation are still traditional cryptanalysis
followed by corrections. In this work, we put forth the second type of
cryptanalysis.
We demonstrate that in some of the recent works modeling chosen ci-
phertext security (non-malleability), the notion of validity of ciphertext
was left vague. It led to systems where under the model as defined/
understood, it was shown provably secure. Yet, under another (natural)
behavior of the adversary, the “provably secure system” is totally broken,
since key recovery attack is made possible. We show that this behavior
of an adversary is possible and further there are settings (the context of
escrowed public key cryptosystems) where it is even highly relevant.
We mount the attack against systems which are chosen-ciphertext secure
and non-malleable (assuming the adversary probes with valid messages),
yet they are “universally” insecure against this attack: namely, the trap-
door key gets known by the adversary (as in Rabin’s system under chosen
ciphertext attacks). Specifically, the attack works against EPOC which
has been considered for standardization by IEEE P1363 (the authors
have already been informed of the attack and our fix to it and will con-
sider this issue in future works). This re-emphasizes that when proving
chosen-ciphertext security, allowing invalid ciphertext probes increases
the adversary’s power and should be considered as part of the model
and in proofs.

1 Introduction

Classifying the security of cryptosystems, based on the power of the attacking
adversary, is a central subject in modern cryptography. After many years of
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work by many researchers, the notion of attacks on public key systems has
been carefully presented in a unified way in [2,5]. In the attack modeling of
chosen ciphertext attacks they only explicitly consider valid ciphertexts by the
adversary, referring directly to the size of the ciphertexts used by the adversary.
—In a later (final) versions they justify that: an adversary who sends “invalid
ciphertexts” will know that the machine it probes will answer that the ciphertext
is invalid as a justification for this model (this was published on the web, but since
our results here were made known in Feb. 2000 (see [A7]), this was omitted, by
now). In any case, the model (even in these careful elegant classification works)
has left vague and has not directly treated how to deal with invalid ciphertext.
Such vagueness is dangerous since at times it may lead to misinterpretations
and potentially to false claims based on correct proofs (as we will show). Our
purpose here is to demonstrate and thus to re-emphasize that it is, in fact,
important to deal with invalid ciphertext probing by the adversary. We do this
via cryptanalysis which employs such messages. Since our attack is against a
scheme provably secure against attacker which only employs valid ciphertext,
we demonstrate that this issue is not merely for completeness of modeling, but a
central one which should be considered in proofs, when chosen-ciphertext attacks
are allowed. In more general terms, the work demonstrates how important is
the interaction between careful modeling and investigating (seemingly) extended
settings and new scenarios in order to refine, better understand and eliminate
vagueness in formal models.

Security Notions under Active Attacks. The notions of “chosen cipher-
text security” [CCS] (in a non-adaptive [36] and an adaptive [43,16] fashion)
and “non-malleability” [NM] [16] are security notions for cryptosystems when
coping with an active probing by an adversary who tries to break a system (na-
mely, understand a message [CCS] or modify it [NM]). The adversary can choose
ciphertexts in a certain way and probe the device on these messages. The secu-
rity implies that the attacker does not get any advantage in breaking the system
due to the probing. These security notions are extensions of “semantic security”
(or polynomial security) [25] which assures that the system is secure —hiding
all partial information against a passive adversary (in the public key model a
passive adversary can, by itself, mount a chosen message attack).

The first public encryption scheme provably secure against (non-adaptive)
chosen ciphertext attacks was devised by Naor and Yung [36] in 1990. In [43],
Rackoff and Simon generalized their results and realized the first scheme pro-
vably secure against adaptive attacks. In the same year (1991), Dwork, Dolev
and Naor [16] gave another provably secure scheme. More practical construc-
tions (some of which are heuristics and some are validated in idealized random
hash models) were proposed by Damg̊ard [12] (only secure against non-adaptive
attacks [47]), Zheng and Seberry [47] (see also [3] and [33]), Lim and Lee [33]
(cryptanalyzed in [19]), Bellare and Rogaway [3,4] and Shoup and Gennaro [45]
(for threshold cryptography). Recent formal treatment of the issue was given
by Bellare, Desai, Pointcheval and Rogaway and Bellare and Sahai [2,5]; they
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show, among other things that under adaptive chosen message attacks indistin-
guishability attack is equivalent to malleability one. Recently designed schemes
which are practical and based on new assumption or hybrid encryption are given
in [40,23,39,41]. The security of these practical schemes holds in the idealized
random oracle setting [3] and/or under non-standard assumptions. One notable
exception is the Cramer-Shoup scheme [11] which remarkably achieves both pro-
vable security (under the decisional Diffie-Hellman assumption, namely in the
standard model) and high level of practicality.

The Attack. We now define somewhat more formally our attack. Roughly
speaking, it is a chosen ciphertext attack where the adversary has access to a
“decryption oracle.” It however emphasizes and explicitly allows the adversary
to misbehave and repeatedly feed the decryption oracle with invalid ciphertexts.
(Remark: we use “our attack”, though, of course, we do not claim it is a new (see
[6]), just that using it against provable systems and emphasizing it in contrast
with the context which uses only valid messages are, as far as we know, new).

Definition 1 (The Attack). Let k be a security parameter that generates mat-
ching encryption/decryption keys (e, d) for each user in the system. A chosen-
ciphertext attack is a process which, on input 1k and e, obtains

– either plaintexts (relatively to d) corresponding to ciphertexts of its choice; or
– an indication that the chosen ciphertexts are invalid,

for polynomially (in k) many ciphertexts, and produces an history tape h.

To this attack corresponds a security notion, namely resistance against our
attack which coincides with chosen ciphertext security. A probabilistic polyno-
mial time machine, called “message finder”, generates two messages m1 and m2
on input 1k and an auxiliary tape (which may include h, e and other public
information). Let c be the ciphertext corresponding to mb where b is randomly
drawn from {0, 1}. Then, given m1, m2, c, h and e, another probabilistic poly-
nomial time algorithm, called “message distinguisher”, outputs b′ ∈ {0, 1}. The
(non-adaptive) chosen ciphertext attack succeeds if b = b′. Similarly to [43], we
can make the previous scenario stronger by assuming that the adversary may
run a second chosen ciphertext attack upon receiving the challenge ciphertext c
(the only restriction being that the adversary does not probe on c). Accordingly,
this adaptive attack succeeds is b = b′.

We may even reduce the attacker’s probing power by letting it know if the
ciphertext corresponds to a valid message or not.

Definition 2 (Security). An encryption scheme is secure if every (non-adap-
tive /adaptive) chosen ciphertext attack succeeds with probability at most negli-
gibly greater than 1/2.
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Our Results. We first apply the attack model to break the EPOC systems [37,
38]. These are very interesting systems which are about three year old and which
have a lot of insight behind them (i.e., they use new trapdoor). They are provably
secure against adaptive chosen ciphertext attacks in the ideal hash model. So in-
deed, if the context is such that our adversary is excluded, these are high quality
ciphers (they are under consideration for standardization in IEEE P1363a). Yet,
we teach that there are extended situations (i.e., misbehaving adversaries) where
more care is needed since the systems are broken in these cases. We then show
that even interactive systems which are secure against traditional chosen cipher-
text attacks, can fail against the extended setting. We then discuss measures for
correcting the schemes in order to prevent the attacks (which demonstrates the
importance of the original work on these schemes). Finally, we revisit the gene-
ral implications of the attack on chosen ciphertext security. Finally, we comment
that we have notified the authors of EPOC of the attacks and the vagueness of
the definitions, and they took notice. The EPOC authors’ reaction is presented
in an Appendix.

An Application of the Model. How realistic is to allow explicit invalid ci-
phertext and how much one should care about these? One can argue that when
attacking a server system to provide decryptions of ciphertexts, then if too many
invalid ones are asked, the server may shuts itself up. This may lead to denial
of service attacks. Even more so, the attack is always possible in the context of
escrow public key systems (for the sake of law enforcement). See Section 4 for
details.

2 The Attacks

The attack which can be called “chosen valid/invalid ciphertext attack” applies
to a large variety of cryptosystems, including systems using the so-called “coset
encryption” [42]. See [24] for an application to the ‘RSA for paranoids’ [44] and
[29] for the NICE [27] and HJPT [28] systems.

The above are attacks on “raw algebraic versions” of trapdoor functions.
Perhaps other purely algebraic trapdoors are susceptible to the attack. Howe-
ver, more interestingly and perhaps somewhat surprising, we actually illustrate in
this section attacks on a public encryption system which already possesses very
strong security properties. The scheme is the system by Okamoto, Uchiyama
and Fujisaki, EPOC [38]. EPOC has two versions, EPOC-1 and EPOC-2, and
uses the trapdoor function described in [37]. It presents the advantages of being
secure and non-malleable under chosen-ciphertext attacks, which, following [2],
represents the highest level of security. Moreover, we show that interactive pro-
tocols [17] aiming to transform a semantically secure system into a system secure
against chosen-ciphertext attacks may also be susceptible to the attack.
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2.1 The EPOC-1 System

Hereafter, we give a brief review of EPOC-1; we refer to [38] for details. The
scheme is divided into three parts: system setup, encryption and decryption.

[System setup] For security parameter k, two k-bit primes p and q are chosen
and n = p2q. Then an element g ∈ (Z/nZ)× such that gp = gp−1 mod p2

has order p is chosen randomly. Likewise h0 ∈ (Z/nZ)× is chosen randomly
(and independently from g) and h = (h0)n mod n. Finally, three integers
pLen, mLen and rLen such that pLen = k and mLen + rLen ≤ pLen − 1 and a
public (hash) function H are defined.
The public parameters are (n, g, h, pLen, mLen, rLen, H). The secret parame-
ters are (p, gp).

[Encryption] A message M ∈ {0, 1}mLen is encrypted as

C = g(M‖R)hr mod n

where R is uniformly chosen in {0, 1}rLen and r = H(M‖R).
[Decryption] Given the ciphertext C, the decryption process runs as follows. Let

X = L(Cp)
L(gp)

mod p

where Cp = Cp−1 mod p2 and L(x) = (x−1)/p. Then if gXhH(X) mod n = C
holds, the decrypted message is given by [X]mLen (that is, the mLen most
significant bits of X); otherwise the null string ε is output.

2.2 The Attack

The encryption process assumes that the message being encrypted is smaller
than 2mLen , or more precisely that (M‖R) < 2pLen−1. What happens if a larger
message is encrypted?

Let Ĉ (= g(M̂‖R)hH(M̂‖R) mod n) denote the ciphertext corresponding to a
message M̂ . The decryption of Ĉ yields the intermediary value

X = L(Ĉp−1 mod p2)
L(gp)

mod p .

Defining X̂ = (M̂‖R), we have X = X̂ mod p; or equivalently X̂ = X +αp with
α = bX̂/pc. If X̂ ≥ p then X̂ 6= X (i.e., α > 0) and the test gXhH(X) mod n

?= Ĉ
will fail. The decryption algorithm will thus output the null string ε. This can
be exploited by an adversary as follows. Since the secret prime p is a pLen-bit
number, she knows that p lies in the interval I0 = ]2pLen−1, 2pLen [. So, she chooses
a message M̂ such that X̂ = (M̂‖R) ∈ I0 and computes the corresponding
ciphertext Ĉ. If Ĉ can be decrypted then she knows that X̂ < p; otherwise (i.e.,
if ε is returned) she knows that X̂ ≥ p. She then reiterates the process with
the interval I1 = ]X̂, 2pLen [ or I1 = ]2pLen−1, X̂], respectively. And so on. . . until
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the interval becomes small enough to guess —by exhaustion or more elaborated
techniques (e.g., [10,8])— the correct value of p. Noting that each iteration of
a standard binary search halves the interval containing p, an upper bound for
the total number of probes is certainly pLen − 1. For example, with a 1024-bit
modulus n, at most 340 ciphertexts are necessary to recover the whole secret
key.

2.3 The EPOC-2 System

In EPOC-2, the system setup is broadly the same as in EPOC-1 except that
two public (hash) functions H and G are defined together with a symmetric
cryptosystem. We let SymEnc(K, X) (resp. SymDec(K, X)) denote the encryp-
tion (resp. decryption) of X under the symmetric key K. A message M ∈
{0, 1}mLen is encrypted as (C1, C2) with C1 = gRhH(M‖R) mod n and C2 =
SymEnc(G(R), M) where R is uniformly chosen in {0, 1}rLen . Given (C1, C2),
the decryption algorithm computes Cp = Cp−1

1 mod p2, R′ = L(Cp)
L(gp) mod p and

M ′ = SymDec(G(R′), C2). If gR′hH(M ′‖R′) ≡ C1 (mod n) then the plaintext
is M ′; otherwise the null string ε is output. So, the attack on EPOC-1 readily
applies on EPOC-2. The adversary now guesses the value of the secret factor p
according to p > R if the decryption process is possible or p ≤ R if ε is returned,
from suitable values of R she chooses.

2.4 The Fischlin PPTK Protocol

In [17], R. Fischlin presents a generic technique to turn any semantically se-
cure cryptosystem into an (interactive) scheme which is immune against chosen-
ciphertext attacks. We will apply this technique to the (semantically secure)
Okamoto-Uchiyama cryptosystem [37]. The resulting scheme is very similar to
the EPOC-1 system. This is not too surprising if you know that the EPOC
systems are derived from an application to the Okamoto-Uchiyama system of
the generic techniques of [21] (see also [22]) to transform a semantically secure
system into a system secure against chosen-ciphertext attacks.

[System setup] For security parameter k, the parameters p, q, n, g, gp, h0 and h
are defined as in § 2.1. There are also two integers pLen and mLen such that
pLen = k and 2mLen ≤ pLen − 1. The public parameters are (n, g, h, pLen,
mLen). The secret parameters are (p, gp).

[Commitment/Encryption] A sender commits to a message M ∈ {0, 1}mLen by
computing and sending

C = g(M‖R)hr mod n

where R is uniformly chosen in {0, 1}mLen and r in {0, 1}2mLen . Note that C
is the Okamoto-Uchiyama encryption of (M‖R).

[Challenge] Upon receiving C, the receiver chooses a challenge bpLen/2c-bit prime
π which he sends to the sender.
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[PPTK] The sender computes Xπ = (M‖R) mod π and sends it to the receiver
as a proof of plaintext knowledge.

[Decryption] Given Xπ, the receiver decrypts C as

X = L(Cp)
L(gp)

mod p

where Cp = Cp−1 mod p2. Then if X ≡ Xπ (mod π), he accepts the plain-
text given by [X]mLen (that is, the mLen most significant bits of X); otherwise
the null string ε is output, i.e., the receiver rejects the encryption.

The idea behind Fischlin’s technique is quite intuitive. To make a system
immune against chosen-ciphertext attacks, the sender (interactively) provides a
“proof of plaintext knowledge” (PPTK). Although this seems sound, the attack
presented against EPOC-1 in § 2.2 still applies. If (M‖R) is smaller than the
secret prime p then the decryption of the commitment C, X, is equal to (M‖R).
Therefore, the relation X ≡ (M‖R) (mod π) will be verified whatever the value
of the challenge π is. On the contrary, if (M‖R) ≥ p then the verification will fail
and the null string ε is returned. So as before, the adversary can recover the bits
of p successively according to whether ε is returned or not from appropriately
chosen values for M . (Remark: recently, the author has removed his paper [17]
from the public library, yet we do not think that it is due to the attack since
the scheme as a generic method may be sound once considering the issues raised
in the current work and similar considerations, see our repair to the specific
application below.)

3 Repairing the Schemes

Here we show how to repair the systems, thus showing the usefulness of the
work on the original schemes (the standardization bodies have to take note of
our fixes, though).

The attack, as presented in § 2.2, is easily avoidable. EPOC-1 requires that
message M being encrypted is such that X = (M‖R) < 2pLen−1. This condition
can be explicitly checked at the decryption stage:

[Decryption] Given the ciphertext C, the decryption process runs as follows. Let

X = L(Cp)
L(gp)

mod p

where Cp = Cp−1 mod p2 and L(x) = (x−1)/p. Then if gXhH(X) mod n = C
and if X < 2pLen−1 holds, the decrypted message is given by [X]mLen (that
is, the mLen most significant bits of X); otherwise the null string ε is output.

Now the attacker has no longer advantage to feed the decryption oracle with
invalid ciphertexts Ĉ (i.e., corresponding to an X̂ ≥ 2pLen−1). Indeed, if X̂ ∈
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ciphertext - D ��* plaintext

HHj ε

Fig. 1. Decryption algorithm.

[2pLen−1, p[ then the decryption process yields an X = X̂ ≥ 2pLen−1 and so the
null string ε is returned. If X̂ ≥ p then X 6= X̂ (and thus gXhH(X) mod n 6= Ĉ)
and again ε is returned.

Likewise, EPOC-2 can be made robust against the attack of § 2.3 by further
checking that R′ < 2rLen (< 2pLen−1 ) in the decryption stage. Finally, in Fischlin
protocol, the receiver must also check that X < 2pLen−1 in the decryption stage
and reject the encryption if it is not the case.

4 Illustration: The “Policeman-in-the-middle Attack”

In this section, we present a detailed example in the context of escrowed public
key cryptosystems. The attack is by misbehaving law enforcement which fakes
ciphertexts repeatedly, and asks the escrow authorities to recover them (thus
the proposed name of the attack: “the Policeman-in-the-middle Attack”). The
attacker is allowed to misbehave and choose “invalid ciphertexts” (since, sup-
posedly, they are what the wiretapping has recorded and this fact has to be
reported).

The basic configuration of the system model (when concentrating on a single
sender-receiver pair) is given in Fig. 2. It includes a sender (Alice) which em-
ploys the receiver’s (Bob) public key to send messages. The receiver gets the
ciphertext message and can decrypt it. In addition, the law enforcement (Police)
gets the message and forwards it to the escrow agent (TTP). Police gets back
a cleartext which is the valid decryption of the message or an indication of “in-
valid message” from TTP. (Typically, Police is authorized to decrypt messages
in some time interval and based on this authorization by the court, TTP has
to comply and serve as a “decryption oracle” say at some time interval.) The
weaker probing capability where the trusted party only answers whether a ci-
phertext correspond to a valid or invalid message (which suffices for our attacks),
is realistic in the context in which sporadic tests of compliance with the escrow
system are performed by law enforcement and the TTP only validates correct
usage.

Alice Bob-ciphertext

- -�
Police TTP

Fig. 2. Basic model.
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Related Work on Escrow Systems.

Indeed, the notion of the attack makes sense in the context of the Police which
tries to verify messages and the sender and the receiver may be bypassing the
system. Therefore, the knowledge of “invalid message” is important (and should
be supplied) to law enforcement. This is an interesting interplay between a pro-
tocol notion (escrowed encryption) and the relevant attack (chosen valid/invalid
ciphertext attack). Let us review (only) some of the various escrow systems mo-
dels which have been considered in the literature. A quite general framework to
describe key escrow systems was proposed in [13] by Denning and Brandstad.
Upon this, they classified the escrow mechanisms of complete systems as well as
various design options, including the Escrow Encryption Standard (EES) and
its Clipper implementation [1,14] (see also [7,35]), the fair cryptosystems [34,
31], the traceable ciphertexts [15,32,9], the Trusted Third Parties services [30],
etc. . . (See also [18] for further discussions.) The model of Denning and Brand-
stad assumes that the sender (Alice) binds the ciphertext and the corresponding
encryption key, normally by attaching a “data recovery field” (DRF) to the ci-
phertext. In our model, the DRF is merely an indication that the ciphertext
was encrypted under Bob’s public key. Variants on this model were considered
in [20] by Frankel and Yung. They abstracted a public key based model where
a message is sent to two receivers and where validation is added so that the
line contains messages that have been validated as “messages available to both
Bob and Police”, then such systems are equivalent to “chosen ciphertext secure
public-key systems,” and furthermore, the reductions are very efficient (security
wise).

5 Chosen Valid/Invalid Ciphertext Attacks

The scheme of Damg̊ard [12] is semantically secure and has some other heuristic
security properties, but a man-in-the-middle attack shows that this scheme is
malleable [46, § 6]. EPOC is semantically secure and was “shown” to be non-
malleable but is susceptible to a policeman-in-the-middle attack. This empha-
sizes the extended notion of chosen ciphertext security which considers security
under “chosen valid/invalid ciphertext attacks.” Certain security proofs assume
that the adversary gets no credit for producing an invalid ciphertext. While this
is true for most cryptosystems indeed, this is incorrect in general.

A particularity of Okamoto-Uchiyama primitive (as well as the other coset-
based encryption primitives) is that the whole set of valid messages, [0, p), is
kept secret. Thus, to construct a cryptosystem thereof, one must work in a
subset [0, T ) with T < p. This gives rise to two kinds of invalid ciphertexts: the
invalid ciphertexts (i.e., those for which the null string ε is returned) and those
for which a message is returned rather than a notification of invalidity. This
shows the soundness of our repair (Section 3) since ε is returned for both types
of invalid ciphertexts.

In many of the “generic constructions” there is a polynomial time algorithm
so that when given a ciphertext it can verify (with overwhelming probability)
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that we have a “proper ciphertext” which implies that it is a valid plaintext
which is encrypted correctly (e.g., the constructions that employ general non-
interactive zero-knowledge as in [36,43]). Thus implicitly, either one sends valid
ciphertext or the ciphertext can be rejected in polynomial-time (namely, without
the computational power of the decryption algorithm). In this case indeed “inva-
lid ciphertexts” do not add power (the probing adversary can reject the invalid
ciphertext itself). However, as demonstrated here this may not be the case with
other schemes where there is no public verification of ciphertext validity.

Sometimes, considering only valid messages may be enough. For example,
for the concrete schemes we attack (EPOC), it may still be very useful in cases
where the tampering adversary attacks a centralized device (the device may
stop on the first invalid message, or may record and limit such attacks). In
this setting the security as was proved in [38] applies. However, in the protocol
setting we identified, reporting “invalid ciphertext” is part of the actual task of
the decryption entity (escrow authorities or TTP). We conclude that in these
cases the systems have to be robust against the extended setting.
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Appendix: A Comment from EPOC Authors

As described in this manuscript and [A7], the initial version of EPOC [A5] had
an error in the description; hence the current version of EPOC [A6] already
includes the fix and so is proof against JQY attack.

The reason why the initial version was weak against chosen-ciphertext attack
such as JQY attack is that it was not an exact implementation of [A1,22]. In
other words, the weakness of the initial version is due to the gap between the
implementation [A5] and the theoretical results [A1,A2].

In [A1,A2], we have shown two different conversions from an (arbitrary)
asymmetric encryption scheme, which is secure in a weaker sense, into an asym-
metric encryption scheme that is secure against adaptive chosen-ciphertext at-
tacks in the random oracle model: For message m ∈ {0, 1}mlen, picking random
string r ∈ {0, 1}rlen, the schemes obtained by the conversions are

EFO1
pk (m; r) = Easym

pk ((m||r); H(m, r)), and (1)
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EFO2
pk (m; r) = Easym

pk (r; H(m, r)) || m⊕G(r), (2)

respectively, where G, H denote hash functions such that G : {0, 1}rlen →
{0, 1}glen and H : {0, 1}mlen × {0, 1}rlen → {0, 1}hlen. To appropriately quote
from [A1,A2], the hash functions in the conversions must be carefully implemen-
ted. H in conversions, (1) and (2), should be considered as the different hash
functions with the different domains. We denote by MSP the message space of
the underlying encryption, Easym

pk ; that is, for Easym
pk (X; R), X ∈ MSP. Following

[A1,A2], it is required that MSP = ‘{0, 1}mlen×{0, 1}rlen’ in EPOC-1 and MSP =
‘{0, 1}rlen’ 1 (The reader should not confuse MSP of Easym

pk with the real message
space, {0, 1}mlen, of EFO1

pk and EFO2
pk ). The above requirement implies that the

hash functions will halt if they take an element outside their domains (because
the input is not defined!) and the decryption must abort (and output an invalid
signal) if the hash functions invoked takes such an invalid element.

In the initial version of EPOC, H was described as a function in both conver-
sions carelessly with an inappropriate domain such that H : {0, 1}∗ → {0, 1}hlen.
As mentioned later, the message space of the Okamoto-Uchiyama encryption
scheme, which is used as the underlying encryption scheme in EPOC, is not
equivalent to {0, 1}∗: i.e., MSP ( {0, 1}∗. That is why the initial version was
open to JQY attack — Actually, a knowledge extractor constructed by following
[A1,A2] doesn’t work on these wrong implementations; so the chosen-cipher se-
curity of these schemes is not guaranteed in general.

Recall the Okamoto-Uchiyama encryption scheme [A4]. For x ∈ {0, 1}K ,
picking a random string r from an appropriate domain, the encryption of x is

Easym
pk (x; r) = gxhr mod n. (3)

Following [A1,A2], we must implement H so that H : {0, 1}mlen × {0, 1}rlen →
{0, 1}hlen, where K = mlen+ rlen in EPOC-1 and K = rlen in EPOC-2. In ad-
dition, as the Okamoto-Uchiyama scheme is an encryption scheme, we naturally
get K < |p|, because an encryption scheme is required to satisfy the condition
that, for any x ∈ MSP and y ← Easym

pk (x), then Dasym
sk (y) = x (See [A1,A2]). If

|p| ≤ K, this condition does not hold.
As a result, an appropriate implementation wouldn’t be open to any chosen-

ciphertext attacks, not just JQY attack. Please refer to [A3,A6] for more details.
Finally, we would like to thank M. Joye, J.J. Quisquater, and M. Yung for

giving us to place a comment in the appendix of their paper.
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Abstract. An efficient implementation of modular exponentiation is
achieved by first designing a bit-level systolic array such that the whole
procedure of modular exponentiation can be carried out without using
global interconnections or memory to store intermediate results, and then
mapping this design onto Xilinx XC6000 Field Programmable Gate Ar-
rays. Taking as a starting point for a FPGA program an efficient bit-level
systolic algorithm facilitates the design process but does not automati-
cally guarantee the most efficient hardware solution. We use an example
of modular exponentiation with Montgomery multiplication to demon-
strate a role of layout optimisation and partitioning in mapping linear
systolic arrays onto two-dimensional arrays of FPGA cells.

1 Introduction

Hardware implementation of modular exponentiation of long integers is a hot
design topic because many popular cryptographic schemes, such as the RSA
scheme [13], ElGamal scheme [6], Fiat-Shamir scheme [8], etc., are based on this
operation. However, modular exponentiation of long integers is too slow when
performed on a general purpose computer. On the other hand, a number of
efficient bit-level parallel algorithm for modular exponentiation is known which
can be implemented directly in Programmable Logic Arrays or in FPGAs. The
advantage of using FPGAs is cost and flexibility: they are not expensive, they can
provide the speed-up of dedicated hardware with a turn-around time for design of
a particular application comparable with that one of software, and unlike special-
purpose hardware, they can be reprogrammed for different applications [2]. This
paper describes how cheap RSA acceleration can be achieved using FPGAs. We
use a complexity of the problem as a benchmark for evaluating computing power
of fine grained FPGAs, and for developing a more systematic methodology for
their programming.

We propose a two-step procedure for an implementation of modular expo-
nentiation on FPGAs. The main idea is as follows. Bit-level systolic arrays share
many characteristics with FPGAs; both favour regular repetitive designs with
local interconnections, simple synchronisation mechanisms and minimal global
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memory access. While programming FPGAs is still pretty much an ad hoc pro-
cess, there is a mature methodology of bit-level systolic systems design. Thus,
to achieve a good FPGA implementation, it may be beneficial first to design a
systolic array for a given application, and then map this array onto FPGAs in a
systematic fashion, preserving the main properties of the systolic design.

In this paper an efficient systolic array for a modular exponentiation is used
as a starting point for an FPGA design. This systolic array is based on a Mont-
gomery multiplication, and uses a high-to-low binary method of exponentiation.
The design technique consists of a systematic mapping of the systolic array onto
fine grained FPGAs. Our experiment demonstrates that a straightforward map-
ping does not guarantee an optimal result although reduces considerably the
cost of design. A simple observation emerged that to achieve a high density de-
sign, one has to employ some concise partitioning strategy by designing a few
building blocks with the same functionality but different layouts. This simple
method increased twofold the efficiency of a chip area utilisation.

Our final design accommodates a modular exponentiation of a 132-bit num-
ber on one Xilinx XC6000 chip comprising 64 × 64 elementary logic cells. The
algorithm, which exhibits theoretically the best time/space characteristics, is not
easily scalable. The consequence is that more chips are required to implement
RSA with a longer key. For example, 512-bit long integers need four XC6000
chips connected in a pipeline fashion, and 1024-bit numbers require eight such
chips.

2 Modular Exponentiation of Long Integers

The main and most time consuming operation in the RSA algorithms is modular
exponentiation of long integers. The RSA Laboratories recommended key sizes
are now 768 bits for personal use, 1024 bits for corporate use, and 2048 bits for
extremely valuable keys. An operation Be mod m on large integers cannot be
implemented in a naive fashion by first exponentiating Be and then performing
reduction modulo m; intermediate results of the exponentiation are to be reduced
modulo m at each step. The straightforward reduction modulo m involves a
number of arithmetic operations (division, subtraction, etc.), and is very time
consuming. Therefore, special algorithms for modular operations are to be used.

In 1985, P. L. Montgomery [10] proposed an algorithm for modular multi-
plication AB mod m without trial divisions. In [1] different modular reduction
algorithms for large integers were compared with respect to their performance
and the conclusion was drawn that for general modular exponentiation the ex-
ponentiation based on Montgomery’s algorithm has the best performance.

2.1 Algorithm for Montgomery Multiplication

Several algorithms suitable for hardware implementation of Montgomery mul-
tiplication (MM) are known [9,14,17,4,3]. FPHA design presented in this paper
uses a systolic array which is based on the algorithm described and analysed
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in [17]. Let numbers A, B and m be written with radix 2: A =
∑N−1
i=0 ai ·2i, B =∑M

i=0 bi · 2i, m =
∑M−1
i=0 mi · 2i, where ai, bi, mi ∈ GF(2), N and M are the

numbers of digits in A and m, respectively. B satisfies condition B < 2m, and
has at most M + 1 digits. m is odd (to be coprime to the radix 2). Extend a
definition of A with an extra zero digit aN = 0. The algorithm for MM is given
below (1).

s := 0;
For i := 0 to N do
Begin

ui := ((s0 + ai ∗ b0) ∗ w) mod 2
s := (s + ai ∗ B + ui ∗ m) div 2

End

(1)

Initial condition B < 2m ensures that intermediate and final values of s are
bounded by 3m. The use of an iteration with aN = 0 ensures that the final
value s < 2m [17]. Hence, this value can be used for B input in a subsequent
multiplication. Since 2 and m are relatively prime, we can precompute value
w = (2 − m0)−1 mod 21. An implementation of the operations div 2 and mod2
is trivial (shifting and inspecting the lowest digit, respectively). Algorithm (1)
returns either s = A · B · 2−n−1 mod m or s + m (because s < 2m). In any case,
this extra m has no effect on subsequent arithmetics modulo m.

If A and B are equal, the algorithm above computes a Montgomery mul-
tiplication of number B by itself, or M-squaring. This simple observation had
been used in a bit-level systolic array [16] where the modular exponentiation is
carried out entirely by the single systolic unit without global memory to store
intermediate results. The systolic algorithm uses a high-to-low binary method of
exponentiation, which is much faster than similar devices performing modular
exponentiation by repeated modular multiplications of an integer by itself [17,
9].

2.2 High-to-Low Binary Method of Exponentiation

A fast way to compute Bn mod m is by reducing the computation to a sequence
of modular squares and multiplications [15]. Let [n0 . . . nk] be a binary represen-
tation of n, i.e., n = n0 + 2n1 + · · · + 2knk, nj ∈ GF(2), k = blog2 nc, nk = 1.
Let β denote a partial product. We start out with β = B and run from nk−1 to
n0 as follows: if nj = 0 then β := β2; if nj = 1 then β := β × B.

Thus, we need at most 2k MM operations to compute Bn mod m. This al-
gorithm has an advantage over a low-to-high binary method of exponentiation
since, when implemented in hardware, it requires only one set of storage registers
for intermediate results as opposed to two for a low-to-high method [15].

1 Note that w = 1 and can be ignored.
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2.3 Linear Systolic Array for Modular Exponentiation

Fig. 1 depicts a linear systolic array for modular exponentiation with Montgo-
mery multiplication, first presented in [16]. Each PE in Fig. 1 is able to operate
in two modes, one for MM operation, and one for M-squaring. To control the
operation modes, a sequence of one-bit control signals τ is fed into the rightmost
PE and propagated through the array. If τ = 0 the PE implements an operation
for M-multiplication, if τ = 1, for M-squaring. The order in which control signals
are input is determined by the binary representation of n.

Each M-multiplication and M-squaring operation requires that each j − th
PE, j = 0..M , in the systolic array performs M +1 iterations; where each i− th
iteration consists of computing

s
(i+1)
j−1 + 2 · cout := s

(i)
j + ai · bj + ui · mj + cin,

where s
(i)
j denotes the j-th digit of the i-th partial product of s, cout and cin are

the output and input carries. Rightmost vertices, i.e., vertices marked with “∗”,
perform calculations

ui :=
(
(s(i)

0 + ai · b0) · w
)

mod 2

besides an ordinary operation where cout is reduced to 2

cout := maj2(s
(i)
0 , ai · b0, ui · m0).

Apart from calculations, each PE propagates digits ai, ui, sj−1, cout and control
signal τ along respective edges.

To perform M-squaring the operation is modified in such a way that only
the bj-inputs are required, j = 0..M ; a copy of each input bj is stored in a local
register of the j − th PE for the whole duration of the operation, while another
copy is propagated via x edges left-to-right to the rightmost, starred PE, where it
is “reflected” and send along edges a as if they were ai-inputs. Vertex operations
are to be slightly modified to provide propagation of digits: each non-starred
vertex just transmits its x-input data to an x-output; while, when arriving at
the starred vertex, these data are used in stead of ai inputs and send to the left
along the a edges as if they were ordinary ai’s input data.

A timing function that provides a correct order of operations is t(v) = 2i +
j [16]. The total running time is thus at most (4blog2 nc + 1)M + 8blog2 nc time
units.

3 XACTStep 6000 Automatic Design

Our next step is to implement the systolic array on FPGAs. The purpose of
this experiment is twofold: firstly, derive a systematic method of mapping linear
2 maj2(x, y, z) is 1 if at least two out of three entries are 1s; otherwise it is 0.
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Fig. 1. Linear Systolic Array for Modular Exponentiation.

systolic algorithms onto a two-dimensional array of FPGA cells, and secondly,
design an efficient FPGA implementation of a particularly important applica-
tion. We conducted our experiments with Xilinx XC6000, comprising 64 × 64
logic cells. To map a systolic array onto FPGAs, one has to

– find suitable logic designs for FPGA realisation of individual PEs and com-
pile them into modules of FPGA cells;

– find a suitable logic design that combines PE modules into a linear array in
accordance with the systolic array description;

– optimise the design.

3.1 Inputs and Outputs

To meet limitations of FPGAs where input/output ports are located along the
chip’s borders, we need to modify the systolic array. The first operation of any
exponentiation Bn mod m is always M-squaring, but it can be implemented as
multiplication B × B mod m. Input digits bj will be propagated along a-edges
prior to computations to be stored in local registers b<2>

in of respective PEs for
the whole duration of computations because an original value of B is used as
one of the operands for any M-multiplication.

All input bits sj , j = 0..M , are 0 at the first iteration of any operation; and
the sj digit of the result of every M-multiplication and M-squaring is used as bj
and xj inputs for the next operation. Hence, instead of using external sj-inputs
we can use local register set to 0 at the beginning of computations.

M-multiplication does not need external inputs xj ’s, j = 0..M ; hence, the
final design does not need these inputs either since input values for xi’s required
for M-squaring will be generated later, and can be loaded from the registers
containing the results sj−1’s of the previous operation.

Since m is the same for the whole duration of modular exponentiation, its
bits mj , j = 0..M , can be loaded once at the beginning of computations, and
stored in local registers of each respective PE. Hence, the only I/O ports actually
needed are located at the rightmost processing element.

3.2 Schematics for Individual PE

Consider now the logic design for implementation of an individual PE. A minor
optimisation first. Modes of the non-starred PE for M-multiplication and M-
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squaring differ only by the transmission or an absence of the transmission of
data x, and the control signal τ is used to distinguish these two modes. However,
x’s do not affect computations in the non-starred PEs; they are used only in the
rightmost PE. Therefore, we can ignore the existence of two modes for the non-
starred PE, and let it transmit x regardless. Hence, we do not need control signal
τ in such PEs; τ should be used only in the rightmost PE where it defines whether
an incoming data x should be used as an a-input value or ignored. Nevertheless,
we need one control signal σ to ensure the correct initial assignments to xj
in the beginning of the operation, depending on whether M-multiplication or
M-squaring is to be carried out: xout := mux(σin : xin, sin).

Original input digit b is stored in the local registers b<2>. As above, control
signal σ is used to provide the correct initial assignments to bin depending on
whether the operation to be performed is M- multiplication or M-squaring: bin :=
mux(σin : b<2>, sin).

A computational part of the non-starred PE includes two logic multiplicati-
ons, ain · bin and uin · min, and addition of these products with an intermediate
sum sin and input carry. Evidently, four-element addition can generate two car-
ries meaning that all non-starred PEs will have two input carries, and produce
two output carries; the first carry c<1>

out is to be used by its leftmost neighbour,
and the second carry c<2>

out by the left but one nearest neighbour. We shall denote
this carry that is just a transit from the right neighbour to the left one by c<T>.
Then the logic design of the computational part of the non-starred PE becomes

sout + 2c<1>
out + 4c<2>

out = ain · bin + uin · min + sin + c<1>
in + c<T>in .

It is not uncommon to implement addition of 5 entries using two full adders and
one half adder. Their implementations can be found in a standard library xc6000
provided by EXACTStep6000.

The rightmost (starred) PE selects values for its b– and a–inputs, depending
on control signals σ and τ :

ain = mux(τ : xin, ain), bin = mux(σin : b<2>, sin)

and, apart from the simplified version of the operation described above, computes
uin = (ain&bin ⊕ sin)&win. For consistency, two zero output carries c<2>

out = 0
and c<T>out = 0 are generated.

3.3 Array of 67 PE Modules

The next step is to implement a composition of PE modules in accordance with
the systolic array shown in Fig. 1. Our first straightforward solution was to
simply combine modules into a one-dimensional structure by connecting the
outputs of one module with the inputs of another one exactly following the
structure of the systolic array.:

ain := aout, xin := xout, uin := uout sin := sout,
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R_B2\FDC1 XOR1 MUX1 XOR2 R_B2\FDC1 XOR1 MUX1 XOR2 R_B2\FDC1 XOR1 MUX1 XOR2 R_B2\FDC1 XOR1 MUX1 XOR2 R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S

AND_AB XOR1 MUX1 $1I13\FDC1XOR2 AND_AB XOR1 MUX1 $1I13\FDC1XOR2 AND_AB XOR1 MUX1 $1I13\FDC1XOR2 AND_AB XOR1 MUX1 $1I13\FDC1XOR2 R_B2\FDC1 XOR1 MUX1 XOR2 R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S

R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1 R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1 R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1 R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1 AND_AB XOR1 MUX1 $1I13\FDC1XOR2 R_B2\FDC1 XOR1 MUX1 XOR2 R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S

R_M1\FDC1 $1I9\FDC1$1I6 R_M1\FDC1 $1I9\FDC1$1I6 R_M1\FDC1 $1I9\FDC1$1I6 R_M1\FDC1 $1I9\FDC1$1I6 R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1 AND_AB XOR1 MUX1 $1I13\FDC1XOR2 R_B2\FDC1 XOR1 MUX1 XOR2

R_M2\FDC1 R_A\FDC1 R_M2\FDC1 R_A\FDC1 R_M2\FDC1 R_A\FDC1 R_M2\FDC1 R_A\FDC1 R_M1\FDC1 $1I9\FDC1$1I6 R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1 AND_AB XOR1 MUX1 $1I13\FDC1XOR2

R_M2\FDC1 R_A\FDC1 R_B2\FDC1 XOR1 MUX1 XOR2 R_M1\FDC1 $1I9\FDC1$1I6 R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1

A_OUT\FDC1 AB R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S AND_AB XOR1 MUX1 $1I13\FDC1XOR2 R_M2\FDC1 R_A\FDC1 R_M1\FDC1 $1I9\FDC1$1I6

C_OUT\FDC1$1I64 S_OUT\FDC1$1I71 S2AB $1I91\FDC1 R_B2\FDC1 XOR1 MUX1 XOR2 R_B2\FDC1 XOR1 MUX1 XOR2 R_B2\FDC1 XOR1 MUX1 XOR2 R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1 R_M2\FDC1 R_A\FDC1

U_OUT\FDC1 U UW $1I81\FDC1 AND_AB XOR1 MUX1 $1I13\FDC1XOR2 AND_AB XOR1 MUX1 $1I13\FDC1XOR2 AND_AB XOR1 MUX1 $1I13\FDC1XOR2 R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S R_M1\FDC1 $1I9\FDC1$1I6 R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S

A_CHOISE M_UP\FDC1 $1I93\FDC1$1I79 $1I100\FDC1 R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1 R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1 R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1 R_B2\FDC1 XOR1 MUX1 XOR2 R_M2\FDC1 R_A\FDC1 R_B2\FDC1 XOR1 MUX1 XOR2

$1I97\FDC1 $1I94\FDC1 R_M1\FDC1 $1I9\FDC1$1I6 R_M1\FDC1 $1I9\FDC1$1I6 R_M1\FDC1 $1I9\FDC1$1I6 AND_AB XOR1 MUX1 $1I13\FDC1XOR2 AND_AB XOR1 MUX1 $1I13\FDC1XOR2

R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S R_M2\FDC1 R_A\FDC1 R_M2\FDC1 R_A\FDC1 R_M2\FDC1 R_A\FDC1 R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1 R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1

R_B2\FDC1 XOR1 MUX1 XOR2 R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S R_M1\FDC1 $1I9\FDC1$1I6 R_M1\FDC1 $1I9\FDC1$1I6 R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S

AND_AB XOR1 MUX1 $1I13\FDC1XOR2 R_B2\FDC1 XOR1 MUX1 XOR2 R_B2\FDC1 XOR1 MUX1 XOR2 R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S R_M2\FDC1 R_A\FDC1 R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S R_M2\FDC1 R_A\FDC1 R_B2\FDC1 XOR1 MUX1 XOR2

R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1 AND_AB XOR1 MUX1 $1I13\FDC1XOR2 AND_AB XOR1 MUX1 $1I13\FDC1XOR2 R_B2\FDC1 XOR1 MUX1 XOR2 R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S R_B2\FDC1 XOR1 MUX1 XOR2 R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S AND_AB XOR1 MUX1 $1I13\FDC1XOR2

R_M1\FDC1 $1I9\FDC1$1I6 R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1 R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1 AND_AB XOR1 MUX1 $1I13\FDC1XOR2 R_B2\FDC1 XOR1 MUX1 XOR2 AND_AB XOR1 MUX1 $1I13\FDC1XOR2 R_B2\FDC1 XOR1 MUX1 XOR2 R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1

R_M2\FDC1 R_A\FDC1 R_M1\FDC1 $1I9\FDC1$1I6 R_M1\FDC1 $1I9\FDC1$1I6 R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1 AND_AB XOR1 MUX1 $1I13\FDC1XOR2 R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1 AND_AB XOR1 MUX1 $1I13\FDC1XOR2 R_M1\FDC1 $1I9\FDC1$1I6

R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S R_M2\FDC1 R_A\FDC1 R_M2\FDC1 R_A\FDC1 R_M1\FDC1 $1I9\FDC1$1I6 R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1 R_M1\FDC1 $1I9\FDC1$1I6 R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1 R_M2\FDC1 R_A\FDC1

R_B2\FDC1 XOR1 MUX1 XOR2 R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S R_M2\FDC1 R_A\FDC1 R_M1\FDC1 $1I9\FDC1$1I6 R_M2\FDC1 R_A\FDC1 R_M1\FDC1 $1I9\FDC1$1I6

AND_AB XOR1 MUX1 $1I13\FDC1XOR2 R_B2\FDC1 XOR1 MUX1 XOR2 R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S R_M2\FDC1 R_A\FDC1 R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S R_M2\FDC1 R_A\FDC1 R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S

R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1 AND_AB XOR1 MUX1 $1I13\FDC1XOR2 R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S R_B2\FDC1 XOR1 MUX1 XOR2 R_B2\FDC1 XOR1 MUX1 XOR2 R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S R_B2\FDC1 XOR1 MUX1 XOR2 R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S R_B2\FDC1 XOR1 MUX1 XOR2

R_M1\FDC1 $1I9\FDC1$1I6 R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1 R_B2\FDC1 XOR1 MUX1 XOR2 AND_AB XOR1 MUX1 $1I13\FDC1XOR2 AND_AB XOR1 MUX1 $1I13\FDC1XOR2 R_B2\FDC1 XOR1 MUX1 XOR2 AND_AB XOR1 MUX1 $1I13\FDC1XOR2 R_B2\FDC1 XOR1 MUX1 XOR2 AND_AB XOR1 MUX1 $1I13\FDC1XOR2

R_M2\FDC1 R_A\FDC1 R_M1\FDC1 $1I9\FDC1$1I6 AND_AB XOR1 MUX1 $1I13\FDC1XOR2 R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1 R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1 AND_AB XOR1 MUX1 $1I13\FDC1XOR2 R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1 AND_AB XOR1 MUX1 $1I13\FDC1XOR2 R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1

R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S R_M2\FDC1 R_A\FDC1 R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1 R_M1\FDC1 $1I9\FDC1$1I6 R_M1\FDC1 $1I9\FDC1$1I6 R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1 R_M1\FDC1 $1I9\FDC1$1I6 R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1 R_M1\FDC1 $1I9\FDC1$1I6

R_B2\FDC1 XOR1 MUX1 XOR2 R_M1\FDC1 $1I9\FDC1$1I6 R_M2\FDC1 R_A\FDC1 R_M2\FDC1 R_A\FDC1 R_M1\FDC1 $1I9\FDC1$1I6 R_M2\FDC1 R_A\FDC1 R_M1\FDC1 $1I9\FDC1$1I6 R_M2\FDC1 R_A\FDC1

AND_AB XOR1 MUX1 $1I13\FDC1XOR2 R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S R_M2\FDC1 R_A\FDC1 R_M2\FDC1 R_A\FDC1 R_M2\FDC1 R_A\FDC1

R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1 R_B2\FDC1 XOR1 MUX1 XOR2 R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S

R_M1\FDC1 $1I9\FDC1$1I6 AND_AB XOR1 MUX1 $1I13\FDC1XOR2 R_B2\FDC1 XOR1 MUX1 XOR2 R_B2\FDC1 XOR1 MUX1 XOR2 R_B2\FDC1 XOR1 MUX1 XOR2 R_B2\FDC1 XOR1 MUX1 XOR2 R_B2\FDC1 XOR1 MUX1 XOR2 R_B2\FDC1 XOR1 MUX1 XOR2

R_M2\FDC1 R_A\FDC1 R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1 AND_AB XOR1 MUX1 $1I13\FDC1XOR2 AND_AB XOR1 MUX1 $1I13\FDC1XOR2 AND_AB XOR1 MUX1 $1I13\FDC1XOR2 AND_AB XOR1 MUX1 $1I13\FDC1XOR2 AND_AB XOR1 MUX1 $1I13\FDC1XOR2 AND_AB XOR1 MUX1 $1I13\FDC1XOR2

R_M1\FDC1 $1I9\FDC1$1I6 R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1 R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1 R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1 R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1 R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1 R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1

R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S R_M2\FDC1 R_A\FDC1 R_M1\FDC1 $1I9\FDC1$1I6 R_M1\FDC1 $1I9\FDC1$1I6 R_M1\FDC1 $1I9\FDC1$1I6 R_M1\FDC1 $1I9\FDC1$1I6 R_M1\FDC1 $1I9\FDC1$1I6 R_M1\FDC1 $1I9\FDC1$1I6

R_B2\FDC1 XOR1 MUX1 XOR2 R_M2\FDC1 R_A\FDC1 R_M2\FDC1 R_A\FDC1 R_M2\FDC1 R_A\FDC1 R_M2\FDC1 R_A\FDC1 R_M2\FDC1 R_A\FDC1 R_M2\FDC1 R_A\FDC1

AND_AB XOR1 MUX1 $1I13\FDC1XOR2 R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S

R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1 R_B2\FDC1 XOR1 MUX1 XOR2 R_B2\FDC1 XOR1 MUX1 XOR2 R_B2\FDC1 XOR1 MUX1 XOR2 R_B2\FDC1 XOR1 MUX1 XOR2 R_B2\FDC1 XOR1 MUX1 XOR2 R_B2\FDC1 XOR1 MUX1 XOR2

R_M1\FDC1 $1I9\FDC1$1I6 AND_AB XOR1 MUX1 $1I13\FDC1XOR2 AND_AB XOR1 MUX1 $1I13\FDC1XOR2 AND_AB XOR1 MUX1 $1I13\FDC1XOR2 AND_AB XOR1 MUX1 $1I13\FDC1XOR2 AND_AB XOR1 MUX1 $1I13\FDC1XOR2 AND_AB XOR1 MUX1 $1I13\FDC1XOR2 R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S

R_M2\FDC1 R_A\FDC1 R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1 R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1 R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1 R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1 R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1 R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1 R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S R_B2\FDC1 XOR1 MUX1 XOR2

R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S R_M1\FDC1 $1I9\FDC1$1I6 R_M1\FDC1 $1I9\FDC1$1I6 R_M1\FDC1 $1I9\FDC1$1I6 R_M1\FDC1 $1I9\FDC1$1I6 R_M1\FDC1 $1I9\FDC1$1I6 R_M1\FDC1 $1I9\FDC1$1I6 R_B2\FDC1 XOR1 MUX1 XOR2 AND_AB XOR1 MUX1 $1I13\FDC1XOR2

R_B2\FDC1 XOR1 MUX1 XOR2 R_M2\FDC1 R_A\FDC1 R_M2\FDC1 R_A\FDC1 R_M2\FDC1 R_A\FDC1 R_M2\FDC1 R_A\FDC1 R_M2\FDC1 R_A\FDC1 R_M2\FDC1 R_A\FDC1 AND_AB XOR1 MUX1 $1I13\FDC1XOR2 R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1

AND_AB XOR1 MUX1 $1I13\FDC1XOR2 R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1 R_M1\FDC1 $1I9\FDC1$1I6

R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1 R_B2\FDC1 XOR1 MUX1 XOR2 R_B2\FDC1 XOR1 MUX1 XOR2 R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S R_B2\FDC1 XOR1 MUX1 XOR2 R_M1\FDC1 $1I9\FDC1$1I6 R_M2\FDC1 R_A\FDC1

R_M1\FDC1 $1I9\FDC1$1I6 AND_AB XOR1 MUX1 $1I13\FDC1XOR2 AND_AB XOR1 MUX1 $1I13\FDC1XOR2 R_B2\FDC1 XOR1 MUX1 XOR2 AND_AB XOR1 MUX1 $1I13\FDC1XOR2 R_M2\FDC1 R_A\FDC1

R_M2\FDC1 R_A\FDC1 R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1 R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1 AND_AB XOR1 MUX1 $1I13\FDC1XOR2 R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1 R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S

R_M1\FDC1 $1I9\FDC1$1I6 R_M1\FDC1 $1I9\FDC1$1I6 R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1 R_M1\FDC1 $1I9\FDC1$1I6 R_B2\FDC1 XOR1 MUX1 XOR2

R_M2\FDC1 R_A\FDC1 R_M2\FDC1 R_A\FDC1 R_M1\FDC1 $1I9\FDC1$1I6 R_M2\FDC1 R_A\FDC1 AND_AB XOR1 MUX1 $1I13\FDC1XOR2 R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S

R_M2\FDC1 R_A\FDC1 R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1 R_B2\FDC1 XOR1 MUX1 XOR2

R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S R_M1\FDC1 $1I9\FDC1$1I6 AND_AB XOR1 MUX1 $1I13\FDC1XOR2

R_B2\FDC1 XOR1 MUX1 XOR2 R_B2\FDC1 XOR1 MUX1 XOR2 R_B2\FDC1 XOR1 MUX1 XOR2 R_B2\FDC1 XOR1 MUX1 XOR2 R_B2\FDC1 XOR1 MUX1 XOR2 R_B2\FDC1 XOR1 MUX1 XOR2 R_M2\FDC1 R_A\FDC1 R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1

AND_AB XOR1 MUX1 $1I13\FDC1XOR2 AND_AB XOR1 MUX1 $1I13\FDC1XOR2 AND_AB XOR1 MUX1 $1I13\FDC1XOR2 AND_AB XOR1 MUX1 $1I13\FDC1XOR2 AND_AB XOR1 MUX1 $1I13\FDC1XOR2 AND_AB XOR1 MUX1 $1I13\FDC1XOR2 R_B1\FDC1MUX_B R_SG\FDC1 R_X\FDC1MUX_S R_M1\FDC1 $1I9\FDC1$1I6

R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1 R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1 R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1 R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1 R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1 R_U\FDC1 AND_UM $1I13\FDC1$1I5 R_C2\FDC1 R_B2\FDC1 XOR1 MUX1 XOR2 R_M2\FDC1 R_A\FDC1
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Fig. 2. Automatic allocation for 67 PE modules.

c<1>
in := C<1>

out ; c<2>
in := c<T>

out ; c<T>
in := c<2>

out ; �in := �out

An automatic allocation (presented in Fig. 2) can provide successful routing for
an array with maximum 67 PE modules. The design is sufficiently regular, but
not very dense, with some loose registers being placed rather far from the gates
they are related to. This is a result of the hierarchical structure of PE modules.
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A straightforward mapping of a one-dimensional array of PE modules onto a
two-dimensional array of FPGA cells resulted in an inefficiency in allocation
because it is unavoidable that the array should turn and twist, which causes a
lot of non-local and criss-cross logic connections between individual gates.

4 Optimisation

An ultimate design goal in our experiment was to find an absolute limit of
the number of bits in Montgomery exponentiation, that can be handled by one
XC6000 chip. Obviously, the previous design was far from this limit. We decided
to use it as a starting point for systematic manual optimisation. We wanted
to provide locality of interconnections and higher density of the overall design.
While optimising your design manually, as a rule of thumb, it is advisable to
preserve as much of the automatic design as possible, because it is done by the
system with the objective of a successful routing; a complex set of criteria takes
into account a number of parameters which are known only to the system while
a programmer may never even suspect what they are.

4.1 Manual Allocation of the Gates and Registers in PEs

As had been mentioned already, a computational part of the non-starred PE
can be mapped onto Xilinx XC6000 FPGA in a form of a module consisting
of the standard half and full adders, with a “communication” part surrounding
this module. Thus, a logic design for an individual PE consists of two levels of
hierarchy.

However, one should use hierarchical structures with caution; as the previous
experiment has shown, it may even be undesirable. For example, if the output
of some gate is stored in a register, these gate and register should not be at
different hierarchical levels if we need a more dense design. the reason is that such
a gate–register pair may occupy only one cell (in both automatic and manual
designs), but if the gate is embedded in a module, while the register is outside
of this module (i.e., on a different level of hierarchy, or in a different block), they
inevitably will be placed in different cells, and often rather far apart. Standard
libraries propose usually an implementation of logic functions only. Thus, if
registers are to be used to store output data of a module, it is desirable to insert
these registers inside the module.

Taking into account these observations, we modified the schematics of the
PE modules so that all gates and registers associated with them are combined
within the same level of hierarchy. For manual allocation of gates at the level of
ViewLogic design, the RLOC (relative location) attribute has to be used. The
attribute determines the coordinates of a gate inside its module.

It is interesting to note that with a new, more dense design of PE modules a
routing for an automatic allocation of a one-dimensional array of 67 PE modules
failed.
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4.2 Partitioning

To embed a long and narrow one dimensional array of PE modules into a XC6000
64�64 square of logic cells, a natural solution is to partition this array into blocks
of PE modules with respect to the width of the board, so that every block can
be mapped onto a chip in a form of border-to-border straight line, and then
connect these blocks in a two-dimensional structure in a zig-zag fashion to fill in
the whole chip area. However, simple partitioning does not eliminate a problem
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(c) An array has been partitioned into blocks, and the second block 
      rotated. Moreover, every PE in a second block was rotated 
      as well. This eliminates both, long distance and criss cross
      connectins between PEs.

(b) An array has been partitioned into blocks, and the second  block  
      rotated. This eliminated long distance connections between PEs. 
      However, within the rotated block criss cross connections arise 
     

.

(a) Long connections arise when a long narrow array is partitioned into  
      identical blocks of PEs and each block is allocated in a separate row. 

Fig. 3. Illustration of the method of partitioning.

of a waste of space due to criss-cross connections, as Fig. 3 illustrates.
The length of the block is determined empirically. The main problem is the

routing at the places where the zig-zag turns. Hence, the length of the block is
to be estimated conservatively, so as to allow for some extra space to permit
successful routing in the corners. In our case one block constitutes 13 PE modu-
les. It should be noted that an allocation of PE modules inside the block must
be manual since we want a long narrow band of the gates while an automatic
allocation is trying to provide a square–like allocation.

To eliminate irregularity and crisscross connections between PEs in every
second block, we had to design a “mirror image” for a block of PE modules
by reflecting the block itself. Also, as Fig 3 suggests, every PE module inside
the reflected block has to be a “mirror image under reflection” of an original
module, i.e., we have to create new modules which have the same functionality
but whose input/output gates represent some suitable permutation of the gates
in the original design. Two types of special “mirror images under rotation” are
used for the first and the last PE modules in a block, where the zig-zag turns.
It allows us to allocate 132 PEs successfully on a XC6000 64 � 64 logic cells. In
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other words, we can exponentiate a 132-bit long integer on one Xilinx XC6000
chip.

An automatic allocation of 132 PE modules on a board is presented in Fig. 4.
To our knowledge, this is the best FPGA design for a modular exponentiation
reported so far.
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Fig. 4. Automatic allocation for 132 PEs.
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5 Summary

We presented an implementation of a modular exponentiation algorithm based
on a Montgomery multiplication operation on fine–grained FPGAs. With hand–
crafted optimisation we managed to embed a modular exponentiation of 132-bit
long integers into one Xilinx XC6000 chip, which is to our knowledge one of
the best fine-grained FPGA designs for a modular exponentiation reported so
far. 2,615 out of 4,096 gates are used for computations, and 528 for registers,
providing 75% density.

Reported in this paper hardware implementation relies on configurability of
FPGAs, but does not use run-time reprogrammability or/and SRAM memory
(intermediate results are stored in registers implemented within individual cells).
This makes our design simpler and easy to implement. The price to pay is that
more chips are needed to implement RSA with a longer key. 4 Kgates, or one
XC6000 chip, is required for modular exponentiation of 132-bit long integers.
512-bit long integers need 4 XC6000 chips connected in a pipeline fashion, or
16 Kgates. Modular exponetiation of a 1024-bit integer would require eight such
chips.

The bit rate for a clock frequency of 25 MHz can be estimated to be approxi-
mately 800 Kb/sec for 512 bit keys, which is comparable with the rate reported
in a fundamental paper of Shand and Vuillemin [15], and an order of magnitude
better than that the ones in [9] and [12].
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Abstract. One approach to achieve real-time cryptography is to use
reconfigurable hardware, where different cryptographical methods can
be implemented with performance of special-purpose chips, but with a
fraction of the time to market expense. While there is a lot of develop-
ment done for fine-grain reconfigurable hardware, such as FPGAs, the
area of coarse-grain programmable hardware is almost unknown. In this
paper we describe a coarse-grain reconfigurable chip XPU128. This chip
is capable of performing simultaneously up to 128 multiply-accumulate
operations on 32-bit numbers in one clock cycle. As a case study we
implemented Montgomery Multiplication. Our implementation is fully
scalable, with the time increasing linearly with the length of the ope-
rands.

1 Introduction

There is a vast discrepancy between the cryptographical transformation rates of
public key cryptosystems and the data rate of digital communication networks.
The design of public key cryptographical hardware is an active area of research.
Crypto chips are continuously being developed to improve the encryption or
decryption rates.

One goal for public key implementations is to achieve encryption and decryp-
tion at a rate comparable with that of a digital communication channel. Many
digital networks now offer data rates in the tens of Mbps and beyond. An alterna-
tive goal is to match cryptographic speed with the speed of information sources,
thus achieving real-time cryptography. For example, to encrypt and decrypt di-
gital television signals in real-time, the cryptosystem would need to operate at
around 20Mbps.

As cryptographic tasks becoming more diverse, fast yet flexible cryptogra-
phic tools are becoming more important. Experience with hardware tools has
shown that speed often cannot be realized unless all cryptographic methods of
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interest are implemented in hardware. For example, digital signatures are often
implemented with a message digest followed by a public key encryption, so spee-
ding up only the public key encryption may not be sufficient. However, hardware
implementations of many important but yet nonstandard methods are hard to
find.

In this respect, some researchers proposed that the right tool for many ap-
plications is not the custom hardware, but a fast general-purpose processor. For
example, a cryptographic library had been developed for the Motorola DSP56000
processor [1].

Another approach is to use reconfigurable or programmable hardware, where
different nonstandard cryptographical methods can be implemented with per-
formance approaching special-purpose chips, but with a fraction of the “time
to market” expense. While there is a growing amount of development done for
fine-grain reconfigurable hardware, such as FPGAs or PLAs, the area of coarse-
grain programmable hardware in virtually unknown. In this paper we describe
a coarse-grain reconfigurable chip, XPU128, designed by our company. The chip
is capable of performing up to 128 32-bit multiply-accumulate operations simul-
taneously. As a case study, we implemented Montgomery Multiplication on the
XPU128.

The rest of the paper is organized as follows. First, we briefly present re-
configurable chip XPU128. In next two chapters we derive a parallel scalable
algorithm for Montgomery Multiplication operation, and show how it can be
used to compute modular exponentiation as well. Finally, an implementation
of this algorithm on the XPU128 chip is described in details, and performance
analysis summarize the result.

2 The Data-Flow Multiprocessor XPU128

XPU128 is a processing array which contains 2×64 processor elements on a single
chip. Processor elements are arranged in two sub-arrays, connected by a row of
registers, as shown in Fig. 1. In addition, each sub-array has 16 local RAMs,
each containing 256 32-bit words, and 4 bidirectional I/O-ports connecting the
circuit to external pins. The chip is a synchronous circuit with a target clock
rate around 100 MHz.

The XPU128 processor chip is completely modular, with only a small number
of different modules: Processor Array Elements (PAE), Internal RAMs, I/O
modules and Configuration Manager (CM) Modules are connected by a high
speed configurable network.

The PAE has the arithmetic/logic unit featuring three 32-bit inputs and two
32-bit outputs, a pair of forward 32-bit registers, and a pair of backward 32-
bit registers. Each PAE is capable of performing any out of a list of about 70
arithmetic and logical instructions on three 32-bit input data in a single cycle.
As exception, multiply-accumulate takes two cycles, and division takes about 30
cycles. Among PAE’s Opcodes are 32-bit-wise logical operations like AND, OR,
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Fig. 1. The general structure of the XPU128.

etc., counters, shifts, two–way sorting, 32-bit multiply-accumulate, and many
others. In addition each PAE has 12 data bus switches and 12 control signal
(trigger) bus switches.

There are 6 data buses in each (i.e., left to right and right to left) direction,
each 32-bit wide, connecting processing units in the same row, and the same
number of 1-bit wide control signal buses. The unidirectional buses can be broken
into segments by opening bus switches. If data flow vertically from one processor
array element to its neighbor, they travel through bus segments and registers.
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The algorithm is directly mapped onto the array. Configuration adapts the
processor to the algorithm. Data packets are routed through the flow pipes which
are programmed from bus segments and registers so that it could connect directly
an output of one PAE with the input of another one.

One chip can carry out several independed tasks at the same time. Run-
time reconfiguration of the whole chip, as well as only some parts of the chip, is
possible. The reconfiguration time depends on the area being reconfigured.

All processing array elements can work in parallel. The array can deliver
results every clock cycle.

3 Modular Exponentiation of Long Integers

The main and most time consuming operation in many public key cryptographi-
cal algorithms is modular exponentiation of long integers. Be mod m cannot be
implemented in a naive fashion by first exponentiating B to power e, and then
performing reduction modulo m; the intermediate results of the exponentiation
are to be reduced modulo m at each step. The straightforward reduction modulo
m involves a number of arithmetic operations (division, subtraction, etc.), and
is time consuming.

In 1985, P. L. Montgomery [5] proposed an algorithm for modular multipli-
cation AB mod m without trial division. The idea of the algorithm is to change
the reduction modulo difficult number by the reduction modulo a power of the
machine word size.

3.1 Algorithm for Implementation of Montgomery Multiplication

Our design is based on the algorithm described and analyzed in [11]. Let numbers
A, B and m be written with radix r:

A =
N−1∑
i=0

ai · ri, B =
M∑
i=0

bi · ri, m =
M−1∑
i=0

mi · ri,

where N and M are the numbers of digits in A and m, respectively. B satisfies
condition B < 2m, and has at most M + 1 digits. m is coprime to the radix r.
Extend a definition of A with an extra zero digit aN = 0. The algorithm for MM
is given below (1).

s := 0;
For i := 0 to N do
Begin

ui := ((s0 + ai ∗ b0) ∗ w) mod r
s := (s+ ai ∗B + ui ∗m) div r

End

(1)

Initial condition B < 2m ensures that intermediate and final values of s are
bounded by 3m. The use of an iteration with aN = 0 ensures that the final
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value s < 2m [11]. Hence, this value can be used for B input in a subsequent
multiplication. r and m are relatively prime, and we can precompute value w =
(r −m0)−1 mod r.

An implementation of the operations div r and modr is trivial (shifting one
digit to the right and inspecting the lowest digit, respectively) if r is a power of
the machine word size. Algorithm (1) returns either s = A ·B · r−N−1 mod m or
s+m (because s < 2m). In any case, this extra m has no effect on subsequent
arithmetics modulo m.

3.2 Graph Model for Montgomery Multiplication

First we construct a data dependency graph (also referred as a graph model)
for Algorithm (1). This graph is depicted in Fig. 2 and was presented first in
[9]. m is extended with an extra digit, mM = 0 to maintain the regularity of
the graph. The graph consists of N + 1 rows and M + 1 columns. The set of
all vertices in this graph, V1 = {v(j, i)|0 ≤ i ≤ N, 0 ≤ j ≤ M}, is referred to
as a computational domain. The i-th row represents the i-th iteration of (1).
Arrows are associated with digits transferred along indicated directions. Each
vertex v(j, i) ∈ V1 is associated with the operation

s
(i+1)
j−1 + 2 · cout := s

(i)
j + ai · bj + ui ·mj + cin,

where s(i)j denotes the j-th digit of the result of the i − 1-st iteration. cout and
cin are the output and input carries. Rightmost starred vertices, i.e., vertices
marked with “∗”, perform calculations

ui := ((s0 + ai ∗ b0) ∗ w) mod r

besides an ordinary operation. In addition, each node “propagates” input data
a, b, m, and u to its neighbors.

A timing function that provides a correct order of operations is t(v) = 2i +
j [9]. The total running time is thus 2(N + 1) + (M + 1) = 2N + M + 3 time
units.

4 Systolic Arrays for Montgomery Multiplication

The next stage of the design is a space-time mapping of the domain V1 onto a one-
dimensional domain of logical processing elements (PE). A space-time mapping
of a two-dimensional domain of computations onto an one-dimensional domain
of logical processing elements is determined by a linear operator specified by
some 2 × 1 matrix P = (x y), where x and y are determined according to the
chosen projection vector. A linear operator P maps every vertex v(j, i) from the
domain V1 into a logical processing element PE[k], where k = P × (j, i)T .

A mapping can be done along different projection vectors, provided that
it does not violate timing function, i.e., that no two nodes, v(j1, i1) ∈ V1 and
v(j2, i2) ∈ V1 that are mapped on the same PE have the same value of the timing
function.
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4.1 Space/Time Optimal Systolic Array

The space-time optimal mapping can be obtained by choosing projection vector
(1, 0), i.e., by projection in the vertical direction [10]. The mapping is determined
by the linear operator with matrix P = (0 1), which maps a data dependency
graph in Fig. 2 onto a linear array with M + 1 logical processing elements: each
column of vertices is mapped onto one PE, as shown in Fig. 3.

Unfortunately, this parallel algorithm does not scale well. If the systolic array
is too large to be placed directly on the array of PAEs, it cannot be partitioned
without drastic degradation in performance which is due to the fact that data
are flowing in both directions. Hence, a new algorithm which would be able to
process the input numbers of any length and at the same time could exploit high
degree of parallelism, has to be found.
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4.2 Scalable Linear Systolic Array

Another possibility of a space-time mapping of a two-dimensional domain

V1 = fv(j; i)j 0 � i � N; 0 � j � Mg

onto a one-dimensional domain of logical processing elements is to map V1 in a
horizontal direction, i.e., along projection vector (0; 1). The linear operator that
performs such mapping is P = (1 0), which maps a data dependency graph
for MM onto a linear array with N + 1 logical processing elements; each row of
vertices is mapped onto one logical PE, as shown in Fig. 4.

As one can see, one logical PE in a new parallel algorithm performs exactly
one full computations of the inner loop in Algorithm (1); the i-th PE takes digit
ai, computes the pivoting element ui := ((s0 + ai � b0) � w) mod r, after which
it computes (sequentially) s := (s + ai � B + ui � m) div r; where s, B, and m
are streams of 32-bit digits.

Since all digits of s, B, A, and m, are 32-bit numbers, each digit sj of s
must be computed taking into account carries, which means that we have to use
two additions, one on high and one on low outputs of each of the multiply-add
operations.



242 E. Trichina and A. Tiountchik

div r can be implemented by removing the first digit of s after each iteration
of the inner loop, and shifting all other digits of the result s one position to the
right before sending them as the s-inputs to the next iteration. It corresponds to
operation rest on a stream of digits. To keep the length of s not less than M +1
for all iterations, we have to “pad” the original input s with N + 1 additional
zeros.

The i+1-st PE can start its computations as soon as the i-th PE has produced
the first digit s(i+1)

0 of its output s; hence all iterations of the algorithm can
overlap in time. The running time of the new algorithm is 2(N + 1) +M + 1 =
2N + M + 3 time units if all logical PEs are working at the same time in a
pipelined fashion.

The disadvantage of this algorithm is that it requires more hardware to im-
plement one logical PE; namely, we need at least two multiply-accumulate PAEs
for computing ui, two multiply-accumulate and two adders to compute the result
and the carry accurately, one PAE to implement operation rest on the output
stream of digits s, plus at least one more for synchronization purposes; alto-
gether at least 9 PAEs for one logical PE. Hence, the total amount of hardware
is 9 × (N + 1) = 9N + 9 PAEs.

The advantage of this algorithm is that it easily admits partitioning: if our
physical resources are enough only to place n out of N + 1 logical PEs, where
n < N + 1, and n = (N + 1)/k, we can split the linear array into tiles; each tile
containing n PEs, as shown in Fig. 5. Then we place the first tile on the chip;
run computations, and store all the digits of the intermediate result s computed
by the last PE in the tile, in a on-chip memory.

After all the computations in this tile are finished, the Configuration Manager
downloads the next, structurally absolutely identical tile, with only a-inputs of
the PAE’s having different values, and starts a new series of computations taking
digits of the result s of the previous tile as initial values of the s-inputs of the
new tile.

The running time of the algorithm with partitioning is

k ∗ (2n+M + 1) = 2(N + 1) + k ∗M + k

time units, not taking reconfiguration time into account. However, the reconfi-
guration amounts to only replacing k input constants, and thus, is negligeable.

Another advantage of this algorithm is that the same design can be used for
modular exponentiation, which can be presented as a combination of modular
multiplications and squaring [8].

Depending on the binary representation of the exponent, the next step of the
exponentiation starts either with the original values of the input digits for one
of the inputs (B), and the result s of the previous MM operation for the second
input (A), or with the result s of the previous MM for both inputs, A and B.
Hence, the difference between MM and modular exponentiation is only in the
Configuration Manager program, the rest of the design is absolutely the same.
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5 XPU Implementation of Scalable Systolic Array for
Montgomery Multiplication

As we saw in Fig. 4, the scalable linear systolic array for MM consists of N + 1
logical PEs, or blocks, each block implements one full iteration of the inner loop
of Algorithm (1).

Input numbers B and m are stored as arrays of 32-bit digits in the on-chip
RAMs. The initial value of s is 0; it is stored in the RAM as an array of 0’s. All
arrays have M + 1 “proper” input digits; they have to be “padded” with N + 1
zeros to ensure the correctness of the algorithm. 1

1 As we have seen, each block performs an operation rest on the stream of the digits
of the result s; and there are N + 1 such blocks in a linear systolic array. Hence, to
have M + 1 digits in the output s at the end of the computations, we must extend
s with N + 1 extra digits, all having values 0.
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5.1 Implementation of One Logical PE on the XPU128

The i-th block takes one digit, ai, of the input number A, computes the pivoting
element ui :=

(
(s(i)0 + ai ∗ b0) ∗ w

)
mod r, after which it computes s := (s+ai ∗

B+ui∗m) div r by sequentially computing for all digits bj andmj , j ∈ {0, ...,M},
the following:

s
(i+1)
j−1 + 2 · cout := (s(i)j + ai · bj) + (ui ·mj + cin),

where s(i)j is the j-th digit of the input stream s in the i-th block; cout and cin
are the output and input carries generated and used within the same block.

The XPU implementation of the i-th block is shown in Fig. 6. Input values
ai and b0 are preloaded constants on the PAE s 0a ib 0 which computes (ai ∗
b0 + s

(i)
0 ), where the third input value of the PAE contains the first digit of the

result s produced by the i − 1-st block, or, in other words, during the i − 1-st
iteration of the inner loop.

The control signals for each block are generated by a special “loop synchro-
nizer” counter i, which for every iteration of the inner loop counts the number
of computational steps. The synchronizer for the i-th block is implemented as a
counter which counts with step 1 from 0 to M+1+N−i. Control signals produ-
ced by counter i are connected with control-inputs of various PAEs, ensuring
their correct functionality.

PAE pivot i computes the value of ui. One of its inputs is preloaded with
w, i.e., a precomputed constant which depends only on the radix r and the first
digit of m. An operation mod r on the result of this computation is implemented
simply by taking only the low-outputs of the PAEs s 0a ib 0 and pivot i.

Once ui is computed, it has to be used as a multiplicand for all the digits of
the input m. Hence, we have to “iterate” ui as many times as there are digits
in m. PAE loopU i with the special opcode is used for this purpose. It loops
value ui while the control-output of the synchronizer counter i stays false.
The last control signal produced by counter i after the last digit of m has been
read, will destroy now obsolete value ui.

Two PAEs with muladd opcodes compute ai ·bj+s(i)j and ui ·mj+cin, respec-
tively. The value ai is preloaded, and does not change during the computations
of the i-th block. The value cin is the carry from the previous computation; in
order to start the computations, the first cin = 0 is preloaded.

Since muladd operations have 32-bit numbers as inputs, they can produce
overflows; hence to add their results together correctly, we have to sum up se-
parately the low and the high outputs of corresponding PAEs. 2 The result of
summation of two low outputs produces the digit sj of the intermediate result
s; the sum of the high outputs is the carry cout, which has to be fed back as an
cin input of the PAE u imc. An extra care has to be taken to ensure that if the
2 Our implementation is simplified somewhat by assuming that 32-bit additions pro-

duce no carries.
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generated carry has more than 32 bits, then this overflow is taken into account
in the next but one step of computations within the block.

To implement an operation div r on the intermediate result s, we have to
simply “shift” all the digits of s one position to the right, i.e., the first digit
of the result must be removed, the second digit of the result becomes the first
digit of the initial value of s in the next iteration ( i.e., the first digit of the s-
input in the next block), etc. In other words, we have to implement an operation
rest on a stream of digits. To do it, we need an extra PAE with an opcode
special, where a data input receives the digits of the result s as soon as they
are produced, with the additional control input which receives signals from the
loop synchronizer. Depending on these signals, the data packages are passed
to the output, or removed. To remove the first digit of s, this control input is
preloaded with true. The control output of the synchronizer counter i ensures
that all other digits of the result s are passed through the PAE rest to the next
block.

Hence, altogether we need 9 PAEs to implement one block (i.e., one logical
PE) of the linear systolic scalable algorithm depicted in Fig. 4.

5.2 Implementation of One Tile on the XPU128

The output of the block is the stream of digits s which is sent to the s-inputs of
the next block. The last block in the currently executed tile must save the result
s in a memory, so that it can be used as the s-input for the first block in the
next tile.

We can place maximum six blocks on one sub-array of the XPU128. The
actual placement and routing for Montgomery Multiplication for 192 bit numbers
is shown in Fig. 7.

6 Performance Analysis

To compute one digit of the output s on the XPU requires 7 clock cycles (due
to data dependencies in a block). Hence, it will take 2 × (6 + 1) × 7 + (M + 1)
clock cycles to compute one tile. For example, it will take 2 × 7 × 7 + 7 = 105
clock cycles to implement modular multiplication of two 192–bit numbers.

Some estimates of the expected performance for Montgomery Multiplication
operation for different sizes of the input numbers are given in Table 1. The
number of 768-bit, 1024-bit and 2048-bit MM operations per second being carried
out on the XPU chip is estimated for three clock frequencies, namely, 50 MHz,
100 MHz, and 200 MHz. Columns 2, 4 and 6 contain the number of cycles
required to perform one MM operation on 768-bit, 1024-bit and 2048-bit number,
respectively.

The running time of the algorithm with partitioning is, as we saw,

k ∗ (2n+M + 1) = 2(N + 1) + k ∗M + k
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Fig. 7. Implementation of 192-bit Modular Multiplication on XPU128.
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time units, where k is the number of tiles. We need 768/192 = 5 tiles to imple-
ment 768-bit MM, 6 tiles to implement 1024-bit MM and 12 tiles for 2048-bit.

Table 1. Performance Estimate for Montgomery Multiplication Operation.

Freq 768-bit 768-bit 1024-bit 1024-bit 2048-bit 2048-bit
cycles MM/sec cycles MM/sec cycles MM/sec

50 MHz 630 70000 800 60000 1804 30000
100 MHz 630 130000 800 120000 1804 50000
200 MHz 630 300000 800 250000 1804 100000

The advantage of our algorithm is that the number of cycles required for
execution of the Montgomery Multiplication on long numbers is growing with
the rate O((N +M)/n), while on sequential architectures the number of cycles
per MM-operation grows polynomially on the length of the input numbers. For
example, it will take about 4160 cycles on the conventional sequential computer
to accomplish 1024-bit Modular Multiplication, and 16384 cycles to accomplish
2048-bit MM-operation, while on the XPU the number of cycles (1804) for 2048-
bit MM-operation is only slightly more than twice the number of cycles (800)
required for 1024-bit MM-operation.
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Abstract. This paper presents an extensive study of the software im-
plementation on workstations of the NIST-recommended elliptic curves
over prime fields. We present the results of our implementation in C
and assembler on a Pentium II 400MHz workstation. We also provide a
comparison with the NIST-recommended curves over binary fields.

1 Introduction

Elliptic curve cryptography (ECC) was proposed independently in 1985 by Neal
Koblitz [14] and Victor Miller [17]. Since then a vast amount of research has been
done on its secure and efficient implementation. In recent years, ECC has recei-
ved increased commercial acceptance as evidenced by its inclusion in standards
by accredited standards organizations such as ANSI (American National Stan-
dards Institute) [1], IEEE (Institute of Electrical and Electronics Engineers) [10],
ISO (International Standards Organization) [11], and NIST (National Institute
of Standards and Technology) [20].

Before implementing an ECC system, several choices have to be made. These
include selection of elliptic curve domain parameters (underlying finite field, field
representation, elliptic curve), and algorithms for field arithmetic, elliptic curve
arithmetic, and protocol arithmetic. The selections can be influenced by se-
curity considerations, application platform (software, firmware, or hardware),
constraints of the particular computing environment (e.g., processing speed,
code size (ROM), memory size (RAM), gate count, power consumption), and
constraints of the particular communications environment (e.g., bandwidth, res-
ponse time). Not surprisingly, it is difficult, if not impossible, to decide on a single
“best” set of choices—for example, the optimal choices for a PC application can
be quite different from the optimal choice for a smart card application.

The contribution of this paper is an extensive and careful study of the soft-
ware implementation on workstations of the NIST-recommended elliptic curves
over prime fields. While the only significant constraint in workstation environ-
ments may be processing power, some of our work may also be applicable to
other more constrained environments. We present the results of our implemen-
tation on a Pentium II 400 MHz workstation. These results serve to validate our
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conclusions based primarily on theoretical considerations. Although we make no
claims that our implementations are the best possible (they certainly are not),
and the optimization techniques used for the two larger fields were restricted to
those employed for the smaller fields, we nonetheless hope that our work will
serve as a benchmark for future efforts in this area.

The remainder of this paper is organized as follows. §2 describes the NIST
elliptic curves and presents some rationale for their selection. In §3, we describe
methods for arithmetic in prime fields. §4 and §5 consider efficient techniques
for elliptic curve arithmetic. In §6, we select the best methods for performing
elliptic curve operations in ECC protocols such as the ECDSA, and compare the
performance of the NIST curves over binary and prime fields. Finally, we draw
our conclusions in §7 and discuss avenues for future work in §8.

2 NIST-Recommended Elliptic Curves

In February 2000, FIPS 186-1 was revised by NIST to include the elliptic curve
digital signature algorithm (ECDSA) as specified in ANSI X9.62 [1] with further
recommendations for the selection of underlying finite fields and elliptic curves;
the revised standard is called FIPS 186-2 [20].

FIPS 186-2 has 10 recommended finite fields: 5 prime fields Fp for p192=2192−
264 −1, p224=2224 −296 +1, p256=2256 −2224 +2192 +296 −1, p384=2384 −2128 −
296 + 232 − 1, and p521=2521−1, and the binary fields F2163 , F2233 , F2283 , F2409 ,
and F2571 . For each of the prime fields, one randomly selected elliptic curve
y2 = x3 − 3x + b was recommended (denoted P-192, P-224, P-256, P-384 and
P-521, resp.), while for each of the binary fields one randomly selected elliptic
curve (denoted B-163, B-233, B-283, B-409 and B-571, resp.) and one Koblitz
curve (denoted K-163, K-233, K-283, K-409 and K-571, resp.) was selected.

The fields were selected so that the bitlengths of their orders are at least
twice the key lengths of common symmetric-key block ciphers—this is because
exhaustive key search of a k-bit block cipher is expected to take roughly the same
time as the solution of an instance of the elliptic curve discrete logarithm problem
using Pollard’s rho algorithm for an appropriately-selected elliptic curve over a
finite field whose order has bitlength 2k. The correspondence between symmetric
cipher key lengths and field sizes is given in Table 1. In order to allow for efficient
modular reduction, the primes p for the prime fields Fp were chosen to either be
a Mersenne prime or a Mersenne-like prime with bitsize a multiple of 32.

For binary fields F2m , m was chosen so that there exists a Koblitz curve of
almost prime order over F2m . The remainder of this paper considers the imple-
mentation of the NIST-recommended curves over prime fields.

3 Prime Field Arithmetic

This section presents algorithms for performing arithmetic in Fp in software. For
concreteness, we assume that the implementation platform has a 32-bit archi-
tecture. The bits of a word W are numbered from 0 to 31, with the rightmost
bit of W designated as bit 0.
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Table 1. NIST-recommended field sizes for U.S. Federal Government use.

Symmetric cipher Example Bitlength of p Dimension m of
key length algorithm in prime field Fp binary field F2m

80 SKIPJACK 192 163
112 Triple-DES 224 233
128 AES Small [21] 256 283
192 AES Medium [21] 384 409
256 AES Large [21] 521 571

3.1 Field Representation

The elements of Fp are the integers between 0 and p − 1, written in binary. Let
m = dlog2 pe and t = dm/32e. In software, we store a field element a in an array
of t 32-bit words: a = (at−1, . . . , a2, a1, a0). For the NIST primes p192, p224, p256,
p384 and p521, we have t = 6, 7, 8, 12, and 17, respectively.

3.2 Addition and Subtraction

Alg 1 calculates a + b mod p by first finding the sum word-by-word and then
subtracting p if the result exceeds p − 1. Each word addition produces a 32-bit
sum and a 1-bit carry digit which is added to the next higher-order sum. It is
assumed that “Add” in step 1 and “Add with carry” in step 2 manage the carry
bit. On processors such as the Intel Pentium family which offer an “add with
carry” instruction, these may be fast single-instruction operations.

Algorithm 1. Modular addition

Input: A modulus p, and integers a, b ∈ [0, p− 1].
Output: c = (a + b) mod p.

1. c0←Add(a0, b0).
2. For i from 1 to t− 1 do: ci←Add with carry(ai, bi).
3. If the carry bit is set, then subtract p from c = (ct−1, . . . , c2, c1, c0).
4. If c ≥ p then c← c− p.
5. Return(c).

Modular subtraction is similar to addition; however, the carry is now inter-
preted as a “borrow.” As with addition, the operations in steps 1 and 2 are
especially fast if they are part of the processor’s instruction set.

Algorithm 2. Modular subtraction

Input: A modulus p, and integers a, b ∈ [0, p− 1].
Output: c = (a− b) mod p.

1. c0←Subtract(a0, b0).
2. For i from 1 to t− 1 do: ci←Subtract with borrow(ai, bi).
3. If the carry bit is set, then add p to c = (ct−1, . . . , c2, c1, c0).
4. Return(c).
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3.3 Multiplication and Squaring

Alg 3 is an elementary multiplication routine which arranges the arithmetic so
that the product is calculated right-to-left. Other choices are possible (e.g., see
[16, Alg 14.12]). Step 2.1 requires a 64-bit product of two 32-bit operands. Since
multiplication is typically much more expensive than addition, a (fast) 32×32
multiply instruction should be used if available. In Alg 3, r0, r1, r2, u and v are
32-bit words, and (uv) denotes the 64-bit concatenation of u and v.

Algorithm 3. Integer multiplication

Input: Integers a, b ∈ [0, p− 1].
Output: c = a · b.
1. r0← 0, r1← 0, r2← 0.
2. For k from 0 to 2(t− 1) do

2.1 For each element of {(i, j) | i + j = k, 0 ≤ i, j < t} do
(uv) = ai · bj .
r0←Add(r0, v), r1←Add with carry(r1, u), r2←Add with carry(r2, 0).

2.2 ck← r0, r0← r1, r1← r2, r2← 0.
3. c2t−1← r0.
4. Return(c).

Karatsuba’s method [13] can be used to reduce the number of 32 × 32-bit
multiplications at the cost of some complexity. For comparison, Karatsuba was
implemented with a depth-2 split for each of the three smaller fields of interest.

A straightforward modification of the multiplication algorithm gives Alg 4
for squaring. There are roughly 1/2 fewer multiplication operations. In step 2.1,
the notation “(uv) � 1” indicates multiplication of the 64-bit quantity by 2,
which may be implemented as two shift-through-carry (if available) or as two
additions with carry. Alg 5 for squaring, based on Alg 14.16 of [16] as modified
by Guajardo and Paar [7], was also implemented.

Algorithm 4. Classical squaring

Input: Integer a ∈ [0, p− 1].
Output: c = a2.
1. r0← 0, r1← 0, r2← 0.
2. For k from 0 to 2(t− 1) do

2.1 For each element of {(i, j) | i + j = k, 0 ≤ i ≤ j < t} do
(uv) = ai · aj .
If (i < j) then (uv)� 1, r2←Add with carry(r2, 0).
r0←Add(r0, v), r1←Add with carry(r1, u), r2←Add with carry(r2, 0).

2.2 ck← r0, r0← r1, r1← r2, r2← 0.
3. c2t−1← r0.
4. Return(c).

Despite the simplicity of Algs 3 and 4, register allocation and other (plat-
formdependent) optimizations can greatly influence the performance. For exam-
ple, the Intel Pentium family of processors have relatively few registers, and the
32×32 multiplication is restrictive in the registers involved. Furthermore, some
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care in choosing instruction sequences and registers is required in order to coo-
perate with the processor’s ability to “pair” instructions and fully exploit the
processor’s pipelining capabilities.

Algorithm 5. Squaring

Input: Integer a ∈ [0, p− 1].
Output: c = a2.
1. For i from 0 to 2t− 1 do: ci← 0.
2. For i from 0 to t− 1 do

2.1 (uv)← c2i + a2
i , c2i← v, C1←u, C2← 0.

2.2 For j from i + 1 to t− 1 do
(uv)← ci+j + aiaj + C1, C1←u, (uv)← v + aiaj + C2, ci+j← v, C2←u.

2.3 (uv)←C1 + C2, C2←u, (uv)← ci+t + v, ci+t← v.
2.4 ci+t+1←C2 + u.

3. Return(c).

3.4 Reduction

The NIST primes are of special form which permits very fast modular reduction.
For bitlengths of practical interest, the work of [2] suggests that the methods
of Montgomery and Barrett (which do not take advantage of the special form
of the prime) are roughly comparable. For comparison with the fast reduction
techniques, Barrett reduction was implemented. The arithmetic in Barrett re-
duction can be reduced by choosing b to be a power of 2. Note that calculation
of µ may be done once per field. For the NIST primes Solinas [22] gives Alg 7
for fast reduction modulo p192.

Algorithm 6. Barrett reduction

Input: b > 3, p, k = blogb pc+ 1, 0 ≤ x < b2k, µ = bb2k/pc.
Output: x mod p.
1. q̂←bbx/bk−1c · µ/bk+1c, r← (x mod bk+1)− (q̂ · p mod bk+1).
2. If r < 0 then r← r + bk+1.
3. While r ≥ p do: r← r − p.
4. Return(r).

Algorithm 7. Fast reduction modulo p192 = 2192 − 264 − 1

Input: Integer c = (c5, c4, c3, c2, c1, c0) where each ci is a 64-bit word, and 0 ≤ c < p2
192.

Output: c mod p192.
1. Define 192-bit ints: s1 = (c2, c1, c0), s2 = (0, c3, c3), s3 = (c4, c4, 0), s4 = (c5, c5, c5).
2. Return(s1 + s2 + s3 + s4 mod p192).

3.5 Inversion

Alg 8 computes the inverse of a non-zero field element a ∈ [1, p − 1] using a
variant of the Extended Euclidean Algorithm (EEA). The algorithm maintains
the invariants Aa + dp = u and Ca + ep = v for some d and e which are not
explicitly computed. The algorithm terminates when u = 0, in which case v = 1
and Ca + ep = 1; hence C = a−1 mod p.
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Algorithm 8. Binary inversion algorithm

Input: Prime p, a ∈ [1, p− 1].
Output: a−1 mod p.
1. u← a, v← p, A← 1, C← 0.
2. While u 6= 0 do

2.1 While u is even do:
u←u/2. If A is even then A←A/2; else A← (A + p)/2.

2.2 While v is even do:
v← v/2. If C is even then C←C/2; else C← (C + p)/2.

2.3 If u ≥ v then: u←u− v, A←A− C; else: v← v − u, C←C −A.
3. Return(C mod p).

3.6 Timings

Table 2 presents timing results on a Pentium II 400 MHz workstation for ope-
rations in the NIST prime fields. The first column for Fp192 indicates times for
routines written in C without the aid of hand-coded assembly code1; the other
columns show the best times with most code in assembly. The compiler for these
timings was Microsoft C (professional edition), with maximal optimizations set;
the assembler was the “Netwide Assembler” NASM.

The case for hand-coded assembly is fairly compelling from the table, alt-
hough timings showed that much of the performance benefit in classical mul-
tiplication comes from relatively easy and limited insertion of assembly code.
Some assembly coding was driven by the need to work around the relatively
poor register-allocation strategy of the Microsoft compiler on some code.

As expected, fast reduction for the NIST primes was much faster than Bar-
rett. Despite our best efforts, we could not make Karatsuba multiplication com-
petitive with the classical version (but the situation was different on some plat-
forms where primarily C was used). It is likely that the overhead in the Karatsuba
code can be reduced by additional hand-tuning; however, it appears from the
timings that such tuning is unlikely to be sufficient to change the conclusions for
these fields on the given platform. The implementation of the squaring algorithm
(Alg 5) is slower than classical squaring, in part due to the repeated accesses of
the output array. The ratio of inversion to multiplication (with fast reduction)
is roughly 80 to 1.

4 Elliptic Curve Point Representation

Affine coordinates. Let E be an elliptic curve over Fp given by the (affine)
equation y2=x3−3x+b. Let P1=(x1, y1) and P2=(x2, y2) be two points on E
with P1 6=−P2. The coordinates of P3=P1+P2=(x3, y3) can be computed as:

x3 = λ2 − x1 − x2, y3 = λ(x1 − x3) − y1, where

λ =
y2 − y1

x2 − x1
if P1 6= P2, and λ =

3x2
1 − 3
2y1

if P1 = P2. (1)

1 A notable exception was made in that 32 × 32 multiply (with add) in assembly
was used. This was done because standard C does not necessarily support a 32× 32
multiply and does not give direct access to the carry bit.
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Table 2. Timings (in µs) for operations in the NIST prime fields.

Fp192
a

Fp192 Fp224 Fp256 Fp384 Fp521

Addition (Alg 1) 0.235 0.097 0.114 0.123 0.169 0.162
Subtraction (Alg 2) 0.243 0.094 0.112 0.125 0.158 0.150
Modular reduction
Barrett reduction (Alg 6) 3.645 1.021 1.462 1.543 3.004 5.448
Fast reduction (e.g., Alg 7) 0.223 0.203 0.261 0.522 0.728 0.503
Multiplication (including fast reduction)
Classical (Alg 3) 1.268b 0.823 1.074 1.568 2.884 4.771
Karatsuba 2.654c 1.758 2.347 2.844 — —
Squaring (including fast reduction)
Classical (Alg 4) — 0.705 0.913 1.358 2.438 3.864
Alg 5 1.951c 1.005 1.284 1.867 3.409 5.628
Inversion (Alg 8) 146.21 66.30 88.26 115.90 249.69 423.21

a Coded primarily in C.
b Uses a 32× 32 multiply-and-add.
c Uses a 32× 32 multiply.

When P1 6= P2 (general addition) the formulas for computing P3 require 1 in-
version, 2 multiplications, and 1 squaring—as justified in §3.6, we can ignore the
cost of field additions and subtractions. When P1 = P2 (doubling) the formulas
for computing P3 require 1 inversion, 2 multiplications, and 2 squarings.

Projective coordinates. Since inversion in Fp is significantly more expen-
sive than multiplication (see §3.6), it is advantageous to represent points us-
ing projective coordinates of which several types have been proposed. In stan-
dard projective coordinates, the projective point (X:Y :Z), Z 6=0, corresponds
to the affine point (X/Z, Y/Z). The projective equation of the elliptic curve
is Y 2Z=X3−3XZ2+bZ3. In Jacobian projective coordinates [4], the projective
point (X:Y :Z), Z 6=0, corresponds to the affine point (X/Z2, Y/Z3) and the pro-
jective equation of the curve is Y 2=X3−3XZ4+bZ6. In Chudnovsky Jacobian
coordinates [4], the Jacobian point (X:Y :Z) is represented as (X:Y :Z:Z2:Z3).

Formulas which do not require inversions for adding and doubling points in
projective coordinates can be derived by first converting the points to affine
coordinates, then using the formulas (1) to add the affine points, and finally
clearing denominators. Also of use in left-to-right point multiplication methods
(see §5.1 and §5.2) is the addition of two points using mixed coordinates—where
the two points are given in different coordinates [5].

The field operation counts for point addition and doubling in various coor-
dinate systems are listed in Table 3. From Table 3 we see that Jacobian coordi-
nates yield the fastest point doubling, while mixed Jacobian-affine coordinates
yield the fastest point addition. Also useful in some point multiplication al-
gorithms (see Alg 12) are mixed Jacobian-Chudnovsky coordinates and mixed
Chudnovsky-affine coordinates for point addition. We note that the modified
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Table 3. Operation counts for elliptic curve point addition and doubling. A = affine,
P = standard projective, J = Jacobian, C = Chudnovsky.

Doubling General addition Mixed coordinates
2A→ A 1I, 2M , 2S A + A→ A 1I, 2M , 1S J + A→ J 8M , 3S
2P → P 7M , 3S P + P → P 12M , 2S J + C → J 11M , 3S
2J → J 4M , 4S J + J → J 12M , 4S C + A→ C 8M , 3S
2C → C 5M , 4S C + C → C 11M , 3S

Jacobian coordinates presented in [5] do not yield any speedups over ordinary
Jacobian coordinates for curves with a = −3.
Doubling formulas for Jacobian coordinates are: 2(X1:Y1:Z1)=(X3:Y3:Z3), where

A = 4X1 · Y 2
1 , B = 8Y 4

1 , C = 3(X1 − Z2
1 ) · (X1 + Z2

1 ), D = −2A + C2,

X3 = D, Y3 = C · (A−D)−B, Z3 = 2Y1 · Z1. (2)

Addition formulas for mixed Jacobian-affine coordinates are: (X1 : Y1 : Z1) +
(X2 : Y2 : 1) = (X3 : Y3 : Z3), where

A = X2 · Z2
1 , B = Y2 · Z3

1 , C = A−X1, D = B − Y1,

X3 = D2 − (C3 + 2X1 · C2), Y3 = D · (X1 · C2 −X3)− Y1 · C3, Z3 = Z1 · C. (3)

Addition formulas for mixed Jacobian-Chudnovsky coordinates are: (X1 : Y1 :
Z1) + (X2 : Y2 : Z2 : Z2

2 : Z3
2 ) = (X3 : Y3 : Z3), where

A = X1 · Z2
2 , B = Y1 · Z3

2 , C = X2 · Z2
1 −A, D = Y2 · Z3

1 −B,

X3 = D2 − 2A · C2 − C3, Y3 = D · (A · C2 −X3)−B · C3, Z3 = Z1 · Z2 · C. (4)

5 Point Multiplication

This section considers methods for computing kP , where k is an integer and
P is an elliptic curve point. This operation is called point multiplication and
dominates the execution time of elliptic curve cryptographic schemes. We will
assume that #E(Fp) = nh where n is prime and h is small (so n ≈ p), P has
order n, and k ∈R [1, n − 1]. §5.1 covers the case where P is not known a priori.
One can take advantage of the situation where P is a fixed point (e.g., the base
point in elliptic curve domain parameters) by precomputing some data which
depends only on P ; this case is covered in §5.2.

5.1 Unknown Point

Alg 9 is the additive version of the basic repeated-square-and-multiply method
for exponentiation. The expected number of ones in the binary representation of
k is m/2, whence the expected running time of Alg 9 is approximately m/2 point
additions and m point doublings, denoted 0.5mA + mD. If affine coordinates
(see §4) are used, then the running time expressed in terms of field operations
is 1.5mI + 3mM + 2.5mS, where I denotes an inversion, M a multiplication,
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and S a squaring. If mixed Jacobian-affine coordinates (see §4) are used, then
Q is stored in Jacobian coordinates, while P is stored in affine coordinates.
Thus the doubling in step 2.1 can be performed using (2), while the addition in
step 2.2 can be performed using (3). The field operation count of Alg 9 is then
8mM + 5.5mS + (1I + 3M + 1S) (1 inversion, 3 multiplications and 1 squaring
are required to convert back to affine coordinates).

Algorithm 9. (Left-to-right) binary method for point multiplication

Input: k = (km−1, . . . , k1, k0)2, P ∈ E(Fp).
Output: kP .
1. Q←O.
2. For i from m− 1 downto 0 do

2.1 Q← 2Q.
2.2 If ki = 1 then Q←Q + P .

3. Return(Q).

If P = (x, y)∈E(Fp) then −P = (x,−y). Thus point subtraction is as efficient
as addition. This motivates using a signed digit representation k =

∑
ki2i, where

ki ∈ {0,±1}. A particularly useful signed digit representation is the non-adjacent
form (NAF) which has the property that no two consecutive coefficients ki are
nonzero. Every positive integer k has a unique NAF, denoted NAF(k). Moreover,
NAF(k) has the fewest non-zero coefficients of any signed digit representation
of k, and can be efficiently computed (see Alg 12 of [8]).

Alg 10 modifies Alg 9 by using NAF(k) instead of the binary representation
of k. It is known that the length of NAF(k) is at most one longer than the binary
representation of k. Also, the average density of non-zero coefficients among all
NAFs of length l is approximately 1/3 [19]. It follows that the expected running
time of Alg 10 is approximately (m/3)A + mD.

Algorithm 10. Binary NAF method for point multiplication

Input: NAF(k) =
∑l−1

i=0 ki2i, P ∈ E(Fp).
Output: kP .
1. Q←O.
2. For i from l − 1 downto 0 do

2.1 Q← 2Q.
2.2 If ki = 1 then Q←Q + P .
2.3 If ki = −1 then Q←Q− P .

3. Return(Q).

If some extra memory is available, the running time of Alg 10 can be decrea-
sed by using a window method which processes w digits of k at a time. One
approach we did not implement is to first compute NAF(k) or some other signed
digit representation of k (e.g., [18]), and then process the digits using a sliding
window of width w. Alg 11 from [23], described next, is another window method.

A width-w NAF of an integer k is an expression k =
∑l−1
i=0 ki2i, where each

non-zero coefficient ki is odd, |ki| < 2w−1, and at most one of any w consecu-
tive coefficients is nonzero. Every positive integer has a unique width-w NAF,
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denoted NAFw(k), which can be efficiently computed (see [8]). The length of
NAFw(k) is at most one longer than the binary representation of k. Also, the
average density of non-zero coefficients among all width-w NAFs of length l is
approximately 1/(w+1) [23]. It follows that the expected running time of Alg 11
is approximately (1D +(2w−2 − 1)A)+ (m/(w +1)A+mD). When using mixed
Jacobian-Chudnovsky coordinates, the running time is minimized when w = 5
for P-192, P-224, and P-256, while w = 6 is optimal for P-384 and P-521.

Algorithm 11. Window NAF method for point multiplication

Input: Window width w, NAFw(k) =
∑l−1

i=0 ki2i, P ∈ E(Fp).
Output: kP .

1. Compute Pi = iP , for i ∈ {1, 3, 5, . . . , 2w−1 − 1}.
2. Q←O.
3. For i from l − 1 downto 0 do

3.1 Q← 2Q.
3.2 If ki 6= 0 then:

If ki > 0 then Q←Q + Pki ; Else Q←Q− Pki .

4. Return(Q).

5.2 Fixed Point

If the point P is fixed and some storage is available, then point multiplication can
be sped up by precomputing some data which depends only on P . For example,
if the points 2P, 22P, . . . , 2m−1P are precomputed, then the right-to-left binary
method has expected running time (m/2)A (all doublings are eliminated). In
[3], a refinement of this idea was proposed. Let (kd−1, . . . , k1, k0)2w be the 2w-
ary representation of k, where d = dm/we, and let Qj =

∑
i:ki=j 2wiP . Then

kP =
∑d−1
i=0 ki(2wiP ) =

∑2w−1
j=1 (j

∑
i:ki=j 2wiP ) =

∑2w−1
j=1 jQj . Hence

kP = Q2w−1 + (Q2w−1 + Q2w−2) + · · · + (Q2w−1 + Q2w−2 + · · · + Q1). (5)

Alg 12 is based on (5). Its expected running time is approximately ((d(2w −
1)/2w−1)+(2w−2))A. The optimum choice of coordinates is affine in step 1, mi-
xed Chudnovsky-affine in step 3.1, and mixed Jacobian-Chudnovsky in step 3.2.

Algorithm 12. Fixed-base windowing method

Input: Window width w, d = dm/we, k = (kd−1, . . . , k1, k0)2w , P ∈ E(Fp).
Output: kP .

1. Precomputation. Compute Pi = 2wiP , 0 ≤ i ≤ d− 1.
2. A←O, B←O.
3. For j from 2w − 1 downto 1 do

3.1 For each i for which ki = j do: B←B + Pi. {Add Qj to B}
3.2 A←A + B.

4. Return(A).
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In a variant of the comb method [15], the binary integer k is written in w rows,
and the columns of the resulting rectangle are processed two columns at a time.
We define [aw−1, . . . , a2, a1, a0]P = aw−12(w−1)dP+· · ·++a222dP+a12dP+a0P ,
where d = dm/we and ai ∈ {0, 1}. The expected running time of Alg 13 is
((d − 1)(2w − 1)/2w)A + ((d/2) − 1)D. The optimum choice of coordinates is
affine in step 1, Jacobian in step 4.1, and mixed Jacobian-affine in step 4.2.

Algorithm 13. Fixed-base comb method with two tables

Input: Window width w, d = dm/we, k = (km−1, . . . , k1, k0)2, P ∈ E(Fp).
Output: kP .
1. Precomputation. Let e = dd/2e. Compute [aw−1, . . . , a0]P and 2e[aw−1, . . . , a0]P

for all (aw−1, . . . , a1, a0) ∈ {0, 1}w.
2. By padding k on the left with 0’s if necessary, write k = Kw−1‖ · · · ‖K1‖K0, where

each Kj is a bit string of length d. Let Kj
i denote the ith bit of Kj .

3. Q←O.
4. For i from e− 1 downto 0 do

4.1 Q← 2Q.
4.2 Q←Q + [Kw−1

i , . . . , K1
i , K0

i ]P + 2e[Kw−1
i+e , . . . , K1

i+e, K
0
i+e]P

5. Return(Q).

From Table 4 we see that the fixed-base comb method is expected to slightly
outperform the fixed-base window method for similar amounts of storage. For
our implementation, we chose w = 4 for the comb method and w = 5 for fixed-
base window for curves over Fp192 , Fp224 , and Fp256 ; the curves over the larger
fields Fp384 and Fp521 used w = 5 for comb and w = 6 in fixed-base window.

Table 4. Comparison of fixed-base window and fixed-base comb methods for Fp192 .
w is the window width, S denotes the number of points stored in the precomputation
phase, and T denotes the number of field operations.

w = 2 w = 3 w = 4 w = 5 w = 6 w = 7 w = 8
Method S T S T S T S T S T S T S T

Fixed-base window 95 860 63 745 47 737 38 876 31 1246 27 2073 23 3767
Fixed-base comb 6 1188 14 900 30 725 62 632 126 529 254 472 510 415

5.3 Timings

Table 5 presents rough estimates of costs in terms of both elliptic curve operati-
ons and field operations for point multiplication methods for the P-192 elliptic
curve. Table 6 presents timing results for the NIST curves over prime fields,
obtained on a Pentium II 400 MHz workstation. The field arithmetic is largely
in assembly, while the curve arithmetic is in C. The timings in Table 6 are con-
sistent with the estimates in Table 5. The large inverse to multiplication ratio
gives a slight edge to the use of Chudnovsky over affine in Window NAF. As
predicted, the simpler binary NAF with Jacobian coordinates obtains fairly com-
parable speeds with less code. The first column in Table 6 illustrates the rather
steep performance penalty for using C over assembly in the field operations.
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Table 5. Rough estimates of point multiplication costs for P-192, with S = .85M .

Points EC operations Field operations
Method Coordinates w stored A D M I Totala

Binary affine — 0 96 191 980 287 23940
(Alg 9) Jacobian-affine — 0 96 191 2430 1 2510
Binary NAF affine — 0 64 191 889 255 21289
(Alg 10) Jacobian-affine — 0 64 191 2092 1 2172
Window NAF Jacobian-affine 4 3 42 192 1844 4 2164
(Alg 11) Jacobian-Chudnovsky 5 7 39 192 1949 1 2029
Fixed-base window Chudnovsky-affine & 5 38 30+37b 0 796 1 876
(Alg 12) Jacobian-Chudnovsky
Comb (Alg 13) Jacobian-affine 4 30 45 23 645 1 725

a Total cost in field multiplications assuming 1I = 80M .
b Jacobian-Chudnovsky + Chudnovsky-affine.

Table 6. Timings (in µs) for point multiplication on the NIST curves over prime fields.

P-192a P-192 P-224 P-256 P-384 P-521
Binary (Alg 9)
Affine 44,604 20,570 31,646 47,568 153,340 347,478
Jacobian-affine 4,847 2,443 3,686 6,038 20,570 35,171
Binary NAF (Alg 10)
Affine 39,838 18,306 26,260 42,402 136,376 310,386
Jacobian-affine 4,386 2,144 3,255 5,298 17,896 30,484
Window NAF (Alg 11)
Jacobian-affineb 4,346 2,103 3,144 5,058 16,374 27,830
Jacobian-Chudnovskyc 4,016 1,962 2,954 4,816 16,163 27,189
Fixed-base window (Alg 12)
Chud-affine & Jacobian-Chudc 1,563 812 1,161 1,773 6,389 9,533
Fixed-base comb (Alg 13)
Jacobian-affineb 1,402 681 1,052 1,672 4,656 8,032

a Field ops coded primarily in C except for 32×32 multiply-and-add instructions.
b w = 4 in P-192, P-224, and P-256; w = 5 in P-384 and P-521.
c w = 5 in P-192, P-224, and P-256; w = 6 in P-384 and P-521.

6 ECDSA Elliptic Curve Operations

The execution times of elliptic curve cryptographic schemes such as the ECDSA
[1] are typically dominated by point multiplications. In ECDSA, there are two
types of point multiplications, kP where P is fixed (signature generation), and
kP + lQ where P is fixed and Q is not known a priori (signature verification).
One method to potentially speed the computation of kP + lQ is simultaneous
multiple point multiplication (Alg 15), also known as Shamir’s trick. Alg 15 has
an expected running time of (22w − 3)A + ((d − 1)(22w − 1)/22wA + (d − 1)wD),
and requires storage for 22w points.
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Algorithm 15. Simultaneous multiple point multiplication

Input: Window width w, k = (km−1, . . . , k1, k0)2, l = (lm−1, . . . , l1, l0)2, P, Q ∈ E(Fp).
Output: kP + lQ.

1. Compute iP + jQ for all i, j ∈ [0, 2w − 1].
2. Write k = (kd−1, . . . , k1, k0) and l = (ld−1, . . . , l1, l0) where each ki and li is a

bitstring of length w, and d = dt/we.
3. R←O.
4. For i from d− 1 downto 0 do: R← 2wR, R←R + (kiP + liQ).
5. Return(R).

Table 7 lists the most efficient methods for computing kP , P fixed, for all the
NIST curves. The timings for the binary curves are from [8]. For each type of
curve, two cases are distinguished—when there is no extra memory available and
when memory is not heavily constrained. Table 8 does the same for computing
kP + lQ where P is fixed and Q is not known a priori. We should note that
no special effort was expended in optimizing our field arithmetic over the larger
fields Fp384 , Fp521 , F2409 and F2571—the optimization techniques used for these
fields were restricted to those employed in the smaller fields.

Table 9 presents timings for these operations for the P-192 curve when the
field arithmetic is implemented primarily in assembly, when Barrett reduction
is used instead of fast reduction, and when the field arithmetic is implemented
primarily in C. Since Barrett reduction does not exploit the special nature of the
NIST primes, the Barrett column of Table 9 can be interpreted as rough timings
for ECDSA operations over a random 192-bit prime.

Table 7. Timings (in µs) of the fastest methods for point multiplication kP , P fixed,
in ECDSA signature generation.

Curve Memory Fastest NIST
type constrained? method curve

P-192 P-224 P-256 P-384 P-521
Random No Fixed-base comba 681 1,052 1,672 4,656 8,032
prime Yes Binary NAF Jacobian 2,144 3,255 5,298 17,896 30,484

B-163 B-233 B-283 B-409 B-571
Random No Fixed-base combb 1,683 3,966 5,919 12,448 30,120
binary Yes Montgomery 3,240 7,697 11,602 29,535 71,132

K-163 K-233 K-283 K-409 K-571
Koblitz No FBW TNAF (w=6) 1,176 2,243 3,330 7,611 18,118
binary Yes TNAF 1,946 4,349 6,612 15,762 37,685

a w = 4 for P-192, P-224, and P-256; w = 5 for P-384 and P-521.
b w = 4 for B-163, B-233, and B-283; w = 5 for B-409 and B-571. A “single table”

comb method was used, which has half the points of precomputation for a given w
compared with Alg 13.
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Table 8. Timings (in µs) of the fastest methods for point multiplications kP + lQ, P
fixed and Q not known a priori, in ECDSA signature verification.

Curve Memory
type constrained? Fastest method NIST curve

P-192 P-224 P-256 P-384 P-521
Random No Fixed-base comba + 2,594 3,965 6,400 20,610 34,850
prime Window NAF Jac-Chudb

No Simultaneous (w=2) 2,663 4,898 7,510 22,192 40,048
Yes Binary NAF Jacobian 4,288 6,510 10,596 35,792 60,968

B-163 B-233 B-283 B-409 B-571
Random No Simultaneous (w=2) 4,969 11,332 16,868 42,481 100,963
binary No Fixed-base comb (w=5) — — — 41,322 98,647

+ Window NAF (w=5)
Yes Montgomery 6,564 15,531 23,346 59,254 142,547

K-163 K-233 K-283 K-409 K-571
Koblitz No Window TNAF (w=5) 2,702 5,348 7,826 17,621 40,814
binary + FBW TNAF (w=6)

Yes TNAF 3,971 8,832 13,374 31,618 75,610

a w = 4 for P-192, P-224, and P-256; w = 5 for P-384 and P-521.
b w = 5 for P-192, P-224, and P-256; w = 6 for P-384 and P-521.

Table 9. Timings (in µs) of the fastest methods for point multiplication kP , P fixed,
and for kP + lQ, P fixed and Q not known a priori on the P-192 curve.

Point multiplication Field arithmetic Barretta Field arithmetic
method primarily in assembly reduction primarily in C
For kP :
Fixed-base comb (w = 4) 681 1,211 1,402
Binary NAF Jacobian 2,144 3,906 4,386
For kP + lQ:
Fixed-base comb (w = 4) + 2,594 4,767 5,278
Window NAF Jac-Chud (w = 5)
Simultaneous (w = 2) 2,663 4,907 5,407
Binary NAF Jacobian 4,288 7,812 8,772

a Fast reduction is replaced by an assembler version of Barrett reduction (Alg. 6).

Finally, to give an indication of which field operations are worthy of further
optimization efforts, Table 10 gives the percentage of the total time spent in
Alg 10 on addition, subtraction, integer multiplication, integer squaring, fast
reduction, and inversion. Note that 95.4% of the total execution time was spent
on these basic operations.
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Table 10. Average number of function calls and percentage of time spent on the basic
field operations in executions of the binary NAF Jacobian method (Alg 10) for the
P-192 curve.

Field Number of Percentage of
operation function calls total time
Addition (Alg 1) 1,137 5.8%
Subtraction (Alg 2) 1,385 7.4%
Integer multiplication (Alg 3) 1,213 38.3%
Integer squaring (Alg 4) 934 28.2%
Fast reduction (Alg 7) 2,147 14.8%
Modular inversion (Alg 8) 1 0.9%

7 Conclusions

Significant performance improvements are obtained when using Jacobian and
Chudnovsky coordinates, primarily due to the high inversion to multiplication
ratio observed in our implementation. The high cost of inversion also favored
precomputation in Chudnovsky coordinates for point multiplication (in the case
of a point which is not known a priori), although some extra storage was also
required.

As a rough comparison with curves over binary fields, times for the curves
over the smaller fields in ECDSA operations show that known-point multiplica-
tions were significantly faster in the Koblitz (binary) and random prime cases
than for the random binary case. For the point multiplication kP + lQ where
only P is known a priori, the random prime timings were somewhat faster than
the Koblitz binary times, and both were significantly faster than the random
binary times.

In our environment, hand-coded algorithms in assembly for field arithmetic
gave significant performance improvements. It should be noted that the routines
for curves over binary fields in the ECDSA tables were written entirely in C;
some performance improvements would be obtained if segments were optimized
with assembly, although it is expected that these would be less than in the
prime-field case.

As expected, the special form of the NIST primes makes modular reduction
very fast; the times for reduction with the Barrett method were larger than the
fast reduction by a factor of more than 2.5.

8 Future Work

A careful and extensive study of ECC implementation in software for constrai-
ned devices such as smart cards, and in hardware, would be beneficial to prac-
titioners. Also needed is a thorough comparison of the implementation of ECC,
RSA, and discrete logarithm systems on various platforms, continuing the work
reported in [6,9,12].
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Abstract. We consider the basic version of the asymmetric cryptosy-
stem HFE from Eurocrypt 96.
We propose a notion of non-trivial equations as a tentative to account for
a large class of attacks on one-way functions. We found equations that
give experimental evidence that basic HFE can be broken in expected
polynomial time for any constant degree d. It has been independently
proven by Shamir and Kipnis [Crypto’99].
We designed and implemented a series of new advanced attacks that are
much more efficient that the Shamir-Kipnis attack. They are practical
for HFE degree d ≤ 24 and realistic up to d = 128. The 80-bit, 500$
Patarin’s 1st challenge on HFE can be broken in about 262.
Our attack is subexponential and requires n

3
2 log d computations. The

original Shamir-Kipnis attack was in at least nlog2 d. We show how to im-
prove the Shamir-Kipnis attack, by using a better method of solving the
involved algebraical problem MinRank. It becomes then in n3 log d+O(1).
All attacks fail for modified versions of HFE: HFE− (Asiacrypt’98),
vHFE (Eurocrypt’99), Quartz (RSA’2000) and even for Flash
(RSA’2000).

Key Words: asymmetric cryptography, finite fields, one-way functions, Hidden
Field Equation, HFE problem, basic HFE, MinRank problem, short signature.

1 Introduction

The HFE trapdoor function Eurocrypt 96 [14], defined in 4, is one of the most
serious alternative trapdoor functions. It generalizes the previous Matsumoto-
Imai cryptosystem from Eurocrypt 88 [9] broken by Patarin in [13,14].

HFE operates over finite fields. In this paper we restrict to the basic version
of HFE, and to fields of characteristic 2. Thus we study a trapdoor function
F : GF (2n) → GF (2n). We focus on the cracking problem of computing the
inverse of the basic HFE encryption function, without trying to recover it’s secret
key.

In the section 2 we attempt to base a notion of a one-way function on algebraic
criteria. We propose a ”boosting model” which is nothing else that a kind of se-
mantics of all deterministic cryptographic attacks. This approach, subsequently
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narrowed down, proves particularly relevant to HFE attacks. The security is ex-
pressed in terms of properties of implicit equations that relate the inputs xi and
the outputs yi of a function. An equation substituted with a given output value
may, or may not, produce a new non-trivial equation on xi. New equations boost
the set of known linearly independent equations on the xi, and at some point
they should allow to compute the actual values of the xi.

There is no doubt that our problem is closely related to polynomial elimi-
nation (Gröbner bases, XL algorithm [21]). Thus in section 3 we study the NP-
complete problem of solving multivariate quadratic equations called sometimes
MQ. A simple idea of linearizing and applying Gauss elimination can indeed be
seen as eliminating equations (simple case of Gröbner bases algorithm), however
we reinterpret it in section 3 in terms of implicit equations.

We distinguish between this ’elimination paradigm’ and our approach called
’implicit equations paradigm’. Those methods ar different and complementary.
We don’t combine equations formally, trying to eliminate among all equations
that we could construct within some size limitation. Instead of that, the problem
is to find special subsets of such equations, that for algebraical reasons might be
related. We are not limited (at all) by the size the equations, but only the size
of the subset we selected (!).

The whole idea that it is interesting to do so, is the object of this paper. We
may go back to the cryptanalysis of the Matsumoto-Imai cryptosystem described
briefly in 4.1, to understand that algebraical reasons may suggest (or prove) the
existence of some type of equations. The idea had several generalizations, such
as the affine multiple attack by Jacques Patarin [13,8] and other described here
and in [3]. It was already known since [14] that some such equations will exist
for basic HFE. In the present paper we show precisely what kind of equations
exist and how to use them in realistic attacks.

Though it is very clear that the equations we have found in the present
paper, exist for algebraical reasons, we were not able to explain them. They
have been found on much more experimental basis, and it remains an open
problem to understand them better. We did several months of extended computer
simulations (section 5.6), to find memory-efficient types of equations that gave
what is now the best known attack on basic HFE.

In the whole process of solving equations by finding other equations, we
had to distinguish different types of equations. We denote them by expressions
in x, y, X, Y , see section 5.1). We also distinguish several kinds of equations in
terms of both their behaviour and a way they have been computed. Thus we had
to invent some special vocabulary and notations, especially that some notions
are informal.

A glossary of words that have special meaning in this paper, usually ”double-
quoted”, along with common notations, is compiled at the end of the paper.

The section 5 shows precisely several classes of equations we have found and
their immediate applications in an attack. Thus we get a strong experimental
evidence that basic HFE can be broken in expected polynomial time if the degree
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d is constant. The same result has just been independently found by Shamir and
Kipnis at Crypto’99 [23].

We show that basic HFE is not secure for degree d ≤ 24, while the original
paper [14] suggested the HFE degree d = 17 as secure enough. Therefore, as we
show in 5.10, in order to break the 500$ HFE challenge with d = 96 we need 262

computations and 33 Tb of memory.
We introduced successive improvements to this attack. First, it is in fact

possible to recover, recompose and use only parts of the equations (”reconcilia-
tion attack”) - section 6.1. Secondly, the ”distillation attack” of section 6.1-6.3
manages also to remove other, ”interference” equations that unfortunately ap-
pear when the parts are too small. The final output is a method that uses very
long equations without ever computing them, which dramatically reduces the
memory requirements for Challenge 1 to 390 Gb.

In the section 7.1 we estimate the asymptotic complexity of our attacks. It is
polynomial for a fixed HFE degree d and subexponential in general. If we go back
to the Shamir-Kipnis attack on (basic) HFE from Crypto’99 [23], though it is
very different, it gives similar results with much worse complexity. In the section
8 we introduce an improved version of it, that gives the asymptotic complexity
similar that our attacks.

It is not true that HFE is broken. All attacks may have substantial complexity
and completely fail for any modified version of HFE, see section 10.

2 Algebraic Paradigm for One-wayness

Let’s consider any attack on any deterministic one-way function which we sup-
pose described as a set of explicit arithmetic formulae yi = Fi(x1, . . . , xn). We
point out that following the first Gödel theorem, such equations can be written
for any deterministic algorithm. The answer x we are looking for is also seen as
a set of equations, though much simpler xi = . . ., which a hypothetical attack
would evaluate to. Therefore any deterministic attack, is a series of transfor-
mations that starts from somewhat complex equations and eventually produces
simpler ones. We call these ”boosting transformations” as they boost the num-
ber of all equations with a know value, and produce simpler and therefore more
”meaningful” equations. But what are simple or complex equations ? We must
adopt a necessarily restrictive approach with a notion of complexity.

One possible notion of complexity is the non-linear degree. Every boolean
function is a multivariate polynomial over GF (2) (algebraic normal form). It
seems to be an appropriate measure of complexity, especially to study HFE,
based itself on bounded degree (quadratic) equations.

We would like to define a secure cryptographic primitive. However we don’t
say that they are no attacks, neither that all the attacks fail, which means little.
We try to formalize how they fail.

The random oracle paradigm would be to ignore that the function formulae
exist. It is used for a symmetric primitives but is meaningless for asymmetric
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primitives. Indeed, they are usually described by some strikingly simple equa-
tions e.g. x 7→ xe. Thus, after all, this belief about every attack being kind of
”completely puzzled by the irreducible randomness of answers to all possible
questions”, maybe it is not necessary at all to achieve security ?

We can even admit that some attacks exist, as long as they are hard to find
and we cannot know the result before we executed the whole attack (experimen-
tal attacks without theoretical basis). For such general attacks, we suppose them
to fail in most cases, even if they always do output some new equations. In fact
it’s very likely that we get only equations that are trivial combinations of those
we have known and/or of higher degree that those given. Such a primitive would
be considered secure.

Definition 2.0.1 (A one-way function - very informal). is a function that
admits only trivial equations.

It is an attempt to give an algebraic definition of a one-way function. Still
we need to precise what are ”trivial” and ”non-trivial” equations.

Definition 2.0.2 (Trivial equations - informal). are explicit bounded de-
gree polynomials over the equations Yi and variables xi that does not exceed a
given maximum sizemax (or of polynomial size) and such that their degree as a
function of xi does not collapse.

Definition 2.0.3 (Non-trivial equations -informal). are also bounded com-
binations of the Yi and xi, limited in size all the same, but their degree does
collapse.

These equations, though could be generated explicitly are obtained in an
attack in an implicit way. We solve equations on their coefficients that come
from the expressions of the Yi or from a series of (cleartext,ciphertext) pairs
(x, y).

3 Solving Quadratic Boolean Equations, MQ over GF(2)

In this paper we always consider nb quadratic equations yi = Yi(x1, . . . , xna)
with na variables xi ∈ GF (q). If otherwise stated na = nb = n and q = 2.

The general problem of solving quadratic equations is called MQ and proved
NP-complete, in [18,6], which guarantees (only) worst-case security. However in
the current state of knowledge, the MQ problem is hard even in average case,
see [21] and about as hard as the exhaustive search in practice for n < 100 [21].

The Gaussian reduction that eliminates variables, can also be applied to
MQ if nb > na(na − 1)/2. Thus the so called linearization puts zi = xixk and
eliminates the new variables. We say rather that it implies the existence of at
least nb − na(na − 1)/2 equations of the form:

∑
αiyi =

∑
βixi + γ
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We call it equations of ”type X+Y” later on, and the important point is
that the fact that nb > na(na − 1)/2 implies their existence, but the reverse is
obviously false. They may exist even if for small nb and it’s always interesting
to check if they do.

4 The HFE Problem

We give a simple mathematical description of the so called ”HFE problem”.
More details on various aspects of HFE can be found in [14,4,3,15,18].

The HFE problem defined below is defined as finding one reverse image for a
basic version of the HFE cryptosystem exactly as initially proposed at Eurocrypt
1996 [14]. First we recall two basic facts from [14]:

Fact 4.0.4. Let P be a polynomial over GF (qn)of the special form:

P (a) =
∑

i

αi · aqsi+qti
. (1)

Then P can be written as n multivariate quadratic equations equations over
the ai ∈ GF (q).

Fact 4.0.5 (HFE trapdoor). If P is a polynomial of degree at most d that
P−1({b}) can be computed in time d2(ln d)O(1)n2 GF (q) operations, see [14,7].

Definition 4.0.6 (HFE Problem). Let S and T be two random secret bijec-
tive and affine multivariate variable changes. Let

F = T ◦ P ◦ S. (2)

We believe that it’s difficult to compute F−1 as far as it’s decomposition
F−1 = S−1 ◦ P−1 ◦ T−1 remains secret.

4.1 Examples of HFE Problem

The simplest non-linear case of basic HFE is P = aqα+qβ

. It is called the
Matsumoto-Imai cryptosystem (or C∗) [9] from Eurocrypt’88. A toy example
of public equations can be found in [13].

It has been broken 7 years after the proposal [13]. The cryptanalysis ([13,8,
14]) shows that there exist at least 2/3n of what we describe later as equations
of ”type XY ”, and what are simply implicit bi-affine equations involving input
and output variables xi and yi:

∑
αijxiyj +

∑
βixi +

∑
γjyj + δ = 0

The Attack is as follows: first we recover these equations by Gaussian elimination
on their coefficients. Then we recover x substituting y in these equations.
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4.2 HFE Challenge 1

It has been proposed by Jacques Patarin in the extended version of [14].
The HFE polynomial is of degree d = 80 over GF (2n) with n = 80 bits.

The price of 500$ is promised for breaking the signature scheme that amounts
to computing F−1 three times. An example of F can be downloaded from [4].

5 Implicit Equations Attack

5.1 Types of Equations

We have a convention to describe an equation type:

1. The equation type is a union of terms in formal variables x, y, X, Y , for
example: XY ∪ x2.

2. A term xkyl denotes all the terms of degree exactly k in all the xi, i = 1..na

and of degree exactly l in yi, i = 1..nb.
Important: If the variables are in GF (q), the degrees must be in [0..q − 1].

3. The capital X, Y describe equation sets that include all the lower degree
terms. For example: XY ∪ x2 ≡ 1 ∪ x ∪ y ∪ xy ∪ x2.

4. If necessary we distinguish by {XY ∪ x2} the set of terms used in the corre-
sponding equation type, while [XY ∪x2] denotes the set of equations of this
type.

5.2 Invariant Equations

Definition 5.2.1 (Invariant equations). Set of equations with their set of
terms invariant modulo any bijective affine S and T variable changes.

For example [X2Y ] is invariant but not [x2y]. The definition states that the
sets of terms involved are invariant, that implies that the number of equations
that exist for a given type is invariant (but each of the equations is invariant).

If the equations are invariant, the number of equations of a given type will
be the same for any output value. Thus we can assume that we are solving
F−1(y) with y = 0 without loss of generality. We make this assumption for all
subsequent attacks. The problem of the invariant equations of higher degree is
that they are still at least quadratic after substituting y.

5.3 ”Biased” Equations

Definition 5.3.1 (Biased). equations are the equations that after substitution
of y = 0 reduce to a affine equation of the xi ( type X).

Proposition 5.3.2. If there is ”enough” invariant equations, there exist
”enough” biased equations.
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Enough means the equal to the number of terms remaining after substitution
of y = 0. The proposition is trivial, we eliminate in a set of implicit equations
all the terms of {X∞ − X} before the substitution of y = 0. The important
point that biased equations may exist even if it is not guaranteed by the above
proposition. Our experiences in 5.6 has indeed shown they do.

Another important property of the biased equations is that they allow a
single round attack. The result of substitution of y = 0 are linear in the xi. The
drawback is that they are made for a single y value. The whole attack must be
re-iterated to compute several F−1(y) for different y.

Important: The ”biased” equations does not need to be computed comple-
tely in an attack. Only the coefficients of the terms in xi as well as constant
parts are needed (!)

5.4 The size of the Equations

We call size the number of terms of type xixjyk etc.. that are used in the type
of equations considered. The implicit equations attack requires huge quantities
of memory, because the length size of the equations is polynomial in n of degree
at least 3 − 4, and the attack memory requirements are quadratic still in size.

We express size as a function of the number of input and output variables,
respectively na and nb. In [3] one can find a complete reference table that allows
to compute size values. For example, for fields of characteristic 2:

size
XY∪x2y∪xy2∪x3y∪x2y2 =

7
12

nanb+
1
4
(nan2

b −n2
anb+n2

an2
b)+

1
6
n3

anb+na+nb+1.

5.5 Trivial Equations

Since the yi are quadratic, therefore we have nb equations of the type [1 ∪ x ∪
x2 ∪ y]. All the equations that are the consequence of these equations are called
trivial. In practice, when na is bigger than some initial threshold, the number of
trivial equations is always the number that we get when we pick all quadratic
equations at random. Example:

In [XY ∪ x2] there are n trivial equations, the same as in [1 ∪ x ∪ x2 ∪ y].
Trivial equations, though they mix with ”non-trivial’ equations” used in cryp-

tanalysis, are predictable and harmless. When the yi values substituted to the
linear mix of the non-trivial and trivial equations, we eliminate the interference
as trivial equations always reduce to 0.

The exact number trivialtype of trivial equations is not obvious to compute.
Those that come from the interaction of different components of the ’type’ ex-
pression, may overlap and thus type 7→ trivialtype is not an additive function.
In [3] we compute trivialtype for all the equation types we consider.

5.6 Results

In the following table on page 273, we show the number of equations of different
types found for basic HFE. We did much more such computations in [3].
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Table 1. Non-trivial equations found for basic HFE

n=21 Equation type

d XY XY ∪ x2y XY ∪ x2y ∪
xy2

X2Y X2Y ∪ XY 2

∪X3
XY ∪ x2y ∪
xy2 ∪ x3y ∪
x2y2

3 42 → 19 693 → 19 1995 → 19 882 → 210 2688 → 484 ...

4 21 → 21 441 → 21 1995 → 21 630 → 210 2688 → 484 ...

5 1 → 1 232 → 18 1177 → 18 357 → 144 1806 → 484 ...

8 1 → 1 170 → 20 1094 → 20 336 → 184 1764 → 484 ...

9 0 → 0 126 → 18 672 → 18 231 → 124 1134 → 337 ...

16 0 → 0 43 → 20 568 → 20 168 → 144 1092 → 379 ...

17 0 → 0 0 → 0 63 → 16 84 → 84 357 → 169 ...

24 0 → 0 0 → 0 22 → 18 84 → 84 315 → 311 ...

32 0 → 0 0 → 0 0 → 0 64 → 64 315 → 315 ...

33 0 → 0 0 → 0 0 → 0 0 → 0 147 → 147 ...

64 0 → 0 0 → 0 0 → 0 0 → 0 147 → 147 4739 → 20

65 0 → 0 0 → 0 0 → 0 0 → 0 42 → 42 1911 → 17

96 0 → 0 0 → 0 0 → 0 0 → 0 42 → 42 1638 → 21

128 0 → 0 0 → 0 0 → 0 0 → 0 42 → 42 1547 → 20

129 0 → 0 0 → 0 0 → 0 0 → 0 0 → 0 0 → 0

Legend:

We write the equation number found as A → B with:

A is the number of non-trivial equations found, which means we have subtracted the
number of trivial equations. This convention allows, at least as long as n is not too
small, to have 0 at places where HFE behaves exactly as a random multivariate
quadratic function (MQ).

B Is the number of the above equations that remain linearly independent after sub-
stitution of a randomly chosen y value. We apply an analogous convention for the
origin, trivial equations are subtracted.

The memory needed to do these computations was up to 1.2 Gbyte and for this reason
we had to skip some irrelevant cases.
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Interpretation in terms of security:

If we get somewhere more that 0 equations, it is a weakness, but not necessarily
a working attack.

The only HFE that can pretend to be secure, should give 0 non-trivial equa-
tions for all the types we can compute within realistic memory limits.

5.7 Interpretation of the Results

In the computations on page 272 more and more complex equations exist when
d increases. In [3] we consider many more different equation types and other
q 6= 2.. The subtypes of types [X lY ] prove the best because at constant size,
their degree in x is smaller.

We observed that the degrees d = qk + 1..qk+1 behave almost the same way
and that the number of non-trivial equations found behaves as O(nα(dlogq de,
type) with a constant α(dlogq de, type). We postulate that:

Conjecture 5.7.1. A basic HFE (or the HFE problem) of degree d admits O(n)
equations of type [X ∪ x2y ∪ . . . ∪ x

1
2 dlogq de−1y].

In a later attack we will ”cast’ these equations over a smaller subspace, but we
will see in the section 6 that we can only recover them starting from a threshold
na = nart(n, type), a threshold memory (usually in Terabytes) and a threshold
computing power. It means that today’s computers are not powerful enough to
find what happens for the equations more complex that the one we have already
studied (!)

5.8 The Complexity of the Attacks

The memory used in the attack is quadratic in size and is equal to size2/8 bytes.
In terms of speed, the essential element of all the attacks is the Gaussian

elimination. Though better algorithms exist in theory, [2], they are not practical.
We have implemented a trivial algorithm in O(size3). A structured version of
it can go as fast as CPU clock while working on a huge matrix on the disk (!).
Assuming that a 64-bit XOR in done in one clock cycle, we estimate that the
structured elimination takes 2 · size3/64 CPU clocks.

5.9 Realistic HFE Attacks when d ≤ 24

We see in 5.6 that for d <= 24 equations of type XY ∪ x2y ∪ xy2 give between
O(n) and O(n2) equations, enough to break basic HFE. For example we consider
an attack for n = 64 bits HFE with the degree d ≤ 24:

sizeXY ∪x2y∪xy2(64, 64) = O(n3) (3)
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The precise computation yields size = 262 273 and thus the memory required
in the attack is size2/8 = O(n6) = 8 Gb. The running time is 2 · size3/64 ≈ 248

CPU clocks, few days on a PC, and it is not our best attack yet.
Thus basic HFE is not secure for d ≤ 24. The asymptotic complexity is at

most O(n9).

5.10 Direct Attack on Challenge 1

Now we try to use the equations of type XY ∪ x2y ∪ xy2 ∪ x3y ∪ x2y2 to break
this degree 96 basic HFE. We have

sizeXY ∪x2y∪xy2∪x3y∪x2y2(80, 80) = 17 070 561 (4)

The memory required is not realistic: size2/8 = 33 Terabytes. The running
time is 2 · size3/64 ≈ 262 CPU clocks.

6 Advanced Attacks

6.1 Reconciliation Technique

Since the main problem of the attacks is the size of the equations, it is a very
good idea to compute these equations only partly. We fix to zero all xi except na

of them. We call ”cast” equations the equations we get from the initial equations.
Unfortunately if na is too small, there are some more equations that we call

”artificial” equations. We show that the ”cast” equations of trivial equations are
trivial and the ”cast” equations of artificial equations are artificial. In [3] we have
managed to predict the number of artificial equations with a great accuracy.

For example, if n = nb = 80 we computed:

nart(XY ∪ x2y ∪ xy2 ∪ x3y ∪ x2y2) = 38 (5)

It means that the ”cast” (and ”non-trivial”) equations are known modulo a
linear combination of some ”interference” equations (artificial equations), that
make the resulting mix unusable for na < 38.

The reconciliation attack works before the threshold when artificial equa-
tion arise. The necessary condition is thus na ≥ nart.

Moreover the equations are recovered modulo a linear combination, and we
need to, make sure that it is possible to generate ”cast” equations, such that
their intersections are big enough to recover uniquely their corresponding linear
combinations. This leads to an additional condition.

Thus we will recover the equations from different ”casts”. In fact we do not
exactly recover the whole equations but only a part of them that contains firstly
enough terms to combine different casts, and secondly their constant coefficients
and coefficients in xi, as only those are necessary to compute x and break HFE.
.
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6.2 The Distillation Technique

In the distillation attack we show that there is another, strictly lower thres-
hold, and HFE can be broken in spite of the ”interference” equations. The idea
is very simple, the artificial equations alone doesn’t have any sense with relation
to initial (huge) equations and can be eliminated from different ”casts’.

In [3] we show that if the following distillation condition is true:

artificial(na − 1, nb) ≥ artificial(na, nb). (6)

then a successful attack can be lead.

6.3 Distillation Attack on Challenge 1

For nb = 80 and type XY ∪ x2y ∪ xy2 ∪ x3y ∪ x2y2, the solution for the distil-
lation condition above is computed in [3] to be na ≥ 30.

The working size of the attack is:

sizeXY ∪x2y∪xy2∪x3y∪x2y2(30, 80) = 1 831 511. (7)

We need only size2/8 = 390 Gb of memory instead of 33 Tb in the direct
attack of section 5.10. Following [3], the running time is computed as (80− 30+
1) · 2 · size3/64 ≈ 262 CPU clocks.

6.4 Sparse Methods

In the attacks above, we have to solve systems of several million equations with
several million variables. Such equations could be sparse, if we try to recover
them in a slightly different way. We build a matrix with columns corresponding
to each component of the equation, for example y1y4 or x2y55y9. Each line of
the equation will correspond to a term, for example x3x5x7x16. We only need to
consider about as many terms as size, (there is much much more) though sparse
methods [Lanczos, Wiedemann] could take advantage if we generated more.

Such a system of equations is sparse, for example the column x2y55y9 contains
non-zero coefficients only for terms containing x2, therefore for about 1/n of all
terms.

In [12] we hear that with size = 1.3M (million), a system over GF (2) could
be solved in few hours on one processor of CrayC90 using modified Lanczos al-
gorithm. Their system had only 39M non-zero coefficients, i.e. about 1/40000
of them. Assuming that sparse methods would combine with reconciliation and
distillation, for our systems of size = 1.8M we have about 1/80 non-zero coeffi-
cients, much more.

Thus it is unclear if any of the aforementioned sparse methods could improve
on the attack.
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7 Asymptotic Security of basic HFE

First, if d is fixed, we have found in 5.6 an experimental evidence that basic
HFE can be broken in expected polynomial time. The same result has just been
independently shown by Shamir and Kipnis at Crypto’99, see [23].

Our attack in a basic version based on conclusions form 5.7 (no reconciliation,
no distillation) gives about:

size ≈ n
1
2 logq d. (8)

In [3] we show that the distillation attack gives roughly:

size ≈ n
(
logq d

√
n
) 1

2 logq d ≈ n
1
4 logq d. (9)

We retain a conservative approximation:

size ≤ n
1
2 logq d. (10)

7.1 Results

Therefore the security of basic HFE is not better than:

security ≤ n
3
2 logq d. (11)

If the distillation attack works as well as estimated in [3], it would give even:

security ≤ n
3
4 logq d. (12)

First, we compare it to the secret key operations of HFE. It requires to
factorise the degree d polynomial P over a finite field. The asymptotically fastest
known algorithm to solve a polynomial equation P over a finite field of von zur
Gathen and Shoup [7] requires about d2(logq d)O(1)n2 operations. At any rate
we need d = nO(1) to enable secret key computations [14]. Thus:

security ≤ nO(logq n) ≈ e(log2
q n). (13)

In [3] it has been shown that the complexity of Shamir-Kipnis attack is rather
in nO(log2

q d) which gives eO(log3
q n). We are going to improve it to get a similar

result.

8 Shamir-Kipnis Attack Revisited

The starting point here is the Shamir-Kipnis attack for basic HFE, [23] that we
do not describe due to lack of space. It shows there exist t0, . . . , tn−1 ∈ GF (qn)
such that the rank of

G′ =
n−1∑
i=0

tkG∗k (14)
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collapses to at most r = 1 + dlogq de, with G∗k being n public matrices n × n
over GF (qn).

The underlying problem we are solving is called MinRank [5]. Shamir and
Kipnis solved it by what is called ’relinearization’, see [21] for improvements on
it. We do not use it, and instead we solve MinRank directly. Our method is
identical as previously used by Coppersmith, Stern and Vaudenay in [1].

We write equations in the t0, . . . , tn−1 saying that every (r + 1)x(r + 1)
submatrix has determinant 0. Each submatrix gives a degree (r + 1) equation
on the t0, . . . , tn−1 over GF (qn). There are as much as

(
n

r+1

)2 such equations
and we hope that at least about

(
n

r+1

)
of them are linearly independent. We get

about
(

n
r+1

)
equations which have

(
n

r+1

)
terms, and are simply linearized and

solved by Gaussian reduction.
The size of the equations to solve is

size ≈
(

n

r + 1

)
≈ nr+O(1) ≈ nlogq d+O(1), (15)

which gives similar results as our attacks:

security ≤ nO(logq d). (16)

9 Is basic HFE Likely to be Polynomial ?

The MinRank is an NP-complete problem for e.g. r = n − 1 [24,5]. It seems
therefore unlikely that our attack for MinRank in nO(r) could ever be improved
to remain polynomially bounded when r grows.

The same remark applies to our equational attacks. When d grows, the HFE
problem (i.e. basic HFE) tends to the NP-complete MQ problem of solving ran-
dom quadratic equations, see [14,15,3].

10 Conclusion

The best known HFE attack is our distillation attack for basic HFE. It’s not
proven to work for d >> 129 but relies on an extensive experimental evidence.
we have also the Shamir-Kipnis attack, and rather our improved version of it,
that though worse in practice comes with a proof [23].

They both give the complexities in nO(logq d) to break the basic HFE version.
It is polynomial when d is fixed and subexponential in general. Both presented
attacks on HFE are much better that any previously known.

Even with the significant progress we have made, the attacks still have the
complexity and memory requirements that can quickly go out-of-range. Though
it is certain that attacks will be improved in the future, HFE can be considered
secure for d > 128 and n > 80.
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Perspectives

The basic version of HFE is broken for the initially proposed degree d ≥ 17 [14]
and even for d ≥ 24. Our attacks has been tested to work for d ≤ 128, and thus
the HFE Challenge 1 is broken in 262.

HFE modifications that resist to all known attacks.

Several HFE problem-based cryptosystems avoid all the attacks described in the
present paper. We verified that our attacks rapidly collapse for those schemes:

HFE−: It is a basic HFE with several public equations removed, see [16].
HFEv: Described in a paper presented at Eurocrypt’99, [17]. It consists of

adding new variables to HFE, as in the Oil and Vinegar algorithm partially
broken at Crypto’98 [22].

HFEv-: Combines both above ideas. There are many other variants of HFE
proposed by Jacques Patarin in the extended version of [14] and in [15,18].

Quartz: Presented at RSA’2000 [19] and submitted to the european Nessie call
for primitives. An unique 128-bit long signature scheme, based on HFEv-,
designed for long-term security. If the best attacks described here applied to
Quartz, with d = 129 and n = 103 they would give more than 280. They do
not apply at all.

Flash, Sflash Also at RSA’2000 [20] and submitted to Nessie. A signature
scheme based on C∗−, designed for speed. The security is an open problem.
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11 Common Terms and Notations

about equations: We consider multivariate equations over GF (q), usually
with q = 2. na/nb are the numbers of input/output variables xi/yi. We
note sizetype(na, nb) the length of equations of a given ”type”. The ”type”
is specified by a convention using expressions in variables x, y, X, Y detailed
in the section 5.1.

artificial∗ equations are due to the small dimension na of the x sub-space and
the small degree of yi expressions. They become visible if they are more
that trivial+non-trivial equations. Their number artificialtype(na, nb) can
be correctly computed and does not depend on the HFE degree.

biased equations - for one particular value y = 0 they become affine in xi.

boosting - general notion of an operation that starting with some equations on
the unknowns, finds some other equations on them that are not trivial (e.g.
linear) combinations of the initial equations.

cast∗ equations are non-trivial equations with some xi fixed to 0, usually for
i = na + 1, . . . , n.

distillation - eliminating artificial ”interference” equations between different
casts of the same equation, see 6.1-6.3.

HFE stands for the Hidden Field Equations cryptosystem [14]. P denotes the
hidden univariate HFE polynomial over GF (qn). S and T are affine multi-
variate bijective variable changes over GF (q) and F = T ◦ P ◦ S.

interference∗ equations - any complementary space of cast equations in artifi-
cial equations.

invariant equations - equations that are still of the same type after an affine
variable change because their set of terms is invariant.

non-trivial∗ equations - any complementary space of trivial equations found
implicitly by Gaussian reduction. The implicit equations we are able to re-
cover must be of small degree in both the yi and xi. An implicit equation in
the xi and yi may be viewed as a point such that, an expression in the yi

and xi, re-written as as a polynomial in xi, has unusually small degree.
For cryptanalysis we look for equations that have small degree in the xi

after substitution of one value y (or all possible y). The equations mixed
with trivial equations are still useful for cryptanalysis. Their existence is a
definite weakness of any one-way function candidate.

reconciliation - recomposing different ”casts” of the same equations, see 6.1.

trivial equations - explicit small degree combinations of given equations and
the variables that are due to the quadratic character of yi. Their number is
trivialtype(na, nb).∗ - informal categories, doesn’t make sense for equations regardless how they
have been computed.
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Abstract. For some applications of digital signatures the traditional
schemes as RSA, DSA or Elliptic Curve schemes, give signature size
that are not short enough (with security 280, the minimal length of these
signatures is always ≥ 320 bits, and even ≥ 1024 bits for RSA). In this
paper we present a first well defined algorithm and signature scheme,
with concrete parameter choice, that gives 128− bit signatures while the
best known attack to forge a signature is in 280. It is based on the basic
HFE scheme proposed on Eurocrypt 1996 along with several modificati-
ons, such that each of them gives a scheme that is (quite clearly) strictly
more secure. The basic HFE has been attacked recently by Shamir and
Kipnis (cf [3]) and independently by Courtois (cf this RSA conference)
and both these authors give subexponential algorithms that will be im-
practical for our parameter choices. Moreover our scheme is a modifi-
cation of HFE for which there is no known attack other that inversion
methods close to exhaustive search in practice. Similarly there is no me-
thod known, even in theory to distinguish the public key from a random
quadratic multivariate function.

QUARTZ is so far the only candidate for a practical signature scheme
with length of 128-bits.

QUARTZ has been accepted as a submission to NESSIE (New Euro-
pean Schemes for Signatures, Integrity, and Encryption), a project within
the Information Societies Technology (IST) Programme of the European
Commission.

1 Introduction

In the present document, we describe the QUARTZ public key signature scheme.
QUARTZ is a HFEV− algorithm (see [4,5]) with a special choice of the pa-

rameters. QUARTZ belongs to the family of “multivariate” public key schemes,
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i.e. each signature and each hash of the messages to sign are represented by some
elements of a small finite field K.

QUARTZ is designed to generate very very short signatures: only 128 bits !
Moreover, in QUARTZ, all the state of the art ideas to enforce the security of
such an algorithm have been used: QUARTZ is built on a “Basic HFE” scheme
secure by itself at present (no practical attack are known for our parameter
choice) and, on this underlying scheme, we have introduced some “perturbation
operations” such as removing some equations on the originally public key, and
introducing some extra variables (these variables are sometime called “vinegar
variables”). The resulting schemes look quite complex at first sight, but it can
be seen as the resulting actions of many ideas in the same direction: to have a
very short signature with maximal security (i.e. the “hidden” polynomial F of
small degree d is hidden as well as possible).

As a result, the parameters of QUARTZ have been chosen in order to satisfy
an extreme property that no other public key scheme has reached so far: very
short signatures. QUARTZ has been specially designed for very specific appli-
cations because we thought that for all the classical applications of signature
schemes, the classical algorithms (RSA, Fiat-Shamir, Elliptic Curves, DSA, etc)
are very nice, but they all generate signatures of 320 bits or more (1024 for RSA)
with a security in 280, so it creates a real practical need for algorithms such as
QUARTZ.

QUARTZ was designed to have a security level of 280 with the present state
of the art in Cryptanalysis.

2 QUARTZ: The Basic Ideas

(This paragraph is here to help the understanding of QUARTZ. QUARTZ will
then be described in details in the next paragraphs.)

Let K = Fq = GF(q) be a small finite field (in QUARTZ we will choose
K = F2). Let d and n be two integers (in QUARTZ we will have d = 129 and
n = 103).

Let αij , 1 ≤ i ≤ n, 1 ≤ j ≤ n, be some elements of Fq
n

such that:

∀i, j, 1 ≤ i ≤ n, 1 ≤ j ≤ n, qi + qj > d ⇒ αij = 0.

Let βi, 1 ≤ i ≤ n, be some elements of Fqn such that

∀i, 1 ≤ i ≤ n, qi > d ⇒ βi = 0.

Let γ be an element of Fqn .

Now let F be the following function:

F :




Fqn → Fqn

X 7→
n−1∑
i=0

n−1∑
j=0

αijX
qi+qj

+
n−1∑
i=0

βiX
qi

+ γ

This function F can be seen in two different ways:
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1. It can be seen as a polynomial function with only one variable x ∈ Fqn , of
degree d.

2. Or, if we write this function F as a function from Fqn to Fqn (i.e. if we
consider Fqn as a vector space over Fq), it can be seen as a multivariate
function of n variables (x1, . . . , xn) ∈ Kn to n variables (y1, . . . , yn) ∈ Kn

of total degree 2.

Note: Here the total degree is only 2 because all the functions X 7→ Xqi

are linear functions over Fqn , i.e. they can be written as functions from Kn

to Kn of total degree one.

From the univariate representation (1) it is possible when d is not too large
to invert F (i.e. to compute all the roots of F (X) = Y when Y is a given element
of Fqn). (Some root finding algorithms exist, such as the Berlekamp algorithm
for example, for these univariate algorithms. Their complexity is polynomial in
d, so d cannot be too large if we want those algorithms to be efficients.)

From the multivariate representation (2) we will be able to “hide” this fun-
ction F by introducing two secret bijective affine transformations s and t from
Kn to Kn, and we will compute G′ = t ◦ F ◦ s, and keep F secret.

This function G′ is a quadratic function from Kn to Kn.
Now, two other ideas will be introduced.

Remark: These two other ideas, that we denote by “−” and “V”, are introduced
in order to enforce the security of the scheme, as we will explain in section 8.
However, the scheme might be secure even if we did not add these two ideas.

First, we will not publish all the n quadratic equations that define G′, but
only n − r of these equations (r = 3 in the QUARTZ algorithm).

Secondly, we will “mix” the n variables x1, . . . , xn with v “extra variables”
(v = 4 in the QUARTZ algorithm). These v “extra variables” will be introduced
in the βi and γ parameters. (We will describe in detail in section 4 how this will
be done.)

Finally, we obtain a trapdoor one-way function G from 107 bits to 100 bits.
Without any secret it is possibe to compute y = G(x) when x is given, and with
a secret it is possible to compute all the values of x such that G(x) = y when y
is given (x:107 bits, y: 100 bits).

Remark: QUARTZ is a special case of a more general scheme called HFEV−.
This scheme is described in [4] and [5]. However, there are many possible pa-
rameters in HFEV−, so that we think it is interesting to give an example of
the possible choices of these parameters to obtain 128 bit public key digital
signatures with 280 security (with the best known attacks).
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3 The Birthday Paradox: How Can a Digital Signature
Be as Short as 128 Bits with 280 Security

In all signature schemes in which checking the validity of the signature S of a
message M consists in verifying an equation f(S) = g(M), where f and g are
two public functions, it is always possible, from the birthday paradox, to find a
signature S and a message M such that S will be a valid signature of M , after
approximately

√
2n computations (and storages), where n is the number of bits

of the signature and the number of output bits of f and g. (Just store
√

2n values
g(M), compute

√
2n values f(S) and look for a collision).

However, with QUARTZ, we will avoid this “birthday” attack because check-
ing the validity of the signature S of a message M consists in verifying an
equation f(S, M) = 0, where f is a public function.

Remark If G denotes the trapdoor one-way function from 107 bits to 100 bits
that we will use, four computations of this function G will be needed to check
whether f(S, M) = 0 in the QUARTZ algorithm, as we will see below. A more
general theory about how small a digital signature can be, can be found in
the extended version of [4], available from the authors (or from our Web page
http://www.smartcard.bull.com/sct/uk/partners/bull/index.html).

However, with a signature of only 128 bits, there is still something to be
careful with: no more than 264 messages must be signed with the same public
key. If more than 264 messages are signed with the same public key, there is
a large probability that two different messages will have the same signature
and this may create troubles for some applications. However, this is not a very
restrictive fact for practical applications since here, only the people who know
the secret key can create or avoid this 264 birthday fact. Somebody who does
not know the secret key cannot use this fact to create an attack on the signature
scheme with 264 complexity.

This explains why in QUARTZ, the best known attacks are in 280, despite
the fact that the length of the signature is only 128 bits.

4 Notations and Parameters of the Algorithm

In all the present document, || will denote the “concatenation” operation. More
precisely, if λ = (λ0, . . . , λm) and µ = (µ0, . . . , µn) are two strings of bits, then
λ||µ denotes the string of bits defined by:

λ||µ = (λ0, . . . , λm, µ0, . . . , µn).

For a given string λ = (λ0, . . . , λm) of bits and two integers r, s, such that
0 ≤ r ≤ s ≤ m, we denote by [λ]r→s the string of bits defined by:

[λ]r→s = (λr, λr+1, . . . , λs−1, λs).
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The QUARTZ algorithm uses the field L = F2103 . More precisely, we chose
L = F2[X]/(X103 +X9 +1). We will denote by ϕ the bijection between {0, 1}103

and L defined by:
∀ω = (ω0, . . . , ω102) ∈ {0, 1}103,

ϕ(ω) = ω102X
102 + . . . + ω1X + ω0 (mod X103 + X9 + 1).

4.1 Secret Parameters

1. An affine secret bijection s from {0, 1}107 to {0, 1}107. Equivalently, this
parameter can be described by the 107 × 107 square matrix and the 107 × 1
column matrix over F2 of the transformation s with respect to the canonical
basis of {0, 1}107.

2. An affine secret bijection t from {0, 1}103 to {0, 1}103. Equivalently, this
parameter can be described by the 103 × 103 square matrix and the 103 × 1
column matrix over F2 of the transformation s with respect to the canonical
basis of {0, 1}103.

3. A family of secret functions (FV )V ∈{0,1}4 from L to L, defined by:

FV (Z) =
∑

0≤i<j<103
2i+2j≤129

αi,j · Z2i+2j

+
∑

0≤i<103
2i≤129

βi(V ) · Z2i

+ γ(V ).

In this formula, each αi,j belongs to L and each βi (0 ≤ i < 103) is an affine
transformation from {0, 1}7 to L, i.e. a transformation satisfying

∀V = (V0, V1, V2, V3) ∈ {0, 1}4, βi(V ) =
3∑
k=0

Vk · ξi,k

with each ξi,k being an element of L. Finally, γ is a quadratic transformation
from {0, 1}7 to L, i.e. a transformation satisfying

∀V = (V0, V1, V2, V3) ∈ {0, 1}4, γ(V ) =
3∑
k=0

3∑
`=0

VkV` · ηk,`

with each ηk,` being an element of L.
4. A 80-bit secret string denoted by ∆.

4.2 Public Parameters

The public key consists in the function G from {0, 1}107 to {0, 1}100 defined by:

G(X) =
[
t
(
ϕ−1(F[s(X)]103→106(ϕ([s(X)]0→102))

))]
0→99

.

By construction of the algorithm, G is a quadratic transformation over F2,
i.e. (Y0, . . . , Y99) = G(X0, . . . , X106) can be written, equivalently:


Y0 = P0(X0, . . . , X106)

...
Y99 = P99(X0, . . . , X106)
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with each Pi being a quadratic polynomial of the form

Pi(X0, . . . , X106) =
∑

0≤j<k<107

ζi,j,kXjXk +
∑

0≤j<107

νi,jXj + ρi,

all the elements ζi,j,k, νi,j and ρ being in F2.

5 Signing a Message

In the present section, we describe the signature of a message M by the QUARTZ
algorithm.

5.1 The Signing Algorithm

The message M is given by a string of bits. Its signature S is obtained by
applying successively the following operations (see figure 1):

1. Let M1, M2 and M3 be the three 160-bit strings defined by:

M1 = SHA-1(M),

M2 = SHA-1(M1),

M3 = SHA-1(M2).

2. Let H1, H2, H3 and H4 be the four 100-bit strings defined by:

H1 = [M1]0→99,

H2 = [M1]100→159||[M2]0→39,

H3 = [M2]40→139,

H4 = [M2]140→159||[M3]0→79.

3. Let S̃ be a 100-bit string. S̃ is initialized to 00 . . . 0.
4. For i = 1 to 4, do

a) Let Y be the 100-bit string defined by:

Y = Hi ⊕ S̃.

b) Let W be the 160-bit string defined by:

W = SHA-1(Y ||∆).

c) Let R be the 3-bit string defined by:

R = [W ]0→2.

d) Let V be the 4-bit string defined by:

V = [W ]3→6.
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e) Let B be the element of L defined by:

B = ϕ
(
t−1(Y ||R)

)
.

f) Consider the following univariate polynomial equation in Z (over L):

FV (Z) = B.

– If this equation has a unique solution in L, then let A be this solution.
– Else replace W by SHA-1(W ) and go back to (c).

g) Let X be the 107-bit string defined by:

X = s−1
(
ϕ−1(A)||V

)
.

h) Define the new value of the 100-bit string S̃ by:

S̃ = [X]0→99 ;

i) Let Xi be the 7-bit string defined by:

Xi = [X]100→106.

5. The signature S is the 128-bit string given by:

S = S̃||X4||X3||X2||X1.

5.2 Solving the Equation FV (Z) = B

To sign a message, we need to solve an equation of the form FV (Z) = B, with B
belonging to L and Z being the unknown, also in L. More precisely, if we refer
to step 4.f in section 5.1, we must:

1. Decide whether there is a unique solution or not;
2. In the case of a unique solution, find it.

The following method can be used: we compute the polynomial

Ψ(Z) = gcd
(
FV (Z) − B, Z2103 − Z

)
.

The equation FV (Z) = B has a number of solutions (in L) equal to the degree
of Ψ over L. As a consequence, if Ψ is not of degree one, then the number of
solutions is not one. On the contrary, if Ψ is of degree one, it is of the form
Ψ(Z) = κ · (Z − A) (with κ ∈ L) and A is the unique solution of the equation
FV (Z) = B.

To compute the gcd above, we can first recursively compute Z2i

mod (FV (Z)
−B) for i = 0, 1, . . . , 103 and then compute Θ(Z) = Z2103 −Z mod (FV (Z)−B).
Finally Ψ(Z) is easily obtained by

Ψ(Z) = gcd
(
FV (Z) − B, Θ(Z)

)
.

Thanks to this method, the degrees of the polynomials involved in the compu-
tation never exceed 2 × 129 = 258.

Note that more refined methods have also been developed to compute Ψ(Z)
(see [2]).
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Fig. 1. Signature generation with QUARTZ (beginning with i = 1)
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5.3 Existence of the Signature

The success of the signing algorithm relies on the following fact: for at least one
of the successive values of the pair (R, V ), there exist a unique solution (in Z)
for the equation FV (Z) = B.

It can be proven that, for a randomly chosen B, the probability of having a
unique solution in Z is approximately 1

e . If we suppose that the successive values
(R, V ) take all the possible values in {0, 1}7, the probability of never having a
unique solution is approximately given by:

(
1 − 1

e

)128
' 2−85.

Since the signing algorithm has to solve this equation four times, the proba-
bility that the algorithm fails is:

P ' 1 −
(
1 −

(
1 − 1

e

)128)4
' 2−83.

This probability is thus completely negligible.

6 Verifying a Signature

Given a message M (i.e. a string of bits) and a signature S (a 128-bit string),
the following algorithm is used to decide whether S is a valid signature of M or
not:

1. Let M1, M2 and M3 be the three 160-bit strings defined by:

M1 = SHA-1(M),

M2 = SHA-1(M1),

M3 = SHA-1(M2).

2. Let H1, H2, H3 and H4 be the four 100-bit strings defined by:

H1 = [M1]0→99,

H2 = [M1]100→159||[M2]0→39,

H3 = [M2]40→139,

H4 = [M2]140→159||[M3]0→79.

3. Let S̃ be the 100-bit string defined by:

S̃ = [S]0→99.
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4. Let X4, X3, X2, X1 be the four 7-bit string defined by:

X4 = [S]100→106,

X3 = [S]107→113,

X2 = [S]114→120,

X1 = [S]121→127.

5. Let U be a 100-bit string. U is initialized to S̃.
6. For i = 4 down to 1, do

a) Let Y be the 100-bit string defined by:

Y = G(U ||Xi).

b) Define the new value of the 100-bit string U by:

U = Y ⊕ Hi.

7. – If U is equal to the 100-bit string 00 . . . 0, accept the signature.
– Else reject the signature.

Fig. 2. Signature verification with QUARTZ (beginning with i = 4)

7 Computation of the G Function

The verification algorithm of QUARTZ requires the fast evaluation of the func-
tion G, which can be viewed as a set of 100 public quadratic polynomials of the
form

Pi(x0, . . . , x106) =
∑

0≤j<k<107

ζi,j,kxjxk +
∑

0≤j<107

νi,jxj + ρi (0 ≤ i ≤ 99)
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(see section 3.2).
To perform this computation, three methods can be used:

First method:
We can proceed directly, i.e. by successively compute the multiplications and

the additions involved in Pi.

Second method:
Each of the Pi can be rewritten as follows:

Pi(x0, . . . , x106) = x0`i,0(x0, . . . , x106) + x1`i,1(x1, . . . , x106)+

+ . . . + x106`i,106(x106) + ρi,

with the `i,0, . . . , `i,106 (0 ≤ i ≤ 99) being 107 × 100 linear forms that can be
explicited. As a result, since each xj equals 0 or 1, we just have to compute
modulo 2 additions of xj variables.

Third method:
Another possible technique consists in writing

G(x0, . . . , x106) =
∑

0≤j<k<107

xjxk · Zj,k ⊕
∑

0≤j<107

xj · Nj ⊕ R

with

Zj,k = (ζ0,j,k, ζ1,j,k, . . . , ζ99,j,k) ,

Nj = (ν0,j , ν1,j , . . . , ν99,j)

and

R = (ρ0, ρ1, . . . , ρ99) .

The computation can then be performed as follows:

1. Let Y be a variable in {0, 1}100. Let Y be initialized to R = (ρ0, ρ1, . . . , ρ99).
2. For each monomial xjxk (0 ≤ j < k < 107): if xj = xk = 1 then replace Y

by Y ⊕ Zj,k.
3. For each monomial xj (0 ≤ j < 107): if xj = 1 then replace Y by Y ⊕ Nj .

If, for instance, we use a 32-bit architecture, this leads to a speed-up of the
algorithm: each vector Zj,k or Nj or R can be stored in four 32-bit registers. By
using the 32-bit XOR operation, the ⊕ operations can be performed 32 bits by
32 bits. This means that we compute 32 public equations simultaneously.
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8 Security of the QUARTZ Algorithm

Traditionally, the security of public key algorithms relies on a problem which is
both simple to describe and has the reputation to be difficult to solve (such as
the factorization problem, or the discrete logarithm problem). On the opposite,
traditionally, the security of secret key algorithms and of hash functions relies
(not on such a problem but) on specific arguments about the construction (such
as the soundness of the Feistel construction for example) and on the fact that
the known cryptanalytic tools are far to break the scheme.

There are some exceptions. For example the public key scheme based on error
correcting codes (such as the McEliece scheme, or the Niederreiter scheme) or
the NTRU scheme do not have a security that provably relies on a well defined
problem, and some hash functions have been designed on the discrete logarithm
problem.

The security of the QUARTZ algorithm is also not proved to be equivalent to
a well defined problem. However we have a reasonable confidence in its security
due to some arguments that we will present in the sections below, and these
arguments are not only subjective arguments.

Remark: As an example, let F be the composition the five AES finalists,
with five independent keys of 128 bits. Almost everybody in the cryptographic
community thinks that this F function will be a very secure function for the
next 20 years, despite the fact that it security is not provably relied on a clearly,
famous, and simple to describe problem.

Our (reasonable) confidence in the security of QUARTZ comes from the
following five different kinds of arguments, that we will explain in more details
below:

1. All the known attacks are far from being efficient.
2. There is a kind of “double layered” security in the design of the scheme:

algebraic and combinatorial.
3. MQ looks really difficult in average (not only in worst case).
4. When the degree d (of the hidden polynomial F ) increases, the trapdoor

progressively disappears so that all the attacks must become more and more
intractable.

5. The secret key is rather long (but it can be generated from a small seed of
80 bits for example), even for computing very short signatures.

8.1 All the Known Attacks Are far from Being Efficient

Three kinds of attacks have been studied so far on schemes like the basic HFE or
HFEV− (QUARTZ is a HFEV− scheme with a special choice for the parameters).
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Some attacks are designed to recover the secret key (or an equivalent
information). In this family of attack, we have the exhaustive search of the key
(of course intractable) and the (much more clever) Shamir-Kipnis on the basic
HFE scheme (cf [3]). However this Shamir-Kipnis attack would not be efficient
on the QUARTZ algorithm (much more than 280 computations are required)
even if we removed the − and V perturbations. Moreover, the Shamir-Kipnis
seems to work only for the basic HFE scheme (i.e. without the perturbations −
and V) and in QUARTZ we have some − and V. So in fact, at present for a
scheme like QUARTZ we do not see how the Shamir-Kipnis attack may work at
all.

Some attacks are designed to compute a signature S from a message
M directly from the equations of the public key, as if there was no
trapdoor (i.e. by solving a general system of quadratic equations). The
MQ (= Multivariate Quadratic) problem of solving a general set of multivariate
quadratic equations is a NP-Hard problem. Some (non polynomial but sometimes
better than exhaustive search) algorithms have been designed for this problem,
such as some Gröbner bases algorithms, or the XL and FXL algorithms (see [1])
but for our choices of the QUARTZ parameters, all these algorithms need more
than 280 computations.

Some attacks are designed to compute a signature S from a message
M by detecting some difference on the public key compared to a
system of general quadratic equations. Many analysis have been made
in these lines of attacks. Some “affine multiple attacks” have been design, and
many variations around these attacks (“higher degree attacks” etc). At present,
with the parameters of the QUARTZ algorithm all these attacks need more the
280 computations.

8.2 There is a Kind of “Double Layered” Security in the Design of
the Scheme: Algebraic and Combinatorial.

The security of the basic HFE scheme (i.e. a HFE scheme with no perturbations
such as − and V) can be considered as a kind of “Algebraic” problem, since from
the Shamir-Kipnis attack we know that it can be linked to a MinRank problem
on very large algebraic fields. (The general MinRank problem is NP-Hard, but
for the basic HFE it may not be NP-Hard, but it is still not polynomial when
d is not fixed and d = O(n) for example). However this basic HFE scheme is
Hidden in the QUARTZ algorithm with the perturbations − and V. To remove
these perturbations seems to be a very difficult combinatorial problem. So to
break the QUARTZ scheme, it is expected that a cryptanalyst will have to solve
a double problem: Combinatorial and Algebraic, and these problems do not
appear separately but in a deeply mixed way to him on the public key.
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8.3 MQ Looks Really Difficult in Average (Not Only in Worst
Case).

In the past, some public key schemes apparently (not provably) based on some
NP-Hard problems, such as the Knapsack problem were broken. However the MQ
problem (i.e. solving a general set of multivariate quadratic equations) seems to
be a much more difficult problem to solve than the Knapsack Problem: on the
Knapsack Problem an algorithm such as LLL is very often efficient, while on the
opposite ? on the MQ problem all the known algorithms are not significantly
better than exhaustive search when the number m of equations is about the
same as the number n of variables and is larger than, say, about 12.

It is also interesting to notice that almost all the “Knapsack Schemes” were
broken due to a new algorithm on the general Knapsack problem (LLL) and not
due to the fact that the security of these schemes was not properly proved to be
equivalent to the Knapsack problem. Something similar seems to appear with
the schemes based on error correcting codes, such as the McEliece Scheme, or
the Niederreiter scheme: so far all the attacks on these schemes try to solve the
general (and NP-Hard) problem of decoding a word of small weight in a general
linear code, and not to try to use the fact that it is not proved that the security
of these schemes is equivalent to solving this problem. If, for these schemes as
for QUARTZ the practical cryptanalysis becomes in practice the problem of sol-
ving the general problem, then for QUARTZ the MQ problem looks really very
difficult.

8.4 When the Degree d (of the Hidden Polynomial F ) Increases,
the Trapdoor Progressively Disappears so that All the Attacks
must Become More and More intractable.

The degree d of the QUARTZ algorithm is fixed to 129. However if d was not
fixed, and d could be as large as 2h (h = 103 in the QUARTZ algorithm), then
all the possible systems of quadratic equations would appear in the public key,
so the problem of solving it would be exactly as hard as the general MQ problem
(on this number of variables). Of course, we have fixed d to 129 in order to be
able to compute a signature in a reasonable time on a computer, but this result
shows that when d increases, the trapdoor progressively disappears, so that all
the attacks must become more and more intractable. So d is really an important
“security parameter”. Our choice of d = 129 has been made to be far from the
current state of the art on the cryptanalysis with small d while still having a
reasonable time on a computer to compute a signature.

8.5 The Secret Key is Rather Long (but it can be Generated from
a Small Seed of 80 Bits for Example), Even for Computing
Very Short Signatures.

Many secrets are used in QUARTZ: the secret affine permutations s and s,
the secret function F , the secret vinegar variables V , and the secret removed
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equations. To specify all the secret we need a rather long secret key. However,
it is also possible to compute this secret key from a short seed by using any
pseudorandom bit generator. In general the time to generate the secrets from
the small seed will not increase a lot the time to generate a signature. Moreover
it has to be done only once if we can store the secret key in a safe way on
the computer. So for practical applications it is always possible to generate the
secret key from a seed of, say, 80 bits, but this secret key for a cryptanalyst of
QUARTZ will always be similar to a much larger secret key.

So QUARTZ has a property that already existed in schemes like DSS (where
the lengths of p and q are different): the length of the secret key is not directly
linked to the length of the signature. (This property does not exist in RSA, where
the length of the secret key is never larger than the length of the signature. It
explain why a QUARTZ or DSS signature can be much smaller than a RSA
signature).

The fact that a cryptanalyst of QUARTZ has to face such a large secret key,
may also be an argument to say that in practice the time to find a QUARTZ
secret key may be intractable in practice, even if a new sub-exponential algo-
rithm is found and used. (So far many cryptanalysis, such as the “affine multiple
attacks”, have to solve huge systems of linear equations by Gaussian reductions,
and often the number of variables in these systems increases very fast with the
length of the secret, so these attacks become impractical due to space and time
limitations). However this argument is not very convincing and is maybe not as
strong as the other arguments presented above.

9 Summary of the Characteristics of QUARTZ

– Length of the signature: 128 bits.
– Length of the public key: 71 Kbytes.
– Length of the secret key: the secret key (3 Kbytes) is generated from a small

seed of at least 128 bits.
– Time to sign a message1: 30 seconds on average.
– Time to verify a signature2: less than 5 ms.
– Best known attack: more than 280 computations.
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Abstract. This article describes the particular parameter choice and
implementation details of one of the rare published, but not broken sig-
nature schemes, that allow signatures to be computed and checked by a
low-cost smart card. The security is controversial, since we have no proof
of security, but the best known attacks require more than 280 computa-
tions. We called FLASH our algorithm and we also proposed SFLASH, a
version that has a smaller public key and faster verification though one
should be even more careful about it’s security.
FLASH and SFLASH have been accepted as submissions to NESSIE
(New European Schemes for Signatures, Integrity, and Encryption), a
project within the Information Societies Technology (IST) Programme
of the European Commission.

1 Introduction

In the present document, we describe the FLASH public key signature scheme.
FLASH is a C∗−− algorithm (see [4]) with a special choice of the parameters.

FLASH belongs to the family of “multivariate” public key schemes, i.e. each
signature and each hash of the messages to sign are represented by some elements
of a small finite field K.

FLASH is designed to be a very fast signature scheme, both for signature
generation and signature verification. It is much faster in signature than RSA and
much easier to implement on smart cards without any arithmetic coprocessor
for example. However its public key size is larger than the public key size of
RSA. Nevertheless this public key size can fit in current smart cards. It may
also be noticed that, with the secret key, it is possible to sign AND to check
the signature (generated with this particular secret key) without the need of the
public key (in some applications this may be useful).
� Part of this work is an output of project “Turbo-signatures”, supported by the french
Ministry of Research.
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As a result, the parameters of FLASH have been chosen in order to satisfy an
extreme property that very few public key scheme have reached so far: efficiency
on low-price smart cards. FLASH has been specially designed for this specific
application because we thought that for all the classical applications of signature
schemes, the classical algorithms (RSA, Fiat-Shamir, Elliptic Curves, DSA, etc)
are very nice, but when we need some very specific properties these algorithms
just cannot satisfy them, and it creates a real practical need for algorithms such
as FLASH.

FLASH was designed to have a security level of 280 with the present state of
the art in Cryptanalysis.

2 FLASH: The Basic Ideas

(This paragraph is here to help the understanding of FLASH. FLASH will then
be described in details in the next paragraphs.)

Let K = Fq = GF(q) be a small finite field (in FLASH we will choose
K = F256 and in SFLASH we will choose K = F128).

Let n and α be two integers (in FLASH and SFLASH we will have n = 29
and α = 11).

Let F be the following function:

F :
{
Fqn → Fqn

x �→ x1+qα

This function F can be seen in two different ways:

1. It can be seen as a monomial function with only one variable x ∈ Fqn , of
degree 1 + qα.

2. Or, if we write this function F as a function from Fqn to Fqn , it can be seen
as a multivariate function from n variables (x1, . . . , xn) ∈ Kn to n variables
(y1, . . . , yn) ∈ Kn, of total degree 2.

From the univariate representation (1), it is easy to invert F when 1 + qα is
coprime to qn − 1 (we will always choose q, n and α such that this condition is
satisfied). In this case, it can be proven that the inverse function F−1 of F is
also a monomial function:

F−1(x) = xh

where h is an integer such that

h · (1 + qα) = 1 mod (qn − 1).

From the multivariate representation (2), we will be able to “hide” this function
F by introducing two secret bijective affine transformations s and t from Kn to
Kn, and we will compute G′ = t ◦ F ◦ s and keep F secret. This function G′ is
a quadratic function from Kn to Kn.

Now, we use another important idea: we will not publish all the n quadratic
equations of G′, but only n − r of these equations (ie r equations will be kept
secret). (In FLASH and SFLASH, r = 11.)
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Let G be the public function from Kn to Kn−r obtained like this. Then G
will be the public key and t, s and the r equations removed are the secret key. As
we will see below from G, we will be able to design the very efficient signature
schemes FLASH and SFLASH.

Remark: FLASH and SFLASH are very similar to the scheme C∗ published
in 1988 by T. Matsumoto and H. Imai (cf [?]). However, there are two major
changes:

1. In FLASH and SFLASH, there is only “one branch”.
2. In FLASH and SFLASH, r equations of the composition G′ = t ◦ F ◦ s are

kept secret, where qr ≥ 280.

Without these changes, the schemes can be broken (see [3] and [4]).

3 Notations and Parameters of the Algorithm

In all the present document, || will denote the “concatenation” operation. More
precisely, if λ = (λ0, . . . , λm) and µ = (µ0, . . . , µn) are two strings of elements
(in a given field), then λ||µ denotes the string of elements (in the given field)
defined by:

λ||µ = (λ0, . . . , λm, µ0, . . . , µn).

For a given string λ = (λ0, . . . , λm) of bits and two integers r, s, such that
0 ≤ r ≤ s ≤ m, we denote by [λ]r→s the string of bits defined by:

[λ]r→s = (λr, λr+1, . . . , λs−1, λs).

The FLASH algorithm uses two finite fields.

– The first one, K = F256 is precisely defined as K = F2[X]/(X8+X6+X5+
X+1). We will denote by π the bijection between {0, 1}8 and K defined by:

∀b = (b0, . . . , b7) ∈ {0, 1}8,

π(b) = b7X7 + . . .+ b1X + b0 (mod X8 +X6 +X5 +X + 1).

– The second one is L = K[X]/(X37 +X12 +X10 +X2 + 1). We will denote
by ϕ the bijection between K37 and L defined by:

∀ω = (ω0, . . . , ω36) ∈ K37

ϕ(ω) = ω36X36 + . . .+ ω1X + ω0 (mod X37 +X12 +X10 +X2 + 1).
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3.1 Secret Parameters

1. An affine secret bijection s from K37 to K37. Equivalently, this parameter
can be described by the 37×37 square matrix and the 37×1 column matrix
over K of the transformation s with respect to the canonical basis of K37.

2. An affine secret bijection t from K37 to K37. Equivalently, this parameter
can be described by the 37×37 square matrix and the 37×1 column matrix
over K of the transformation s with respect to the canonical basis of K37.

3. A 80-bit secret string denoted by ∆.

3.2 Public Parameters

The public key consists in the function G from K37 to K26 defined by:

G(X) = (Y0, Y1, . . . , Y25),

where

Y = (Y0, Y1, . . . , Y37) = t
(
ϕ−1(F (ϕ(s(X)))

))
.

Here F is the function from L to L defined by:

∀A ∈ L, F (A) = A25611+1.

By construction of the algorithm, G is a quadratic transformation over K,
i.e. (Y0, . . . , Y25) = G(X0, . . . , X36) can be written, equivalently:




Y0 = P0(X0, . . . , X36)
...

Y25 = P25(X0, . . . , X36)

with each Pi being a quadratic polynomial of the form

Pi(X0, . . . , X36) =
∑

0≤j<k<37

ζi,j,kXjXk +
∑

0≤j<37

νi,jXj + ρi,

all the elements ζi,j,k, νi,j and ρ being in K.

4 Signing a Message

In the present section, we describe the signature of a message M by the FLASH
algorithm.
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4.1 The Signing Algorithm

The message M is given by a string of bits. Its signature S is obtained by
applying successively the following operations (see figure 1):

1. Let M1 and M2 be the three 160-bit strings defined by:

M1 = SHA-1(M),

M2 = SHA-1(M1).

2. Let V be the 208-bit string defined by:

V = [M1]0→159||[M2]0→47.

3. Let W be the 88-bit string defined by:

W = [SHA-1(V ||∆)]0→87.

4. Let Y be the string of 26 elements of K defined by:

Y =
(
π([V ]0→7), π([V ]8→15), . . . , π([V ]200→207)

)
.

5. Let R be the string of 11 elements of K defined by:

R =
(
π([W ]0→7), π([W ]8→15), . . . , π([V ]80→87)

)
.

6. Let B be the element of L defined by:

B = ϕ
(
t−1(Y ||R)

)
.

7. Let A be the element of L defined by:

A = F−1(B),

F being the function from L to L defined by:

∀A ∈ L, F (A) = A25611+1.

8. Let X = (X0, . . . , X36) be the string of 37 elements of K defined by:

X = (X0, . . . , X36) = s−1
(
ϕ−1(A)

)
.

9. The signature S is the 296-bit string given by:

S = π−1(X0)|| . . . ||π−1(X36).
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F −1

160 bits 160 bits

160 bits

s−1
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Fig. 1. Signature generation with FLASH
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4.2 Computing A = F −1(B)

The function F , from L to L, is defined by:

∀A ∈ L, F (A) = A25611+1.

As a consequence, A = F−1(B) can be obtained by the following formula:

A = Bh,

the value of the exponent h being the inverse of 25611 + 1 modulo 25637 − 1. In
fact, h can be explicitly given by:

h = 2295 +
17∑

i=0

176i+174∑
j=176i+87

2j .

Three methods can be used to compute A = Bh :

1. Directly compute the exponentiation Bh by using the “square-and-multiply”
principle.

2. Use the following algorithm:
a) Initialize A to:

A = B287
(
= B25610 ·B128

)
.

Note that B �→ B25610 is a linear transformation of L if we consider L
as a vector space over K and can thus be easily computed.

b) Compute
u = A256

11−1.

This value can be computed either by using the “square-and-multiply”
principle or by noticing that we also have

u ·A = A256
11

with A �→ A256
11

being a linear transformation of L if we consider L as
a vector space over K. We can thus easily find A by solving a system of
linear equations over K.

c) Apply 18 times the following transformation: replace A by u · A25622 .
This is also practical, since A �→ A256

22
is a linear transformation of L

(considered as a vector space over K).
3. Finally, we can also use the fact that

A ·B25611 = A256
22 ·B.

Since B �→ B25611 and A �→ A256
22

are two linear transformations of L
(considered as a vector space over K), A can be found by solving a system
of linear equations over K.
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5 Verifying a Signature

Given a message M (i.e. a string of bits) and a signature S (a 296-bit string),
the following algorithm is used to decide whether S is a valid signature of M or
not:

1. Let M1 and M2 be the three 160-bit strings defined by:

M1 = SHA-1(M),

M2 = SHA-1(M1).

2. Let V be the 208-bit string defined by:

V = [M1]0→159||[M2]0→47.

3. Let Y be the string of 26 elements of K defined by:

Y =
(
π([V ]0→7), π([V ]8→15), . . . , π([V ]200→207)

)
.

4. Let Y ′ be the string of 26 elements of K defined by:

Y ′ = G
(
π([S]0→7), π([S]8→15), . . . , π([S]288→295)

)
.

5. – If Y equals Y ′, accept the signature.
– Else reject the signature.

❄ ❄

✲ ✲

❄

❄

Signature S

G

Y

Y ′

Message M

SHA-1 SHA-1

160 bits 160 bits

Y = Y ′: accepted

Y �= Y ′: rejected

Fig. 2. Signature verification with FLASH
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6 Security of the FLASH Algorithm

FLASH is a C∗−− scheme with a special choice of the parameters.
The security of such schemes has been studied in [4].
The security is not proven to be equivalent to a simple to describe and assu-

med difficult to solve problem. However, here are the present results on the two
possible kinds of attacks :

6.1 Attacks that Compute a Valid Signature from the Public Key
as if It Was a Random Set of Quadratic Equations (i.e. without
using the Fact that We Have a C∗−− Scheme)

These attacks have to solve a MQ problem (MQ: Multivariate Quadratic equati-
ons), and the general MQ problem is NP-Hard. Moreover, when the parameters
are well chosen, the known algorithms for solving such an MQ problem (such
as XL, FXL or some Gröbner base algorithms) are efficient. With our choice of
parameters for FLASH, they require more computations than the equivalent of
280 operations.

6.2 Attacks that Use the Fact that the Public Key Comes from
a C∗−− Scheme (and Is not a Random Set of Quadratic
Equations)

All the known attacks on this family have a complexity in O(qr), where r is the
number of removed equations (r = 11 in the FLASH algorithm), and where q
is the number of elements of the finite field K used (so q = 256 = 28 for the
FLASH algorithm). So these attacks will require more than the equivalent of 280

operations for the FLASH algorithm.

7 Summary of the Characteristics of FLASH

– Length of the signature: 296 bits.
– Length of the public key: 18 Kbytes.
– Length of the secret key: the secret key (2.75 Kbytes) is generated from a

small seed of at least 128 bits.
– Time to sign a message1: less than 5 ms (maximum time).
– Time to verify a signature2: less than 1 ms (i.e. approximately 37× 37× 26

multiplications and additions in K).
– Best known attack: more than 280 computations.

1 On a Pentium III 500 MHz. This part can be improved: the given software was not
optimized.

2 This part can be improved: the given software was not optimized.
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8 The SFLASH Algorithm

In this chapter we introduce a modification of FLASH, that is made in order to
have a smaller public key length. For this purpose, we will choose our parameters
such that the coefficients of the public key lie in the prime subfield F2 of K. For
this we need to satisfy two conditions.
First, the coefficients of the irreducible polynomial that defines L need to be in
F2. Secondly, the affine invertible transformations s and t need to be defined
over F2.

Moreover, in order to avoid a possible attack described in [1] (this attack uses
the factorization of the extension degree 8 and the existence of an intermediate
extension), we choose K = F128 in SFLASH.. Then the of [1] attack fails and we
obtain an algorithm that is not broken with a difference from FLASH that the
public key takes 2.2 Kbytes instead of 18. It is also sensibly faster in verification.

9 Summary of the Characteristics of SFLASH

– Length of the signature: 259 bits.
– Length of the public key: 2.2 Kbytes.
– Length of the secret key: the secret key (0.35 Kbytes) is generated from a

small seed of at least 128 bits.
– Time to sign a message3: less than 5 ms (maximum time).
– Time to verify a signature4: less than 0.5 ms (i.e. approximately 37 × 37 ×

26 × 1
2 multiplications in K).

– Best known attack: more than 280 computations.
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Abstract. We analyze the Weil descent attack of Gaudry, Hess and
Smart [11] on the elliptic curve discrete logarithm problem for elliptic
curves defined over finite fields of characteristic two.

1 Introduction

Let E be an elliptic curve defined over a finite field Fq. The elliptic curve discrete
logarithm problem (ECDLP) in E(Fq) is the following: given E, P ∈ E(Fq),
r = ord(P ) and Q ∈ 〈P 〉, find the integer s ∈ [0, r − 1] such that Q = sP . The
ECDLP is of interest because its apparent intractability forms the basis for the
security of elliptic curve cryptographic schemes.

The elliptic curve parameters have to be carefully chosen in order to circum-
vent some known attacks on the ECDLP. In order to avoid the Pohlig-Hellman
[18] and Pollard’s rho [19,16] attacks, r should be a large prime number, say
r > 2160. To avoid the Weil pairing [14] and Tate pairing [7] attacks, r should
not divide qk − 1 for each 1 ≤ k ≤ C, where C is large enough so that it is
computationally infeasible to find discrete logarithms in FqC (C = 20 suffices
in practice). Finally, the curve should not be Fq-anomalous (i.e., #E(Fq) 6= q)
in order to avoid the attack of [20,21,22]. For the remainder of this paper, we
assume that the elliptic curve parameters satisfy these conditions. In particular,
we assume that r ≈ q.

Recently Gaudry, Hess and Smart [11], building on earlier work of Frey [5,
6] and Galbraith and Smart [8], devised a new attack which utilizes the Weil
descent. Their attack is especially interesting because it provides some evidence
that certain underlying fields Fq such as F2155 may lead to an easier ECDLP for
a significant proportion of all elliptic curves over Fq. Thus these specific finite
fields may be inappropriate for use in elliptic curve cryptographic schemes. The
purpose of this paper is to analyze the Weil descent attack of Gaudry, Hess
and Smart for elliptic curves define over finite fields of characteristic two, and
determine when the attack may be feasible.

The remainder of the paper is organized as follows. The Weil descent attack
of Gaudry, Hess and Smart is outlined in §2 and analyzed in §3. In §4, we present
some consequences of our analysis. Finally, §5 makes some concluding remarks.
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2 Weil Descent Attack

Let l and n be positive integers with gcd(l, n) = 1. Let q = 2l, and let k = Fq

and K = Fqn . Consider the (non-supersingular) elliptic curve E defined over K
by the equation

E : y2 + xy = x3 + ax2 + b, a ∈ K, b ∈ K∗.

Gaudry, Hess and Smart [11] showed how Weil descent can be used to reduce
the elliptic curve discrete logarithm problem in E(K) to the discrete logarithm
problem in a subgroup of order r ≈ qn of the Jacobian JC(k) of a hyperelliptic
curve C of genus g defined over k. One first constructs the Weil restriction WE/k

of scalars of E, which is an n-dimensional abelian variety over k. Then, WE/k is
intersected with n − 1 carefully-chosen hyperplanes to obtain the hyperelliptic
curve C. We call their reduction algorithm the GHS attack on the elliptic curve
discrete logarithm problem. Note that #JC(k) ≈ qg, and a group operation in
JC(k) can be performed in O(g2 log2 q) bit operations using Cantor’s algorithm
[2,3,17]. The genus g of C is either 2m−1 or 2m−1 − 1, where m is determined as
follows.

Theorem 1 ([11]) Let ai = σi(a) and bi = σi(b), where σ : K → K is the
Frobenius automorphism defined by α 7→ αq. Let U = SpanF2

{(1, a0, b
1/2
0 ), . . . ,

(1, an−1, b
1/2
n−1)}, and V = {(0, x2 + x, 0) : x ∈ K}. Then

m = dimF2
(U/U ∩ V ). (1)

If a ∈ {0, 1}, then (1) simplifies to

m(b) = dimF2
(SpanF2

{(1, b
1/2
0 ), . . . , (1, b

1/2
n−1)}). (2)

The discrete logarithm problem in JC(k) can be solved using one of the
following three methods:

1. Pollard’s rho algorithm [19,16] which has an expected running time of
O(g2qn/2 log2 q) bit operations.

2. The refinement by Enge and Gaudry [4] of the subexponential-time al-
gorithm by Adleman, DeMarrais and Huang [1] which has an expected
running time of Lqg [

√
2] bit operations for g/ log q → ∞, where Lx[c] =

O(exp((c + o(1))
√

log x
√

log log x)).
3. Gaudry’s algorithm [10] which has an expected running time of O(g3q2 log2

q+g2g!q log2 q) bit operations. If g is fixed, then this running time is O(q2+ε).
In fact, the algorithm can be modified to one with a running time of
O(q

2g
g+1+ε) as q → ∞ [11].

Gaudry’s algorithm is faster than Pollard’s rho algorithm when n
2 > 2g

g+1 but
becomes impractical for large genera, e.g., g ≥ 10, because of the large mul-
tiplicative factor g!. For larger g, the algorithm of Enge and Gaudry should
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be employed. Since its running time is subexponential in qg, this algorithm is
infeasible when qg is very large, e.g., qg ≈ 21024.

The GHS attack is deemed to be successful if the genus g of C is small
enough so that either Gaudry’s algorithm or Enge and Gaudry’s algorithm is
more efficient than Pollard’s rho algorithm. For example if q = 231 and n = 5
then 1 ≤ m ≤ 5, so 1 ≤ g ≤ 16. In this case it is possible that the GHS attack
succeeds for a significant proportion of all elliptic curves over F2155—however
further analysis and experimentation is needed before one can conclude this
with certainty. We say that the GHS attack fails if either qg is too large, say
qg ≥ 21024, or if g = 1, in which case JC(k) is isogenous to E(k). For the case
q = 2, these conditions translate to m ≥ 11 or m = 1. We stress that failure of
the GHS attack does not imply failure of the Weil descent methodology—there
may be other useful curves which lie on the Weil restriction WE/k that were not
constructed by the GHS method.

3 Analysis

We henceforth assume that q = 2l, i.e., k = F2l , and that n is a positive in-
teger. We also assume that a ∈ {0, 1}. If l and n are both odd, then this is
without loss of generality. However, if either l or n is even then we are only
considering representatives of half of the isomorphism classes of elliptic curves
over Fqn .1 By Theorem 1, to determine the practicality of the GHS attack for
elliptic curves over Fqn we have to examine the admissible values of m(b) where
b ∈ Fqn and bi = bqi

for 0 ≤ i ≤ n − 1. Notice that formula (2) for m(b) is
independent of the representation used for the elements of K since if φ : K → K
is an automorphism and φ(β) = γ, then dimF2

(SpanF2
{β, βq, . . . , βqn−1}) =

dimF2
(SpanF2

{γ, γq, . . . , γqn−1}). Let b = b1/2. We have

m(b) = m(b
2
) = dimF2

(SpanF2
{(1, b0), . . . , (1, bn−1)}),

where bi = b
qi

. Since m(b) = i or i + 1 if dimF2
(SpanF2

{b0, . . . , bn−1}) = i, it
suffices to examine the admissible values of

m(b) = m(b
2
) = dimF2

(SpanF2
{b0, . . . , bn−1}).

Before proceeding, we review some concepts from linear algebra. We view Fqn

as an ln-dimensional vector space over F2, and the Frobenius map σ : Fqn → Fq

as a linear transformation of Fqn over F2. A polynomial f ∈ F2[x] is said to
1 This follows because two elliptic curves y2 + xy = x3 + a1x

2 + b1 and y2 + xy =
x3 + a2x

2 + b2 over F2n are isomorphic over F2n if and only if Tr(a1) = Tr(a2) and
b1 = b2, where Tr is the Trace function from F2n to F2. Hence there are precisely
2(2n − 1) isomorphism classes of non-supersingular elliptic curves over F2n with
representatives y2 + xy = x3 + ax2 + b, where b ∈ F

∗
2n and a ∈ {0, γ}, and where

γ ∈ F2n with Tr(γ) = 1.
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annihilate σ if f(σ) = 0, where 0 is the zero map on Fqn . The unique monic
polynomial of least degree with this property is called the minimal polynomial
of σ over F2.

Lemma 2 The minimal polynomial of σ over F2 is f(x) = xn − 1.

Proof. Since σn(b) = bqn

= b for all b ∈ Fqn , we have f(σ) = 0. Now, assume
that the non-zero polynomial g(x) =

∑n−1
i=0 gix

i ∈ F2[x] of degree less than n
annihilates σ. Then

g(σ)b =

(
n−1∑
i=0

giσ
i

)
b =

n−1∑
i=0

gib
qi

= 0

for all b ∈ Fqn . This is impossible since the polynomial G(x) =
∑n−1

i=0 gix
qi

can
have at most qn−1 roots in Fqn . Thus the minimal polynomial of σ over F2 is
xn − 1. ut

For b ∈ Fqn , the unique monic polynomial f ∈ F2[x] of least degree such
that f(σ)b = 0 is denoted Ordb(x). It is easy to see that Ordb(x)|(xn − 1) and
deg(Ordb(x)) = dimF2

(SpanF2
{b, σ(b), . . . , σn−1(b)}) = m(b2). By considering

the cyclotomic cosets of 2 modulo n, we can easily determine the degrees of the
irreducible factors of xn − 1 over F2. We will use this factorization to obtain the
possible values of Ordb(x), and then determine the admissible values of m(b).

Let n = 2en1 where n1 is odd. Let h = 2e and xn − 1 = (f0f1 · · · fs)h,
where f0 = x − 1 and the fi’s are distinct irreducible polynomials over F2 with
deg(fi) = di.

Lemma 3 Let Wi = {b ∈ Fqn | fh
i (σ)b = 0} for 0 ≤ i ≤ s. Then dimF2

Wi =
l · deg(fh

i ) = l · h · deg(fi) and Fqn = W0 ⊕ W1 · · · ⊕ Ws.

Proof. Clearly Wi is a subspace of Fqn . Let W i = {fh
i (σ)b | b ∈ Fqn}. Then

Fqn = Wi ⊕ W i. Now, let r = deg(fh
i ) and Fi(x) = (xn − 1)/fh

i (x) for 0 ≤
i ≤ s. Let fh

i (x) =
∑r

i=0 uix
i and Fi(x) =

∑n−r
i=0 vix

i. For any c ∈ W i we have
Fi(σ)c = 0. Thus

∑n−r
i=0 vic

qi

= 0, whence c is a root of V (x) =
∑n−r

i=0 vix
qi

.
Since deg(V ) = qn−r, we have |W i| ≤ qn−r. Similarly, for any b ∈ Wi, we have
fh

i (σ)b = 0, whence b is a root of U(x) =
∑r

i=0 uix
qi

; hence |Wi| ≤ qr. Since
|Wi| · |W i| = qn, we must have |Wi| = qr and |W i| = qn−r. Thus dimF2

Wi =
l · deg(fh

i ) and W i = {c ∈ Fqn | Fi(σ)c = 0}.
To show that Fqn = W0 ⊕ W1 · · · ⊕ Ws, we only need to show that if c =

c0 + c1 + · · · + cs where ci ∈ Wi, then c = 0 iff ci = 0 for all 0 ≤ i ≤ s. This is
true since for all 0 ≤ i ≤ s, Fi(σ)c = Fi(σ)(c0 + c1 + · · · + cs) = Fi(σ)ci = 0 iff
ci = 0. ut

Lemma 4 For j ∈ [0, h], let W
(j)
i be the null space of f j

i (x). For j ∈ [1, h],
let Wij be any subspace of W

(j)
i such that W

(j)
i = W

(j−1)
i ⊕ Wij . Then Wi =

Wi1 ⊕ Wi2 ⊕ · · · ⊕ Wih where |Wij | = qdi , and Fqn =
∑s

i=0
∑h

j=1 Wij .
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Proof. Analogous to the proof of Lemma 3. ut
For each c ∈ Fqn , we can write c =

∑s
i=0
∑h

j=1 cij where cij ∈ Wij . For each
i ∈ [0, s], let ji be the largest index j ∈ [1, h] such that cij 6= 0; if no such index
exists then let ji = 0. We define the type of c to be (j0, j1, . . . , js).

Theorem 5 Let c ∈ Fqn . Then the admissible values for m(c2) are
∑s

i=0 jidi

where each ji ∈ [0, h]. Moreover, there are precisely
∏s

i=0,ji 6=0(q
jidi − q(ji−1)di)

elements c ∈ Fqn of type (j0, j1, . . . , js) with m(c2) =
∑s

i=0 jidi.

Proof. We have f j
i (x)|Ordc(x) if and only if ji ≥ j. Now, let g(x) =

∏s
i=0 f ji

i (x)
be a divisor of xn − 1 with deg(g) =

∑s
i=0 jidi. Define

C =
{ s∑

i=0

h∑
j=1

cij | cij ∈ Wij , ciji
6= 0 if ji 6= 0, cij = 0 for j > ji

}
;

note that #C =
∏s

i=0,ji 6=0(q
jidi − q(ji−1)di). Then for c ∈ Fqn , Ordc(x) = g(x)

if and only if c ∈ C. The result now follows. ut

Theorem 6 Let b ∈ Fqn . Then

m(b2) =
{

m(b2), if j0 6= 0,
m(b2) + 1, if j0 = 0.

Proof. Suppose that m(b2) = T . Then

SpanF2
{b0, b1, . . . , bn−1} = SpanF2

{b0, b1, . . . , bT−1}.

Let Ordb(x) = k0 + k1x + · · · + kT−1x
T−1 + xT .

Suppose first that j0 = 0. Then x−1 does not divide Ordb(x). It follows that
k0 + k1 + · · · + kT−1 = 0. From k0b0 + k1b1 + · · · + kT−1bT−1 = bT we have

(0, bT ) = k0(1, b0) + k1(1, b1) + · · · + kT−1(1, bT−1).

Thus (0, bT ) and hence also (1, 0) are in SpanF2
{b0, . . . , bn−1}. It follows that

SpanF2
{(1, b0), . . . , (1, bn−1)} = SpanF2

{(1, b0), . . . , (1, bT−1), (1, 0)}.

Hence m(b2) = T + 1.
Suppose now that j0 6= 0. Then x − 1 divides Ordb(x). It follows that k0 +

k1 + · · · + kT−1 = 1. From k0b0 + k1b1 + · · · + kT−1bT−1 = bT we have

(1, bT ) = k0(1, b0) + k1(1, b1) + · · · + kT−1(1, bT−1).

Since bT+j = k0bj + k1b1+j + · · · + kT−1bT−1+j for j ≥ 0, it follows that

(1, bT+j) = k0(1, bj) + k1(1, b1+j) + · · · + kT−1(1, bT−1+j)
= u0(1, b0) + u1(1, b1) + · · · + uT−1(1, bT−1)

for some (u0, u1, . . . , uT−1). Hence m(b2) = T . ut
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We next consider the case where n is an odd prime.

Lemma 7 Let n be an odd prime, and let t = ordn(2) be the order of 2 modulo
n. Let n = st + 1. Then xn − 1 factors over F2 as xn − 1 = (x − 1)f1f2 · · · fs

where the fi’s are distinct irreducible polynomials of degree t.

Proof. Since gcd(nxn−1, xn − 1) = 1, xn − 1 has no repeated factors. Let fi be
an irreducible factor of xn − 1 with deg(fi) = c > 1, and let α ∈ F2c be a root of
fi. Since 2t ≡ 1 (mod n) and αn = 1, we have α2t−1 = 1, whence α ∈ F2t and
c|t. Conversely, since α2c−1 = 1, we have 2c ≡ 1 (mod n), whence t|c. Hence
c = t. ut

Corollary 8 Let n be an odd prime, and let t = ordn(2). Let n = st + 1, and
let b ∈ Fqn . Then the admissible values for m(b2) are it and it+1, for 0 ≤ i ≤ s.
Moreover, for each 0 ≤ i ≤ s, there are

(
s
i

)
(qt − 1)i elements b ∈ Fqn with

m(b2) = it, and (q − 1)
(
s
i

)
(qt − 1)i elements b ∈ Fqn with m(b2) = it + 1.

Proof. Follows from Theorem 5 since h = 1, d0 = 1, and di = t for i ∈ [1, s]. ut

Corollary 9 Let n be an odd prime, and let t = ordn(2). Let n = st + 1, and
let b ∈ Fqn . Then

m(b2) =
{

m(b2), if m(b2) = it + 1 for some 0 ≤ i ≤ s,
m(b2) + 1, if m(b2) = it for some 0 ≤ i ≤ s.

Moreover, for each 0 ≤ i ≤ s, the number of elements b ∈ Fqn with m(b2) = it+1
is q
(
s
i

)
(qt − 1)i.

Proof. Follows from Theorem 6. ut

4 Consequences

We use the results of §3 to study the feasibility of the GHS attack on the ECDLP
for elliptic curves defined over F2n . We are particularly interested in the odd pri-
mes n ∈ [160, 600] which are the field dimensions of interest when implementing
elliptic curve cryptographic schemes. We also consider the case n = 155 which
is included in an IETF standard [12] for key establishment.

For odd primes n, we define M(n) = ordn(2) + 1. Observe that M(n) is the
smallest attainable value m(b) > 1 for b ∈ F2n . Table 1 lists the values of M(n)
for all primes n ∈ [100, 600]. Since M(n) ≥ 17 for all primes n ∈ [160, 600], we
conclude that the GHS attack is infeasible for all elliptic curves defined over F2n

where n is prime and n ∈ [160, 600].
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Table 1. Values of M(n) for primes n ∈ [100, 600].

n M(n) n M(n) n M(n) n M(n) n M(n) n M(n) n M(n)
101 101 163 163 229 77 293 293 373 373 443 443 521 261
103 52 167 84 233 30 307 103 379 379 449 225 523 523
107 107 173 173 239 120 311 156 383 192 457 77 541 541
109 37 179 179 241 25 313 157 389 389 461 461 547 547
113 29 181 181 251 51 317 317 397 45 463 232 557 557
127 8 191 96 257 17 331 31 401 201 467 467 563 563
131 131 193 97 263 132 337 22 409 205 479 240 569 285
137 69 197 197 269 269 347 347 419 419 487 244 571 115
139 139 199 100 271 136 349 349 421 421 491 491 577 145
149 149 211 211 277 93 353 89 431 44 499 167 587 587
151 16 223 38 281 71 359 180 433 73 503 252 593 149
157 53 227 227 283 95 367 184 439 74 509 509 599 300

Remark 10 (fraction of elliptic curves over F2n with m = n) If n is an odd
prime then by Corollary 9 the fraction of b ∈ F2n for which m(b) = n is

2
(
s
s

)
(2t − 1)s

2n
=
(

1 − 1
2t

)s

≥
(

1 − 1
n

)s

since t = ordn(2) ≥ dlog2 ne. In particular, if ordn(2) = n − 1 (equivalently,
1+x+x2 + · · ·+xn−1 is irreducible over F2), then m(b) = 1 or n for all b ∈ F2n .
In this case, the GHS attack will fail in the worst possibly way for all b ∈ F2n .
The prime numbers n ∈ [100, 600] for which ordn(2) = n − 1 are 101, 107, 131,
139, 149, 163, 173, 179, 181, 197, 211, 227, 269, 293, 317, 347, 349, 373, 379, 389,
419, 421, 443, 461, 467, 491, 509, 523, 541, 547, 557, 563 and 587.

Remark 11 (infeasibility of the GHS attack on elliptic curves over the NIST
binary fields) In February 2000, FIPS 186-1 was revised by NIST to include the
elliptic curve digital signature algorithm (ECDSA) with further recommenda-
tions for the selection of underlying finite fields and elliptic curves; the revised
standard is called FIPS 186-2 [15]. FIPS 186-2 has 10 recommended finite fields:
5 prime fields, and the binary fields F2163 , F2233 , F2283 , F2409 , and F2571 . The
binary fields F2n were selected so that n is at least twice the key lengths of
common symmetric-key block ciphers, and so that there exists a Koblitz curve2

of almost prime order over F2n . Since for Koblitz curves E, #E(F2l) divides
#E(F2n) whenever l divides n, this requirement imposes the condition that n
be prime. Note that m = 1 for Koblitz curves, so g = 1 and hence the GHS attack
will always fail. Table 2 lists the values of M(n) for n ∈ {163, 233, 283, 409, 571}.
From this table, we can conclude that the GHS attack is infeasible for all elliptic
curves defined over the NIST binary fields.
2 Koblitz curves [13] are elliptic curves defined over F2. They are attractive for prac-

tical use because there are very fast special-purpose algorithms for performing elliptic
curve arithmetic [23].
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Table 2. Values of M(n) for NIST-recommended fields F2n .

n 163 233 283 409 571
M(n) 163 30 95 205 115

Remark 12 (smallest possible value of M(n)) Let n be an odd prime. Since
t = ordn(2) ≥ dlog2 ne, we have M(n) ≥ dlog2 ne + 1. It is easy to see that
the lower bound is attained precisely when n is a Mersenne prime. The only
Mersenne prime in the interval [100, 600] is n = 127.

Remark 13 (Koblitz curves vs. random curves) As noted in Remark 11, Kob-
litz curves are attractive for practical use because the Frobenius endomorphism
σ : E(F2n) → E(F2n) defined by (x, y) 7→ (x2, y2) can be used to devise very fast
algorithms for elliptic curve point multiplication. The special structure associa-
ted with Koblitz curves has also yielded a speedup3 of Pollard’s rho algorithm for
the ECDLP on these curves [9,24]. It is interesting to note that Koblitz curves
are more resilient to the GHS attack than random curves since the GHS attack
is a priori guaranteed to fail for a Koblitz curve (since m = 1), while it might
succeed (albeit with an extremely low probability) for a randomly selected curve
if m is small (e.g., the elliptic curve over F2127 with m = 7).

Remark 14 (constructing elliptic curves over F2n with a given admissible value
m) Given an admissible value m, an elliptic curve y2 + xy = x3 + b over F2n

having this m value can be efficiently constructed by first factoring xn − 1, then
finding bases for the subspaces Wi (see Lemma 3), and finally selecting b ∈ F2n

with m(b) = m.

Remark 15 (GHS attack on elliptic curves over F2155) Since F2155 has three
proper subfields, namely F2, F25 and F231 , there are three ways of applying the
GHS attack to the ECDLP for elliptic curves over F2155 .

(i) If we take q = 231 and n = 5, then t = ord5(2) = 4. Thus m(b) = 1 or
5 for all b ∈ F2155 , so the GHS attack reduces the ECDLP to the DLP in
the Jacobian of a hyperelliptic curve of genus 1, 15 or 16 over F231 . If the
genus is 15 or 16, then the resulting hyperelliptic curve DLP is outside the
feasible limits of Gaudry’s algorithm [10], and likely also outside the feasible
limits of the Adleman-DeMarrais-Huang (ADH) algorithm and its variants
[1,4]; however further experimentation is needed before the latter can be
concluded with certainty.

(ii) If we take q = 25 and n = 31, then t = ord31(2) = 5 and s = 6. Thus
m(b) = 1, 6, 11, 16, 21, 26 or 31 for all b ∈ F2155 . Thus there are some curves
over F2155 for which the GHS attack reduces the ECDLP to the DLP in the

3 The speedup is by a factor of
√

n for Koblitz curves over F2n .
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Jacobian of a hyperelliptic curve of genus 31 or 32 over F25 . By Corollary 9,
the number of b ∈ F2155 for which this holds is 25 · 6 · (225 − 1) ≈ 232. The
subexponential-time ADH algorithm and its variants can likely solve these
resulting hyperelliptic curve DLPs efficiently since the group size is ≈ 2155;
again further experimentation is required before this can be concluded with
certainty.

(iii) Suppose that we take q = 2 and n = 155. Now, x155 − 1 has 14 distinct
irreducible factors over F2: 1 factor of degree 1, 1 factor of degree 4, 6 factors
of degree 5, and 6 factors of degree 20. Since the order of the elliptic curve
group is ≈ 2155, we need to reduce the ECDLP to the DLP in the Jacobian
of a hyperelliptic curve of genus g ≥ 155. Thus we need 2m−1 ≥ 155, i.e.,
m ≥ 9. By Theorems 5 and 6, the elliptic curves y2 + xy = x3 + b2 where
deg(Ordb(x)) = 9 have m(b2) = 10. Hence the GHS attack reduces the
ECDLP in these curves to the DLP in the Jacobian of a hyperelliptic curve
over F2 of genus 511 or 512. As in (i), this is likely outside the feasible limits
of the ADH algorithm and its variants.

We conclude that only a small fraction of elliptic curves over F2155 may be
susceptible to the GHS attack, namely those elliptic curves in (ii) for which
m = 6.

5 Conclusions

We have shown that the Weil descent attack of Gaudry, Hess and Smart on the
elliptic curve discrete logarithm problem over F2n for primes n ∈ [160, 600] is
infeasible for all elliptic curves defined over F2n . We stress that failure of the
GHS attack does not imply failure of the Weil descent methodology—there may
be other useful curves which lie on the Weil restriction WE/k that were not
constructed by the GHS method.
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Abstract. While quantum computers might speed up in principle cer-
tain computations dramatically, in practice, though quantum computing
technology is still in its infancy. Even we cannot clearly envision at pre-
sent what the hardware of that machine will be like. Nevertheless, we
can be quite confident that it will be much easier to build any practical
quantum computer operating on a few number of quantum bits rather
than one operating on a huge number of quantum bits. It is therefore of
big practical impact to use the resource of quantum bits very spare, i.e.,
to find quantum algorithms which use as few as possible quantum bits.
Here, we present a method to reduce the number of actually needed
qubits in Shor’s algorithm to factor a composite number N . Exploiting
the inherent probabilism of quantum computation we are able to substi-
tute the continued fraction algorithm to find a certain unknown fraction
by a simultaneous Diophantine approximation. While the continued frac-
tion algorithm is able to find a Diophantine approximation to a single
known fraction with a denominator greater than N2, our simultaneous
Diophantine approximation method computes in polynomial time un-
usually good approximations to known fractions with a denominator of
size N1+ε, where ε is allowed to be an arbitrarily small positive constant.
As these unusually good approximations are almost unique we are able
to recover an unknown denominator using fewer qubits in the quantum
part of our algorithm.

1 Introduction

The discovery of a fast, i.e., polynomial-time quantum factorization algorithm
for large composite numbers (cf. [Sho]) has boosted quantum computing over the
last few years tremendously. This earth-shaking result led to the proposal of se-
veral experimentally realizable implementations of quantum computers. Among
them, there is the Ion Trap system (cf. [CZ]), the Nuclear Magnetic Resonance
? This work was initiated while visiting and with full support of the ETH – Institut
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D. Naccache (Ed.): CT-RSA 2001, LNCS 2020, pp. 319–327, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



320 J.-P. Seifert

scheme (cd. [CH+] and even a Silicon based system (cf. [Kan]). While the noise
rate in these systems can be brought to a constant in principle (cf. [ABO]), it
nevertheless imposes limits to the maximum size of quantum computers. Thus,
it is of big practical impact to use the resource of quantum bits very spare, i.e.,
to find quantum algorithms which need as few as possible quantum bits.

Therefore, several attempts were made (cf. [ME,PP,Z]) to come up with
sophisticated and spare quantum implementations of Shor’s quantum algorithm.
However, all these attempts still used Shor’s idea to use the continued fraction
algorithm to find a certain unkown fraction. Unfortunately, using the continued
fraction algorithm leads inevitably to a squaring of the number to be factored.
This in turn doubles the length of the quantum registers. To avoid this squaring
of the numbers to be factored is the subject of the present paper.

This paper presents a method to reduce the number of actually needed qubits
in Shor’s algorithm to factor a given composite number N , where N is the
product of two randomly chosen primes of equal size. Although our method
easily extends to a wider class of randomly chosen modules, we will concentrate
here for clarity to this special case. Moreover, from a practical point of view,
this is the most interesting case, as RSA (cf. [RSA]) is the most widely used
public-key cryptosystem in practice.

By exploiting the inherent probabilism of quantum computation we are able
to substitute the continued fraction algorithm to find a certain unknown fraction
by a simultaneous Diophantine approximation. While the continued fraction al-
gorithm is able to find a Diophantine approximation to a single known fraction
with a denominator greater than N2, our simultaneous Diophantine approxi-
mation method computes in polynomial time unusually good approximations to
known fractions with a denominator of size N1+ε, where ε is an arbitrarily small
positive constant.

The paper is organized as follows. We assume that the reader is familiar
with the concept of quantum computing, and especially with Shor’s algorithm
[Sho] and the so called measurement concept. For a thorough introduction into
quantum computing we refer to Gruska [Gru] or even Shor [Sho] itself. In section
2 we briefly review Shor’s factorization algorithm up to the point what is nee-
ded for our algorithm. Section 3 provides a short introduction to simultaneous
Diophantine approximations which is needed for our later purposes in subse-
quent sections. Next, in section 4 we will present our algorithm which reduces
the number of the necessary quantum bits of Shor’s algorithm from 3 log2(N)
to (2 + ε) log2(N). Finally, we will discuss in section 5 some open problems and
possible further applications of our method to other quantum algorithms.

2 Preliminaries

Following Shor’s algorithm to factor a given N , one computes for a random
x mod N its order in the multiplicative group Z∗

N , i.e., the least positive integer
r < N such that xr ≡ 1 mod N . Essentially, this algorithm terminates in the
classical computational problem to find for a known fraction α/A an unknown
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fraction m/r for which it is known that

Pr
measure α

[
∃m :

∣∣∣ α

A
− m

r

∣∣∣ ≤ 1
2A

]
≈ 4

π2

and Pr[gcd(m, r) = 1] ≥ Ω(1/ log log r). Now, choosing A > N2 enables unique
recovery of the fraction m/r via the continued fraction algorithm in polynomial
time, since m/r is with reasonable probability in lowest terms. This unique
recovery of an unknown fraction is due to Legendre [Leg] and is described in
detail in Schrijver [Sch]. For how to factor N with large probability given the
order r of a randomly chosen x ∈ Z∗

N , we refer to Shor [Sho].
However, our goal is to avoid the choice of A > N2 as this doubles the

bitlength of the numbers involved in the quantum algorithm. Instead, we will
present a method which for every constant ε > 0 only needs a choice of A ≥
N1+ε. As our new method to find the order of a random x ∈ Z∗

N is mainly based
on the theory of so called simultaneous Diophantine approximations, we will first
give a short introduction into this subject and hereafter state some important
results for later use. We also note that simultaneous Diophantine approximations
are the natural extensions of continued fractions to higher dimensions. However,
in higher dimensions things become very subtle as there is in general no higher
dimensional analogue of Legendre’s unique recovery method.

For a thorough discussion of simultaneous Diophantine approximations and
especially its interrelations to continued fractions we refer to Cassels [Cas], Laga-
rias [Lag1,Lag2], Lovasz [Lov] and Schrijver [Sch].

3 Simultaneous Diophantine Approximation

Simultaneous Diophantine approximation is the study of the approximation pro-
perties of real vectors α = (α1, . . . , αn) by rational vectors ξ = (p1

Q , . . . , pn

Q ). As
measure for the quality of an approximation to a vector α with denominator Q
we use the function

‖Qα mod Z‖∞,

where ‖α mod Z‖∞ is defined by

‖α mod Z‖∞ := max
1≤i≤n

min
pi∈Z

|αi − pi|.

The following classical result of Dirichlet (see e.g. Cassels [Cas]) describes
how well vectors α ∈ Rn can be simultaneously approximated.

Proposition 1. For every α ∈ Rn there are infinitely many positive integer
solutions to ‖Qα mod Z‖∞ ≤ Q−1/n.

However, the diophantine approximations that we will consider do not involve
approximations to real vectors α, but instead involve approximations to rational
vectors α ∈ Qn. And in general, such approximations to rational vectors behave
completely different than those from Dirichlet’s result, cf. Lagarias [Lag2,Lag3].
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We therefore use a slightly different measure of quality of approximation.
Namely, we will call a vector ξ = (x1

X , . . . , xn

X ) with 1 ≤ X < A a ∆-good
approximation to a vector α = (α1

A , . . . , αn

A ) satisfying gcd(α1, . . . , αn, A) = 1
if ∣∣∣αi

A
− xi

X

∣∣∣ ≤ ∆

XA
for 1 ≤ i ≤ n.

For abbreviation we define the set Sn(A) of all primitive rational vectors α
with denominator A, i.e.,

Sn(A) :=
{

α =
(α1

A
, . . . ,

αn

A

) ∣∣∣ 0 ≤ αi < A and gcd(α1, . . . , αn, A) = 1
}

.

Moreover, we define for a vector α ∈ Qn satisfying gcd(α1, . . . , αn, A) = 1
N(α, ∆) as the number of its ∆-good approximations. As we are interested
in the average number N(α, ∆) for those α with N(α, ∆) ≥ 1 we define the
conditional probabilities

pk(A, ∆, n) := Pr
α∈Sn(A)

[N(α, ∆) ≥ k | N(α, ∆) ≥ 1].

For the former conditional probabilities, Lagarias and H̊astad [LH] proved
the following Theorem. It confirms the intuition that “most” rational vectors do
not have very many simultaneous Diophantine approximations of the Dirichlet
quality, i.e., their approximations satisfying the Dirichlet bound are “almost”
unique approximations.

Theorem 1. There are positive constants cn such that for n ≥ 5 and all A ≥ 2
and all ∆ with cnd(A) ≤ ∆ ≤ A1−1/n, we have

pk(A, ∆, n) ≤ cn

k2 ,

where d(A) denotes the number of divisors of A.

Although in general it is difficult to compute for a given rational vector
“good” simultaneous Diophantine approximations (cf. Lagarias [Lag4], Rössner
and Seifert [RS]), it will suffice for our purposes to find “good” approximations in
polynomial-time only for fixed dimension n. Luckily, to compute approximations
in fixed dimensions of given quality with a prescribed size for the denominators
we can use the following theorem due to Lagarias [Lag4].

Theorem 2. For any fixed n there exists a polynomial-time (polynomial in the
length of the input) algorithm to solve the following problem: Given a vector α ∈
Qn und positive integers N , s1 und s2, find a denominator Q with 1 ≤ Q ≤ N
such that ‖Qα mod Z‖∞ ≤ s1

s2
, provided that at least one exists.
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4 Finding an Unknown Denominator with Fewer Qubits

We will now describe our new algorithm to compute for a random x mod N its
order in the multiplicative group Z∗

N , where N is the product of two randomly
chosen primes of equal size.

Although our factorization algorithm also computes for a random x mod N
its order in the multiplicative group Z∗

N , i.e., the least positive integer r < N
such that xr ≡ 1 mod N , we must now ensure that the order r of the random
x mod N is large. The following proposition from [HSS] examines the simplest
and most interesting circumstances for which it can be proved that the order of
a random x ∈ Z∗

N is large.

Proposition 2. Let p and q be randomly chosen primes of equal size, N = p · q
with binary length ` and x randomly chosen from Z∗

N , then for all k ≥ 6,

Pr
[
ordN (x) ≥ (p − 1)(q − 1)

`k

]
≥ 1 − O

(
1

`(k−5)/5

)
.

In fact, a more general statement can be shown to hold for a wider class of
randomly generated composite numbers (see Ritter [Rit]). However, for simpli-
city and practical purposes we will always assume in the following that we want
to factor a typical RSA modulus N = p · q for some randomly chosen primes p
and q of equal size.

The building block in the quantum part of our algorithm is essentially Shor’s
quantum part which computes for a random x mod N its order r in the multi-
plicative group Z∗

N . Through several unitary transformations Shor’s algorithm
works in polynomial-time towards the state

1
A

A−1∑
c=0

A−1∑
a=0

ωc·a|c〉|xa mod N〉,

where ω denotes a Ath primitive root of unity, i.e., ω = e
2πi
A . Finally, one mea-

sures the first register and following Shor’s analysis [Sho] it can be seen that for
the final measurement α

Pr
measurement

[α] =
|∑A−1

a=0 ωα·a·r|2
A2

holds. Evaluation of this geometrical series results in

Pr
measurement

[α] = Θ( 1
r ).

Moreover, a tighter analysis of the above geometrical series also shows that
for the final measurement α there exists a fraction m/r with r = ordN (x) and
Pr[gcd(m, r) = 1] ≥ Ω(1/ log log r) such that

Pr
measure α

[
∃m :

∣∣∣ α

A
− m

r

∣∣∣ ≤ 1
2A

]
≈ 4

π2 .
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More precisely, our new algorithm performs for the same randomly chosen x ∈
Z∗

N n independent repetitions of Shor’s above quantum part to get n independent
measurements α1, . . . , αn where

∣∣∣αi

A
− mi

r

∣∣∣ ≤ 1
2A

and gcd(mi, r) = 1 holds with the appropriate probabilities. Note that (see
Knuth [Knu]) with overwhelming probability (over the measurements of the
α1, . . . , αn) we will have

gcd(α1, . . . , αn, A) = 1.

Thus, the n independent measurements α1, . . . , αn with gcd(α1, . . . , αn, A)
= 1 and 0 ≤ αi < A form an element α := (α1

A , . . . , αn

A ) chosen from the set
Sn(A), according to a probability distribution D which is induced by the facts
that Pr [αi] = Θ( 1

r ) and r ≥ N1−o(1) which is due to Proposition 2.
Next, we want to establish the choice of A = N δ for which the vector

(m1
r , . . . , mn

r ) is a ∆-good approximation to our randomly chosen α ∈D Sn(A)
where ∆ = A1−1/n. Setting

1
2A

≤ ∆

r A
=

1
r A1/n

and using Proposition 2, i.e., r ≥ (p−1)(q−1)
`k with large probability, we find

(p − 1)(q − 1)
`k

A1/n ≤ 2A,

and finally that we need for some constant k

δ ≥ 1
1 − 1/n

(logN (φ(N)) − logN (2) − k logN (dlog2 Ne))

in order to state that (m1
r , . . . , mn

r ) is a ∆-good approximation to α. In terms
of a choice of A = N1+ε and ignoring low order terms for δ, this means that we
need for our simultaneous Diophantine approximation a dimension of at least

n ≥
⌈

1
1 − 1/(1 + ε)

⌉
.

Note that for an arbitrarily small positive constant ε the dimension n is also
constant.

Now, we will show how to compute in polynomial-time the above unknown
A1−1/n-good approximation (m1

r , . . . , mn

r ) to α. Here we will take advantage of
the following two facts. First, the vector α is an almost uniformly chosen element
from the set Sn(A) and second, (m1

r , . . . , mn

r ) is a A1−1/n-good approximation
to α. While the latter is obvious from the above construction, the first statement
still needs some support. Recall that the vector α is chosen from the set Sn(A),
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according to a probability distribution D which is induced by the two facts that
Pr [αi] = Θ( 1

r ) and r ≥ N1−o(1). From this we infer that the statistical distance
||U − D||SD between the uniform distribution U on Sn(A) and the distribution
D on Sn(A) is neglegible for our puposes.

Thus, besides some marginal stochastic deviation due to ||U − D||SD, these
facts enable us to applicate Theorem 1 to the vector α and we get that for some
constants cn

Pr
α∈DSn(A)

[N(α, ∆) ≤ k | N(α, ∆) ≥ 1] ≥ 1 − cn

k2 − ||U − D||SD.

We therefore deduce that for constant n there exist with extremely large
probability at most a polynomial number of A1−1/n-good approximations to α.
Hence, we are able to compute with Theorem 2 and a bisection strategy all
denominators Q with 1 ≤ Q < A such that

‖Qα mod Z‖∞ ≤ ∆

A
.

After having found these polynomially many number of candidate deno-
minators, we simply check every denominator whether it is indeed the order
r := ordN (x) of the random x ∈ Z∗

N , and with reasonable probability one of
these denominators happens to be the order r. We stress that this reasona-
ble success probability strongly depends on the fact that we only work with a
constant n to be able to apply Theorem 2. Indeed, our polynomial success pro-
bability depends on a lot of different probabilities, which however, can easily be
seen to be polynomially bounded as long as the dimension n of our diophantine
approximation problem is fixed.

Thus, we have proved the following theorem, which can clearly be extended
to a wider class of composite numbers.

Theorem 3. Let N be the product of two randomly chosen primes of equal size.
There exists a randomized polynomial-time quantum-algorithm that factors N
using d(2 + ε) log2(N)e qubits, where ε is an arbitrarily small positive constant.

5 Discussion

Exploiting the inherent probabilism of quantum computing we were able to sub-
stitute the continued fraction algorithm by its higher dimensional extension —
the simultaneous Diophantine approximation. This resulted in nearly halfing the
length of the first quantum register compared to Shor’s algorithm. This smaller
bit-length of the first register might also be useful when performing the quantum
Fourier transform over the first register. Also note that we have not added any
new computation steps to Shor’s order finding algorithm. Instead, we shifted
more computation from the quantum computation part to the classical compu-
tation part which might be of importance with respect to a physical realization
of a practical quantum computer.
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Moreover, it would be interesting to see whether our simultaneous Diophan-
tine approximation approach could be used in other quantum algorithms where
the continued fraction algorithm is currently used. Namely, in the algorithms
of Kitaev [K], Mosca [M] and Mosca and Ekert [ME]. This question naturally
arises as these algorithms use the so called eigenvalue estimation method and af-
terwards they also use the continued fraction algorithm to find the denominator
of an unknown fraction.

We also would like to note that a pretty similiar use of simultaneous diop-
hantine approximations was used by Shamir [Sha] to break the Merkle-Hellman
cryptosystem in polynomial-time.
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Abstract. We present architecture for e-business applications that receive
requests from a party over the Net, to allow the applications to make decisions
relying on the credentials of the requesting party. Relying party applications
will be provided with uniform interface to the credentials of the requesting
party. This will allow use of simple, widely available credentials as well as
more advanced credentials such as public key certificates, attribute certificates
and ‘Negative‘ credentials such as certificate revocation lists (CRL). The core
of the architecture is a Credential Manager who will provide all credential
management functions, including collection of credentials, providing uniform
interface to credentials, and extracting semantics relevant to the relying party’s
applications.

1 Introduction

Credentials are critical for secure business and commerce between entities. A
credential is a statement by an issuer on some properties of the subject of the
credential. The subject normally presents credentials to a relying party. The relying
party needs to make a (business) decision based on the credentials, typically whether
to allow a request or access. Current e-business systems do not have a separate
module for managing credentials. Many systems use only very simple forms of
credentials, such as user-id/password identification, and subsequent lookup in local
membership database. However, it is well recognized that advanced credentials such
as public key and attribute certificates are essential for e-business, and indeed these
are used by some systems. We propose an architecture and framework for credentials
management, that may help to extend the use of credentials for e-business, and in
particular, support advanced credentials such as public key and attribute certificates.

We notice that in the recent years there have been a large number of works on trust
management by relying parties, most notably PolicyMaker [2], KeyNote [1]. These
works propose improved certificate formats, and policy based tools for the relying
party to make decisions based on the certificates. The policies and tools are very
broad in their scope, and allow pretty complex decisions as a pretty complex function
of the available certificates. We suggest a much more piece-meal approach, where the
mechanisms in this work will only collect credentials (including certificates) and map
them to interface and semantics known to the relying applications. The (small) step
we provide is often needed: the collection is needed whenever some credentials are
not available immediately with the request (e.g. SSL passes just one certificate chain),
and the mapping is needed whenever different issuers may use different styles (e.g.

http://www.ngpay.com/
http://www.hrl.il.ibm.com/
mailto:yosimass@il.ibm.com
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there are multiple potential locations for e-mail address, even for PKIX [11] certi-
ficates). Almost all of the ‘interesting‘ logic of trust management should properly be
done after the more ‘mechanic‘ steps of collection and mapping of credentials are
complete. Therefore, our work can be used to remove substantial complexity from the
trust management application and policy. This modular approach of simplifying trust
management by looking at specific sub-problems continues the work of [8,17] where
trust management is simplified into mapping from credentials to roles.

In order to simplify and focus on a specific module, our work does not address the
actual authentication and identification of the requesting party. Notice that in any
implementation, the relying party also needs to verify the identity of the requesting
party (and that this party is the owner of the credentials), e.g. by user-id, password, e-
mail verification, checking a digital signature on the request or using authentication
protocol such as SSL. This verification would be done by a separate module and is
outside the scope of this paper.

There are many forms of credentials. It is instructive to first consider some
physical credentials, e.g.:

� Passport, visa, id-card, driver license, other documents
� Charge/bank cards, employee card, membership card,  …
� Professional and other licenses and certificates

Our focus is on digital credentials, which may be passed over the Net. Specifically:

� Identity public key certificates, signed by a Certificate Authority (CA).  Links
the subject name (or other identifier) with a specific public key, and possibly
some other properties (e.g. in extension fields). For X.509 certificates, subject
name is specified in the distinguished name field or in the alt-name extension.

� Non-identity public key certificates. These are certificates, which do not
include an identifier, but only a public key (or hash of it) and properties of the
owner of the private key corresponding to the public key. One reason for not
including an explicit identifier is to preserve anonymity of the subject (e.g. for
group signatures). Or, the issuer may not know the identity or prefer not to
include it, e.g. to avoid liability.

� Attribute certificates are a signed message linking an identifier with some
properties. An attribute certificate normally would not contain the public key of
the subject (or hash of it), therefore another method should be used to validate
the identifier corresponds with the subject making a specific request. Typically,
an attribute certificate contains the identity of a CA and the serial number of a
public key certificate issued by that CA to the subject.

� Digitally signed or otherwise authenticated documents, e.g. PICS rating [13] or
an entry from a database (e.g. Duns and Bradstreet record). An especially
simple and common case is the use of the entry from a local (membership)
database as a credential of an entity, after this entity was (locally) authenticated
using user-id and password.

The existence of this large number of potential credential forms and sources,
results in difficulties in managing and making decisions based on credentials. As a
result, the relying party has to use manual mechanisms and processes, or – if  an
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automated application is attempted – lim it itself to few types of credentials and to
very simple policies and suffer substantial complexity.

We present an architecture and framework for the internal design of an e-business
party which relies on credentials. Our goal is to simplify the task of creating
automated credential relying applications. Such a framework may complement the
large amount of existing works on credentials, which mostly focused on the issuer
side (rather than relying party side), and on public key and attribute certificates
(which we consider specific kinds of credentials –  albeit with special importance).

The main services we hope the framework can provide, to multiple relying party
applications, are:

� Mapping multiple formats of credentials into a simple common format and
interface

� Simplified interface to complex credentials
� Extraction, from credentials, of the semantics relevant and understood by the

relying party applications
� Credential management, including acquisition, storage, updates and revocation

checking

This paper will present only high-level architecture of the framework and its
components. We expect substantial follow up work, by us as well as by others in the
security community, in order to transform this high level architecture into practical,
widely accepted and standardized framework.

1.1 Identities in Credentials

The discussion above glossed over (at least one) basic problem: what are the identities
in a credential (or certificate), and what are the functions of the identities in
management of credential relying applications. The complexity of this problem is
reflected by the controversy regarding it, in particular with respect to public key
certificates (see `related works` section below). It may help to consider first the
situation with physical credentials such as passports, identity cards, and other forms
of `paper and plastic` credentials and certificates. Such credentials are typically used
to grant some permission to a physical person holding the credential. In many of these
credentials, a picture, signature, or another means of direct authentication identifies
the person. We call such means of direct authentication a direct subject identifier.  In
other physical credentials, authentication is done indirectly. For example, the
credential may contain the name of the holder, which may need to present another
credential proving his name (with direct authentication e.g. a picture). The name in
the two credentials is serving different purposes: as identifying property being
authenticated (in an identity card, e.g. with a picture); or as an indirect subject
identifier allowing linkage from one credential (e.g. without picture) to another (with
a picture).

Subject identifiers should have well defined interpretations. Namely, we assume
that each issuer uses a known, well-defined set of subject identifiers; and the subject
field of a credential will contain only subject identifiers from this set. Typical subject
identifiers would be a name, an identity number (e.g. SSN), a URL, an e-mail address,
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a user-id in a given server, a certificate number in a given CA, a picture, or a (hash of)
public key. Only the last two – picture or (hash of) public key - are direct subject
identifiers, i.e. allow direct authentication.

Clearly, it is much simpler to use one credential with a direct subject identifier
directly linked to properties, rather than use two credentials: one for providing the
properties with an indirect subject identifier, the other with direct subject identifier,
specifying the same subject identifier as an identifying property. Why, then, are
credentials often using indirect identifiers, sometimes in addition to direct identifiers?
Here are some reasons:

� Issuing costs involves the cost of identification, concern about liability (if
others may rely on a false identification), and cost of the identifier itself. For a
physical credential such as a credit card, the cost of the identifier is that of
embedding a picture or smartcard.  For a digital credential, the identifier cost
may be of performing the public key signature operation – m erely few dozens
milliseconds on today’s workstations; the identification and liability concerns
are more relevant.

� Relying costs involve the cost of verifying identity using a direct subject
identifier. These costs are often negligible, e.g. for manual verification (using
picture, signature etc.) or for identifying using public key certificate (a few
milliseconds of CPU). However for some identifiers, e.g. smartcard or
fingerprint, the cost of the verification (hardware) may be substantial.

� Counterfeiting may be possible for some identifiers, such as a picture.
Counterfeiting may be done either by replacing or modifying the identifier, or
by simply fooling the relying party who fails to distinguish between the
identified subject and a similar other entity. Counterfeiting a digital certificate is
difficult or infeasible, if a secure cryptographic signature algorithm is used with
sufficient key length.

� Reliability of identification is a concern when the relying party may fail to
identify the subject, for example using an outdated picture. This reason seems
relevant only to physical identifiers.

� Role-based credential is a credential that is given to any entity (person) which
has a certain role assigned to it (possibly by another issuer). The use of role-
based physical credentials is rare (or at least we do not have a good example).
However, they may be useful for digital credentials, e.g. to provide some
privileges to all members of a role or group.

� Remote credential properties – in some cases, the relying application may be
separate from a server that keeps updated record of the properties of the subject.
Since the properties may change, it is not possible or desirable to put them in the
credential. Therefore, the credential will contain an identifying property, which
will be used to link to another credential where it will be an indirect identifier.
For example, a passport contains a picture, but also a number; authorities will
normally identify a person using the picture, and then use the number to look up
an online database containing e.g. suspects listed by passport numbers.
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1.2 Credential Properties and Types

In simple scenarios, credential issuers are closely coordinated with credential relying
applications, and the applications can use the credential directly. This may be
achieved by standardizing the credentials. This is done in the PKIX standards for
public key certificates [11], which define exact certificate format with exact encoding
(both based on [18]) and specific ways for encoding identifiers and properties in the
certificates. We comment that the usage of PKIX is still quite complex, in particular
since there are multiple ways to specify properties –  as fields (e.g. validity and issuer
and subject names), attributes of subject name, extensions, privileges within
extensions, and more. Furthermore, even [11] itself sometimes permit the same
property to be specified in multiple locations. For example, the e-mail address of the
subject may be specified as attribute EmailAddress of the subject distinguished name,
although the standard specifies that in new implementations the e-mail address must
be specified as rfc822Name in the subject alternative name field. As a result, even
when the credential issuers and credential relying applications use the same exact
standard for credentials, there may be substantial complexity in processing the
properties in the credential due to potential ambiguity and alternative mappings, as
well as to having some properties as fields, some as attributes, some as extensions,
and so on. Our framework will simplify this, by providing the mapping function as an
external service to the relying applications.

In many realistic scenarios, a credential relying application may need to be able to
handle credentials from multiple issuers – p ossibly even for the same subject. The
different issuers may use slightly or dramatically different credential formats.
Consider even a very basic case of two issuers using PKIX X.509 certificates, but
with different private extensions, usage of options, or semantic meanings as defined
in the Certificates Policy Statement (CPS) [10]. It is quite possible that the two
certificates actually carry the same semantic properties, however they are encoded
slightly differently. We say that the two certificates are of different type1. A credential
type identifies a particular set of properties as well as their precise semantic
meanings. The credential framework provides a general mechanism for mapping
between compatible credential types. Even if used simply to implement the CPS
mappings defined by the PIKS and X.509 standards, this will already remove
complexity from the relying applications.

In order to identify which mapping should be used, it is easier if the credential type
is known. We consider credentials with an explicitly known type, and credentials
where the type is not known. When the type is not known, the framework will attempt
to identify the type; afterwards, it will use mappings among identified credential
types. The framework will also provide the type identifier to the relying application in
a standard way, which will make it easier for the application to use multiple credential
types.

The use of credentials from multiple potential issuers, for the same subject or for
different subjects, may be further complicated if the credentials may use different
formats. As mentioned above, credentials may be, in addition to public key
certificates, also attribute certificates, revocations, or other credentials such a [13]

                                                          
1 The term ‘profile‘ is also sometimes used for this purpose, however we prefer the term ‘type‘ as

`profile` is also used for other certificate –  related purposes.
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rating or a record from a database (e.g. the Dun and Bradstreet record returned by
Eccelerate [3]). Furthermore, there are multiple formats for public key certificates,
ranging from different X.509 extensions, to completely different certificate formats
such as PGP, SPKI, PolicyMaker and KeyNote. The framework maps different
credential formats to one common format, specifically the Credential Markup
Language (CML).

1.3 Related Works

The most well-known and deployed approach to public key infrastructure is the X.509
standard [18], recently revised and extended [19]. The X.509 approach focus on
identity based public key certificates. It assumes a universal convention for selecting
distinguished names (DN), which are unique identifiers based on the subject name.
The distinguished names consist of several components or attributes, one of them
being the common name – w hich would typically be the first, middle and last name of
the subject (typically, X.509 would assume that subjects are persons). The other
components of the distinguished name should provide the uniqueness, as common
names are clearly not unique. Notice that this requires careful selection of the other
identifiers in the distinguished name, and in fact in many implementations some of
the common name entries had to be artificially modified to ensure that the
distinguished name will be unique, resulting in common names like John Smith1
(actual example from IBM).

A bigger problem with the traditional X.509 approach results from the implicit
requirement that a certificate issuer is responsible for correct identification, with
potential liability for damages from wrong identification [5]. This became a concern,
and indeed many companies refrained from issuing certificates (e.g. to employees).
Attribute certificates [19,6,12] provides a mechanism to provide a credential by
referring to a public key certificate, thereby allowing a company to at least issue a
credential (attribute certificate), using public key certificate issued by some other CA.
It is also possible to use X.509 certificate format without putting a real name, as in
[23].

More recent works, in particular [15,4], suggested that names should only be
unique with respect to a given issuer, and do not necessarily have to have global
meaning (and therefore liability). In fact, in this approach the name field in a
certificate becomes just a convenience and an option, and the subject is really
identified by possessing the private key corresponding to the public key in the
certificate. Namely, these works capture the separation between the use of the name
as an identifier and its use as just a simple property (used e.g. for addressing the user,
but not assumed to be unique) – a notion that we adopt and extend.

Another problem with traditional X.509 approach lies with the implicit assumption
that is a hierarchy of certificate (and attribute) authorities, and relying parties know
and trust the root CA of this hierarchy. A very different approach is taken by PGP
[22], where certificates define a `web of trust` and there is no central CA. We share
the view advocated by [22,4,5,9,15,1,2,14,7,17,8,12], namely a relying party may not
completely trust the issuers of the credentials. Instead, these works advocate a model
where the relying application may need multiple credentials to make its decisions, and
has a non-trivial policy for the necessary credentials. Our work is a follow-up to our
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work in [17,8], which developed a tool to determine if a subject has the right set of
credentials (from properly trusted issuers) according to a given policy.

2 Relying Party Credential Management Architecture

We propose that the relying party use architecture as illustrated in Figure 1 below.
The core module is the Credential Manager. The manager receives requests for
resolving credentials, with an identifier and often with an initial credential – a n
attribute certificate or a public key certificate. The initial credential is typically
received from with some request (e.g. connection). The Credential Manager is not
concerned with validating that the requestor has the right to the credential – t hat
should be validated thru independent means, such as SSL authentication (for a public
key certificate).

Collector

Credential
Manager

Attr cert

PK cert

Identifier [,pw]

Credential
Cache

Trust
Manager

Access
Control

Membership
Database

CML

C
redential R

elying A
pplication
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Certificate / CRL DB
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Fig. 1. Relying Party Credential Management Framework

The Credential Manager performs several functions:

� Translates credentials into the common interface, e.g. Credentials Markup
Language. This allows credential relying applications to be oblivious to the
specific format and even method of a credential. For example, the logic in an e-
marketplace application which deals with a membership request may only care
if the subject is an employee of a member company, but not if this information
was received by a public key certificate, by an attribute certificate, by e-mail to
the company or by a direct query. We note that the Credentials Markup
Language is simply a convenient common interface for the credentials (notice it
is not a certificate –  in fact it is not even signed).
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� Collects additional relevant credentials. In many cases, the subject may not
present all of his credentials together with the request. In particular, in the
typical case when the subject is authenticated using SSL or TLS client
authentication, then only one certificate (chain) is sent from the client (subject)
to the server. Furthermore, there may be credentials that the subject may not
even be aware of (e.g. review by a referee trusted by the relying party), or
‘negative‘ credentials that the subject may not willingly disclose. The credential
manager will automatically collect such missing credentials as described below.

� Checks for revocations of  credentials.
� Caches credentials to speed up processing. To improve efficiency, the

credential manager may store received credentials, checking for updates.
� Collects credentials for issuers. It is possible that a credential is issued by an

entity that is not known sufficiently, and the relying party may need to collect
credentials also for that entity. The credential manager may be asked to
automatically collect credentials for any such unknown issuer. Alternatively, the
credential manager may return the credential and leave it to the relying
application to decide whether to request the credential manager to collect
credentials for the unknown issuer.

In a typical deployment, a request is received at the (web) server from a client. If
SSL client authentication is used, the server will receive a certificate from the client2,
otherwise the server may receive some other identifier for the client (e.g. user name
and/or e-mail address3), and potentially a password. The Credential Manager is called
with the received credential (certificate / identifier / password). Notice that the
Credential Manager may also be called directly by the credential relying application.

2.1 Credential Collector Agents

To collect credentials, the Credential Manager will contact one of potentially several
credential collector agents, or simply collectors. The Credential Manager will select
which collector(s) to use based on its policy, the calling application (and parameters
passed by it), the available credential(s) for the subject, and the installed collectors.

Collectors may use different mechanisms appropriate to collect different kinds of
credentials, from different sources. Some of these are:

� Collectors are likely to request public key and attribute certificates from a
repository identified by the subject and given in the request to the Credential
Manager, and / or from predefined central repositories.

                                                          
2 Many web servers will reject such a request if they do not have the public key of the issuer of

that certificate. To allow users to receive certificates also from unknown issuers, we
recommend that a fixed (public, private) key pair be published so that the initial certificate may
be signed using this key. Servers will be installed with this public key, so they do not reject
certificates signed by it. This workaround has overhead –  the initial certificate is never trusted –
but is important for allowing use of some web servers.

3 Notice an e-mail address may be weakly-authenticated by the server sending it a challenge and
receiving a response, before calling the credentials manager.
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� Collectors may try to collect credentials from central repositories, which keep
credentials for many entities. This approach is needed whenever the subject may
be unaware of the credential, and even more if the credential is ‘negative‘ - such
as a certificate revocation list or an unfavorable product review. As described in
[14], this approach is also useful to find a chain of certificates from these trusted
by the relying party to the subject.

� Collectors may try to collect credentials using general-purpose search engines,
for credentials that will have well defined and accepted format. This is
particularly useful for negative credentials.

� Collectors may use predefined gateways to provide credentials. A typical role
for a gateway may be to provide interface to a database, using a public key
certificate that includes an identifier of an entry in the database. In this case, the
client is authenticated using a public key certificate (e.g. using SSL/TLS). Then,
the certificate, or just the identifier, is sent (by the collector) to the gateway. The
gateway performs an appropriate query on a database, using the identifier, and
returns the record. This mechanism is used by eccelerate.com to provide subject
records from Dun & Bradstreet’s database [3].

� Collectors may contact a server for the subject using secure mechanisms,
providing the subject identifier and optionally a password, and receive back the
credentials of that subject. The server of the subject will use the password, if
provided, to authenticate the request; clearly this is a low security mechanisms
as the relying party is trusted to maintain security of this password. A `use once`
password is also possible, which will be used only for the specific transaction,
and communicated securely between the subject and her server. A `use once`
password may be sent by the collector or received by the collector from the
server, in which case it is returned to the relying party application (which should
then use it to authenticate the request). Another low-security but easy to
implement solution is to use an e-mail address as the identifier; the e-mail
address can be validated by a challenge-response exchange prior to calling the
Credentials Manager.

� 
The output of the Credential Manager is provided using standard interface,

possibly as a file specified using Credential Markup Language (CML), an XML
format that separates between the properties being attributed to the subject and other
information related to the credential. Each application can specify in advance a certain
type (or types) of credentials that it knows to understand, and the Credential Manager
will attempt to provide these types of credentials, using pre-defined mappings
between different credential types. This allows an application to handle only one (or
few) credential types, with automated mappings from the potentially many different
formats and types of credentials issued by different organizations.

2.2 Credentials Framework

The Credentials Framework is the central component of the Credential Manager. The
framework receives credentials with different formats and types, and makes them all
available via a common, simplified interface, also mapping them to the types known
to the credential relying application. See Figure 2.
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The credential framework consists of two software modules, the format converter and
the semantic converter. The format converter receives credentials in different formats,
and converts them to a common interface format –  the credential markup language
(CML). This is a pretty `mechanical` transformation; in our approach, there is very
limited significance to the particular format, and for example in [8,17] we used X.509
certificates although we do not follow the distinguished name or the root CA notions.
The Semantic converter focuses on extracting the properties and credential type
meaningful to the relying application. In the next sections we describe the Credential
Markup Language (CML), the format converter and the semantic converter.

3 Credential Markup Language (CML)

The Credential Markup Language (CML) is designed to capture all types of
credentials into a common format. Notice this is not a certificate format; CML is
simply a common format to allow multiple applications of the relying party to handle
credentials (in particular, it simplifies the semantic converter plug-ins presented in
section 5). We now present some ideas on a potential design of CML. We used XML,
which is convenient as there are tools to access and manipulate XML objects. More
work is required to decide on the best format (XML or otherwise). CML has two
parts:

1. A header which is common to all credential types.
2. A body which is credential type specific.

3.1 CML Header

The CML header contains the following fields:
� Issuer –  the issuer of the credential. The field should identify the issuer so that

the relying party can then verify that the issuer is really the one who issued the
credential, and can determine whether (and how much) it is trusted. Possible
options for the issuer are public key (or hash of it), name, e-mail or a URL. The
issuer field would also include a handle (pointer) allowing the credential relying
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application to query the Credentials Manager (or DB directly) for credentials of
the issuer, to determine whether it can be trusted.

� Subject – information relevant to identifying the subject of the credential. The
subject field should include one or more identifiers for the subject. We describe
it in details below.

� Security –  describes the security type and level of this credential. It can be
either signed or authenticated. Example of a signed credential is Public
Key/Attribute certificate or a signed XML document. Example of an
authenticated credential is an XML document that was retrieved through a
secure channel from some data repository.

� Type – A field that describes the type of the credential. The credential type
defines which data is expected to appear in the credential body. Example types
can be Company rating or a SET [23]credential. This field may have the value
Unknown in the case that the credential does not have a predefined type, or its
type was not identified.

� Capture and conversions history – identifies the procedure(s) used to capture
the credential, i.e. how it was received (e.g. certificate received from web server
using SSL, or query against a database). Also lists the procedures used to
convert the credential from its initial type to its present type. The capture and
conversion history field may be used, for example, to avoid an unreliable
conversion.

� Validity period – dates and times during which the credential is valid
(typically, a beginning and end date for validity, or only an end/expiration date).

We now elaborate on the subject field. The subject field should include one or
more identifiers for the subject. There are several types of identifiers: direct, indirect,
composite, or informational. If a subject contains multiple identifiers, then
identification is achieved when any of them, except informational, matches.
� Direct identifiers may be directly used to identify the subject, e.g. a public key

(or hash of it), a picture or other biometrics, or an e-mail address (allowing weak
identification).

� Indiirect identifiers - some credentials, e.g. an attribute certificate, may not
contain any direct identifier, but contain only indirect identifiers, such as a
certificate issuer and serial number, distinguished name, URL or role. An
indirect identifier cannot be used directly to identify the subject. Instead, the
subject will be identified using some other means or credentials, which will
establish it as having this indirect identifier. An indirect identifier should usually
specify acceptable ways to establish the identity, typically by listing specific
certification authorities. If this is unspecified, it is up to the relying party to
resolve the indirect identification properly.

� Composite identifier is a list of several identifiers, requiring that all of the
identifiers in the list are matched for identification to be confirmed. For
example, an electronic passport device may require that the user possesses a
secret code as well as pass biometrical test.

� An informational identifier is provided only as hint, and is not necessary or
sufficient for identification.
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An identifier is often also a property, which means that if the credential is properly
authenticated, then the issuer provides this as a potential (indirect) identifier for this
subject.

We now give some examples of the subject field. We begin with the subject field
for a typical X.509 public key certificate. Many issuers, as in our example, will
consider the DistinguishedName field as only informational identifying property,
namely they allow only identification by the public key –  not by DistinguishedName
issued by another CA.

      <Subject>
          <identifier type=informational property=yes>
                <Name type= DistinguishedName><CN>IBM</CN><ORG>IBM</ORG></Name>
         </identifier>
         <identifier type=direct>
         <PublicKeyInfo>
               <Algorithm> “RSA/512/F4” </Algorithm>
               <PublicKey encoding=
                                   "base64">MEgCQQCRWa71T1fcnWxYJ6NzlXqpeYJnfUsJgfTXp2sI1Rcb
                 </PublicKey>
         </PublicKeyInfo>
         </identifier>
      </Subject>
We now give an example of the subject for a typical X.509v4 attribute certificate. In
[19], there are three ways to identify the subject (referred to as Holder). A typical way
is to use baseCertificateID, which specifies the issuer and the certificate serial
number. Another way is to give the name of the entity, but [19] notes that this
introduces complexities, e.g., which names can be used and who would be responsible
for assigning the names. Therefore, if both a name and certificate ID are used, the
name becomes informational, as in the example we give.

       <Subject>
           <identifier type=informational property=yes>
                 <Name type= rfc822Name>foo@fee.com</Name>
           </identifier>
           <identifier type=direct>
               <baseCertifcateID>
                 <Issuer><Name type=
                                          DistinguishedName><CN>IBM</CN><ORG>IBM</ORG></Name>
                 </Issuer>
                 <serial>387857</serial>
               </baseCertificateID>
           </identifier>
         </Subject>

3.2 CML Body

The CML Body contains the fields (extensions, attributes, etc.) from the credential,
each mapped in a well-defined way using XML tags, in a way which allows uniform
handling by any application (or ‘plug-in‘) that knows the relevant credential type.
Types may be general (e.g. X.509 certificate, PICS rating) or specific (PKIX
compliant identify certificate, BBB rating record).
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4 The Format Converter

The Format Converter (FC) is a module that accepts different credential formats and
converts them into a common interface, e.g. to the CML format. In the suggested
framework, there will be converters from different credential formats into CML and
the framework can be extended by new converter plug-ins that can be added to it.
Figure 3 illustrates the format converter architecture.

BER to XERx.509 XER to CML

Convert 
to CML

Other cert (SPKI, KeyNote,…)

Authenticated Credentials Convert to 
CML

Extension

CML

Extension

Fig. 3.  Format converter architecture

When a new credential is given as input to the FC, the first step of the FC is to
decide on the format of the given input and decide which converter to apply on it.
This may be done by trying to apply each converter on the given input and the one
that matches the format will do the work.

For example consider a BER (Basic Encoding Rule) encoded x509 certificate
which is given as input to the format converter. BER encoding is the standard
encoding for ASN.1 (Abstract Syntax Notation One), the syntax for X509v3
certificates.

We use the BER to XML translator of the IBM Tokyo Research Lab which is part
of their XML Security Suite [20].  The output of the BER to XML translator is an
XER (XML Encoding Rule) format, which describes the X.509 certificate in XML.
The next converter that is applied is the XER to CML converter that creates the CML
format by copying the issuer, subject & validity fields from the XER format and
creating the CML Security tag with value type=signed and with the details of the
signing algorithm as extracted from the XER format.

We believe that other converters to CML will appear for other formats e.g. for
SPKI. Notice that authorizations in SKPI certificate (as well as some other formats)
will be mapped to properties in the body of the credential.

We will also have converters for XML documents extracted from databases. Such
converters will get as input the issuer, the subject and the XML document. A simple
such converter will create the CML header with the given issuer & subject, with
Security = authenticated , type = unknown (or a specific type if identified) and will
leave the body as the original document.
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5 The Semantic Converter

The last conversion step in the credential framework (see figure 2 above) is the
Semantic Converter. The purpose of this conversion is to convert a CML credential
into another CML credential in which the fields are now understandable by the
relying party.

We give now some semantic converter examples. The first example is a user’s e-
mail address. In an X509v3 certificate this field may appear in the subjectAltName
field as an rfc822Name while in another XML signed document it may appear under
some EMAIL tag.  Without the semantic converter an application that wants to use
the e-mail address will have to understand various credential formats. With the
semantic conversion, the e-mail address appears in a fixed field, hence it easy to be
used by an application.

Another example is an AC (Attribute Certificate), which describes a role of a user
participating in a marketplace. One AA (Attribute Authority) may issue values
‘buyer’ and ‘seller’ in a field named ‘role’ while another AA may issue values
‘customer’ and ‘vendor’ in a field named ‘member type’. The semantic converter
converts these two formats into some common format known to the relying party so
that both AC are mapped to the same field.

Another example is a Trust Policy engine as in the Trust Establishment toolkit
[17]. The toolkit allows a company to define a policy for mapping users to roles based
on credentials. The policy language is rule based and it filters credentials assuming
that each credential has some known type field (e.g. a recommendation credential, a
credit history credential etc). The semantic converter can be used to assign a type to
each credential even if the credential does not come with a predefined type field.

A natural question is, why do we need this conversion. Why can’t we decide on
some profile for each type of credential? The answer is that it is hard to decide on
some common format that is acceptable on every issuing authority. Moreover, some
credentials are extracted from legacy databases and it is almost impossible to force
common fields.

The reason we believe the semantic converter will achieve the desired
interoperability between the various credential formats is since it converts credentials
only for a specific relying party which defines the conversion rules for itself and it
does not try to coordinate all the issuing authorities in the world.

5.1 The Semantic Converter Architecture

It is not expected that one can write general-purpose software that can convert any
given two similar credentials to a common known credential. Instead, we create a
framework where customized converters can be plugged in. See Figure 4 below.
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Each Semantic Converter Plug-In (SCP) has to first register with the framework
and has to implement some defined SPI (Service Provider Interface). On registration,
the SCP informs the framework of which credential types does it know to accept as
inputs, and which credential types does it know to generate as outputs. Some SCP
may be willing to accept the ‘unknown‘ credential type, and then they will try to map
it to a known credential type. When a new CML credential is given to the framework,
the framework will invoke SCP modules to convert it from its initial type (or
‘unknown‘) to the types meaningful to the relying applications.

6 Summary

We presented a framework for managing credentials needed by applications that
consume credentials in order to make decisions. We have parts of the architecture
already implemented as part of the Trust Establishment [17] toolkit while other
elements still need to be developed.
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Abstract. Safe long-term storage of user private keys is a problem in
client/server systems. The problem can be addressed with a roaming
system that retrieves keys on demand from remote credential servers,
using password authentication protocols that prevent password guessing
attacks from the network. Ford and Kaliski’s methods [11] use multiple
servers to further prevent guessing attacks by an enemy that compro-
mises all but one server. Their methods use a previously authenticated
channel which requires client-stored keys and certificates, and may be
vulnerable to offline guessing in server spoofing attacks when people must
positively identify servers, but don’t. We present a multi-server roaming
protocol in a simpler model without this need for a prior secure channel.
This system requires fewer security assumptions, improves performance
with comparable cryptographic assumptions, and better handles human
errors in password entry.

1 Introduction

Cryptographic systems that can tolerate human misbehavior are evolving, with
fitful progress. A persistent theme is that people tend towards convenient beha-
vior despite well-intentioned security advice to the contrary. It’s hard for us to
memorize and type strong cryptographic keys, so we use weak passwords. It’s
hard for us to take the necessary steps to insure that our web browser is securely
connected to the correct web server, so we don’t. To counter these problems,
designers of security systems must accept our weaknesses, and must not assume
that we can fully control these human devices. [1,8,20]

The common practice of storing password-encrypted private keys in work-
station files is a backwards evolutionary step. Long-term storage of password-
crackable keys on a poorly managed machine creates opportunity for theft and
eventual disclosure of these keys. An ideal system stores password-derived data
only in the user’s brain and other secure locations, such as a well-managed ser-
ver, or perhaps a smartcard. When a global network is usually available, but
smartcards are not 1, it seems a shame to degrade the power of private keys
with persistent untrustworthy storage. Roaming protocols address this problem.
1 In saying that smartcards are “not available”, we mean with card readers on all

acceptable machines and cards in all relevant pockets, noting that inconvenience,
cost, and other human issues often pose barriers to use and deployment.
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This paper describes a new roaming protocol that can use just a small
password to securely retrieve and reconstruct a secret key that has been split
into shares distributed among multiple servers. The system prevents brute-force
attack from an enemy that controls up to all but one of the servers, and has
fewer security assumptions, higher performance, and higher tolerance of human
misbehavior than similar methods previously described.

The new system does not require prior server-authentication, as does earlier
work [11] that relies on techniques like server-authenticated Secure Sockets Layer
(SSL) [12,7], which is known to be vulnerable to web-server spoofing problems.
[6,8] A further advance is to decrease the amount of computation by using smaller
groups, without introducing new cryptographic assumptions. Finally, we show
how the protocol better tolerates human errors in password entry, by insuring
that corrected typographical errors are gracefully ignored and are not counted
against the user as suspected illegal access attempts.

These benefits can also be realized in non-roaming configurations.

2 History of Roaming Protocols

The goal of a roaming protocol is to permit mobile users to securely access and
use their private keys to perform public-key cryptographic operations. We refer
to mobility in a broad sense, encompassing acts of using personal workstation,
and other people’s workstations, without having to store keys there, using public
kiosk terminals, as well as using modern handheld wireless network devices. We
want to give users password-authenticated access to private keys from anywhere,
while minimizing opportunities for an enemy to steal or crack the password and
thereby obtain these keys.

Smartcards have promised to solve the private key storage problem for ro-
aming users, but this solution requires deployment of cards and installation of
card readers. The tendency for people to sacrifice security for convenience has
proved to be a barrier to widespread use of solutions requiring extra hardware.
This is one motivation for software-based roaming protocols.

Throughout the rest of this paper roaming protocol refers to a secure pass-
word-based protocol for remote retrieval of a private key from one or more cre-
dentials servers. Using just an easily memorized password, and no other stored
user credentials, the user authenticates to a credentials server and retrieves her
private key for temporary use on any acceptable client machine. The client uses
the key for one or more transactions, and then afterwards, erases the key and
any local password-related data.

In our discussion we refer to the user as Alice and to credentials servers
generally as Bob, or individually as Bi, using gender-specific pronouns for our
female client and her male servers.

Roaming. The SPX LEAF system [24] presents a roaming protocol that uses
a server-authenticated channel to transmit a password to a credentials server
for verification, and performs subsequent retrieval and decryption of the user’s
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private key. The credentials server protects itself by limiting guessing attacks that
it can detect, and the protocol prevents unobtrusive guessing of the password
off-line.

When a credentials server can determine whether a password guess is correct,
it can prevent or delay further exchanges after a preset failure threshold.

Password-Only Protocols. The EKE protocols [1] introduced the concept
of a secure password-only protocol, by safely authenticating a password over an
insecure network with no prior act of server authentication required. A series
of other methods with similar goals were developed, including “secret public
key” methods [13,15], SPEKE [18], OKE [21], and others, with a growing body
of theoretical work in the password-only model [16,4,2,3]. Most of these papers
stress the point that passwords and related memorized secrets must be conser-
vatively presumed to be either crackable by brute-force or, at best, to be of
indeterminate entropy, and this warrants extra measures to protect users.

The roaming model and password-only methods were combined in [23] to
create protocols based on both EKE and SPEKE. These authors showed that
simple forms of password-only methods were sufficient for secure roaming ac-
cess to credentials. Other roaming protocols were described in [13,15], [26], [16],
and [22], all being designed to stop off-line guessing attacks on network messa-
ges, to provide strong software-based protection when client-storage of keys is
impractical.

Multi-server Roaming. In a further advance, Ford and Kaliski described me-
thods [11] that use multiple servers to frustrate server-based password cracking
attacks to an amazing degree. Single-server password-only protocols prevent
guessing attacks from the client and the network but do not stop guessing based
on password-verification data that might be stolen from the server. At the cost
of using n related credentials servers to authenticate, Ford and Kaliski extended
the scope of protection to the credentials server database. In their methods, an
enemy can take full control of up to n− 1 servers, and monitor the operation of
these servers during successful credential retrieval with valid users, and still not
be able to verify a single guess for anyone’s password, without being detected
by the remaining uncompromised server.

Yet, the methods detailed in [11] all rely on a prior server-authenticated chan-
nel. We believe this is a backwards evolutionary step, in introducing an unne-
cessary and potentially risky security assumption. We remove this dependency
on a prior secure channel for password security, and present other improvements
in our description of a new password-only multi-server roaming protocol in Sec-
tion 4.

3 Review of Ford and Kaliski

We review here three methods described in [11], focusing particularly on one
which we refer to as FK1.
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3.1 FK1

FK1 uses multiple credentials servers, with a splitting technique to create multi-
ple shares of a master key, and a blinding technique to get each share back from
a credentials server without revealing the password to the server or anyone else
in the process.

The authors used the term password hardening to refer to their key-share
retrieval process, which seems essentially the same concept as password amplifi-
cation in [1]. To avoid confusion we avoid using either of these terms outside of
their original contexts. Also, in our description of FK1, we take some liberties
in interpreting their protocol by using a cryptographic hash function h for a
few different purposes, and we use a somewhat different notation than in their
paper. (Table 1 in Section 4.2 summarizes the notation that we use to describe
both FK1 and our methods.)

FK1 Parameters. The FK1 system operates in a subgroup of order q of ZZ∗
p

where p = 2q+1 with prime p and q. The system uses n > 1 credentials servers,
and all exponentiation is done modulo p.

FK1 Enrollment. To enroll in the system, the user, Alice, selects a password
P , and a series of random numbers {y1, . . . yn}, each in the range [1, q − 1]. For
each i ∈ [1, n] she computes a secret key share Si := (h(P ))2yi using a mask
generation function h.

Alice sends each yi along with her identifier A in an enrollment message
to the ith server, Bi. Alice computes a master key Km for herself using a key
derivation function of the shares, Km := h(S1, . . . , Sn). Then, using independent
keys derived from Km, she encrypts some of her most private secrets to be stored
wherever she desires.

Km is clearly a strong secret, as is each share Si, and a neat result of this
construction is that it incorporates P into every share, but it is impossible for
an attacker to even verify trial guesses for P , unless he obtains all n shares.

FK1 Authenticated Retrieval. To retrieve her master key at a later time,
Alice chooses a random x ∈R [1, q − 1], computes Q := (h(P ))2x, and for each
i ∈ [1, n], she sends Q to Bi. Each Bi computes Ri := Qyi , and sends Ri in reply.

Client : { request, A, Q = h(P )2x } → Bi
Server Bi: { reply, Ri = Qyi } → Client

The value x serves as a blinding factor, to insure that the password cannot
be determined from Q, and Ri is essentially a blinded form of the key share.

Alice recovers each key share with Si := R
1/x mod q
i = (h(P ))2yi . which re-

moves the blinding factor. She then reconstructs her master key.
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Alice then derives n unique authentication keys (for each i ∈ [1, n],Ki :=
h(Km||i)). Although their paper is not specific on how it should be done, Alice
uses the Ki derived keys to authenticate to each Bi.

Each server Bi then reconciles each act of authentication with the corre-
sponding received Q value, to determine whether the request was legitimate, or
perhaps an invalid guess from an attacker.

3.2 Server Pre-authentication

FK1 requires server-authenticated connections to each server to prevent an evil
party (who perhaps has compromised one of the servers) from controlling the
communications channels to all the servers. The problem is this: An enemy who
controls all channels can substitute known false replies, and then perform an
attack on the expected value of the combined key as revealed by Alice. Note
that the combined key is completely determined by the password and the replies
sent by the attacker. If the user reveals information about Km to an enemy who
also knows all yi, the enemy can verify off-line guesses for P .

The description in [11] does not specify an explicit method for server authenti-
cation, but does suggest the use of SSL. It also suggests that server-
authentication is optional in the case where the server gives the user “a proof of
knowledge that [Ri] was computed from [Q] with the correct exponent.” Howe-
ver, no proof or verification process is described.

To establish a secure channel to the server with a typical server-authenticated
SSL solution, as implemented in a web browser, requires the client to have a root
key for one or more certificate authorities. It also requires the server to have ac-
cess to a chain of certificates that associate a client root key with the public key
of the named server. The client must further include certificate validation soft-
ware and policy enforcement to validate a certificate of the appropriate server
(or servers) selected by the user. All of this is fairly standard. However, ultima-
tely the user must insure that the server name binding is correct. This requires
significant action and attention by the user – which the user can easily omit.

The complete reliance on SSL, especially if used in the browser model, is
risky. The user can be tricked into using “valid” SSL connections to malicious
servers, or tricked into not using SSL at all. This process is subject to several
types of failure. While these failures might be called human error, in our view
the error is in having unrealistic expectations of the human participant.

Furthermore, if we presume that a common set of root certificates in the
client can validate both servers, we’ve now introduced one or more single points
of failure into the system. There is effectively a single point of attack at each
location where a private key resides for the root or any subordinate certificate
authority. This may be significant, as a primary goal of the multi-server model
is to eliminate single points of failure.

The aforementioned certificate chain attack can be achieved by compromi-
sing any single system that has a key to create a valid-looking certificate chain
for the two servers in question. Furthermore, as described above, an attack in
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SSL browser model can trick the user into using “valid” SSL connections to ma-
licious servers, or into not using SSL at all. To counter these threats, in some
environments, the identity of the server may be fixed in the configuration of the
client, but this approach severely limits functionality.

Our main point regarding this issue is that the risks here, however great or
small, are unnecessary. We remove the dependency on a prior server-authenti-
cated channel in our alternative model.

3.3 Other Variations – FK2, FK3

Two variations on FK1 that were also presented in [11] include a method using
blind signatures [5], and a “special case” method that uses a password-hardening
server to convert a password into a key that is suitable for authenticating to a
conventional credentials server. We’ll call these methods FK2 and FK3, respec-
tively. The authors suggest that the communications channel to the conventional
server needs to be integrity protected. In fact, both servers’ channels need to be
protected.

Handling Bad Access Attempts. In their discussion of FK3, it is suggested
that the client authenticate itself with “the user’s private key” and that the server
keep track of the number of password hardenings and reconcile this with the
number of successful authentications. If there are “significantly more” hardenings
than authentications, then the account would be locked out.

We note that unsuccessful logins may be quite common. Passwords are fre-
quently mis-typed, and users may often enter the wrong choice of multiple pas-
swords, before finally getting it right. If a long-term fixed limit is place on such
mistakes, valid clumsy users might be locked out. On the other hand, if the
system tolerates a three-to-one attempt-to-success ratio, an occasional guessing
attack by an enemy over the long term might remain undetected.

To address this problem, the system should be forgiving, and not account for
transient mistakes by a valid user in the same way as invalid access attempts by
unknown users. Our protocol addresses this problem. We provide detail for an
alternative reconciliation process in our method to deal with transient password-
entry mistakes by the user.

4 New Protocol

We now present our improved model for a password-only multi-server roaming
protocol, comparing it to model used in FK1, followed by a more detailed de-
scription of our protocol.

4.1 New Model

Our model for multi-server roaming is similar to that in FK1, but with some
new features and characteristics.
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First, our model permits authentication messages to be sent over an unpro-
tected channel; No SSL is required. To prevent the possibility that an enemy in
control of the channel can trick Alice into using an improper master key, Alice
confirms that the master key is correct before using it to create any data that
might be revealed to the enemy.

Second, the authentication step uses a signed message to authenticate valid
logins, as well as prior legitimate-but-mistaken logins.

Enrollment Model. At enrollment time, Alice creates n shares of a master
symmetric keyKm where each ith share Si is formed as a function of her password
P raised to a random exponent yi. The shares are combined with a function
such that an attacker who has knowledge of any proper subset of shares cannot
distinguish Km from a random value in the same range.

Alice then somehow conveys each exponent yi to be stored as a closely gu-
arded secret by the ith server.

Alice also selects a public/private key pair {V ,U} for digital signatures, and
symmetrically encrypts private key U using a key derived from Km to create
her encrypted private key UK . Finally, she creates a proof value proofPKm

that
links the password to her master key.

Alice sends V to each of the n servers, and stores UK and proofPKm in a
convenient place, perhaps on each of the servers. The enroll protocol flow must
be performed through a secure channel that authenticates the identity of Alice,
A, to each ith server Bi.

Client : { enroll, A, V , yi } → Bi
Client : { record, A, UK , proofPKm

} → Bi

Authentication Model. At login time, to reconstitute her master key and
retrieve her private key, Alice sends a randomly blinded form of the password Q
to each server. Each server in turn responds with a blinded reply Ri consisting
of the blinded password raised to power of the secret exponent value (Ri := Qyi)
which represents a blinded share of the user’s master key. At least one of the
server’s also sends Alice her encrypted private signature key UK and proofPKm

.

Client : { request, Q } → Bi
Server Bi: { reply, Qyi , UK , proofPKm } → Client

Interestingly, the channel though which Alice retrieves UK and proofPKm

does not have to guarantee the integrity of these values. This is discussed further
in Section 4.4.

Alice unblinds each reply to obtain each key share and combines the shares
to rebuild her master key Km. She then verifies that the master key is correct
using the proof value proofPKm

and her password P . If the proof is incorrect, this
implies that at least one of the key shares must be incorrect, and she must abort
the protocol without revealing any further information about Km or P to the
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network. Otherwise, she uses a key derived from Km to decrypt her encrypted
private key (and any other desired data), and then completes the protocol by
proving her identity to each server. For each blinded passwordQ that she recently
sent to each server, she sends a signed copy of the blinded password.

Client : {confirm, Q1, {Q1}U } → Bi
Client : {confirm, Q2, {Q2}U } → Bi
. . .

Each server matches the signed Qx values from Alice against its list of re-
cently received blinded passwords, and removes any matching entries that are
accompanied by valid signatures. The remaining entries, if not confirmed within
a reasonable amount of time, are considered to be suspected illegal access at-
tempts, which we label bad. Counting bad access attempts may be used to limit
or delay further blinded share replies for the user’s account if the counts rise
above certain thresholds.

Verification of Master Key. As mentioned above, one new feature of our
method is that Alice can perform the authentication over insecure channels. She
retrieves (typically from a credentials server) her verifier proofPKm , and then
confirms the validity of the reconstructed master key by comparing a keyed hash
of her password with it to proofPKm

. If the values don’t match, Alice aborts the
protocol.

Verification of Legal Access. Another enhancement of our method relates
to how Alice proves knowledge of the master key to each server, and how each
server reconciles this information with its own record of access attempts.

As in FK1, the servers detect illegal access attempts by looking for a message
from Alice that contains a proof of her knowledge of the master key, and by
implication, proof that she knows her password. If a valid proof is not associated
with the blinded password value, the server must trigger a bad access event for
Alice’s account. Our method differs from FK1 in our detailed description of the
construction of Alice’s proof and how each server uses the proof to forgive Alice’s
mistakes in password entry.

In FK1, the user authenticates to each server using a unique key derived from
the master key. We note that when not using SSL, simply sending h(Km||i) to
Bi would expose the method to a replay attack. To prevent this, we make the
proof incorporate the blinded request value that is sent by Alice. Furthermore,
we recognize that Alice occasionally mis-types her password, and we’d rather
not penalize her by incrementing her illegal access count, which might cause
premature account lockout. We want each server to forgive her mistakes, when
she can subsequently prove to the server that she ultimately was able to enter
the correct password.
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Forgiveness Protocol. User’s honest mistakes are forgiven by sending evidence
of recent prior invalid access attempts after each successful authentication. Upon
receiving and validating this evidence, each server erases the mistake from the
record, or records the event as a corrected forgivable mistake. By fine-tuning a
server’s event log in this manner, a system administrator gets a more detailed
view of when the system is truly at risk, as opposed to when valid users are
merely being frustrated.

A forgiving system seems to require at least one signature generation step
on the client and one signature verification step for each of the servers. To
minimize computation, the signature steps provide the combined functions of
authenticating the user, and proving that the request came from that user. In
constructing a valid authentication message for a user, the client includes the
set of all recent challenge messages issued by that user, digitally signs the result
with the user’s private key, and sends it to all servers. Each server verifies the
signature to authenticate the user, and at the same time validate evidence of her
recent forgivable mistakes.

Each server, upon receiving Alice’s confirm message, will attempt to recon-
cile her proof of her access attempts against his recorded list of recent attempts.
He does this by verifying Alice’s signature on each Q value. Upon successful ve-
rification, he knows that the Q value was indeed sent by someone who ultimately
knew the password, regardless of whether that request message was specifically
used to recreate her master key.

4.2 Detailed Protocol

We now describe an implementation of the protocol in detail, using the notation
summarized in Table 1 below.

Parameters. In this protocol we define two security parameters, j which repre-
sents the desired bit-strength for symmetric functions, and k representing the
number of bits required for the modulus of asymmetric functions.

We define Gq as the subgroup of order q in Z∗
p , where p, q and r are odd

primes, p = 2rq + 1, 2k > p > 2k−1, r 6= q, and 22j > q > 22j−1. We also use
a function that maps a password to a group element gP ∈ Gq, and suggest that
gP = h(P )2r mod p.

(Alternately one might use an elliptic curve group in GF (p) with a group
of points of order r · q approximately equal to p, prime q, and small co-factor
r ∈ [1, 100] or so. In this case we would replace all exponentiation with scalar
point multiplication, and define gP = r · point(h(P )), where point uses h(P ) to
seed a pseudo-random number generator to find an arbitrary point on the curve.
[17])

Enrollment. Alice selects a password P , computes gP := h(P )2r, and creates
a private key U and corresponding public key V suitable for performing digital
signatures.



Password Authentication Using Multiple Servers 353

Table 1. Notation

Symbol Meaning [Reasonable example]

Ci list of credentials stored by Bi

gP element of Gq corresponding to P [h(P )2r]
Gq group of prime order q

[in ZZ∗
p, p = 2rq + 1, 22j > q > 22j−1, 2k > p > 2k−1, p and r prime]

h a hash function [h = SHA1]
j security parameter for resisting brute-force attack [80]
k security parameter for resisting NFS discrete log attack [1024]
Ki Shared key between Alice and Bi [h(Km||i)]
Km Alice’s master key, a hash of concatenated shares, h(S1|| . . . ||Sn) mod 2j

Li list of suspected bad attempts stored by Bi

P user’s password, 0 < P < 22j [SHA1(password)]
Ri a blinded key share = gP

xyi

Si a key share = gP
yi

U Alice’s private signing key
UK Alice’s encrypted private key = Km{U}
V Alice’s public key corresponding to U
yi Alice’s secret share exponent stored by Bi

x{y} message y encrypted with symmetric key x

1/x{y} message y decrypted with symmetric key x
{y}x message y signed with private key x

She then creates n key shares where each ith share Si ∈ Gq is formed as
Si := gP

yi using randomly chosen yi ∈R [1, q − 1]. She then creates her master
j-bit symmetric key with Km := h(S1|| . . . ||Sn) mod 2j , creates her encrypted
private key as UK := Km{U}, and creates her key verifier proofPKm := h(Km||g).

To enroll these credentials, the client sends Alice’s credentials to be stored
in a list Ci maintained on each Bi. They must perform these actions using an
authenticated communication method that assures the proper identity of A:

Client : for each i ∈ [1, n], { enroll, A, yi, V , UK , proofPKm
} → Bi

Servers: store { A, yi, V , UK , proofPKm } in Ci

Authenticated Retrieval. For authenticated credential retrieval, the client
and servers and perform the actions listed below. In this process, each server
maintains a list Li containing a record of suspected bad access attempts.

Client :
select a random number x ∈ [1, q − 1]
Q := gP

x mod p
{ request, A, Q } → Servers
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Servers:
retrieve { A, yi, V , UK , proofPKm } from Ci
t := CurrentTime
append { A, Q, V , t } to Li
Ri := Qyi

{ reply, Ri, UK , proofPKm
} → Client

Client :
for each i ∈ [1, n],

Si := R
1/x
i mod p

K ′ := h(S1||S2|| . . . ||Sn)
if proofPKm

6= h(K ′||g), abort
U := 1/K′{UK}
for Q′ in { Q, Q1, Q2, . . . }

{ confirm, Q′, {Q′}U } → Servers }

Servers:
for each received { confirm, Q′, {Q′}U }

for any {A,Q,V ,t} in Li where Q = Q′

verify {Q′}U as signature of Q with V
if the signature is valid,

remove {A,Q,V ,t} from Li

Periodically, perhaps once a minute, each Bi scans its list Li for bad entries
{A,Q,V ,t} where (CurrentTime - t) is too large to be acceptable. When a bad
entry is found, the entry is removed from the list, and a bad access attempt
event is triggered for user A.

Note that as an optimization, Alice need only compute and send a single
signature to authenticate a list of all recent Q values to all servers.

4.3 Performance Improvement

There are several factors to consider when comparing the FK1 protocol to ours,
including the cost of the group arithmetic for the basic blinding functions, the
cost of related verification functions, and the cost, benefits, and risks of using a
server-authenticated channel to each server.

Cost of Blinding Operations. With security factors j = 80 and k = 1024, the
new protocol provides significantly higher performance than the FK1 protocol.
Using q = (p− 1)/2, each FK1 server must perform one 1023-bit exponentiation
and the client must perform two.

When using p = 2rq + 1 as shown our method, we’re using a subgroup of
order 2160 > q > 2159. In the latter case, two client and one server computations
are reduced to roughly 1/6 of the former amounts. (Note: Given the differing
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ways to evaluate equivalent symmetric and asymmetric security parameters, your
mileage may vary.)

However, the client benefit is not realized when Alice must perform the 864-
bit exponentiation in gP := h(P )2r. Yet, some of the benefit can be reclaimed
in alternate constructions of gP , such as the one described below.

This comparison so far ignores any added savings that can be achieved by
eliminating the setup of the server-authenticated channel. However, by elimina-
ting all server-authentication, the savings may come at the expense of allowing
a little online guessing by false servers, and perhaps revealing the identity A to
eavesdroppers.

Alternate Construction of gP . We now suggest the alternate construction
gP := g1 ·gh(P ) mod q

2 . This uses fixed parameters g1 and g2 which are two random
elements of order q with no known exponential relationship to each other. One
possibility for creating universally acceptable values for g1 and g2 is to use a hash
function as a random oracle, as in g1 := h(”g1”)2r mod p. A similar technique
is used to create acceptable parameters in DSA [9].

With the same security parameters, the alternate construction requires three
160-bit exponentiations for the client, and one for the server, which reduces the
client cost by 53% and the server cost by 84%, when compared to FK1.

Cost of Authentication Function. Our method above requires a digital sig-
nature for the user to prove authenticity of her set of blinded passwords. Fortu-
nately, client signature generation can be done once to create a message that
encompasses one or more recently sent password requests for all servers, and
server signature verification is fast when using RSA.

Furthermore, to eliminate the cost of a public key signing operation on the
client, Alice might instead “sign” her set of blinded passwords with a keyed
message authentication code, using a shared secret key (Ki = h(Km||i)) that
she enrolls with Bi. In this case she enrolls distinct keys and constructs distinct
signatures for each server.

4.4 Arguments for Security

Although a full theoretical treatment is beyond the scope of this paper, we
present a few simple arguments for the security of this method.

Each key share is a strong secret. The crucial data for each share is stored only
in the secret yi value on a hopefully secure credentials server, and it is released
only in the exponent of a modified Diffie-Hellman exchange. This calculation is
modulo a prime of the form p = 2rq + 1, which severely limits the information
that an attacker can obtain about yi. All that can be determined by a probing
attack is whether yi has factors in common with 2rq. But since yi is random and
all factors other than 2 are huge, the probability is vanishingly small. Thus, as
noted in [11], the only information that can be determined is the low bit of yi.
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Alice leaks zero information about P in her blinded request messages, since
for any revealed value there’s an equal probability that it was generated by any
given P . (This is discussed further in Section 4.5.) And even the presence of
additional data, like the P xy values, does not help the attacker determine P ,
since the y values are unrelated to P by any data known to an attacker.

The chance of information leakage from Alice in her confirm messages to an
enemy in control of the channel is negligible, since she will abort before releasing
any useful information if she receives any invalid reply from a server. Due to the
combining hash function, if one share of the master key is incorrect, then with
overwhelming probability the combined key will be incorrect. And if the master
key is incorrect, then by the same reason the verifier hash value will be incorrect.
So if they do match, Alice can be sure that her master key is correct.

In Section 4.1 we stated that the communications channel does not have to
guarantee the integrity of the UK and proofPKm

values sent by a server. To
see why, consider an evil party that fabricates these values and sends them to
Alice. At worst, this enemy can either validate a single guess for the password in
each run, or perform a denial of service attack. If the client is designed to be no
more tolerant of bad guesses than the server 2, then these attacks are roughly
equivalent to the possible attacks in the secure channels model. In both models
an enemy can make a limited small number of on-line guesses, in at least one
direction, and can cause denial of service by modifying or deleting messages.

Both the h(P )2r function and the alternate construction in Section 4.3 gua-
rantee an element of order q, and protect against the password-in-exponent and
short-exponent problems noted in [19] and [11].

4.5 Short Exponents

An alternate approach to reducing computation is to use shorter exponents.
For example, in a group with p = 2q + 1, with a 1023-bit q, one might use
exponents in the range [1, 2160 −1]. The use of short exponents in Diffie-Hellman
was discussed in [25]. When using short exponents, the Pollard lambda method
is the most efficient known way to compute a random exponent x of gx for
some known fixed base g. A lambda discrete log computation requires about
x1/2 operations. Yet there are no guarantees that a simpler solution will not be
found.

Consider an aborted protocol, where the user simply reveals a series of blin-
ded passwords, and no other information is available to an attacker. When using
a full-size evenly distributed random exponent x ∈R [1, o(Gq)], the P x values
reveal zero information about P .

But when using a short exponent x ∈R [1,m], m � q, the security may
require an added assumption of computational intractability, and it is desirable

2 Fortunately, people tend to have a low tolerance for login failures, and are likely to
complain to systems administrators about recurring problems. However, the client
must be designed to insure that at least the user is made aware of all failures.
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to remove unnecessary assumptions. Whether this assumption is significant is
an open question.

So, with the (perhaps unwarranted) concern that short exponents introduce
an unwanted assumption, our recommended approach to reducing computation
is to use a subgroup of prime order significantly smaller than the modulus. This
approach is also used in DSA.

These methods, when compared to FK1, can provide at least an equivalent
level of security against discrete log attack with considerably less computation.

4.6 Flexible Server Location

In our model, we do not presume a pre-authenticated secure channel between the
client and servers, and thus we do not require the user to validate the name of
the server to maintain the security of the password. This frees the user to locate
the server with a rich set of insecure mechanisms, such as those commonly used
on the Internet. These methods include manually typed (or mis-typed) URLs,
insecure DNS protocols, untrustworthy search engines, collections of links from
unknown sources, all of which together provide a robust way to locate the correct
server, but none of which guarantees against the chance of connecting to an
imposter.

The crucial point is that, whether or not SSL is used, the worst threat posed
in this model is one of denial of service – which is always present in the same
form in the pre-authenticated server model. The new benefit of our model is that
the password is never exposed to unconstrained attack, even when the client is
connected to an imposter, by whatever means.

4.7 Trustworthy Clients

As in most related earlier work, we must fundamentally assume that the client
software is trustworthy. Client software has control of the user input/output
devices, and if malicious, could monitor the password during entry and send it
to an enemy, or misuse it for evil purposes.

Note that a client may be deemed trustworthy for short-term transactions,
but not trustworthy to handle long-term secrets. For example, even trustworthy
local storage may be backed-up or inadvertently replicated to a less trustworthy
domain. It may be sufficient that the system merely have the ability to enter
trusted states for specific intervals, and perhaps even guarantee a trusted path
between the keyboard and the secure application, while at the same time not be
able to guarantee long-term security for persistent storage.

The trustworthy client requirement applies equally to our method, to FK1,
and even to non-password systems where user-to-server authentication is media-
ted by a client machine or device. The evil misuse threat applies to many smart
card systems, where client software presents transactions to be signed by the
card.

We further note that web browsers may permit the client to use software
applications that are loaded and run on-demand from servers to which the user
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connects. Such practice raises further important issues beyond the scope of this
paper.

5 Applications

This protocol is useful for authenticating roaming users and retrieving private
keys for use in network applications. It is especially applicable when the client
has no capability for persistent storage of keys, or if one merely believes that a
set of credentials servers is a safer long-term repository for keys than the disk
on a poorly managed workstation.

Yet, the method can also enhance non-roaming systems. When client storage
is present, and if it is deemed to offer at least some minimum level of protection,
splitting shares of the user’s master key among both local and secure remote
storage may be desirable.

6 Conclusion

We’ve presented what appears to be the first description of a password-only
multi-server roaming protocol. It retrieves sensitive user data from multiple re-
lated credentials servers, without exposing the password to off-line guessing un-
less all servers are compromised, and without relying on prior secure channels
to provide this protection.

The method improves upon earlier methods in being able to perform these
secure transactions with less computation, using either ordinary or elliptic curve
groups, with simpler client configurations, and fewer requirements for proper
user behavior.

The protocol is useful for authenticating roaming and non-roaming users
and retrieving private keys for use in network applications – or more generally,
wherever passwords are used in network computing.

The author thanks the anonymous reviewers for their helpful comments.
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Abstract. In this paper we show various techniques for improving the
efficiency of the PAK and PAK-X password-authenticated key exchange
protocols while maintaining provable security. First we show how to
decrease the client-side computation by half in the standard PAK proto-
col (i.e., PAK over a subgroup of Z∗

p ). Then we show a version of PAK
that is provably secure against server compromise but is conceptually
much simpler than the PAK-X protocol. Finally we show how to modify
the PAK protocol for use over elliptic curve and XTR groups, thus al-
lowing greater efficiency compared to running PAK over a subgroup of
Z∗

p .

1 Introduction

Two entities, who only share a password, and who are communicating over an
insecure network, want to authenticate each other and agree on a large session
key to be used for protecting their subsequent communication. This is called
the password-authenticated key exchange problem. (One can also consider an
asymmetric version of this problem in which one entity has the password and
the other only has a password verifier.) If one of the entities is a user and the
other is a server, then this can be seen as a problem in the area of remote user
access. Many protocols have been developed to solve this problem without relying
on pre-distributed public keys [5,6,11,10,22,13,14,18,24,20,1,8,19]. Of these, only
[1,8,19] were formally proven secure (all in the random oracle model [3], with [1]
also requiring ideal ciphers). We focus on the PAK and PAK-X protocols from
[8], since they are the simplest protocols proven secure without requiring ideal
ciphers. PAK is an example of the symmetric type of protocol, while PAK-X is
an example of the asymmetric type.

We obtain the following results:

1. We construct a revised PAK protocol called PAK-R which reduces the client-
side computation by a factor of 2. This could be very important, especially
since the client may be a smaller, slower device, like an older PC, a smart-
card or a handheld PDA. We prove that PAK-R is secure.

2. We construct a protocol called PAK-Y which can be used in place of PAK-
X to provide added security against possible server compromise. PAK-Y is
conceptually much simpler than PAK-X, and does not require any so-called

D. Naccache (Ed.): CT-RSA 2001, LNCS 2020, pp. 361–377, 2001.
c© Springer-Verlag Berlin Heidelberg 2001
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“self-certifying ElGamal encryptions.” In the first two messages, PAK-Y is
just like PAK, but in the third messsage, the client simply proves knowledge
of the password (from which the server’s password verifier was constructed).
Although this does not change the amount of computation on either side, the
PAK-Y protocol is intuitively much easier to understand than the PAK-X
protocol. We prove that PAK-Y is secure.

3. We construct a version of PAK called PAK-EC that runs over elliptic curve
groups. The major technical change entails constructing an efficient way to
use a hash function to generate a random group element with an unknown
discrete log. This is slightly more complicated than the corresponding con-
struction over a subgroup of Z∗

p , and involves possibly polling the hash fun-
ction multiple times.

4. We construct a version of PAK called PAK-XTR that runs over the XTR
group. Here also, a major technical problem is to construct an efficient way
to use a hash function to generate a random group element with an un-
known discrete log. However, there are other technical problems, including
the fact that the trace representation does not uniquely define an element
in the subgroup, and the fact that multiplication by a randomly generated
group element is much more complicated than multiplication where both
elements were generated by exponentiating over a fixed base. Overcoming
these technical problems without losing all the efficiency of XTR was a major
challenge. Some of these problems are solved using techniques obtained from
private correspondence with Arjen Lenstra and Eric Verheul. We explain
those techniques here.

2 Model

For our proofs, we use the model defined in [8], which extends the formal notion
of security for key exchange protocols from Shoup [21] to password authenticated
key exchange. We assume the adversary totally controls the network, a la [2].

Briefly, this model is defined using an ideal key exchange system, and a real
system in which the protocol participants and adversaries work. The ideal system
will be secure by definition, and the idea is to show that anything an adversary
can do to our protocol in the real system can also be done in the ideal system,
and thus it would follow that the protocol is secure in the real system.

2.1 Ideal System

We assume there is a set of (honest) users, indexed i = 1, 2, . . . . Each user i may
have several instances j = 1, 2, . . . . Then (i, j) refers to a given user instance. A
user instance (i, j) is told the identity of its partner, i.e., the user it is supposed
to connect to (or receive a connection from). An instance is also told its role in
the session, i.e., whether it is going to open itself for connection, or whether it
is going to connect to another instance.
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There is also an adversary that may perform certain operations, and a ring
master that handles these operations by generating certain random variables
and enforcing certain global consistency constraints. Some operations result in
a record being placed in a transcript.

The ring master keeps track of session keys {Kij} that are set up among
user instances (as will be explained below, the key of an instance is set when
that instance starts a session). In addition, the ring master has access to a
random bit string R of some agreed-upon length (this string is not revealed
to the adversary). We will refer to R as the environment. The purpose of the
environment is to model information shared by users in higher-level protocols.

We will denote a password shared between users A and B as π[A, B].
The adversary may perform the following operations: (1) initialize user ope-

ration with a new user number i and a new identifier IDi as parameters; (2)
set password with a new user number i, a new identifier ID′, and a password π
as parameters (modeling the adversary creating his own account); (3) initialize
user instance with parameters including a user instance (i, j), its role (open or
connect), and a user identifier PIDij denoting the partner with whom it wants
to connect; (4) terminate user instance with a user instance (i, j) as a parame-
ter; (5) test instance password with a user instance (i, j) and a password guess
π as parameters (this query can only be asked once per instance and models
the adversary guessing a password and attempting to authenticate herself); (6)
start session with a user instance (i, j) as a parameter (modeling the user in-
stance successfully connecting to its partner and establishing a random session
key; (7) application with a function f as parameter, and returning the function
f applied to the environment and any session keys that have been established
(modeling leakage of session key information in a real protocol through the use
of the key in, for example, encryptions of messages); (8) implementation, with a
comment as parameter (modeling real world queries that are not needed in the
ideal world).

For an adversary A∗, IdealWorld(A∗) is the random variable denoting the
transcript of the adversary’s operations.

For a detailed description of the syntax and semantics of the above operati-
ons, see [8].

2.2 Real System

In the real system, users and user instances are denoted as in the ideal system.
User instances are defined as state machines with implicit access to the user’s
ID, PID, and password (i.e., user instance (i, j) is given access to π[IDi,PIDij ]).
User instances also have access to private random inputs (i.e., they may be
randomized). A user instance starts in some initial state, and may transform
its state only when it receives a message. At that point it updates its state,
generates a response message, and reports its status, either continue, accept, or
reject, with the following meanings:

– continue: the user instance is prepared to receive another message.



364 P. MacKenzie

– accept : the user instance (say (i, j)) is finished and has generated a session
key Kij .

– reject : the user instance is finished, but has not generated a session key.

The adversary may perform the following types of operations: (1) initialize
user operation as in the ideal system; (2) set password operation as in the ideal
system; (3) initialize user instance as in the ideal system; (4) deliver message
with an input message m and a user instance (i, j) as parameters, and returning
the message output from (i, j) upon receiving m; (5) random oracle with the
random oracle index i and input value x as parameters, and returning the result
of applying random oracle Hi to x; (6) application as in the ideal system.

For an adversary A, RealWorld(A) denotes the transcript of the adversary’s
operations.

Again, details of these operations can be found in [8].

2.3 Definition of Security

Our definition of security is the same as in [21]. It requires

1. completeness: for any real world adversary that faithfully delivers messages
between two user instances with complimentary roles and identities, both
user instances accept; and

2. simulatability: for every efficient real world adversary A, there exists an ef-
ficient ideal world adversary A∗ such that RealWorld(A) and IdealWorld(A∗)
are computationally indistinguishable.

3 The PAK-R Protocol

3.1 Preliminaries

Let κ and ` denote our security parameters, where κ is the “main” security
parameter and can be thought of as a general security parameter for hash fun-
ctions and secret keys (say 160 bits), and ` > κ can be thought of as a security
parameter for discrete-log-based public keys (say 1024 or 2048 bits). Let {0, 1}∗

denote the set of finite binary strings and {0, 1}n the set of binary strings of
length n. A real-valued function ε(n) is negligible if for every c > 0, there exists
nc > 0 such that ε(n) < 1/nc for all n > nc.

Let q of size at least κ and p of size ` be primes such that p = rq + 1 for
some value r co-prime to q. Let g be a generator of a subgroup of Z∗

p of size q.
Call this subgroup Gp,q. We will often omit “ mod p” from expressions when it
is obvious that we are working in Z∗

p .
Let DH(X, Y ) denote the Diffie-Hellman value gxy of X = gx and Y = gy. We

assume the hardness of the Decision Diffie-Hellman problem (DDH) in Gp,q. One
formulation is that given g, X, Y, Z in Gp,q, where X = gx and Y = gy are chosen
randomly, and Z is either DH(X, Y ) or random, each with half probability,
determine if Z = DH(X, Y ). Breaking DDH implies a constructing a polynomial-
time adversary that distinguishes Z = DH(X, Y ) from a random Z with non-
negligible advantage over a random guess.
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A B

x ∈R Zq

h ∈R Z∗
p

m = gxhq · H1(A, B, π)
m - Test m

?
6≡ 0 mod p

y ∈R Zq

µ = gy

σ =
(
( m

H1(A,B,π) )
r
)yr−1modq

σ = µx µ, k� k = H2a(A, B, m, µ, σ, π)
Test k

?= H2a(A, B, m, µ, σ, π)
k′ = H2b(A, B, m, µ, σ, π)

K = H3(A, B, m, µ, σ, π)
k′

- Test k′ ?= H2b(A, B, m, µ, σ, π)
K = H3(A, B, m, µ, σ, π)

Fig. 1. The PAK-R protocol, with π = π[A, B]. The resulting session key is K.

3.2 The Protocol

Define hash functions H2a, H2b, H3 : {0, 1}∗ → {0, 1}κ and H1 : {0, 1}∗ →
{0, 1}η (where η ≥ ` + κ). We will assume that H1, H2a, H2b, and H3 are
independent random functions. Note that while H1 is described as returning a
bit string, we will operate on its output as a number modulo p.

In the original PAK protocol, the client performs two |q|-bit exponentiations,
and one |r|-bit exponentiation. The revised PAK protocol is given in Figure 1. In
PAK-R, the client only needs to perform three |q|-bit exponentiations (which in
general will require much less computation). The idea is this: instead of forcing
the result of the hash function to be in the group Gp,q, we allow it to be any
element in Z∗

p , and randomize that part outside of Gp,q. This makes the m value
indistinguishable from a random value in Z∗

p (instead of a random value in Gp,q),
but still allows one to extract the hash value and the extra randomization.

In this case, we must have p = rq+1 in which gcd(r, q) = 1, or else we cannot
extract the extra randomization. In the original PAK protocol, the requirement
gcd(r, q) = 1 is not necessary. Of course, for randomly chosen q and p (for
instance, using the NIST approved algorithm [23]), this requirement will be
satisfied with high probability.

Theorem 1. The PAK-R protocol is a secure password-authenticated key ex-
change protocol, assuming the hardness of the DDH problem.

We sketch the proof of this theorem in Appendix A.

4 Resilience to Server Compromise: The PAK-Y Protocol

In our protocol, we will designate the open role as the client role. We will use A
and B to denote the identities of the client and the server, respectively. In addi-
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tion to the random oracles we have used before, we will use additional functions
H0 : {0, 1}∗ → {0, 1}|q|+κ and H ′

0 : {0, 1}∗ → {0, 1}|q|+κ, which we will assume
to be random functions. The verifier generation algorithm is

VGen({A, B}, π) = gv[A,B],

where we define v[A, B] = H0(min(A, B), max(A, B), π) (we need to order user
identities, just so that any pair of users has a unique verifier).

In the original PAK-X protocol, the verification that the client knew the
discrete log of the verifier V = gv[A,B] was done by having the server generate a
self-certifying ElGamal encryption using V as the public key, which could only
be decrypted using the discrete log of V . Then the client would include the
decryption in the hash value sent back to the server.

The PAK-Y protocol is much simpler: the server authenticates itself in the
usual way, and the client performs a non-interactive Schnorr proof of knowledge
of the discrete log of V , using the shared secret σ in the hash function of the
Schnorr proof of knowledge so as to avoid any information leakage. While this
is conceptually simpler, it is more difficult to prove, since it involves rewinding
arguments which can be difficult in our concurrent setting. Still, we are able to
prove its security.

To be consistent, we also incorporate the modifications from the previous
section and present the “PAK-RY protocol” in Figure 2.

We extend the model described in Section 2 to include resilience to server
compromise as in [8]. Briefly, we designate one role (open or connect) as the
server role, and the other as the client role. We add the test password and get
verifier operations. In the ideal system there is no tangible verifier stored by
the server. Rather, possession of the verifier (which results from the get verifier
operation) gives the adversary a “right” to perform an off-line dictionary attack.
In the ideal world, test password allows the adversary to test to see if two users
share a certain password, but only returns the answer if a get verifier query has
been made, and get verifier allows the adversary to obtain results from any past
or future test password queries for a pair of users. See [8] for details.

Theorem 2. The PAK-RY protocol is a secure password-authenticated key ex-
change protocol with resilience to server compromise, assuming the hardness of
the DDH problem.

We sketch the proof of this theorem in Appendix A.

5 PAK-EC

In this section we construct a version of the PAK protocol called PAK-EC which
can be used over an elliptic curve group modulo a prime.

Say we are using an elliptic curve E modulo p with coefficients a, b in (stan-
dard) Weierstrass form, where G is an element of prime order q in E and
#E = rq, with gcd(r, q) = 1. (Currently, |p| = 162 and |q| = 160 would be
considered reasonably secure. [12])
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A (client) B (server)

x ∈R Zq

h ∈R Z∗
p

m = gxhq · H1(A, B, V )
m - Test m

?
6≡ 0 mod p

y ∈R Zq

µ = gy

σ =
(
( m

H1(A,B,V ) )
r
)yr−1modq

σ = µx µ, k� k = H2a(A, B, m, µ, σ, V )
Test k

?= H2a(A, B, m, µ, σ, V )
c ∈R Zq

a = gc

e = H ′
0(A, B, m, µ, σ, a, V )

s = c − ev mod q

K = H3(A, B, m, µ, σ, V )
e, s - Test e

?= H ′
0(A, B, m, µ, σ, gsV e, V )

K = H3(A, B, m, µ, σ, V )

Fig. 2. The PAK-RY protocol, with π = π[A, B], v = v[A, B], and V = V [A, B]. The
resulting session key is K.

The PAK-EC protocol is very similar to the PAK protocol. All the PAK
operations in Gp,q ⊆ Z∗

p (recall that p, q are prime and p = rq + 1 for the
PAK protocol) can simply be replaced with the equivalent operations in the
elliptic curve group. However, there is one procedure in PAK that is performed
in Z∗

p : converting a hash output into an element of Gp,q. Recall that in PAK
H1 : {0, 1}∗ → {0, 1}|p|+κ, and thus the output of H1 is with high probability a
point in Z∗

p , and statistically random in Z∗
p . The procedure to compute a random

element of Gp,q is then to compute H1(A, B, π) to get a random point in Z∗
p ,

and then to raise H1(A, B, π) to the rth power, so that the result is in Gp,q. For
an elliptic curve group, we can obtain a similar result by using the method for
obtaining a random point as explained below.1

The PAK-EC protocol is given in Figure 3, with f(A, B, π) used to generate
a random point on E from A, B and π.2

Here we give the procedure for f(A, B, π), where “AND” denotes a bit-wise
logical and operation. We assume H1 : {0, 1}∗ → {0, 1}|p|+κ+1.
Computation of f(A, B, π)

1. Set i = 1.

1 Using a similar method to PAK-R may work, but it would be less efficient than the
method we describe here, since |r| � |q|.

2 This is modified in a straightforward way from the general procedure to find a ran-
dom point on an elliptic curve from the IEEE 1363 Standard [12][Appendix A.11.1].
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A B

x ∈R Zq

m = xG + r(f(A, B, π))
m -

y ∈R Zq

µ = yG
σ = y(m − r(f(A, B, π)))

σ = xµ
µ, k� k = H2a(A, B, m, µ, σ, π)

Test k
?= H2a(A, B, m, µ, σ, π)

k′ = H2b(A, B, m, µ, σ, π)

K = H3(A, B, m, µ, σ, π)
k′

- Test k′ ?= H2b(A, B, m, µ, σ, π)
K = H3(A, B, m, µ, σ, π)

Fig. 3. The PAK-EC protocol, with π = π[A, B]. The resulting session key is K. If a
“Test” returns false, the protocol is aborted.

2. Compute w′ = H1(A, B, π, i) and w = [w′ AND (2|p|+κ − 2)]/2 mod p (i.e.,
remove the least significant bit from w′ to make w; the least order bit will
be used later).

3. Set α = w3 + aw + b mod p.
4. If α = 0 then f(A, B, π) = (w, 0).
5. Find the “minimum” square root of α modulo p (for instance, using the

method in [12][Appendix A.2.5]) and if it exists, call it β.3

6. If no square roots exist, set i := i + 1 and go to Step 2.
7. Let γ = w′ AND 1, and let f(A, B, π) = (w, (−1)γβ mod p).

Note that we would expect to poll the hash function about twice for each
application of f(A, B, π).

The only change required in the proof of security is to have the simulator
generate a random response to an H1 query with the correct distribution and
such that the simulator also knows the discrete log of the resulting point on the
elliptic curve. To accomplish this, the simulator performs the following procedure
on a new query H1(A, B, π, j):

1. If H1(A, B, π, j′) has not been queried for any j′, then do the following:
a) Set i = 1
b) Generate a random w′ ∈R {0, 1}|p|+κ+1 and compute w = [w′ AND

(2|p|+κ − 2)]/2 mod p.
c) Using Steps 3 through 5 of the procedure above, compute α and deter-

mine if there is a square root β of α. If not, let H1(A, B, π, i) = w′, set
i = i + 1 and go to Step 1b.

3 To make this function deterministic while allowing any method of computing square
roots, we fix “beta” to be the minimum square root. That is, if β′ is a square root
of α modulo p, then β = min{β′, p − β′}.
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d) Let H be the point that would be generated in Step 7 of the procedure
above.

e) Generate α[A, B, π] ∈R Zq and calculate the point G′ = qH + (α
[A, B, π])G

f) Let h to be the first coordinate of G′, and set γ to be 0 if the second
coordinate is the “minimum” square root of h modulo p (see above),
and otherwise 1. Generate w′′ ∈R Zb2|p|+κ/pc, and set H1(A, B, π, i) =
2 · (h + w′′p) + γ.

2. If H1(A, B, π, j) has not been set yet, choose H1(A, B, π, j) ∈R {0, 1}|p|+κ+1.
3. Return the computed value of H1(A, B, π, j).

Note that steps 1b-1f are executed about twice on average for each H1 query
with different inputs (A, B, π).

6 PAK-XTR

Now we develop a version of the PAK protocol that works over an XTR group
[17].

Say we have a prime p ≡ 2 mod 3, p 6≡ 8 mod 9, a prime q > 6 that divides
p2 − p+1 but q2 does not divide p6 − 1, and an element g ∈ GF (p6)∗ of order q.
We set Ĝp,q = 〈g〉, that is, the cyclic group generated by g. (Currently, |p| = 170
and |q| = 160 would be considered secure.) The elements of the group Ĝp,q will
actually be represented by their traces in GF (p2), and thus the generator will
be given as Tr(g) ∈ GF (p2).

Let ζ denote a zero of Z6 + Z3 + 1. In some of our procedures below we will
write elements of GF (p6) as

∑5
i=0 aiζ

i, for ai ∈ GF (p) (as in [16]).
The PAK-XTR protocol is very similar to the PAK protocol. All the ope-

rations in Gp,q can simply be replaced with the equivalent operations in Ĝp,q.
However, as with the transformation for elliptic curve groups, transforming the
output of H1(A, B, π) to be in the group is nontrivial in an XTR group. Even
worse is the fact that the trace representation used in XTR does not uniquely
define elements in Ĝp,q. Also, the standard multiplication using traces given in
[17] requires one to know the discrete log of one factor, and a special form of
the other factor. All of these add complications to the PAK-XTR protocol. The
protocol is described below, including how to compute the function f(A, B, π)
used to generate the trace of a random point in the XTR group from A, B and π.

The PAK-XTR protocol

1. Alice:
– Compute ν = f(A, B, π) using the algorithm below.
– Select x ∈R Zq and compute s = Tr(gx) using Algorithm 2.3.7 from [17].
– Compute a ν′ ∈ GF (p6) where ν = Tr(ν′) using Step 1 of Algorithm 5.6

from [16] (there are three possible values of ν′ corresponding to the three
conjugates that sum to ν).
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– Compute an s′ ∈ GF (p6) where s = Tr(s′) using Step 1 of Algorithm 5.6
from [16].

– Compute m = Tr(s′ · ν′).
– Compute m1 = s′ · ν′, m2 = mp2

1 , m3 = mp2

2 . This can be done easily
using the representation for m1 =

∑5
i=0 aiζ

i, and using the facts that
ζ9 = 1, and either p2 ≡ 4 mod 9 for p ≡ 2 mod 9, or p2 ≡ 7 mod 9 for
p ≡ 5 mod 9. Then m1, m2, m3 ∈ GF (p6) and m = Tr(mi) for i = 1, 2, 3.

– Compute (ν′)−1

– Compute Tr(m1 ·(ν′)−1), Tr(m2 ·(ν′)−1), Tr(m3 ·(ν′)−1), and call them
t1, t2, t3, where t1 ≤ t2 ≤ t3 (using a canonical ordering). (Note that one
of t1, t2, t3 must equal Tr(s′), which is s. Also note that we would get
the same t1, t2, t3 for any of the three possible ν′′ where ν = Tr(ν′′).)

– Set ` such that t` = s.
– Send m, ` to Bob.

2. Bob:
– Receive m ∈ GF (p2) and ` ∈ {1, 2, 3} from Alice.
– Let m′ be a value such that m = Tr(m′). Compute Tr((m′)p+1) using

Algorithm 2.3.7 from [17] and verify it is not in GF (p). If the verification
fails, then abort. (Note that this verifies that m is the trace of an element
whose order divides p2 − p + 1 and whose conjugates sum to m (see
Lemma 2.3.4(iii) in [17]). This implies that when m is used below, the
algorithms work correctly.)

– Select y ∈R Zq and compute µ = Tr(gy) using Algorithm 2.3.7 from
[17].

– Compute ν = f(A, B, π) using the algorithm below.
– Let ν′ be a value such that ν = Tr(ν′). Compute ν̂ = Tr((ν′)−1) = νp

(see Lemma 2.3.2(v) in [17]).
– Compute ν̂′ ∈ GF (p6) where ν̂ = Tr(ν̂′) using Step 1 of Algorithm 5.6

from [16].
– Compute three values m1, m2, m3 ∈ GF (p6) such that m = Tr(mi) for

i = 1, 2, 3 using Step 2 of Algorithm 5.6 from [16].
– Compute Tr(m1 · ν̂′), Tr(m2 · ν̂′), Tr(m3 · ν̂′), and call them t1, t2, t3,

where t1 ≤ t2 ≤ t3 (using a canonical ordering).
– Let s = t`, and let s′ be defined such that s = Tr(s′)
– Use Algorithm 2.3.7 from [17] to compute σ = Tr((s′)y).
– Compute k = H2a(A, B, m, µ, σ, π).
– Send µ, k to Alice.

3. Alice receives µ, k from Bob. Alice uses Algorithm 2.3.7 from [17] to com-
pute σ = Tr((µ′)x), where µ′ is defined such that µ = Tr(µ′). Then Alice
tests k

?= H2a(A, B, m, µ, σ, π). If it is true, then Alice computes k′ =
H2b(A, B, m, µ, σ, π), and K = H3(A, B, m, µ, σ, π). Alice sends k′ to Bob.

4. Bob receives k′ from Alice. Then Bob tests k′ ?= H2b(A, B, m, µ, σ, π). If it
is true, then Bob computes K = H3(A, B, m, µ, σ, π).

Here we give the procedure for computing f(A, B, π). We assume H1 :
{0, 1}∗ → {0, 1}6|p|+κ.
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Computation of f(A, B, π)

1. Compute w = H1(A, B, π) mod p6.
2. Let ai = bw/pic mod p, for i = 0, . . . , 5. (That is, first perform the division

and floor over the real numbers, and then reduce that result modulo p.) Then
h0 =

∑5
i=0 aiζ

i is a random element of GF (p6).
3. Similar to [16], compute h1 = hQ

0 , where Q = (p6 − 1)/(p2 − p + 1) =
p4 + p3 − p − 1, and Tr(h1). First note that

hQ
0 =

hp5+2p4+2p3+p2

0

hp5+p4+p3+p2+p+1
0

=
((h1+p+p2

0 )1+p)p2

(h1+p+p2

0 )1+p3
,

and that the denominator is simply the norm of h0 over GF (p), which is
in GF (p) [7]. Now for p ≡ 2 mod 9 and using the fact that ζ9 = 1, we can
easily calculate (without any multiplications) the following for any element
h(=

∑5
i=0 biζ

i) ∈ GF (p6):

hp = (
∑5

i=0 biζ
i)p = b5ζ

1 + b4ζ
8 + b3ζ

6 + b2ζ
4 + b1ζ

2 + b0

hp2
= (
∑5

i=0 biζ
i)p2

= b5ζ
2 + b4ζ

7 + b3ζ
3 + b2ζ

8 + b1ζ
4 + b0

hp3
= (
∑5

i=0 biζ
i)p3

= b5ζ
4 + b4ζ

5 + b3ζ
6 + b2ζ

7 + b1ζ
8 + b0.

Similar equations can be found for p ≡ 5 mod 9. Thus we can compute h1
using 4 multiplications in GF (p6) and an inversion in GF (p) (Recall that all
polynomial calculations are modulo ζ6 + ζ3 + 1.)

4. Compute f(A, B, π) = Tr(h(p2−p+1)/q
1 ) using Algorithm 2.3.7 in [17].

This procedure actually fails if f(A, B, π) turns out to be 3, but the probability
of this is negligible.

6.1 Efficiency

The amount of computation can be bounded as follows in terms of the number of
multiplications in GF (p) (ignoring constants): Alice requires 8 log2((p2−p+1)/q)
multiplications to compute f(A, B, π). and 8 log2(q) multiplications to compute
Tr(gx) (see Theorem 2.3.8 in [17]). The two executions of Step 1 of Algo-
rithm 5.6 from [16] add 5.3 log2(p) multiplications each. Finally, she requires
another 8 log2(q) multiplications to compute σ. The total is about 34.6 log2(p)
multiplications (assuming |p| ≈ |q|, and not counting constant additive factors).

Bob requires 8 log2(p+1) multiplications to verify m, 8 log2(q) multiplications
to compute µ, and 8 log2((p2 − p + 1)/q) multiplications to compute f(A, B, π)
(see Theorem 2.3.8 in [17]). Computing ν̂ is essentially free, since exponentiation
to the power p does not require any multiplications. The executions of Step 1 and
Step 2 of Algorithm 5.6 from [16] add 5.3 log2(p) multiplications each. Finally,
Bob requires 8 log2(q) multiplications to compute σ (see Theorem 2.3.8 in [17]).
The total is 42.6 log2(p) multiplications (assuming |p| ≈ |q|).
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If Bob is a server, Bob could store ν̂′ corresponding to each user A, and
reduce the online computation to about 37.3 log2(p) multiplications.

For comparison purposes, a p-bit exponentiation in GF (p6) can be performed
using about 23.4 log2(p) multiplications in GF (p) [17]. Thus we are saving about
a factor of 2 over a straightforward non-XTR approach using the same group.
However, there may be faster ways to perform a p-bit exponentiation in GF (p6)
[7], and thus the efficiency advantage is less clear.

6.2 Proof of Security

The basic proof of security follows the one for PAK in [8]. For the ` value
sent by Alice, the simulator can simply send a random value, and proceed in a
straightforward manner. The only other change required is to have the simulator
generate a random response to an H1 query with the correct distribution and
such that the simulator also knows the discrete log of the resulting point in the
XTR group. To do this, we do the following on a new query H1(A, B, π):

1. Generate a random w ∈R {0, 1}6|p|+κ.
2. Using this w in Steps 2 through 3 of the procedure above, compute h1, and

determine if Tr(h(p2−p+1)/q
1 ) = 3. If so, let H1(A, B, π) = w. (This is a

negligible probability event.)
3. Generate α[A, B, π] ∈R Zq

4. Generate a random w′ ∈R {0, 1}6|p|+κ.
5. Let ai = bw′/pic mod p, for i = 0, . . . , 5. Then h =

∑5
i=0 aiζ

i is a random
element of GF (p6).

6. Generate h′ = hq((g′)(p
2−p+1)/q)α[A,B,π](((p6−1)/q)−1modq).

7. For i = 0, . . . , 5, let bi be defined by h′ = b5ζ
5 +b4ζ

4 +b3ζ
3 +b2ζ

2 +b1ζ +b0,
and let H1(A, B, π) = bw′/p6cp6 +

∑5
i=0 b′

ip
i.

Also, the value r in the original PAK proof of security should be set to 1.
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A Security of the PAK-RY Protocol

The proof of simulatability of PAK-RY is similar in structure to that of PAK-X
[8]. Due to page limitations we only sketch the required modifications from that
proof. The full proof is given in the full version of this paper.

The modification for PAK-R is straightforward, simply requiring changes to
how m and σ are computed and tested. The modification for PAK-Y is much
more involved. The main change is the way in which we prove that an adversary
that has compromised a server B and obtained a password verifier V for a
client A still cannot impersonate A. In PAK-X, if the adversary succeeded in
impersonating A, then we could answer a Diffie-Hellman challenge (X, Y, Z)
simply by examining certain random oracle queries, and without ever needing
to perform rewinding. In PAK-Y, if the adversary succeeds in impersonating
A, then there doesn’t seem to be a way to solve a hard problem simply by
examining random oracle queries. In fact, the non-interactive proof-of-knowledge
that is used requires rewinding to extract any knowledge. Fortunately, rewinding
is not necessary for the simulation itself, but only to extract a solution to the
hard problem, and thus our proof for a given run only requires a single point of
rewinding. Specifically, we solve a Discrete Log challenge X by plugging in V =
X, and rewinding (to the appropriate H ′

0 query) when an adversary succeeds
in impersonating A to server B. We give this claim and proof here. We use the
notation A0, B1, A2, B3 to represent the protocol steps of Alice and Bob, i.e.,
A0 is Alice’s initiation of the protocol, B1 is Bob’s procedure upon receiving the
first message, etc.

Claim. Let (µ, k) be returned by a B1(m) query to (i′, j′). Let A = PIDi′j′ and
B = IDi′ . Suppose get verifier is performed on {A, B} (either before or after
the B1 action), and returns V ∗. Then, w.o.p., no values (e, s) will be sent to an
unmatched (i′, j′) such that

e = H ′
0(A, B, m, µ,DH(µ,

(
(

m

H1(A, B, V ∗)
)r

)r−1modq

), gs(V ∗)e, V ∗),

unless by the time of the H ′
0 query there has been either a successful guess on

{A, B}, or an H0({A, B}, π) query, for some π, with V ∗ = gH0({A,B},π).

Proof. Suppose that with some nonnegligible probability ε there will be some re-
sponder instance (̂i′, ĵ′) (with B = IDî′ and A = PIDî′ ĵ′) such that the following
“bad event” occurs:

1. query B1(m̂) is made to (̂i′, ĵ′) and returns (µ̂, k̂); no A0 query returned m̂,
2. get verifier is performed on {A, B} and returns V ∗
3. query

H ′
0(A, B, m̂, µ̂,DH(µ̂,

(
(

m̂

H1(A, B, V ∗)
)r

)r−1modq

), â, V ∗)

is made and returns ê, before there has been either a successful guess on
{A, B} or an H0({A, B}, π) query, for some π, with V ∗ = gH0({A,B},π), and
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4. query B3(ê, ŝ) is made to (̂i′, ĵ′), where gŝ = â(V ∗)ê.

We will then construct an algorithm D that solves the discrete log (DL)
problem. Let X be the challenge DL instance. The idea of the construction is to
“incorporate” X into the result of the get verifier query. Then when the client
“proves” that he knows the discrete log of V , we use rewinding to extract the
discrete log, and thus discover the discrete log of X. Note that we only rewind
in one place, and thus there are no “nested rewinds” occurring which have been
noticed to cause problems in other concurrent proofs [15].

The construction is as follows:

1. Generate random d between 1 and T .
2. We will run a simulation of the protocol against an attacking adversary,

playing all roles: the users, the random oracles, and the ringmaster, who
answers test password queries, etc. (For application queries, we set the shared
session keys to be the output of the appropriate H3 queries.) We will do this
until the dth pair of users (A, B) is mentioned. (This may be from a get
verifier query on users with IDs A and B, or from an initialize user instance
query with user ID A and partner ID B, or vice-versa.) If we guessed d
correctly, this pair will be the identities of the users in the “bad event.” We
will call these the “designated users.”

3. Once A and B are set as the designated users, continue as in the original
simulator, except:
a) Since we do not know the actual password shared between A and B (i.e.,

we cannot answer the query H0(A, B, π), since that would be the discrete
log of X), we simulate the non-interactive Schnorr proof from A to B in
the standard way (by manipulating the output of the H ′

0 oracle).
b) get verifier on users with IDs A and B:

Respond with X. Note that this results in V ∗ = X.
If the “bad event” is about to occur, then this response is correct, since
there could not have been a successful guess on {A, B}.

c) If the bad event occurs for {A, B}, rewind to the H ′
0 query from the bad

event and respond with a random value, and then run until either the bad
event occurs, or the simulation stops. Continue to rewind and respond
with random values until the bad event occurs again using that H ′

0 query.
Let e1, s1 be the values corresponding to the initial run leading to the
bad event, and e2, s2 be the values corresponding to the final run leading
to the bad event. If e1 6= e2, output (s2 − s1)/(e2 − e1), as the discrete
log of V , which is the discrete log of X. Otherwise output “Failure” and
abort.

d) If the bad event occurs for any other users besides the designated users
{A, B}, output “Failure” and abort.

Note that since the bad event occurs with probability ε, the probability that
it occurs for the designated users {A, B} is ε/T .

Now we must show that the probability that we recover the discrete log of
X is non-negligible, and that the expected running time of the algorithm is
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polynomial. Let α denote a state in the system, and qα denote the probability of
reaching that state. Define a state as bad if the bad event occurs at that state for
the designated users. Define a state as “pre-bad” if an H ′

0 query has been made
at that state for the designated users {A, B}. For a pre-bad state β, let pβ be the
probability that that particular H ′

0 query leads to a bad state corresponding to
H ′

0, and let pβ,e be the probability that the particular H ′
0 query responds with

e and leads to a bad state corresponding to H ′
0. (Note that pβ,e ≤ 1/q.) Thus,

considering the bad states α that correspond to an H ′
0 query corresponding to

state β, we have

∑
bad α for β

qα = qβpβ .

and thus

∑
bad α

qα =
∑

pre-bad β

qβpβ .

The probability that we recover the discrete log of X is the probability that
we reach a pre-bad state β, respond with some e1, reach a bad state α, and on
subsequent rewinds, the first time we reach a bad state occurs when the response
at β was e2 6= e1. This probability is

∑
pre-bad β

qβ


∑

e∈Zq

pβ,e

(
1 − pβ,e

pβ

)
 =

∑
pre-bad β

qβ




∑

e∈Zq

pβ,e


−


∑

e∈Zq

p2
β,e

pβ






≥
∑

pre-bad β

qβ


pβ −


1

q

∑
e∈Zq

pβ,e

pβ






=
∑

pre-bad β

qβ

(
pβ − 1

q

)

≥

 ∑

pre-bad β

qβpβ


− 1

q

=

(∑
bad α

qα

)
− 1

q
≥ ε

T
− 1

q
,

which is non-negligible since ε is non-negligible.

Now we must show that our algorithm takes polynomial time. Let βα denote
the pre-bad state corresponding to bad state α. Then the expected time of the
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simulation can be bounded by

T +
∑

bad α

Tqα(1/pβα
) = T + T ·

∑
pre-bad β


 ∑

bad α for β

qα(1/pβ)




= T + T ·
∑

pre-bad β

qβpβ(1/pβ)

≤ T + T 2,

since for each of T steps, the sum of the probabilities of the pre-bad states at
that step is at most one.
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Abstract. We improve on the Boneh-Shaw Fingerprinting scheme in
two ways: (i) We merge a Direct Sequence Spread Spectrum (DSSS) em-
bedding layer with the first Boneh-Shaw layer (the so called “Γ code”),
effectively increasing the protected object size by about four orders of
magnitude. As a result we have more than one order of magnitude impro-
vement on the size of collusions that we can overcome. (ii) We replace
the “marking assumption” with a more realistic assumption, allowing
random jamming on the so called “unseen” bits.
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1 Introduction

Watermarks and fingerprints are hidden marks embedded in protected objects.
The former are supposed to be detected by client machines, to signal the fact
that the objects are protected and some special license is needed in order to
run them on that machine. All the copies of a protected object are identically
watermarked. The latter are used to trace piracy after the fact. Each copy is
individually fingerprinted with data traceable to the machine for which the object
was originally bought. This kind of tracing has the same goal as “Traitor Tracing”
(Chor, Fiat and Naor [4]), but the latter requires confiscating a pirate client
machine to trace leakage based on a set of secret keys found in the client, while
the former requires capturing a copy of the leaked protected content, which we
believe to be more practical.

This paper deals with fingerprinting.
Overall System Description

The first Boneh-Shaw [3] system, is composed of a, so called, “Γ matrix,” whose
rows are fingerprint words (user i gets row i). The matrix looks like stairs along
the main diagonal with all ‘ones’ above and all zeroes below. The stair widths is
d, so we have ‘blocks’ of d columns. Columns are randomly permuted according
to a secret permutation known only to the legal embedder and decoder. Since
each user has a unique fingerprint word embedded in her copy of the protected
object, a pirated copy is supposed to be traceable to its source (the user who
legally bought it). However, a collusion may manipulate their copies to create a
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new copy whose embedded FP word is different from each of their individual FP
words, and thus would not incriminate any of them, or worse, would incriminate
an innocent user.

The detection process treats FP words as words in an Error Correcting Code
(ECC). Initially the FP words are far from each other, according to some metric,
but an attack may produce a new FP word which is removed from each of these
initial FP words.The detection process will decode the attacked FP word to the
closest initial FP words (or say ‘don’t know’ if in between). The metric used by
[3] is the Hamming weight. In the improved system we introduce a new metric.
We will come to this issue later in more details.

The main assumption of [3] is:

Assumption 11 Identical bits of two FP words are “unseen” to their users,
and are unmodifiable by these users.

And their main observation is:

Observation 11 Each user s is associated with adjacent pair of blocks (Bs−1,
Bs), which is unique to this user. For user s the initial values of these blocks is
Bs−1 = 0d; Bs = 1d. All other users have initially homogeneous values on these
blocks (either all zeroes or all ones). Thus if after attack, we see a ‘significant’
deviation from uniformity on these blocks we deduce that user s was involved
in the collusion (the random secret permutation on columns make it hard for
anybody else to deviate from uniformity).

The above simplistic system requires that the number of rows of the Γ matrix
be identical to the overall number of users of the system, and the number of
columns be d times the number of rows. This is wasteful. A more realistic system
also proposed in [3] is to start from small Γ codes having just 2c rows, where c
is the collusion-size we try to overcome (and 2dc columns). Randomly partition
the set of all users into 2c equal size subsets, and assign a row of the matrix
to each. Repeat the above process k times, and concatenate the resulting rows
into long FP words. If k is large enough then with high probability each user
has a unique FP word. After attack, each of the ‘sub’ FP rows can now only
identify a subset from which a bad guy came. But the intersection of those
subsets converges rapidly to the right colluders. If k is logarithmic in the overall
number of users then with high probability only colluders will be incriminated.
This process could also be explained in term of a random error correcting code,
whose alphabet is the rows of the Γ code (which is the approach taken by [3]).

One way of creating the basic logical bits in the above constructions is using
Direct Sequence Spread Spectrum (DSSS), where each logical bit is implemented
using a relatively long sequence of small random “chips.” Our main contribution
is realizing that (roughly) we could use the DSSS sequences as the Γ -code rows.
This increases the effective object size by four orders of magnitude, and translates
to increase of one order of magnitude in collusion size that we can overcome.

Basic Approach to Fingerprinting and Prior Art
Paper [7] considers embedding distinct spread sequences per copy, and is the
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first to formalize the metrics of attacks (the limits beyond which a copy would
be considered too corrupt to be useful). The paper then considers one attack:
Averaging of the copies of a collusion and adding noise. This is a less serious
attack than those considered in [3], and accordingly the upper bound on collusion
size that can be overcome is much higher in [7]. The approach of [5] is similar to
that of [3]. Users are randomly sub grouped into r subsets, each getting a distinct
symbol out of r symbols. After some subgroup is identified as including pirates
the search continues with that subset only. It is repartitioned into r smaller
subsets, and so on. This is called dynamic tracing. It is slightly more efficient
than the static tracing where the whole universe of users is repartitioned, but
due to the fast convergence of logarithmic search the difference isn’t dramatic.
The approach of [5] is less realistic than that of [3] in the following aspect. The
former assumes that per a round of the above tracing process the pirates simply
choose one of the symbols available to them. The assumption of [3] is that on bits
where a collusion disagrees they may choose any value. Symbols are composed
of many bits. Thus the collusion may create new symbols not in the original
alphabet. This is in general a more realistic assumption.

2 Direct Sequence Spread-Spectrum (DSSS) Primer

Let m = (m1, . . . , mu) be an object to be marked, where (∀i = 1, . . . , u)[|mi| ≤
M ], and M >> 1, so that an object obtained by tweaking the components mi by
±1 would be considered similar enough to the original, and users normally don’t
notice the difference. A machine given both the original and the tweaked objects
can of course compute the difference (point wise subtraction). The parameter
u is chosen by the embedding algorithm. As shown below, to embed one bit of
information we need u >>

√
M (less for fingerprinting). If an object is very

small, so that we cannot robustly embed u chips in it then DSSS marking is
impossible. If it is bigger than u then we can partition it into many parts of size
u, embedding one logical bit in each 1.

We need to distinguish between two types of bits. There are logical bits that
we want to embedd in the samples of content of the protected object, and there
are long spread sequences of ‘chips’ that modulate the samples of content, and
commulatively create a logical bit. To distinguish the two we denote the former
bits of information ±D, and the latter ±1.

Let x = x1, . . . , xu be a secret pseudo-random sequence, known exclusively
to the embedder and decoder, where (∀i = 1, . . . , u)[xi ∈ ±1].We want to em-
bed one of two symbols ±D. The xi’s are called “chips.” A sequence of u chips
encodes one logical bit.

1 In fact, if we can embed even one bit then we can usually embed many bits, at the
cost of increased decoding time. If we have K < 2u possible spread-sequences, the
choice of one of them is worth log2 K < u bits. We need some Hamming distance
between the different spread sequences, hence it is impossible to use K = 2u.
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Embedding:
To embed ±D do: Compute a = (a1, . . . , au), where (∀i = 1, . . . , u)[ai = mi±xi],
(that is, to encode a +D we add the spread-sequence, and to encode a −D we
subtract it).

Random Jamming Attacks:
Here we consider jamming by adding noise at the energy level of the spread
sequence. We use J = (J1, . . . , Ju) to denote the additive noise. The object after
attack is b = (b1, . . . , bu), where (∀i = 1, . . . , u)[bi = ai + Ji], Ji ∈ ±1.

The assumption that the adversary is restricted to ±1 is only approximately
true. We assume that we push the maximum un-noticeable energy into the legal
marks. This level of energy is denoted as ±1 (and the amplitude of the content
is scaled relative to this). The adversary thus cannot push more jamming energy
without noticeably degrading the object (roughly).

De-Synch attacks:
These attacks create deformations in the object to lead the decoder into a wrong
positioning of the spread sequence. We overcome these attacks using a combina-
tion of redundancy (where each chip reoccurs many times) and search. We hence
force ignore this (difficult) problem, as it is orthogonal to the issues discussed
here.

Decoding:
Compute A =

∑u
i=1 bi · xi. If A is “close” to ±u decide ±D. Else, decide ‘?.’

Analysis:

Throughout this paper we use in many places the following well known facts:
Fact 1: Let Xi, i = 1, 2, , . . . , u be random variables with mean µ and

deviation γ. Let X = X1+, . . . , Xu. Then for any real f the tail probabilities are

Pr[|X − µ| > fγ] < e−f2/2

Fact 2: The variance of the sum of random variables equals the sum of their
variances.

We write down the equations for +D. The case of −D follows likewise. A =∑u
i=1(mi+xi+Ji)·xi =

∑u
i=1 mi·xi+

∑u
i=1 x2

i+
∑u
i=1 Ji·xi. Let B =

∑u
i=1 mi·xi,

C =
∑u
i=1 x2

i , and D =
∑u
i=1 Ji ·xi. C = u (the ‘signal’). By the Chernoff bound

B is likely bounded by ±M
√

u and D is likely bounded between ±√
u. (B + D

is ‘noise’.) So that if u >> M ·√u we can recover the signal from the noise even
without knowing the original message, m. This is the case of watermarking. In
the case of fingerprinting the original message, m, is known to the decoder.
In this case the recovery from de-synch attacks becomes easier, and we can also
subtract the major noise component, B. As a result we can relax the requirements
for decoding into u >>

√
u, namely we can encode more data into a given object.

Precise procedures and error probabilities for the FP case:
The decoder computes A′ =

∑u
i=1(xi + Ji)xi (since he can subtract the mi
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components). Or in vector notation: A′ = (x + J) · x, where · denotes inner
product. Let x2 = x ·x. A′ = x2 +J ·x. The x2 component has value u, J ·x has
a zero mean distribution, and assuming large enough u, the deviation is u1/2.
Using Fact 1 we know that for a real f the tail probabilities are:

ε = Pr[J · x > (fu)1/2] = Pr[J · x < −(fu)1/2] < e−f/2

Decision procedure:
if A′ < −(fu)1/2 then output −D,
if A′ > +(fu)1/2 then output +D,
else output ‘?.’

Thus the tails are the “false positive” probabilities.

3 The Boneh-Shaw Model

In [3] Boneh and Shaw propose the most robust approach to fingerprinting yet
published. They do not just protect against some particular attack (e.g. aver-
aging). They protect against any attack provided that one assumption holds.
This assumption is called the marking assumption.

Assumption 31 (The Marking Assumption):
If a subset of the copies of a protected object agree on some bit of the FP word,
then this bit is invisible to this subset of users (the colluders2), and they cannot
modify this bit. Bits on which they disagree are visible and modifiable by the
colluders.

Notations:
Let Σ = {0, 1}. Given w = (w1, ...wl) ∈ Σl and a set I = {i1, ..., ir} ∈ {1, ..., l}.
Use w|I to denote the word wi1 , wi2 , ..., wir and call it the restriction of w to I.

A set Γ = {w(1), ...w(n)} ∈ Σl is an (l, n) code. Code word w(i) is assigned
to user ui. Let C be a subset of the users (a “coalition”). Bit position i is
undetectable for C if all the code words of users in C agree on bit position i.

Definition 31 A fingerprinting scheme Γ is c-secure with error probability ε if
there exists a tracing algorithm A such that if a coalition C of size at most c
generates a word x then Pr[A(x) ∈ C] > 1 − ε, where the probability distribu-
tion is taken over the choices of the coalition members and a secret key of the
embedder.

Let {x}k denote a run of k copies of a bit x ∈ {0, 1}. Let d be a parameter
to be determined later. Here ”bits” are logical bits. One straight forward im-
plementation of the Boneh-Shaw system is to embed each bit using many DSSS
chips. We later improve on this.

The fingerprint (fp) sequence of user 0 is {1}dk.
The fp sequence of user 1 is {0}d, {1}d(k−1).
2 Sometimes called “coalition,” or “traitors.”
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...
The fp sequence of user i is {0}di, {1}d(k−i).

We arrange these sequences as rows in a (n × dk) matrix, called Γ . The
columns of Γ are randomly permuted (at bit level), such that only the embedder
and the legal detector know the secret permutation – users do not know it.

Number the rows of Γ top to bottom and its columns left to right, starting
from zero. We call the chunks of d pre-permutation columns of uniform value
“blocks,” and likewise number them left to right starting from zero, B0, B1, ...
Bk−1. For 0 ≤ s ≤ n − 1 let Rs = Bs−1 ∪ Bs.

Glossary:

– u= # chips/bit;
– d= # bits/block;
– k=# blocks/Γ -symbol;
– L=# Γ -symbol/FP word.

Observation 31 (The central observation of the Boneh-Shaw system):
User s is the only one who in any collusion may create a significant deviation
from a uniform distribution on the weight of Bs−1 relative to the weight of Bs.
This serves to detect who was involved in a collusion.

The parameter d controls error probabilities in detecting skewed distributi-
ons. Let W (x) denote the Hamming weight of string x.

Algorithm 31 (Γ -code level):
Given x ∈ {0, 1}dk, find a subset of the coalition that produced x (blocks are
numbered from 0 to k − 1, users are numbered 0 to k).

1. If W (x|B0) > 0, output user 1 is guilty.
2. If W (x|Bk−1) < d, output user k is guilty.
3. For all s = 1 to k − 2 do:

a) K = W (x|Rs).
b) If W (x|Bs−1) < K/2 − √

(K/2) ln(2n/ε) then output user s is guilty.

Lemma 31 Consider a Γ code with block size d and n rows, where d = 2n2

ln(2n/ε). Let S be the set of users which algorithm 1 pronounces as guilty on
input x. Then (i) S is not empty, and (ii) With probability at least 1 − ε, S is a
subset of the coalition C that produced x.

Layer 2: ECC
Assume c colluders. pick a Γ -code of just n = 2c rows. Use the rows of Γ as the
alphabet for FP words of length L (i.e. we have FP words in ΓL). Assignment
of FP words is done randomly with uniform distribution.
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Algorithm 32 (ECC level):
Given x ∈ {0, 1}dkL, find a member of the coalition that produced x.

1. Apply algorithm 1 to each of the L Γ -symbols.
2. For each of the L components arbitrarily choose one of the outputs of Algo-

rithm 1. Set yi to be that chosen output (yi is an integer in [1, n]). Form the
word y = (y1, . . . , yL.)

3. Find the FP word closest to y, and incriminate the corresponding user.

Explanation: Each Γ row is a symbol in an alphabet. We build words of
L Γ symbols at random, and these are the FP words. The collusion may flip
“seen” bits. At the detection phase we first detect blocks. Then decide which Γ
row is incriminated (using algorithm 31). Once we make this decision, for each
Γ symbol we now record just its row number.

Theorem 5.5 of [3] states that for the above combined system:

Theorem 31 Let n = 2c, and let the number of users be N . In order to main-
tain overall error probability ε, we need L = 2c·ln(2N/ε), and d = 2n2 ln(4nL/ε).
The overall FP word length in bits is Ldn = O(c4 ln(N/ε) ln(1/ε)).

4 The New System

4.1 General Background

The major differences between the new and old systems are:

1. We merge the embedding layer (DSSS) and the Γ -code layer, so, now chips
roughly play the role of bits in the Γ -code.

2. We replace the marking assumption with a more realistic assumption, allo-
wing random jamming of the unseen blocks at the same energy level of the
marking.

Overview:
The Boneh-Shaw system [3] uses the Hamming-Weight as the metric. Other
metrics could be used likewise. The Hamming-weight of a word is its Hamming-
distance from the origin word of all zeroes. Any arbitrary origin could be used
in a similar fashion. In fact, we could even use a distinct origin point for every
block within a Γ -symbol, as long as we are consistent, namely, within a block
we use the same origin for all the symbols.

The Boneh-Shaw conclusions apply for the new weight function, provided
the marking assumption and observation 31 both hold, and the maximal block
weight remains d.

If the marking assumption is replaced with a similar weaker condition that
is true only probabilistically (as we do) then the results still hold provided the
new errors are small compared to ε. In addition, if the new weight function
modifies the maximal block-weight then this must be taken into account as well.
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Specifically in lemma 31 and theorem 31 the variable d must be replaced with
the new maximal block-weight.

In our system, blocks are created at the spread-spectrum level. We measure
the weight of each block relative to the complement of its spread sequence. We use
distinct spread sequences for each block to assure that a collusion that disagrees
on one block, and therefore can see the spread sequence of that block, cannot
infer any information about the spread-sequences of other blocks on which they
agree (the secret permutations limit the damage significantly even if we do not
change the spread sequence).

Data Structures:
We have the following data-structures:

– The smallest elements are chips. They (roughly) replace the bits in the
Boneh-Shaw construction.

– A block is composed of d chips.
– A Γ -symbol is composed of k = 2c − 1 blocks.
– A fingerprinting word is composed of L Γ -symbols.

4.2 Low Level Algorithms

Here we deal with chip level data structures and algorithms.

Assumption 41 Unseen blocks are jammed at the same energy level of the mar-
king. We idealize this, saying that both the marks (chips) and the jamming are
additive and their values are ∈ {+1,−1}.

Assumption 42 We assume complete recovery from de-synch attacks. This is
realistic, since the decoder has the original version, and can realign a mutilated
object accordingly. This implies that the decoder can see individual chips (proba-
bly jammed).

Notations:
We repeat our previously mentioned DSSS notations, and add a few new not-
ations. Let m = (m1, m2, . . . , ) be a string representing the protected object
(e.g. pixels in which DSSS chips can be embedded), where (∀ i)[|mi| ≤ M ]. We
partition a spread sequence to blocks of d chips each: Per a Γ symbol the blocks
are C1, . . . , Ck, where block i is Ci = (ci,1, . . . , ci,d). The chips cij have values
∈ {±1} (and 1 << M). The double indexing (subscript ij) is used to point both
to a DSSS chip and to the content item to which it is added. It is the di + j
location in the string.

The complement of block Ci is denoted C̄i (i.e. C̄i is obtained from Ci by
flipping the chips). The number of colluders is c (no subscript). The overall
number of users is N , and error probability is ε.

Embedding:
The marked signal is b = (b1, b2, . . . , ), where the exact chips to be embedded are
chosen as follows: Replace block Bi of the Γ code with spread-sequence Ci. The
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sequence is secret. Blocks that are supposed to be a 1d in the original Boneh-
Shaw system are replaced with Ci, and blocks that are supposed to be 0d are
replaced with C̄i. Columns (at chip level) are permuted as before. The marked
signal after attack is a = (a1, a2, . . . , ).

Algorithm 41 (Decoding):
Input: Received object a = (a1, a2, . . . , ), and original object m = (m1, m2, . . . , ).
Output: (Noisy) embedded chips, z = (z1, z2, . . . , ).
Method:

– Un-permute columns;
– Compare each detected pixel, ai, to the corresponding expected un fingerprin-

ted pixel, mi;
/* Chip detection */
If ai > mi then chip zi = +1;
If ai < mi then chip zi = −1;
If ai = mi then chip zi = 0;

Observation 41 By the definition of the above algorithm, and the assumption
that a jamming attack is a random additive noise in ±1, it follows that a jammed
chip is either unchanged, or becomes a zero, but it never flips3.

4.3 High Level Algorithms

Here we deal with blocks, Γ symbols, and Error correcting codes over alphabet
whose symbols are the Γ symbols.

Definition 41 (Relative weight):
Let x ∈ {±1} and y ∈ {±1, 0}. Define the function

f(y, x) =
{

1 if x 6= y and y 6= 0
0 Otherwise

Let X = (x1, . . . , xd), where xi ∈ {±1} and Y = (y1, . . . , yd) where yi ∈
{±1, 0}. The weight of Y relative to X, is w(Y, X) =

∑d
i=1 f(yi, xi). When the

reference point, X, is known from the context, we omit it and write w(Y ).

It follows that when an original block Bi has value C̄i (“light blocks”) then
its weight relative to C̄i is zero, and this is true even after jamming. On the
other hand, if the original block was Ci (“heavy block”) then its weight relative
to C̄i after maximal jamming has a mean d/2, with deviation O(

√
d).

3 Of course, this is just an approximation of reality. It approximates the assumption
that the jamming energy level is about the same as the level of energy of the legal
marking. This is true if the marking signal is already maximized, so that it is hard
to add energy without creating visible (or audible) distortions.
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The fact that the maximal block-weight is reduced, and that we know it now
only probabilistically, must be taken into consideration. Specifically, we “clip”
“heavy” blocks to a threshold value slightly below the mean, d/2. We must
make sure that the error resulting from this clipping is small compared with ε.
We proceed with the analysis assuming block of size d chips4.

Algorithm 42 (Weight assignment and Clipping):
Input: Detected chips z = (z1, z2, . . . , ), arranged as blocks of d chips each
(B1, B2, . . . , ).
Output: For each block Bi output its relative weight, wi = w(Bi, C̄i), clipping
“heavy” blocks to “threshold” d/2 − (fd)1/2.
Method: For each block Bi {

If w(Bi, C̄i) > d/2 − (fd)1/2 then set wi = d/2 − (fd)1/2;
Else set wi = w(Bi, C̄i);

}

This completes the definition of the new block weight function.
We define the new Γ code algorithm in terms of “colors” rather than “users”

since that useful stage of explanation is not needed again, and we prefer to define
everything in terms of the full system that uses the higher level error correcting
code layer as well. The set of all users is randomly partitioned into 2c equal size
subsets called colors.

Algorithm 43 (Γ -code level):
Given x ∈ {0, 1}dk, k = 2c − 1, find a subset of the coalition that produced
x (as before, within a Γ -code, blocks are numbered 0, . . . , k − 1. and colors are
numbered 0, . . . , k).

1. If w0 > 0 output “color 0 is guilty.”
2. If wk−1 < d/2 − (fd)1/2 output “color k is guilty.”
3. For all s = 2 to k − 2 do:

a) Let K = w(x|Rs) (here the reference point for weight computation is
(C̄s−1, C̄s)).

b) If ws−1 < K/2 − √
(K/2) ln(2n/ε) then output “color s is guilty.”

In practice in line 1 of the above algorithm we may want to set some small
threshold > 0, since our assumption that jamming is precisely in ±1 may not
be totally accurate (although it is a good approximation, assuming the marking
energy is the maximal that is still un-noticeable).

We proceed with the analysis assuming the added original ECC level 5.
4 But at the end we note that the new assumption that unseen blocks may be jammed

requires doubling the block size.
5 However for sub-optimal adversary the algorithm in the appendix may have ad-

vantages. Those advantages are hard to quantify and we make no attempt to do
so.



388 Y. Yacobi

4.4 Analysis

Lemma 41 Observation 31 holds for the new weight function.

The meaning of the secret permutation on the new Γ -code columns: Suppose
some two adjacent blocks get spread-sequences Ci−1, Ci. And suppose that two
colluding parties happen to have (Ci−1, Ci), and ( ¯Ci−1, C̄i) spread sequences,
respectively (corresponding to (1d, 1d) and (0d, 0d) in the original Boneh-Shaw).
Can they together produce something close to ( ¯Ci−1, Ci)? The answer is the same
as with the original scheme. Not knowing the secret permutation the adversary
can at most use a uniform jamming.

Heavy unseen blocks are usually clipped to weight d/2 − (fd)1/2, but after
attacks, with probability q < e−f/2 we may fail to clip their weight to that
maximal value, and the may get some value between [0, d/2 − (fd)1/2). From
Fact 1 we know that this happens with probability q < e−f/2.

Recall that ε is the overall error probability due to jamming of seen blocks.
Let θ denote the overall error probability due to jamming of unseen blocks (so θ
is the probability of the accumulated effect of many local errors with probability
q each). We want to choose parameters such that θ = ε.

Lemma 42 f = 2 ln(4c2 ln(2N/ε)/ε) implies θ = ε.

Proof: q is the clipping error per unseen heavy block. The number of blocks
in each Γ -symbol is 2c−1, and each FP word is L Γ -symbols long, i.e. L(2c−1) ≈
2Lc blocks. N denotes the overall number of users. So, θ ≈ 2Lcq. Set ε = q·2Lc =
e−f/2 ·2Lc, and solve for f to get f = 2 ln(2Lc/ε). From Theorem 31 we have L =
2c ln(2N/ε). Plugging it into the last equation we get f = 2 ln(4c2 ln(2N/ε)/ε).

Lemma 43 For f = 2 ln(4c2 ln(2N/ε)/ε) the new maximal weight is limc→∞
r = d/2.

Proof: The maximal weight is r = d/2−√
fd, where block size d = 8c2 ln(8cL/ε)

(Theorem 31). Using f = 2 ln(2Lc/ε) we get that for c >> 1,
√

fd ≈ 4c ·
ln(2Lc/ε), so that limc→∞ r = d/2.

Example: for c = 100, N = 106, and ε = 0.001 we get L = 4284, d > 1.7 ·106,
f < 42, and 2r ≈ d. Lemma 5.3 of [3], says:

Lemma 44 Consider the code Γ0(n, d) where d = 2n2log(2n/ε). Then S 6= φ.

The proof assumes that the maximal weight of a block is d, the block length.
In our case we need to plug-in our new maximal block weight (d/2−√

fd). This
carries over to all subsequent claims. The following lemma parallels lemmas 5.2
and 5.3 of [3].

Lemma 45 In the new Γ code (without ECC) if r = d/2−√
fd = 2n2 ln(2n/ε),

and f = 2 ln(4c2 ln(2N/ε)/ε), let S be the set of users which algorithm 43
pronounces as guilty on input x. Then with probability at least 1 − ε, the set S
is a subset of the coalition C that produced x, and Pr[S = φ] < ε.
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The proofs are almost identical to the original, with the following differences.
The first paragraph in the proof of lemma 5.2 is now true only probabilistically
(the case n ∈ S holds with probability 1 − ε).

Also, the punch line in the proof of lemma 5.3 is now true only probabilisti-
cally. We know that Pr[w(x|Bn−1) = r] > 1−ε. The rest is unchanged. Likewise,
Theorem 5.5 becomes:

Theorem 41 Consider the new combined system (including ECC). Let N be
the total number of users, and L be the length of code words measured in Γ
symbols. r = d/2 − √

fd = 2n2 ln(4nL/ε), and f = 2 ln(4c2 ln(2N/ε)/ε). The
new code is secure against coalitions of size c with error probability ε. The length
of code words measured in chips is l = Ldn, where L = 2cln(2N/ε), i.e. l =
O(c4 ln(N/ε) ln(1/ε)).

The gain: A movie has about 1010 pixels. Suppose 10% of them are signifi-
cant enough so that we can hide data in them. That gives us 109 chips. Then the
number of colluders we can resist, assuming N = 106 user, and ε = 10−3 error
rate, is c = 78 (if there are 106 users, and a fraction 10−3 are wrongly accused,
then there will be 1000 false accusations; more than the 78 colluders. It means
even with this error-rate we need to press charges only with repeated offenders).

In addition we need to take into account that to compensate for the redu-
ced maximal weight we must double the block size (so that the new block size
measured in chips is twice the old block size measured in bits). This is minor
compared to the 4-5 orders of magnitude effective increase in object size.

5 Practical Considerations

Definition 51 The working range of a Γ -code is the maximal possible weight
difference between blocks in the code.

In practice we need to clip at the low weights as well, since the jamming
assumption is idealized. It makes sense to use the same

√
fd margins that we

used at the high end. Thus the working range becomes d/2−2
√

fd. This working
range should replace the max weight in lemmas 5.3 and 5.4 of [3].

The working range enter the analysis in lemma 5.4 of [3] that deals with a
basic Γ -code (no error correcting codes):

Lemma 51 Suppose the set S (of users that AL1 pronounce guilty) is empty.
Then for all s weight(x|Bs) ≤ 2s2log(2n/ε).

The first step of the proof assumes that the block of least weight has weight
zero. If it has some weight ω > 0 then we have to add it as an offset, namely,
the claim becomes For all s weight(x|Bs

) ≤ ω + 2s2log(2n/ε).
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6 Appendix: A New ECC Algorithm for Sub-Optimal
Adversaries

Reminder: k + 1 = 2c is the number of “colors” (i.e. number of distinct Γ -
symbols). A FP word contains L Γ -symbols. So the vector that represent the
protected object is of size (2c − 1)dL chips. Let σi, i = 1, . . . , L denote the
union of Γ -symbols of the collusion in location i of the ECC vector of length L.

Algorithm 61 (ECC):
Input: Vector s = (s1, . . . , sL) of subsets si ⊆ σi, that algorithm 41 outputs.
Output: The user whose FP vector is closest to s.
Method:

1. Use algorithm 43 to find for each Γ -symbol all the guilty colors. Create a
binary 2c × L matrix Y = (yij), where in column j = 1, . . . , L, if color i is
guilty then entry (i, j) is 1 (and 0 otherwise).

2. For each user m = 1, 2, . . . , N , with FP word (u1, . . . , uL), uj ∈ [1, 2c] {
Cj = 0;
For j = 1, . . . , L {

Let i = uj;
If yij = 1 then increment Cj ;
}

}
Incriminate the user m whose counter Cm has the highest value;
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The time complexity of this algorithm is 2cLN.
The best strategy for the collusion is to have algorithm 43 output a singleton

each time it runs (e.g. use the FP of just one member of the collusion on each
symbol). This strategy leaks the least amount of information (the amount of

information leaked is log2

(
2c
i

)
, and 0 < i ≤ 2c is the size of the output of

algorithm 43). However, we prefer to use algorithm 61 to take advantage of a
sub-optimal adversary.
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Abstract. A new scheme of asymmetric public-key traitor tracing with-
out involvement of trusted third parties will be discussed in our dis-
sertation. Previously, an efficient construction of asymmetric public-key
tracing scheme was also presented by Kurosawa and Desmedt, howe-
ver, their scheme required the involvement of the third trusted party(s)
known as agent(s). As far as we know, our scheme is the first concrete
construction of a practical asymmetric public-key traitor tracing that
does not rely on trusted agents. Moreover, our protocol contains other
desirable features: (direct non-repudiation, full frameproof, and black-box
traceability for asymmetric scheme) that the previous public-key traitor
tracing schemes did not offer. In order to eliminate the dependencies of
the trusted agents, we use a novel primitive, recently invented by Naor
and Pinkas called, ”oblivious polynomial evaluation”.

1 Introduction

1.1 Background

Consider the situation where a large amount of digital content is distributed
to subscribers over a broadcast channel. Typically, the data supplier provides
each authorized subscriber with a hardware or a software decoder each contai-
ning a personal decryption key, and the digital content is then, broadcasted in
the encrypted form. Finally, the authorized subscribers are able to decrypt the
content and obtain the service they intended to get. This scenario can come up
in the context of pay-TV, CD-ROM distribution, and online databases. Howe-
ver, nothing can prevent some unauthorized users (pirates) from obtaining some
decryption keys from a group of one or more authorized users (traitors). As one
method of approach, Chor, Fiat and Naor[2] introduced the concept of a traitor
tracing scheme to deter subscribers from giving away their keys illegally by ma-
king all the personal-keys slightly different and allowing a redistributed key to
be traced back to the owner of a particular decoder. A coalition of traitors may
try to build a pirate version of a decoder (pirate decoder) such that it will still
decrypt but it will not be able to trace the key back to them. A traitor tracing
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scheme is ”k-collusion resilient” if no coalition of at most k users can create a
pirate decoder, such that none of the traitors will be detected, i.e., at least one
traitor can always be identified.

Some traitor tracing schemes[2][3][4] are symmetric in the sense that sub-
scribers share all of their secret information with their provider. Therefore, non-
repudiation cannot be offered for the following reason. When a pirate decoder
containing subscriber’s personal key is found somewhere, the key might not only
have been distributed by the subscriber himself, but also by a dishonest employee
of the provider as such may want to gain profit by purposely false claiming, or
by through-passing illegal accesses. Hence, the existence of a pirate decoder does
not guarantee full liability to any one of the subscribers, or in other words, the
result of traitor tracing can afford no proof that convince a third party that
the pirate decoder has been created by the traitor, just as symmetric message
authentication codes can not provide non-repudiation, in contrast to asymmetric
digital signature schemes which can. Asymmetric traitor tracing, introduced by
Pfitzmann and Waidner [5] [6], solve this problem in the following way. After the
execution of the personal-key distribution protocol, we let only the subscriber
know his personal-key. If the provider, confronted with treachery, finds the pirate
decoder containing some personal-keys, he obtains information that he could not
have produced on his own. Therefore, he can identify the traitors and prove to
third parties that he found the copy of this particular traitor. Therefore, that is
real evidence of the treachery.

Asymmetric traitor tracing was introduced in [5] with its structure based on
general primitives. An explicit construction for asymmetric fingerprinting was
given in [6] by combining the symmetric scheme of [2] with a two party proto-
col. However, this scheme is not so efficient because the overhead of previous
approach [2] was proportional to the logarithm of the size of the population of
subscribers. This is a significant factor when the number of subscribers grows
up to millions. Recently, another approaches that resolve this proportionality
factor were presented in [1][3][4], which was called, the public-key traitor tracing
scheme. This public-key setting enables anyone of the users to broadcast encryp-
ted information to the group of legitimate receivers, i.e., everybody can become
the provider by using this public-key. However, two schemes: [3] and [4] are sym-
metric. In [1], Kurosawa and Desmedt showed an asymmetric public-key traitor
tracing scheme. Unfortunately, their scheme required the third trusted party(s)
known as agents, which was initially produced and distributed the personal-key.
This implies that the scheme [1] can still be deemed symmetric in a sense that,
collusion among more than a certain number of agents can frame an arbitrary
subscriber as the traitor, since they know all of the personal-keys.

1.2 Our Contribution

Our contribution provides a new asymmetric public-key traitor tracing scheme
without involvement of trusted agents. Efficient construction of asymmetric
public-key traitor tracing scheme was presented by Kurosawa and Desmedt[1],
which unfortunately required the employment of third trusted party(s), called
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the agent(s). Moreover, the successful pirate strategy to defeat their public-key
traitor tracing scheme using a convex combination was reported in [1][7][3], which
is also mentioned about the modification technique needed to achieve k-resilient
traceability by increasing the degree of the polynomial from k to 2k − 1. Our
method is based on another public-key traitor tracing scheme recently proposed
in [4], which applied the technique for a group key distribution scheme with
an entity revocation [8] to traitor tracing, but it only worked as a symmetric
scheme. To the best of our knowledge, our proposed protocol is the first concrete
protocol of a practical asymmetric public-key traitor tracing scheme without the
use of trusted agents.

To cut the dependency of trusted agents, we use a novel primitive, recently
developed by Naor and Pinkas[9] called the ”oblivious polynomial evaluation
(OPE for short)”: in which, the polynomial f is known to Bob and he lets
Alice compute the value f(x) for an unknown input x, in such a way that, Bob
does not learn x and Alice does not gain any additional information about f .
Their scheme is based on a computational intractability assumption, the so-
called “noisy polynomial interpolation problem”. Bleichenbacher and Nguyen[10]
showed that the noisy polynomial interpolation problem could be transformed
into the lattice shortest vector problem with high probability, provided that, the
parameters satisfy a certain condition. However, the protocol[9] can be simply
substituted by the one based on the noisy polynomial reconstruction problem
which is still believed to be one of the hardest to compute[10].

The intuition behind our scheme is as follows. In the k-resilient traitor tracing
scheme[1][4], the function required for generating the personal-key is a univariate
polynomial f(x) of degree k in x, and the personal-key of the subscriber i is f(i).
In order to change it into an asymmetric scheme, we use the bivariate polynomial
function f(x, y) as the key generation function, where f is of degree k in x and
of degree 1 in y. The subscriber i chooses an integer αi randomly and computes
f(i, αi), but the user i does not gain any additional information for f(i, y). The
user i is able to deduce its publicly verifiable proof from his knowledge of αi
without revealing the content of αi.

Our scheme is still efficient compared with the previous symmetric or asym-
metric public-key traitor tracing schemes proposed so far. A brief compari-
son on the efficiency is shown in Table 1. 1/ρ, 1/ρB are defined by 1/ρ

4
=

max{log |Ui|/ log |S| : i ∈ Φ} and 1/ρB
4
= max{log |B|/ log |S|}, where Ui de-

notes the set of all possible subsets of decryption keys, B denotes the set of all
possible subsets of the data redundancy, S denotes the set of all possible subsets
of the session keys and Φ denotes the set of subscribers of the system[7]. Thus
1/ρ is a parameter on the size of each user’s decryption key and 1/ρB is a pa-
rameter on the size of data redundancy. n is the number of subscribers and σ is
a parameter where the system authority cannot frame an honest subscriber as
a traitor with probability more than 1/2σ. Our scheme is more efficient than [6]
that is the asymmetric scheme without use of trust agents, because the overhead
does not depend on the factor proportional to the logarithm of the size of the
population of subscribers. Our scheme requires two personal keys, O(k) many



Efficient Asymmetric Public-Key Traitor Tracing without Trusted Agents 395

Table 1. A comparison of the decryption key size and the data redundancy.

1/ρ 1/ρB

[6] Scheme 1 O(k log n) O(k2 log n)
[6] Scheme 2 O(σk) O(σ2k2)

[1] 1 2k + 1
[3] 1 2k + 1
[4] 1 2k + 1

Proposal 2 3k + 3

encryption keys, O(k) many ciphertexts. Furthermore, the size of an encrypted
message is only one and a half times as large as that of the previous public-key
traceability schemes [1][4]. This implies that our scheme keeps the efficiency of
the previous public-key traitor tracing.

Besides achieving to eliminate the dependencies of the trusted agents, our
scheme enjoys the following additional properties that may not be offered by
other public-key traitor tracing schemes.

Direct Non-Repudiation In some asymmetric schemes, the accused subscri-
ber need to take part in the trial, i.e., a fair dispute regarding whether a
particular subscriber is a traitor or not, can only be carried out if the sub-
scriber can be found and he is asked to deny the charges himself. On the
other hands, our scheme offers direct non-repudiation, and therefore, the ac-
cused subscriber need not participate in the trial because the provider has
enough evidence to convince the arbiter. This corresponds to the difference
between normal digital signatures (direct non-repudiation) or undeniable
signatures[11] (signer has to take part in trial). Direct non-repudiation is an
important feature in real life. In our scheme, the accused subscriber does
not need to carry out a fair trial, technically, which implies that there are no
guesses by the provider that the subscriber has to disavow. This property is
also achieved in [1] by assuming the existence of the trusted agents, while
our scheme does not use such agents.

Full Frameproof Our scheme is a fully frameproof asymmetric scheme that
prevents even arbitrary collusions including the agent from framing anyone.
All previous public-key traitor tracing schemes[1][3][4] do not offer full fra-
meproof in the following sense; More than k traitors can not only redistribute
information without being traced, but also frame an honest subscriber, i.e.,
make this subscriber seem a traitor. On the other hand, our scheme gua-
rantees the protection of a subscriber even if any number of others colludes
against him. Falsely testifying an honest subscriber guilty of fraud would be
a completely unacceptable consequence by the use of traitor tracing.

Black-Box Tracing for Asymmetric Scheme Our asymmetric traitor tra-
cing scheme supports the so-called black-box tracing, where the provider can
use the pirate decoder as a black box, i.e., without opening it. Black-box
tracing for the asymmetric scheme is harder than that for the symmetric
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scheme, because the provider knows less about the subscriber’s keys, and
thus, the information he obtains by experimenting in a black-box fashion
will not always be the complete form of the traitor’s personal key. Moreo-
ver, to achieve direct non-repudiation, the provider has to obtain enough
evidence from the black-box pirate decoder to convince the arbiter without
direct participation of the accused subscribers. In order to do so, we com-
bine the encrypting method of the scheme[1] with that of the scheme[4] that
supports the black-box tracing, but unfortunately works only as symmetric
traitor tracing. Our protocol supports the black-box tracing for asymmetric
scheme, i.e., the tracing algorithm outputs a sufficient proof to enable a tracer
to convince the arbiter that a pirate box is produced by a particular traitor.
In our protocol, at the first step, the tracer uses the tracing algorithm of the
scheme[4] to determine the traitors only by considering the pirate decoder
as the black box, and then computes the evidence that the pirate decoder
contains exactly the keys of the suspected traitors by inputting the challenge
given from an arbiter into the pirate decoder and observing the response.

This paper is structured as follows: In Section 2, we describe the model and
the definition of our traitor tracing scheme and then give an overview of building
blocks of our protocol. Section 3 shows the construction of asymmetric public-key
traitor tracing scheme. We analyze the security in Section 4.

2 Preliminaries

Model Let a data supplier(s) be S, a set of n subscribers be Φ = {1, . . . , n}, and
an agent be A. At the initialization phase, A generates the encryption key e and
authorizes the subscribers to access the data by giving the personal key di to the
ith user. When S sends actual plaintext data m only to authorized subscribers,
S chooses a session key s and broadcasts (h,ENCs(m)), where h = e(s) is called
a header and ENCs is a symmetric key encryption function with the key s. Each
authorized subscriber i can recover s from h by using his personal-key di and
then decrypt ENCs(m) to obtain plaintext data m.

We distinguish an agent A, who performs initialization and registers subscri-
bers, from a data supplier S, who distributes an actual digital content by using
the encryption key e. In the setting of a public-key traitor tracing scheme, the
encryption key e can be made public so that anyone can work as a data supplier
by using it. This feature is very useful in real life, because a number of data
suppliers can makes use of the system in which only the subscribers authorized
by A can access the data. In other words, not all data suppliers need to perform
the initialization as long as the authorized subscribers are the same.

In [1], asymmetry is achieved by assuming that A can be trusted. In other
words, collusions among more than a certain number of agents still can easily
frame an arbitrary subscriber as a traitor because they know all the personal-
keys. To enhance the security against A’s cheating, the authors employ a number
of agents for sharing the key generation function among them in a distributed
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manner. In contrast, our scheme does not assume such trust on A, i.e., an honest
subscriber cannot be framed even if A cheats in an arbitrary way or colludes
with others. Therefore, one of the data suppliers can play a role of A at the same
time.

We note that our protocol assumes that there is a key distribution phase,
before or during subscriber initialization, where the subscriber i generates a pair
of values (ski, pki), which is called a secret and a public-key, respectively, and
distributes pki reliably to all providers and third parties, e.g., via certification
authorities (in a way that any future judges will use the same one as the agent
A). These will work as the signing key of a digital signature scheme, and it can
be used for many other applications besides content distribution system.

Security We require that the following security conditions hold. In the follo-
wing, we will use the term “polynomial number(or time)” to mean a certain
number(time) bounded by a polynomial in a security parameter.

– (Secrecy) No unauthorized subscriber can compute a session key s from a
header h with non-negligible probability, even after receiving polynomial
number of previous session keys.

– (Traceability) No coalition of at most k traitors can generate from their
personal keys and the public information, a pirate decoder such that none
of the traitors is identified with non-negligible probability.

– (Full frameproof) An honest subscriber cannot be framed even in the presence
of arbitrary collusions including the agents.

– (Direct non-repudiation) In a trial, the tracer has enough evidence to con-
vince any arbiter without participation by the accused subscribers.

– (Black-box traceability for asymmetric scheme) The tracer can convince any
arbiter that a pirate decoder contains one of the traitor’s personal keys
simply by observing its behavior on a few chosen ciphertexts (i.e., using the
pirate decoder as an oracle).

Parameters Let p be a prime power and q be a prime such that q|p − 1 and
q ≥ n + k + 1[4], and let g be a q-th root of unity over GF (p) and 〈g〉 be a
subgroup in GF (p) generated by g. Let H(.) denote an ideal collision resistant
cryptographic hash function for Fiat-Shamir heuristic[12]. All the participants
agree on p, q,H and g. We assume that any polynomial-time algorithm solves
logg h in Zq only with negligible probability in the size of q when h is selected
randomly from 〈g〉. All arithmetic operations in this article are done in GF (p)
hereafter unless otherwise noted.

Oblivious Polynomial Evaluation[9] In this section, we briefly overview a
protocol for oblivious polynomial evaluation, which was introduced by Naor and
Pinkas[9] and modified later in [10] (for more detail, see [9][10]).

The protocol involves a receiver A and a sender B. B’s secret input is a
polynomial P (x) over a finite field. A has a secret value α and would like to
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learn P (α). At the end of the protocol, the parties should not learn anything
but their specified outputs.

The protocol works as follows. At the first step, A chooses a random poly-
nomial S(x), such that S(0) = α, in order to hide α in a univariate polynomial.
On the other hand, B chooses a random bivariate polynomial Q(x, y), such that
∀y, Q(0, y) = P (y), in order to hide P (·) in Q(x, y). A’s plan is to use the
univariate polynomial R(x) = Q(x, S(x)) in order to learn P (α): it holds that
R(0) = Q(0, S(0)) = P (S(0)) = P (α). Let us denote the degree of R in x
as n. Once A learns n + 1 points on R(·), she can interpolate R(·) and learn
R(0) = P (α). This can be achieved by sending a randomly permuted list of m
pairs of two random values (xi,j , yi,j), except that one pair is (xi, S(xi)). B com-
putes Q(xi,j , yi,j) for all these values and A retrieves the answer she is interested
in using a 1-out-of-m oblivious transfer. After learning the n values R(xi)

n
i=1,

the receiver A can interpolate R(·) and compute R(0) = P (α).
The above protocol requires n calls to 1-out-of-m oblivious transfer protocol

(OT)[9], each of which can be constructed only by logm calls to the 1-out-of-
2 OT protocol plus m logm evaluations of a pseudo-random function. This is
enough practical to apply it for our construction, because our protocol employs
OPE only during the initialization phase, which is invoked only at once. Ac-
cordingly, all of the subsequent procedures, such as distribution of the session
key, decryption and tracing, are not affected by the complexity of OPE. In this
article, we assume that the underlying OPE protocol is secure in above sense
hereafter unless otherwise noted.

3 Construction

3.1 Initialization

We make use of a bivariate polynomial f(x, y) as the key generation func-
tion. To compose such polynomial, an agent A chooses two random univa-
riate polynomials f1(x) = a1,0 + · · · + a1,kx

k and f2(x) = a2,0 + · · · + a2,kx
k

over Zq, where the key generation function f(x, y) = f1(x) + f2(x)y mod q.
The function f(x, y) is chosen only at once and fixed for each execution of
the subsequent procedures. A computes the public encryption key e by e =
(p, g, (y1,0, y1,1, . . . , y1,k), (y2,0, y2,1, . . . , y2,k)) = (p, g, (ga1,0 , ga1,1 , . . . , ga1,k),
(ga2,0 , ga2,1 , . . . , ga2,k)) and makes it public in order to enable anyone to work as
a data supplier (and also a tracer.)

In order for the agent A to distribute the decryption key to each subscriber
in an asymmetric manner, a subscriber i randomly chooses an non-zero integer
αi and computes ki = f(i, αi) = f1(i) + αif2(i) using OPE in such a way
that A does not learn αi and the subscriber i does not gain any additional
information on f1(i) nor f2(i). Due to the simple description of the protocol, we
assume all communication between A and each subscriber is done by a secure
communication channel such that no eavesdropper can learn any information of
the communication. The protocol works as follows.
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1. A subscriber i randomly chooses αi from Zq \ {0} and sends βi = gαi and
proof(αi) to A, where proof(αi) is a proof of knowledge of αi = logg βi,
which allows a prover to prove the possession of αi to anyone without re-
vealing itself. This can be done by the technique of Schnorr-like signature
schemes[13]. Consequently, proof(αi) can be generated as follows.
a) randomly chooses r ∈ Zq.
b) compute υ1 = H(gr‖g‖βi) and υ2 = r − υ1αi mod q

where (υ1, υ2) is proof(αi) and can be checked by υ1
?= H(gυ2βi

υ1‖g‖βi).
2. The agent A checks proof(αi). If true, A chooses vi, wi1, wi2 from Zq

randomly and computes wi3, wi4 by wi3 = vif1(i) − wi1, wi4 = vif2(i) −
wi2 mod q. Then, A and the subscriber i performs OPE where A’s secret
input is two polynomial P1(x) = wi1 + wi2x and P2(x) = wi3 + wi4x
over Zp and i’s secret value is αi. At the end, i learns ci1 and ci2 where
ci1 = P1(αi) = wi1 + wi2αi, ci2 = P2(αi) = wi3 + wi4αi, while the par-
ties should not learn anything but their specified outputs. Simultaneously,
A computes ui = gvi and sends it to the subscriber i.

3. After receiving ci1, ci2, ui, the subscriber i computes ri and σi by ri =
ui
ci1+ci2 σi = sign(ski, βi‖proof(αi)‖ui), where sign(ski,m) denotes the

i’s signature on a message m with i’s signing key ski. Then, i sends them to
A.

4. A checks the validity of σi and tests if it holds that (gf1(i)βif2(i))vi = ri. If
this test is true, A can be convinced that the input of OPE is the same as
logg βi(= αi) without knowing αi itself (see Lemma 2). After this conviction,
A sends vi to the subscriber i and stores (or publishes) i, βi, proof(αi), σi, ui,
vi for the later dispute. These values are regarded as the publicly verifiable
proof of i’s knowledge of αi without revealing αi itself.

5. Now, the subscriber i can learn his personal decryption key di = (i, αi, ki)
where ki is computed by ki = (ci1 + ci2)/vi mod q. One can easily see ki
is equal to f(i, αi), i.e., the correct output of the key generation function
f(x, y).

3.2 Distributing a Session Key

We present a method for encrypting and distributing a session key. The proposed
method combines the method of [1] with the technique given in [4], which enables
a data subscriber S to make up to a certain number of subscribers unauthorizable
efficiently. This feature leads to the black-box traceability, which the previous
asymmetric public-key traitor tracing[1] does not offer.

For the set Λ of unauthorized subscribers, S chooses random k−|Λ| elements,
denoted Θ, from Zq \(Φ∪{0}). Let the set Λ∪Θ denote {x1, x2, . . . , xk}. For en-
crypting a session key s, S randomly chooses r and computes a header h(s, r) as
h(s, r) = (R1, R2, (h1,0, h1,1, . . . , h1,k), (x1, h2,1), . . . , (xk, h2,k)) = (gr, sy2,0r,
(y1,0r, y1,1r, . . . , y1,kr), (x1, g

rf2(x1)), . . . , (xk, grf2(xk))) where grf2(j) = (y1,0 ×
(y1,1)j × · · · × (y1,k)j

k

)r for j = x1, . . . , xk. Then S broadcasts h(s, r). To
compute s from it, at first, a subscriber i computes γ from h(s, r) and di =
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(i, αi, ki) by γ = {(R1)ki/(h1,0 × (h1,1)i × · · · × (h1,k)i
k

)}1/αi . Now, the sub-
scriber i can obtain γ = grf2(i) without the knowledge of f2(i) nor r by γ =
{(gr)f1(i)+αif2(i)/(

∏k
j=0(g

ra1,j )i
j

)}1/αi = (gr)f2(i). Thus, if the subscriber i is
authorized, i.e., i 6∈ {x1, . . . , xk}, he can obtain k + 1 shares of y0r = grf2(0),
which can be computed using threshold decryption technique[14][15] by grf2(0) =
γL(i) × (h2,1)L(x1) × · · · × (h2,k)L(xk) = (grf2(i))L(i) × (grf2(x1))L(x1) × · · · ×
(grf2(xk))L(xk), where for ∀x ∈ {i, x1, x2 . . . , xk}, the Lagrange interpolation co-
efficient function L(x) is defined by L(x) =

∏
j∈{x1,...,xk}\{x}

j
j−x mod q.

If the subscriber i is unauthorized in this session, i.e., i ∈ {i, x1, x2 . . . , xk},
he can obtain only k shares which are not enough to compute grf(0). Therefore,
only the authorized subscribers can compute a session key s by s = R2/g

rf2(0).

3.3 Detection of Traitors

Non-black-box tracing. When a pirate decoder is confiscated and the pirate
key (i, αi, ki) is exposed, the tracer has enough evidence to convince any arbiter
without participation by the accused traitor i. Namely, the tracer can prove
to anyone that i is a traitor only by showing (i, βi, proof(αi), σi, αi), due to the
property of OPE. Our initialization protocol does not reveal αi to anyone except
i who chooses it at first. Moreover, αi cannot be computed from βi as long as the
discrete logarithm problem is intractable. Therefore, revealing αi implies that
this value in the pirate box was leaked from the traitor i.

In our scheme, no coalition of at most k traitors can generate another per-
sonal key from their personal keys and the public information as long as the
discrete logarithm problem is intractable (see Theorem 1). However, it should
be considered that such a coalition might generate a pirate key which is not
a legitimate personal key, but can be used to decrypt a session key in such a
way that none of the traitors is identified with non-negligible probability. As for
such collusion attacks, the successful pirate strategy to defeat the scheme[1] by
using a convex combination was reported in [7][3]. On the other hand, it seems
not to be applicable to the threshold-decryption-based scheme such as [4] and
ours, since a session key can be computed by combining k + 1 shares using the
Lagrange interpolation, and simple convex combination of the personal keys of
k traitors does not lead to the pirate key.

Black-box tracing. Our scheme can make up to a certain number of sub-
scribers unauthorizable in each session key distribution efficiently, due to the
subscriber unauthorizability of [4]. This is useful for black-box tracing1, i.e., by
making multiple queries for at most (n, k)-candidate coalitions of traitors[3][4],
a tracer can identify (but not prove) the set of traitors by i) For every set Λ of
k unauthorized subscribers, a tracer generates a header hΛ by using the above
encryption procedure with the input e, Λ, Φ and a random integer s as a session
1 Recently, Matsushita et.al. reports that [1] supports the black-box tracing for weaker

assumption on a pirate decoder[16].
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key, ii) Give every generated header to the pirate decoder. If the pirate deco-
der does not decrypt l headers hΛ1 , . . . , hΛη , the set of traitors is identified by
∩ηi=1Λi.

In a trial, the tracer can convince any arbiter that a pirate decoder contains
one of the traitor’s personal keys simply by observing its behavior on a few
chosen ciphertexts (i.e., using the pirate decoder as an oracle). In order to do so,
the tracer gives a list of the suspected traitors. (The pirates could have multiple
personal keys of traitors in the pirate decoder.) Let us denote the set of l (≤ k)
accused traitors as Ψ = {ψ1, . . . , ψl}. Then, the arbiter composes the invalid
header h′(s, r) such that only the accused traitors can decrypt the session key
s by using their personal keys, while the others including the agent A cannot
compute s. The arbiter sends the header to the tracer. The tracer inputs h′(s, r)
into the confiscated decoder and observes the output in a black box fashion.
The decoder cannot distinguish this invalid header from a valid one as long
as DDH is hard (see Lemma 5). The output from the decoder is sent to the
arbiter. If this is equal to s, the arbiter can be convinced that the pirate decoder
contains one of the traitor’s personal key. More precisely, the tracer will be able
to determine that the pirate-box must possess some unknown subset of the keys
{αψ1 , . . . , αψl

}, which are the secret values chosen by each traitors during the
initialization phase (see Lemma 6). By querying the tracer, the arbiter will be
able to efficiently verify this suspicion with high probability. Confidence in this
test can be increased by making multiple queries, where each query is constructed
independently using different s and r.

The arbiter computes such an invalid header h′(s, r) as follows. At first,
the arbiter randomly selects k-degree a univariate polynomial π(x) over Zq and
also chooses the random element µ of Zq. Then, there exists a unique l-degree
univariate polynomial τ(x) = κ0 + κ1x + · · · + κlx

l mod q, such that τ(j) =
−αjπ(j) mod q for ∀j ∈ Ψ and τ(0) = µ mod q. Let Γ = {x1, x2, . . . , xk} be the
set of k random elements chosen from Zq\(Φ∪{0}). The arbiter can compute the
invalid header h′(s, r) from the corresponding valid header h(s, r) as h′(s, r) =
(R1, R

′
2,(h

′
1,0, h

′
1,1, . . . , h

′
1,k), (x1, h

′
2,1), . . . , (xk, h

′
2,k))=(R1, g

rπ(0)R2, (δ1,0h1,0,
δ1,1h1,1, . . . , δ1,kh1,k), (x1, δ2,1h2,1), . . . , (xk, δ2,kh2,k)), where δ1,j = grκj (j =
0, . . . , l), δ1,j = 1 (j = l + 1, . . . , k) and δ2,j = grπ(xj) (j = 1, . . . , k). Here we
remark that for j ∈ Ψ , it holds that δ1,0 ×δ1,1

j ×· · ·×δ1,k
jk

= grτ(j) = βj
−rπ(j).

Needless to say, the arbiter can compute the k values of δ2,j = grπ(xj) from
r. Here, we show how to compute δ1,j = grκj for 1 ≤ j ≤ l. At first, it
holds that B(κ0, κ1, . . . , κl)T = (µ,−αψ1π(ψ1), . . . ,−αψl

π(ψl))T where B is the
(l+1)×(l+1) nonsingular matrix which consists of the first row (1, 0, . . . , 0) and
(j + 1)th row (1, ψj , ψj2, · · · , ψj l) for j = 1, . . . , l. Therefore, (κ0, κ1, . . . , κl)T =
B−1(µ,−αψ1π(ψ1), . . . ,−αψl

π(ψl))T . Let (bj0, . . . , bjl) be the j-th row of B−1.
Then, it holds that κj = bj0µ− (bj1αψ1π(ψ1) + bj2αψ2π(ψ2) + . . .+ bjlαψl

π(ψl).
Therefore, the arbiter can compute grκj by gκj = grbj0µ × βψ1

−rbj1π(ψ1) ×
βψ2

−rbj2π(ψ2) × · · · × βψl

−rbj1π(ψl) .
Then, the arbiter asks the tracer to decrypt s by observing the output given

from the confiscated decoding-box with the input h′(s, r). The tracer sends the
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output ω to the arbiter. The computational complexity that the decoder distin-
guishes whether h′(s, r) is not generated by the normal procedure or produced
for tracing the traitors Ψ , is as hard as the DDH (see Lemma 5).

Recently, the authors of [17] pointed out that the tracing algorithm of [3]
does not work even if DDH is intractable. However, its conjecture might be false
even if an arbitrary pirate decoder contains at most k representations of the
keys, since the tracer can query the decoder with an invalid ciphertext such that
the decoder outputs the same value even if the different keys are used to decrypt.
This implies that the decoder still cannot distinguish this invalid ciphertext from
a real one. (see in page 348 of [3].) Our confirmation procedure has some analogy
with the tracing method of [3] in the sense that the decoder cannot distinguish
the invalid header from the valid one even if the decoder contains up to k personal
keys of traitors, since we can construct the header such that one cannot see any
difference among the results decrypted by up to k traitors.

After receiving the invalid header h′(s, r), the decoder processes it using the
personal key of the traitor i as follows. i) γ = {(R1)ki/(h′

1,0 × (h′
1,1)

i × · · · ×
(h′

1,k)
ik)}1/αi = grf2(i)grπ(i), ii) ω = R′

2/{γL(i) × (h′
2,1)

L(x1) ×· · ·× (h′
2,k)

L(xk) =
s. If the decoder does not contain any of αψ1 , . . . , αψl

, it cannot decrypt the
header h′(s, r), because for i 6∈ Ψ , {(δ1,0 × (δ1,1)i × · · · × (δ1,l)i

l}−1/αi 6= grπ(i)

with overwhelming probability. If for a suspect coalition of the traitors Ψ , the
pirate decoder always responds with the session key s, then the pirate must
possess a subset of the keys belonging to Ψ (see Lemma 6). Therefore, the arbiter
can confirm that the pirate decoder contains the personal key of the accused
traitors in a black box fashion by running the above confirmation algorithm on
all candidate coalitions among at most k accused traitors.

Our confirmation algorithm does not require any trapdoors of the discrete
log, as well as that of [3], i.e., the tracing and trial can be performed by using
only the public information and they do not require the key generation function
f(x, y). This implies that anyone can work as a tracer, as well as a arbiter. This
is very useful, especially for the setting of the public-key traitor tracing scheme,
in which everyone can work as a data supplier by using the public encryption
key e.

4 Security

In this section we analyze the security of our scheme.
Secrecy
Due to the similar argument to that of [4][18], the computational complexity
for the unauthorized subscribers to find the session key s from a header h(s, r)
when given the public key and their personal keys, is as hard as breaking the
standard ElGamal encryption scheme.

Traceability
In our scheme, no coalition of at most k traitors Ω = {i1, . . . , ik} can gene-
rate from their personal keys and the public information, a pirate decoder such
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that none of the traitors is identified with non-negligible probability, as long as
the discrete logarithm problem and breaking the OPE protocol are intractable
(Theorem 1). When a pirate decoder is confiscated and the pirate key (i, αi, ki)
is exposed, the tracer has enough evidence to convince any arbiter without par-
ticipation by the accused traitor i. Namely, the tracer can prove to anyone that
i is a traitor only by showing (i, βi, proof(αi), σi, αi). Our initialization protocol
does not reveal αi to anyone except i who chooses it at first, due to the property
of OPE. Moreover, αi cannot be computed from βi as long as the discrete loga-
rithm problem is intractable. Therefore, revealing αi implies that this value in
the pirate box was leaked from the traitor i.

On the other hand, we must consider another pirate strategy. The first one
is to use α′

i as the input of OPE, where α′
i is different from the previously

committed value αi corresponding proof(αi). We show that such cheating does
not work in Lemma 1 and Lemma 2. Hence, the second strategy is to create
the decoder which does not contain αi. However, Lemma 3 shows such pirate is
impossible even if at most k traitors collude.

Lemma 1. The computational complexity for a subscriber t of finding vt just
after receiving ct1, ct2, ut at the initialization protocol, in cooperation with k − 1
traitors Ω = {i1, . . . , ik−1}, when given the public key and their personal keys
(j, αj , kj) for ∀j ∈ Ω, is as hard as the discrete logarithm problem when the
order of g is prime.

Sketch of the Proof Finding vt from ct1, ct2 is computationally equivalent to
computing kt, since kt = (ct1 + ct2)/vt. Naturally, the best strategy for a sub-
scriber and k−1 traitors finding kt is to select the same value α for αi1 , . . . , αik−1

and αt. Let f(x) = f1(x) + αf2(x). Here, the above problem is to find (t, kt),
where kt = f(t), when given the public key and (j, kj) = (j, f(j)) for ∀j ∈ Ω =
{i1, . . . , ik−1}. In the paper[1], this problem is proven to be hard as long as the
discrete logarithm problem when order of g is prime is intractable.

Lemma 2. Suppose a subscriber t sends βt = gαt to the agent A and obtains
(ct1, ct2) and ut after the execution of OPE with the different input α′

t(6= αt). The
computational complexity for t of computing the successful response ri with non-
negligible probability, in cooperation with k−1 traitors Ω = {i1, . . . , ik−1}, when
given the public key and their personal keys (j, αj , kj) for ∀j ∈ Ω, is hard as long
as the Diffie-Hellman problem and breaking the OPE protocol are intractable.

Sketch of the Proof t cannot know vt and kt even in cooperation with another
k − 1 traitors by Lemma 1. Accordingly, after receiving the result of OPE, t
can learn only ĉ = ct1 + ct2 = vt(f1(t) + α′

tf2(t)). After receiving the response
rt, A checks it using βt which is previously committed by t if it holds that
rt = (gf1(t)βtf2(t))vt . Thus, the complexity for t of finding r2 given αt, α

′
t(6=

αt), ĉt is equivalent to that of computing gvtf2(t) due to the fact that rt =
uĉt(gvtf2(t))(αt−α′

t). t cannot obtain f2(t) due to the secrecy of OPE protocol, and
no coalition among at most k traitors can compute f2(t) by the same argument
as Lemma 1. Hence, gf2(t) can be computed from the public key by gf2(t) =
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y2,0y2,1
t · · · y2,ktk . However, when given gf2(t) and ut = gvt , the computational

complexity of finding gvtf2(t) without knowing vt nor f2(t) is as hard as the
Diffie-Hellman problem.

Lemma 3. The computational complexity for k traitors Ω = {i1, . . . , ik} of
finding f1(t) or f2(t), where t ∈ Ω when given the public key and their personal
keys (j, αj , kj) for ∀j ∈ Ω, is as hard as the discrete logarithm problem when the
order of g is prime.

Sketch of the Proof Suppose k − 1 traitors Ω know (f1(i1), . . . , f1(ik−1)) and
(f2(i1), . . . , f2(ik−1)). Then, we prove that the k-th traitor ik cannot compute
f1(ik) nor f2(ik). It is sufficient to show that ik cannot compute f1(ik), since
f1(ik) = kik − αikf2(ik). Hence, this can be proven by the same argument as
Lemma 1.

Lemma 4. The computational complexity for k traitors Ω = {i1, . . . , ik} of
finding a pirate key (z, αz, kz) such that z 6∈ Ω and αz ∈ Z∗

q , when given the
public key and their personal keys (j, αj , kj) for ∀j ∈ Ω, is as hard as the discrete
logarithm problem when the order of g is prime.

Proof Let M1 be the polynomial time algorithm that k traitors would use to
find z, αz, kz and M2 be an polynomial time algorithm to solve the discrete lo-
garithm problem when the order of g is a prime.
(M2 → M1) It is clear that the existence of M2 implies the existence of M1.
(M1 → M2) Suppose there exists M1. We show M2 by using M1 as a subr-
outine. The proof is very similar to the one given by [1]. Let the input to M2
be (p, g, y). At first, M2 randomly chooses 3k + 1 elements (α̃j , d̃j , k̃j) for ∀j ∈
Ω={i1, . . . , ik} and d̃ik+1 . Then, there exists a unique polynomial f ′

1(x) = ã1,0+
ã1,1x+· · ·+ã1,kx

k such that y = gã1,0 , f ′
1(j) = k̃j−α̃j d̃j for ∀j ∈ {i1, . . . , ik}

and also exists a unique polynomial f ′
2(x) = ã2,0 + ã2,1x + · · · + ã2,kx

k such
that f ′

2(j) = d̃j for ∀j ∈ {i1, . . . , ik+1}. Needless to say, M2 can determine
ã2,0, ã2,1, . . . , ã2,k uniquely by solving the system of k + 1 equations. Let y2,j =
gã2,j (j = 0, 1, . . . , k). Now, M2 can also compute y1,j = gã1,j (j = 1, 2, . . . , k)
as follows. It holds that (k̃i1 − α̃i1 d̃i1 , . . . , k̃ik − α̃ik d̃ik)T = (ã1,0, . . . , ã1,0)T +
B̃ × (ã1,1, . . . , ã1,k)T where (ij , ij2, . . . , ijk) is the jth row of B̃, which is non-
singular because it is a Vander monde matrix. Therefore, (ã1,1, . . . , ã1,k)T =
B̃−1(k̃i1 − α̃i1 d̃i1 − ã1,0, . . . , k̃ik − α̃ik d̃ik − ã1,0)T . Let (b̃j1, . . . , b̃jk) be the j-th
row of B̃−1. Then, ã1,j = b̃j1(k̃i1 − α̃i1 d̃i1 − ã1,0)+ · · ·+ b̃jk(k̃ik − α̃ik d̃ik − ã1,0) =
b̃j1(k̃i1 − α̃i1 d̃i1) + · · · + b̃jk(k̃ik − α̃ik d̃ik) − (b̃j1 + · · · + b̃jk)ã1,0. Therefore,
gã1,j = gb̃j1(k̃i1−α̃i1 d̃i1 )+···+b̃jk(k̃ik

−α̃ik
d̃ik

)/y(b̃j1+···+b̃jk) for j = 1, . . . , k. Now,
M2 has obtained a public-key e = (p, g, y, gã1,1 , . . . , gã1,k , gã2,0 , . . . , gã2,k) and
personal keys of traitors (i1, α̃i1 , k̃i1), . . . , (ik, α̃ik , k̃ik). M2 feeds them to M1.
If M1 outputs (z, αz, kz) such that z 6∈ Ω, M2 obtains f ′

1(z) = kz − αzf
′
2(z).

Thus, M2 can compute f ′
1(x) from (i1, f ′

1(i1)), . . . , (ik, f
′
1(ik)) and (z, f ′

1(z)) and
output ã1,0 = f ′

1(0) which is the discrete logarithm of y with non-negligible
probability.
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Theorem 1. The computational complexity for k traitors Ω = {i1, . . . , ik} of
finding a pirate key (z, αz, kz) such that kz = (z, αz) 6∈ {(j, αj) | ∀j ∈ Ω} and
αz ∈ Zq, when given the public key and their personal keys (j, αj , kj) for ∀j ∈ Ω,
is as hard as the discrete logarithm problem when the order of g is prime.

Sketch of the Proof Suppose z(= il) ∈ Ω. Then, kz 6= kil . Thus, f1(il) can be
computed by f1(il) = (αilkz − αzkil)/(αil − αz). This contradicts Lemma 3.
Hence, suppose z 6∈ Ω. By Lemma 4, no coalition among at most k traitors can
find such (z, αz, kz) if the discrete logarithm problem is hard.
Full frameproof
In order to win a dispute about treachery against a subscriber i who previously
submitted βi, σi to A, the tracer has to reveal αi for non-black-box tracing, or
prove that the pirate-box contains αi for black-box tracing. αi is secretly chosen
by i and nobody including the agent A can know any information except the
corresponding βi = gαi , due to the property of OPE. Finding αi from βi is as
hard as the discrete logarithm problem. Accordingly, an honest subscriber cannot
be framed even in the presence of arbitrary collusions including the agents, if
the signature scheme is unforgeable.
Direct non-repudiation
An arbiter can verify that αi correctly corresponds to βi which was submitted
in advance, without any participation of the accused subscriber i. Moreover,
σi is publicly verifiable due to the property of the underlying digital signature
scheme.
Black-box Traceability for Asymmetric Scheme

Lemma 5. The computational complexity that a pirate decoder which contains
one representation of keys of k traitors distinguishes whether h′(s, r) is not ge-
nerated by the normal procedure (invalid header), or produced for tracing the
traitors Ψ (valid header), when given the public-key and their personal keys, is
as hard as the decision Diffie-Hellman problem.

Sketch of the Proof The proof is very similar to the proof of Lemma 4.1 given
by [3]. Let M1 be the polynomial time algorithm that k traitors would use
to decide whether it is a random invalid header or a valid header, and M2
be an polynomial time algorithm to solve the decision Diffie-Hellman problem.
We show M2 by using M1 as a subroutine. Let a challenge tuple to M2 be
(g, g̃, u, v).

At first, M2 randomly chooses 3k elements (α̃j , d̃j , k̃j) for ∀j ∈ Ω =
{i1, . . . , ik}. Then, there exists a unique polynomial f ′

1(x) = ã1,0 + ã1,1x+ · · · +
ã1,kx

k such that gλ̃1 g̃µ̃1 = gã1,0 , f ′
1(j) = k̃j − α̃j d̃j for ∀j ∈ {i1, . . . , ik}, and

also exists a unique polynomial f ′
2(x) = ã2,0 + ã2,1x + · · · + ã2,kx

k such that
gλ̃2 g̃µ̃2 = gã2,0 , f ′

2(j) = d̃j for ∀j ∈ {i1, . . . , ik}. Now, M2 can compute the
public key e = (p, g, (y1,0, y1,1, . . . , y1,k), (y2,0, y2,1, . . . , y2,k)) by the same tech-
nique as the proof for Lemma 4. Actually, y1,j = gã1,j = gb̃j1(k̃i1−α̃i1 d̃i1 )+···+b̃jk

(k̃ik − α̃ik d̃ik)/(gλ̃1 g̃µ̃1)b̃j1+···+b̃jk ,y2,j=gã2,j =gb̃j1d̃i1+···+b̃jkd̃ik/(gλ̃2 g̃µ̃2)b̃j1+···+b̃jk ,
for j = 1, . . . , k. Hence, M2 can also compute the header Ĥ = (R1, R2, (h1,0,
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h1,1, . . ., h1,k), (x1, h2,1), . . ., (xk, h2,k)) by setting R1 = u, R2 = suλ̃2 ṽµ̃2 , h1,0 =
uλ̃1 ṽµ̃1 , h1,j = ub̃j1(k̃i1−α̃i1 d̃i1 )+···+b̃jk(k̃ik

−α̃ik
d̃ik

)/(uλ̃1vµ̃1)b̃j1+···+b̃jk , h2,j =
uλ̃2 ṽµ̃2 ×∏k

l=1{ub̃j1d̃i1+···+b̃jkd̃ik /(uλ̃2vµ̃2)b̃j1+···+b̃jk}xj
l

, and picking random s ∈
Zq. Now, M2 has obtained a public-key e and one of the personal keys (i1, α̃i1 ,
k̃i1), . . ., (ik, α̃ik , k̃ik). Observe that if the challenge (g, g̃, u, v) is a Diffie-Hellman
tuple then Ĥ is a random valid header. Otherwise, Ĥ is a random invalid header.
Then, M2 feeds them to M1. Since M1 behaves differently for valid and invalid
headers, M2 can solve the given DDH challenge.

In our scheme, even if an arbitrary pirate decoder contains at most k re-
presentations of the keys, the header h′(s, r) can be constructed such that the
decoder outputs the same value even if the different keys are used to decrypt.
Accordingly, this implies that the decoder still cannot distinguish this invalid
header from a valid one.

Lemma 6. Suppose h′(s, r) is an invalid header which is constructed in such a
way that only l accused subscribers Ψ = {ψ1, . . . , ψl} can decrypt it. A subscriber
i 6∈ Ψ , when given h′(s, r) and his personal key αi, ki, finds s with negligible
probability if the discrete logarithm problem and breaking the ElGamal encryption
is intractable.

Sketch of the Proof Suppose a honest subscriber i can decrypt h′(s, r) with
his personal key (i, αi, ki). Then, it must hold that {(δ1,0 × (δ1,1)i × · · · ×
(δ1,l)i

l}−1/αi = grπ(i), as long as breaking the ElGamal encryption is intrac-
table (due to the security of threshold decryption.) Accordingly, it holds that
τ(j) = −αjπ(j) mod q. However, since π(x) is a random polynomial, this hap-
pens only with negligible probability.

This implies that by confirming that the decoder outputs s, anyone can be
convinced that the decoder contains αi, which is secretly chosen by the subscriber
i. Moreover, the arbiter performs above confirmation procedure only against
the accused traitors. Thus, he can run a trial more efficiently than the tracing
procedure.
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Abstract. The Web presents a rich and powerful tool for aggregation
of consumer information. A flurry of recent articles in the popular press
has documented aggressive manipulation of such information by some
companies for the purposes of targeted advertising. While advertisers
tout the economic and social benefits of such advertising, consumer pri-
vacy groups have expressed grave concerns about its potential abuses,
and called for legislative policies to protect sensitive consumer data. In
this paper, we explore the notion that targeted advertising and privacy
protection need not necessarily be conflicting goals. We describe some
conceptually simple technical schemes that facilitate targeted adverti-
sing, but also offer protection for sensitive consumer data. Some simple
proposals do not even require the use of cryptography. (As an exam-
ple, we mention an existing scheme in commercial deployment.) We also
consider some more sophisticated protocols offering greater assurance of
privacy. These involve cryptographic constructions that may be thought
of as partial, practical PIR (private information retrieval) schemes.

1 Introduction

In February 2000, a major Web advertising firm known as DoubleClick touched
off a furor in the press with the announcement of a more aggressive policy of
consumer data aggregation. DoubleClick declared that it would begin to inte-
grate offline information about consumers into its existing database of online
information, this latter derived from surveillance of consumer Web surfing [40].
This announcement came in the midst of a number of articles in the popular
press regarding surreptitious sharing of consumer information. For example, a
week earlier, a report released by the California HealthCare Foundation alle-
ged that a number of health-related Web sites were violating their own stated
privacy policies and divulging sensitive information about customers to third
parties [21]. Bowing to public pressure, DoubleClick retracted its policy anno-
uncement in early March [8]. A number of companies have recently attempted
to allay consumer concerns by making more explicit claims about their privacy
policies.

While consumer and privacy advocacy groups vigorously decry abuses by
firms like DoubleClick, advertisers defend their policy of harvesting and exploit-
ing demographic information by highlighting the benefits of targeted advertising.

D. Naccache (Ed.): CT-RSA 2001, LNCS 2020, pp. 408–424, 2001.
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Consumers, they maintain, are more likely to find interest in advertising tailo-
red to their own preferences, and such advertising consequently leads to greater
consumer market efficiency. The United States government has addressed the is-
sue by promoting a policy of industry self-regulation, leading to friction with the
European Union, which has sought more stringent consumer privacy guarantees.

In this paper, we explore the notion that targeted advertising and consu-
mer privacy need not in fact be conflicting aims. We describe several simple,
practical technical solutions that enable use of detailed consumer profiles for the
purposes of targeting advertisements, but protect these profiles from disclosure
to advertisers or hostile third parties. The most basic schemes described here do
not even require use of cryptography. We mention one näıve variant that even
serves as the basis of a current product offering [2].

The underlying idea is quite simple. Rather than gathering information about
a consumer in order to decide which advertisements to send her, an advertiser
makes use of a client-side agent called a negotiant. The negotiant serves a dual
purpose: It acts as a client-side proxy to protect user information, and it also
directs the targeting of advertisements. The negotiant requests advertisements
from the advertiser that are tailored to the profile provided by the user. The
advertiser can control the palette of advertisements available to the negotiant,
as well as the process by which it decides which ads to request. At the same
time, the advertiser learns no information about the consumer profile beyond
which advertisements the negotiant requested. In more sophisticated variants,
the negotiant is able to participate in a protocol whereby the advertiser does not
even learn what ads a given user has requested, but only sees ad requests in the
aggregate. The end result is that the advertiser is able to target ads with a high
degree of sophistication, and also to gather information on ad display rates, all
without learning significant information about individual consumer profiles.

Some restriction must be placed on advertiser control of negotiants. Other-
wise, the advertiser can manipulate them so as to extract profile information
from individual consumers. The fact that negotiants may be viewed and control-
led by users helps offset this vulnerability, as we discuss below.

1.1 Previous Work

A negotiant may be viewed as a client-side software proxy. The related approach
of using server proxies as a means of protecting consumer privacy is a well
established one. For example, for a subscription fee, companies such as Zero-
Knowledge Systems [5] offer customers an encrypted channel to one or more
proxy servers that anonymously reroute requests to destination servers. The
proxy servers thus act as intermediaries, shielding the client from positive iden-
tification. Proxy services may be cryptographically strengthened through the use
of mix networks. A mix network is essentially a distributed cryptographic algo-
rithm for interleaving multiple channels so as to anonymize them. We describe
the idea in more detail in Section 2.1. For on-the-fly communications, however,
the most powerful mix networks are often not practical.
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A variant on the idea of proxy servers is the Crowds project at AT&T Labs
[1,37,38]. A “crowd” is a group of users, preferably with disparate geographical
and other characteristics, that serve to shield one another’s identities. The ser-
vice requests of a user in a crowd are randomly rerouted through other crowd
members, rendering the identity of the user indistinguishable from those of other
crowd members. In this system, trust is embodied partly in an administrative
server responsible for forming crowds, and partly in other crowd members. The
user trusts other crowd members not to eavesdrop on or tamper with communi-
cations, and, to a lesser extent, not to perform traffic analysis.

The proxy server and crowd approaches seek to provide a maximum of con-
sumer privacy. While they can be combined with cookies, or other user tracking
devices, they do not aim to accommodate more fine-grained control of Web ser-
ver access to user data. The Platform for Privacy Preferences Project, known as
P3P [4], focuses precisely on this latter problem of refined user control of perso-
nal demographic information. The goal of P3P is to enable Web sites to publish
precise specifications of their privacy policies, and to enable users to exercise
control over how and when their private data are divulged in response to these
policies. Under the aegis of the World Wide Web (W3) Consortium, P3P aims
to set forth a standard syntax and body of protocols for general use on the Web.

Another system, described in [9], combines properties of the P3P scheme as
well as a variant of the proxy server approach. This scheme enables users to
perform Web serving using a variety of different “personae”. It offers controls
for the user in the release of information, and also permits merchants to pool
information in a controlled manner. The system aims to accommodate existing
infrastructural elements, and assumes the use of periodic merchant auditing, in
conjunction with consumer control, to achieve privacy assurances.

Underlying the P3P and related approaches is the presumption that media-
tion between consumers and advertisers is a matter of deciding what information
consumers choose to reveal explicitly. Of course, though, once a user reveals a gi-
ven piece of information, its dissemination is no longer within his or her control.
As we explain above, we set forth a different approach in which consumers and
advertisers to decide jointly in a privacy-protecting manner what advertisements
consumers should be sent, without explicit revelation of consumer information.
For the more strongly privacy protecting variants of our negotiant scheme, we
consider variants on the idea of private information retrieval (PIR).

A PIR scheme enables a client to request a piece of data from a server – such
as an advertisement – in such a way that the server learns no information about
the client request. Let Bob represent a user, and let Alice represent a server
that maintains a database containing bits B = {b1, b2, . . . , bn}. Alice might be
an advertiser, and B might represent the collection of advertisements held by
Alice. The aim of a PIR scheme is to enable Bob to retrive a bit br ∈ B (or,
by extension, multiple bits) of his choice from Alice in such a way that Alice
learns no information about r. Of course, this may be accomplished trivially
by having Alice send all of B to Bob. Following early work in [13,33], it was
shown in [28] that a single-server PIR scheme may in fact be designed with o(n)
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communication, in particular, O(nε) communication for any ε > 0 under the
quadratic residuosity assumption. This was recently improved to O(polylog(n))
communication overhead under the so-called Φ-hiding assumption [10]. A number
of variant PIR schemes have been proposed in the literature, such as symmetric
PIR (SPIR) schemes, which include the additional property that the client sees
only the data it has requested [20], and a variant with auxiliary servers [19]. None
of these proposed PIR schemes, however, is practical for wide scale deployment.
Even the scheme in [10] requires on average roughly n/2 exponentiations by the
server per transmitted bit. For example, to service 100 users requesting ads from
a (small) database consisting of, say, 10 ads of size 1k bytes, the server needs to
perform roughly 4,000,000 exponentiations.

In this paper, we consider a practical alternative to these proposed PIR
schemes. To obtain improved communications and computational efficiency, we
consider two relaxations of the common security model. First, in lieu of a single
server (Alice), or auxilliary servers, we assume a collection of communicating
servers among which a majority behave in an honest fashion. We refer to this as
a threshold PIR scheme. In principle, it is possible to achieve a threshold PIR (or
even SPIR) scheme with optimal client-to-server communication using general
secure multiparty computation, as introduced in [22]. In this paper, we demon-
strate a threshold PIR scheme that does not require this very costly general ap-
paratus, and instead achieves greater efficiency through reliance a mix network.
Our threshold PIR scheme is capable of achieving server-to-client communica-
tion overhead of O(1) per consumer request under appropriate cryptographic
assumptions. (This is optimal, of course.) As a second, additional relaxation, we
consider a scenario in which requests from a large number of users may be bat-
ched. In this case, it is acceptable for servers to learn what has been requested,
but not by whom. In other words, in consonance with the Crowds principle, we
permit full disclosure of aggregate information, but hide information regarding
the requests of individual users. We refer to a threshold PIR scheme with this
latter property as a semi-private PIR scheme. A semi-private PIR scheme, in
addition to achieving communication overhead of O(1), is computationally quite
efficient, involving O(1) basic cryptographic operations per item per server.1

The negotiant approach we propose in this paper is not necessarily meant
as a substitute for proxy servers, Crowds, or P3P. It may instead be viewed as
a complementary technology, deployable in conjunction with any of these other
ideas. Moreover, any of a range of tradeoffs between efficiency and security may
be used in the construction of a negotiant function. We show this by presenting
in this paper not one, but four different negotiant schemes.

1.2 Organization

In Section 2, we describe the cryptographic primitives used in our more advanced
negotiant protocols. We also formalize the model in which we propose our sche-
1 It is worth noting that both the threshold PIR scheme and the semi-private PIR

scheme proposed here are in fact SPIR schemes. We do not make use of the special
SPIR property in our schemes, however.
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mes, and set forth basic definitions regarding privacy. In Section 3, we propose
some negotiant function constructions. We consider some practical implemen-
tation issues in Section 4, and conclude in Section 5 with a brief discussion of
some future avenues of investigation.

2 Preliminaries

2.1 Building Blocks

Let us begin by introducing some of the cryptographic primitives used in the
more advanced variants of our protocol. Readers familiar with the basic cryp-
tographic literature may wish to skip to Section 2.2. Most of the protocols we
describe are (t, m)-threshold protocols. These are protocols executed by a collec-
tion of servers S1, S2, . . . , Sm, where m ≥ 1, such that protocol privacy and the
correctness of the output are ensured given an honest coalition of any t servers.
In such protocols, servers hold a private key x in an appropriate distributed
fashion, with a corresponding published public key y = gx. It is common to use
the Pedersen protocol [35,34] as a basis for distributed key generation, although
see [18] for a caveat. We do not discuss key generation or related details here.

El Gamal cryptosystem: Where we require public-key cryptography, we employ
the El Gamal cryptosystem [15,17]. Encryption in this scheme takes place over a
group Gq of prime order q. Typically, Gq is taken to be a subgroup of Z∗

p , where
q | (p−1). Alternatives are possible; for example, Gq may be the group of points
of an elliptic curve over a finite field.2

Let g be a generator of Gq. This generator is typically regarded as a system
parameter, since it may be used in multiple key pairs. The private encryption key
consists of an integer x ∈U Zq, where ∈U denotes uniform random selection. The
corresponding public key is defined to be y = gx. To encrypt a message M ∈ Gq,
the sender selects z ∈U Zq, and computes the ciphertext (α, β) = (Myz, gz),
where it may be seen that α, β ∈ Gq. To decrypt this ciphertext using the
private key x, the receiver computes α/βx = Myz/(gz)x = M . The El Gamal
cryptosystem is semantically secure under the Decision Diffie-Hellman (DDH)
assumption over Gq [41].

Let (α0, β0) ⊗ (α1, β1) ≡ (α0α1, β0β1). A useful feature of the El Gamal cryp-
tosystem is its homomorphism under the operator ⊗. If (α0, β0) and (α1, β1)
represent ciphertexts for plaintexts M0 and M1 respectively, then (α0, β0) ⊗
(α1, β1) represents an encryption of the plaintext M0M1. It is also possible,
using knowledge of the public key alone, to derive a random re-encryption
(α′, β′) of a given ciphertext (α, β). This is accomplished by computing (α′, β′) =
(α, β) ⊗ (γ, δ), where (γ, δ) represents an encryption of the plaintext value 1. It is

2 Most commonly, we let p = 2q + 1, and we let Gq be the set of quadratic residues
in Z∗

p . Plaintexts not in Gq can be mapped onto Gq by appropriate forcing of the
Legendre symbol, e.g., by multiplication with a predetermined non-residue.
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possible to prove quite efficiently in zero-knowledge that (α′, β′) represents a va-
lid re-encryption of (α, β) using, e.g., a variant of the Schnorr proof-of-knowledge
protocol [39]. This proof may also be made non-interactive using the Fiat-Shamir
heuristic [16]. In this latter case, soundness depends on the random oracle model,
while communication costs are O(1) group elements and computational costs are
O(1) modular exponentiations. See, e.g., [11] for an overview.

Quorum-controlled asymmetric proxy re-encryption: This is a threshold algo-
rithm enabling an El Gamal ciphertext encrypted under public key y to be
re-encrypted under a new public key y′. Input to the protocol is an El Gamal
public key y′, as well as a ciphertext (α, β) = Ey[M ]. The output of the protocol
is (α′, β′) = Ey′ [M ]. While is assumed that the servers share the private key
corresponding to y, they do not necessarily have any knowledge of the private
key for y′. Jakobsson [25] proposes a protocol that is computationally secure
in the sense that it is robust against any adversary controlling any minority
coalition of cheating servers, and also preserves the privacy against such an ad-
versary. Additionally, the protocol is efficient in a practical sense. Assuming use
of non-interactive proofs, robustness depends on the random oracle model, while
privacy depends only on the DDH assumption for the underlying cipher. Compu-
tational costs are O(m) modular exponentiations per server, while the broadcast
communication complexity is O(m) group elements.

Distributed plaintext equality test: This is a threshold protocol described in [27].
Given El Gamal ciphertexts (α, β) and (α′, β′), a collection of servers determines
whether the underlying plaintexts are identical. Each server in turn commits
to a blinding of the publicly computable ciphertext (γ, δ) = (α/α′, β/β′) by
raising both integers in the pair to a common random exponent. All servers
then decommit and prove their blindings correct non-interactively. The resulting
combined, blinded ciphertext is jointly decrypted by the servers, yielding the
value 1 if the underlying plaintexts are equivalent, and a random value otherwise.
We write (α, β) ≈ (α′, β′) to denote equality of underlying plaintexts in the
two ciphertexts (α, β) and (α′, β′). The scheme is robust against any minority
coalition in the random oracle model. Computational costs are O(m) modular
exponentiations per server; the broadcast complexity is O(m) group elements.

Bulletin Board: Our proposed schemes with multiple players or servers assume
the availability of a bulletin board. This may be viewed as a piece of memory
which any player may view or add a new entry to, but which no player may edit
or erase any portion of. A bulletin board may be realized as a public broadcast
channel, or is achievable through Byzantine agreement (under the assumption
that an attacker controls at most bm/3c servers) [29], or some appropriate phy-
sical assumption. Postings to a bulletin board may be made authenticable, i.e.,
their source may be securely validated, through use of such mechanisms as di-
gital signatures. In many cases, our proposed algorithms only require bulletin
board access by servers, not by other players.
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Mix networks: A critical building block in our protocols is a threshold algorithm
known as a mix network. Let Ey[M ] represent the encryption under public key
y of message M in a probabilistic public-key cryptosystem, typically El Gamal.
This notation is informal, in the sense that it does not take into account the
random encryption exponent that causes two encryptions of the same plaintext
to appear different from one another. While we retain this notation for simplicity,
the reader must bear it in mind, particularly with regard to the fact that mix
networks involve re-encryption of ciphertexts.

A mix network takes as input a vector of ciphertexts denoted by V =
{Ey[M1], Ey[M2], . . . , Ey[Mn]}. Output from the mix network is the vector V ′ =
{Ey[Mσ(1)], Ey[Mσ(2)], . . . , Ey[Mσ(n)]}, where σ is a random permutation on n
elements. A mix scheme is said to be robust if, given a static adversary with
active control of a minority coalition of servers, V ′ represents a valid permuta-
tion and re-encryption of ciphertexts in V with overwhelming probability. A mix
scheme is said to be private if, given valid output V ′, for any i ∈ {1, 2, . . . , n},
an adversary with active control of a minority coalition and passive control of
at most m − 1 servers cannot determine σ−1(i) with probability non-negligibly
larger than 1/n (assuming unique plaintexts). It should be noted that to prevent
attacks in which some players post re-encryptions of other players’ inputs, it is
often a requirement that input be encrypted in a manner that is plaintext aware.
For this, it suffices that a player presenting El Gamal ciphertext (α, β) also pro-
vide a zero-knowledge proof of knowledge of logg β, and that servers check the
correctness of this proof. See, e.g., [24] for further details.

Mix servers were introduced by Chaum [12] as a basic primitive for privacy.
In his simple formulation, each server Si takes the output Vi of the previous
server and simply permutes and re-encrypts the ciphertexts therein. A security
caveat for this scheme was noted in [36]. While the Chaum scheme and rela-
ted proposals are private, they are not robust. A number of robust, threshold
mix networks have appeared in the literature [6,7,14,23,24,26,30,31]. The most
efficient to date is the flash mixing proposal of Jakobsson [24]. Mitomo and Ku-
rosawa [30] recently discovered a security flaw, for which they propose a very
efficient remedy.

Robustness is in general not of critical importance in the schemes proposed
here, as a server corrupting the computation can at best insert a false or incor-
rect advertisement, something likely to be detected if widespread. On the other
hand, our scheme has two additional requirements. First, we must make use of a
mix network that converts plaintexts into ciphertexts, not the reverse, as is usual
in the literature. Second, input elements in our scheme, namely ads, are likely
to be long. Robust mix networks are typically inefficient in such cases. (A recent
scheme of Ohkubo and Abe [32] may be viewed as an exception, although that
scheme requires a number of servers quadratic in the number of tolerable mali-
cious servers.) For these two reasons, we propose a special plaintext-to-ciphertext
variant on the basic Chaumian mix network in Section 4.2.

There are many variations on mix networks. For example, there are efficient
mix networks in which V is a vector of tuples of ciphertexts. Additionally, a mix
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network may take ciphertexts and/or plaintexts as inputs and likewise output
a combination of plaintexts and ciphertexts as desired. We employ a variety of
such operations in our protocols, and omit implementation details.

2.2 Model and Definitions for Our Scheme

Let C1, C2, . . . , Ck be a collection of consumers toward whom advertisements are
to be directed. Let P1, P2, . . . , Pk be the respective profiles of these consumers.
These profiles may contain a variety of information on the consumer, including
standard demographic information such as age, sex, annual income, etc., as well
as other information such as recently visited URLs and search engine queries.
Let us designate the set of possible consumer profiles by P. We denote the
advertiser by A, and let AD = {ad1, ad2, . . . , adn} be the set of advertisements
that A seeks to distribute. The advertiser chooses a negotiant function fAD : P →
{1, 2, . . . , n}, which may be either deterministic or probabilistic. This function
takes the profile of a consumer as input and outputs a choice of advertisement
from AD to direct at the consumer. It is important to note that fAD need not
take AD explicitly as input, even if its output is indirectly dependent on AD.
As an example, fAD might derive a list of the most common words in URLs
visited by the user and seek to match these to text descriptors associated with
the ads in AD. We assume that the set AD is consistent from user to user (an
assumption we revisit later in the paper). Thus, in most cases, we write f for
clarity of notation, leaving the subscript implicit. Of course, it is possible to
extend our definition of f to include inputs other than user profiles, such as
the current date, or the list of advertisements already sent to the consumer; we
do not consider such extensions in this paper, however. We assume that A is
represented by a set of servers S1, S2, . . . , Sm, for m ≥ 1. These servers share
a bulletin board, to which all consumers post their ad requests. When enough
ads have accumulated or some other triggering criterion occurs (as discussed
in Section 4.2), servers perform any necessary computation and then initiate
communication with consumers and dispense ads to them.

Let l be an appropriately defined security parameter. We say that a function
q(l) is negligible if for any polynomial p, there exists a value d such that for l ≥ d,
we have q(l) < 1/|p(l)|. Otherwise, we say that q is non-negligible. We say that
probability q(l) is overwhelming if 1 − q(l) is negligible.

Let A1 be a static polynomial-time adversary that actively controls a set of
t servers and has knowledge of f and AD. Consider the following experiment.
Assume that A1 does not control consumer Ci. A1 chooses a pair of profiles
(P̃0, P̃1) ∈ P2. A bit b ∈U {0, 1} is selected at random and Pi is set to P̃b.
Now the protocol is executed, and A1 outputs a guess for b. We say that the
protocol has (t, m)-privacy if for any such adversary A1, it is the case that
pr[A1 outputs b] − 1/2 is negligible, where the probability is taken over the coin
flips of all participants. This definition states informally that the protocol tran-
script reveals no significant information about Pi, even if all other consumers
are in the control of A1.
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Now let us modify the experiment slightly and consider a polynomial-time
adversary A1 that controls t servers, but no consumers. This adversary selects a
pair of distinct profile assignments (P 0,P 1) ∈ (Pk)2 for the k players such that
both profile assignments yield the same set of ad requests. A bit b ∈U {0, 1} is
selected at random, and the profile set P b is assigned to the players. We say
that a negotiant protocol has (t, m)-group privacy if for any such adversary A1,
it is the case that pr[A1 outputs b] − 1/2 is negligible. The property of group
privacy means, roughly stated, that an advertiser can learn only the aggregate
ad requests of a group of consumers, but no further information about individual
profiles. We refer to the special case of (1, 1)-group privacy as profile privacy.
This limited but still valuable form of privacy means that an advertiser learns
the ad request of a given consumer Ci, but no additional information about Pi.

We say that a negotiant protocol is aggregate transparent if any server can
determine the set {f(P1), f(P2), . . . , f(Pk)} – in an unknown, random order
– with overwhelming probability. In real-world advertising scenarios, it is im-
portant that a protocol be aggregate transparent, as the clients of advertisers
typically wish to know how many times their ads have been displayed.

The final property we consider is that of robustness. Roughly stated, we
say that a targeted advertising protocol is robust if, given a static, polynomial-
time adversary that controls a minority coalition of servers, every consumer Ci

receives f(Pi) with overwhelming probability. In other words, the adversary is
incapable of altering or making substitutions for the ads requested by consumers.

3 Some Negotiant Schemes

We now present several schemes representing a small spectrum of tradeoffs bet-
ween security properties and resource costs. In measuring asymptotic commu-
nication costs, we regard a single ad as the basic unit of communication, and
assume that ciphertext lengths and security parameter l are O(|q|).

3.1 Scheme 1: Näıve PIR Scheme

We present this simple scheme as a conceptual introduction. Here, requests are
directed from a single consumer C with profile P to a single server S. (Thus the
scheme may be modeled by m = k = 1.) The scheme is this: The server sends
all of AD to C, who then views adf(P ).

Clearly, this scheme enjoys full privacy, that is, (m, m)-privacy, and is robust.
The chief drawback is the Θ(n) communication cost. Another drawback is the
fact that the scheme is not aggregate transparent. Nonetheless, given a limited
base of advertisements and good bandwidth, and if advertisers are satisfied with
recording click-through rates, this scheme may be useable in certain practical
scenarios. In fact, more or less exactly this scheme serves as the basis of product
known as an Illuminated StatementTM offered by a company called Encirq [2].
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3.2 Scheme 2: Direct Request Scheme

This is another conceptually simple scheme involving a one-on-one consumer and
server interaction. In this scheme, C simply sends f(P ) to S, who returns adf(P ).
This scheme enjoys profile privacy and has communication and computation
overhead O(1). It is also robust. Despite (or because of) its simplicity, it may in
many cases be appealing from a practical standpoint. Recall that profile privacy
may be regarded as a form of (1, 1)-group privacy. In the next scheme, we show
how to achieve stronger group privacy.

3.3 Scheme 3: Semi-private PIR Scheme

We now show how to invoke some of the cryptographic apparatus described above
in order to achieve a semi-private PIR scheme useable as the basis for a negotiant
scheme. Given database AD = {ad1, ad2, . . . , adn}, the goal is for a collection
of consumers C1, C2, . . . , Ck to retrieve respective elements adr1 , adr2 , . . . , adrk

in such a way that the database servers learn requests only in the aggregate. Of
course, our aim here is to apply this scheme to the retrieval of advertisements,
and we shall present it in this context. In other words, we assume that ri =
f(Pi). As above, we assume a public/private El Gamal key pair (y, x) held in an
appropriate distributed manner by servers S1, S2, . . . , Sm. We also assume that
each consumer Ci has a public/private El Gamal key pair (yCi , xCi). Finally,
for simplicity of presentation, we assume that an ad may be encrypted as a
single El Gamal ciphertext. (In a real-world setting, an ad would have to be
encrypted across multiple ciphertexts. We treat this issue further and propose a
more practical alternative in Section 4.2.) The scheme is as follows.

1. Each consumer Ci computes ri = f(Pi) and posts the pair (Ey[ri], i) to the
bulletin board. Let V1 = {Ey[ri], i}k

i=1 be a vector of ciphertext/plaintext
pairs accumulated when all consumers have posted their requests.

2. Servers apply a mix network to V1 to obtain V2. This mix network encrypts
first column elements and simultaneously decrypts second column elements.
Thus V2 is a vector of pairs {(rσ1(i), Ey[σ1(i)])}k

i=1 for random, secret per-
mutation σ1.

3. Servers replace each integer rj in V2 with adrj . Call the resulting vector V ′
2 .

4. Servers apply a mix network to V ′
2 to obtain a vector V3, where V3 is a vector

of pairs {(Ey[adrσ2(i) ], σ2(i))}k
i=1, and σ2 is an random, secret permutation.

5. Let (Ey[adri ], i) be an element in V3. For each pair, the servers apply quorum-
controlled asymmetric proxy re-encryption to obtain (EyCi

[adri
], i). Let the

resulting vector be V4.
6. For each element (EyCi

[adri ], i) in V4, the servers send EyCi
[adri ] to Ci.

7. Consumers decrypt their respective ciphertexts to obtain their ads.

The security of the scheme is predicated on that of the underlying mix network. If
we use a threshold mix network such that proposed in [24] (with the caveat from
[30]), it may be shown that this is a semi-private PIR scheme, with (bm/2c, m)-
group privacy, relative to the DDH assumption. In other words, the scheme
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retains group privacy against an adversary controlling a minority coalition of
servers. Scheme 3 may also be shown to be robust in this case relative to the
discrete log problem in the random oracle model. As exponentiation in Gq incurs
cost O(l3), the computational costs of the scheme are O(ml3) per element per
server. The communication overhead of the scheme is O(1). With appropriate
implementation enhancements, some of which we discuss in Section 4, we believe
that this scheme may be deployed in a highly practical manner. For instance,
to draw again on our example above, for 100 users requesting one of 10 ads,
each of size 1k bytes, and with three servers, the total per-server computational
cost would be very roughly 50,000 exponentiations in our scheme, as opposed to
4,000,000 exponentiations for the single server in [10]. (This estimate assumes
use of the mix network proposed in [7,26], as is best for small groups of users.
With use of the mix network described in [24], the per-server computational
cost is substantially lower for large groups of users. By using our proposal in
Section 4.2, we can do much better still.)

3.4 Scheme 4: Threshold PIR

The semi-private PIR scheme described above can be converted into a threshold
PIR scheme with a few extra steps, and at the expense of additional computa-
tional overhead. The idea is to perform a blind lookup of consumer ad requests.
This is accomplished by mixing ads and then invoking the distributed plaintext
equality test described in Section 2.1. The construction is such that processing
consumer requests one at a time is no less efficient as processing many simul-
taneously. We therefore present the protocol as applied to a single consumer
C with profile P and private/public key pair (yC , xC). Consumer C computes
r = f(P ) and posts Ey[r] to the bulletin board. The protocol is then as follows.

1. Servers construct a vector U1 of ads, in particular, of pairs {(j, Ey[adj ])}n
j=1.

2. Servers mix U1 to obtain a vector U2 of the form (Ey[σ(j)], Ey[adσ(j)]) for a
random, secret permutation σ.

3. For each j, the servers perform a distributed plaintext equality test to see
whether Ey[j] ≈ Ey[r]. Assuming correct protocol execution, when a match
is found, this indicates the ciphertext pair (Ey[r], Ey[adr]).

4. The servers apply quorum-controlled asymmetric proxy re-encryption to ob-
tain EyC

[adr]. They send this to C.
5. C decrypts EyC

[adr] to obtain adr.

Assuming use of a threshold mix network, this scheme enjoys (bm/2c, m)-privacy
under the DDH assumption. It is also in this case robust given the discrete log
assumption and the random oracle model. The communication overhead is O(1).
The computational complexity for each server is is O(mnl3) with use of the [24]
construction, while the computational complexity for the client is O(l3). Note
that the bulk of the computational effort in this scheme occurs in step 2, in which
a vector of ads must be mixed for every user. This step is not consumer-specific,
and may be performed offline, or even by a different set of servers than that
responsible for executing steps 3 and 4.
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Perhaps the most suitable basis in the literature for comparison is the single-
server, computationally secure scheme proposed in [10]. That scheme has com-
munication complexity O(polylog n), server complexity proportional to n log q
times a polynomial in l. (The multiplicative factor of log q as opposed to m im-
poses high overhead in practice, and the polynomial in l is Ω(l3).) The per-client
computational complexity is polynomial in l (again Ω(l3)), log n, and log q.

4 Security and Implementation Issues

4.1 Attacks Outside the Model

We have offered cryptographically based characterizations of the security of our
schemes according to the definitions in Section 2.2. We see that for Schemes 2
and 3, an attacker in control of a minority coalition of servers can learn little
beyond individual or aggregate ad requests. As mentioned above, however, even
with these security guarantees an advertiser with full control of the negotiant
function f can manipulate it so as to extract detailed profile information from
individual users. Let us suppose, for example, that an advertiser wishes, through
Scheme 2, to learn the approximate annual household income in dollars of a given
consumer C with profile P . The advertiser can construct a function f such that
f(P ) = bI/10, 000c, where I is the annual household income of the consumer.
In fact, given enough latitutude in the distribution of the negotiant function to
consumers, an advertiser can even defeat the aggregate security of Scheme 3.
She may do this by distributing a function f that encodes the ID of a consumer
in the output f(P ), or by distributing a different function f to each consumer.
We propose several potentially complementary safeguards against such abuses.

– Open source negotiant function: The idea here is to allow easy reverse
engineering of f by consumers or watchdog organizations. This may be done
by requiring that f be encoded in a high level language such as Java, or
even by providing user-friendly software tools for viewing the behavior of
f . Consumers or organizations that deem f unduly invasive may refuse to
receive ads or may lodge complaints. P3P mechanisms for mediation between
consumers and Web sites might also come into play here.

– Seal of approval: The problem of verifying that f does not threaten consu-
mer privacy is somewhat similar to the problem of verifying that executable
code is not malicious. Thus, we may adopt an approach similar to the Ac-
tiveX system, which is used for verification of the safety of executable code
[3]. An organization that believes a given piece of code to be safe applies a
digital signature to it prior to distribution. If a user trusts the holder of the
certificate supporting the signature, then she has some assurance about the
safety of the code. We may adopt a similar approach to negotiant functions,
allowing watchdog organizations to provide authenticable seals of approval.

– Restricted negotiant language: Another approach to protecting clients
against malicious code is the so-called sandbox approach, adopted to some
extent in Java virtual machines. The sandbox idea dictates that code be
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executable only in a protected environment, i.e., that the permissible set of
instructions be restricted so as to guarantee safety to the client. In a loosely
analogous fashion, we can create a “privacy safe” language for f . That is,
we constrain f to execute on a virtual machine that restricts the forms of
access it may gain to consumer profiles, so as to ensure against unfair data
extraction by advertisers.

– Consumer profile control: The idea here is to permit the consumer to
choose what portion of his or her profile to divulge to or conceal from f .
P3P seems a natural platform to support this form of consumer control.

– Controlled distribution of negotiant function: To ensure against the
advertiser extracting user data by customizing f , we wish to ensure that f
is employed in a homogeneous fashion during a given time period or dis-
tribution epoch. One possible means of enforcement is to have a signed and
time-stamped hash of f publicly posted by the advertiser, with some legal
assurance of homogeneous distribution. Alternatively, f might be distribu-
ted by a semi-trusted site not directly associated with the advertiser. Of
course, even if distribution of f is uniform, some users may not update their
copies. Given distribution epochs of reasonably large duration, say, a week
or a month, this should not be problematic.

Another possible attack by the advertiser involves collusion with consumers
in Scheme 3 or creation of fictitious users. If, for example, the advertiser has
access to {f(P2), f(P3), . . . , f(Pk)}, then she can deduce f(P1) from the aggre-
gated set of requests. The Crowds system suffers from a similar problem. The
inventors of Crowds propose several countermeasures, for details of which we
refer the reader to [1,37,38]. Since user anonymity is not required for privacy in
our system, we can attach a substantial cost to the creation of fictitious users
by, e.g., requiring that a consumer register by presenting a valid credit card or
Social Security number. We should note, however, that the cost and trouble of
mounting attacks involving widespread collusion or fraud, coupled with the small
amount of information that such attacks are likely to reveal to the advertiser,
should in most cases act as sufficient deterrents in and of themselves.

4.2 Practical Implementation Issues for Schemes 3 and 4

Aggregation and offline mixing: As mentioned above, mix networks involve com-
putationally intensive cryptographic operations, and as such are not typically
practical for applications in which mixing results must be produced on the fly.
With the right type of setup, however, we can schedule the mixing operations
in Schemes 3 and 4 so that execution may take place offline. The idea is that
the first time a consumer Ci visits a Web site controlled by the advertiser, she
submits f(Pi). On this first visit, she does not receive the targeted ad adf(Pi);
she may instead receive a generic ad. In the interval of time between her first
and second visits, however, her request f(Pi) is aggregated with those of other
consumers, and the ad servers perform the necessary mixing operations. On the
second visit of Ci, then, her requested ad adf(Pi) will be ready for her. She may
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at this point request another ad, to be ready on her third visit, and so on. In
short, consumer ad requests may be pipelined in such a way that aggregation
and processing takes place between visits, rather than during visits. Of course,
it is possible to define an ad distribution epoch in any way that is convenient.
For example, it may be that a consumer does receive a requested ad until the
next day, with server mixing of ad requests taking place overnight.

This scheme for offline mixing may not work in the absence of multiple visits
by a single user to the same site or to associated sites, or with the inability
to recognize repeat visitors. In practice, however, most users frequently visit
the same groups of sites repeatedly and do not shield their identities. This is
reflected by, e.g., the still pervasive use of cookies on the Web, not to mention
the extensive presence of DoubleClick.

Bulk encryption: We assume in our descriptions of Schemes 3 and 4 above that
an advertisement may be represented as a single ciphertext. Of course, in reality,
it is impractical to use ads small enough or a group Gq large enough to support
this assumption. We may represent an advertisement as a sequence of associated
ciphertexts, but this becomes computationally intensive for long ads. An alter-
native is to encrypt ads using an enveloping scheme involving both asymmetric
and symmetric encryption. We describe a simple mix network of this type here,
essentially a plaintext-to-ciphertext variant on the initial proposal of Chaum
[12]. An important distinction, however, is that what we propose here involves
use of the El Gamal cryptosystem and its re-encryption properties.

Let εκ[M ] represent a symmetric-key encryption of plaintext M , where κ ∈U

K is a key drawn from keyspace K. We represent a full encryption of M for
the mix network as Ẽy[M ] = (γ, δ), where γ = {Ey[κ1], Ey[κ2], . . . , Ey[κz]} and
δ = εκz

εκz−1 . . . ε1[M ] for some integer z. To re-encrypt Ẽy[M ] as (γ′, δ′), a server
does the following:

1. Re-encrypt all ciphertexts in γ.
2. Select κz+1 ∈U K.
3. Append Ey[κz+1] to γ to obtain γ′.
4. Compute δ′ as εκz+1 [δ].

We leave further details of the mix network to the reader. There are two
potential drawbacks to this scheme. First, the size of a ciphertext, as well as
the computational cost of re-encryption, grows linearly in z, the number of re-
encryptions. In practice, however, the performance is likely to be quite good,
particularly when the number of mix servers m is small and ad sizes are large.
A second drawback is the lack of robustness. As discussed above, however, ro-
bustness is a much less important consideration than privacy in our negotiant
schemes. The incentive for a server to corrupt ads or substitute new ads is small,
as such misbehavior would almost certainly become quickly apparent. Nonethe-
less, detection of tampering may be achieved by having servers include encrypted
signatures of the symmetric keys they have generated, and formatting plaintexts
such that it is easy to identify a correct decryption.
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5 Conclusion

This paper seeks to convey two ideas, the first cryptographic and the second
sociological. On the cryptographic side, we observe that by relaxing the conven-
tional PIR model to allow for threshold and aggregate security properties, we
are able to achieve considerable practical improvements in terms of both com-
munication and computational complexity. On the sociological side, we consider
a new perspective on the contention between online advertisers and consumer
privacy advocates. We explore some conceptually simple technical approaches to
advertising that bring the objectives of both camps into closer alignment.

One of the main issues left unaddressed in this paper is how the negotiant
function f should be constructed. Determining what features will be most effec-
tive in targeting advertisements is, of course, largely an advertising issue, and as
such outside the scope of our investigations. The Encirq [2] system would seem to
demonstrate that negotiant functions can be constructed that are effective and
practical. The problem of formulating effective, adequately privacy-preserving
negotiant functions f presents an open problem with interesting sociological
and technical facets.
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Abstract. Computationally expensive tasks that can be parallelized are
most efficiently completed by distributing the computation among a large
number of processors. The growth of the Internet has made it possible to
invite the participation of just about any computer in such distributed
computations. This introduces the potential for cheating by untrusted
participants. In a commercial setting where participants get paid for their
contribution, there is incentive for dishonest participants to claim credit
for work they did not do. In this paper, we propose security schemes
that defend against this threat with very little overhead. Our weaker
scheme discourages cheating by ensuring that it does not pay off, while
our stronger schemes let participants prove that they have done most of
the work they were assigned with high probability.
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1 Introduction

Computationally expensive tasks, to the extent that they can be parallelized,
are best done by distributing the work among a large number of processors.
Consider for example a challenge issued by RSA Labs: the goal is to recover
a cipher key given a few pairs of plaintext and ciphertext. For that, the best
known algorithm is to try all keys in succession until the right one is found. This
task may be efficiently distributed to a number of processors, each searching a
fraction of the total key-space.

The Internet has opened up distributed computations to the world. Just ab-
out any computer may be invited to participate in a given task. A number of
projects have already taken advantage of the power of Internet computations.
For example, the Search for Extra-Terrestrial Intelligence (SETI@home) pro-
ject [SETI], which distributes to thousands of users the task of analyzing radio
transmissions from space, has a collective performance of tens of teraflops. Ano-
ther Internet computation, the GIMPS project directed by Entropia.com, has
discovered world-record prime numbers. Future projects include global climate
modeling [A99] and fluid dynamics simulation.

The success of these projects has demonstrated the spectacular potential for
distributing computations over the Internet. Participation in such computations
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has so far been limited to groups of volunteers who support a particular project.
But there is intense commercial interest in tapping the free cycles of a lot more
Internet users. Harnessing the free cycles of 25 million AOL users for profit is a
tempting proposition, but it introduces the potential for cheating by dishonest
participants. In a commercial setting where participants get paid an amount
proportional to their contribution, there is incentive to claim credit for work
that was not done. Consider an effort coordinated by distributed.net to solve one
of RSA challenges. The task could be outsourced to AOL, whose users would
be paid a small fee for their computer time. If the computation ended without
revealing the key, we would want a scheme that lets us trace the cheaters who
didn’t do the work they were assigned.

This paper proposes security schemes to address this issue. We begin by
defining our model of generic distributed computations, as well as cheating and
what it means to secure a computation. In the next section, we propose a number
of schemes to secure certain types of parallel computations. The weaker of our
schemes simply discourages cheating by ensuring that it does not pay off, while
our stronger schemes let participants prove that they have done almost all the
work they were assigned with high probability. Our schemes are very efficient,
both in terms of computation and communication overhead for the participants
and the supervisor of the search. In section 3, we discuss other applications of
our schemes as well as open problems. Finally in the last section, we give a brief
overview of prior art and conclude.

1.1 Model of Distributed Computation

We consider a distributed computation in which untrusted participants are taking
part. The computation is organized by a supervisor, who may or may not be
trusted by the participants.

A distributed effort to solve one of the RSA Labs’ challenges is a good ex-
ample to introduce our model of computation. Assume the goal is to find the
DES key that matches a given plaintext PT to a given ciphertext CT . Let
f(k) = DESk(PT ). The supervisor partitions the range [0, . . . , 256 − 1] of keys
and assigns a subset to each participant. Participants are required to evaluate f
on all keys k in their range, and test whether f(k) = CT . If the equality holds, k
is reported to the supervisor, who rewards the discovery with a prize of $10,000.

Formally, such computations are defined in our model by the following three
elements:

– A function f defined on a finite domain D. The object of the computa-
tion is to evaluate f on all k ∈ D. For the purpose of distributing the compu-
tation, the supervisor chooses a partition of D into subsets Di. The evalua-
tion of f on Di is assigned to participant i. In our example D = [0, . . . , 256−1]
and f(k) = DESk(PT ).

– A screener S. The screener is a program that takes as input a pair of the
form (k; f(k)) for k ∈ D, and returns a string s = S(k; f(k)). S is intended
to screen for “valuable” outputs of f that are reported to the supervisor
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by means of the string s. In our example, S compares f(k) to CT . If they
are equal, S(k; f(k)) = k, otherwise there is nothing worth signaling to the
supervisor and S returns the empty string. We assume that the run-time of
S is of negligible cost compared to one evaluation of f .

– A payment scheme P . The payment scheme is a publicly known function
P that takes as input a string s from participant i and outputs the amount
due to that participant. We require that P may be efficiently evaluated.
Specifically, one evaluation of P should equal a small constant number of
evaluations of f . In our example, the payment scheme might work as follows.
If s belongs to the domain of f and f(s) = CT , then P (s) = $10,000 reward.
Otherwise P (s) = $0.

In this model, observe that the screener S and the payment scheme P are the
same for all participants. It will prove useful however, for the purpose of verifying
the work of individual participants, to give the supervisor the ability to customize
S and P for each participant. We propose the following extension to the basic
model of distributed computation, which we call customized computations. Like
a distributed computation, a customized computation is a triplet (f, S, P ) but
with the following differences:

– Customized screener. Rather than a unique screener S, there is now one
screener Si per participant. Together with screener Si, the supervisor gene-
rates a secret key Ki. The screener is given to the participant, while the key
is known only to the supervisor. The key stores secret information associated
with the screener, and is used in the payment scheme to verify the work of
participant i.

– Customized payment scheme. Similarly, the payment scheme P is custo-
mized. We define P as a function of two inputs: a string s from participant
i, and the secret key Ki. The amount due to participant i is P (Ki, s).

We distinguish the following three stages of a distributed computation:

– Initialization: The supervisor makes public the function f , the payment
scheme P and decides on a partition of the domain into finite subsets Di.
The supervisor generates a screener Si for each participant, and a key Ki to
go with it. All the keys are kept secret. Each participant receives his share
Di of the domain, and the screener Si.

– Computation: For every input d ∈ Di, participant i is required to evaluate
f(d), then run the screener Si on f(d). All the strings s produced by the scre-
ener are concatenated into a string mi, which is returned to the supervisor
at the end of the computation.

– Payment: The supervisor computes P (Ki, mi) to determine the amount
due to participant i.

This model captures the nature of parallel distributed computations. We will
return to the example of DES challenges in the next section, and propose modi-
fications to the original screener and payment scheme to make the computation
secure against cheaters.
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1.2 Cheating and Models of Security Enforcement

To appreciate how much of a threat cheating is to distributed computing, consi-
der the following anecdote. Project managers from SETI@home have reportedly
[B99] uncovered attempts by some users “to forge the amount of time they have
donated in order to move up on the Web listings of top contributors.” Yet SETI
participants are volunteers who do not get paid for the cycles they contribute.
If participants get paid for their contribution, they will no doubt cheat in every
possible way to try to maximize their profit.

In our model of distributed computation, we define a cheater as a participant
who either did not evaluate f on every input in Di, or did not run the screener Si

on every value f(d). A cheating strategy is an algorithm that, given the publicly
known payment scheme P and everything so far computed, decides at each step
of the computation whether to proceed with the next step, or interrupt the
computation and submit the current result s to the supervisor for payment.

A computation is ideally secure if it allows the supervisor to verify that
participants did not cheat. It is trivial to construct ideally secure computations
if we place no restrictions on the computational cost of the payment scheme. For
example, the supervisor might require participants to submit every value f(d)
and S(f(d)) that they compute, and verify all of them. For efficient distributed
computations however, it appears impossible to deter every possible cheating
strategy. For the most part, we will restrain our focus to the following subclass:

Definition 1. Rational cheating strategy A cheating strategy is rational if
it maximizes the expected profit per unit of time for the cheater.

To classify the security of efficient distributed computations, we propose the
following two properties. These are complementary rather than exclusive.

– Financial property: A computation has the financial property if it ensures
that cheating does not pay off. Specifically, there exists no cheating strategy
that yields a better profit per CPU cycle contributed than an honest user
would get.

– Coverage constant: This constant is in the range [0; 1]. It is the expec-
ted fraction of Di on which a rational participant i must evaluate f before
submitting his result for payment. (The probability space is the set of all ra-
tional cheating strategies.) A computation is ideally secure against rational
cheaters if it has a coverage constant of 1.

1.3 Simple Solutions of Use in Limited Settings

We survey here a few simple security schemes, of possible use in restricted set-
tings, and point out the limitations that make them inadequate for general use.
A more general survey of related work will be presented in section 4.

A simple solution is to reward with a prize the outcome of a certain compu-
tation. This scheme is currently used to encourage participation in distributed
cipher-cracking. The user who discovers the correct key wins a prize, while the
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others get nothing. This scheme has the financial property. Indeed, the chance
of winning the prize is proportional to the amount of work done. In a setting
where millions of users might be involved however, it is not desirable that the
compensation for work should have the high variance of a single prize.

Another solution is for participants to save the results f(k) and S(f(k))
of all their computations. Using a Private Information Retrieval scheme (PIR)
[CMS99], the supervisor can randomly verify a small number p of values. Al-
ternatively, all the values computed can be sent back to the supervisor. This
scheme has coverage constant of 1 − 1/p. Indeed, with p queries, the supervi-
sor will catch with high probability any cheater who did less than (1 − 1/p) of
the work. SETI@home uses a security scheme analogous to this. The problem
with this scheme is that it is often unrealistic to expect participants to save
the result of their work. Consider the following example: an average desktop can
perform 240 DES evaluations in reasonable time. But it is not possible to commit
8 · 240 bytes = 8000 gigabytes to memory.

2 Inverting a One-Way Function

In this section, we introduce a generic class of distributed computations called
Inversion of a One-Way function (IOWF), and study how to secure such com-
putations against cheating. Let f : D 7→ T be a one-way function, and y = f(x)
for some x ∈ D. Given f and y only, the object of the computation is to dis-
cover x by exhaustive search of the domain D. This class of computations is a
generalization of the RSA Labs’ challenges mentioned in the introduction.

Our starting point to secure IOWF is the basic screener S and payment
scheme P proposed for RSA Labs’ challenges in Section 1.1. Let us recall that S
does nothing but report x when it is found, and P awards a single fixed prize for
that discovery. Recall that this basic implementation of IOWF has the financial
property. We propose here several modifications to the screener and the paym-
ent scheme. Our first security scheme (magic numbers) preserves the financial
property, but lowers considerably the variance of the expected payment for each
participant. Our second family of schemes (ringers) ensures a coverage constant
arbitrarily close to 1, but it requires all participants to trust the supervisor of
the computation.

2.1 Magic Numbers

The basic IOWF scheme, in which the participant who discovers x is rewarded
with a prize, has the financial property. Indeed, the chance for each participant to
win the prize is proportional to the amount of work done. We wish to preserve
this characteristic while reducing the variance of the expected profit for the
participants. Low variance is desirable to ensure a direct relation between the
work done and the reward for an average participant.

Our approach is to expand the set of values whose discovery is rewarded with
a prize. We define a subset M of magic numbers, included in the image of f .
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Participants are rewarded not only for finding x, but also for finding any value
z for which f(z) ∈ M . These additional values do not contribute to our main
goal of inverting f on y. Rather, they act like milestones along the computation,
which let us estimate the progress of a participant and pay him accordingly. The
formal definition of our scheme follows.

Definition 2. Family of magic sets. Let f : D 7→ T be a function, where
D =

⋃
Di. A family of magic sets for f is a family F of subsets M ⊂ T with

the following properties:

• There is an efficient algorithm to test membership in M for any M ∈ F .

• For any Di, the size of M ∩ f(Di) has Poisson distribution with mean n,
over the probability space M ∈ F . We call the constant n the set-size of the
family F .

For a fixed M , we call M ∩ f(Di) the set of magic numbers for participant i.

Let us give an example. Assume f behaves as a random function with image
[0 . . . 2m − 1]. For any k-bit integer K = b1b2 . . . bk, we define MK as the set
of all elements in [0 . . . 2m − 1] whose binary representation starts with the bits
b1b2 . . . bk. It is possible to test efficiently if an element is in MK . For any Di ⊂ D,
the expected size of |MK ∩ f(Di)| is |Di|/2k with Poisson distribution.

In the case of a general function f , F can be defined as a set of kernels {Mi}
for functions drawn from a family of one-way functions {gi} defined on f(S).
Testing whether f(x) ∈ Mi requires only one evaluation of gi.

Magic number scheme. Assume that there exists a family F of magic sets
for f of set-size n. In the initialization phase, we choose at random one set
M ∈ F . The distributed computation is then defined as follows:

• The screener S returns x if f(x) = y or if f(x) ∈ M (i.e., x is a magic
number.) Otherwise, S returns the empty string.

• The payment scheme verifies that all the numbers reported by the screener
map to magic numbers. The amount due is proportional to the number of
distinct magic numbers found.

Observe that this scheme does not require participants to trust the supervi-
sor. Indeed, the supervisor keeps no secret. Using standard techniques, it can be
replaced by a publicly accessible random function. The amount earned by each
participant can be computed and verified by the other participants or any third
party.

Analysis of the magic number scheme. The following theorem shows
that the magic number scheme has financial property if f is a one-way function.
We apply the random oracle heuristic to the screener. For an introduction to
the random oracle model, see [BR93]. Before stating the theorem, we recall the
definition of a (t, ε)-one-way function:
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Definition 3. A function f is (t, ε)-one-way if no t-time algorithm succeeds in
inverting f on a random output with probability more than ε.

Theorem 1. Let τ be the time an honest participant must spend to process a
share D. Suppose that f |D is (τε, ε)-one-way for any 0 < ε ≤ 1, and that the
screener S is a random oracle. Then the magic number scheme has financial
property.

Proof. Suppose that there is a cheating algorithm A that outperforms the honest
strategy. A earns on average a fraction p of an honest participant’s payment,
while doing a fraction less than p of the work. We use A to efficiently invert f ,
thus violating the assumption that f is one-way.

Given a random challenge y we must find x ∈ D such that f(x) = y. Define
the screener S as follows. S accepts y as a magic number and chooses in addition
other magic numbers randomly to bring the total to n on average. Now let us run
A with this screener. The expected running time of A is less than pτ , and the
expected number of magic numbers found is pn. With probability p the challenge
y is one of the magic numbers that A inverted. Therefore, A is a (pτ, p)-algorithm
to invert f , contradicting the assumption that f is (τε, ε)-one-way function for
any 0 < ε ≤ 1. ut

Let us now estimate the probability that a participant gets paid significantly
more, or significantly less than expected. Let N denote the number of magic
numbers found by the participant. Recall that the payment received is propor-
tional to N . Magic numbers have Poisson distribution with mean n and standard
deviation

√
n. So for any ε

Pr[ |N − n| > nε] ≤ 2e−ε2n/2.

Let ε = λ/
√

n. Then

Pr[ |N − n| > λ
√

n] ≤ 2e−λ2/2.

Take for instance n = 10,000 and λ = 6. The actual payment will deviate
from its expected value by more than 6% with probability less than 3 · 10−8.

2.2 Ringers: The Basic Scheme

From here on, we assume that the supervisor is trusted by all participants. This
assumption lets us design a variety of efficient customized distributed computati-
ons. In these, it is no longer possible for a third party to verify independently the
work of any given participant. Instead, the supervisor is trusted not to collude
with any participant and to apply the payment scheme impartially.

We propose a family of schemes built on the concept of ringers. A ringer is
a value chosen by the supervisor in the domain of f . The supervisor distributes
to participants the images of ringers by the one-way function f , but keeps the
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ringers themselves secret. Distributed in the range of a participant, ringers can
be used as spot-checks for the work of that participant. A formal description of
the basic ringer scheme follows. We subsequently propose a number of variants
to address the weaknesses of the basic scheme.

Basic ringer scheme We assume that all participants trust the supervisor.

• In the initialization phase, the supervisor chooses for participant i uniformly
independently at random n values xi

1, . . . , x
i
n in Di, and also computes the

corresponding images: yi
j = f(xi

j).

• The screener Si is defined as follows. On input (k, f(k)), test whether f(k)
belongs to the set {y, yi

1, . . . , y
i
n}. If so output the string k, otherwise output

the empty string.

• The secret key Ki is the set {xi
1, . . . , x

i
n}, which we call the set of ringers.

• The payment scheme P (Ki, si) is defined as follows. Check that si contains
all the ringers in Ki plus possibly x such that f(x) = y. If so, pay the
participant a fixed amount, otherwise pay the participant nothing.

Proposition 1. If f is a one-way function, the scheme with n ringers ensures
a coverage constant of (1 − 1/n).

Proof. A participant who interrupts the computation before discovering all the
ringers will get paid nothing for the work done so far. Thus any rational strategy
will not interrupt the computation before all the ringers are found. Given that
the n ringers are distributed uniformly independently at random in the range
Di, the expected fraction of Di searched before finding them all is 1 − 1/n. ut

The basic ringer scheme does not guarantee the financial property. Partici-
pants will maximize their profit by interrupting the computation as soon as they
have found all the ringers.

This scheme enables participants to delegate work to underlings. This is done
in a straightforward way: a participant who wishes to redistribute his share of
the work becomes the supervisor of a sub-search. He distributes all his own
ringers to the participants in the sub-search. He may also add a few ringers of
his own to check the work of sub-participants. In that case, the number of ringers
grows linearly with the number of degrees of delegation. The whole process is
transparent to the supervisor of the original computation.

Observe that a variant of this scheme is possible in the absence of a tru-
sted supervisor. In that case, each participant becomes a supervisor for a small
number of other participants, giving them a set of ringers to discover in their
range. Let us represent the participants as the vertices of a graph G. We draw
an edge from participant A to participant B if A is a supervisor for B. If G is
an expander graph, the scheme is quite resistant to collusion.
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2.3 Bogus Ringers

The weakness of the basic ringer scheme is that a participant knows when the last
ringer is found. There is no incentive to proceed with the computation beyond
that point. To fix this weakness, we propose to hide the number of ringers from
participants by adding a random number of “bogus” ringers.

A participant receives a total of 2n ringers, where n is a fixed constant of the
scheme. Of these, some are “true” ringers picked at random from the domain Di

of the participant and some are “bogus” ringers. Bogus ringers are values chosen
at random in the target of f .

The number of true ringers is chosen in [n . . . 2n] with the following pro-
bability distribution. For i ∈ [n . . . 2n − 1] the probability of i true ringers is
d(i) = 2n−1−i. We choose d(2n) = 2−n so the total adds up to 1. A formal
description of the scheme follows.

Bogus ringers Let 2n be the fixed total number of ringers.

• In the initialization phase, the supervisor chooses for participant i an integer
ti at random in the range [n . . . 2n] with the probability distribution d defined
above. The supervisor then chooses uniformly independently at random ti

“true” ringers xi
1, . . . , x

i
ti in Di, and si = 2n − ti “bogus” ringers in D \ Di.

The supervisor also computes all the 2n corresponding images: yi
j = f(xi

j).
The set of these images is permuted at random before being passed on to
participant i, so that there is no way to distinguish true from bogus ringers.

• The screener Si is defined as follows. On input (k, f(k)), test whether f(k)
belongs to the set {y, yi

1, . . . , y
i
2n}. If so output the string k, otherwise output

the empty string.

• The secret key Ki is the set {xi
1, . . . , x

i
ti} of true ringers.

• The payment scheme P (Ki, si) is defined as follows. Check that si contains
all the true ringers in Ki plus possibly x such that f(x) = y. If so, pay the
participant a fixed amount, otherwise pay the participant nothing.

Theorem 2. Suppose that f is one-way. Then the bogus ringer scheme ensures
a coverage constant of 1 − 1

n2n+1 − ( 4
n )n.

This is a considerable improvement over the basic ringer scheme. The cover-
age constant is here exponentially close to 1 with respect to the communication
cost n, rather than linearly close to 1.

Proof. We determine the rational strategy for participants. Let G be the expec-
ted gain of a participant who chooses to interrupt the computation having done
a fraction 0 < p < 1 of the work and discovered k ringers. Let us deal first with
two trivial cases. If k < n, the gain G is negative. Indeed, the cheating is sure to
be detected and the work already done will not be paid for. If k = 2n, the gain
G is positive. Indeed, the cheating is sure to go undetected since the maximum
possible number of ringers has already been found.



434 P. Golle and I. Mironov

We deal now with the general case n ≤ k < 2n. Recall that we write t for the
number of true ringers for a given participant. If k = t, the participant gets paid
as if all the work had been done, which translates into an economy of (1 − p).
On the other hand, if k < t, the cheating is detected and the participant loses p,
the work already done. We define the event E = {k ringers have been discovered
having searched a fraction p of the keyspace}. Then

G = (1 − p) Pr[t = k|E] − p Pr[t > k|E].

And therefore

G ≤ (1 − p) Pr[t = k|E] − p Pr[t = k + 1|E].

Now

Pr[t = k|E] =
Pr[t = k]

Pr[E]
· Pr[E|t = k].

And a similar equation gives us Pr[t = k + 1|E]. It follows that

G ≤ (1 − p)d(k)
pk

Pr[E]
− p d(k + 1)

pk(1 − p)(k + 1)
Pr[E]

.

And so G < 0 as long as p > d(k)
(k+1)d(k+1) . Since for all k, d(k)

(k+1)d(k+1) ≤ 2
n+1 ,

we are sure that G < 0 as long as p ≥ 2
n+1 . To summarize, there are only two

situations where a rational participant will interrupt the computation before the
end. The first is if k = 2n: with probability d(2n) the participant interrupts the
computation having processed a fraction 1 − 1

2n of the total. The second is if at
least n ringers are discovered having processed less than a fraction 2

n+1 of the
total. The probability of that is bounded by ≤ ( 4

n )n.
This all adds up to a coverage constant of 1 − d(2n)

2n − ( 4
n )n which is exactly

1 − 1
n2n+1 − ( 4

n )n. ut

2.4 Hybrid Scheme: Magic Ringers

The scheme proposed here introduces another way of hiding from participants
the ringers known to the supervisor. As before, the supervisor chooses at random
for each participant a set of ringers and computes their images by f . But the
images are not directly given to the participant. Rather, the supervisor “blurs”
each image by choosing a magic set that contains it. Any value that maps to one
of these magic sets is called a magic ringer. Participants are required to return
all the magic ringers they discover.

Observe that even a participant who has found at least one magic number
for every magic set has no way to determine whether that is the magic number
known to the supervisor, or whether another value was used to generate the
magic set. Thus, it is never safe for a cheater to interrupt the computation
before the end. Formally, we define the scheme as follows:
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Magic ringers We assume that f : D 7→ T is a one-way function. Let g : T 7→
T ′ be a compression function drawn from a pseudo-random family.

• In the initialization phase, the supervisor chooses for participant i uniformly
independently at random n values xi

1, . . . , x
i
n in Di, and computes the cor-

responding images yi
j = g(f(xi

j)). The n magic sets for participant i are
M i

j = g−1(yi
j).

• The screener Si is defined as follows. On input (k, f(k)), test whether f(k)
belongs to a magic set M i

j for some j or f(k) = y. If so, output the string k,
otherwise output the empty string.

• The secret key Ki is the set {xi
1, . . . , x

i
n} of known ringers. The payment

scheme P (Ki, si) is defined as follows. Check that si contains all the known
ringers in Ki plus possibly x such that f(x) = y. If so, pay the participant a
fixed amount, otherwise pay the participant nothing.

The following theorem gives the coverage constant of the magic ringers:

Theorem 3. Suppose that f is one-way. Let M be the compression ratio |T |/|T ′|.
Then the magic ringer scheme ensures a coverage constant of 1 − n30.9M(n−3).

Proof. Let us consider first the case where a single magic ringer is involved.
Suppose that a participant has searched a fraction 0 < p < 1 of the domain and
found k pre-images of the magic ringer. We denote this event E. For convenience
of notations, we will write q = 1 − p. Let P be the probability that the pre-
image known to the supervisor is among the k pre-images already found by the
participant. We write N for the total number of pre-images of the magic ringer.

P =
∞∑

n=k

k

n
Pr[N = n|E].

Now

Pr[N = n|E] =
Pr[N = n]

Pr[E]
Pr[E|N = n] =

Q[n, M ]
Q[k, pM ]

pk(1 − p)n−k

(
n

k

)
,

where Q[n, µ] = e−µ µn

n! is the probability of n successes in a Poisson experiment
of mean µ. After simplifying the expression for Pr[N = n|E], the formula for P
becomes P = kfk(qM) where the function fk is defined as

fk(x) = e−x
∞∑

n=0

xn

n!(k + n)
.

It is easy to verify that the second derivative of fk is a positive function, and
thus fk is convex. It follows that for all 0 < x < M

fk(x) < fk(0) − x

M

(
fk(0) − fk(M)

)
. (∗)
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We know that fk(0) = 1/k. Let us estimate fk(M). It is easy to verify that the
derivative of fk is

f ′
k(x) = fk+1(x) − fk(x) =

1
x

(1 − (k + x)fk(x)).

From the theory of differential equation we know that if two functions fk and
gk defined on x ≥ 0 are such that

f ′
k(x) = U(x, fk(x))

gk(0) > fk(0) (∗∗)
g′

k(x) > U(x, gk(x)),

then fk(x) < gk(x) for any x ≥ 0. If we let gk = 1
(k−1)+x , then (∗∗) holds and

thus fk(x) < 1
(k−1)+x . In particular fk(M) < 1

k−1+M . If we plug this value in (∗)
we get

P = kfk(qM) < 1 − q
( 1

1 + k
M−1

)
.

Now let us return to the general case. The participant is required to report all
the pre-images of n magic ringers. Suppose the participant has done a fraction
p of the work and found k1, . . . , kn pre-images for each of the n magic ringers.
The expected gain of interrupting the computation at this point is negative if
cheating is detected with probability at least q. As above, let us write Pi for the
probability that the participant has already found the pre-image known to the
supervisor for magic ringer i. A rational participant will not cheat as long as

P1 . . . Pn < p.

We prove that this inequality holds with probability exponentially close to
1. Observe that if ki/(M − 1) < 2 then

Pi < 1 − q
( 1

1 + ki

M−1

)
< 1 − q

3
.

The product P1 . . . Pn is less than p if this inequality holds for at least four
indices i ∈ {1, . . . , n}. Indeed, if q < 1/2 then

(
1 − q

3

)4
< 1 − q.

Denote the probability of an individual event ki/(M − 1) ≥ 2 by ξ. The
probability that this inequality holds for less than four indices i in the range
{1, . . . , n} is

ξn +
(

n

1

)
ξn−1(1 − ξ) +

(
n

2

)
ξn−2(1 − ξ)2 +

(
n

3

)
ξn−3(1 − ξ)3 < n3ξn−3.

Since ki is no more than one plus the total number of solutions in the range
to the ith equation, we can bound ξ according to the Poisson distribution

ξ < [eβ−1β−β ]M ,

where β = (2(M − 1) − 1)/M . We may suppose that β > 1.5, which is true
when M ≥ 6. In this case ξ < 0.9M . Therefore the probability that a rational
participant processes the entire domain is at least 1 − n30.9M(n−3). ut
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3 Other Applications and Open Problems

In this section, we propose two more applications of our schemes: uncheatable
benchmarks, and estimation of the size of a database. We also sketch two open
problems for which we know no efficient solution.

3.1 Other Applications

Uncheatable benchmarks. Benchmarking suites are designed to capture the
performance of certain real-world applications on a computer architecture. They
measure the time it takes to complete a certain amount of computation. It
is usually assumed that the benchmark runs without interference. This leaves
the door open to cheating: if the results of the benchmark are not verifiable,
a dishonest machine or operating system might interrupt the benchmark early
and declare the computation “done.” The problem of designing uncheatable
benchmarks was first studied in [CLSY93]. They propose a number of specific
programs whose execution does not allow shortcuts, and for which the final result
of the computation is efficiently verifiable. Our schemes let us secure a general
class of parallel computations. These can be used as uncheatable benchmarks,
to measure for example the collective performance of a distributed computer
system.

Estimation of the size of a database. Given unrestricted access to a data-
base, it is trivial to measure the number of objects it contains. But there is no
direct way to measure the size of a proprietary database given limited access
to it. Suppose we want to verify independently the claims made by an Internet
search engine about the size of its database. Given the commercial secrets in-
volved, such databases can not be made available whole for inspection. We can
use an approach similar to the “magic number” scheme. For a certain definition
of magic object, we ask the database administrator to produce all the magic
objects in the database. We can then verify that the number of these objects
matches our expectations. For other solutions to this problem, see [BB98] or [S].

3.2 Open Problems

Inversion of a one-way predicate Our solutions to IOWF all require that the
image of the one-way function f be sufficiently large. Suppose f is a predicate,
which takes almost always the value true. The goal of the computation is to
find an input for which the predicate returns false. None of the schemes of
section 2 are directly applicable to secure this computation. One approach would
be to look at the logic binary circuit that computes the predicate and extract
additional bits from this circuit.

Sequential computations. The schemes we have proposed apply only to paral-
lel computations. But there are distributed computations that are sequential rat-
her than parallel. A good example of a sequential distributed computation is the



438 P. Golle and I. Mironov

Great Internet Mersenne Prime Search (GIMPS), coordinated by Entropia.com.
The object of this computation is to discover large Mersenne primes. Each par-
ticipant is given a different candidate number to test for primality. The compu-
tation is distributed, but the work of each participant is intrinsically sequential.
It consists in running the Lucas-Lehmer primality test, which works as follows.
To test if n = 2s − 1 is prime, we evaluate the sequence uk = (u2

k−1 − 2) mod n
starting from u0 = 4. If us−2 = 0, then 2s − 1 is a Mersenne number.

We do not know how to secure efficiently sequential computations against
cheating. GIMPS simply double-checks the work by distributing every compu-
tation to two participants and comparing the results they return. A promising
approach to securing sequential computations has emerged from the study of pro-
babilistically checkable proofs (PCP). PCP constructions let a supervisor check
with a constant number of queries that a program was executed. Using a PIR
scheme, these queries can be performed without transmitting the PCP to the
verifier [ABOR00]. Unfortunately, known PCP and PIR schemes are currently
too inefficient for practical use.

4 Related Work

The problem of protecting a computation from the host has been studied in
several research communities. A number of solutions of both practical and theo-
retical interest exist for different models.

Our work is closest to [MWR99], which studies the problem of remote audit
in a distributed computing model. The scheme of [MWR99] relies on recording
the trace of the execution and is heuristically secure. In contrast, we formulate
the problem in game theoretic terms and use an efficient cryptographic primitive
(hash functions) to solve it.

Distributed computing projects such as [BBB96,BKKW96,NLRC98,SH99]
focus on fault-tolerance assuming that hosts are honest but error-prone. A typical
error in this model is the crash of a participant’s computer. Malicious cheating
may go undetected, which limits the deployment of such projects to trusted
participants.

The problem of malicious hosts is key to the study of mobile agents [V98,
Y97]. Several practical solutions have been proposed, based on code tracing and
checkpoints [V97], replication and voting [MvRSS96], or code obfuscation with
timing constraints [H98]. But the environment in which mobile agents operate
differ significantly from our model of computation in a number of respects. First,
communication cost is presumably low for mobile agents. Second, a malicious
host may wish to invest a significant amount of computational resources in order
to subvert the execution of a mobile agent, since its potential gain may be much
larger than the cost of the computation. Third, mobile agents execute code on
unknown data, which precludes the use of our techniques.

A good survey of the field of result-checking and self-correcting programs
can be found in [WB97]. Result-checking however is mostly limited to specific
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arithmetic functions. It is not known how to design result-checkers for general
computations.

Generic cryptographic solutions as in [ST98,ABOR00] are provably secure
and have very low communication cost. However known algorithms for homo-
morphic encryption schemes [ST98] or PIR and PCP [ABOR00] involve com-
putationally expensive operations like exponentiation modulo large primes at
every step of the program execution. This makes these schemes inappropriate
for realistic scenarios of distributed computations.

5 Conclusion

We have defined a model of parallel distributed computing and proposed a va-
riety of schemes to make such computations secure against cheating. The table
below summarizes our schemes. The magic number scheme does not require a
trusted supervisor, whereas the three ringer schemes do. The table compares our
schemes both in terms of the security properties they offer, and the overhead
they put on the participants.

Scheme Properties Communication overhead
Financial Coverage constant

Magic numbers X n
Basic ringers 1 − 1/n n
Bogus ringers 1 − 1

n2n+1 − ( 4
n )n 2n

Magic ringers 1 − n30.9M(n−3) Mn
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Abstract. We construct forward-secure threshold signature schemes. These sche-
mes have the following property: even if more than the threshold number of players
are compromised, it is not possible to forge signatures relating to the past. This
property is achieved while keeping the public key fix ed and updating the secret
keys at regular intervals. The schemes are reasonably efficient in that the amount
of secure storage, the signature size and the key lengths do not vary proportionally
to the number of time periods during the lifetime of the public key. Both proposed
schemes are based on the Bellare-Miner forward-secure signature scheme. One
scheme uses multiplicative secret sharing and tolerates mobile eavesdropping ad-
versaries. The other scheme is based on polynomial secret sharing and tolerates
mobile halting adversaries. We prove both schemes secure via reduction to the
Bellare-Miner scheme, which is known to be secure in the random oracle model
assuming that factoring is hard.

Keywords: threshold cryptography, forward security, signature schemes, proac-
tive cryptography.

1 Introduction

Exposure of a secret key for “non-cryptographic” reasons – such as a compromise of
the underlying machine or system, human error, or insider attacks – is, in practice, the
greatest threat to many cryptographic protocols. The most commonly proposed remedy
is distribution of the secret key across multiple servers via secret sharing. For digital
signatures, the primitive we consider in this paper, the main instantiation of this idea is
threshold signature schemes [8]. The signature is computed in a distributed way based on
the shares of the secret key, and a sufficiently large set of servers must be compromised
in order to obtain the key and generate signatures.

Distribution of the key makes it harder for an adversary to learn the secret key, but
does not remove this risk. Common mode failures —fla ws that may be present in the
implementation of the protocol or the operating system being run on all servers— imply
that breaking into several machines may not be much harder than breaking into one.
Thus, it is realistic to assume that even a distributed secret key can be exposed.

Proactive signatures address this to some extent, requiring all of the break-ins to
occur within a limited time frame [13]. This again only ameliorates the key exposure

D. Naccache (Ed.): CT-RSA 2001, LNCS 2020, pp. 441–456, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



442 M. Abdalla, S. Miner, and C. Namprempre

problem. Once a system hole is discovered, it can quite possibly be exploited across
various machines almost simultaneously.

A common principle of security engineering is that one should not rely on a single
line of defense. We suggest a second line of defense for threshold signature schemes
which can mitigate the damage caused by complete key exposure, and we show how to
provide it. The idea is to provide forward security.

Forward security for digital signature schemes was suggested by Anderson [2], and
solutions were designed by Bellare and Miner [3]. The idea is that a compromise of the
present secret signing key does not enable an adversary to forge signatures pertaining to
the past. (In this light, the term “backw ard security” may have been more appropriate,
but we decide to be consistent with existing terminology in the literature.) Bellare and
Miner [3] focus on the single-signer setting and achieve this goal through the key evolu-
tion paradigm: the user produces signatures using different secret keys during different
time periods while the public key remains fix ed. Starting from an initial secret key, the
user “e volves” the current secret key at the end of each time period to obtain the key
to be used in the next. She then erases the current secret key to prevent an adversary
who successfully breaks into the system at a later time from obtaining it. Therefore, the
adversary can only forge signatures for documents pertaining to time periods after the
exposure, but not before. The integrity of documents signed before the exposure remains
intact.

Combining forward security and threshold cryptography will yield a scheme that can
provide some security guarantees even if an adversary has taken control of all servers and,
as a result, has completely learned the secret. In particular, she cannot forge signatures
as if they were legitimately generated before the break-in. The complete knowledge of
the secret signing key is useless for her with regard to signatures from “the past.” 1

It is worth noting that, at first glance, forward-secure signature schemes and signature
schemes based on secret sharing can be viewed as two different alternatives for addressing
the same problem, namely the key exposure problem. However, in fact, the two provide
complementary security properties. Forward security prevents an adversary from forging
documents pertaining to the past even if he is able to obtain the current secret key. On the
other hand, threshold and proactive signature schemes make it harder for an adversary
to learn the secret key altogether. The crucial distinction between the two notions is
that forward security involves changing the actual secret while a secret sharing scheme
distributes the secret which remains unchanged throughout the execution of the protocol.
This is true for both threshold and proactive schemes. In particular, the refresh steps
performed in a proactive scheme update the shares of the secret, but not the secret itself.
Therefore, without forward security, if an adversary ever successfully obtains this secret,
the validity of all documents signed by the group can be questioned, regardless of when
the documents were claimed to have been signed.

Furthermore, one can think of the addition of forward security to threshold schemes
as a deterrent to attempts at exposing the key. Specifically , in a forward-secure scheme,
a stolen key is less useful to an adversary (i.e. it can’t help her forge past signatures) than

1 A related idea involving key evolution and distribution of secrets was presented in the context
of key escrow [5]. However, in their work, the public key needs to be updated, which, in turn,
requires the participation of a trusted third party in every time period.
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in a non-forward-secure scheme, since it only yields the ability to generate signatures
in the future. In fact, as time progresses, the potential benefits of exposing the key at
the current time dwindle, since there are fewer time periods in which it can generate a
signature. Thus, an adversary’s “cost-benefit analysis” may prevent her from attacking
such a scheme in the first place.

Not only does forward security provide security improvements to an existing thres-
hold signature scheme, it can do so without adding any “online cost” to the scheme, as
is the case for both of our schemes. (By “online cost,” we mean the cost incurred during
signing such as the number of interactions or rounds in the protocol.) That is, with some
pre-computation performed offline, no more interactions are required to sign a mes-
sage beyond those needed in the non-forward-secure threshold version of the scheme.
This makes forward security an especially attractive improvement upon a distributed
signature scheme.

Constructing a Candidate Scheme. Designing a forward-secure threshold scheme
would be an easy task if one could ignore efficienc y issues. In particular, an efficient
forward-secure threshold signature scheme should incur

— only minimal interactions among the players, and

— small cost parameters (e.g. amount of storage, the size of signatures, and the key
lengths) such as ones that do not vary proportionally to the number of time periods,

in addition to maintaining the basic security property of a forward-secure signature
scheme, i.e. it should still be “hard” to forge signatures pertaining to the past.

Often times the two goals listed above are in conflict, and trade-offs need be made.
For example, one can simply let a dealer pick T pairs of secret keys and public keys
where T is the number of time periods for a lifetime of the public key, then distribute the
secret keys to the players using a secret-sharing scheme. The jth secret key is then used
to distributedly sign documents during the time period j, and the jth public key is used
to verify documents signed during the time period j. Clearly, key evolution under this
scheme requires no interactions among the players (each player simply deletes its own
share of the secret key of the previous time period), and thus, our first goal is satisfied.
However, the key lengths are proportional to T , thereby violating our second goal. With
a technique suggested by Anderson [2], one can reduce the length of the public key, but
the storage of the secret key will still be proportional to T [3].

As pointed out in [3], there are other alternatives. However, they either require the
amount of secure storage or the signature size to be proportional to the number of time
periods. Clearly, if these costs are not of major concern, a scheme such as the simple
scheme presented above would be appropriate. Otherwise, one needs to consider different
alternatives.

Our goal is to construct a forward-secure threshold signature scheme that satis-
fies the aforementioned criteria for efficienc y. Individually, though, performing secure
distributed computation and achieving forward security are difficult problems to solve
efficiently . Therefore, our approach is to combine existing solutions for each problem,
rather than attempting to re-invent the wheel.

Factoring-Based Schemes. In this paper, we present two forward-secure threshold
signature schemes whose cost parameters do not grow proportionally to the number
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of time periods during the lifetime of a public key. Both schemes are based on the
Bellare-Miner scheme [3], which in turn is based on the schemes proposed in [9] and
[15]. The Bellare-Miner signature scheme is proven forward-secure in the random oracle
model assuming that factoring a composite number into two large prime factors is hard.
Consequently, we are able to prove the schemes proposed in this paper secure in the
random oracle model under the same assumption.

The first scheme uses multiplicative secret sharing [6,7] to distribute the secrets, while
the second scheme uses the standard polynomial sharing of secrets. Figure 1 summarizes
the properties relevant to evaluating the schemes. In particular, a desirable forward-secure
threshold scheme should be able to tolerate a high number of compromises by powerful
adversaries, should require a small number of players to sign a message and to update a
key, and should incur a small number of rounds of interaction among players for both
signing and updating. These criteria are listed in the first column of the table.

Scheme Characteristic Multiplication-based Polynomial-based
t = Number of compromises tolerated t = n− 1 t = (n− 1)/3
Type of adversary tolerated mobile eavesdropping mobile halting
ks = Number of players needed to sign n (2n + 1)/3
Rounds of (on-line) communication to sign 1 2l
ku = Number of players needed to update n (2n + 1)/3
Rounds of communication to update 0 2

Fig. 1. Comparing our two schemes. The value n represents the total number of players in the
scheme, and l is a security parameter.

As indicated in the figure, the multiplication-based scheme tolerates an optimal
number of compromises and requires only one round of interaction to sign a message
and no interaction to update a key. These desirable traits come at the cost of requiring a
large number of participants both for signing and updating in addition to tolerating only
eavesdropping adversaries (albeit mobile). In contrast, the polynomial-based scheme
can tolerate more powerful adversaries while requiring a more reasonable number of
honest players for signing and updating. The number of rounds of interactions among
the players, however, is higher than that of the multiplication-based scheme.

The multiplication-based scheme we propose here is simple and efficient. This makes
it an attractive way to achieve forward security with distribution of secrets in the presence
of passive adversaries. It is not clear, however, how to extend the scheme to handle more
powerful adversaries.

The polynomial-based scheme is more involved than the multiplication-based sche-
me. In order to tolerate mobile halting adversaries, we need to be able to generate random
secrets and to reconstruct the secrets when some of the players are halted, in addition
to being able to perform distributed computation involving the secrets without leaking
them. Furthermore, since we assume the presence of mobile adversaries, we also need
to ensure that a player can re-join the group even though it has been previously halted
during crucial periods such as a key update phase.
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Fortunately, active research in the area of secure distributed computation has yielded
powerful techniques that address these issues [4,11,12,14,16]. Consequently, we are able
to apply these existing techniques in a straightforward way to construct a solution that
can cope with these problems and to rigorously prove its security. Moreover, it is also
possible to extend the scheme to cope with malicious adversaries. We sketch the idea of
this extension in the full version of the paper [1].

Overall, our schemes are reasonably efficient. Clearly, compared to the single-user
setting, there are additional costs due to the interactions incurred in sharing secrets.
However, as previously mentioned, with a small amount of pre-computation performed
offline, forward security adds no additional online cost to the threshold (but non-forward-
secure) version of the underlying scheme. (We note that this threshold scheme is of
independent interest.)

Open Problems. The current online cost in round complexity of the signing protocol
of our polynomial-based scheme is 2l rounds of interactions among players, where l is
the security parameter. This cost stems mostly from the need to distributedly multiply
l + 1 values using the distributed multiplication protocol of [12], which can multiply
only two numbers at a time. With some optimization, we can cut down this cost to lg l
rounds in the worst case. However, a secure multi-party protocol that can efficiently
compute a product of more than two numbers can dramatically cut down this signing
cost. A protocol that can do so in one round would be ideal. Alternatively, one could
try to design a new forward-secure signature scheme that lends itself more naturally to
distributed computation. For example, a scheme that requires less computation involving
secret information in a single-user setting will improve the efficienc y of the scheme
dramatically in a distributed setting.

A Word about Time-Stamping.A property similar to that provided by forward security
can also be obtained via a time-stamping service. In particular, the signers could ask a
trusted third party to time-stamp the document and then sign the resulting document
themselves. Relying on such a service, however, may be costly and, more importantly,
can introduce a single point of failure. In terms of the latter shortcoming, we stress
that relying on a trusted third party to time-stamp every single document to be signed
introduces a single point of failure that could be much more vulnerable compared to the
trusted dealer used for key generation. The reason is that key generation is done only
once in the beginning of the entire lifetime of the public key whereas a time-stamping
service is utilized every time a document needs be signed. As a result, an adversary has a
much larger window of opportunity to attack the scheme via the time-stamping service
than via the trusted dealer.

2 Definitions and Notation

In this section, we describe our communication model and the capabilities of different
types of adversaries. We then explain what is meant by a forward-secure threshold
signature scheme, using definitions relating to forward security based heavily on those
provided in [3]. Finally, we formalize our notion of security, and describe notation used
in the remainder of the paper.
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Communication Model. The participants in our scheme include a set of n players who
are connected by a broadcast channel. Additionally, they are capable of private point-
to-point communication over secure channels. (Such channels might be implemented
on the broadcast channel using cryptographic techniques.) Furthermore, we assume that
there exists a trusted dealer during the setup phase and that the players are capable
of both broadcast and point-to-point communication with him. Finally, we work in a
synchronous communication model; that is, all participating players have a common
concept of time and, thus, can send their messages simultaneously in a particular round
of a protocol.

Types of Adversaries. We assume that any adversary attacking our scheme can listen
to all broadcasted information and may compromise the players in some way to learn
their secret information. However, the adversary might work in a variety of contexts. We
categorize the different types of adversaries here. In both categories described below,
the last option listed describes the most powerful adversary, since it always encompasses
the preceding options in that category.

The first category we consider is the power an adversary can have over a compromised
player. We list the options, as outlined in [10]. First, an adversary may be eavesdropping,
meaning that she may learn the secret information of a player but may not affect his
behavior in any way. A more powerful adversary is one that not only can eavesdrop but
can also stop the player from participating in the protocol. We refer to such an adversary
as a halting adversary. Finally, the most powerful notion in this category is a malicious
adversary, who may cause a player to deviate from the protocol in an unrestricted fashion.

The second category which defines an adversarial model describes the manner in
which an adversary selects the set of players to compromise. The first type is a static
adversary, who decides before the protocol begins which set of players to compromise.
An adaptive adversary, on the other hand, may decide “on the fly” which player to corrupt
based on knowledge gained during the run of the protocol. Finally, a mobile adversary is
traditionally one which is not only adaptive, but also may decide to control different sets
of players during different time periods. In this case, there may be no player which has
not been compromised throughout the run of the protocol, but the adversary is limited
to controlling some maximum number of players at any one time.

Forward-Secure Threshold Signature Schemes. A (t; k; n)-threshold signature
scheme is one in which the secret signing key is distributed among a set of n players,
and the generation of any signature requires the cooperation of some size-k subset of
honest players. In addition, any adversary who learns t or fewer shares of the secret key
is unable to forge signatures. It is often the case that k = t + 1; that is, the number of
honest players required for signature generation is exactly one more than the number of
compromised shares that the scheme can tolerate.A threshold scheme has the advantages
of a distributed secret while often not requiring all n players to participate each time a
signature is generated.

In this paper, we are concerned with forward-secure threshold signature schemes.
These schemes make use of the key evolution paradigm, and their operation is divided
into time periods. Throughout the lifetime of the scheme, the public key is fix ed, but the
secret key changes at each time period. As in standard signature schemes, there is a key
generation protocol, a signing protocol, and a verification algorithm. In a forward-secure
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scheme, however, there is an additional component known as the evolution or update
protocol, which specifies how the secret key is to evolve throughout the lifetime of the
scheme. A (t; ks; ku; n) key-evolving threshold signature scheme can tolerate at most t
corrupted players and works as follows.

First, there is a key generation phase. Given a security parameter �, the public and
the secret keys are generated and distributed to the players. This can be accomplished
with a dealer or jointly by the players.

At the start of a time period, an update protocol is executed among any subset of ku

non-corrupted players. The protocol modifies the secret key for the signature scheme.
After the update protocol is executed, each non-corrupted player (whether part of the
subset actively taking part in the update protocol or not) will have a share of the new
secret for that time period.

To generate signatures, a subset of ks players executes the signing protocol, which
generates a signature for a message m using the secret key of the current time period.
The players which sign can be any subset from the set of players not corrupted by
the adversary since the beginning of the previous update period. The signature is a pair
consisting of the current time period and a tag.Assuming that all players behave honestly,
the signature will be accepted as valid by the verification algorithm.

Verification works the same as in a normal digital signature scheme. The verifying
algorithm can be executed by any individual who possesses the public key. It returns
either “Accept” or “Reject” to specify whether a particular signature is valid for a given
message. We say that hj; tagi is a valid signature of m during time period j if performing
the verification algorithm on the message-signature pair returns “Accept.”

Furthermore, in a forward-secure threshold signature scheme, if an adversary learns
more than t shares of the secret signing key for a particular time period γ, it should be
computationally infeasible for her to generate a signature hj; tagi for any message m
such that verifyPK (m; hj; tagi) = 1 and j < γ, where verify is the scheme’s verification
algorithm. That is, the adversary should not gain the ability to generate signatures for
time periods prior to the time the secret key is compromised. Forward-secure schemes
require that the secret key from the previous time period be deleted from the user’s
machine as part of the update protocol. Otherwise, an adversary who breaks into the
user’s machine will learn signing keys from earlier time periods, and hence have the
ability to generate signatures for earlier time periods.

Formalizing The Security of Forward-Secure Threshold Schemes. Below, we
formalize the property of forward security in terms of threshold signature schemes.
The security properties we desire for such a scheme are two-fold. First, as in any other
threshold scheme, no adversary with access to t or fewer shares of the secret key should
be able to forge signatures. Second, in order for the scheme to be forward-secure, no
adversary who gains t+1 or more shares of the secret in a particular time period should be
able to generate signatures for time periods earlier than that one. Our notion of security,
given below, addresses forward security directly and captures threshold security as a
special case.

The adversary, working against a forward-secure threshold signature scheme KETS
= (KETS:keygen; KETS:update; KETS:sign; KETS:verify), functions in three stages:
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the chosen message attack phase (denoted cma), the over-threshold phase (denoted
overthreshold), and the forgery phase (denoted forge).

In the chosen message attack phase, the adversary submits queries to the KETS:sign
protocol on messages of her choice. She is also allowed oracle access to H , the public
hash function used in the KETS:sign protocol. During this phase, she may be breaking
into servers and learning shares of the secret, but we assume that no more than t of them
are compromised during any one time period. Note that if a player is corrupted during
the update protocol, we consider that player to be compromised in both the current time
period and the immediately preceding one. This is a standard assumption in threshold
schemes, since the secret information a player holds during the update protocol includes
the secrets of both of the time periods.

In the over-threshold phase, for a particular time period b, the adversary may learn
shares of the secret key for a set of players of size t+1 or greater. This allows the adversary
to compute the secret key. For simplicity in the simulation, we give the adversary the
entire current state of the system (e.g. actual secret key and all shares of the key during
this phase). If the adversary selects b to be a time period after the very last one, the secret
key is defined to be an empty string, so the adversary learns no secret information.

In the forgery phase, the adversary outputs a message-signature pair (M; hk; tagi)
for some message M and time period k. We consider an adversary successful if M was
not asked as a query in the chosen message attack phase for time k and either of the
following holds: (1) her output is accepted by KETS:verify, and k is earlier than the
time period b in which the adversary entered the over-threshold phase; (2) she is able to
output a message-signature pair accepted by KETS:verify without compromising more
than t players.

Notation. There are n players in our protocols, and the total number of time periods
is denoted by T . The overall public key is denoted PK , and is comprised of l values,
denoted U1; : : : ;Ul. In each time period j, the corresponding l components of the secret
key, denoted by S1;j ; : : : ;Sl;j , are shared among all players. The share of the i-th secret

key value Si;j for time period j held by player � is denoted S
(�)
i;j and the overall secret

information held by player � in that time period (all l values) is denoted SK
(�)
j . In

general, the notation X (�) indicates the share of X held by player �.

3 Forward Security Based on Multiplicative Secret Sharing

Here, we introduce a simple (t; t + 1; t + 1; t + 1)-threshold scheme, which is based
on multiplicative sharing [6,7]. It is forward-secure against eavesdropping adversaries.
When sharing a valueX multiplicatively, each player�holds a random shareX (�) subject
to X � X (1)X (2) � � �X (n) (mod N), for a given modulus N . The main advantage of
this scheme is that no information about the secret is compromised, even in the presence
of up to n − 1 corrupted players (out of n total players). A disadvantage of the scheme,
on the other hand, is that n honest players are required to participate in the signing and
the refreshing protocols.
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protocol MFST-SIG.keygen(κ, T )
1) Dealer picks random, distinct k/2-bit pri-

mes p, q, each congruent to 3 mod 4
2) Dealer sets N ← pq

3) for i = 1, . . . , l do
a) for ρ = 1, . . . , n do

Dealer sets S (ρ)
i,0

R← Z∗
N

b) Dealer sets Si,0 ←
Qn

ρ=1 S (ρ)
i,0

c) Dealer sets Ui ← Si,0
2(T+1)

4) for ρ = 1, . . . , n do
a) Dealer sets

SK (ρ)
0 ← (N, T, 0,S (ρ)

1,0 , . . . , S (ρ)
l,0 )

b) Dealer sends SK (ρ)
0 to player ρ

5) Dealer sets PK ← (N, T,U1, . . . , Ul)
and publishes PK .

protocol MFST-SIG.sign(m, j)
1) for ρ = 1, . . . , n do

a) Player ρ sets R(ρ) R← Z∗
N

b) Player ρ computes

Y (ρ) ← (R(ρ))2
T+1−j

and broadcasts it.

2) All players individually
a) Compute Y ← Y (1)Y (2) · · ·Y (n)

b) Compute c1 . . . cl ← H(j, Y, m)
3) for ρ = 1, . . . , n do

a) Player ρ computes
Z (ρ) ← R(ρ) Ql

i=1(S
(ρ)
i,j )ci

and broadcasts it.

4) All players compute
Z ← Z (1)Z (2) · · ·Z (n)

5) The signature of m is set to 〈j, (Y, Z)〉,
and is made public.

algorithm MFST-SIG.verifyPK (m, σ)
1) Parse σ as 〈j, (Y, Z)〉.
2) if Y ≡ 0, then return 0.

3) c1 . . . cl ← H(j, Y, m)

4) if Z2(T+1−j) ≡ Y ·Ql

i=1 U ci
i ,

then return 1
else return 0

protocol MFST-SIG.update(j)
1) if j = T , then return the empty

string. Otherwise, proceed.

2) for ρ = 1, . . . , n do
a) for i = 1, . . . , l do

Each player ρ computes
S (ρ)

i,j ← (S (ρ)
i,j−1)

2.

b) Each player ρ deletes SK (ρ)
j−1 from his

machine.

Fig. 2. Our threshold signature scheme forward-secure against adaptive eavesdropping adversaries.
The scheme is based on multiplicative secret sharing. With the addition of the refresh protocol
given in Section 3.1, it becomes secure against mobile eavesdropping adversaries. All computation
other than the generation of N is performed modulo N .

3.1 Construction

In Figure 2, we give a version of the scheme that can handle (static and) adaptive ea-
vesdropping adversaries. Here, we point out the interaction of players required in each
portion of the scheme. The key generation protocol is executed by a trusted dealer, who
generates and sends a share of the initial secret key to each player. Key evolution is exe-
cuted by each player individually; it does not require any player interaction. Signing, as
mentioned earlier, requires the participation of (and interaction between) all n players.
Finally, verification of a signature may be performed by any party in possession of the
public key. No interaction of parties is required.
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The scheme described in Figure 2 is secure against adaptive eavesdropping adversa-
ries (although we do not present the proof here). To deal with mobile eavesdropping
adversaries, we simply add a refresh protocol that is executed at the end of every refres-
hing period (which may or may not coincide with the key evolution). This renders any
knowledge about the shares that an adversary may have gained prior to the execution of
the refresh protocol useless, and thus, makes the scheme proactive. To accomplish the
refreshing of shares, each player distributes a sharing of 1 and then multiplies its current
share by the product of all shares received during the refreshment phase (including the
share it generated for itself).

Refresh. Each player i participates in the refresh protocol by picking n random numbers
x
(i)
1 ; : : : ; x

(i)
n such that

Qn
j=1 x

(i)
j � 1 (mod N). Then, for each j between 1 and n, it

sends the value x
(i)
j to player j through a private channel. Once a player j receives these

values from all other players, it computes its share of the new secret by multiplying its
current share by

Qn
i=1 x

(i)
j .

3.2 Security

The correctness of the construction of our MFST-SIG scheme follows from the under-
lying Bellare-Miner scheme. Furthermore, the threshold parameter values can be easily
verified. Below, we state a theorem which relates the forward security of this construc-
tion to that of the underlying signature scheme given in [3]. The proof can be found in
the full version of this paper [1].

Theorem 1. Let MFST-SIG be our (t; t + 1; t + 1; t + 1)-threshold digital signature
scheme making use of the refresh protocol given in Section 3.1. Let FS-SIG be the single-
user digital signature scheme given by Bellare and Miner [3]. Then, MFST-SIG is a
forward-secure threshold digital signature scheme in the presence of mobile eavesdrop-
ping adversaries as long as FS-SIG is a forward-secure signature scheme in the standard
(single-user) sense.

4 Forward Security Based on Polynomial Secret Sharing

In this section, we present PFST-SIG, our (t; 2t + 1; 2t + 1; 3t + 1)-threshold scheme
based on polynomial secret sharing, forward-secure against mobile halting adversaries.
Its main advantage is that it does not require the presence of all players during signing or
key update; only about two thirds of the players are needed in any of these cases. This,
however, comes at the cost of more interaction among the players and a lower threshold in
the total number of faults that we can tolerate in comparison to the scheme in Section 3.
Its construction is shown in Figure 3 and relies on several standard building blocks
tailored for our purposes. These tools are described in Section 4.2. Finally, Section 4.3
gives details about the security of our scheme.
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protocol PFST-SIG.keygen(κ, T )
1) Dealer picks random, distinct k/2-bit pri-

mes p, q, each congruent to 3 mod 4
2) Dealer sets N ← pq

3) for i = 1, . . . , l do

a) Dealer sets Si,0
R← Z∗

N

b) Dealer sets Ui ← Si,0
2(T+1)

c) Dealer uses Shamir-SS over ZN to
create shares S (1)

i,0 , . . . , S (n)
i,0 of Si,0.

4) for ρ = 1, . . . , n do
a) Dealer sets

SK (ρ)
0 ← (N, T, 0,S (ρ)

1,0 , . . . , S (ρ)
l,0 )

b) Dealer sends SK (ρ)
0 to player ρ

5) Dealer sets PK ← (N, T,U1, . . . , Ul)
and publishes PK .

protocol PFST-SIG.sign(m, j)
1) Using Joint-Shamir-RSS ,

players generate random value R ∈ ZN

so that player ρ gets share R(ρ) of R.

2) Players compute Y ← R2(T+1−j)

using Modified-Mult-SS
and their shares of R.

3) Each player ρ computes
c1 . . . cl ← H(j, Y, m).

4) Each player ρ executes Z (ρ) ← R(ρ),
so that Z is initialized to R.

5) for i = 1, . . . , l do
a) if ci = 1, then players

compute Z ← Z · Si,j

using Modified-Mult-SS .

6) The signature of m is set to
〈j, (Y, Z)〉, and is made public.

algorithm PFST-SIG.verifyPK (m, σ)
1) Parse σ as 〈j, (Y, Z)〉).

2) if Y ≡ 0, then return 0.

3) c1 . . . cl ← H(j, Y, m)

4) if Z2(T+1−j) ≡ Y ·Ql

i=1 U ci
i ,

then return 1
else return 0

protocol PFST-SIG.update(j)
1) if j = T , then return the empty

string. Otherwise, proceed.

2) Players compute updated secret key sha-
res S1,j , . . . , Sl,j by squaring the pre-
vious values S1,j−1, . . . , Sl,j−1 using
Modified-Mult-SS .

3) Each player ρ deletes SK (ρ)
j−1.

Fig. 3. Our threshold signature scheme based on polynomial secret sharing is forward-secure
against halting adversaries. All computation other than the generation of N is performed mod N .

4.1 Construction

The key generation protocol is executed by a trusted dealer, who shares the secret key
among all n participants using a modified version of Shamir’s secret sharing as described
in Section 4.2. Each player’s share of the base keySK (�)

0 includes each of his shares of the

Si;0 values (there are l of them), so player �’s secret key is then (N; T; 0;S
(�)
1;0 ; : : : ;S

(�)
l;0 ).

At the beginning of each time period, the evolution of the secret key is accomplished
via the key update protocol in which exactly 2t + 1 players must participate. We call
these 2t + 1 players the active players. (Note the difference from our earlier scheme,
which uses multiplicative-sharing and needs all players to participate.) At the start of the
protocol in time period j, each player who participated in the previous update protocol
has SK

(�)
j−1, i.e. his share of the previous time period’s secret. The new secret key is

computed by squaring the l values in the previous secret key. The players compute this
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new secret key using the Modified-Mult-SS protocol (as described in Section 4.2)
l times. At the end of the protocol, player � holds SK (�)

j , and each player immediately
deletes his share of the secret key from the previous time period. It is important to note
that all “un-halted” players, including those who had been halted by the adversary
during the previous update protocol, will now be given a share of the new secret.

Like the update protocol, signing does not require participation by all of the n
players–only 2t + 1 active players are required. Because it is the threshold version of
Bellare-Miner [3], this protocol is based on a commit-challenge-response framework,
but the various steps are accomplished by the group using subprotocols described in
Section 4.2. In order to distribute the Bellare-Miner scheme [3] across many players,
we made one important modification to the underlying signature protocol, which we
highlight here. In the Bellare-Miner scheme, R is a random element in Z�

N , while here
R is a random value in ZN . As explained in Section 4.2, the signature generated by the
signing algorithm is still valid. The verification portion of our scheme is identical to that
of the Bellare-Miner scheme, because verification is an algorithm which requires only
one party.

4.2 Building Blocks

Shamir-SS. Shamir’s standard secret sharing protocol [16] operates over a finite field.
A dealer chooses a secret value a0 and a random polynomial p(x) of degree k whose
coefficients are denoted a0 to ak. He then sets the coefficient of the constant term to be
the secret a0 and sends to a shareholder i the value of p(i). The proof of the privacy
of this scheme is typically based on the fact that the computations are performed over
a finite field. However, the computations in our scheme are performed over ZN , which
is not a field. Nevertheless, we can still guarantee that the system has a unique solution
over ZN by ensuring that the determinant of the Vandermonde matrix is relatively prime
to N , and therefore, the matrix is invertible modulo N .

First, we require that the number of players in the protocol must be less than both
p and q. Second, the share of the protocol given to player i must be f(i). This way,
none of the xi’s in the shares used to reconstruct contain a factor of p or q. Next, we
recognize that all elements in the k + 1 � k Vandermonde matrix are relatively prime
to N since none of them contains a factor of p or q. Finally, the determinant of the
Vandermonde matrix is given by

Q

1�j<k�k+1 (xik − xij ) mod N , and therefore the
determinant must be relatively prime to N . Note that a similar approach has been taken
by Shoup [17] when sharing an RSA key over Z�(N).

Modified-Mult-SS . In our scheme, we need the ability to jointly multiply two
distributed secrets. We use such a protocol in several places in our scheme, namely,
during the generation of signatures and also during the updates of the secret key.

We formulate the problem as follows: two secrets � and � are shared among n
players via degree-t polynomials f�(x) and f�(x), respectively, so that f�(0) = � and
f�(0) = �.The goal is for the players to jointly compute a sharing of a new polynomialG,
such that G(0) = ��. Several previous works have addressed this problem, starting with
the observation by [4] that simple multiplication by player Pi of his individual secrets
f�(i) and f�(i) determines a non-random polynomial with degree 2t. We describe a
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modified version of a protocol proposed in [12], which describes a step accomplishing
degree-reduction and randomization in a model with only eavesdropping adversaries.2

In contrast, our model allows halting adversaries.

The degree reduction and randomization step in [12] assumes that the 2t+1 participa-
ting players are those with indices 1; 2; :::; 2t+1, and therefore make use of precomputed
constants in this step. However, in our model, the adversary may arbitrarily choose which
players to halt, so we cannot assume that the participants are a particular subset of play-
ers. Instead, during the run of the protocol, we can jointly determine which players are
available to participate. To do this, every player Pi who is functioning and was not halted
during the most recent update phase will broadcast an “I’m alive” message. From the
set of those that respond, we will select the players with the 2t + 1 smallest indices to
actually perform the computation. Then, the constants corresponding to that subset of
players can be computed efficiently , in time O(2t + 1).

We point out that, if at any time during the execution of the Modified-Mult-SS
protocol, a participating player is halted by the adversary, this will be noticed by at
least one other participant, and the protocol can be aborted and restarted with a diffe-
rent subset of (currently) participating players. Furthermore, the multiplication protocol
will never need to be restarted more than t times, due to the bound on the number
of players the adversary can halt during one time period. In addition, in the case of a
Modified-Mult-SS restart, we stress that the entire update or signature protocol
which is using the Modified-Mult-SS protocol need not be restarted. This is true
because at each multiplication step of these protocols, we ensure that all n players are
sent shares of the input of the next step. That is, when a new set of 2t + 1 players is
selected during the restart of the multiplication protocol, we are guaranteed to find a
sufficient set of players which possess the required input information for the multipli-
cation. In particular, every player, whether active in the key update protocol or not, will
be sent enough information to allow it to compute its share of the new secret.

Joint-Shamir-RSS . Standard joint-random secret-sharing protocols such as that
proposed in [14] and [11] allow a group of players to jointly generate a secret without a
trusted dealer. In the instantiation used in our scheme, each participant chooses a random
secret and a polynomial to share the secret as in Shamir’s secret sharing scheme. Each
participant then plays the role of a dealer by distributing its secret using Shamir’s secret
sharing scheme. The jointly defined secret value is then the sum of the secrets of all
participants.3 Furthermore, we require that the shares from player Pi be dealt out in
one broadcast message, with the share for each player Pj encrypted under Pj’s public
key. This ensures an “atomic” sharing, so that, regardless of when the adversary chooses
to halt players, all players receive shares from the same subset of players. If no such
message is broadcast from a particular player Pj , he is assumed to be halted, and the
sum of shares for any individual player will clearly not include a share from Pj .

2 A second protocol is given in [12] which requires players to commit to their input shares, so that
it tolerates even malicious adversaries. In our model, however, we do not need this functionality,
so we have modified their simpler protocol to meet our needs.

3 Note that this scheme is secure for our purpose since only halting adversaries are allowed. It is
not secure, however, under attacks by malicious adversaries as pointed out in [11].
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Our scheme requires that the jointly created random value R belongs in Z�
N , but

clearly, this protocol does not provide such a guarantee. However, the probability that
R, which is known to be in ZN , is not in Z�

N is negligible. Specifically , the numbers in
ZN which are not in Z�

N are precisely those numbers which are multiples of p and q.
There are approximately p + q of these, out of a total of pq values in ZN . Therefore,
the probability of finding an R which is in ZN but not Z�

N is approximately 1
q + 1

p , a
negligible probability.

4.3 Security

In this section, we give several statements about the security of our PFST-SIG scheme.
Proofs of the statements are omitted here and can be found in the full version of this pa-
per [1]. First, Lemma 1 demonstrates the correctness of our construction. Then, Lemma 2
states the threshold-related parameters of our scheme. Finally, Theorem 2 relates the for-
ward security of our construction to that of underlying signature scheme given in [3]. It
shows that, as long as we believe that the Bellare-Miner scheme is secure, any adversary
working against our scheme would have only a negligible probability of success forging
a signature with respect to some time period prior to that in which it gets the secret key.

Lemma 1. Let PK = (N; T;U1; : : : ;Ul) and SK
(j)
0 = (N; T; 0;S

(j)
1;0 ; : : : ;S

(j)
l;0 ) (j =

1; : : : ; n) be the public key and player j’s secret key generated by PFST-SIG:keygen,
respectively. Let hj; (Y; Z)i be a signature generated by PFST-SIG:sign on input m
when all n players participated in the distributed protocol. Then PFST-SIG:verifyPK (m;
hj; (Y; Z)i) = 1

Lemma 2. PFST-SIG is a key-evolving (t; ks; ku; n)-threshold digital signature scheme
for n = 3t+1, ks = 2t+1, ku = 2t+1. That is, it tolerates up to t halting faults when
the total number of players n = 3t + 1, requires the involvement of 2t + 1 players to
evolve the secret key, and requires the involvement of 2t + 1 players to generate a valid
signature.

Theorem 2. Let PFST-SIG be our key-evolving (t; 2t + 1; 2t + 1; 3t + 1)-threshold
digital signature scheme and let FS-SIG be the (single-user) digital signature scheme
given in [3]. Then, PFST-SIG is a forward-secure threshold digital signature scheme
in the presence of halting adversaries as long as FS-SIG is a forward-secure signature
scheme in the standard (single-user) sense.

5 Discussion

Cost Analysis and Comparisons. Distributed computation can be somewhat costly,
but our signature schemes are quite efficient compared to the forward-secure single-user
scheme of [3]. For example, in the multiplicative-sharing based scheme, the only added
cost for the key generation protocol, which uses a trusted dealer, is the actual sharing
of the secret. The update protocol is also very efficient, requiring l local multiplications
and no interactions. Finally, the signing protocol requires only one round of interaction.
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It is clear that our multiplicative-sharing-based scheme is very simple, efficient, and
highly resilient, i.e. it can protect the secret even in the presence of up to n−1 corrupted
players where n is the number of players. Furthermore, the costs of signing and updating
are very low. The price of this simplicity and low overhead, however, is that the scheme
can only cope with eavesdropping adversaries.

In contrast, the proposed scheme based on polynomial secret sharing can tolerate the
more powerful halting adversaries, although it can tolerate fewer of them. It is also not as
efficient as the multiplicative-sharing-based scheme. We can improve the performance
of this scheme, however, by speeding up the communication required in multiplication.
In particular, during the update, we can perform all l computations in parallel, and thus,
use only one instantiation of the multiplication protocol. Signing can also be expedited
by moving some of the computation off-line. Specifically , since the generation of the
random value R and the computation of the commitment Y do not depend on the message
or the current time period, they can be precomputed. This is a significant improvement,
since the computation of Y is costly, given its (T+1)

2 squarings on average. With this
optimization, the on-line signing costs of our new threshold scheme are the same as those
in [3]. We can improve upon this slightly, by multiplying pairs of numbers together, and
using their product as input into the next round of multiplication. In this way, on average
we still perform l

2 multiplications, but only use lg l
2 rounds of communication among

players. The verification costs of our two schemes and the base scheme are identical,
since the verifying algorithm is the same in all cases.

In terms of space efficienc y, the sizes of the public keys in our two schemes are
identical to that of the Bellare-Miner scheme. It is not surprising that our schemes
require a larger amount of secret key memory overall, since the secret is distributed
among a group of players. However, the secret key memory required per player is the
same in both our schemes and the base scheme.

Interestingly, in our schemes, the size of the actual secret (as opposed to the size of the
set of shares of the secret) is not any larger than that of the base scheme. This indicates
that actual storage space required for players’ shares of the secret in our schemes is
the same as that required for the related threshold schemes without forward security.
Therefore, with these improvements, adding forward security to the schemes imposes
no additional online costs.
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Abstract. Based on the quadratic residuosity assumption we present
a non-interactive crypto-computing protocol for the greater-than func-
tion, i.e., a non-interactive procedure between two parties such that only
the relation of the parties’ inputs is revealed. In comparison to previous
solutions our protocol reduces the number of modular multiplications sig-
nificantly. We also discuss applications to conditional oblivious transfer,
private bidding and the millionaires’ problem.

1 Introduction

Yao’s famous millionaires’ problem [19,20] consists of two millionaires trying to
compare their riches but without disclosing their assets. General secure two-
party protocols computing the greater-than function GT(x, y) = [x > y] provide
a solution to this problem [11,20,10].1 Unfortunately, these protocols are rather
inefficient. Recently, Boudot et al. [2] proposed a quite efficient protocol for the
socialist millionaires’ problem in which both parties test their inputs for equality
only, i.e., compute the function EQ(x, y) = [x = y] securely. This scheme needs
a (quite large, but) constant number of modular exponentiations, and improves
the protocol of Jakobsson and Yung [15] requiring Θ(k) modular exponentiations
for security parameter k.

Related to the millionaires’ problem is the problem of non-interactive crypto-
computing for the greater-than function which we address in this paper. A non-
interactive crypto-computing protocol [18] is a two-party protocol where the
client encrypts his input y and sends the encryption to the server. The server
inattentively evaluates a secret circuit C on this encrypted input and returns it
to the client. The client extracts the circuit’s output C(y) but learns nothing
more about the circuit C. In the case of the millionaires’ problem think of the
server’s circuit as computing the greater-than function with partially fixed input:
1 The predicate [x > y] stands for 1 if x > y and 0 otherwise —interpreting bit strings

x, y as numbers.

D. Naccache (Ed.): CT-RSA 2001, LNCS 2020, pp. 457–471, 2001.
c© Springer-Verlag Berlin Heidelberg 2001
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C(·) = GT(x, ·). Keeping the circuit secret implies that nothing about the input
x except for [x > y] is leaked.

As an application of such non-interactive crypto-computing consider a com-
pany that offers groceries or airline tickets over the Internet. The company tries
to optimize its profit but is willing to sell an airline ticket above the breakeven
point y. Hence, they ask the customer how much he would pay for the ticket,
and if the customer’s offer x exceeds y then they clinch the deal. This, of course,
requires that y is hidden or else the customer will simply set x to y + 1. On the
other hand, the customer, too, would like to keep his offer x secret unless the
deal is made and he has to reveal x anyway.

Using a non-interactive crypto-computing protocol the company plays the
client and publishes its bound y by encrypting it. The customer computes the
circuit for the greater-than function with his bid x and returns it to the company
(along with a commitment of x). The company decrypts and verifies that x > y
and, if so, declares that it sells and asks the customer to reveal his bid and
to decommit. If the customer then refuses or decommits incorrectly then the
company may blacklist him, at least for a certain time. Or, the customer is
obliged to attach a signature to the commitment of x which binds him to his
offer in case of a dispute.

In the example above, a ‘clever’ customer could simply find out the corpora-
tion’s bound y and buy for x = y + 1 by bidding 1, 2, 3, . . . until the company
announces the deal. The most obvious countermeasure against such a behavior
is to allow the customer to bid only once within a certain period (say, a couple of
minutes for stocks, a week for flight tickets, etc). Alternatively, the offerer may
raise the bound y with each failing bid of the customer. Details depend on the
application.

General non-interactive crypto-computing protocols for various classes of cir-
cuits appear in [18,1]. If one applies the general result in [18,1] to compute
the GT-function with the straightforward circuit (this circuit is also optimal
when applying [18,1], as far as we know) and using the quadratic-residuosity
bit-encryption of Goldwasser and Micali (see [12] or Section 2.1), then this re-
quires at least n4 modular multiplications in ZZ∗

N for inputs x, y ∈ {0, 1}n. The
general solutions in [5,16,4] involve Ω(n) modular exponentations with constants
larger than 3 (and on the average therefore at least 4.5kn multiplications2 for
security parameter k). Hence, as opposed to [18,1] and, as we will see, to our
solution, the computational complexity of the latter protocols depends on the
length of security parameter and grows whenever we switch to larger k. For these
protocols, k = 160 seems to be an appropriate choice today.

In contrast to the general approach in [18] our starting point is the logic
formula describing the GT-function. As we will see, this formula can be con-
verted into a protocol that utilizes the homomorphic operations supported by
the Goldwasser-Micali system. For instance, we take advantage of the AND-

2 Neglecting preprocessing. Yet, preprocessing is not always applicable in these pro-
tocols. Futhermore, Naor et al. [16] accomplish the constant 3 in the random oracle
model only; otherwise the bound becomes 5.
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homomorphic variant of the Goldwaaser-Micali scheme presented in [18]. To
best of our knowledge this is the first application of this AND-homomorphic
encryption scheme.

Our protocol takes at most 6nλ modular multiplications in ZZ∗
N for the server

and 2n for the client (once an RSA-modulus N has been generated and neglecting
the less expensive effort for GM-decoding), where n is the bit length of each input
x, y and λ determines the error of the protocol (the error is 5n · 2−λ). Note that
the number of multiplications in our protocol does not depend on k, but rather
on the input length n and the absolute error parameter λ.

Allowing a small error of, say, 2−40, for inputs of 15 bits our solution requires
about 4, 000 multiplications for the server instead of 154 ≈ 50, 000 as in [18,1]
and ≥ 10, 800 for [5,16,4] for k = 160. If we have 20-bit inputs (which occurs if
we compare time data, for instance) then for error 2−40 our protocol needs 6, 000
multiplications for the server compared to 204 = 160, 000 in [18,1] or ≥ 14, 400
in [5,16,4].

Finally, we discuss consequences to related protocols. The first observa-
tion is that our protocol can also be applied to functions that reduce to the
greater-than function, e.g., any comparison function that can be described by
COMPa,b(x, y) = [ax+b > y] for public constants a, b. In particular, the greater-
or-equal-to function equals GT(x + 1, y). This possibly increases the number of
multiplications since the bit size of ax + b might be larger than n bits, yet the
number of multiplications in our protocol grows linear with the bit size for fixed
error level.

Another interesting application of our non-interactive protocols are condi-
tional oblivious transfer protocols. Introduced by Di Crescenzo et al. [7], with
such a protocol, instead of obliviously transferring a bit b to a receiver with pro-
bability 1/2, the sender transfers the bit given that a predicate over additional
private inputs x (of the sender) and y (of the receiver) is satisfied. We devise
such a protocol for the greater-than predicate that, in contrast to the solution
in [7], keeps the server’s input x secret. That is, the receiver learns the predicate
[x > y] but nothing else about x, and moreover gets the bit b if and only if x > y.
The sender, on the other side, does not learn anyhing about y and in particular
does not come to know if b has been transferred. It is worth mentioning that we
are not aware if the general non-interactive crypto-computing protocol in [18]
for the greater-than function can be used to derive such an oblivious transfer
protocol. See Section 4 for details.

As for further implications, we have already mentioned the connection to the
millionaires’ problem and we elaborate further in Section 4.2. Aiming at a similar
problem, we show how to construct improved private-bidding protocols with an
oblivious third party [3]. These are protocols where two parties compare their
bids. For this, a third party helps to compute the result and thereby guarantees
fairness. Yet, the third party remains oblivious about the outcome of the bidding.
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2 Preliminaries

We denote by ZZN the ring of intergers modulo N and by ZZ∗
N the elements

in ZZN relatively prime to N . Let ZZ∗
N (+1) denote the subset of ZZ∗

N that
contains all elements with Jacobi symbol +1. By QRN ⊂ ZZ∗

N (+1) and QNRN ⊂
ZZ∗

N (+1) we refer to the quadratic residues and non-residues, respectively. See
[14] for number-theoretic background.

In the sequel we write Enc(b, r) for the output of the encryption algorithm
Enc for bit b and randomness r. Let Enc(b) denote the corrresponding random
variable, and Enc0(b) a fixed sample from Enc(b) (where the random string r is
irrelevant to the context). We write c ← Enc(b) for the process of encrypting a
bit b randomly and assigning the result to c.

We sometimes switch between bit strings and numbers in a straightforward
way. That is, for a bit string x = x1 . . . xn we associate the number

∑
xi2i−1 and

vice versa. In particular, xn is the most significant bit and x1 the least significant
one.

2.1 Goldwasser-Micali Encryption Scheme

In [12] Goldwasser and Micali introduced the notion of semantic security for
encryption schemes and presented such a semantically-secure scheme based on
the quadratic residuosity assumption. Namely, the public key consists of an
RSA-modulus N = pq of two equally large primes p, q, and a quadratic non-
residue z ∈ ZZ∗

N (+1). To encrypt a bit b choose a random r ∈ ZZ∗
N and set

Enc(b, r) := zbr2 mod N . If and only if b = 1 then this is a quadratic non-residue.
And this can be recognized efficiently given the secret key, i.e., the factorization
p, q of N . In contrast, deciding quadratic residuosity without knowledge of the
factorization is believed to be hard, i.e., the quadratic-residuosity-assumption
says that infeasible to significantly distinguish between 0- and 1-encryptions
given only N and z.

Let us recall some useful facts about the GM-encryption scheme. First,
the GM-scheme has nice homomorphic properties which allow to compute the
exclusive-or of two encrypted bits and to flip an encrypted bit. Second, it is
rerandomizable, i.e., given a ciphertext of an unknown bit b and the public key
only, one can generate a uniformly distributed ciphertext of b.

– xor-property: Enc0(b) · Enc0(b′) = Enc0(b⊕ b′) mod N
– not-property: Enc0(b) · z = Enc0(b⊕ 1) mod N
– rerandomization: Rand(Enc0(b)) := Enc0(b) · Enc(0) mod N is identically

distributed to Enc(b)

Another important property of the GM-system is that it can be turned into
an AND-homomorphic one over {0, 1} (cf. [18]): Let k be a security parameter
and λ a sufficiently large function such that 2−λ is small enough; we will discuss
the choice of λ afterwards. To encrypt a bit b we encode b = 1 as a sequence of
λ random quadratic residues (i.e., as λ GM-encryptions Enc(0)), and b = 0 as a
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sequence of λ random elements from ZZ∗
N (+1) (i.e., as λ GM-encryptions Enc(ai)

for random bits a1, . . . , aλ(k)). We denote this encryption algorithm by EncAND

and adopt the aforementioned notations EncAND(b),EncAND(b, r),EncAND
0 (b).

The decryption process takes a sequence of λ elements from ZZ∗
N (+1) and

returns 1 if all elements are quadratic residues, and 0 otherwise (i.e., if there
is a quadratic non-residue among those elements). Note that there is a small
probability of 2−λ that a 0-bit is encrypted as a sequence of λ quadratic residues,
and thus that decryption does not give the desired result. Choosing λ sufficiently
large this almost never happens. In practice setting λ to 40 or 50 should be
sufficient.

Next we explain how EncAND supports the AND-operation (with some small
error). Given two encryptions EncAND

0 (b) and EncAND
0 (b′) of bits b, b′ we claim

that the componentwise product modN is an encryption of b ∧ b′ (except with
error 2−λ over the choice of the randomness in the encryption process). Clearly,
this is true if at least one of the sequences represents a 1-encryption, because
multiplying this sequence with the other one does not change the quadratic
character of the elements in the other sequence. If b = b′ = 0, though, the
quadratic non-residues in both sequences can accidentally cancel out. But again
this happens with probability 2−λ only.

A crucial observation for our protocol is that we can embed a basic GM-
encryption into an AND-homomorphic one. This embedding is done as follows:
given Enc0(b) first flip the encapsulated bit b by multiplying the encryption with
z. Then, generate a sequence of λ basic encryptions by letting the i-th sample be
either Rand(z Enc0(b)) or Enc(0) with probability 1/2. If b = 1, and therefore
z Enc0(b) ∈ QRN , then the result is identically distributed to EncAND(1). For
b = 0 we generate a sequence of random quadratic residues and random non-
residues (since z Enc0(b) ∈ QNRN ), identically distributed to EncAND(0).

2.2 Non-interactive Crypto-Computing

We have already outlined the problem of non-interactive crypto-computing pro-
tocols in the introduction. We give a very succinct description; for a more formal
definition see [18]. Also, our definition merely deals with honest-but-curious par-
ties, i.e., parties that follow the prescribed program but try to gain advantage
from listening. The general case of dishonest parties is discussed afterwards.

Recall that a non-interactive crypto-computing protocol consists of two par-
ties, the client (with input y) and the server (possessing a circuit C), such that
the client sends a single message to the server and receives a single message as
reply. The following holds:

– completeness: for any input y and any circuit C the honest client is able to
extract the value C(y) from the answer of the honest server.

– (computational) privacy for the client: the client’s message for input y is not
significantly distinguishable from a message generated for any other input
y′ of the same length
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– (perfect) privacy for the server: the distribution of the server’s answer de-
pends only on the circuit’s output C(y) (where y is the message that the
honest client sends encrypted).

A dishonest client could cheat by sending incorrect encryptions or system
parameters. In case of the Goldwasser-Micali scheme the client should therefore
send also a non-interactive proof of correctness for the modulus N and the non-
redisue z; in practice these parameters are likely to be certified by some trusted
authority anyway, and an additional correctness proof is redundant. Moreover, it
is easy to see that, once the parameters’ correctness is approved, the server can
check that the client sends n encrypted bits by verifying that the n transmitted
elements belong to ZZ∗

N (+1).
As for dishonest servers, Sander et al. [18] suggest that the server publishes

a pair (y0, C(y0)). The client may now ask about several input pairs where each
pair consists of encryptions of y and y0 in random order. It can then be checked
that the server answers consistently. Yet, the client must now also prove that
each pair equals encryptions of y, y0 for the same y.

We stress that in some settings either party does not seem to gain any noti-
ceable advantage by deviating from the protocol. Recall the flight ticket example.
As explained, the company as the client in the crypto-computing protocol es-
sentially cannot cheat if it uses certified system parameters. And, since it wants
to sell its product, it is likely to announce the deal if it later decrypts and finds
out that the bid is high enough; waiting for better offers from other customers
and delaying the deal might cost more than they would earn by this, namely
credibility. Similarly, if the customer sends garbage the company may blacklist
him.

3 Non-interactive Crypto-Computing for Comparison

In this section we present our protocol for non-interactively computing the
greater-than function. As discussed before, we only deal with the case of honest-
but-curious client and server. Clearly, a number x is greater than another number
y if, for some i, we have xi = 1 and yi = 0 and xj = yj for all more significant
bits for j = i + 1, . . . , n. More formally,

[x > y] :⇐⇒
n∨

i=1

(
xi ∧ ¬yi ∧

n∧
j=i+1

(xj = yj)
)

(1)

Note that xj = yj can be written as ¬(xj ⊕ yj) and that both operations ⊕,¬
can be easily implemented for the basic GM-scheme.

The disjunction in Expression (1) is an exclusive OR, i.e., only one impli-
cant is satisfiable simultanously. This suggests the following strategy to compute
the formula: we process each implicant individually and compute xi ∧ ¬yi ∧∧n

j=i+1(xj = yj) using the basic and the AND-homomorphic GM-system, res-
pectively, for ⊕,¬ and AND. This is done by performing the computations for
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xj = yj and ¬yi with the basic GM-encryption scheme, and by embedding the
results and the encryption for xi into the extended system and computing the
AND. Then we permute the resulting n encryptions of the implicants and output
them. If and only if [x > y] then there exists a random AND-GM-encryption
of 1, and this appears at a random position. Otherwise we have a sequence of
random 0-encryptions. The protocol is given in Figure 3.3

In Figure 3 we reduce the number of multiplications. This is done by first
noting that one can re-use the encryption for

∧n
j=i+1(xj = yj) from stage i for

stage i − 1. That is, for i = n, n − 1, . . . , 1 we compute and store the product
PAND

i representing
∧n

j=i+1(xj = yj). Then we merely compute the AND of this
stored encryptions with the ciphertext for xi = yi. Moreover, if we know x
explicitly then we can compute xi = yi directly by Enc0(yi) · z1−xi instead of
first encrypting x and then computing Enc0(yi) · Enc0(xi). Finally, we remark
that we only need to rerandomize one of the encryptions of XAND

i , Ȳ AND
i and

PAND
i in order to rerandomize each product TAND

i = XAND
i · Ȳ AND

i · PAND
i . In

Figure 3 this is done for XAND
i , whereas for Ȳ AND

i and EAND
i we choose the fixed

quadratic residue 1 ∈ QRN instead of a random GM-encryption Enc(0) when
embedding.

Some easy but important observations follow:

Lemma 1. For inputs x, y ∈ {0, 1}n and security and error parameter k and λ
the protocol in Figure 3 with the optimized server algorithm in Figure 3 satisfies:

– for x ≤ y the T AND
i are all random AND-encryptions EncAND(0) of 0.

– for x > y there exists exactly one uniformly distributed i for which T AND
i

represents a random 1-encryption EncAND(1); for all other j 6= i we have
random 0-encryptions EncAND(0) for T AND

j .
– the evaluation takes only 6nλ multiplications in ZZ∗

N for the server in the
worst case, and 5nλ multiplications on the average (over the random choices
in the encryption process).

– the error is at most 5n · 2−λ.

We thus derive the following result:

Theorem 1. The protocol in Figure 3 and Figure 3 constitutes a non-interactive
crypto-computing protocol for GT(x, y) = [x > y] such that for inputs x, y ∈
{0, 1}n and security parameter k and error parameter λ the client has to perform
2n modular multiplications (plus the number of multiplications to generate a GM-
instance N, z for security parameter k in a preprocessing step) and the server
has to carry out at most 6nλ multiplications. The error of the protocol is at most
5n · 2−λ.

3 We remark that the fact that we do not have to compute the disjunction explicitly
supports our improved protocol. Otherwise we would have to compute the OR of
AND-encryptions which we do not know how to do without blowing up the number
of multiplications like in [18].
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security parameter k, error parameter λ
Client’s algorithm I:

– generate GM-instance N, z for security parameter k
– encrypt input y bit-wise: Yi ← Enc(yi) for i = 1, . . . , n
– send N, z, Y1, . . . , Yn to server

Server’s algorithm:

– receive N, z, Y1, . . . , Yn from client
– encrypt input x bit-wise: Xi ← Enc(xi) for i = 1, . . . , n
– compute encryptions of ei = [xi = yi] = ¬(xi ⊕ yi):

for all i = 1, . . . , n compute Ei = Yi ·Xi · z mod N
– embed Ei into extended encryptions EAND

i :
for all i = 1, . . . , n set EAND

i := (EAND
i,1 , . . . , EAND

i,λ ), where EAND
i,j ← Rand(zEi)

or Enc(0), the choice made by a fair coin flip.
– embed encryptions Xi and Ȳi of xi and ¬yi into encryptions XAND

i and Ȳ AND
i :

for all i = 1, . . . , n set XAND
i := (XAND

i,1 , . . . , XAND
i,λ ), where XAND

i,j ← Rand(zX)
or Enc(0), the choice made by a fair coin flip.
for all i = 1, . . . , n set Ȳ AND

i := (Ȳ AND
i,1 , . . . , Ȳ AND

i,λ ), where Ȳ AND
i,j ← Rand(Yi) or

Enc(0), the choice made by a fair coin flip.
– compute terms ti := [xi ∧ ¬yi ∧ ∧n

j=i+1 xj = yj ]:
for i = 1, . . . , n let TAND

i = XAND
i · Ȳ AND

i ·∏n
j=i+1 EAND

j mod N

– randomly permute TAND
1 , . . . , TAND

n and return them to the client

Client’s algorithm II:

– receive n sequences of λ elements from ZZ∗
N from server

– if there exists a sequence of λ quadratic residues then output ‘x > y’, else output
‘x ≤ y’.

Fig. 1. Non-Interactive Crypto-Computing for GT

4 Applications

In the previous section, we have shown how to compute the function GT(x, y) =
[x > y] with few modular multiplications. Here, we discuss several applications
of this result.

4.1 Conditional Oblivious Transfer

With an oblivious transfer protocol [17] a sender hands with probability 1/2 a
secret bit to a receiver such that the sender remains oblivious about the fact
whether the receiver has actually learned the bit or not. As for a conditional
oblivious transfer [7], the random choice is replaced by a predicate evaluation
depending on some additional private inputs of both parties. For example, in [7]
such a protocol has been used to derive a time-release encryption scheme where
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security parameter k, error parameter λ
Optimized server algorithm:

– receive N, z, Y1, . . . , Yn from client
– embed input x into extended encryptions XAND

i :
for all i = 1, . . . , n let XAND

i := (XAND
i,1 , . . . , XAND

i,λ ), where XAND
i,j ← Enc(z1−xi)

or Enc(0), the choice made by a fair coin flip.
– embed [xi = yi] into extended encryptions EAND

i :
for all i = 1, . . . , n set EAND

i := (EAND
i,1 , . . . , EAND

i,λ ), where EAND
i,j := Yj · zxi mod

N or 1 ∈ QRN , the choice made by a fair coin flip.
– compute extended encryptions PAND

i of pi =
∧n

j=i+1[xj = yj ]:
for i = n− 1, . . . , 1 let PAND

i := PAND
i+1 · EAND

i+1 mod N where PAND
n := (1, . . . , 1).

– embed encryptions Ȳi of ¬yi into encryptions Ȳ AND
i :

for all i = 1, . . . , n set Ȳ AND
i := (Ȳ AND

i,1 , . . . , Ȳ AND
i,λ ), where Ȳ AND

i,j = Yi or 1 ∈
QRN , the choice made by a fair coin flip.

– compute terms ti := [xi ∧ ¬yi ∧ ∧n
j=i+1[xj = yj ]:

for i = 1, . . . , n let TAND
i := XAND

i · Ȳ AND
i · PAND

i mod N
– randomly permute TAND

1 , . . . , TAND
n and return them to the client

Fig. 2. Optimized Non-Interactive Crypto-Computing for GT

a trusted party releases a secret only if a predetermined release time has expired.
In this case, the predicate is given by the greater-than function and the private
inputs are the release time and the current time, respectively.

Since the current time is publicly known anyway in the setting of time-release
encryption, the conditional oblivious transfer scheme in [7] does not hide the
private input of the sender. In some settings, though, this information may be
confidential and should be kept secret. Our non-interactive crypto-computing
protocol provides a solution. We stress that we do not know how to construct
such a scheme with the non-interactive crypto-computing protocol from [18] for
the greater-than function.

The outset is as follows. The sender possesses a bit b which is supposed to
be transferred to the receiver if and only if the sender’s input x is greater than
the receiver’s input y. The receiver generates an instance of the GM-system and
sends N, z (together with a proof of correctness, if necessary) and a bit-wise
GM-encryption of his private input y to the sender. Then the sender computes
Formula (1) on these encryptions and his private input x. Recall that this eva-
luation yields n sequences of λ bits for x, y ∈ {0, 1}n. Exactly if x > y then there
is a sequence with quadratic residues exclusively; otherwise all sequences contain
random entries from ZZ∗

N (+1). Now, for each i = 1, . . . , n the sender splits the
bit b to be transferred into λ pieces bi,1, . . . , bi,λ with b = bi,1 ⊕ . . . ⊕ bi,λ. In
addition to the TAND

i ’s send (zTAND
i,j )bi,j · r2

i,j mod N for random ri,j ’s. That is,
the receiver also gets the bit bi,j if TAND

i,j is a quadratic residue, and a uniformly
distributed quadratic residue if TAND

i,j ∈ QNRN (and therefore no information
about bi,j). In other words, the receiver learns all random pieces bi,1, . . . , bi,λ for
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some i —and thus b— if x > y, and lacks at least one random piece for each i
if x ≤ y (unless an encryption error occurs, which happens with probability at
most 5n · 2−λ).

Bottom line, if x > y then the receiver gets to know the sender’s bit b, whereas
for x ≤ y the bit b is statistically hidden from the receiver. Furthermore, the
receiver does not learn anything about the sender’s private input x except the
predicate value [x > y]. On the other hand, the sender gets only an encryption
of the receiver’s input y and does not know if b has been transferred. Hence, this
is a conditional oblivious transfer protocol that keeps the private inputs secret.

4.2 Private Bidding and the Millionaires’ Problem

In a private bidding protocol [3] two parties A and B compare their inputs
x, y with the support of an active third party T . Although the third party T is
trusted to carry out all computations corectly it should remain oblivious about
the actual outcome of the comparison. Furthermore, T does not collude with
either of the other parties. Note that such a bidding protocol immediately gives
a fair solution to the millionaires’ problem in presence of an active third party.

An efficient protocol for private bidding has been presented in [3]. The so-
lution there requires the trusted party to compute n exponentiations, whereas
A and B have to compute n encryptions. Yet, for technical reasons, the basic
GM-system is not applicable, and the suggested homomorphic schemes need at
least one exponentiation for each encryption. Also, the protocol there requires
potentially stronger assumptions than the quadratic residuosity assumption.

Security of a bidding protocol in [3] is defined in terms of secure function eva-
luation against non-adaptive adversaries [6,9]. Namely, an adversary corrupting
at most one of the parties at the outset of the protocol does not learn anything
about the other parties’ inputs beyond what the compromised party should learn
about the outcome of the bidding, i.e., for corrupted A or B the adversary merely
learns the function value GT(x, y) and for compomised T it learns nothing about
x, y at all. It is assumed that all parties are mutually connected via private and
authenticated channels; this can be achieved using appropriate cryptographic
primitives. A formal definition of secure bidding is omitted from this version.

The Honest-But-Curious Case. We first discuss the idea of our protocol
in the honest-but-curious case. Also, to simplify, suppose that always x 6= y.
The trusted party T publishes a GM-instantiation N, z such that neither A nor
B knows the factorization of N . Party A sends an encryption of his input x
under N, z to B who answers with an encryption of y. Then one party, say A,
sends a random bit b and two random strings that are used to compute the
non-interactive crypto-computing evaluation procedure on both encryptions of
x, y; one time the parties inattentively compute GT(x, y) and the other time
they evaluate GT(y, x). Note that both parties obtain the same strings by this
since they use the same encryptions and identical random strings. Each party
sends both strings in random order according to bit b to the third party. The
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third party decrypts the strings if and only if it receives the same strings from A
and B. T computes the decision bits [x > y], [y > x] for b = 0 or [y > x], [x > y]
for b = 1 —but does not know which of the cases has occured— and returns the
bits to each party. A and B can then decide whether x > y or y < x.

Let us briefly discuss that this protocol is secure against honest-but-curious
adversaries. First note that if A and B are honest then T learns nothing (in a
statistical sense) about x and y. The reason is that T merely gets random answers
of the non-interactive crypto-computing protocol for GT(x, y) and GT(y, x) in
random order (and exactly one of the predicates is satisfied by assumption about
inequality of x and y).

Assume that an adversary sees all internal data and incoming and outgoing
messages of A, but does not have control over A and, in particular, cannot bias
the random bits used for the crypto-computation. This, however, means that
unless an error occurs in the crypto-computation the adversary gets only the
information about [x > y] from the trusted party, and a secure encryption of y
from B. Hence, with very high probability the adversary does not learn anything
in a computational sense from listening to the execution. Similarly, this follows
for a dishonest B.

Trusted party T publishes a GM-instantiation N, z and random quadratic non-
residues wA and wB .

– A and B jointly generate two random strings each of nλ bits and a bit b using
a coin-flipping protocol with N, wA.

– A sends bit-wise GM-encryptions Enc(x) under N, z to B and gives a zero-
knowledge proof of knowledge based on N, z, wA; A also sends a sufficient number
of random elements from ZZ∗

N .
– Vice versa, B sends an encryption Enc(y) under N, z to A and proves in zero-

knowledge with N, z, wB that he knows the plaintext.
– Each party computes the server’s evaluation procedure for GT(x, y) and

GT(y, x) on the encryptions with the predetermined elements from ZZ∗
N and

submits the result to the trusted party (in random order according to bit b).
– If and only if both incoming values are equal then the trusted party decodes

both sequences and returns the bits.
– Both parties output the result GT(x, y).

Fig. 3. Private Bidding with an Oblivious Third Party

The Malicious Case. In order to make the protocol above secure against
actively cheating adversaries we have to ensure that the parties do not choose the
encryptions in an adaptive manner. Formally, we need to extract the encrypted
values from the dishonest party A or B and for this purpose add an interactive
zero-knowledge proof of knowledge to the encryptions; this proof of knowledge
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can be carried out in three rounds with the data N, z, wA, wB published by T .
Details are postponed to Appendix A.

Also, we have to ensure that the non-interactive crypto-computation is really
based on truly random bits: biased bits may increase the probability that the
result of an AND of encryptions is incorrect and thus the outcome might reveal
some information about x or y, respectively. This is solved by using a coin-
flipping protocol in which one party commits to a random string a and the other
publishes a random string b and the outcome is set to a ⊕ b. Again, the reader
is refered to Appendix A for details. It is important to notice that we only need
random bits for the embedding of basic GM-encryptions into AND-encryptions.
That is, only the choice whether we encode the i-th component as Enc(d) or
as Enc(0) when embedding a basic GM-encryption Enc0(d) must be made at
random. Hence, we only need nλ random bits for each evaluation; the necessary
elements from ZZ∗

N for embedding can be announced by one of the parties.
We present an informal argument why this scheme is secure; a formal proof

is deferred from this version. Say that the adversary corrupts party T . Then
the same argument as in the honest-but-curious case applies: T only sees two
honestly generated outcomes of crypto-computations for GT(x, y) and GT(y, x)
in random order.

Consider the case that the adversary corrupts A. We have to present a simu-
lator that is allowed to query an oracle GT(·, y) once, and outputs a protocol
execution which is indistinguishable from a true execution with honest T and
B (with secret input y). Roughly, the simulator extracts the input x∗ from
the adversary’s proof of knowledge for the encryption and simulates T ’s and
B’s behavior by the zero-knowledge property.4 The simulator then queries the
oracle about x∗ to obtain GT(x∗, y). Given this bit the simulator finally ou-
tputs T ’s answer; this is possible since it knows the order of the transmitted
crypto-computations and both parties must send the same crypto-computation
for GT(x∗, y) and GT(y, x∗). Additionally, since the computation involves truly
random bits because of the coin tossing, the result of the crypto-computation is
correct with very high probability. In this case, T ’s decoding would be identical
to the simulator’s output for GT(x∗, y).

The case that the adversary corrupts B is analogous. Hence, we obtain a
secure constant-round private-bidding protocol with an active oblivious third
party; the protocol requires at most 19nλ + 2λ modular multiplications for each
party, where n is the length of the bids and λ determines the error.

Above we presumed that x 6= y. It is not hard to see that our non-interactive
crypto-computing protocol in Section 3 can be modified to a scheme which
computes EQ(x, y) and where the server’s answer is identical distributed to
the one for GT(x, y) (for the same instance N, z). Therefore, if one alters the

4 At first glance, it seems that the simulator could choose N on behalf of T such that it
knows the factorizaton p, q of N and such that it can extract x∗ directly by decoding.
Yet, the simulator has to present a fake encryption of y pretending to be B, and we
were not able to prove this to be indistinguishable from a correct encryption of y if
the simulator knows p, q. Therefore, we take the detour using a proof of knowledge.
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bidding protocol by letting A and B passing three crypto-computations for
GT(x, y),GT(y, x),EQ(x, y) in random order to T , then one obtains a secure
bidding protocol where A and B know which input is bigger (if any), or if the
inputs are equal.
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A Fair Coin-Tossing and Zero-Knowledge Proof of
Knowledge for GM-Encryptions

In this section we review the missing sub protocols of Section 4.2: a three-
round zero-knowledge [13] proof of knowledge for GM-encryptions [8], and a
coin-flipping protocol to generate unbiased random bits. We start with the coin-
flipping protocol as we will need it for the proof of knowledge, too.

A.1 Fair Coin-Tossing

Assume that a trusted party publishes a modulus N and a quadratic non-residue
wA ∈ QNRN . To generate a single unbiased random bit,

– party A commits to a bit a by sending a random encryption Enc(a, s) under
N, wA.

– B sends a random bit b.
– A decommits to a by sending a, s to B (who verifies that Enc(a, s) equals

the ciphertext from the first step).
– the random bit c is set to c = a⊕ b.

These basic steps can be repeated 2nλ + 1 times in parallel to generate 2nλ + 1
random bits as required in our application.

We show that the protocol can be used to generate an unbiased bit even if
one party is dishonest; furthermore, we show that a simulator playing A can bias
the outcome to any predetermined value c.

If A is corrupt then c is uniformly distributed because the encryption of a
binds perfectly. If B is controlled by the adversary this is accomplished by letting
T announce an invalid but correct looking wA which is a quadratic residue
instead of a non-residue; moreover, assume that we know a root vA of wA =
v2

A mod N . We bias the coin flipping by first choosing a random c ∈ {0, 1} before
the protocol starts and by sending an encryption Enc(1, s) of a = 1 under N, wA.
Then, after having received b from the adversary, we decommit to a′ = c⊕ b by
sending (0, svA) for a′ = 0 and (1, s) for a′ = 1. It is readily verified that this is a
corret decommitment for a′. Conclusively, the coin flip is biased to the previously
selected, but uniformly distributed c. On the other hand, under the quadratic
residuosity assumption, B cannot distinguish that wA is quadratic residue.
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A.2 Zero-Knowledge Proof of Knowledge

Next, we introduce the proof of knowledge, but we start with a special case of
a short challenge. Assume again that the trusted party publishes a modulus N
(which can be same as in the coin flipping protocol) and a quadratic non-residue
z ∈ QNRN (which is also used for encryption). Party A has published a bit-wise
encryption Xi = Enc(xi, ri) of x ∈ {0, 1}n under N, z.

– party A commits to an n-bit string u by sending a bit-wise encryption Ui =
Enc(ui, si) of u under N, z.

– party B sends a random bit c.
– if c = 0 then A sends u and the randomness s1, . . . , sn used to encrypt u. If

c = 1 then A sends v = u⊕ x ∈ {0, 1}n and ti = risi mod N .
– B verifies the correctness by re-encrypting the values with the reveled ran-

domness and comparing it to the given values. Specifically, for c = 0 party
B checks that Ui = Enc(ui, si), and verifies that UiXi = Enc(vi, ti) mod N
for c = 1.

Under the quadratic residuosity assumption this protocol is computational zero-
knowledge, i.e., there exist an efficient simulator that, for any malicious B, imita-
tes A behavior in an indistinguishable manner without actually knowing x. This
zero-knowledge simulator basically tries to guess the challenge at the outset and
sends appropriate phony values in the first step.

This basic protocol for bit-challenges allows to cheat with probability 1/2 by
simply guessing the challenge. But the steps can be repeated independently in
parallel for λ in order to decrease the error to 2−λ. However, while this protocol
is provably zero-knowledge for logarithmically bounded λ, it is not known to be
zero-knowledge for large λ.

Fortunately, the problem is solvable by tossing coins. That is, we generate
λ bit-challenges with a coin flipping protocol as described above. This can be
interleaved with the proof of knowledge to obtain a three-round protocol. Since
the outcome of the coin flips can be chosen a priori if we have a quadratic
residue wA, the protocol becomes zero-knowledge; the zero-knowledge simulator
does not even have to guess the challenge bits because it can choose them for
himself before the protocol starts.

As for our bidding protocol, we announce independent wA and wB for each
party: either party that is under control of the adversary gets a quadratic non-
residue (to force this party to provide a correct proof of knowledge and to gene-
rate truly random bits), whereas the simulator playing the honest party is given
a quadratic residue in order to “cheat”. For an adversary this is not detectable
under the quadratic residuosity assumption.



Author Index

Abdalla, Michel 143, 441
Anshel, Iris 13
Anshel, Michael 13
Arboit, Geneviève 44
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