
NUST COLLEGE OF

 ELECTRICAL AND MECHANICAL ENGINEERING

Path Planning of Autonomous Electric Vehicle

A PROJECT REPORT

DE-40 (DEE)

 Submitted by

NC Muhammad Arslan Amjad Qureshi

NC Muhammad Hassan Ghafoor

NC Muhammad Talha Saleem

NC Muhammad Hashim

BACHELORS

 IN

ELECTRICAL ENGINEERING

 YEAR 2022

PROJECT SUPERVISOR

Dr. Fahad Mumtaz Malik

NUST COLLEGE OF

ELECTRICAL AND MECHANICAL ENGINEERING

 PESHAWAR ROAD, RAWALPINDI

D
E

-4
0
(D

E
E

)
Y

E
A

R
 2

0
2

2

DEDICATION

This project is dedicated to our parents, their efforts and all the prayers were with us during the project. It is

also dedicated to our teachers and all the technical staff who really helped us for the completion of this

project.

CERTIFICATE OF APPROVAL

It is to certify that the project “PATH PLANNING OF AUTONOMOUS ELECTRIC VEHICLE” was

done by NC Muhammad Arslan Amjad, NC Muhammad Hassan Ghafoor, NC Muhammad Talha

Saleem, and NC Muhammad Hashim under the supervision of Dr. Fahad Mumtaz Malik.

This project is submitted to the Department of Electrical Engineering, College of Electrical and

Mechanical Engineering, National University of Sciences and Technology, Pakistan in partial fulfillment of

requirements for the degree of Bachelor of Engineering in Electrical engineering.

Students:

1- Muhammad Arslan Amjad

NUST ID: ______________________ Signature: _____________________

2- Muhammad Hassan Ghafoor

NUST ID: ______________________ Signature: _____________________

3- Muhammad Talha Saleem

NUST ID: ______________________ Signature: _____________________

4- Muhammad Hashim

NUST ID: ______________________ Signature: _____________________

APPROVED BY:

Project Supervisor: __________________ Date: ___________________

Dr. Fahad Mumtaz Malik

DECLARATION

We hereby declare that no portion of the work referred to in this Project Thesis has been submitted in

support of an application for another degree or qualification of this of any other university or other institute

of learning. If any act of plagiarism found, we are fully responsible for every disciplinary action taken

against us depending upon the seriousness of the proven offence, even the cancellation of our degree.

1- Muhammad Arslan Amjad

NUST ID: ______________________ Signature: _____________________

2- Muhammad Hassan Ghafoor

NUST ID: ______________________ Signature: _____________________

3- Muhammad Talha Saleem

 NUST ID: ______________________ Signature: _____________________

4- Muhammad Hashim

NUST ID: ______________________ Signature: _____________________

COPYRIGHT STATEMENT

Copyright in text of this thesis rests with the student author. Copies (by any process) either in full, or of

extracts, may be made only in accordance with instructions given by the author and lodged in the Library

of NUST College of E&ME. Details may be obtained by the Librarian. This page must form part of any

such copies made. Further copies (by any process) of copies made in accordance with such instructions

may not be made without the permission (in writing) of the author.

The ownership of any intellectual property rights which may be described in this thesis is vested in NUST

College of E&ME, subject to any prior agreement to the contrary, and may not be made available for use

by third parties without the written permission of the College of E&ME, which will prescribe the terms

and conditions of any such agreement.

Further information on the conditions under which disclosures and exploitation may take place is available

from the Library of NUST College of E&ME, Rawalpindi.

ACKNOWLEDGEMENTS

We are thankful to Allah Almighty, the most merciful and Al Fattah, for the blessings, courage, and

the intellect He has bestowed us with, because of which it became possible for us to accomplish

such a remarkable goal.

We are thankful to our parents and the family for their constant support and encouragement at each

thick and thin. We are much obliged to our supervisor Dr. Fahad Mumtaz for his continuous

guidance and the valuable time he spent on providing us with the support and the encouragement

through each stage. We are honored to have received his supervision in the project, enabling us to

achieve the milestone. Moreover, we are grateful to all our fellows, friends who supported us

intellectually and emotionally. Many thanks for all those who contributed in it, without all their

support and appreciation we would be lacking a major source of inspiration and motivation. We

appreciate the support from the Mechanical and Mechatronics members of our team who have

provided us with immense assistance thought out the project playing a crucial role in the

accomplishment. We are hopeful that this project will add value to the peoples’ life and would be

developed further to adopt this technology on the massive level acting as a benchmark for future

technologies of Pakistan.

1

ABSTRACT

The Path Planning Stack of the Autonomous Electric Vehicle mainly consists of three main modules which

includes Global Path Planning (Planning through GPS, Maps and making an interface as well), Behavioral

Path Planning (Creating all the drivable scenario and Vehicle Maneuvers according to the road rules and

situations). Local path Planning (it is responsible for the execution of the Maneuvers at the road). Firstly, for

our Autonomous Vehicle, Global Path Planning is executed which is implemented through Graphical user

interface (GUI) which is synchronized with jetson Xavier AGX via ROS nodes and Global path planning also

finds accurate starting location using the global positioning unit (GPU), so the vehicle can easily localize its

position and create waypoints till destination. Behavioral path planning module utilizes waypoints and

implements all the possible scenarios which a vehicle can maneuver while following its path for e.g. taking a

U-turn, maintaining safe distance from the lead vehicle etc. In last execution of the maneuvers is efficiently

implemented via Local Path Planning module.

2

Contents

ABSTRACT .. 1

LIST OF FIGURES .. 4

CHAPTER - 1. INTRODUCTION ... 5

1.1 Background ... 5

Global Path Planning ... 6

Behavioral Planning ... 6

Local Planning ... 6

1.2 Project Objectives ... 6

1.3 Design Workflow .. 7

CHAPTER - 2. LITERATURE REVIEW .. 9

2.1 Path Planning .. 9

2.1.1 Global Path Planning: ... 9

2.1.2 Behavioral Planning ... 11

2.1.2.1 Architecture of the Motion Planner: .. 14

2.1.3 Local Path Planning: ... 15

CHAPTER - 3. GLOBAL PATH PLANNING ... 17

3.1 Communication with GUI ... 17

Graphical User Interface: .. 18

3.2.1 Tkinter: .. 18

3.3 GPS & Waypoint Generation: .. 21

3.3.1 GPS Module (ublox NEO-M8N): .. 22

Waypoint Generation Code: .. 23

3.3.2.2 Taking Initial Waypoint: .. 23

3.3.2.2 Locating next waypoint: ... 24

CHAPTER - 4. BEHAVIORAL PLANNING .. 25

4.1 Behavior Planner: .. 25

4.2 Traffic-free Reference Planning: .. 26

4.3 Behavioral Executive System .. 26

4.4 Code Snippets for the Behavioral Planning: ... 27

4.4.1 Initializing states for the Finite State Machine: .. 27

4.4.2 Initializing states for the Finite State Machine: .. 27

4.4.3 Ego State and Next point of interest(waypoint) examination: .. 28

CHAPTER - 5. LOCAL PATH PLANNING ... 29

5.1 Local Planning: ... 29

5.1.1 Trajectory Generation:.. 29

5.1.2 Trajectory Generation Illustration: .. 31

5.1.2 Path Optimization: .. 32

5.2 Local Path Planning Algorithm: ... 34

5.2.1 Local Path Planner Flowchart: ... 38

3

5.3 Local Path Planning Simulation on UNREAL Engine AirSim: ... 38

CHAPTER - 6. APPROACHES OF TRAJECTORY GENERATION ... 40

6.1 Attractive Dynamic Approach: .. 40

6.1.1 Evading Static Obstacles: .. 40

6.1.2 Evading the Dynamic Obstacles: ... 42

6.2 Implementation of ADA: ... 43

6.3 FRENET OPTIMAL TRAJECTORY: ... 44

6.3.1 Algorithm Implementation:... 44

6.3.2 Code Snippets for the Frenet Optimal Trajectory: ... 47

6.3.3 Function for FRENET Optimal Planning: .. 48

6.3.4 Estimation the next possible state in Maneuver: ... 49

CHAPTER - 7. SIMULATIONS AND ROS ... 51

7.1 Simulation Software: ... 51

7.1.1 Carla Simulator (0.9.6): ... 51

7.1.1.1 ROS-BRIDGE: ... 52

7.1.2 Gazebo Simulator: ... 52

7.1.3 RVIZ: ... 53

7.1.4 UNREAL Engine Editor: .. 55

7.2 Communication with ROS: .. 56

7.2.1 Definition: .. 56

7.2.2 Functionalities of ROS: ... 56

7.2.2.1 ROScore: ... 56

7.2.2.2 ROSrun: .. 56

7.2.2.3 ROSnode: .. 56

7.2.2.4 ROSlaunch: ... 56

7.2.2.5 ROStopic: .. 57

7.2.3 Interfacing of ROS... 57

7.2.4 Pre-Requisites for ROS: .. 57

CHAPTER – 8. REFERENCES ... 59

4

LIST OF FIGURES

Fig. 1 Different Modules of Autonomous vehicle and their link………………………………………………………….8
Fig. 2 Simultaneous map building…………………………………………………………………………………….…10

Fig. 3 Mapping by Voronoi………………………………………………………………………………………….......10

Fig. 4 A* Algorithm to find optimal path………………………………………………………………………………..11

Fig. 5 Four environment representations used in motion planning for autonomous driving, ordered from least
to most abstract……………………………………………………………………………………………………….....13

Fig. 6 Feature diagram of high-level design choices.…………………………………………………………………....14

Fig. 7 General architecture of motion planning. White boxes denote the scope of the current work………………..........14
Fig. 8 Raspberry Pi along with LCD…………………………………………………………………………………….18

Fig. 9 Layout of GUI………………………………………………………………………………………………….....20

Fig. 10 GUI Code Output………………………………………………………………………………………………..21
Fig. 11 GPS Module…………………………………………………………………………………………………….22

Fig. 12 ublox Antenna…………………………………………………………………………………………………...23

Fig. 13 Finite State Model……………………………………………………………………………………………….25

Fig. 14 Optimal Path Finding…………………………………………………………………………………………....30
Fig. 15 Role of Trajectory Generation in Path Planning…………………………………………………………………31

Fig. 16 Path optimization process. Relaxing lateral offset, heading and curvature for in-between sampled endpoints

(p1 and p2), and generating new paths between the new endpoints………………………………………………..…….32
Fig. 17 Result for path optimization.…………………………………………………………………………………….32

Fig. 18 Result for speed optimization……………………………………………………………………………………34

Fig. 19 Set of secure radius collision-free checker. The center of circles is placed along the X axis……………………..36
Fig. 20 Basic Flowchart of Local Path Planner………………………………………………………………………….38

Fig. 21 Generated trajectory at different times. The local path planning is displayed in red, whereas the effective

path followed by the ego-vehicle is displayed in green. The preceding vehicle (bicyclist) is marked by

a blue circle…...39
Fig. 22 (A) Velocity profile generated along the path. (B) Steering angle calculated by attractor across

the reference path……………………………………………………………………………………………...………...39

Fig. 23 Overview of ADA……………………………………………………………………………………………,,,,.40
Fig. 24 Performing Different Maneuvers and Generating Graphs…………………………………………………….....41

Fig. 25 Merging in alternate lane………………………………………………………………………………………..42

Fig. 26 Final Trajectory…………………………………………………………………………………………………44

Fig. 27 (A) Resulting steering angle calculated for blue trajectory. (B) Resulting steering angle calculated for
magenta trajectory. (C) Velocity profile for each generated trajectory. (D) Resulting velocity profile for the first

to final frame..……...44

Fig. 28 Representation of Vehicle on road by Frenet coordinate systems…………………………………………….....46
Fig. 29 Comparison of Cartesian coordinate and Frenet coordinate system…………………………………………..…47

Fig. 30 The Result will be the Sequence of this trajectory and red waypoints on the s frame of the path

indicates the optimal reference path planning……………………………………………………………………….......50
Fig. 31 CARLA simulation environment………………………………………………………………………………..51

Fig. 32 Environment of Gazebo Simulator……………………………………………………………………………....53

Fig. 33 Depicting the environment for the proper mapping and structure of its surrounding area…………………….....54

Fig. 34 Basic Layout of UNREAL Engine Editor…………………………………………………………………….....55
Fig. 35 Environment of UNREAL Engine……………………………………………………………………………....55

Fig. 36 Connection of publisher, subscriber, and master node in ROS………………………………………………......57

Fig. 37 ROS Interface…………………………………………………………………………………………………...57

5

CHAPTER - 1. INTRODUCTION

1.1 Background
Every year, around 1.35 million people are killed in automobile accidents (WHO, 2020).

Every year, among the persons (WHO, 2020). Speeding, distracted driving, and driving

under the influence are all preventable human errors that contribute to road traffic deaths.

Autonomous driving features can warn the driver of potential dangers.

There could be $450 billion in savings for automakers, insurers, and governments if 90% of

American roads were covered by self-driving cars, according to a University of Texas study.

As a result, legislators would have a strong incentive to clear the way for self-driving cars in

the future. Autonomous vehicles are still decades away from widespread use, but the benefits

of increased security, efficiency, and comfort will hasten the process.

Fully autonomous driving systems must have a high level of awareness of the vehicle's

surroundings and be able to plan the vehicle's motion in a way that does not endanger nearby

pedestrians or traffic, while maintaining some level of driving comfort inside the vehicle by

minimizing sudden acceleration or changes in direction.

Autonomous vehicles use path planning to map out their routes and find their way around.

Because of dynamic environments, safety, smoothness and real-time requirements and

vehicle non-holonomic constraints, the study of path planning methods has always been a

difficult problem, especially in complex environments. A variety of approaches have been

proposed in this study to address the challenge of navigating through densely populated areas

with numerous hazards.

The thesis explains different methods of Path Planning for Autonomous vehicle and the

approach which we have used for the Path Planning. As Path Planning is computationally

expensive process so the goal is to use such an approach which in not only computationally

feasible but also generates the best results for us. Although Path Planning is one module of

a self-driving car but it is further divided into different modules which are further sub-

divided. There are basically three modules of Path Planning of Autonomous Vehicle which

are:

6

Global Path Planning

The highest level of Path Planning is Global Path Planning. This module requires GPS,

Google maps API and different graph-based search methods to function. The initial

position of the vehicle is obtained from GPS and the destination is entered by the user

through Google maps. Different Search Algorithms are used to obtain the most optimal

path. This module is abstract from low level details like traffic signs, obstacles etc.

Behavioral Planning

An autonomous vehicle's "brain" is the behavior planner. If no obstacles are present, then

the global planning layer generates kinematically and dynamically feasible paths. This is

followed by a behavioral planning layer that considers both static and dynamic obstacles.

A Finite State Machine (FSM) is the foundation of our behavioral planner layer. Three

states are available to it, which are follow lane, decelerate, and stop.

Local Planning

The motion planners of autonomous vehicles are responsible for determining the vehicle's

path through its environment while avoiding any obstacles. Once the local path planner

generates a trajectory and velocity profile, it passes this information along via wirelessly to

the vehicle's control systems. Using the Attractor Dynamic Approach (ADA), this report

proposes a new local path planner for autonomous vehicles that is inspired by the

movement of living things.

1.2 Project Objectives

The specific scope and objectives of the Final year project are as follows:

 Development of a prototype Self-Driving Car through conversion of an electric vehicle

(done by superposing the vehicle manual control with electric actuation for throttle,

steering, and braking).

 Achieving high level of autonomy wherein the vehicle itself is capable of driving from

a start point to a destination on a well-structured road with clear lane markings and

minimal rush irregularities. The human driver inside the vehicle will have the

7

supervisory control in case of emergencies.

 Integrating maps, perception sensors and motion sensors for the car to be able to

perceive. While reducing sensor dependencies, to only camera-based perception.

 Develop a benchmark system which will facilitate subsequent research in this area for

both academia and automobile industry.

1.3 Design Workflow

The implementation methodology for the project would be two dimensional. One of

the aspects would be development of the Self Driving Car prototype, embedding the

existing technologies and algorithms. The other one would be extension of state-of-

the-art research in this domain. Eventually both the research and development

algorithms will be embedded so that a prototype of Self Driving Car with efficient

algorithms is produced as an outcome.

The low-level control system's trajectories are determined by the Path planning

system. The user specifies a destination, and the computer determines how to

complete the journey. The path planning task involves generating trajectories that

ensure the vehicle arrives at its destination safely, using information from maps,

vehicle dynamics, and an assessment of the current condition.

After a user enters the desired location, the vehicle consults maps to determine the

best route to go. After that, a complex software processes all of the sensory inputs

to determine the trajectory, and the instructions are delivered to the vehicle

actuators, which control the vehicle's steering, braking, and accelerating. The self-

driving car's is also dependent on Perception stack and Control Systems. It is the

integration of all the three modules (Perception, Planning and Controls) that ensures

the smooth working of the autonomous vehicle through the environment. In the

below figure 1 it is shown that how the Path Planning module is related to

Perception and Control Systems module and gives an idea how self-driving car

works:

8

Fig 1. Different Modules of Autonomous vehicle and their link

9

CHAPTER - 2. LITERATURE REVIEW

2.1 Path Planning

2.1.1 Global Path Planning:

There is a lot of discussion about path planning in the autonomous vehicle

navigation field. Our self-driving automobile can determine an optimal or nearly

optimal path from the beginning state to the goal state based on one or more motion

space performance metrics (such as the lowest working cost, shortest walking route,

shortest walking time, and so on). [2-4] The shortest distance between two points is

generally utilised as an indicator of performance when it comes to path design.

Classification of planning approaches can be based on two forms of environmental

knowledge. Path planning can make use of both global and local map data [5]. The

global path planning approach can be used to generate the path in a well-known

setting (the position and shape of the obstacle are predetermined). Searches are

based on maps of the area where mobile robots are stationed. Even the most

sophisticated algorithm can uncover the best route. Global strategy development

begins with the creation of an environmental modelling framework, which is then

used as a basis for developing a path. [6]

Creating an environmental map is a prerequisite for path planning [7].

Environmental map building is essential for creating a spatial model or map that

accurately depicts multiple elements in an area, such as obstacles, road signs, and

so on. To help the vehicle choose the optimal path across an obstacle-filled

environment model, an environmental map must be created.

10

 Fig 2. Simultaneous map building

For path planning, there are a variety of established approaches for constructing an

environment model. A grid decomposition map, quad split graph, visibility graph,

and Voronoi diagram are some of the basic environment models that are now

available

Fig 3. Mapping by Voronoi Diagram

11

Following the compilation of an environmental map, global path planning is carried out.

Heuristic search methods and intelligent algorithms are two main groups of global path

planning algorithms. When using a heuristic search, the Dijkstra algorithm generates the A*

algorithm as the starting point. Most commonly used in state-space heuristic graph search is

the A* algorithm. In addition to dealing with state space issues, robot path planning is a

common use for it. Robot route planning is another common usage for state space analysis.

Several academics have refined the A* algorithm and created new heuristic search methods.

Fig 4. A* Algorithm to find optimal path

2.1.2 Behavioral Planning

12

In terms of autonomous driving behavior planning, we can examine the design space [8].

(high-level decision making). On the basis of my own experience [9] We simplify the design

process by dividing the design space into three axes based on the current state of the art. We

examine the relevant research to determine the unavoidable qualitative trade-offs that exist

within each axis. Our decomposition is depicted using feature diagrams (Fig. 10). Because

of this, we've come up with a list of possible research avenues in the field of behavior

planning design. It's because of the following that we've had to call it quits:

Road connections, signs and signals as well as interactions between drivers and other road

users all contribute to discrete driving episodes. In any case, the vehicle must maintain a

smooth, uninterrupted path on the road. The spectrum of conceivable discrete and continuous

abstractions is one of the first major dimensions of design space that we investigate. As you

can see in Figure 5, we used our autonomous driving stack to generate a variety of different

visual representations.

 (a). Raw data: Lidar point cloud (b) Feature based Road Map

13

 (c) Grid-based: 2D occupancy grid (d) Latent representation

Fig 5. Four environment representations used in motion planning for

autonomous driving, ordered from least to most abstract

A behavior planner (BP) deals with high-level decisions (such as whether to drive

straight, turn left, or stop), whereas a local planner deals with low-level continuous

actions (such as turning and braking) (LP). Optimization is better adapted to finding

continuous activities than procedural systems are. On the road, things can't always

be predicted, therefore the vehicle's behavior and that of other road users must be

taken into account when making decisions on how to regulate it. As we move

forward, we'll focus on the motion planner's overall design. The degree of

integration and communication between the systems is taken into account on the

second axis of decomposition. The most significant influence on the design of BP

comes from the interaction between behavior and the local planner. Design axis

number three is the depiction of decision making. Because of recent advances in

hardware and software, learned logic is a viable and appealing alternative to

14

traditional programs and expert systems. Our three primary axes of design choices

are shown in Fig as a feature diagram. Additionally, the graphic includes a reference

to other visual syntaxes.

Fig 6. Feature diagram of high-level design choices

2.1.2.1 Architecture of the Motion Planner:

Integrating the BP into the motion planner is essential because it constrains the other

components and the overall architecture [11-13]. On the one hand, it is architecturally

possible to keep the BP module separate and separate from other parts of the motion planner,

while on another, it is possible to integrate it partially or completely, as shown in Figure 5.

The placement of motion planner elements in Fig. 7 shows that many early motion planning

techniques had a top-down architecture design, as described in the issue specification.

Fig 7. General architecture of motion planning. White boxes denote the scope of the current work.

15

2.1.3 Local Path Planning:

Planned routes that consider both the first and second layers of an MP are referred to as local

paths. Vehicle dynamics are considered to generate practical paths, and not just practical

ones but paths that are comfortable for humans to use. Numerous strategies have been

proposed so far to generate a local path [14]. It's possible to categorize them as follows [15].

 Space configuration:

Candidate solutions, such as lattices, Voronoi diagrams, or sampling points, are applied to

each cell that is free from collisions. To avoid accidents, they search for the best arrangement

of linked cells to reach a specific local waypoint. This family of algorithms is fast, however

the supplied solutions may not always be dynamically possible for the vehicle. This is a

disadvantage. In addition, the decomposition of the space is affected by impediments and

the ego-vehicle condition.

 Path finders:

A graph's nodes are searched for a path between them. At least one cost function, such as

distance travelled or time spent, must be considered when creating a graph and determining

the best path. A*, Dijkstra, and Rapidly Random Tree (RRT) algorithms are the state-of-the-

art algorithms. The RRT-based algorithms are used in situations where the environment is

unknown, whereas the first two are used in situations where the environment is known. One

of the main drawbacks is that the given solutions may not be feasible for the vehicle [19-21].

 Attractive and repulsive forces:

Instead of using natural forces to guide the vehicle, these methods use artificial forces to

guide the vehicle to its intended destination. Forces combine to change the vehicle's

trajectory. It is possible for these algorithms to get bogged down in local minima or generate

a solution that is inherently unstable for the vehicle while searching for a solution [22].

 Artificial intelligence schemes:

Solution algorithms utilize human-level reasoning in order to solve the problem. Local path

planning can be tackled using fuzzy logic, artificial neural networks, swarm intelligence, and

16

evolutionary algorithms [23,24]. The main advantage of this method is that it doesn't require

the building of exact mathematical models. ' Fuzzification, interpretation, and

defuzzification are all steps in FL that the designer should be familiar with. For example, FL

has many more rules, a more complex defuzzification process and a wider range of member

functions than this simple approach. It all depends on the designer's skill level, of course See

[25,26] and the references therein for more information on artificially intelligent systems

utilized in local autonomous vehicle path creation. However, due of their complexity, real-

time computers have yet to successfully incorporate these artificial intelligence algorithms.

When prior local path techniques were too restrictive, several of these approaches were

employed in conjunction. The Probabilistic Road-map Algorithm [27] is one example of an

algorithm that makes use of numerical optimization. Many curves' algorithms are

implemented along an optimizer that considers objective functions such as the minimum

distance or arrival time or energy that are relevant to your vehicle's dynamics when designing

a feasible path. In order to improve the depiction of a driven corridor, the APF algorithm has

been added into the attractive and repulsive forces algorithm.

17

CHAPTER - 3. GLOBAL PATH PLANNING

3.1 Communication with GUI

The odometry information such as speed and location will be communicated on a local

network between NVidia Jetson Xavier and Raspberry pi through Ethernet, which will

communicate the Track information along with the A* map to be plotted and updated on the

map. Raspberry pi will also receive the Battery status from the Ethernet connection, which

will be calculated by the State of Charge of the Battery. The CAN-BUS will be connected

to the sensor to measure the battery voltage, which will determine the SOC. The A*

algorithm can be implemented entirely on Raspberry pi and the waypoints can be

communicated to Xavier, to be used in Local Planning, since the waypoints will be constant

throughout the journey, so only one-time communication is required. The display for the

vehicle environment can be generated using the forward camera feed, which will be

preprocessed by Xavier, and the real-time output of the road plane equation, road boundaries,

and the obstacle bounding box coordinates will be published on a local IP that Raspberry Pi

can access in real-time. The Raspberry pi will plot these lines using the Python GUI library,

and replace bounding boxes with the vehicle logos, with their relative size equal to the

bounding box, and the logo respective to the label of the bounding box. The equipment

required for User Interface is listed below:

Raspberry pi 4 Value

Model Raspberry Pi 4 Model B

RAM 4 GB

Network Wi-Fi 802.11b / g / n

USB/s 2 USB 3.0 ports 2 USB 2.0 ports

Architecture ARM 64

Wireless 2.4 GHz and 5.0 GHz IEEE

802.11

HDMI ports 2 micro-HDMI ports up to

4kp60

Display

18

Fig 8. Raspberry Pi along with LCD

Graphical User Interface:

Tkinter and PyQT5 are two Python libraries that are used to implement the graphical user

interface. The simplicity of the Tkinter library's syntax is one of its primary draws. The text

widget packs a powerful punch while remaining incredibly user-friendly. Easy-to-use and

powerful is also the case with the canvas widget. Those two widgets are the only ones in any

other toolkit that offer the same balance of simplicity and power. PyQt5 GUI programming,

on the other hand, is based on the concept of signals and slots for establishing

communication between objects. That allows for greater flexibility in dealing with GUI

events and a cleaner codebase as a result. Both libraries have been used in our GUI.

3.2.1 Tkinter:

19

20

Output:

Fig 9. Layout of GUI

The three main functionalities are shown above. From Google Maps the user can enter the

destination (end position). Starting and Stopping of the vehicle is also given in the hands of

the user.

21

3.2.2 PyQt5:

Output:

Fig. 10 GUI Code Output

3.3 GPS & Waypoint Generation:

Waypoint Generation is very essential for Global Path Planning. The Output of the Waypoint

generation code will give us optimized waypoints from starting location to the end location.

22

The starting and ending location are the two inputs that are given to the waypoints code. The

starting location can be found by the GPS module which is ublox NEO-M8N and the ending

location will be given by the user through the GUI. These locations will be in the form of

latitude and longitude. The Waypoint generation code will take these latitudes and longitudes

of starting and ending point and it will generate waypoints throughout the path. This path

will be given further to the Behavioral Planner.

3.3.1 GPS Module (ublox NEO-M8N):

ublox NEO-M8 Series GNSS Modules provide high sensitivity and minimal acquisition

times while maintaining low system power. The NEO-M8 series of standalone concurrent

GNSS modules is built on the exceptional performance of the ublox engine in the industry-

proven NEO form factor.

Fig. 11 GPS Module

GPS ublox Antenna:

These signals are then converted to an electronic signal that a GNSS or GPS receiver can

use by using an antenna for receiving and amplifying the radio signals sent out by GNSS

satellites at specific frequencies. In order to determine one's exact location, one uses a GNSS

or GPS antenna's output to feed into a receiver.

23

Fig. 12 U-blox Antenna

Waypoint Generation Code:

3.3.2.2 Taking Initial Waypoint:

24

3.3.2.2 Locating next waypoint:

25

CHAPTER - 4. BEHAVIORAL PLANNING

4.1 Behavior Planner:

The behavioral planner for our ego vehicle is based on a Finite State Machine. In our

operational design domain, the stop signs and traffic lights are the regulatory elements. The

behavioral planner consists of three finite states, a follow lane state, decelerate state, and

stop state. During the normal operation of the autonomous vehicle, the follow lane state is

active until our path planning algorithm encounters a stop sign or a traffic light. The finite

state machine then switches the active state to decelerate and eventually stop at the

destination planned, using sufficient time to safely maneuver and stop. Once stopped we

gauge the status of the traffic light and as soon as it turns green, the vehicle starts to move,

and a fixed duration of 30 seconds is configured at the stop signs. Once that is done, we then

transition back to the follow lane state and continue with nominal driving. This completes

the state machine transition cycle and allows us to handle the presence of a stop sign along

our path. In Additional, we will also be embedding another state that will depict the Alternate

Lane finder Execution and it could be to find alternate paths in order when our vehicle comes

to stop when it detects the obstacle/object in front of it. The Finite State Model is shown in

the below figure.

Fig. 13 Finite State Model

26

4.2 Traffic-free Reference Planning:

Reference planning layer takes lane-level submissions and produces a driving path and speed

profile for the autonomous vehicle. The planner assumes that there will be no traffic on the

road in this layer. Considering the kinematics and dynamics of the autonomous vehicle and

the geometry of the road, it employs non-linear optimization to find a smooth and human-

like path and speed.

4.3 Behavioral Executive System

The Behavioral Executive was tasked with two primary responsibilities in terms of its job

duties. Following Urban Challenge rules on logical traffic interaction, it had to ensure that

the robot was adhering to:

 The maintenance of a safe following distance to a leading vehicle when traveling on a

road.

 The determination of and adherence to the arrival-based precedence ordering at

intersections.

 The safe merging into or across moving traffic at intersections such as at a typical T-

intersection.

 Passing maneuvers on multi-lane roads, either at speed into another lane in the same

direction or from a stop and into an oncoming travel lane if the system encounters a

disabled vehicle.

First and foremost, the Behavioral Executive had to ensure that the system's mission was

successfully completed, even if this meant temporarily deviating from traffic flow and social

norms. When faced with a deadlock at an intersection or a roadblock, the Urban Challenge

rules allowed for a few possible outcomes, such as turning around and rerouting, but there

were plenty more that could happen. As a result, the only guidance given to vehicles in these

situations was to perform qualitatively "safe" actions, with judges having sole discretion to

penalize those that performed "unsafely."

27

4.4 Code Snippets for the Behavioral Planning:

4.4.1 Initializing states for the Finite State Machine:

4.4.2 Initializing states for the Finite State Machine:

28

4.4.3 Ego State and Next point of interest(waypoint) examination:

29

CHAPTER - 5. LOCAL PATH PLANNING

5.1 Local Planning:

If impediments and changes in the environment are dynamic or unknown, a planning method

called Local Path Planning can adapt to them. Dynamic path planning adapts to the

continuously shifting environment whereas unknown path planning anticipates and avoids

potential hazards. By "local path planning," we mean using sensory-based information to

avoid potential hazards while yet maintaining a vehicle's safety while driving. In local path

planning, a robot usually takes the shortest route possible from its starting point to its

destination. By deviating from its intended path, the robot may better gauge the distance

between its current location and a target point, as well as the exact placement of any

impediments in its path.

It is also known that short paths can be calculated in real time by local path planners, who

update the vehicle's heading if necessary. It's possible to apply the local path's essence to a

larger group of path planners who keep tabs on the scenario's changes and request an updated

planned path when the current one is no longer feasible. In addition, by storing the changes

that the vehicle detects, this technique aids in the collection of additional environmental data.

The motion planners of autonomous vehicles are responsible for determining the vehicle's

path through its environment while avoiding any obstacles, and this task is critical. The

vehicle's low-level controller receives a trajectory and a velocity profile from the local path

planner to perform this task.

5.1.1 Trajectory Generation:

For the vehicle to follow the path, a set of ordered loci (in the joint space or in the operational

space) must be identified. The path serves as a straightforward representation of motion in

terms of geometry. In most cases, the path is designed to avoid obstacles, traverse a complex

maze, and so on. An object's trajectory is the sum of its individual velocities and

accelerations. As a result, the task of designing a trajectory is significantly simplified. Local

designers and planners determine and create the course (divide and conquer methodology).

Trajectories cover different parts of the path. There are times when a single trajectory design

30

must consider only neighboring trajectories on the path, as it is often necessary for pieces of

trajectories to join smoothly. The trajectory generator takes as its input the path provided by

path planning. A class of polynomial functions is used by the trajectory generator to

"approximate" the desired path waypoints, and a time-based control sequence is generated

to move the vehicle platform from its starting point to the destination. Motion control system

inputs are generated by trajectory generation, which ensures that the planned trajectory is

executed smoothly. Waypoints are commonly used to represent the sequence of points along

a path. The process of creating a path between two or more points is known as "trajectory

generation."

The figure 1 shows the scenario in which our vehicle must move from point A (starting) to

point B (final). There are four obstacles in between starting and final position. At start our

waypoint generation algorithm will generate waypoints which are P1, P2, P3, P4, P5, P6, P7,

P8. The trajectory generator will create trajectory between two consecutive waypoints. The

first trajectory will be created between points P1 and P2 and the vehicle will follow this

trajectory and then its neighboring trajectory and this will continue as the vehicle reaches its

final position. meanwhile while creating the trajectory our vehicle makes notice of the

obstacle Infront of, it simultaneously making a collision avoidance system for itself. Hence

the waypoints are generated while keeping in view the collision avoidance property. for

instance, if our vehicle is at point P1 and it must go to point P8 it will be following proper

route like first it will be going to point P2 and then P3 and at last to point P8.

Fig. 14 Optimal Path Finding

31

5.1.2 Trajectory Generation Illustration:

Real-time trajectory planning is required. At the same time, the vehicle must ensure that no

accidents occur. As a result, the trajectory model must allow for quick computation and

simple communication across the various components, such as the path planner, trajectory

generator, collision checker, and controller. The model must allow for the local

deformation of a path or a trajectory in order to avoid having to re-plan the entire

trajectory. The controller must also be able to switch from a predetermined path to a new

one at any time. As a starting point, the trajectory generator uses the global planner's route

as an input. Our surroundings are distinct from those of the entire world. Objects in

motion, such as cars and people, make up the local environment. This means that the

global path cannot be used for the vehicle's trajectory. Collision-free trajectory with

velocity generation can be achieved by detecting and responding to dynamic objects.

Sensors and real-time data from the surroundings can be used to generate a new trajectory

for the low-level controller. It's all laid out in the diagram.

Fig. 15 Role of Trajectory Generation in Path Planning

32

5.1.2 Path Optimization:

Real-time performance of most lattice planners depends on proper discretization. When it

comes to planning, this has a negative impact on the final outcome. In order to make

autonomous vehicles perform as well as human drivers, it is critical that the trajectory be as

good as possible, which is why we are working to improve performance by post-optimizing

the trajectory.

Fig. 16 Path optimization process. Relaxing lateral, heading and curvature offset

Fig. 17 Result for path optimization

The simplest strategy is to simultaneously improve the trajectory's path and speed. However,

in a real-time application, this would be prohibitively slow. Obsolete optimization

algorithms, which are usually O in computational complexity, have a computation cost of O

(opt (M +N)). M, N, and opt () are parameters of the optimization algorithm (N2). Because

33

of this, finding the global optimal solution becomes increasingly difficult for the optimizer

as the dimensions grow. Consequently, we propose an iterative route optimization

mechanism. It has an O(opt(M)) + O(opt(N)) computational complexity. We can get to the

real optimum in a few iterations using this mechanism if the trajectory found in the planning

phase is close enough.

1) Path optimization: There is a limit to how good a route can get using path discretization.

Sampled endpoints have fixed lateral offsets, headings and curvatures that are related to

the center line. As a result, loosening the restrictions (as shown in Fig. 5) and creating

new paths between the new endpoints improves the trajectory's quality. A non-derivative

optimization algorithm, the Simplex algorithm [17], is used for path optimization

because the gradient for cost versus lateral offset and heading is extremely difficult to

compute. As shown in Fig. 6, the red line shows a smoother path following path

optimization as shown in figure 17

2) Speed optimization: The optimality of the speed profile is also restricted by the

discretization of speed and the restriction of acceleration at endpoints. The parameters

of the nodes in the speed profile are optimized in a manner similar to that used in path

optimization. We optimize the speed and acceleration values of the nodes that generate

the current lowest-cost speed profile. Connecting new nodes ensures that the speed

profile does not change. As a result, the gradient method cannot be used in this

optimization because the time of each point on the trajectory will change as a result of

speed changes at nodes. That's why speed optimizations employ the non-derivative

Simplex algorithm. Fig. 7 depicts the improved performance because of the speed

optimization. Speed changes are more gradual and the amplitude of the speed at the

endpoints is no longer discretized because of the relaxed acceleration constraints.

34

Fig. 18 Result for speed optimization

5.2 Local Path Planning Algorithm:

An accurate velocity profile and free collision trajectory must be obtained for the local path

planning. Safety, comfort, and vehicle dynamics were all considered in both cases. For

starters, there is a limit on how fast the vehicle can go at any given time. The following is a

breakdown of Local Path Planning:

 Maximum curvature velocity |Vlat|: Driving around a curve, one's own vehicle can

reach its maximum speed at this point. Maximum lateral acceleration aymax and road

curvature are the parameters that define this area.

 Maximum regulatory velocity |Vreg|: The road's regulatory elements, such as stop and

yield signs, traffic lights, and speed limit signals, all play a role in keeping it safe.

Information from the MP's second level was used to generate this report.

 Vehicle leader’s maximum velocity |Vlead|: An ego-top vehicle's speed is determined by

how far ahead of it in time it is in relation to the preceding vehicle. This speed is

calculated by integrating a desired longitudinal acceleration.

 As described in Equation 2, the maximum allowed velocity is defined as the minimum

of a set that includes the prior calculated velocities.

Thus, the first constraint is given by Equation 3:

35

Constraint No. 3 deals with the maximum rate at which a steering angle can change.

Equations (2) and show how it can be divided into two types of relationships (3). Both of

these are based on how fast the steering angle can change in relation to the given velocity

|V| and how much yaw acceleration can be applied to it.

Equations (4) and (5) provide the relationships that limit the lateral and longitudinal

acceleration to a maximum value that also limits the wheels into the linear operating zone

(5).

Local path planners are expected to generate collision-free paths. Collision circles are used

to accomplish this task, as shown in Figure 5, by setting at least three circles whose centers

are located along the x-axis of the vehicle. In the event of a collision, the vehicle's position

within the circle is considered to have been affected by the obstacle. As a result, the final

constraint is about how far the trajectory can travel, which is given by Equation (6), where j

is the index that corresponds to the given center circle, Rj is its radius, I is the index in m of

given obstacles, and Djobs I is the distance of the given i-th obstacle from the given j-th

circle's center. An obstacle is represented as a cuboid with its dimensions determined by its

width, while the driving zone is also considered an obstruction and is represented as points

on its border.

36

Fig. 19 Set of secure radius collision-free checker. The center of circles is placed along the

X axis

It is imperative that a trajectory and velocity profile are provided to the low-level controller

by the local route planner. This algorithm calculates a set of forward points, together with

their respective steering angles and restrictions, based on the vehicle's present condition,

impediments, and drivable limits. As a result, each point in the velocity profile is represented

by a set of velocity values. It is necessary to solve the vehicle's dynamic model from the

present to a time gap tw in order to calculate both.

37

The Local Path Planning Algorithm is explained in the figure below:

38

5.2.1 Local Path Planner Flowchart:

The flowchart of the overall implementation of local planner is given in below figure:

Fig. 20 Basic Flowchart of Local Path Planner

5.3 Local Path Planning Simulation on UNREAL Engine AirSim:

The ego-vehicle has to adjust its speed and trajectory to take into account the reference global

path, the preceding vehicle's velocity, and the maximum curvature velocity in order to avoid

collisions. As shown in Figures 7 and 8, the current scenario is shown at various points in

time while the velocity profile and steering angle generated over the course of the scenario

are shown in Figure 8.

39

Fig. 21 At various points in time, the trajectory was generated. The effective path taken by

the ego-vehicle is shown in green, while the local path planning is shown in red. A blue

circle indicates the location of the preceding vehicle (the bicyclist).

Fig. 22 (A) Velocity profile along the path. (B) Steering angle calculated by attractor

40

CHAPTER - 6. APPROACHES OF TRAJECTORY GENERATION

6.1 Attractive Dynamic Approach:

This approach is best suited for alternate lane finder execution, as it can be implemented

with minimal control parameters and minimal planning/perception modules. This can also

be called Dynamic Path Planning. The Main Focus of this approach is as follows:

 Multiple lane road with obstacles in the current lane.

 Moment at which vehicle avoids larger obstacle.

 Trajectory of the vehicle passing through the road.

 Speed Curve

 Acceleration Curve

Fig. 23 Overview of ADA

6.1.1 Evading Static Obstacles:

The ego-vehicle had to perform an evasive maneuver because it was driving at a dangerous

speed. Path planner algorithm detected a collision in the red trajectory in the first phase, as

shown in Figure 9A. The algorithm determines that the ego-vehicle was driving at a speed

that leads to a crash regardless of whether the speed is adjusted with the maximum comfort

deceleration, so the algorithm moves to a state where the Repeller is taken into consideration

41

(s). A free-collision path with a change in velocity within comfort parameters was generated

as shown in Figure 9E and a profile of steering angle is shown in Figure 9D. Due to the

dynamic nature of the situation, the values of the Repeller and the attractor(s) will naturally

change over time. New trajectory paths are shown in Figure 9B after adjusting the vehicle's

velocity and steering angle. In Figure 9C, the final trajectory generated is marked in green

so that it can be compared to the initial trajectories.

Fig. 24 Performing Different Maneuvers and Generating Graphs

When the angle obs converges to max, the generated trajectories converge toward the

reference path because the Repeller becomes weaker. To avoid a collision, the current

method was found to be able to design the trajectory and speed profile of the vehicle. It was

possible to avoid a collision in this situation using the first trajectory calculated using the

repellents, but it is true that this is not the case when the obstacle is directly in front of the

ego vehicle (obs 0), as the repellent equation states. This is why collision analysis and

defining the drivable zone are critical components of the strategy. In the following scenario,

42

the proposed solution is shown to get around this problem.

6.1.2 Evading the Dynamic Obstacles:

A neighboring car merges into the ego-current vehicle's lane while there are other vehicles

nearby that could cause a collision, so it must plan a safe route around them. It was

determined that two crashes were likely to occur along this red path, one with the preceding

car and the other that would merge into the lane of the ego-vehicle.

Fig. 25 Merging in alternate lane

Fig. 26 Final Trajectory

Blue points that delimit the driving area have been added to resellers by the local planner

algorithm because it determines that a collision will be formed with the previously specified

cars. To avoid a collision, the system then generates a new path that includes all resellers.

This new path stays within the drivable zone because the algorithm reduces the speed.

Although a vehicle comes within a few feet of the ego-vehicle in Figure 10B, the local route

43

planner manages to come up with a free-collision plan.

6.2 Implementation of ADA:

Accumulated Graphs via our Implemented ADA:

Fig. 27 (A) Steering angle calculated for blue trajectory

Fig. 27 (B) Steering angle calculated for magenta trajectory

44

Fig. 27 (C) Velocity profile for each generated trajectory

Fig. 27 (D) Resulting velocity profile for the first to final frame

6.3 FRENET OPTIMAL TRAJECTORY:

A robot's trajectory can be planned in a variety of ways. A trajectory can be thought of as a

collection of state vectors x that are arranged in time.

 6.3.1 Algorithm Implementation:

1. Determine the trajectory start state:

[x1, x2, θ, κ, v, a] (0)[x1,x2,θ,κ,v,a](0) Evaluation of the preceding trajectory at the

anticipated start state yields the trajectory start state (low-level-stabilization). At startup

and after startup, the current car position is used instead of the vehicle's current location

(high-level-stabilization).

45

2. Selection of the lateral mode:

Latitudinally planned motion is either time-based (d(t)d(t)) or length-based (d(s)d(s)) on the

basis of velocity v. The longitudinal start point s(0) can be calculated by projecting the initial

state onto the reference curve. The frenet transformation can be used to determine the frenet

state vector [s,s,s,d,d′,d′′](0). The values of [d,d](0)[d,d](0) must be determined for use in

the time-based lateral planning mode.

3. Generating the lateral and longitudinal trajectories:

In the frenet space, trajectories are generated for both lateral (mode dependent) and

longitudinal motion (velocity keeping, vehicle following/distance keeping). For now, it is

possible to ignore paths with large lateral accelerations compared to the reference path to

speed up computation.

4. Combining lateral and longitudinal trajectories:

With J(d(t)s(t))=Jd[(t)]+ksJ(s(t))J(d(t),s)), each longitudinal trajectory is merged with each

lateral trajectory and then translated back to world coordinates using the reference path for

all active longitudinal modes. The curvature and acceleration of the trajectories are evaluated

point-by-point to see if they comply with physical driving constraints. This results in a

collection of world coordinates-based movements that may be drivable in a given mode.

5. Static and dynamic collision check:

If static and dynamic collisions can be avoided, each trajectory set is evaluated with rising

overall costs. The most cost-effective path is then chosen.

6. Longitudinal mode alternation:

The trajectory with the greatest deceleration or the trajectory with the least acceleration is

picked and passed to the controller using the sign-based jerk a (0)a (0) (in the beginning).

As opposed to the usual (x,y) Cartesian Coordinates, "Frenet Coordinates" provide a more

natural representation of a point on a route.

46

We utilise the variables s and d to indicate a vehicle's position on the road or a reference path

when using Frenet coordinates. There are two different types of road positions that can be

measured using these two coordinates: longitudinal (sometimes called "longitudinal"

displacement) and lateral (also known as "lateral" displacement). As may be seen in the

following graphic:

Fig. 28 Representation of Vehicle on road by Frenet coordinate systems

The cartesian coordinates can be simply converted to frenet coordinates in this scenario. It

is for this reason that our coordinate frame can plan out a course of action along each of

these paths: With the frenet optimal trajectory, you can get the best possible path and the

greatest possible adjustment of coordinates all in one shot.

47

Fig. 29 Comparison of Cartesian coordinate and Frenet coordinate system

6.3.2 Code Snippets for the Frenet Optimal Trajectory:

48

6.3.3 Function for FRENET Optimal Planning:

49

6.3.4 Estimation the next possible state in Maneuver:

50

6.3.5 Result:

Fig. 30 The Result will be the Sequence of this trajectory and red waypoints on the s frame

of the path indicates the optimal reference path planning.

51

CHAPTER - 7. SIMULATIONS AND ROS

7.1 Simulation Software:

We have used various software for the implementation of our Path Planning Algorithms.

The simulations of different software are given below:

7.1.1 Carla Simulator (0.9.6):

The CARLA environment has been used for the simulations. Photorealistic CARLA is a

free, open-source training, validation, and testing simulator for autonomous vehicles. There

is a wide range of digital assets and total control over the actors on the map, as well as

control over ambient conditions, a sensor suite, maps production, a flexible API and

server-client connection. CARLA includes a Python API module in addition to the

CARLA Simulator, which incorporates all of the control logic, graphics, physics, and actor

characteristics. As a result, the Simulator serves as the server, and the Python API governs

communication between the client and the server.

Fig. 31 CARLA simulation environment

We used the Carla Simulator environment to test the path planning codes. At first, to create

the map and its structure, we used the UNREAL Engine software. For this, we used the

52

Linux platform in which we installed relative libraries which were useful for both the

UNREAL Engine and the Carla Simulator.

7.1.1.1 ROS-BRIDGE:

When we want to run the ROS bridge, we set our ROS environment according to our ROS

version (which is melodic in our case) in every terminal that we used and then we give the

feedback to the Carla 0.9.6 Environment via the commands in the Ubuntu terminal as we

did below:

 source /opt/carla-ros-bridge/melodic/setup.bash

Then to launch this ROS_BRIDGE to communicate with Carla we used the command

below to launch it:

 roslaunch carla_ros_bridge carla_ros_bridge.launch

7.1.2 Gazebo Simulator:

It's a powerful robot simulator used in industry and academia that calculates physics,

generates sensor data, and provides convenient interfaces. Robotics is benefiting from open-

source software because it lowers the entrance barrier and speeds up progress.

In this software, we implemented our vehicle as a black robot operator and we checked the

functionality of simple path planning maneuvers like going straight, going backward, taking

the right and left turn, etc. The Pictorial Representation below depicts the Environment of

the Gazebo Simulator:

53

Fig. 32 Environment of Gazebo Simulator

We basically used this Gazebo Simulator for our testing because in Gazebo we can create

3D scenarios with the many varieties like adding obstacles to check for the obstacle detection

and checking whether the robot who is acting as an autonomous vehicle deviates from its

path or stops whenever it faces an obstacle.

For Interfacing the Gazebo with our codes and algorithms, we used the ROS Environment

as we did for the Carla 0.9.6 Simulator but in this case, there was no need for the Ros Bridge

as it is only designated for the simulators like Carla Simulator, etc.

We also controlled the velocity, heading, and steering of the robot to test our robot/vehicle

to learn and then act autonomously to it.

7.1.3 RVIZ:

RVIZ is a ROS graphical interface that allows you to visualize a lot of information, using

plugins for many kinds of available topics. We Used the RVIZ for mainly state-estimation

and localization of our vehicle, that how our vehicle will display its maneuver in a certain

environment. But Rviz could also be used in displaying the environment prior to proper

implementation of the path planning maneuvers.

54

Fig. 33 Depicting the environment for the proper mapping and structure of its surrounding

area

Mapping System/Environment that it shows:

Global Planning Map Shows the Global Map that our

Vehicle/Robot showcases.

Local Planning Map Shows the Local Plan which our

Vehicle/Robot will showcase and

according to which our vehicle will plan its

trajectory

Planner Map Overall Planning Map for the whole

venture/retrieval.

We used this RVIZ software and for its interfacing with the algorithms/codes in the Jetson

AGX Xavier Developer Kit, we used ROS (Robot Operating System). For example, to

simply open the RVIZ software we use the command:

rosrun rviz rviz

55

7.1.4 UNREAL Engine Editor:

Game development, architectural and automotive visualization, linear film and television

production, broadcast and event production, simulation and training are all possible with

UNREAL Engine's full-featured development platform. In our case, we have used the

UNREAL ENGINE to create the maps on which our vehicle will plan the path in the

simulation environment. The simulation environment can be any from CARLA

SIMULATOR to UNREAL ENGINE AIRSIM. But, for all the detailed structuring and

featuring of the map, we have used the UNREAL ENGINE platform.

Fig. 34 Basic Layout of UNREAL Engine Editor

 Fig. 35 Environment of UNREAL Engine

56

7.2 Communication with ROS:

7.2.1 Definition:

ROS is basically an open-source platform which is used to develop, integrate and

communicate with the Self-Driving Car, and ROS includes plenty of different structure and

functionality which could be used develop codes in a format which can communicate with

our self-driving car effectively and efficiently.

7.2.2 Functionalities of ROS:

7.2.2.1 ROScore:

A collection of nodes and programs that are pre-requisites of a ROS-based system. You must

have a ROScore running for ROS nodes to communicate. ROScore is currently defined as:

 master

 parameter server

 ROSsout

7.2.2.2 ROSrun:

ROSrun allows you to run an executable in an arbitrary package without having to cd (or

roscd) there first.

7.2.2.3 ROSnode:

ROSnode displays debugging information about ROS nodes, including publications,

subscriptions, and connections.

7.2.2.4 ROSlaunch:

It Starts ROS nodes locally and remotely via SSH, as well as setting parameters on the

parameter server.

57

7.2.2.5 ROStopic:

It is a tool for displaying debug information about ROS topics, including publishers,

subscribers, publishing rate, and messages.

The overall functionalities of ROS can be depicted from the figure below:

Fig. 36 Connection of publisher, subscriber and master node in ROS

7.2.3 Interfacing of ROS

All the codes of Path Planning, Perception stack and Control systems are connected

through ROS. Below figure shows how ROS is interfaced with different modules of

Autonomous vehicle.

Fig. 37 ROS Interface

7.2.4 Pre-Requisites for ROS:

 Operating System Ubuntu 18.04

 ROS melodic version

For Implementing our codes on simulation, we will be using ROSbridge. Basically,

ROSbridge is a WebSockets server with a JSON API exposing ROS service and pub/sub

functionality. Mainly, simulators like Carla Simulators use ROSbridge for integrating

58

commands and codes, so the simulator can execute exactly on the basis of what the codes

tell it to do.

For our hardware, we will be using ROSserial. ROSserial is a protocol for wrapping standard

ROS serialized messages and multiplexing multiple topics and services over a character

device such as a serial port or network socket. Mainly, hardware components like Arduino

and other embedded components uses ROSserial as the way to communicate and integrate.

59

CHAPTER – 8. REFERENCES

[1] H. Gao, B. Cheng, J. Wang et al., “Object classification using CNN-based fusion of

vision and LIDAR in autonomous vehicle environment,” IEEE Transactions on Industrial

Informatics, vol. 14, no. 9, pp. 4224–4231, 2018.

[2] C. Urmson, J. Anhalt, D. Bagnell et al., “Autonomous driving in urban environments:

boss and the urban challenge,” Journal of Field Robotics, vol. 25, no. 8, pp. 425–466, 200

[3] J. Leonard, J. How, S. Teller et al., “A perception-driven autonomous urban

vehicle,” Springer Tracts in Advanced Robotics, vol. 65, pp. 163–230, 2009.

[4] G. V. Raffo, G. K. Gomes, J. E. Normey-Rico, C. R. Kelber, and L. B. Becker, “A

predictive controller for autonomous vehicle path tracking,” IEEE Transactions on

Intelligent Transportation Systems, vol. 10, no. 1, pp. 92–102, 2009.

[5] M. Kulich, V. Kozák, and L. Přeučil, “Comparison of local planning algorithms for

mobile robots,” Modelling and Simulation for Autonomous Systems, Springer International

Publishing, New York, NY, USA, 2015.

[6] N. Ganganath and C. T. Cheng, “A 2-dimensional ACO-based path planner for off-line

robot path planning,” in Proceedings of the International Conference on Cyber-Enabled

Distributed Computing & Knowledge Discovery, IEEE, Beijing, China, October 2013.

[7] Gao, X. Fourteen Lectures on Visual SLAM: From Theory to Practice; Publishing House

of Electronics Industry: Beijing, China, 2017.

[8] A. MacLean et al., “Questions, options, and criteria: Elements of design space analysis,”

Human Computer Interaction, vol. 6, no. 3-4, pp. 201–250, 1991.

[9] T. Pender, “Waterloo’s ‘Autonomoose’ hits 100- kilometer milestone,” Waterloo Region

Record, August

2018. [Online].

[10] K. C. Kang et al., “Feature-oriented domain analysis (FODA): feasibility study,”

Carnegie Mellon Univ., Software Eng. Inst., Tech. Rep.,1990.

[11] C. Urmson et al., “Autonomous driving in urban environments: Boss and the Urban

Challenge,” Journal of Field Robotics Special Issue on the 2007 DARPA Urban Challenge,

Part I, vol. 25, no. 8, pp. 425–466, June 2008.

[12] A. Bacha et al., “Odin: Team VictorTango’s entry in the DARPA urban challenge,”

Journal of field Robotics, vol. 25, no. 8, pp. 467–492, 2008.

[13] C. Urmson et al., “Tartan Racing: A multi-modal approach to the DARPA urban

challenge,” Carnegie Mellon Univ., Tech. Rep., 2007.

60

[14] González, D.; Pérez, J.; Milanés, V.; Nashashibi, F. A Review of Motion Planning

Techniques for Automated Vehicles. IEEE Trans.Intell. Transp. Syst. 2016, 17, 1135–1145.

[15]. Claussmann, L.; Revilloud, M.; Gruyer, D.; Glaser, S. A review of motion planning for

highway autonomous driving. IEEE Trans. Intell. Transp. Syst. 2019, 21, 1826–1848.

[16]. Mentasti, S.; Matteucci, M. Multi-layer occupancy grid mapping for autonomous

vehicles navigation. In Proceedings of the 2019 AEIT International Conference of Electrical

and Electronic Technologies for Automotive (AEIT AUTOMOTIVE), Turin, Italy, 2–4 July

2019; pp. 1–6.

[17]. De Lima, D.A.; Pereira, G.A.S. Navigation of an autonomous car using vector fields

and the dynamic window approach. J. Control Autom. Electr. Syst. 2013, 24, 106–116.

[18]. Sedighi, S.; Nguyen, D.V.; Kapsalas, P.; Kuhnert, K.D. Implementing Voronoi-based

Guided Hybrid A* in Global Path Planning for Autonomous Vehicles*. In Proceedings of

the 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New

Zealand, 27–30 October 2019; pp. 3845–3852.

[19]. Yijing, W.; Zhengxuan, L.; Zhiqiang, Z.; Zheng, L. Local path planning of autonomous

vehicles based on A* algorithm with equal-step sampling. In Proceedings of the 2018 37th

Chinese Control Conference (CCC), Wuhan, China, 25–27 July 2018; pp. 7828–7833.

[20]. Feraco, S.; Luciani, S.; Bonfitto, A.; Amati, N.; Tonoli, A. A local trajectory planning

and control method for autonomous vehicles based on the RRT algorithm. In Proceedings

of the 2020 AEIT International Conference of Electrical and Electronic Technologies for

Automotive (AEIT AUTOMOTIVE), Turin, Italy, 18–20 November 2020; pp. 1–6.

[21]. Zong, C.; Han, X.; Zhang, D.; Liu, Y.; Zhao, W.; Sun, M. Research on local path

planning based on improved RRT algorithm. Proc. Inst. Mech. Eng. Part D J. Automob. Eng.

2021, 235, 2086–2100.

[22]. Wang, P.; Gao, S.; Li, L.; Sun, B.; Cheng, S. Obstacle avoidance path planning design

for autonomous driving vehicles based on an improved artificial potential field algorithm.

Energies 2019, 12, 2342.

[23]. Song, Q.; Zhao, Q.; Wang, S.; Liu, Q.; Chen, X. Dynamic Path Planning for Unmanned

Vehicles Based on Fuzzy Logic, and Improved Ant Colony Optimization. IEEE Access

2020, 8, 62107–62115.

[24]. Grigorescu, S.M.; Trasnea, B.; Marina, L.; Vasilcoi, A.; Cocias, T. NeuroTrajectory:

A Neuroevolutionary Approach to Local State Trajectory Learning for Autonomous

Vehicles. IEEE Robot. Autom. Lett. 2019, 4, 3441–3448.

[25]. Elsayed, H.; Abdullah, B.A.; Aly, G. Fuzzy logic-based collision avoidance system for

autonomous navigation vehicle. In Proceedings of the 2018 13th International Conference

61

on Computer Engineering and Systems (ICCES), Cairo, Egypt, 18–19 December 2018; pp.

469–474.

[26]. Hamid, U.Z.A.; Saito, Y.; Zamzuri, H.; Rahman, M.A.A.; Raksincharoensak, P. A

review on threat assessment, path planning and path tracking strategies for collision

avoidance systems of autonomous vehicles. Int. J. Veh. Auton. Syst. 2018, 14, 134–169.

[27]. Feraco, S.; Bonfitto, A.; Khan, I.; Amati, N.; Tonoli, A. Optimal Trajectory Generation

Using an Improved Probabilistic Road Map Algorithm for Autonomous Driving. Am. Soc.

Mech. Eng. 2020, 83938, V004T04A006.

	DEDICATION
	ABSTRACT
	LIST OF FIGURES
	CHAPTER - 1. INTRODUCTION
	1.1 Background
	Global Path Planning
	Behavioral Planning
	Local Planning

	1.2 Project Objectives
	1.3 Design Workflow

	CHAPTER - 2. LITERATURE REVIEW
	2.1 Path Planning
	2.1.1 Global Path Planning:

	2.1.2 Behavioral Planning
	2.1.2.1 Architecture of the Motion Planner:
	2.1.3 Local Path Planning:

	CHAPTER - 3. GLOBAL PATH PLANNING
	3.1 Communication with GUI
	Graphical User Interface:
	3.2.1 Tkinter:

	3.3 GPS & Waypoint Generation:
	3.3.1 GPS Module (ublox NEO-M8N):

	Waypoint Generation Code:
	3.3.2.2 Taking Initial Waypoint:
	3.3.2.2 Locating next waypoint:

	CHAPTER - 4. BEHAVIORAL PLANNING
	4.1 Behavior Planner:
	4.2 Traffic-free Reference Planning:
	4.3 Behavioral Executive System
	4.4 Code Snippets for the Behavioral Planning:
	4.4.1 Initializing states for the Finite State Machine:
	4.4.2 Initializing states for the Finite State Machine:
	4.4.3 Ego State and Next point of interest(waypoint) examination:

	CHAPTER - 5. LOCAL PATH PLANNING
	5.1 Local Planning:
	5.1.1 Trajectory Generation:
	5.1.2 Trajectory Generation Illustration:
	5.1.2 Path Optimization:

	5.2 Local Path Planning Algorithm:
	5.2.1 Local Path Planner Flowchart:

	5.3 Local Path Planning Simulation on UNREAL Engine AirSim:

	CHAPTER - 6. APPROACHES OF TRAJECTORY GENERATION
	6.1 Attractive Dynamic Approach:
	6.1.1 Evading Static Obstacles:
	6.1.2 Evading the Dynamic Obstacles:

	6.2 Implementation of ADA:
	6.3 FRENET OPTIMAL TRAJECTORY:
	6.3.1 Algorithm Implementation:
	6.3.2 Code Snippets for the Frenet Optimal Trajectory:
	6.3.3 Function for FRENET Optimal Planning:
	6.3.4 Estimation the next possible state in Maneuver:

	CHAPTER - 7. SIMULATIONS AND ROS
	7.1 Simulation Software:
	7.1.1 Carla Simulator (0.9.6):
	7.1.1.1 ROS-BRIDGE:
	7.1.2 Gazebo Simulator:
	7.1.3 RVIZ:
	7.1.4 UNREAL Engine Editor:

	7.2 Communication with ROS:
	7.2.1 Definition:
	7.2.2 Functionalities of ROS:
	7.2.2.1 ROScore:
	7.2.2.2 ROSrun:
	7.2.2.3 ROSnode:
	7.2.2.4 ROSlaunch:
	7.2.2.5 ROStopic:
	7.2.3 Interfacing of ROS
	7.2.4 Pre-Requisites for ROS:

	CHAPTER – 8. REFERENCES

