Lecture Notes in Computer Science 2020
Edited by G. Goos, J. Hartmanis and J. van Leeuwen



Springer
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo



David Naccache (Ed.)

Topics in Cryptology —
CT-RSA 2001

The Cryptographers’ Track at RSA Conference 2001
San Francisco, CA, USA, April 8-12, 2001
Proceedings

6 Springer




Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editor

David Naccache

Gemplus Card International

34 rue Guynemer, 92447 Issy les Moulineaux, France

E-mail: david.naccache @ gemplus.com or naccache @compuserve.com

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Topics in cryptology : the Cryptographers’ Track at the RSA conference
2001 ; proceedings / CT-RSA 2001, San Francisco, CA, USA, April 8 -
12, 2001. David Naccache (ed.). - Berlin ; Heidelberg ; New York ;
Barcelona ; Hong Kong ; London ; Milan ; Paris ; Singapore ; Tokyo :
Springer, 2001

(Lecture notes in computer science ; Vol. 2020)

ISBN 3-540-41898-9

CR Subject Classifeation (1998): E.3, G.2.1,D.4.6, K.6.5,F2.1-2,C.2,J.1

ISSN 0302-9743
ISBN 3-540-41898-9 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, speciftally the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfims or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2001
Printed in Germany

Typesetting: Camera-ready by author, data conversion by PTP-Berlin, Stefan Sossna
Printed on acid-free paper SPIN: 10782272 06/3142 543210



Preface

You are holding the first in a hopefully long and successful series of RSA Cryp-
tographers’ Track proceedings.

The Cryptographers’ Track (CT-RSA) is one of the many parallel tracks
of the yearly RSA Conference. Other sessions deal with government projects,
law and policy issues, freedom and privacy news, analysts’ opinions, standards,
ASPs, biotech and healthcare, finance, telecom and wireless security, developers,
new products, implementers, threats, RSA products, VPNs, as well as crypto-
graphy and enterprise tutorials.

RSA Conference 2001 is expected to continue the tradition and remain the
largest computer security event ever staged: 250 vendors, 10,000 visitors and
3,000 class-going attendees are expected in San Francisco next year.

I am very grateful to the 22 members of the program committee for their hard
work. The program committee received 65 submissions (one of which was later
withdrawn) for which review was conducted electronically; almost all papers had
at least two reviews although most had three or more. Eventually, we accepted
the 33 papers that appear in these proceedings. Revisions were not checked on
their scientific aspects and some authors will write final versions of their papers
for publication in refereed journals. As is usual, authors bear full scientific and
paternity responsibilities for the contents of their papers.

The program committee is particularly indebted to 37 external experts who
greatly helped in the review process: André Amegah, Mihir Bellare, Carine Bour-
sier, Fabienne Cathala, Jean-Sébastien Coron, Nora Dabbous, Jean-Francois
Dhem, Serge Fehr, Gerhard Frey, Pierre Girard, Benoit Gonzalvo, Shai Halevi,
Helena Handschuh, Martin Hirt, Markus Jakobsson, Marc Joye, Neal Koblitz,
Frangois Koeune, Phil MacKenzie, Keith Martin, Alfred John Menezes, Victor
Miller, Fabian Monrose, Mike Mosca, Pascal Paillier, Mireille Pauliac, Béatrice
Peirani, David Pointcheval, Florence Ques, Ludovic Rousseau, Doug Schales,
Jean-Francois Schultz, Joseph Silverman, Christophe Tymen, Mathieu Vavas-
sori, Yongge Wang and Robert Zuccherato. Special thanks are due to Julien
Brouchier for skillfully maintaining and updating the program committee’s web-
site.

It is our sincere hope that our efforts will contribute to reduce the distance
between the academic community and the information security industry in the
coming years.

November 2000 David Naccache



April 8-12

RSA Conference 2001 Moscone center

San Francisco

RSA Conference 2001 is organized by RSA Security Inc. and its partner organizations
around the world. The Cryptographers’ Track at RSA Conference 2001 is organized by
RSA Laboratories (http://www.rsasecurity.com) and sponsored by Compaq Compu-
ter Corporation, Hewlett-Packard, IBM, Intel Corporation, Microsoft, nCipher, EDS,
RSA Security Inc., NIST and the National Security Agency.

intel:  Microsoft

compPaQ HewLeTT
PACKARD
SECUR>

®CIPHER @.: = NIST «»@

S7aTes O

o)
%
4

AN

R

Program Committee

David Naccache (Program Chair) .....................c.oooo... Gemplus, France
Ross Anderson...........o.oooiviini... Cambridge University, United Kingdom
Josh Benaloh ....... ... . Microsoft Research, USA
Daniel Bleichenbacher ........................ Bell Labs, Lucent Technologies, USA
Dan Boneh ....... ... . Stanford University, USA
Mike Burmester ....................... Royal Holloway University, United Kingdom
Don Coppersmith ...... ... i IBM Research, USA
Rosario Gennaro .............o.eieiiieiii e IBM Research, USA
Ari Juels ..o RSA Laboratories, USA
Burt Kaliski . ... RSA Laboratories, USA
Kwangjo Kim .................. Information and Communications University, Korea

. Citibank, USA
Avjen K. Lenstra ............... { Technical University Eindhoven, The Netherlands
Ueli Maurer ........oouuiiiiiiiiiiiii i ETH Zurich, Switzerland
Bart Preneel ........... ... ... i Katholieke Universiteit Leuven, Belgium
Jean-Jacques Quisquater ................ Université Catholique de Louvain, Belgium
Michael Reiter ..............oooiiiiiiiiiiii, Bell Labs, Lucent Technologies, USA
Victor Shoup . ......oiii IBM Research, Switzerland
Jacques Stern ... Ecole Normale Supérieure, France

Certicom Research, Canada
Scott Vanstone ............. ...,

University of Waterloo, Canada

Michael Wiener ........... ... .. ... il Entrust Technologies, Canada
MOti YUNE oot Certco, USA
Yuliang Zheng ......... ... Monash University, Australia

Phil Zimmerman . ...........o.uiti i PGP, USA



Table of Contents

New Cryptosystems

Faster Generation of NICE-Schnorr-Type Signatures ...................
Detlef Hiihnlein (secunet Security Networks AG)

New Key Agreement Protocols in Braid Group Cryptography............
Iris Anshel (Arithmetica Inc.), Michael Anshel (City College of New
York), Benji Fisher (Boston College), Dorian Goldfeld
(Columbia University)

RSA

Improving SSL Handshake Performance via Batching ................ ...
Hovav Shacham (Stanford University), Dan Boneh
(Stanford University)

From Fixed-Length Messages to Arbitrary-Length Messages Practical RSA
Signature Padding Schemes .......... .. .. . .
Geneviéve Arboit (McGill University), Jean-Marc Robert
(Gemplus Card International)

An Advantage of Low-Exponent RSA with Modulus Primes Sharing Least
Significant Bits ... ... ..
Ron Steinfeld (Monash University), Yuliang Zheng
(Monash University)

Symmetric Cryptography

On the Strength of Simply-Iterated Feistel Ciphers with Whitening Keys. .
Paul Onions (Silicon Infusion Ltd.)

Analysis of SHA-1 in Encryption Mode ............ ... . ... oot
Helena Handschuh (Gemplus Card International), Lars R. Knudsen
(University of Bergen), Matthew J. Robshaw (ISG, Royal Holloway)

Fast Implementation and Fair Comparison of the Final Candidates for
Advanced Encryption Standard Using Field Programmable Gate Arrays ..
Kris Gaj (George Mason University), Pawel Chodowiec
(George Mason University)

84



X Table of Contents

Gambling and Lotteries

Fair e-Lotteries and e-Casinos ... ...t 100

Eyal Kushilevitz (Department of Computer Science, Technion),
Tal Rabin (IBM T.J. Watson Research Center)

Secure Mobile Gambling . ....... ... .. 110

Markus Jakobsson (Bell Laboratories, Lucent Technologies),
David Pointcheval (ENS — CNRS), Adam Young (Lockheed Martin)

Reductions, Constructions and Security Proofs

Formal Security Proofs for a Signature Scheme with Partial Message
ReCOVEry . ..o 126

Daniel R.L. Brown (Certicom Research), Don B. Johnson
(Certicom Research)

The Oracle Diffie-Hellman Assumptions and an Analysis of DHIES . ... ... 143

Michel Abdalla (Unversity of California, San Diego), Mihir Bellare
(University of California, San Diego), Phillip Rogaway (University of
California, Davis)

REACT: Rapid Enhanced-Security Asymmetric Cryptosystem Transform . 159
Tatsuaki Okamoto (NTT Labs), David Pointcheval (ENS — CNRS)

Flaws and Attacks

Security Weaknesses in Bluetooth ............ ... ... ... ... .. ....... 176

Markus Jakobsson (Bell Laboratories, Lucent Technologies),
Susanne Wetzel (Bell Laboratories, Lucent Technologies)

Distinguishing Exponent Digits by Observing Modular Subtractions ... ... 192

Colin D. Walter (Datacard platform” seven, UMIST Manchester),
Susan Thompson (Datacard platform” seven)

On the Power of Misbehaving Adversaries and Security Analysis of the
Original EPOC . ... o 208

Mare Joye (Gemplus Card International), Jean-Jacques Quisquater
(UCL Crypto Group), Moti Yung (CertCo)

Implementation

Modular Exponentiation on Fine-Grained FPGA....................... 223

Alexander Tiountchik (National Academy of Sciences of Belarus),
Elena Trichina (PACT Informationstechnologie)



Table of Contents XI

Scalable Algorithm for Montgomery Multiplication and Its Implementation

on the Coarse-Grain Reconfigurable Chip ......... ... ... .. .. ... ... 235
Elena Trichina (PACT Informationstechnologie), Alexander Tiount-
chik (National Academy of Sciences of Belarus)

Software Implementation of the NIST Elliptic Curves Over Prime Fields .. 250
Michael Brown (University of Waterloo), Darrel Hankerson (Auburn
University, Certicom Research), Julio Lopez (University of Valle),

Alfred Menezes (University of Waterloo, Certicom Research)

Multivariate Cryptography

The Security of Hidden Field Equations (HFE) ........................ 266
Nicolas T. Courtois (Université de Toulon et du Var)

QUARTYZ, 128-Bit Long Digital Signatures .......... ... ... ... ... ..... 282
Jacques Patarin (Bull CP8), Nicolas Courtois (Bull CP8),
Louis Goubin (Bull CP8)

FLASH, a Fast Multivariate Signature Algorithm ...................... 298
Jacques Patarin (Bull CP8), Nicolas Courtois (Bull CP8),
Louis Goubin (Bull CP8)

Number Theoretic Problems

Analysis of the Weil Descent Attack of Gaudry, Hess and Smart ......... 308
Alfred Menezes (University of Waterloo, Certicom Research), Minghua
Qu (Certicom Research)

Using Fewer Qubits in Shor’s Factorization Algorithm via Simultaneous
Diophantine Approximation ........... ..., 319
Jean-Pierre Seifert (Infineon Technologies)

Passwords and Credentials

Relying Party Credentials Framework .......... ... ... ... .. ... ... ... 328
Amir Herzberg (NewGenPay Inc.), Yosi Mass (IBM Haifa Research
Lab)

Password Authentication Using Multiple Servers ....................... 344
David P. Jablon (Integrity Sciences, Inc.)

More Efficient Password-Authenticated Key Exchange .................. 361
Philip MacKenzie (Bell Laboratories, Lucent Technologies)

Protocols 1

Improved Boneh-Shaw Content Fingerprinting ........... ... .. ... .... 378
Yacov Yacobi (Microsoft Research)



XII Table of Contents

Efficient Asymmetric Public-Key Traitor Tracing without Trusted Agents . 392
Yuji Watanabe (11S, University of Tokyo), Goichiro Hanaoka
(11S, University of Tokyo), Hideki Imai (IIS, University of Tokyo)

Targeted Advertising ... And Privacy Too .......... ... ... ... ... 408
Ari Juels (RSA Laboratories)

Protocols 11

Uncheatable Distributed Computations ............. .. ... .. ... ... ... 425
Philippe Golle (Stanford University), Ilya Mironov
(Stanford University)

Forward-Secure Threshold Signature Schemes.......................... 441
Michel Abdalla (University of California, San Diego), Sara Miner
(University of California, San Diego), Chanathip Namprempre
(University of California, San Diego)

A Cost-Effective Pay-Per-Multiplication Comparison Method for

MilHONaires . . ... ..ottt 457
Mare Fischlin (Johann Wolfgang Goethe-Universitdt
Frankfurt am Main)

Author Index ... . . 473



Faster Generation of NICE-Schnorr-Type
Signatures

Detlef Hithnlein

secunet Security Networks AG
Mergenthalerallee 77-81

D-65760 Eschborn, Germany
huehnlein@secunet.de

Abstract. In [7] there was proposed a Schnorr-type signature scheme
based on non-maximal imaginary quadratic orders, which signature ge-
neration is — for the same conjectured level of security — about twice as
fast as in the original scheme [15].

In this work we will significantly improve upon this result, by speeding up
the generation of NICE-Schnorr-type signatures by another factor of two.
While in [7] one used the surjective homomorphism IF;@IF; — Ker(¢;)
to generate signatures by two modular exponentiations, we will show that
there is an efficiently computable isomorphism IF} = Ker(qball) in this
case, which makes the signature generation about four times as fast as
in the original Schnorr scheme [15].

1 Introduction

In todays electronic commerce applications, digital signatures are widely applied
for providing integrity, authentication and non-repudiation services. Especially
for the latter goal(s) it seems to be crucial to store and apply the secret keys
in a secure environment, like a smartcard or any other tamper-resistant device.
While hardware-technology is continously improving, the computing power of
such devices — compared to stationary equipment — is still rather limited. The-
refore it is important to search for new signature schemes which allow more
efficient signature generation or improve the efficiency of exisiting ones.

In [7] there was proposed a Schnorr-type signature scheme based on non-
maximal imaginary quadratic orders. In this scheme one basically replaces the
group IF} by the group Ker(c{)éll), which is a subgroup of the class group CI(Ap?)
of the non-maximal imaginary quadratic order O ap2. For the necessary basics
of imaginary quadratic orders we refer to section[2. In contrary to the original
scheme [15], this scheme essentially relies on the hardness of factoring the public
discriminant Ap? < 0, where |A| and p are primes with (say) 300 bits.

As the signature generation in this scheme is — for the same conjectured level
of security — more than twice as fast as in the original scheme [I5], this seems
to be a good candidate for applications in which fast signature generation in

D. Naccache (Ed.): CT-RSA 2001, LNCS 2020, pp. 1-{12}, 2001.
© Springer-Verlag Berlin Heidelberg 2001



2 D. Hithnlein

constrained environment is crucial. The signature generation in this scheme, i.e.
essentially one exponentiation in the group Ker(qball), is reduced to two modular
exponentiations modulo the conductor p. This reduction is possible by applying
the efficiently computable surjective homomorphism

I @ F) — Ker(¢g, ), (1)
which follows from [, Proposition 4 and Theorem 3].

In this work we will show how the — already remarkably efficient — signature
generation in this scheme can be speeded up by another factor of two. More
precisely we will prove the following;:

Theorem 1 (Main result). Let O be an imaginary quadratic mazimal order

of discriminant A < —4, p prime, (%) =1, ¢E’l1 : Cl(Ap?) — CI(A) like in
Proposition [2 and the two roots p,p € IF, of the polynomial f(X), like in (@),
be given. Then it is possible to compute the isomorphism

Y IF, AN Ker(éall)
and its inverse ¥~ in O(log(p)?) bit operations.

Using this theorem, the signature generation is obviously reduced to only one
modular exponentiation modulo the conductor p. As the bitlength of p (and |A|)
is only about one third of the bitlength of the modulus in the original scheme,
our signature generation is more than four times as fast. Note that — as shown
in [[7) Section 4] — a direct analogue in (ZZ/nZZ)*, n composite, would be totally
insecure.

The paper is organized as follows: Section [ will provide the necessary back-
ground and notations of non-maximal imaginary quadratic orders used in this
work. In Section [ will carry together the relevant work concerning the efficient
implementation of cryptosystems working in Ker(qball ). In Section Ml we will prove
Theorem [1 and show how this result can be applied for fast signing. In Section [l
we will provide timings of a first implementation, which shows that the signature
generation in this scheme is — for the same conjectured level of security — more
than four times as fast as in the original scheme [15].

2 Necessary Preliminaries and Notations of Imaginary
Quadratic Orders

The basic notions of imaginary quadratic number fields may be found in [1/2].
For a more comprehensive treatment of the relationship between maximal and
non-maximal orders we refer to [3[45/619].

Let A = 0,1 (mod 4) be a negative integer, which is not a square. The
quadratic order of discriminant A is defined to be

OpN=Z +wZ,



Faster Generation of NICE-Schnorr-Type Signatures 3

wz{\/g’ if A=0 (mod 4), )

1+5/Z, if A=1 (mod 4).

The standard representation of some o € Ox is @ = x + yw, where 2,y € Z.

where

If A is squarefree, then O 4 is the mazimal order of the quadratic number field
Q(v/A) and A is called a fundamental discriminant. The non-mazimal order of
conductor p > 1 with (non-fundamental) discriminant Ap? is denoted by O Ap?-
We will always assume in this work that the conductor p is prime.

The standard representation of an Oa-ideal is

b+VA

2a

a=q<Z+ Z) = q(a,b), 3)
where q € Qv g,a € Z =g, c = (b>— A)/(4a) € Z, ged(a,b,c) =1 and —a < b <
a. The norm of this ideal is M'(a) = ag?. An ideal is called primitive if ¢ = 1. A
primitive ideal is called reduced if |b] < a < cand b >0, ifa=cor |b] =a. It
can be shown, that the norm of a reduced ideal a satisfies V'(a) < 1/|A|/3 and
conversely that if M(a) < 1/|A|/4 then the ideal a is reduced. We denote the
reduction operator in the maximal order by p(-) and write p,(-) for the reduction
operator in the non-maximal order of conductor p.

The group of invertible Oa-ideals is denoted by Za. Two ideals a,b are
equivalent, if there is a v € Q(v/A), such that a = vb. This equivalence relation
is denoted by a ~ b. The set of principal Oa-ideals, i.e. which are equivalent to
O, are denoted by Pa. The factor group Za/Pa is called the class group of O
denoted by Cl(A). We denote the equivalence class of an ideal a by [a]. Ci(A)
is a finite abelian group with neutral element Ox. Algorithms for the group
operation (multiplication and reduction of ideals) can be found in [2]. The order
of the class group is called the class number of O and is denoted by h(A).

The signature scheme in [7] makes use of the relation between the maxi-
mal and non-maximal orders. Any non-maximal order may be represented as
Onp2 = Z 4+ pO,. If h(A) =1 then O a2 is called a totally non-mazimal ima-
ginary quadratic order of conductor p. An Oa-ideal a is called prime to p, if
ged(N(a),p) = 1. Tt is well known, that all Op2-ideals prime to the conduc-
tor are invertible. In every class there is an ideal which is prime to any given
number. The algorithm FindldealPrimeTo in [4] will compute such an ideal. Let
T ap2(p) be the set of all O pj2-ideals prime to p and let Pa,2(p) be the principal
O pp2-ideals prime to p. Then there is an isomorphism

Tap: (p)/PAp2 ) = T p, . = ClUA). (4)

Thus we may 'neglect’ the ideals which are not prime to the conductor, if we
are only interested in the class group Cl(Ap?). There is an isomorphism between
the group of O pp2-ideals which are prime to p and the group of O a-ideals, which
are prime to p, denoted by Za(p) respectively:



4 D. Hithnlein

Proposition 1. Let Opp2 be an order of conductor p in an imaginary quadratic
field Q(v/A) with mazimal order O .

(i) IfAe€Za(p), thena=ANOap2 € Lapz(p) and N (A) = N(a).

(ii.) If a € Tap2(p), then A =aOa € Za(p) and N(a) = N ().

(iii.) The map ¢ : A+ AN Oy induces an isomorphism La(p) =Ly (p).
The inverse of this map is = ' : a > aO,.

Proof: See [3, Proposition 7.20, page 144] . |

Thus we are able to switch to and from the maximal order. The algorithms
GoToMaxOrder(a, p) to compute ¢~ and GoToNonMaxOrder(2,p) to compute
© respectively may be found in [4].

It is important to note that the isomorphism ¢ is between the ideal groups
Ta(p) and Zp,2(p) and not the class groups.

If, for A, B € Za(p) we have A ~ B, it is not necessarily true that o(A) ~
o(B).

On the other hand, equivalence does hold under ¢ ~!. More precisely we have
the following;:

Proposition 2. The isomorphism ¢~! induces a surjective homomorphism

b5, : Cl(Ap?) — ClU(A), where a — p(p~(a)).
Proof: This immediately follows from the short exact sequence:
Cl(Ap?) — Cl(A) — 1

(see [12, Theorem 12.9, p. 82]). |

It is easy to show that the kernel Ker(qﬁall) of this map is a subgroup of
Cl(Ap?).

If A < —4 and p is prime, then it follows from [3] Theorem 7.24, page 146]
that the order of this kernel is given as

eroh] = (5)- @

3 Related Work

As many results concerning (the implementation of) cryptosystems based on
non-maximal imaginary quadratic orders appeared fairly recently, it seems wor-
thwile to recall the most important results which are relevant in our context.
In Section BI]we will briefly introduce the available cryptosystems operating
in the kernel Ker(¢g,) of the above map ¢ : Cl(Ap?) — Cl(A). In Section

we will focus on fast arithmetic in Ker((ball)7 as it is applied for generating
Schnorr-like signatures.



Faster Generation of NICE-Schnorr-Type Signatures 5

3.1 Cryptosystems Utilizing Ker(qbg,ll)

In the following we will briefly recall some cryptosystems working in Ker(gball).
We will distinguish between encryption- and signature-schemes.

NICE-encryption-scheme. The first — and probably most popular — cryp-
tosystem, which utilizes Ker(¢5ll) in a crucial way is the NICcryptosystem
[13]. This cryptosystem is essentially an ElGamal-encryption scheme, where the
message is embedded in an element of Cl(Ap?) and the mask which hides this
message is a random power of an element of Ker(ghall). Therefore the decryption
essentially consists of computing qﬁ(_jll, which only takes quadratic time. It should
be noted, that the chosen ciphertext attack [10] is no real threat in practice, as it
is easily prevented by appending a hash-value of the plaintext to the ciphertext.

NICE-signature-schemes. While it would be easy to set up a DSA-like sig-
nature scheme in the classgroup C1(Ap?) = Ker(¢g;) of a totally non-maximal
imaginary quadratic order, e.g. in O_g,2 where h(A) = 1, it was shown in [6]
that the discrete logarithm problem in this case can be reduced from Cl(—8p?)
to either I} or IF7. — depending on (%). Because of this reduction, there is no
advantage in using NICE-DSA instead of the regular DSA in finite fields.

A crucial difference between DSA and the original Schnorr-scheme [15] is,
that in the latter scheme it is not necessary that the verifying party knows the
group order gq.

Therefore it was proposed in [7] to use conventional non-maximal orders to
set up a NICE-Schnorr-type signature scheme, which primarily gets its security
from the hardness of factoring Ap? instead of solely from the DL-problem in
Ker(¢al) C CIl(Ap?). Thus an attacker is only able to apply the reduction
from [6] after factoring the public discriminant Ap?, which is considered to be
infeasible for the proposed parameter sizes.

The system setup for Alice consists of the following steps:

1. Choose a random prime r and set A = —r if r =3 (mod 4) or A = —4r
otherwise.
2. Choose a random prime ¢, which will later on serve as the order of the used
subgroup of Ker(¢g;) C Cl(Ap?).
. Choose a random prime p, such that (%) =1,¢|(p — 1) and compute Ap?.

. Choose a random a = z+yw such that g = p(aO ) is of order q in Cl(Ap?).
. Choose a random integer a < ¢ and compute the public key a = p,(g%).
. The secret key of Alice is the tuple (z,y,a,p,q,T).

O O = W

Note that Alice will keep these values secret and only publishes Ap?, g, a.
Now the signature generation and verification procedure is analogous to the

! New Ideal Coset Encryption



6 D. Hithnlein

original Schnorr-scheme [15]. The only difference is that Alice may speed up
the signature gemeration process using some more sophisticated arithmetic for
Ker(gball), which utilizes the knowledge of x,y and p. In Section B.2 we will
return to this issue and recall what has been known so far. In Section 4] we show
that these results can be significantly improved.

To sign a message m € ZZ, Alice performs the following steps:

1. Choose a random integer 1 < k < ¢ and compute ¢ =Gen-ISO(z, y, p, k),
where the algorithm Gen-1SO() is given in Section [l

. Computel e = h(m||t) and s = ae + k.

3. Alice’s signature for m is the pair (e, s).

[\

The verification is completely analogous to the original scheme [I5] using
standard ideal arithmetic (see e.g. [2]) in the non-mazimal order:

1. Compute v = p,(g°a—°) and ¢ = h(m/||v).
2. The signature is valid if and only if ¢’ = e.

It is clear that the verification works if the signature was generated by Alice,
because b ~ g*a~¢ ~ g°g~% ~ g* ~ £ Thus h(m|[t) = h(m||v) and hence ¢’ = e.

For security issues of this scheme and the proposed parameter sizes we refer
to [7} Section 4] and [14].

3.2 Fast Arithmetic in Ker(¢g,)

In this section we will study the kernel Ker((ball) of the above map ¢Ell, i.e. the
relation between a class in the maximal order and the associated classes in the
non-maximal order, in more detail. A thorough understanding of this relation
is crucial for the development of a fast arithmetic for the group Ker(d)éll)7 like
proposed in [BI6lJ7] and Section @l

We start with yet another interpretation of the class group Cl(Ap?).

Proposition 3. Let Opp2 be an order of conductor p in a quadratic field. Then
there are natural isomorphisms

cuap’) = Ty oy =20 ey

where P, 77(p) denotes the subgroup of TA(p) generated by the principal ideals

of the form aOa where a € O satisfies a = a  (mod pOa) for some a € ZZ
such that ged(a,p) = 1.

2 Note that in [7] it was proposed to return the residue of s modulo ¢, which makes
the signature slightly smaller and saves some time for the verifying party. While in
[7] there were given ad-hoc-arguments that this is no security threat, it might be
more satisfying to return s = ae + k, as the detailed security analysis of [14] applies
in this case.



Faster Generation of NICE-Schnorr-Type Signatures 7

Proof: See [3| Proposition 7.22, page 145]. O

The following corollary is an immediate consequence.

Corollary 1. With notations as above we have the following isomorphism
—1y ~ PAI (f)
Ker(¢g,) ~ /PAl,Z(f)'

Now we will turn to the relation between (Oa/pOA)* and Ker(¢g;):

Proposition 4. The map (Oa/pOAa)* — Ker(¢g,), where a — ¢ (aO,) is a
surjective homomorphism.

Proof: This is shown in the more comprehensive proof of Theorem 7.24 in [3]
(page 147). O

From these results it is clear that for all ideal classes [a] € Ker(¢g,) C
CIl(Ap?) there is a generator representation:

Definition 1. Let a = z+wy € (Oa/pOAa)*, such that [a] ~ ¢ (). Then (z,y)
is called a generator representation of the class [a] € Ker(¢y,).

For simple conversion routines between the standard representation (B]) and
this generator representation we refer to [9, Algorithmus 16 (Gen2Std) and Al-
gorithmus 17 (Std2Gen)]. These algorithms require the conductor p as input and
run in O(log(p)?) bit operations.

Remark 1. Tt should be noted that this generator representation (z,y) for a class
[a] is not unique. From Proposition Bl we see that (sz, sy), where s € IF, is yet
another generator representation of the class [a]. We will return to this issue in
the proof of Theorem [

The central point in using this generator representation instead of the stan-
dard ideal representation (3] is that one may reduce the arithmetic in Ker(qball)
to much more efficient computations in (O /pOAa)*. This is precisely what was
proposed in [5]. Using the naive ”generator-arithmetic”, i.e. naive computation
in (Oa/pOa)*, as proposed there, one is able to perform an exponentiation in
Ker(¢al) about twenty times as fast as by using standard ideal arithmetic, like
given in [2] for example.

But, as shown in [6l/7], one can even do better; in Section [l we will provide
concrete timings of a first implementation.

The following simple result explains the structure of the ring (Oa/pOA):

Proposition 5. Let O be the mazimal order and p be prime. Then there is an
isomorphism between rings

(0a/pOa) = IFP[X]/(f(X)),



8 D. Hithnlein

where (f(X)) is the ideal generated by f(X) € IF,,[X] and

X2 4, if A=0 (mod 4),
f(X)_{XQ—X+1f,ifAEI (mod 4). ©
Proof: See [6] Proposition 5]. m|

Using this auxilliary result one obtains the following Proposition [, which —
together with Proposition [ — is responsible for the fast signature generation in
.

Proposition 6. Assume that (%) = 1 and the roots p,p € T, of f(X) €

IF,[X] as given in (@) are known. Then the isomorphism
Y (Oa/pOa)* = ]F; ®IF;
can be computed with O(log(p)?) bit operations.

Note that this result essentially uses the chinese remainder theorem in the
ring (Oa/pOA) to speed up the computation. Compared to the standard ideal
arithmetic (e.g. in [2]), this approach yields an approximately forty-fold speedup.

While this arithmetic is already remarkable efficient, we will show in the next
section that one can even do better.

4 The Main Result and Its Application to Fast Signing

In this section we will show that for an exponentiation in Ker(qﬁall), where

(%) = 1, it is sufficient to perform a single modular exponentiation modulo

the conductor p.

This significant improvement essentially follows from the fact that in our case
we have (%) = 1 and there is an isomorphism IF; = Ker(qﬁ&l), which can be
computed efficiently.

While, because of |Ker(¢>all)f = p — 1, the existence of such an isomorphism
was already suspected earlier — and in fact follows immediately from [3| (7.27),
page 147] — the crucial point for our application is that this isomorphism can be
computed in O(log(p)?) bit operations.

Proof (of Theorem [). Let (%) = 1. Then Proposition shows that

(0Oa/pOa)* = TF; @ TF, and our claimed isomorphism Ker(¢g;) = I, follows
immediately from the exact sequence [3| (7.27), page 147]

1 — IF5 — (0a/pOa)* = F; @ F; — Ker(¢g;) — 1.



Faster Generation of NICE-Schnorr-Type Signatures 9

It remains to give a constructive version of this isomorphism and show that
the runtime is bound by O(log(p)?) bit operations.

Let (z,y) be a generator representation of the ideal class [a] ~ (o) €
Ker(¢g,), where a = x + yw € (Oa/pOa)*, and p, p are the roots of f(X)
like in (B). Then the isomorphism ¢ : (Oa/pOa)* — IF) @ IF, from Proposi-
tion [ maps a =z + yw € (0Oa/pOa)* to (z1,22) € Fy @ IF), v1 = x + yp and
To =T+ Yp.

Let s € IF,, such that s(z +yp) =1 (mod p). From Proposition [ (see also
Remark [I) it follows, that ¢(a) ~ (s - «) and (sz,sy) is another generator
representation of the class [a] ~ p(a) ~ ¢(s - «). Using ¢y we map s - a to the
pair (s(z + yp), 1), which induces the desired isomorphism ¢! : Ker(¢g;) =
F;o12F),

a = ¢+ yw)
()
Y\Z+ oy

1 T+ yw
}_>
()
(z+py xz+py

x+py’ + py

_(ztry
x+py’

_xtpy
=2

(7)

The inverse map v : IF‘; = Ker(gzball) is — like shown in the proof of Proposi-
tion [§ and [7} Gen-CRT (Algorithm 4)] — given by




10 D. Hithnlein

Because we assume that the two roots p,p € IF, of f(X), like in @), are
known, we immediately see that the isomorphism % and its inverse can be com-
puted in O(log(p)?) bit operations. 0

Using the constructive version of this isomorphism in (@) and &), it is
straightforward to construct an efficient exponentiation algorithm for elements
: -1
in Ker(¢g; ).

Algorithm 1 Gen-Iso
Require: A generator representation (z,y) of the class [a] ~ ¢(z + yw) €

Ker(¢g, ), where 2 + yw € (Oa/pOa)*, the conductor p, where (%) =

the roots p, p € IF) of f(X), like in (@), and the exponent n € ZZ .
Ensure: The standard representation (a,b) of the reduced representative of the

class of [a"] = aZ + as VQAPZZ € Ker(¢g)).

{Compute ¢~ (o(z + yw)), like in (@)}
z+py

g« S5 (mod p)

{Exponentiation in I¥}

g+ g" (modp)

{Compute ¥(g), like in(®)}

x4 gp—p (mod p)

y<1—g (mod p)

(a,b) + Gen2Std(z,y)

return(a, b)

Furthermore it is clear that a complete signing routine would use this al-
gorithm to compute ¢ = p, (gk) and then compute the signature (e,s) by
e = h(m|¢) and s = ae + k. For a rough estimate of the signing efficiency,
we may savely ignore the time for computing the values e and s and only take
care of the exponentiation time.

5 Timings

We conclude this work by providing the timings of a first implementation.

The timings are given in microseconds on a Pentium with 133 MHz using
the LiDIA-library [1I]. It should be noted that in all algorithms there is used
a naive square and multiply strategy. It is clear that in real world applications
one would use some more sophisticated (e.g. window-) exponentiation strategy
— possibly using precomputed values. All timings correspond to random 160 bit
exponents.



Faster Generation of NICE-Schnorr-Type Signatures 11

Table 1. Timings for exponentiations in Ker(¢g;)

Arithmetic [modular ideal Gen-Exp, [5]|Gen-CRT, [7]| Gen-ISO
bitlength of] P Ap? = —rp?|Ap? = —rp?| Ap® = —1p? |Ap? = —rp?
600 188 3182 159 83 42
800 302 4978 234 123 60
1000 447 7349 340 183 93
1200 644 9984 465 249 123
1600 1063 15751 748 409 206
2000 1454 22868 1018 563 280

The timings in Table Ml show the impressive improvement. Compared to an
exponentiation in Ker(¢g;) C Cl(Ap?) using the standard ideal arithmetic (see
e.g. [2]), the generator arithmetic from [5, Gen-Exp] is already about twenty times
as fast. This arithmetic makes the signature generation in the NICE-Schnorr-
scheme [7] — considering the different algoritms for solving the underlying pro-
blem, like in [8] — about as efficient as in the original scheme [15]. The application
of the chinese remainder theorem in (Oa/pOA) in [1, Gen-CRT] roughly leads to
a two-fold speedup. Finally, using the isomorphism IE‘; = Ker(qball) leads to yet
another two-fold speedup. This arithmetic is about eighty times as fast as the
conventional ideal arithmetic.

Most importantly, the signature generation in the NICE-Schnorr-scheme [7]
now is about four times as fast as the signing in the original scheme [15].

References

1. Z.1. Borevich and I.R. Shafarevich: Number Theory Academic Press: New York,
1966

2. H. Cohen: A Course in Computational Algebraic Number Theory. Graduate Texts
in Mathematics 138. Springer: Berlin, 1993.

3. D.A. Cox: Primes of the form z* + ny?, John Wiley & Sons, New York, 1989

4. D. Hithnlein, M.J. Jacobson, S. Paulus and T. Takagi: A cryptosystem based on
non-mazimal imaginary quadratic orders with fast decryption, Advances in Cryp-
tology - EUROCRYPT ’98, LNCS 1403, Springer, 1998, pp. 294-307

5. D. Hiihnlein: Efficient implementation of cryptosystems based on mon-maximal
imaginary quadratic orders, Proceedings of SAC’99, LNCS 1758, Springer, 2000,
pp- 150-167

6. D. Hiihnlein, T. Takagi: Reducing logarithms in totally mon-maximal ima-
ginary quadratic orders to logarithms in finite fields, Advances in Cryptology -
ASTACRYPT’99, Springer, LNCS 1716, 1999, pp. 219-231

7. D. Hithnlein, J. Merkle: An efficient NICE-Schnorr-type signature scheme, Procee-
dings of PKC 2000, LNCS 1751, Springer, 2000, pp. 14-27

8. D. Hiithnlein: Quadratic orders for NESSIE - Overview and parameter sizes of three
public key families, Technical Report, TI 3/00, TU-Darmstadt, 2000

9. D. Hihnlein: Cryptosystems based on quadratic orders, (in German), PhD-thesis,
TU-Darmstadt, Germany, forthcoming, 2000



12

10.

11.

12.
13.

14.

15.

D. Hithnlein

E. Jaulmes, A. Joux: A NICE Cryptoanalysis, Advances in Cryptology - EU-
ROCRYPT ’00, LNCS 1807, Springer, 2000, pp. 382 — 391

LiDIA: A c++ library  for  algorithmic ~ number  theory, via
http://www.informatik.tu-darmstadt.de/TI/LiDIA

J. Neukirch: Algebraische Zahlentheorie, Springer, Berlin, 1992

S. Paulus and T. Takagi: A new public-key cryptosystem over quadratic orders with
quadratic decryption time Journal of Cryptology, vol. 13, no. 2, 2000, pp. 263-272
G. Poupard, J. Stern: Security Analysis of a Practical ”on the fly” Authentication
and Signature Generation, Advances in Cryptology — EUROCRYPT ’98, LNCS
1403, Springer, 1998, pp. 422 — 436

C.P. Schnorr: Efficient identification and signatures for smart cards, Advances in
Cryptology - CRYPTO ’89, LNCS 435, 1990, pp. 239-252



New Key Agreement Protocols in Braid Group
Cryptography

Iris Anshel', Michael Anshel?, Benji Fisher?, and Dorian Goldfeld*

L Arithmetica Inc., 31 Peter Lynas Ct. Tenafly, NJ 07670, USA
2 City College of New York, New York, NY 10031, USA
3 Boston College, Chestnut Hill, MA 02167, USA
4 Columbia University, New York, NY, USA

Abstract. Key agreement protocols are presented whose security is ba-
sed on the difficulty of inverting one-way functions derived from hard
problems for braid groups. Efficient/low cost algorithms for key trans-
fer/extraction are presented. Attacks/security parameters are discussed.

1 Introduction

A public key cryptosystem is an algorithmic method for securely sending pri-
vate information over an insecure channel in which the communicating parties
have no common shared secret. At the heart of a public key cryptosystem is a
two-party secure computation referred to as a protocol. The major public key
cryptosystems in use today, and their associated protocols, are based on finite
abelian groups [12]. There have been various attempts to employ infinite non-
abelian groups and semigroups as a basis for public key algorithms and protocols
(1], [7], [14], [15]).

Recently, in [2] a general method was introduced for constructing key ag-
reement protocols based on combinatorial group theory, the study of groups
by means of generators and defining relators [9]. The computational security of
the protocols was based on the difficulty of solving conjugacy and commutator
equations in suitably chosen groups. The authors employ two non-commuting
one-way functions from which a common commutator is computed. They observe
that braid groups ([3], [8]) are a particularly promising class of groups for the
construction of such protocols due to recent results of Birman-Ko-Lee [4]. This
observation was taken up by [11] who specify a Diffie-Hellman type key agre-
ement protocol employing commuting one-way functions on braid groups. The
simplicity of these methods has ignited interest among researchers for exploring
the potential of a public key cryptography based on braid groups.

Braid groups provide a thread linking combinatorial problems in knot theory
[10] to fundamental questions in computational complexity [16]. One line of rese-
arch has focused on polynomials associated with knots and closed braids. It is our
purpose to extend the methodology of [2] and [11] by employing a group-theoretic
construction evolved from a study of the multivariate Alexander polynomial of
a closed braid [13]. Inherent in this method are certain virtually linear groups

D. Naccache (Ed.): CT-RSA 2001, LNCS 2020, pp. 13-27, 2001.
© Springer-Verlag Berlin Heidelberg 2001



14 I. Anshel et al.

associated with braid groups, which we call colored Burau groups. (Remark: a
group G is virtually linear provided it possesses a linear subgroup H of finite
index).

New key agreement protocols based on colored Burau groups are presented.
Algorithms specifying key transfer and key extraction are carefully presented and
analyzed and are shown to be highly efficient and run, respectively, in quadratic
and linear time. The cost of implementating these protocols is low due to the
simplicity of the symbolic and algebraic primitives employed in the required
computations. The computational security of these protocols is based on specific
one-way functions defined on braid groups or colored Burau groups employed in
our constructions.

2  Presentations of Groups

A finitely generated group G is specified by a finite set of generators

91,925---5,9n

where every g € G is a word in the generators and their inverses (product of
gi’s and their inverses). Further, a group is termed finitely presented provided
there are finitely many words

T1,72y. -3y Tm

(each of which is equal to the identity element e) called relators, so that any
word w in the generators g¢i,¢o,...,g, that defines the identity in the group
G can be expressed as a product of conjugates of the r;’s and their inverses.
Note that a conjugate of r; is an element of the group of the form wr;w=! (with
w € G), which must always equal e.

It is usual to suppress the trivial relators such as

9i9; ' =9; ‘g =e.
A presentation is written:

<gl7927 <y Gn | T1,72,... 7Tm>'
We now give some examples of presentations of groups.

2.1 The Finite Cyclic Group

The finite cyclic group of order n has presentation: (g | g").
2.2 The Projective Special Linear Group
The infinite matrix group SL(2,Z) (i.e., 2 x 2 matrices with integer coefficients

and determinant one), modulo its center, is a group with two generators and
presentation: (g1, g2 | 9%, 93).



New Key Agreement Protocols in Braid Group Cryptography 15

2.3 The Braid Group

The braid group was first systematically studied by Emil Artin. He introduced
the Artin generators x1,a,...,2y for the N + 1 strand Braid group (denoted

Bni1).
The defining relations for the Braid group By are given by

TiTjTy = TjT;T 45, ,lf ‘l 7J| = 1,

Tilj = Tjy, if |J — 1| > 2.
2.4 The Symmetric Group

A particular finite image of the braid group is the symmetric group Syy1 with
N generators, which satisfy the braid group relations
xia:ja:i = .’L‘jl‘i.l‘j7 if |i —JI = 1,
Tilj = TjTq, if |_] — 1| > 2.

and the additional relations

:cf:e for <i<N.
The symmetric group Sy 41 consists of all permutations of N 41 elements under
composition. A transposition interchanges two distinct elements and leaves the
others fixed. We write (¢ j) as the transposition that interchanges ¢ and j. The
generator x; may be realized as a transposition that interchanges ¢ and 741 and
leaves all other elements fixed.

3 The Colored Burau Group

Fori=1,...,N,lety, = (Ci(t;), (i i+1)) where
(G i+1)

denotes the transposition (when ¢ = N the transposition is defined to be (i 1)),

and
1



16 I. Anshel et al.

with ones on the diagonal, zeros elsewhere, except in the i*" row where we have
00 ---0t -t10 ---00

with —t on the diagonal. The elements y1,...,yy generate a group CByi1. A
generic element in C By is of the form (M, o) where M is an N x N matrix
with coefficients that are finite Laurent polynomials in the variables t1,...,tn
over the integers, and ¢ is a permutation in the symmetric group Syy1.

For example, if N = 4, we have:

410 0 1 0 0

o 100 s —ts 1 0
Glto=| 9 o1 0] GB={g o 19
0 00 1 0 0 0 1

10 0 0 100 0

01 0 0 01 0 0

Cslta) =\ o 4y —gy 1] CGl)=1g ¢ 1 o
00 0 1 00 ti —ta

Note that

L L 00 1 0 0 0
0 1 00 ) 1 =L L g

-1 _ -1 _ t t
Gl =149 ¢ 10| @7 =|y 5 T o
0 0 0 1 0 0 0 1

10 0 0 100 0

4 (o1 0 o 4 (o100
Calla) =g 1 =22 L] Gl =1y 9 1
00 0 1 001 #

This explains why we get Laurent polynomials (i.e., polynomials in the variables
t1,...,tn and their inverses tfl, . ,t&l).

Multiplication (denoted -) of two ordered pairs (M, o) and (M’ ,o’) in the
group C'By 41 is given by

(M,0) - (M' 0"y = (M xa(M'),00"),

where M, M’ are matrices; * means matrix multiplication; o, ¢’ are permutati-
ons; and o(M’) denotes the matrix obtained from M’ by permuting the variables
t1,...,ty appearing in the coefficients of M’ by the permutation o.

As an example, we compute

(Calta), (2 3)) -~ (Cs(ts), (3 4)) = (Cal(tz) * Ca(ta), (2 3)(3 4))



New Key Agreement Protocols in Braid Group Cryptography 17

1 0 0 0 10 0 0
[t -t 10 01 0 0
= 0 0 1 0] o 1] @ICY
0 0 0 1 00 0 1
1 0 0 0
o0 -t 1
=1lo & —t, 1] @39
00 0 1

One easily checks that the elements y; (for ¢ = 1,...,N) satisfy the braid
relations, and this gives a homomorphism from the braid group By41 to the
colored Burau group C'By 1. It follows that to every element of the braid group
we can associate an element of the colored Burau group.

3.1 The Colored Burau Key Extractor

In general, a keyspace K of order k is a set of bit strings (each of length at
most k), where each bit string is called a key. The elements of the keyspace can
be used for cryptographic applications. A key extractor on a group G is a
function that assigns a unique key in a keyspace to every element of G.

Fix an integer N > 3 and a prime number p. We define the keyspace Ky,
to be the set of pairs (M, o) where M denotes an N x N matrix with coeffi-
cients in F),, the finite field of p elements, and ¢ is a permutation in Sy 1. Note
that this keyspace is of order N?---log,(p) + log, (N + 1)!) = O(N?1logy(p)).

(N2 : --logg(p)) ((N +1)!---N- --10g2(N)). We shall now define a key ex-

tractor £ from the Braid group By to the keyspace Ky ,. The key extractor
depends on a choice 71, ..., 7y of distinct and invertible integers  (mod p) and
is defined as follows. Let w € By 41 be an element of the braid group. Associated
to w there is a unique element (M, o) € CByy1, where M = M (t1,...,tn) is a
matrix with coeflicients in the ring Z[t,...,tn,1/t1 - - ty] of Laurent polyno-
mials in NV variables over the integers, and ¢ is a permutation.

Definition 1. The key extractor E : Byy1 — Ky p is defined by

E(w) = E(M(ts,...,tn)), 0) = (M(ri,...,7)  (mod p), o),
where reduction  (mod p) means reduction of every entry in the matrix.

A very rapid and efficient algorithm for computing the key extractor defined
above will now be given. The input is an element of the braid group By41 of
the form g1go- - -g¢, where each g; is an Artin generator (i.e., one of x1,...,zxN)
or its inverse (i.e., one of 7!, ... ,x&l) and the output is a pair (M, o) € Kn p.

We now give the key extractor algorithm. The symbol g, will denote an Artin
generator (g = x; for some i) or its inverse (g = x; '). Note that Steps 5, 8



18 I. Anshel et al.

are the most time consuming and can each be done with only three column
operations (i.e., three scalar multiplications and two additions in FpN ). The
running time for this algorithm is O(N¢---log,(p)?).

Input: A braid word w = g192 - - - g¢ of length ¢
a prime p
{71, 72,...,7n} are invertible distinct integers  (mod p).

Initialization: M = N x N Identity Matrix
k=0
o = Identity Permutation.

STEP 1: IF k = ¢ then STOP

STEP 2: k:=k+1

STEP 3: IF g = x; then GO TO STEP 5
STEP 4: IF g;, = x; ' then GO TO STEP 8
STEP 5: M := M * Ci(7,¢;y) (mod p)
STEP 6: 0 :=0--+(1 i+1)

STEP 7: GO TO STEP 1

STEP 8: M := M % Ci(75;))~"  (mod p)
STEP 9:0:=0---(i i+ 1)

STEP 10: GO TO STEP 1

Output: (M, o).

4 Dehornoy’s Fully Reduced Form of a Braid

Consider the braid group By with N > 6. Let u € By41 be publicly known.
The conjugacy function is the function

x— x tu.

This function is expected to be very hard to invert (candidate one-way func-
tion) provided that the word z~luz is suitably rewritten using the braid relators
so that it becomes unrecognizable. It is conjectured that finding = will take at



New Key Agreement Protocols in Braid Group Cryptography 19

least exponential time in N: at present there is no known polynomial time algo-
rithm (with respect to the word length of x in the Artin generators) to find x
for N > 6.

There are two well known methods to rewrite a braid word so that it be-
comes unrecognizable: the canonical form algorithm of Birman-Ko-Lee [4] and
the Dehornoy reduction algorithm [6]. A braid word w € By41 of length ¢ (in
the Artin generators) can be put into Birman-Ko-Lee canonical form in time
O(£?N log N). At present, it is not possible to prove that the Dehornoy al-
gorithm running time is as good as the Birman-Ko-Lee running time, but in
practice, it seems to be much faster. We now focus on the Dehornoy reduction
algorithm.

Let ; denote the 7" Artin generator of the braid group By. A braid word is
a word in the Artin generators and their inverses and represents a braid. Many
different words may represent the same braid.

Dehornoy refers to a braid word of the form

. -1 —1
Ty -(a word with no x; nor x; ) X

or

oyt (a word with no x; nor Xfl) coeXg

as an zi1-handle.

More generally, an z;-handle is a braid word of the form

T ~(a word with no x;, x;_1, nor xi_l,xi:ll) . ~xi_1

or
-1 . -1 -1
x; e (a word with no xj, X;_1, nor x; 7Xi—1) CeXy.

A handle may occur as a sub-word of a longer braid word. If a braid word
contains no x1-handles then it is called x;-reduced. This means that either z;
or xfl may appear in the word, but not both. (I assume that one or the other
does appear.)

An zi-reduced word thus has one of the forms
WoTr1wiTy -+ T1Wk

or
-1 -1 -1
WoT, WiTy - T] Wk

where the w; for : = 0,1, ... k% are words that do not contain x; nor xfl. A word
is termed fully reduced provided it does not contain any handles. We think of
a fully reduced braid word as a standard form for the braid, although it is not
standard in the strong sense (i.e. canonical): there are still many different fully
reduced braid words that represent the same braid.

One can apply the braid relations to replace a handle z;wx; ! by an equivalent
braid word. The key point is that one must first ensure that w does not contain



20 I. Anshel et al.

any x;41-handles. It may contain x;2-handles and so on. This makes reduction
a somewhat complicated process. For a justification of the following algorithm,
see [6].

4.1 Dehornoy Reduction Algorithm

We now describe Dehornoy’s full handle reduction algorithm. The symbol g;, will
denote an Artin generator (g = x; for some i) or its inverse (gr = x; '). The
subroutine denoted ReduceHandle in STEP 5 is described further below.

Input: A braid word w = g1g2- - g of length ¢

Initialization:

k=0,n=/

I = e (the empty word) I = g1g2---gr  (When k =0, I is the empty word.)
A=w

n = £ = Length(A)

Loop Invariants:

A =g192" " Gn
I =g195- - gy is fully reduced.

STEP 1: If K = n, then STOP
STEP 2: k:=k+1
STEP 3: I:=1---gg

STEP 4: Determine the largest 1 < j < k such that H = g;gj41---gx is a
handle.

If there is no such j then GO TO STEP 1.
STEP 5: U := ReduceHandle[H]
STEP 6: Replace the handle H by the reduced handle U in the word A.
STEP 7: n := Length(A)
STEP 8 k:=j5—1
STEP 9: Rewrite A =¢192--- g, and let I = g192 - gi-
STEP 10: GO TO STEP 1.

Output: The fully reduced braid word A.



New Key Agreement Protocols in Braid Group Cryptography 21

4.2 The Subroutine ReduceHandle
We now describe the subroutine ReduceHandle. This is single handle reduction.

Input: t = an integer.

H =gjgj+1---8x (H = x,-handle)
Initialization: U = H.

STEP 1: U = gj41---8k-1- STEP 1: U = gj_lAgk_1 (i.e. Remove g; and gy
from U).

STEP 2: If g; = x¢, g = xt_l and there are z;11’s in U then replace each one
by x;rllxtwtﬂ. If there are xt;ll’s, replace each one by x;rllx;lxtﬂ.

STEP 3: If g; = xt_l, gr = x¢ and there are x441’s in U then replace each one
by xt+1xtxt_+11. If there are zt_jl’s, replace each one by xt+1xt_1x;r11.

Output: The reduced handle U.

4.3 Data Structures

The above algorithms are described in [6], but no attention is paid there to
the data structure used to store the braids. In general, using the wrong data
structure can have an unfortunate effect on the running time of an algorithm,
so we shall discuss this point here.

Consider the operations used in the two algorithms above. In STEP 4 of the
main routine, we must locate a handle (if one exists) ending at a given point in
the braid word A = g1g2- - -gn. Then, in STEP 6, the sub-word H of A must be
replaced by another word, U, which may be of different length. The subroutine
requires us to find all occurrences of z;41 or xt+1*1 between an x; and an x; !,
and replace each of these with a subword of length 3.

The need for replacements suggests that a doubly-linked list (such as the
list class in the C4++ standard library) is a more appropriate choice than a
simple array of Artin generators. There is yet another data structure, which is
asymptotically more efficient, and seems to be faster to use in practice when
dealing with braids that contain more than 10,000 Artin generators.

To describe this new data structure, start with a doubly-linked list, in which
the node containing the datum g; = x; or x; ! contains pointers to the nodes
corresponding to g;—1 and ¢;4+1. Next, add a pointer to the next node, say the
j’th one, such that g; = x¢, 2, x4_q, or £,_1 1. It is then easy to determine
whether there is a handle beginning at g;: follow this pointer and check whether
g; = gi*. (If so, then g;- - -g; is a handle.) Similarly, add a pointer to the previous
such node, so that it is easy to determine whether there is a handle ending at g;.
It turns out that one must also include pointers to the next and previous nodes
contain one of the Artin generators x; or z;41 or their inverses.



22 I. Anshel et al.

With this data structure, all the operations described above can be done
in constant time. The subroutine ReduceHandle takes time proportional to the
number of occurrences of x;y; or 24411, rather than the length of the input
braid word.

The profusion of pointers makes this data structure expensive to use for
relatively short braids. One can reduce the number of pointers by two, if desired:
the original pointers from the linked-list structure, pointing to the nearest two
nodes, are not needed. If one removes these pointers, the data structure closely
resembles the geometric picture of the braid it represents: there is a node for each
crossing on the braid, and a pointer for each strand coming out of the crossing.

5 Cryptographic Protocols

In this section, we describe two key-exchange protocols based on the braid group.
The new feature here is to use the key extractor F, described in Sect. 3.1, which
is extremely efficient. It runs in time O(N/- - -logy(p)?), where £ is the number
of Artin generators in the braid word from which the key is to be extracted.
As discussed in §4, the public keys must be rewritten in order to protect
the private keys. The most secure rewriting method is to use a canonical form.
For a braid word w € Bpyyi of length £ in the Artin generators, this takes
time O(I?N log N) (see [4]). Rewriting the braid in a fully reduced form (as
described in §4) also seems very secure. Although it has not been fully analyzed,
the Dehornoy reduction algorithm seems to run in near linear time on average.
The security of these protocols is tied to the conjugacy problem in the braid
groups, a well known hard problem that has been studied for many years.

5.1 Commutator Key Agreement Protocol

This protocol was first introduced in [2].

PublicInformation:

An integer N > 6. A prime p > N.
Distinct and invertible integers 71,72,...,7n8 (mod p).
The key extractor E : By11 — Ky p.

Two subgroups of By1:
Sa =<ay1,a2,...,0, >,
Sp =<by, by, ... b, >
Secretkeys:

Alice’s secret key X € Sy.
Bob’s secret key Y € Spg.



New Key Agreement Protocols in Braid Group Cryptography

Publickeys:

Alice’s public key X0 X, X X, ..., X 1b,X,
Bob’s public key Y~ laY, Y laoY, ..., Y la,Y.
SharedSecret:

E(X7'Y71XY).

5.2 Diffie-Hellman Type Key Agreement Protocol

23

This protocol, without the key extractor E, was presented in [11] and is a special

case of the general algorithm first presented in [2].

PublicInformation:

An odd integer N > 6. A prime p > N.
Distinct and invertible integers 71, 72,...,7xy (mod p).
The key extractor £ : Byy1 — Ky p.
A publicly known element u € By 1.
Two subgroups of By:
Sp =< L1, T2, TN1 >,

Sp :<£L'N;r3,xN;r5,...,CCN > .

Here x1, s, ...,xn denote the Artin generators of Bn1.

Secretkeys:
Alice’s secret key X € S4.
Bob’s secret key Y € Spg.

Publickeys:
Alice’s public key X~tux
Bob’s public key Y—luY.

SharedSecret:
BE(X 'Y luXy).

6 Key Length and Known Attacks

In this section, we consider the security of the protocols described in Sect. 5.
The main point is that it should be hard to determine the secret key X € By 41
from the public information w and w’ = X 'wX (which are also elements
of the braid group By41). The parameters that effect how hard this is are the
braid index N (the number of generators of By41) and the length of the braids

X and w as words in the Artin generators x;.



24 I. Anshel et al.

6.1 The General Conjugacy Problem

The conjugacy problem is to find a braid X € By, such that w’ = X 'wX,
where w and w’ € By are given. (More precisely, this is the conjugacy search
problem. There is also the conjugacy decision problem: given w and w’ decide
whether such an X exists.) Even is this can be solved. the two protocols de-
scribed in Sect. 5 are not necessarily insecure. The commutator key agreement
protocol (see Sect. 5.1) requires the simultaneous solution of several conjugacy
problems, whereas the Diffie-Hellman type key agreement protocol (see Sect. 5.2)
requires that the conjugating braid X lie in a specified subgroup of By 1. To be
conservative, we will assume that these protocols are insecure if the conjugacy
problem can be solved in polynomial time.

There are solutions to the conjugacy problem, although none are polynomial
in the length of the braid words. We will describe the one presented in [4]. This
solution is based on the canonical form of a braid. Other canonical forms lead
to similar algorithms. Any braid w € By41 can be written in the form

w = 6UAq,- - Ay,

where § € By 41 is a fixed braid (the “fundamental word”), u is an integer, and
each A; is a canonical factor, of which there are

~

N+1

1 2N +2 2 4N
Cny1 = ( )

N 12 ~\VrNE

(C,, is the n—-th Catalan number.) There is also a restriction on the sequence of
canonical factors, but we will not discuss it here. We refer to the integer %k as
the canonical length of the braid w.

Given conjugate words w and w’, the first step is to replace them with con-
jugates that have minimal canonical length. This step can be done fairly easily.
This reduces the conjugacy problem to a finite search: among all braids of cano-
nical length k, start with w and keep conjugating until you reach w’. At. present,
there is no more effective method for doing this than to take a random walk in
this set of braids (or to take random walks, one starting from w and the other
from w’).

Of all the braids having canonical length &k, we do not know how many are
conjugate to a given braid. All we can do is choose n and k large enough that
this set is likely to be too large for the search problem to be feasible, Because
not every product of canonical factors is the canonical form of a braid, there are
somewhat fewer than C%, 41 braids of canonical length k, but this gives roughly
the right order of magnitude. A reasonable guess is that, for the average braid
w, the number of these braids that are conjugate to w is the square root of the
total number. We will, therefore, assume that this search problem is on a set

with C’NH% ~ 2Nk clements.



New Key Agreement Protocols in Braid Group Cryptography 25

6.2 The Length Attack

Probabilistically speaking, braids tend to get longer when they are multiplied or
conjugated. That is, the product ww’ tends to be longer than either w or w’ and
the conjugate X ~'wX tends to be longer that w. This is true whether “length”
means the canonical length, as in Sect. 6.1, or the number of Artin generators
that describe the braid. If this tendency were a certainty then it would be easy
to solve the conjugacy problem: think of X as the product of many small pieces
X; (Artin generators or canonical factors, for example) and guess these pieces
by finding those that take us from the “long” braid w’ = X 'wX to the short
braid w.

Let pn denote the probability that the conjugate X~ LwX; is longer that the
original braid w, where X; is chosen randomly from the set of “small pieces.”
Empirical data suggest that py decreases as the braid index N gets larger and
the length (in Artin generators) of the pieces X; decrease. To defeat this attack,
we should first choose N to be fairly large and the average length of X; to be
sufficiently small. Depending on how far from 1 the probability py is, we then
choose X to be composed of sufficiently many pieces X; that peeling off the right
factor does not reliably decrease the length.

6.3 Linear Algebraic Attacks on the Key Extractor E

The question arises as to whether it is possible to attack the suggested key
agreement protocols by methods of linear algebra based on the fact that the
key extractor F maps braid words to pairs (M, o), where M is a matrix and o
is a permutation. One has to be careful to choose the secret keys X,Y in the
key agreement protocol of Sect. 5) so that their associated permutations are not
close to the trivial permutation. In general, if the associated permutations of the
secret keys X, Y are sufficiently complex, there will be so many permutations of
T1,...,7Nn that the standard methods of linear algebra to attack the system will
be futile. In fact, the representation of the braid group into the colored Burau
group induces a representation of the braid group with rank > N - (N + 1)/,
which is super—exponential in the braid index N, making it infeasible to attack
the system in this manner.

6.4 Recommended Key Lengths

Much further study in needed, but for now we make the following suggestions.
The only restriction on the prime p used in the key extractor (see Sect. 3.1)
is that p > N, so that one can choose distinct, invertible integers 71,72, ..., TN
(mod p). One can choose p < 1000, given the values of N suggested below.
First, consider the commutator key agreement protocol (see Sect. 5.1). For
the braid index, take N = 80 or larger. Choose m = n = 20 generators for



26 I. Anshel et al.

each of the public subgroups S4 and Sp, and let each of these generators be
the product of 5 to 10 Artin generators, taking care that each set of public
generators involves all the Artin generators of Byyi. Each private key should
be the product of 100 public generators.

For the Difffie-Hellman type key agreement protocol (see Sect. 5.2) we follow
the suggestions in [11]: take N = 44 and take all braids (u and the private keys)
to have canonical length at least 3. (Note that this is a slightly different notion of
canonical length from that in [4].) The number of Artin generators in a canonical
factor is not fixed, but this means that u will be composed of about 1450 Artin
generators and the private keys, which lie in subgroups isomorphic to B n+1, will

each have about 360 Artin generators. The public braid « should involve all the
Artin generators.

6.5 Acknowledgments

The authors wish to thank Arithmetica Inc. for its support of this research.

References

1. Anshel, I., Anshel, M.: From the Post-Markov Theorem through Decision Pro-
blems to Public-Key Cryptography, American Mathematical Monthly Vol. 100,
No. 9 (November 1993) 835-845

2. Anshel, 1., Anshel, M., and Goldfeld D.: An Algebraic Method for Public-Key
Cryptography, Mathematical Research Letters 6 (1999) 1-5

3. Birman, J.: Braids, Links and Mapping Class Groups, Annals of Mathematical
Studies, Study 82 Princeton University Press (1974)

4. Birman, J., Ko, K. H., Lee, S. J.: A new solution to the word and conjugacy
problems in the braid groups, Advances in Mathematics 139 (1998), 322-353

5. Boneh, D.: Twenty Years of Attacks on the RSA Cryptosystem, Notices of the
American Mathematical Society, Vol 46, No. 2 (1999) 203- 213.

6. Dehornoy, P.: A fast method for comparing braids, Advances in Mathematics 123
(1997), 205-235

7. Garzon, M., Zalcstein, Y.: The complexity of Grigorchuk groups with applicati-
ons to cryptography, Theoretical Computer Science 88:1 (1991) 83-98 (additional
discussion may be found in M.Garzon, “Models of Massive Parallelism” Springer-
Verlag (1995))

8. Hansen, V. L.: Braids and Coverings: Selected topics, LMS, Student Texts 18
Cambridge University Press (1989)

9. Johnson, D. L.: Presentations of Groups: Second Edition, Cambridge University
Press (1997)

10. Kawauchi, A.: A Survey of Knot Theory, Birhauser Verlag (1996)

11. Ko, K. H., Lee, S. J., Cheon, J. H., Han, J. W., Kang, J. S., Park, C.: New
Public-Key Cryptosystem Using Braid Groups, to appear in Crypto 2000

12. Koblitz, N.: Algebraic Aspects of Cryptography, Springer-Verlag (1998)

13. Morton, H. R.: The Multivariable Alexander Polynomial for a Closed Braid, Con-
temporary Mathematics 233 AMS (1999), 167-172



New Key Agreement Protocols in Braid Group Cryptography 27

14. Sidel’'nikov, V. M., Cherepenev, M. A., Yashichenko, V. V.: Systems of open dis-
tribution of keys on the basis of noncommutative semigroups, Russian. Acad. Sci.
Dokl. Math. Vol. 48 No.2 (1994) 384-386

15. Wagner, N. R., Magyarik, M. R.: A public key cryptosystem based on the word
problem, Advances in Cryptology: Proceedings of Crypto 84, ed. G. R. Blakely
and D. Chaum, LNCS 196, Springer Verlag (1985) 19-36

16. Welsch, D. J. A.: Complexity: Knots, Colourings and Counting, LMS, Lecture
Notes Series 186 Cambridge University Press (1993)



Improving SSL Handshake Performance via
Batching

Hovav Shacham! and Dan Boneh?

! Stanford University,
hovav@cs.stanford.edu
2 Stanford University,
dabo@cs.stanford.edu

Abstract. We present an algorithmic approach for speeding up SSL’s
performance on a web server. Our approach improves the performance of
SSL’s handshake protocol by up to a factor of 2.5 for 1024-bit RSA keys.
It is designed for heavily-loaded web servers handling many concurrent
SSL sessions. We improve the server’s performance by batching the SSL
handshake protocol. That is, we show that b SSL handshakes can be
done faster as a batch than doing the b handshakes separately one after
the other. Experiments show that taking b = 4 leads to optimal results,
namely a speedup of a factor of 2.5. Our starting point is a technique
due to Fiat for batching RSA decryptions. We improve the performance
of batch RSA and describe an architecture for using it in an SSL web
server. We give experimental results for all the proposed techniques.

1 Introduction

The Secure Socket Layer (SSL) is the most widely deployed protocol for securing
communication on the World Wide Web (WWW). The protocol is used by most
e-commerce and financial web sites. It guarantees privacy and authenticity of
information exchanged between a web server and a web browser. Unfortunately,
SSL is not cheap. A number of studies show that web servers using the SSL
protocol perform far worse than web servers who do not secure web traffic. This
forces web sites using SSL to buy significantly more hardware in order to provide
reasonable response times.

Here we propose a software-only approach for speeding up SSL: batching
the SSL handshakes on the web server. The basic idea is as follows: the web
server waits until it receives b handshake requests from b different clients. It then
treats these b handshakes as a batch and performs the necessary computations
for all b handshakes at once. Our experiments show that, for b = 4, batching the
SSL handshakes in this way results in a factor of 2.5 speedup over doing the b
handshakes sequentially, without requiring any additional hardware.

Our starting-point is a technique due to Fiat [5] for batch RSA decryption.
Fiat suggested that one can decrypt multiple RSA ciphertexts as a batch faster
than decrypting them one by one. Unfortunately, our experiments show that
Fiat’s basic algorithm, naively implemented, does not give much improvement

D. Naccache (Ed.): CT-RSA 2001, LNCS 2020, pp. 28-[43] 2001.
© Springer-Verlag Berlin Heidelberg 2001



Improving SSL Handshake Performance via Batching 29

for key sizes commonly used in SSL handshakes. Our first set of results, given in
Section B] shows how to batch RSA decryption in a way that gives a significant
speedup with common RSA keys.

In Section [ we present an architecture for a batching web server and discuss
several scheduling issues. As we will see, a batching web server must manage
multiple public key certificates. Consequently, a batching web server must em-
ploy a scheduling algorithm that assigns certificates to incoming connections,
and picks batches from pending requests, so as to optimize server performance.

Finally, in Section Blwe describe our experiments and give running times for
various key sizes and various loads on the web server.

1.1 Preliminaries

As discussed above, this paper focuses on improving the performance of the
SSL handshake protocol. The handshake protocol is part of the bottleneck that
significantly degrades server performance.

SSL Handshake. For completeness we briefly describe the SSL handshake
protocol. We note that SSL supports several handshake mechanisms. The one
described below is the simplest and is the most commonly used. More informa-
tion can be found in [4].

Step 1: the web browser connects to the web server and sends a client-hello.
Step 2: the web server responds with a server-hello message sequence. These mes-
sages contain the server’s certificate, which in turn contains the server’s RSA
public key.

Step 3: The browser picks a random 48-byte string R and encrypts it using the
web server’s public RSA key. Let C' be the resulting ciphertext. The web browser
sends a client-key-exchange message which contains C. The string R is called the
pre-master-secret.

Step 4: The web server obtains the pre-master-secret R by using its private RSA
key to decrypt C. Both the browser and server then derive the session keys
from R and some other shared information.

RSA Public Keys. Step 4 above is the expensive step in the SSL handshake
since it requires the server to perform an RSA decryption. To describe our spee-
dup of the SSL handshake we must first briefly review the RSA cryptosystem [9].
We refer to [8] for a complete description.

An RSA public key is made of two integers (N,e). Here N = pq is the
product of two large primes, and is typically 1024 bits long. The value e is called
the encryption exponent and is typically some small number such as e = 3 or
e = 65537. Both N and e are embedded in the server’s public-key certificate.
The RSA private key is an integer d satisfying e -d = 1 mod (p — 1)(¢ — 1).

To encrypt a message M using an RSA public key (IV,e), one first formats
the message M to obtain an integer X in {1,..., N}. This formatting is often
done using the PKCS1 standard [II7]. The ciphertext is then computed as C =



30 H. Shacham and D. Boneh

X mod N. Recall that the web browser does this in Step 3 of the SSL handshake
protocol.

To decrypt a ciphertext C the web server uses its private key d to compute
the e’th root of C in Zy. The eth root of C is given by C% mod N. Since both
d and N are large numbers (each 1024 bits long) this is a lengthy computation
on the web server. We note that d must be taken as a large number (i.e., on the
order of N) since otherwise the RSA system is insecure [211].

2 Review of Fiat’s Batch RSA

Fiat [5] is the first to propose speeding up RSA decryption via batching. We
briefly review Fiat’s proposal and describe our improvements in the next section.
For the rest of the paper all arithmetic is done modulo IV, except where otherwise
noted.

Fiat observed that when using small public exponents e; and es it is possible
to decrypt two ciphertexts for approximately the price of one. Suppose v; is a
ciphertext obtained by encrypting using the public key (NN, 3). Similarly, vy is
a ciphertext obtained by encrypting using the public key (N, 5). To decrypt vy
and vy we must compute v%/ % and v;/ ® mod N. Fiat observed that by setting
A = (v} - v3)Y/1® we obtain

10 6
13 A 1/5 A
vt = and vy = —
vy - U5 UERE D)

Hence, at the cost of computing a single 15’th root we are able to decrypt both
v1 and vo. Note that some extra arithmetic is required.

This batching technique is only worthwhile when the public exponents e; and
es are very small (e.g., 3 and 5). Otherwise, the extra arithmetic required is too
expensive. Also, notice that one can only batch-decrypt ciphertexts encrypted
using distinct public exponents. This is essential. Indeed, in Appendix A we show
(using simple Galois theory) that it is not possible to batch when the same public
key is used. That is, it is not possible to batch the computation of v} /3 and v%/ 3

Fiat generalized the above observation to the decryption of a batch of b
RSA ciphertexts. We have b distinct and pairwise relatively prime public keys

€1,...,ep, all sharing a common modulus N = pq. Furthermore, we have b
encrypted messages v1, ..., U, one encrypted with each key, which we wish to
1/6i

decrypt simultaneously, to obtain the plaintexts m; = v,

The batch process is implemented around a complete binary tree with b lea-
ves, with the additional property that every inner node has two children. Our
notation will be biased towards expressing locally recursive algorithms: Values
will be percolated up and down the tree. With one exception noted later, quan-
tities subscripted by L or R refer to the corresponding value of the left or right
child of the node, respectively. For example, m is the value of m at a node; mgr
is the value of m at that node’s right child.

Some values necessary to batching depend only on the particular placement
of keys in the tree, and may be precomputed and reused for multiple batches.



Improving SSL Handshake Performance via Batching 31

We will denote precomputed values in the batch tree with capital letters, and
values that are computed in a particular decryption with lower-case letters.

Fiat’s algorithm consists of three phases: an upward-percolation phase, an
exponentiation phase, and a downward-percolation phase. We consider each in
turn.

Upward-percolation. In the upward-percolation phase, we seek to combine

the individual encrypted messages v; to form, at the root of the batch tree, the
_T17° e/ei b

value v = [[,_, v;""", where e = [[,_, e;.

In preparation, we assign to each leaf node a public exponent: E <+ e;. Each
inner node then has its E computed as the product of those of its children:
E + Ey,- ER. (The root node’s E will be equal to e, the product of all the public
exponents.)

Each encrypted message v; is placed (as v) in the leaf node labeled with its
corresponding e;. The v’s are percolated up the tree using the following recursive

step, applied at each inner node:

v < PR Rt (1)

Exponentiation-phase. At the completion of the upward-percolation phase,

the root node contains v = H?:l vf/ei. In the exponentiation phase, the eth
root of this v is extracted. (In the basic Fiat scheme, this is the only point at
which knowledge of the factorization of N is required.) The exponentiation yields

vl/e = H?:l vl-l/ei, which we store as m in the root node.
Downward-percolation. In the downward-percolation phase, we seek to break
up the product m into its constituent subproducts my, and mg, and, eventually,
into the decrypted messages m; at the leaves.

Fiat gives a method for accomplishing this breakup. At each inner node we
choose an X satisfying the following simultaneous congruences:

X =0 (mod Ey) X =1 (mod ER)

We construct X using the Chinese Remainder Theorem. Two further numbers,
X1, and XR, are defined at each node as follows:

XL = X/Ey Xp = (X —-1)/Ex

Both divisions are done over the integers. (There is a slight infelicity in the
naming here: X1, and Xy are not the same as the X’s of the node’s left and
right children, as implied by the use of the L. and R subscripts, but separate
values.)

As Fiat shows, X, X1, and Xg are such that, at each inner node, m~ equals
vI)fL ~v§"‘ -mg. This immediately suggests the recursive step used in downward-
percolation:

mp  m~/(vp " - vp™) my, < m/mg (2)



32 H. Shacham and D. Boneh

At the end of the downward-percolation process, each leaf’s m contains the
decryption of the v placed there originally. Only one large (full-size) exponentia-
tion is needed, instead of b of them. In addition, the process requires a total of
4 small exponentiations, 2 inversions, and 4 multiplications at each of the b — 1
inner nodes.

3 Improved Batching

Basic batch RSA is fast with very large moduli, but not a big improvement with
moderate-size moduli. This is because batching is essentially a tradeoff: more
auxiliary operations in exchange for fewer full-strength exponentiations.

Since we are experimenting with batching in an SSL-enabled web server we
must focus on key sizes generally employed on the web, e.g., n = 1024 bits. We
also limit the batch size b to small numbers, on the order of b = 4, since collecting
large batches can introduce unacceptable delay. For simplicity of analysis (and
implementation), we further restrict our attention to values of b that are powers
of 2.

In this section we describe a number of improvements to batch RSA that
lead to a significant speedup in a batching web server.

3.1 Division Speedups

Fiat’s scheme presented in the previous section performs two divisions at each
internal node, for a total of 2b0—2 required modular inversions. Modular inversions
are asymptotically faster than large modular exponentiations [6]. In practice,
however, modular inversions are costly. Indeed, our first implementation (with
b =4 and a 1024-bit modulus) spent more time doing the inversions than doing
the large exponentiation at the root.

We present two techniques that, when combined, require only a single modu-
lar inversion throughout the algorithm. The cost is an additional O(b) modular
multiplications. This tradeoff gives a substantial running-time improvement.

Delayed Division. An important realization about the downward-percolation
phase given in Equation (2)) is that the actual value of m for the internal nodes
of the tree is consulted only for calculating my, and mgr. An alternative repre-
sentation of m that allows the calculation of my, and mgr and can be evaluated
at the leaves to yield m would do just as well.

We convert a modular division a/b to a “promise,” (a, b). We can operate on
this promise as though it were a number, and, when we need to know its value,
we can “force” it by actually computing b~ 'a.

Operations on these promises work in the obvious way (similar to operations
in projective coordinates):

a/b={(a,b) {a,b)" = (a®,b°)
¢ {a,b) = (ac,b) (a,b) - {¢,d) = (ac, bd)
(a,by/c = {a,bc) (a,b) / {c,d) = (ad, bc)



Improving SSL Handshake Performance via Batching 33

Multiplications and exponentiations take twice as much work as otherwise, but
division can be computed without resort to modular inversion.

If, after the exponentiation at the root, we express the root m as a promise,
m <+ (m,1), we can easily convert the downward-percolation step in @) to
employ promises:

XR.)

mg < mX/(vI)fL “UR my, < m/mg (3)

No internal inversions are required. The promises can be evaluated at the leaves
to yield the decrypted messages.

Batching using promises requires b — 1 additional small exponentiations and
b—1 additional multiplications, one each at every inner node, and saves 2(b — 1)—
b = b — 2 inversions.

Batched Division. To reduce further the number of inversions, we use batched
divisions. When using delayed inversions (as described in the previous section)
one division is needed for every leaf of the batch tree. We show that these b
divisions can be done at the cost of a single inversion with a few more multipli-
cations.

Suppose we wish to invert three values z, ¢, and z. We can proceed as follows:
we form the partial products yz, xz, and zy; and we form the total product
xyz and invert it, yielding (zyz)~!. With these values, we can calculate all the
inverses:

1

o= (ye) - (ayr) ™ YT = () - (ayR) T '

2= (zy) - (ay2)7!
Thus we have obtained the inverses of all three numbers, at the cost of only a
single modular inverse along with a number of multiplications. More generally,
we obtain the following lemma:

. -1 _
Lemma 1. Let x1,...,2, € Zy. Then all n inverses xy",...,z "

tained at the cost of one inversion and 3n — 3 multiplications.

can be ob-

Proof. A general batched-inversion algorithm proceeds, in three phases, as fol-
lows. First, set Ay + x1, and A; < z; - A;_1 for i > 1. It is easy to see, by
induction, that

AZ':HQ?J‘ . (4)

Next, invert 4, = []z;, and store the result in B,: B, + (A4,)"! = Hazj_l
Now, set B; <— x;4+1 - Bi11 for i« < n. Again, it is easy to see that

j=1

Finally, set C; < By, and C; < A;_; - B; for i > 1. We have C; = By = 27",
and, combining ) and {B), C; = A;—1 - B; = a;i_l for ¢ > 1. We have thus
inverted each x;.



34 H. Shacham and D. Boneh

Each phase above requires n — 1 multiplications, since one of the n values is
available without recourse to multiplication in each phase. Therefore, the entire
algorithm computes the inverses of all the inputs in 3n — 3 multiplications and
a single inversion. a

Batched division can be combined with delayed division: The promises at the
leaves of the batch tree are evaluated using batched division. Consequently, only
a single modular inversion is required for the entire batching procedure. We note
that the batch division algorithm of Lemma [[]can be easily modified to conserve
memory and store only n intermediate values at any given time.

3.2 Global Chinese Remainder

It is standard practice to employ the Chinese Remainder Theorem (CRT) in
calculating RSA decryptions. Rather than compute m + v? (mod N), one eva-
luates modulo p and ¢:

my, v;l” (mod p) My < v;l‘l (mod q)

Here d, = dmodp — 1 and d; = dmod g — 1. Then one uses the CRT [6]
to calculate m from m, and m,. This is approximately 4 times faster than
evaluating m directly [g].

This idea extends naturally to batch decryption. We reduce each encrypted
message v; modulo p and ¢. Then, instead of using a single batch tree modulo NV,
we use two separate, parallel batch trees, modulo p and ¢, and then combine the
final answers from both using the CRT. Batching in each tree takes between a
quarter and an eighth as long as in the original, unified tree (since the number-
theoretical primitives employed, as commonly implemented, take quadratic or
cubic time in the bit-length of the modulus), and the b CRT steps required
to calculate each m; mod N afterwards take negligible time compared to the
accrued savings.

3.3 Simultaneous Multiple Exponentiation

Simultaneous multiple exponentiation (see [§], §14.6) provides a method for cal-
culating a* - b¥ mod m without first evaluating a“ and b”. It requires approxi-
mately as many multiplications as does a single exponentiation with the larger
of u or v as exponent.

For example, in the percolate-upward step, V <+ VLER . VPFL, the entire
right-hand side can be computed in a single multiexponentiation. The percolate-
downward step involves the calculation of the quantity VLXL . Vgr", which can be
accelerated similarly.

These small-exponentiations-and-product calculations are a large part of the
extra bookkeeping work required for batching. Using Simultaneous multiple ex-
ponentiation cuts the time required to perform them by close to 50%.



Improving SSL Handshake Performance via Batching 35

3.4 Node Reordering

There are two factors that determine performance for a particular batch of keys.

First, smaller encryption exponents are better. The number of multiplications
required for evaluating a small exponentiation is proportional to the number of
bits in the exponent. Since upward and downward percolation both require O(b)
small exponentiations, increasing the value of e = [] e; can have a drastic effect
on the efficiency of batching.

Second, some exponents work well together. In particular, the number of mul-
tiplications required for a simultaneous multiple exponentiation is proportional
to the number of bits in the larger of the two exponents. If we can build batch
trees that have balanced exponents for multiple exponentiation (Ey, and Er, then
X1, and XRg, at each inner node), we can streamline the multi-exponentiation
phases.

With b = 4, optimal reordering is fairly simple. Given public exponents
e1 < eg < ez < ey, the arrangement e;—e4—es—e3 minimizes the disparity between
the exponents used in simultaneous multiple exponentiation in both upward and
downward percolation. Rearranging is harder for b > 4.

4 Architecture for a Batching Web Server

Building the batch RSA algorithm into real-world systems presents a number of
architectural challenges. Batching, by its very nature, requires an aggregation of
requests. Unfortunately, commonly-deployed protocols and programs were not
designed with RSA aggregation in mind. Our solution is to create a batching
server process that provides its clients with a decryption oracle, abstracting
away the details of the batching procedure.

With this approach we minimize the modifications required to the existing
servers. Moreover, we simplify the architecture of the batch server itself by freeing
it from the vagaries of the SSL protocol. An example of the resulting web server
design is shown in Figure [1. Note that batching requires that the web server
manage multiple certificates, i.e., multiple public keys, all sharing a common
modulus N. We describe the various issues with this design in the subsections
below.

Web server Web server Web server Web server
process #1 process #2 process #3 process #4
using (N, 3) using (N, 5) using (N, 7) using (N, 11)

( Batch server process. Will batch any two distinct requests. )

Fig. 1. A batching web server using a 2-of-4 batching architecture



36 H. Shacham and D. Boneh

4.1 The Two-Tier Model

For a protocol that calls for public-key decryption, the presence of a batch-
decryption server induces a two-tier model. First is the batch server process,
which aggregates and performs RSA decryptions. Next are client processes that
send decryption requests to the batch server. These client processes implement
the higher-level application protocol (e.g., SSL) and interact with end-user agents
(e.g., browsers).

Hiding the workings of the decryption server from its clients means that ad-
ding support for batch RSA decryption to existing servers (such as ApacheSSL)
engenders roughly the same changes as adding support for hardware-accelerated
decryption. The only additional challenge is in assigning the different public keys
to the end-users; here the hope is to obtain roughly equal numbers of decryp-
tion requests with each e;. End-user response times are highly unpredictable, so
there is a limit to the cleverness that may be usefully employed in the public
key distribution.

One solution that seems to work: If there are k keys (each with a correspon-
ding certificate), spawn ck web server processes, and assign to each a particular
key. This approach has the advantage that individual server processes need not
be aware of the existence of multiple keys. The correct value for ¢ depends on
factors such as the load on the site, the rate at which the batch server can
perform decryption, and the latency of the communication with the clients.

We discuss additional ways of accommodating workload unpredictability in
the next subsection.

4.2 Decryption Server Scheduling

The batch server performs a set of related tasks. It receives requests for decryp-
tion, each of which is encrypted with a particular public exponent e;; it aggrega-
tes these into batches as well as it can; it performs the batch decryption described
in Section Bl above; finally, it responds to the requests with the corresponding
plaintexts.

The first and last of these tasks are relatively simple I/O problems; the
decryption stage has already been discussed. What remains is the scheduling
step: Of the outstanding requests, which should we batch? This question gives
rise to a related one: If no batch is available, what action should we take?

We designed our batching server with three scheduling criteria: maximum
throughput, minimum turnaround time, and minimum turnaround-time vari-
ance. The first two criteria are self-evident; the third may require some mo-
tivation. Lower turnaround-time variance means the server’s behavior is more
consistent and predictable, and helps prevent client timeouts. It also tends to
prevent starvation of requests, which is a danger under more exotic scheduling
policies.

Under these constraints, a batch server’s scheduling should implement a
queue, in which older requests are handled first, if possible. At each step, the
server seeks the batch that allows it to service the oldest outstanding requests.

We cannot compute a batch that includes more than one request encrypted
with any particular public exponent e;. This immediately leads to the central
realization about batch scheduling: It makes no sense, in a batch, to service a
request that is not the oldest for a particular e;; substituting the oldest request



Improving SSL Handshake Performance via Batching 37

for a key into the batch improves the overall turnaround-time variance and makes
the batch server better approximate a perfect queue.

Therefore, in choosing a batch, we need only consider the oldest pending
request for each e;. To facilitate this, the batch server keeps k queues );, one for
each key. When a request arrives, it is enqueued onto the queue that corresponds
to the key with which it was encrypted; this takes O(1) time. In choosing a batch,
the server examines only the heads of each of the queues.

Suppose that there are k keys, with public exponents ey, ..., ex, and that
the server decrypts requests in batches of b messages each. (We will see a reason
why we might want to choose k larger than b in Section[4.4], below.) The correct
requests to batch are the b oldest requests from amongst the & queue heads. If
we keep the request queues @; in a heap (see, for example, [3]), with priority
determined by the age of the request at the queue head, then batch selection
can be accomplished thus: extract the maximum (oldest-head) queue from the
heap; dequeue the request at its head, and repeat to obtain b requests to batch.
After the batch has been selected, the b queues from which requests were taken
may be replaced in the heap. The entire process takes O(blg k) time.

4.3 Multi-Batch Scheduling

Note that the process described above picks only a single batch to perform. It
would be possible to attempt to choose several batches at once; this would allow
more batching in some cases. For example, with b = 2, k = 3, and requests for
the keys 3-3-5—7 in the queues, the one-step lookahead may choose to do a 5-7
batch first, after which only the unbatchable 3—3 remain. A smarter server could
choose to do 3-5 and 3-7 instead.

The algorithms for doing lookahead are somewhat messier than the single-
batch ones. Additionally, since they take into account factors other than request
age, they can worsen turnaround-time variance or lead to request starvation.

There is a more fundamental objection to multi-batch lookahead. Performing
a batch decryption takes a significant amount of time; accordingly, if the batch
server is under load, additional requests will have arrived by the time the first
chosen batch has been completed. These may make a better batch available than
was without the new requests. (If the batch server is not heavily loaded, batching
is not important, as explained in Section E.4], below.)

4.4 Server-Load Considerations

Not all servers are always under maximal load. Server design must take different
load conditions into account.

Our server reduces latency in a medium-load environment as follows: we use
k public keys on the web server and allow batching of any subset of b of them,

for some b < k. This has some costs: we must pre-construct and keep in memory

the constants associated with (1;) batch trees, one for each set of e’s.

However, we need no longer wait for exactly one request with each e before
a batch is possible. For k keys batched b at a time, the expected number of
requests required to give a batch is

b
1
E[# requests] = k - Z ]
i=1

i+1 (6)



38 H. Shacham and D. Boneh

Here we are assuming each incoming request uses one of the k keys randomly
and independently. With b = 4, moving from k = 4 to k = 6 drops the expected
length of the request queue at which a batch is available by more than 31%,
from 8.33 to 5.70.

The particular relationship of b and k can be tuned for a particular server. The
batch-selection algorithm described in Section [€2], above, has time-performance
logarithmic in k, so the limiting factor on k is the size of the kth prime, since
particularly large values of e degrade the performance of batching.

In low-load situations, requests trickle in slowly, and waiting for a batch
to be available may introduce unacceptable latency. A batch server must have
some way of falling back on unbatched RSA decryption. Conversely, if a batch is
available, batching is a better use of processor time than unbatched RSA. So, by
the considerations given in Section above, the batch server should perform
only a single unbatched decryption, then look for new batching opportunities.

Scheduling the unbatched decryptions introduces some complications. The
obvious algorithm —when requests arrive, do a batch if possible, otherwise do
a single unbatched decryption—Ileads to undesirable real-world behavior. The
batch server tends to exhaust its queue quickly. Then it responds immediately
to each new request, and so never accumulates enough requests to batch.

We chose a different approach, which does not exhibit the performance de-
generation described above. The server waits for new requests to arrive, with
a timeout. When new requests arrive, it adds them to its queues. If a batch
is available, it evaluates it. The server falls back on unbatched RSA decrypti-
ons only when the request-wait times out. This approach increases the server’s
turnaround-time under light load, but scales gracefully in heavy use. The timeout
value is, of course, tunable.

The server’s scheduling algorithm is given in Fig.

BATCH-SERVER()
1 while true
2 do REQUEST-WAIT-WITH-TIMEOUT()
3 if REQUESTS-ARRIVED()

4 then ENQUEUE-REQUESTS()
5 b < PICK-BATCH()
6 if b # NIL
7 then Do-BATCH(b)
8 else b« PICK-BATCH()
9 if b # NIL
10 then Do-BATcCH(b)
11 else r < PICK-SINGLE()
12 if r # NIL
13 then DO-SINGLE(r)

Fig. 2. Batch server scheduling algorithm



Improving SSL Handshake Performance via Batching 39
5 Performance

We measured the performance of the batch RSA decryption method described
in Section 3, and of the batch server described in Section H. These tests show a
marked improvement over unbatched RSA and SSL at standard key sizes.

Timing was performed on a machine with an Intel Pentium III processor
clocked at 750 MHz and 256 MB RAM. For SSL handshake measurements the
client machine (used to drive the web server) featured dual Intel Pentium III pro-
cessors clocked at 700 MHz and 256 MB RAM. The two machines were connected
via switched fast Ethernet. The underlying cryptography and SSL toolkit was
OpenSSL 0.9.5.

5.1 RSA Decryption

Since modular exponentiation is asymptotically more expensive than the other
operations involved in batching, the gain from batching approaches a factor-
of-b improvement only when the key size is improbably large. With 1024-bit
RSA keys the overhead is relatively high, and a naive implementation is slower
than unbatched RSA. The improvements described in Section[3 are intended to
lower the overhead and improve performance with small batches and standard
key-sizes. The results are described in Table [l In all experiments we used the
smallest possible values for the encryption exponent e.

batch key size
size 512 768 1024 1536 2048
(unbatched)|| 1.53 4.67 8.38 26.10 | 52.96
2 1.22 3.09 5.27 15.02 | 29.43
4 0.81 1.93 3.18 8.63 16.41
8 0.70 1.55 2.42 6.03 10.81

Table 1. RSA decryption time, in milliseconds, as a function of batch and key size

Batching provides almost a factor-of-five improvement over plain RSA with

= 8 and n = 2048. This is to be expected. More important, even with standard

1024-bit keys, batching improves performance significantly. With b = 4, RSA

decryption is accelerated by a factor of 2.6; with b = 8, by a factor of almost 3.5.

These improvements can be leveraged to improve SSL handshake performance.

At small key sizes, for example n = 512, an increase in batch size beyond

b = 4 provides only a modest improvement in RSA performance. Because of the

increased latency that large batch sizes impose on SSL handshakes, especially

when the web server is not under high load, large batch sizes are of limited utility
for real-world deployment.

5.2 SSL Handshake

To measure SSL handshake performance improvements using batching, we wrote
a simple web server that responds to SSL handshake requests and simple HTTP
requests. The server uses the batching architecture described in Section [@ The



40 H. Shacham and D. Boneh

batch load
size 16 32 48
(unbatched)|| 105 98 98
2-0f-2 149 141 134
4-of-4 218 201 187
4-0f-6 215 198 185
8-0f-8 274 248 227

Table 2. SSL handshakes per second as a function of batch size. 1024 bit keys.

web server is a pre-forked server, relying on “thundering herd” behavior for sche-
duling [10] §27.6]. All pre-forked server processes contact an additional batching
server process for all RSA decryptions, as described in Section [l

Our multi-threaded SSL test client bombards the web server with concurrent
HTTP HEAD requests. The server sends a 187-byte response. Handshake through-
put results for 1024-bit RSA keys are summarized in Table 2 above. Here “load”
is the number of simultaneous connections the client makes to the server. The
“b-of-k” in the first column refers to a total of k£ distinct public exponents on
the server where any subset of b can be batched. See Section [4.4].

The tests above measure server performance under a constant high load, so
moving from k = 4 to k = 6 provides no advantage.

Batching is clearly an improvement, increasing handshake throughput by a
factor of 2.0 to 2.5, depending on the batch size. At better than 200 handshakes
per second, the batching web server is competitive with hardware-accelerated
SSL web servers, without the need for expensive specialized hardware.

6 The Downside of Batch SSL

As we saw in previous sections, batching SSL handshakes leads to a significant
improvement on the web server. Nevertheless, there are a few issues with using
the batching technique. Below, we discuss these issues, by order of severity.

1. When using batching, the web-server administrator must obtain multiple
certificates for the web site. In the previous section we gave the example of
obtaining four or six certificates (all using the same RSA modulus). We note
that these certificates are used by the same site and consequently have the
same X.500 Distinguished Name. In an ideal world, Certificate Authorities
(CA’s) would issue multiple certificates (using a single RSA modulus) for
the same site at no extra charge. Unfortunately, currently CA’s charge per
certificate regardless of whether the certificate is for the same site.

2. Batching relies on RSA with very small public exponents, namely e =
3,5,7,11, etc. Although there are no known attacks on the resulting hands-
hake protocol, web sites commonly use a slightly larger public exponent,
namely e = 65537. This is not a serious concern, but is worth mentioning.

3. One might wish to further speed up batching by using a commercial off-the-
shelf crypto hardware accelerator. This works fine—the accelerator can be
used to perform the full RSA decryption at the top of the batching tree.
However, the main CPU has to perform all the other computations involved
in batching. The main CPU has to percolate values up the tree and back
down the tree. Consequently, when using batching, the CPU has to work
harder per handshake, compared to regular RSA, where the entire decryption



Improving SSL Handshake Performance via Batching 41

is done on the card. Hence, although handshake time is reduced, the CPU
has less time for other web tasks. Ideally, one would expect the accelerator
card to perform the entire batching process.

7 Conclusions

We presented the first implementation of batch RSA in an SSL web server. Our
first set of results describes several substantial improvements to the basic batch
RSA decryption algorithm. We showed how to reduce the number of inversions
in the batch tree to a single inversion. We obtained a further speedup by proper
use of the CRT and use of simultaneous multiple exponentiation.

We also presented an architecture for building a batching SSL web server.
The architecture is based on using a batch server process that functions as a fast
decryption oracle for the main web server processes. The batching server process
includes a scheduling algorithm to determine which subset of pending requests
to batch.

Our experiments show a substantial speedup to the SSL handshake. We hope
these results will promote the use of batching to speed up secure web servers.
We intend to make our code available for anyone wishing to experiment with it.

Acknowledgments

We thank Nick Howgrave-Graham for improving our batch division algorithm.

References

1. M. Bellare and P. Rogaway. Optimal asymmetric encryption. In Proceedings of
Eurocrypt 94, volume 950 of Lecture Notes in Computer Science, pages 92—111.
Springer-Verlag, 1994.

2. D. Boneh and G. Durfee. Cryptanalysis of RSA with private key d less than
n% 292, In Proceedings of Eurocrypt ’99, volume 1592 of Lecture Notes in Computer
Science, pages 1-11. Springer-Verlag, 1999.

3. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT

Press and McGraw-Hill Book Company, 6th edition, 1992.

T. Dierks and C. Allen. RFC 2246: The TLS Protocol Version 1, January 1999.

A. Fiat. Batch RSA. In Proceedings of Crypto ’89, pages 175-185, 1989.

6. Donald Ervin Knuth. The Art of Computer Programming, volume 2: Seminume-

rical Algorithms. Addison-Wesley, 3rd edition, 1998.

RSA Labs. Public Key Cryptography Standards (PKCS), number 1.

8. A.J. (Alfred J.) Menezes, Paul C. Van Oorschot, and Scott A. Vanstone. Handbook
of Applied Cryptography. The CRC Press series on discrete mathematics and its
applications. CRC Press, 2000 N.W. Corporate Blvd., Boca Raton, FL 33431-9868,
USA, 1997.

9. R. L. Rivest, A. Shamir, and L.. Adleman. A method for obtaining digital signatures
and public key cryptosystems. Commun. of the ACM, 21:120-126, 1978.

10. W. Richard Stevens. UNIX Network Programming, volume 1. Prentice Hall PTR,

second edition, 1998.
11. M. Wiener. Cryptanalysis of short RSA secret exponents. IEEE Transactions on
Info. Th., 36(3):553-558, 1990.

A

~



42 H. Shacham and D. Boneh

Appendix A: Impossibility of Batching with a Single
Public Key

Fiat showed that when using relatively prime public exponents eg, e, with a
common modulus, it is possible to batch the decryption of vy, vy. The fact that
batching only works when different public exponents are used forces batching
web servers to manage multiple certificates. It is natural to ask whether one
can batch the decryption of two ciphertexts encrypted using the same RSA

public key. More precisely, can we batch the computation of v}/ “ and v%/ “? We
show that batching using a single public key is not possible using arithmetic
operations.

Given an RSA public key (IV, e) we say that batch decryption of ciphertexts
v1, U9 is possible if there exist rational functions f, g1, go over Zy and an integer
m such that

v/ = gi(A,v1, ) ; v/ = ga(A v, va)  where A= [f(“h”?)]l/m

For efficiency one would like the functions f, g1, g2 to be of low degree. Fiat
gives such f, g1, go when relatively prime exponents e, e are used. Fiat uses
m = e; - ea. Note that batch RSA works in any field —there is nothing specific
to ZN.

We show that no such f, g1, g2, m exist when a single public key is used. More
precisely, we show that no such expressions exists when all arithmetic is done in
characteristic 0 (e.g., over the rationals). Since batching is generally oblivious to
the underlying field, our inability to batch in characteristic 0 indicates that no
such batching exists in Zy either.

Let Q be the field of rational numbers, and v,v2 € Q. The existence of g1,

g2 implies that Q[vi/e,v;/e] is a subfield of Q[A] for all vy, ve. This cannot be,
as stated in the following lemma:

Lemma 2. Foranye > 1 and f, g1, g2, m as above, there exist vi,ve € Q such

that Q[Ui/e,v;/e] is not a subfield of Q[f(v1,v2)"/™]

Proof Sketch. Let f,g1,92, m be a candidate batching scheme. Let v, v2 be di-

stinct integer primes and set A = f(v1,v2). We show that Q[v%/e,v;/e] is not a

subfield of Q[A'/™]. Consequently, f, g1, g2, is an invalid batching scheme.

Let K = Q[vi/e,v;/e] and L = Q[A'™]. We know that [K : Q] = €.
Similarly [L : Q] = m’ for some m’ dividing m. Assume, towards a contradiction,
that K is a subfield of L. Then [K : Q] divides [L : Q]. Hence, e divides m.

Define L( as an extension of L by adjoining a primitive m’th root of unity.
Then Ly is a Galois extension of Q. Similarly, let Ky be an extension of K
by adjoining a primitive m’th root of unity. Then K is a Galois extension of
Q (since by assmuption e divides m). Observe that if K C L then Ky C L.
Consequently, to prove the lemma it suffices to show that Ky € Ly.

Let T be an extension of Q obtained by adjoining a primitive m’th root
of unity. Then K, and Ly are Galois extensions of T. To show that K is not
contained in Ly we consider the Galois group of Ky and Ly over T.

Let G be the Galois group of Ky over T and let H be the Galois group of
Lo over T. If Ky C Lg then the fundamental theorem of Galois theory says that
there exists a normal subgroup Hy of H such that G = H/Hy. Hence, it suffices
to prove that G does not arise as a factor group of H.

The lemma now follows from the following three simple facts:



Improving SSL Handshake Performance via Batching 43

1. The Galois group G is isomorphic to Z, X Z..

2. The Galois group H is isomorphic to Z,,.

3. For any pair m’, e the group Z,,, does not have a factor group isomorphic
to Ze X Ze.

Fact 3 follows since all factor groups of Z,, are cyclic, but Z, x Z, is not. O

To conclude, we note that the proof shows that any batching scheme f, g1,
g2, m will fail to work correctly in characteristic 0 for many inputs vy, vs.



From Fixed-Length Messages to
Arbitrary-Length Messages Practical RSA
Signature Padding Schemes

Genevieve Arboit!* and Jean-Marc Robert?

1 School of Computer Science, McGill University, Montréal, CANADA
garboit@cs.mcgill.ca
2 Gemplus Card International, Montréal R&D Center, CANADA
jean-marc.robert@gemplus.com

Abstract. We show how to construct a practical secure signature pad-
ding scheme for arbitrarily long messages from a secure signature pad-
ding scheme for fixed-length messages. This new construction is based
on a one-way compression function respecting the division intractability
assumption. By practical, we mean that our scheme can be instantia-
ted using dedicated compression functions and without chaining. This
scheme also allows precomputations on partially received messages. Fi-
nally, we give an instantiation of our scheme using SHA-1 and PKCS #1
ver. 1.5.

Keywords: Digital signature, padding scheme, provable security, atomic
primitive, RSA, hash-and-sign, division intractability, smooth numbers.

1 Introduction

A common practice for signing with RSA is known as the hash-and-sign pa-
radigm. First, a hash or redundancy function, which usually consists of a com-
pression function and a chaining function, is applied to the message. Then some
padding is added to the result, and this value is exponentiated using the sig-
nature exponent. This is the basis of several existing standards many of which
have been broken (see [Mis98] for a survey).

Security reductions for RSA signature padding schemes are presented in
[CKNOO]. These reductions permit to go from fixed-length messages to arbitrary-
length messages RSA signature padding schemes. Moreover, these new schemes
also allow one to make precomputations on partially received messages, as in the
case of IP packets, which are typically received in a random order. In [CKNO0],
a hash function p is an atomic primitive that is assumed to be a secure padding
scheme for RSA. However, i takes a k+ 1 bit input and returns a k bit output
where k is the length of the RSA modulus. This particularity of the scheme is
not significantly modifiable: the bit length of the y output has to have about the
same bit length as the RSA modulus. This limitation on the choice of i forces

* This work was done while visiting Gemplus Montréal R&D Center.

D. Naccache (Ed.): CT-RSA 2001, LNCS 2020, pp. 44-[51] 2001.
© Springer-Verlag Berlin Heidelberg 2001



From Fixed-Length to Arbitrary-Length Messages 45

either to instantiate it with a non-dedicated hash function, or with a dedicated
hash function that uses both compression and chaining primitives.

In this paper, with a similar construction, we give a practical instantiation
based on the compression function of SHA-1 without any chaining function. Our
solution has the great advantage over [CKNOQ] of removing the relation of the
length of p output to the length of the RSA modulus. We are able to achieve
this result simply by making an additional assumption about u, namely division
intractability. This property is slightly stronger than collision intractability.

2 Definitions

2.1 Signature Schemes
The following definitions are based on [GMRSS].

Definition 1. A digital signature scheme is defined by the following:

— The key generation algorithm Gen is a probabilistic algorithm which given
1%, outputs a pair of matching public and secret keys, (pk, sk).

— The signing algorithm Sign takes the message m to be signed and the secret
key sk and returns a signature s = Signgi(m). The signing algorithm may
be probabilistic.

— The verification algorithm Verify takes a message m, a candidate signature
s' and the public key pk. It returns a bit Verify(m,s'), equal to 1 if the
signature is accepted, and 0 otherwise. We require that if Signsp(m) was
indeed assigned to s, then Verify(m,s) = 1.

2.2 Security of Signature Schemes

The security of signature schemes was formalized in [GMRSE] for the asymptotic
setting. We will prove security against existential forgery by adaptive chosen
plaintext attackers. The following definitions for the exact security of signature
schemes are taken from [BRI6].

Definition 2. A forging algorithm F' is said to (t,¢sign,€)-break the signature
scheme given by (Gen, Sign, Verify) if after at most ¢sign adaptively chosen
signature queries and t processing time, it outputs a valid forgery with probability
at least €. The probability is taken over the random bits of F', and given that the
random bits in the signature are correctly distributed.

Definition 3. A signature scheme (Gen, Sign, Verify) is (¢, gsign,€)-secure if
there is no forging algorithm which (t, ¢sign, €)-breaks the scheme.

To construct p from a dedicated hash function without chaining, we make
an additional assumption, which is strong but constructible. We use a definition
of [GHRY9] slightly modified for our purposes.



46 G. Arboit and J.-M. Robert

Definition 4. Let H; be a collection of compression functions that map strings
of length t into strings of length l. Such a collection is said to be division in-
tractable if for u € Hy, it is infeasible to find distinct inputs X1, ..., X,,,Y such
that w(Y) divides the product of the u(X;)’s. Formally, for every probabilistic
polynomial time algorithm A, there exists a negligible function negl() such that:

A(M) = <X17 8] Xn7Y>
Pr |st. Y #X; fori=1,..,n, = negl(l)
HEHLT and (YY) divides the product [T, #(X;) mod 2¢

If 1 is randomized, the adversary A can choose both the input and the ran-
domness. Given a randomly chosen function p from Hj, A needs to find pairs
(R1,X1)y ooy (Rny Xn)y (RY) such that Y # X, for i = 1,..,n, but u(R,Y)
divides the product [, u(R;, X;) mod 2'.

2.3 The RSA Cryptosystem

The RSA cryptosystem can be used to obtain both public key cryptosystems
and digital signatures [RSATS].

Definition 5. The RSA cryptosystem is a family of trapdoor permutations. It
is specified by:

— The RSA generator RSA, which on input 1%, randomly selects 2 distinct
k/2-bit primes p and q and computes the modulus N = p - q. It randomly
picks an encryption exponent e € Z(’;(N) and computes the corresponding

decryption exponent d such that e - d = 1 mod ¢(N). The generator returns
(N,e,d).

— The encryption function f : Z% — Z% defined by f(x) = x° mod N.

— The decryption function f~1: Zy — Z% defined by f~'(y) = y? mod N.

2.4 A Practical Standard RSA Signature Scheme

Let © be a randomized compression function taking as input a message of size
t, using r random bits, and outputting a message digest of length I:

p:{0,1}" x {0,1}¢ — {0,1}!

and enc be an encoding function taking as input a message digest of size [, and
outputting an encoded message of length k:

enc:{0,1}" — {0, 1}*
Overall:
encop:{0,1}" x {0,1}" — {0,1}*

We consider in Figure 1 the classical RSA signature scheme (Gen, Sign,
Verify) which signs fixed-length ¢-bits messages. This is a modification of
[CKNOO| Figure 1].



From Fixed-Length to Arbitrary-Length Messages 47

SYSTEM PARAMETERS
an integer k > 0
a function p : {0,1}" x {0,1}* — {0,1}
a function enc: {0,1}' — {0,1}*
KEY GENERATION : Gen
(N,e,d) < RSA(1%)
public key: (N, e)
private key: (N, d)
SIGNATURE GENERATION : Sign
R +y {07 1}r
m € {0,1}*
y < enco pu(R,m)
return <R, y? mod N>
SIGNATURE VERIFICATION : Verify
y < z° mod N
y' < enco u(R,m)
if y = ¢ then return 1 else return 0

Fig. 1. The classical RSA scheme using enc o u for signing fixed-length messages

3 The Improved Construction

We construct in Figure 2 a new signature scheme (Gen', Sign’, Verify') using
the function enco p. The new construction allows the signing of messages of size
2%(t — a) bits where a is between 0 and ¢ — 1. This is a modification of [CKNOO!
Figure 2].

Theorem 1. Fiz e such that for all negl(l) functions, € > negl(l), and suppose
that gsign and t are polynomial in 1. For a fized negl(l) function, if the signature
scheme (Gen, Sign, Verify) is (t, gsign, €)-secure and if v is negl(l)-division in-
tractable, then the signature scheme described in Fig. 2 (Gen',Sign',Verify')
is (t', gsign, €)-secure, where:

t=1t—2" qgign - O (t?)

proof: Suppose there is a forger F” that (t', ¢sign,)-breaks the scheme (Gen/,
Sign',Verify'). Then, we can construct a forger F' that (t,gsign,e)-breaks the
scheme (Gen, Sign, Verify) using F’. The forger F' has oracle access to a signer
S for the scheme (Gen, Sign,Verify) and its goal is to produce a forgery for
(Gen, Sign, Verify).

The forger F' answers the queries of F/. When F’ needs the signature of the

4§t message m7, I queries S to obtain the signature s; of o; (refer to Fig. 2).



48 G. Arboit and J.-M. Robert

SYSTEM PARAMETERS
an integer k > 0
an integer a € [0,k — 1]
a function g : {0,1}" x {0,1}* — {0,1}
a function enc : {0,1}' — {0,1}*
KEY GENERATION : Gen'
(N,e,d) < RSA(1%)
public key: (N, e)
private key: (N, d)
SIGNATURE GENERATION : Sign’
Split the message m into b blocks of size k — a bits
such that m = m/[1]|]...||m[b]
R; +vu {0, 1}T for 1 = 17 7b
o — Hi’:l (R, ||m[i]) mod 2°
where ¢ is the a-bit string representing ¢
R<+vu {0, 1}T
y <+ enco u(R, )
return <R7 (R;),y® mod N>
SIGNAT