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ABSTRACT 

The aim of this project is to design and develop a fetal heart rate monitor with an artificial 

intelligence (AI) interface. The proposed device utilizes a non-invasive technique, piezo 

electric transducer to accurately measure the fetal heart rate, providing real-time data to 

medical professionals and parents-to-be. 

This project presents a novel approach for fetal heart rate monitoring utilizing the 

piezoelectric material Doppler effect, combined with an artificial intelligence (AI) 

interface. By harnessing the Doppler effect, the system accurately detects and analyzes 

fetal heart signals, providing real-time information on the baby's well-being. The signal 

from the fetus is filtered using bandpass filters. The filtered signal is used to calculate 

beats per minute and is fed into a trained neural network to classify them as normal or 

abnormal signals. 

The development of this fetal heart rate monitor with an AI interface is a significant 

contribution to the healthcare industry. It will provide a non-invasive, cost-effective, and 

accurate method of monitoring fetal heart rate, enabling early detection of potential 

health risks, and ultimately improving the quality of care for expectant mothers and their 

unborn children. 
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Chapter 1 -   INTRODUCTION 

In 2015, the population distribution in Pakistan showed that 61.19% of the total 

population resided in villages. The country's total fertility rate, estimated in 2016, was 

2.68 children born per woman. Unfortunately, healthcare facilities in Pakistan are known 

to be very poor. The country had the highest rate of stillbirths (fetal deaths after 22 weeks 

(about 5 months) of gestation) among 186 countries in 2015, making it the worst 

performer. Globally, the average rate of stillbirths is 18.4 deaths per 1,000 total births 

[1]. In Pakistan, the rate of stillbirths is significantly higher at 43.1 deaths per 1,000 total 

births, surpassing other countries like Nigeria, Chad, Niger, Guinea-Bissau, and 

Somalia, which are also among the bottom 10 performers [2]. 

Given the alarmingly high fetal mortality rate, there is a pressing need for a solution that 

is reliable even in the absence of a doctor, portable, and cost-effective. Regular and 

frequent fetal health examinations are essential, requiring an accessible and affordable 

solution.  

In our Final Year Project, we have developed a prototype machine aimed at addressing 

this challenge. It is equipped with a classification system that can distinguish between 

normal and abnormal fetal heart signals, enabling it to function effectively even without 

a doctor present. This machine complements the primary diagnostic devices, such as 

CTG, by aiding in the decision-making process. 

1.1 Overview 

Fetal mortality is a global issue and an area where experts are working to reduce the 

mortality rate. Pakistan needs to look at and research this problem more does due to i 

insanely high mortality rate. As we worked and progressed way into the project, it was 

found that the current solution to the problem is the cardiotocography (CTG) machine 

as shown in Figure 1. CTG machine is not available in all parts of Pakistan, especially 
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in the rural areas. Secondly, it is an expensive machine for a country like Pakistan to 

import. Thirdly, it requires the availability of a doctor to interpret the results. The results of 

the study required a solution that would be: 

• Portable. 

• Cost effective. 

• Equipped with a decision support system so it would suggest a decision itself, 

which would complement the primary decision. 

  

Figure 1- A 10.4 inch Portable Touch Screen Fetal Monitor CTG 

Machine Maternal Pregnant Woman Baby Heart Rate Detector with 

printer 
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Chapter 2 -   BACKGROUND AND LITERATURE REVIEW 

2.1 The Phenomenon of doppler effect: 

The Doppler effect is a phenomenon observed in waves, particularly in sound and light 

waves, where the frequency and wavelength of the waves change relative to an observer 

when the source of the waves is in motion [3]. It was named after the Austrian physicist 

Christian Doppler, who first described the effect in 1842. 

The Doppler effect also finds application in medical science, particularly in obstetrics, 

where it is used for fetal Doppler monitoring. Fetal Doppler monitoring involves the use 

of a handheld device called a Doppler ultrasound, which emits high-frequency sound 

waves and detects their reflection off moving objects, such as blood cells. 

When the blood cells in the fetal heart move towards the Doppler device, the frequency 

of the reflected sound waves appears higher, resulting in an audible higher-pitched sound 

[4]. Conversely, when the blood cells move away from the Doppler device, the 

frequency of the reflected sound waves appears lower, resulting in an audible lower-

pitched sound. By analyzing the changes in frequency, healthcare professionals can 

monitor the fetal heart rate and assess the well-being of the fetus. 

Fetal Doppler monitoring is commonly used during prenatal check-ups and can provide 

valuable information about the fetal heart rate, rhythm, and overall cardiovascular 

health. It is non-invasive and safe procedure that allows healthcare providers to gather 

important data about the developing fetus, ensuring timely interventions if any issues 

are detected [5]. 
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Figure 2 Time-varying changes in localized pressure due to passing wave. High pressure produces areas of 

compression and low pressure produces areas of rarefaction.    [3] 

However, it's worth noting that while Doppler ultrasound is a useful tool for fetal 

monitoring, it should be performed by trained healthcare professionals who can 

accurately interpret the results and provide appropriate medical advice based on the 

findings. 

2.2 Fetal Heart Rate Significance:  

The fetal heart rate (FHR) is a crucial indicator of the well-being and development of 

the fetus during pregnancy. It refers to the number of times the fetal heart beats per 

minute (bpm) and is typically monitored using a device called a Doppler or an electronic 

fetal monitor. The significance of fetal heart rate lies in its ability to provide valuable 

information about the fetus's oxygenation, overall health, and response to external 

stimuli. Here are a few key points regarding its importance: 
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2.2.1 Health Assessment:  

FHR monitoring helps assess the fetal well-being and identify any potential issues. A 

normal FHR pattern indicates that the fetus is receiving adequate oxygen and nutrients, 

which is essential for its growth and development.  

Changes in the FHR can indicate the fetus's response to stress or insufficient oxygen 

supply. For example, a decreased or irregular FHR may suggest fetal distress or hypoxia 

(low oxygen levels), potentially signaling a need for medical intervention [6]. 

2.2.2 Monitoring during Labor:  

FHR monitoring is especially critical during labor to evaluate the fetus's response to 

contractions and ensure its safety. Abnormal FHR patterns during labor could indicate 

fetal distress and may prompt interventions like changing the mother's position, 

administering oxygen, or considering an emergency cesarean section if necessary. 

2.2.3 Indicating Fetal Health Conditions:  

Variations in the FHR can provide clues about certain fetal health conditions. For 

instance, an abnormally high FHR (tachycardia) may indicate maternal fever or fetal 

infection, while a consistently low FHR (bradycardia) could be associated with 

congenital fetal heart block or other abnormalities [[6]. 

2.2.4 Monitoring Growth and Development:  

By assessing the FHR over time, healthcare providers can track the fetus's growth and 

development. Deviations from the expected FHR patterns can help identify potential 

issues, such as fetal growth restriction or anomalies, prompting further investigation or 

intervention. 

It's important to note that FHR monitoring is typically performed by healthcare 

professionals trained in interpreting the data accurately. They consider numerous factors, 

including the gestational age, maternal health, and other clinical parameters, to make 
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informed decisions regarding the well-being of the fetus and the appropriate course of 

action. 

2.3  Available devices for Fetal Heart Rate Monitoring:  

2.3.1 Pinard Stethoscope (Fetoscope) 

 The Pinard stethoscope, also known as a fetoscope, is a traditional, low-cost, and non-

electronic device used to auscultate and monitor the fetal heart rate (FHR) during 

pregnancy[7]. Named after French obstetrician Adolphe Pinard, who introduced it in the 

late 19th century, the Pinard stethoscope has remained a valuable tool in obstetric care, 

particularly in resource-limited settings. This literature review aims to explore the 

historical background, design, clinical applications, advantages, limitations, and current 

use of the Pinard stethoscope. 

The Pinard stethoscope was first introduced in the late 1800s as a replacement for the 

more invasive and risky procedures of that time. Adolphe Pinard's innovation provided 

a simple, direct, and safe method to listen to the fetal heart sounds. Over the years, it 

gained popularity due to its affordability, ease of use, and non-invasive nature. 

 

Figure 3 Pinards stethoscope      [8] 

The Pinard stethoscope is a conical, wooden or metal device with a trumpet-shaped end 

that amplifies sound. It is held against the mother's abdomen, usually over the fetal back, 

to detect and listen to the fetal heart sounds [7]. The practitioner places one end of the 
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stethoscope against the abdomen while the other end is held to their ear, allowing them 

to hear the amplified sound of the fetal heartbeat. 

2.3.1.1  Fetal Heart Rate Monitoring: 

The primary purpose of the Pinard stethoscope is to monitor the FHR during prenatal 

care and labor. It allows healthcare providers to assess fetal well-being, detect 

abnormalities, and identify signs of distress. 

2.3.1.2  Localization of Fetal Position:  

The Pinard stethoscope can also help in determining the fetal position within the uterus. 

By listening to the heart sounds at various locations, practitioners can estimate the 

position of the back or the location of the maximum intensity of the heartbeat [9]. 

2.3.1.3  Limitations: 

Interpreting the fetal heart sounds using the Pinard stethoscope requires a trained 

healthcare provider with a keen ear and experience. The accuracy of FHR assessment 

can be influenced by individual interpretation and expertise. 

The Pinard stethoscope provides qualitative information about the presence and quality 

of fetal heart sounds but does not provide precise quantitative measurements, such as 

beats per minute. 

2.3.2 Fetal heart rate monitoring: 

A microphone fetal monitor fills the same niche as a Doppler monitor. The major 

difference between a microphone-based monitor and a Doppler monitor lies in the 

method by which the signal is collected. Where a Doppler monitor actively probes for a 

signal using ultrasound techniques, a microphone-based monitor passively receives a 

signal through electro-acoustic means [7], [9], [10]. This offers a major advantage in 

terms of cost of manufacture – a microphone-based probe is significantly less expensive 

than one reliant on ultrasound. 
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2.4 Cardiotocography: 

2.4.1  Fetal Heart Rate Monitoring:  

Cardiotocography (CTG) machines encompass a wide range of skin tones in their 

devices, along with other favorable features valued by clinicians. The upper line of the 

CTG graph displays the fetal heart rate over time, with the x-axis representing elapsed 

time and the y-axis representing the instantaneous fetal heart rate [11]. The lower line 

illustrates uterine contractions, enabling clinicians to identify accelerations and 

decelerations. This functionality allows for the diagnosis of life-threatening conditions 

like hypoxia and acidosis (Lawrence, 2012). However, these additional features come at 

the expense of affordability and portability. CTG machines often exceed $500 in cost, 

with newer models reaching over $5,000 when purchased from medical device suppliers. 

Moreover, their size, which is typically comparable to a desktop computer tower unit, 

makes them impractical for long-distance transportation, hindering clinicians making 

house calls in developing countries. Additionally, CTG machines require a power source 

and cannot be used in clinics lacking electricity. 

 

Figure 4 Output of CTG Machine 
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On the other hand, an electrocardiogram (ECG) can detect the electrical potential 

generated by cardiac muscle contractions. It measures the heart rate and identifies heart 

damage by collecting and analyzing electrical signals through electrodes. In the case of 

adults, electrodes are placed on the skin above the heart. While invasive electrode ECGs 

have been used to measure the fetal heart rate by passing an electrode through the cervix 

to the fetus' scalp, noninvasive measurement using electrodes on the abdomen is more 

challenging. The fetal ECG signal has a significantly lower signal-to-noise ratio 

compared to the maternal ECG[5]. The presence of tissue between the fetal heart and 

the abdominal electrode, the small size of the fetal heart, and interference from electrical 

brain activity and maternal muscle contractions contribute to noise in the fetal heart 

signal. It is difficult to isolate the fetal heart signal from other bio signals based on time, 

space, frequency, or amplitude. 

2.5 Piezoelectric Materials 

2.5.1 Definition of piezoelectricity 

An exceptional property of piezoelectric materials is their capacity to transform 

mechanical energy into electrical energy and vice versa. The atoms are arranged in these 

materials' natural crystal structures, which causes the phenomenon known as the 

piezoelectric effect. 

2.5.2 Types of piezoelectric materials 

There are several varieties of piezoelectric materials, each with special qualities and 

traits. Ceramics, polymers, and single crystals are the three primary categories of 

piezoelectric materials. 

2.5.3 PZT-4 Properties 

PZT-4 is made up of lead zirconate (PbZrO3) and lead titanate (PbTiO3) in a solid 

solution. Typically, the composition is represented by a chemical formula, such (1-

x)Pb(Zr0.52Ti0.48)O3 - xPb(Zn1/3Nb2/3)O3, where x is the amount of 

Pb(Zn1/3Nb2/3)O3 that is added to the composition to increase specific features. The 
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effectiveness of converting energy between mechanical and electrical forms depends on 

the piezoelectric coefficients, which are present in high concentrations in PZT-4[12], 

[13]. 

PZT-4 can withstand mechanical stress, vibrations, and outside forces thanks to its good 

mechanical strength. This quality is essential for applications where the material must 

survive challenging conditions or repeated mechanical stresses. PZT-4 has a low 

dielectric loss, which means there is not much energy lost when an electric field is 

applied to the material. In situations where the substance is utilized as a capacitor or 

energy transducer, low dielectric loss boosts efficiency and improves performance[14]. 

 

Figure 5 Properties of PZT-4 

2.5.4 Piezoelectric properties of PZT-4 

PZT-4 is a ceramic material made of lead zirconate titanate (PZT), which has exceptional 

piezoelectric characteristics. Its use in sensors, actuators, transducers, and other devices 

that depend on the conversion of mechanical to electrical energy requires these 

characteristics. The following are PZT-4's main piezoelectric characteristics: 

Piezoelectric Coefficient (d33): The capacity of a material to transform mechanical 

stress or strain into an electrical charge is indicated by the piezoelectric coefficient (d33). 

Due to its high d33 coefficient and effective translation of mechanical energy into 

electrical impulses, PZT-4 is extremely sensitive to mechanical stimuli [13], [15]. 
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Piezoelectric Voltage Coefficient (g33): The piezoelectric voltage coefficient (g33), 

which characterizes a material's capacity to produce voltage when subjected to 

mechanical stress, is a measurement of this capacity. Due to its high g33 coefficient, 

PZT-4 can produce electric signals in reaction to outside mechanical forces. 

Dielectric Constant: PZT-4's dielectric constant explains how much electrical energy it 

can store when an electric field is applied. Increased energy storage capacity is made 

possible by a greater dielectric constant. PZT-4 generally has a reasonably high 

dielectric constant, allowing for effective polarization and charge storage. 

Mechanical Quality Factor (Qm): This is a measure of mechanical quality. The energy 

lost during mechanical vibrations in a material is represented by Qm. The high Qm of 

PZT-4 is well recognized for its low energy dissipation and great mechanical energy 

storage efficiency. The capacity of the material to sustain resonance and generate 

powerful, sustained vibrations depends on the Qm value. 

PZT-4's Curie temperature (Tc): It is the temperature at which the substance goes 

through a phase change and loses its piezoelectric characteristics. PZT-4 can function at 

high temperatures without significantly degrading its piezoelectric ability because of its 

comparatively high Curie temperature [15]. 

2.6 Piezoelectric Disc Manufacturing Process 

Material Preparation: Preparation of the PZT-4 material is the first step in the procedure. 

This entails precisely weighing out and combining the necessary amounts of lead 

zirconate and lead titanate powders, as well as any extra dopants or additives. To create 

a uniform composition, the powders are generally ground and combined. 

Forming: The PZT-4 material must next be shaped into a disc as required. There are 

other ways to make an object, such as tape casting, dry pressing, or isostatic pressing. 

PZT-4 slurry is placed on a level surface during tape casting, dried, and then cut into the 

required form. PZT-4 powder is compressed into a die using high pressure in a process 
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known as dry pressing. The PZT-4 powder is subjected to consistent pressure during 

isostatic pressing from all sides[12], [14]. 

Sintering: After being formed, the PZT-4 disc goes through the sintering process. To 

encourage densification and particle bonding, sintering requires heating the produced 

material at high temperatures. To get the necessary density and electrical characteristics 

for the PZT-4 disc, the sintering temperature and duration are carefully regulated. 

Poling: Poling plays a key role in increasing the PZT-4 disc's piezoelectric 

characteristics. It entails exposing the sintered disc to a strong electric field at a high 

temperature. By aligning the electric dipoles within the material, this method produces 

the necessary piezoelectric effect. A high-voltage power supply or a poling machine may 

be necessary for the poling procedure. 

Electrode Deposition: On the surfaces of the PZT-4 disc, electrodes are deposited to 

make electrical connections easier. Typically, silver or platinum metal electrodes are 

screen-printed or spattered onto the surfaces. The active region of the piezoelectric disc 

is defined by the patterning of the electrodes, which guarantees appropriate electrical 

contact. 

Quality Control and Testing: Quality control procedures are used to guarantee the PZT-

4 disc's dimensional correctness, electrical characteristics, and general performance 

throughout the production process. The completed product's quality and functioning are 

verified using tests, including dimensions measurements, impedance analysis, and 

electrical characterization.  

Assembly and Integration: Lastly, depending on the PZT-4 piezoelectric disc's intended 

use, it may be incorporated into a larger system or device. Incorporating the proper signal 

conditioning or control circuitry, putting the disc into a housing, attaching electrical 

leads to the electrodes, and mounting the disc into a housing are some possible steps in 

this process[15]. 



13 

 

 

 

2.7 Key findings from previous research on PZT-4-disc manufacturing 

Sintering Optimization: Researchers have explored various sintering parameters, such 

as temperature, duration, and atmosphere, to optimize the densification and electrical 

properties of PZT-4 discs. It has been found that sintering at higher temperatures and 

longer durations can lead to improved density, reduced porosity, and enhanced 

piezoelectric properties. 

Poling Effects: Poling, the process of aligning the electric dipoles in the PZT-4 material, 

has been investigated extensively. Researchers have focused on understanding the 

impact of poling conditions, such as electric field strength, duration, and temperature, 

on the resulting piezoelectric properties. Studies have shown that appropriate poling 

parameters can significantly enhance the piezoelectric coefficients and improve the 

performance of PZT-4 discs[15]. 

Dimensional Control: Precise dimensional control of PZT-4 discs has been highlighted 

as a critical factor in achieving desired performance. Researchers have investigated 

fabrication techniques, such as tape casting, dry pressing, and isostatic pressing, to 

control the dimensions and thickness of the discs. Studies have emphasized the 

importance of accurate dimensions in achieving the desired resonance frequency, 

sensitivity, and integration within the overall system. 

Defects and Quality Control: Researchers have studied the influence of defects, such as 

porosity, cracks, and impurities, on the electrical and mechanical properties of PZT-4 

discs. Techniques for quality control, such as impedance analysis, dielectric 

measurements, and mechanical testing, have been explored to assess the integrity and 

reliability of the manufactured discs. Efforts have been made to minimize defects and 

ensure consistent and high-quality production[12], [13], [15]. 
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Chapter 3 -   METHEDOLOGY 

3.1 Data Collection 

Fetus Doppler data is required for designing digital filters and training of machine 

learning models. Here are the few days through which we collected data as per our 

requirement. 

3.2 Online Dataset 

Thanks to Shiraz university for providing a large data set of Fetus heart sounds. The 

Shiraz University (SU) fetal heart sounds database (SUFHSDB) contains fetal and 

maternal phonocardiogram (PCG) recordings from 109 pregnant women in single and 

twin pregnancies. The data set is available in wave file format. This format can be 

directly used in Lt. spice and proteus software. This data is somewhat similar to the 

signal provided by our 3-megahertz probe, but it was having a lot of noise as compared 

to our probe signal. But this data can be used to design filters and amplifiers. This filtered 

data can be further used to train ML models. 

To use this data in Lt. spice you need to use a DC voltage source with value written in 

the following format: 

wavefile = “(your directory) \(filename).wav” 

Thus, your wave file will now be able to be directly accessible Lt spice software. Here 

is how I use this: 

 

Figure 6 Wave file imported in Lt spice 
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Similarly, to import this data in proteus software use a DC generator probe double 

click on it and select the “audio” under the analog types of panels. From there you can 

browse and select any wave file. Thus, your signal will now be loaded in proteus 

software. 

 

Figure 7 Wavefile Import in Proteus software. 

3.2.1 Data from the 3Mhz Probe 

We used our probe and connected its output to the lab oscilloscope model UTD2052CL. 

This oscilloscope can store waveforms displayed on its screen. We connected our USB 

to this oscilloscope and copied the stored waveforms from oscilloscope to our USB 

storage device. This oscilloscope stores data in three formats. Dat file, SAV file, and 

Bitmap file format. The Dat file and SAV file are coded in hex format and cannot be 

directly opened in any software like MATLAB, proteus, and Lt. Spice. To decode this 

file, we used a hex file opener software named HxD. This software decodes the hex file 

and presents the data in a tabular form. We copied this data into an Excel file and then 

imported it into MATLAB. From there you can either process it or convert it into a wave 

file format. There is also one oscilloscope in Micro-Nano lab of Mechatronics 

department that directly stores the data in a text file or Excel file atere is also a PC 

oscilloscope by Hantek available in our department. This oscilloscope is made to be used 

with laptops and computers.  

Another way we used it was that we read the values from the probe in ADC of our Pico 

RP2040 microcontroller. And we saved these values and imported them into Matlab. 
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3.3 Hardware Design 

The hardware comprises of: 

a. 30mm (about 1.18 in) diameter piezoelectric disk 

b. PCB for filtering the data and sending it to Microcontroller and a display screen. 

3.3.1 3.3      The 30mm PiezoElectric Disk Selection 

The choice of PZT-4 as the piezoelectric material for a specific application is typically 

based on several factors. Here are some rationales for choosing PZT-4:  

• High Piezoelectric Coefficients:  

PZT-4 exhibits high piezoelectric coefficients, such as the d33 and g33 coefficients, 

which indicate its high sensitivity to mechanical stimuli and efficient conversion of 

mechanical energy to electrical signals. This makes PZT-4 suitable for applications 

where precise sensing or actuation is required. 

• Excellent Mechanical Strength: 

PZT-4 is known for its good mechanical strength, enabling it to withstand mechanical 

stress, vibrations, and external forces. This characteristic is crucial for applications 

where the material needs to operate in demanding environments or undergo repetitive 

mechanical loads. 

• Low Dielectric Loss:  

PZT-4 exhibits low dielectric loss, indicating minimal energy dissipation in the material 

when an electric field is applied. Low dielectric loss leads to higher efficiency and 

improved performance in applications where the material is used as a capacitor or energy 

transducer. 

• High Curie Temperature:  

PZT-4 has a high Curie temperature, allowing it to operate at elevated temperatures 

without significant degradation in its piezoelectric properties. This characteristic is 

advantageous for applications that involve high-temperature environments or require 

stable performance across a wide temperature range.  
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• Wide Frequency Response:  

PZT-4 offers a wide frequency response, making it suitable for applications requiring 

operation at various frequencies. This characteristic is beneficial for applications such 

as ultrasonic imaging, where a broad range of frequencies needs to be detected or 

generated.  

• Commercial Availability:  

PZT-4 is commercially available and widely used in various industries. Its availability, 

along with established manufacturing processes and suppliers, makes it a convenient 

choice for many applications. 

 

d. Disc Design 

The disc is designed using PZT-4 material. 

 

Figure 8 Datasheet of PZT-4 
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3.3.2 Dimensions of the Piezoelectric Disc (Diameter and thickness) 

Following are the dimensions for the Piezoelectric Disc: 

 

Figure 9 Piezo disc dimensions 

TH=Thickness=1 mm, OD= Outer Diameter=30mm 

 

 

 

3.3.3 Resonance Frequency in Radial Disc Mode 

The resonance frequency of a piezoelectric disc in the radial disc mode can be calculated 

using the following formula: 

N1=Fr D (Hz.m) Radial Mode Disc 

N1=1524, D=30mm= 0.03 

Fr =1524/0.03=50800 Hz = 0.0508 MHz 

4.3.2 Resonance Frequency in Thickness Disc Mode 

The resonance frequency of a piezoelectric disc in the thickness disc mode can be 

calculated using the following formula: 

N4=Fr h (Hz.m) Thickness Mode Disc, Plate 
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N4=2100,    h= 1mm = 0.001m 

Fr = 2100/0.001 = 2100000 Hz = 2.1 MHz 

 

3.4 COMSOL Analysis 

3.4.1 Meshing 

Meshing is a crucial step in the finite element analysis (FEA) process, including when 

using COMSOL Multiphysics software. Meshing involves dividing the computational 

domain into a finite number of smaller subdomains, called elements or cells, to 

approximate the geometry and physics of the problem being solved. COMSOL provides 

various meshing techniques to ensure accurate and efficient simulations. 

 

Figure 10 Meshing of PZT-4 

3.4.2 Eigen Frequency Analysis 

Eigenfrequency analysis, also known as modal analysis or natural frequency analysis, is 

a numerical technique used to determine the natural frequencies and corresponding 

mode shapes of a structure or system. The eigenvalues represent the natural frequencies 

at which the system can vibrate, while the eigenvectors describe the corresponding 

patterns of motion or deformation. The analysis of the disc is shown as follow: 
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Figure 11 Surface displacement 

 

Figure 12 Eigen Frequency(Hz) 

  

 

3.4.3 Electric Potential Analysis 

Electric potential analysis, also known as electrostatic analysis, is a numerical technique 

used to study the distribution of electric potential in a system or structure. The electric 

potential represents the work required to move a unit positive charge from a reference 

point to a specific location in an electric field. Following is the analysis for the disc: 
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Figure 13 Electric Potential 

 

3.5 Printed Circuit Board (PCB) 

The PCB is made up of 3 sections: 

1. Microcontroller Section 

2. Analog Filtering Section 

3. LCD Display Section 

All these 3 sections are inter-related with each other. This is shown in figure below: 
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Figure 14 Flow Diagram of PCB 

3.5.1  Power Supply Section 

Our filters, microcontroller and lcd require 5v constant input. For this purpose, we have 

used LM7805 linear voltage regulator IC. For supply input, we have used 2x 3.7v Ni-

Cad Cells in series which becomes 7.4v in total. The output of 5v from voltage regulator 

Ic is then further used in the circuit and is labeled as “Vcc”. 

This Vcc is used to power up the op-amps used in filtering section, microcontroller, lcd 

screen and the 3Mhz Probe. The schematic of Lm7805 Ic is as follows: 

 

Figure 15 Schematic of LM7805 
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3.5.2 Design of Digital Filters and Amplifier 

The scope of the filter design is to detect the fetus's heartbeat pks from the noisy Doppler 

signal.  The 3Mhz provides the demodulated Doppler shifted signal. This signal varies 

from 0-300hz including noise. However according to [16]–[18] frequency of fetus heart 

lies in the range from 10hz-200hz. Similarly, the amplitude of this Doppler signal 

provided by the probe varies from 100mv to 600mv. Therefore, a bandpass filter was 

required to remove the noise and unwanted signals and to amplify the signal that can be 

sent to the ADC of the microcontroller. We designed and tested all the filters and 

amplifiers in Lt. spice software and made the schematic and PCB layout in Proteus 

software. 

First, we created a 2nd order Sallen-Key High-pass filter with a corner frequency of 7hz 

and a gain of 4db. This filter removes the DC noise and other low frequency noise. Our 

calculation or as follow: 

 𝑐𝑢𝑡𝑜𝑓𝑓 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 𝑓𝑐 = 𝟕ℎ𝑧 

𝑆𝑜 ℎ𝑎𝑣𝑖𝑛𝑔 1𝑢𝑓 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑜𝑟 , 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑟𝑒𝑠𝑖𝑠𝑡𝑜𝑟 𝑣𝑎𝑙𝑢𝑒 𝑤𝑖𝑙𝑙 𝑏𝑒 𝑅 =
1

2𝑝𝑖 ∗ 𝑓𝑐 ∗ 𝐶

=
1

2 ∗ 𝑝𝑖 ∗ 𝟕 ∗ 1𝑥10−6
=  22.7 K = 22k 

𝑅 = 22k 𝑜ℎ𝑚𝑠 

𝑎𝑛𝑑 𝐺𝑎𝑖𝑛 = 𝐴 =
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
= 1 +

𝑅3

(𝑅42 + 𝑋𝑐2)
1
2

= 1.7  

So, our high pass filter looks like this: 
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Figure 16 High pass filter 

Then we fed the output of this filter into a 2nd order Sallen-Key Low-pass filter with a 

corner frequency of 160hz and a gain of 4db. This filter removes maternal heartbeat 

noise and other noises. 

Our calculation or as follow: 

 𝑐𝑢𝑡𝑜𝑓𝑓 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 𝑓𝑐 = 160ℎ𝑧 

𝑆𝑜 ℎ𝑎𝑣𝑖𝑛𝑔 1𝑢𝑓 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑜𝑟 , 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑟𝑒𝑠𝑖𝑠𝑡𝑜𝑟 𝑣𝑎𝑙𝑢𝑒 𝑤𝑖𝑙𝑙 𝑏𝑒 𝑅 =
1

2𝑝𝑖 ∗ 𝑓𝑐 ∗ 𝐶

=
1

2 ∗ 𝑝𝑖 ∗ 160 ∗ 1𝑥10−6
=  1k 

𝑅 = 1k 𝑜ℎ𝑚𝑠 

𝑎𝑛𝑑 𝐺𝑎𝑖𝑛 = 𝐴 =
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
= 1 +

𝑅3

(𝑅42 + 𝑋𝑐2)
1
2

= 1.7 
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So, our Low pass filter looks like this: 

 

Figure 17 Low Pass filter 

Thus, we made a 4th order bandpass filter with a total gain of 9.2db.  

However, the amplitude of resulting signal from the bandpass filter Was not enough to 

be send to the ADC of microcontroller. 

 Thus, a final amplification was required. So, we designed a linear noninverting 

amplifier with the gain of 4.6. We fed the output of bandpass filter into this amplifier. 

Now our signal was in the range of 2 to 5 volts, and we were able to pass the signal to 

the ADC. Calculation for the linear amplifier are: 

 

𝐺𝑎𝑖𝑛 = 𝐴 =
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
= 1 +

𝑅10

(𝑅112 + 𝑋𝑐2)
1
2

= 1.7  
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So our amplifier looks like this: 

 

Figure 18 Final amplifier 

 

LM324 Ic is used for filtering and amplification. It consists of 4 op-amps thus suitable 

for our case. 

The schematic diagram of circuit is as follow: 

 

Figure 19 Schematic diagram of Filter and Amplifier 
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This circuit successfully removes the noise and unwanted signals and detects the fetus 

heartbeat peaks in the signal. 

3.5.3 Microcontroller and Lcd Display 

The microcontroller we have used is Raspberry Pi RP2040 that comes with a Pico 

Development Kit. We have used this controller since it is cheaper yet has microprocessor 

ability to run ML programs. This controller is also powered up by the Vcc coming from 

the supply section. 

Also, a 16x2 Lcd is used to display the final beats per minute of the fetus and Normal or 

Abnormal Fetus heart beats. 

3.6 Fetal Heart Rate Calculation and Fetal Signal Analysis: 

Fetal heart monitoring is important for health monitoring of fetal inside mother womb. 

Thousands of doctors around the world are concerned to supply best health services to 

pregnant women for the better development of fetus. Many lives can be saved if 

irregularities in fetus heart rate are detected promptly. An extremely critical aspect of 

medical aspect is the automatic classification of fetal heart disease.[19] 

i. Basic flow of fetal heart rate monitoring 

 

 

Figure 20 Basic flow of fetal heart rate monitoring 

Ultrasonic 
probe

Signal 
conditioning

Amplification ADC Microcontroller LCD Display
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These are the 5 steps in which we categorized the project for the development of Fetal 

heart rate monitor with AI interface. In the coming sections the discussion will be about 

the microcontroller part and the displaying of the results on the LCD display. The main 

two things which are done for the microcontroller part are as follows: 

a. Algorithm for calculating beats per minute. 

b. Deployment of Machine learning model on RP2040 microcontroller 

3.6.1 Beats per Minute Calculations: 

The beats per minute (BPM) are the number of beats in 60 seconds. This project devised 

an algorithm to calculate beats per minute from the fetus heart signals.  

The mathematical formula to calculate the BPM is as follows: 

𝐵𝑃𝑀 =   
1

𝑝𝑒𝑎𝑘 𝑡𝑜 𝑝𝑒𝑎𝑘 𝑡𝑖𝑚𝑒
 ×  60,000 

The reason to multiply the 60,000 is because the peak-to-peak time is in milli seconds. 

Here, we estimate the heart rate of fetal signal by using doppler shift. The doppler shift 

from the fetal signal usually varies from 50-200 Hz [[20].  

Now in this project we have used already build probe which gives the data of doppler 

shift. This doppler shift signal is then filtered out using band pass filters as described in 

previous chapters.  

After the process of filtering, the signal is fed into the 12-bit ADC of Raspberry Pi Pico. 

3.6.2 About raspberry pi Pico and its ADC: 

The Raspberry Pi Pico is a microcontroller board developed by the Raspberry Pi 

Foundation. It is based on the RP2040 microcontroller chip, which is designed by 

Raspberry Pi and features a dual-core Arm Cortex-M0+ processor. 

The Pico microcontroller board is compact and affordable, making it suitable for a wide 

range of embedded systems and IoT projects. It offers a variety of features, including 
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GPIO pins, PWM (Pulse Width Modulation) channels, UART, SPI, I2C interfaces, and 

more. 

One important feature of the Raspberry Pi Pico is its built-in Analog-to-Digital 

Converter (ADC). The ADC allows the Pico to measure analog voltages and convert 

them into digital values that can be processed by the microcontroller. This capability is 

useful for applications that require reading sensors or buying data from the physical 

world. 

Pico’s ADC has a resolution of 12 bits, which means it can represent analog voltages 

with high precision. It supports input voltages in the range of 0 to 3.3 volts. The ADC 

on the Pico can be accessed through the GPIO pins, allowing you to connect analog 

sensors or other devices to measure analog signals. 

The pinout of Raspberry Pi Pico is: 

 

Figure 21 Pinout of Raspberry Pi Pico by official website of Raspberry Pi 
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The data sheet of Raspberry Pi Pico and its C/C++ SDK can be found on the official 

website of Raspberry PI. 

To use the ADC on the Raspberry Pi Pico, you would typically write code that configures 

the ADC, selects the desired input pin, and reads the digital value from the ADC. Pico’s 

software development tools, such as the Micro Python programming language or the 

C/C++ SDK, provide libraries and APIs to access and utilize the ADC functionality. 

In summary, the Raspberry Pi Pico microcontroller board is a versatile and affordable 

embedded system that offers various features for building IoT projects. Its built-in 

Analog-to-Digital Converter (ADC) allows for the measurement of analog voltages, 

making it suitable for applications that involve sensor readings or analog data 

acquisition. 

Now the filtered signal is fed into the ADC to which were recorded and lodged in the 

laptop by using the following C program:  

#include <stdio.h> 

#include "pico/stdlib.h" 

#include "hardware/gpio.h" 

#include "hardware/adc.h" 

int main() { 

stdio_init_all(); 

    adc_init(); 

    // Make sure GPIO is high-impedance, no pullups etc 

    adc_gpio_init(26); 

    // Select ADC input 0 (GPIO26) 

    adc_select_input(0); 
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    while (1) { 

        // 12-bit conversion, assume max value == ADC_VREF == 3.3 V 

        const float conversion_factor = 3.3f / (1 << 12); 

        uint16_t result = adc_read(); 

        printf("Raw value: 0x%03x, voltage: %f V\n", result, result * conversion_factor); 

        sleep_ms(1); 

    } 

} 

The data logging is done by using the default feature of Serial monitor of VS code. 

Here each sample is recorded after every 1ms. Hence, the data is sampled at the rate of 

1kHz. 

3.6.3 Data acquisition  

For the data acquisition we went to Benazir Bhutto Hospital, Murree Road, Rawalpindi. 

Here we recorded the data on our laptop by using the probe, filter circuit, and above 

code. 

Now the next task was applying the algorithm to find the peaks in the data acquired from 

the hospital. 

3.6.4 Development of Algorithm to find Beats per minute: 

A threshold was set to detect the 1st peak and then the time is recorded until the 2nd 

peak is recorded. Normally the time between the peaks was around .4 seconds. Which 

gives the value of 150 Beats per minute. 
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3.6.5 Flow chart for calculating peak to peak time: 

The C program is as follows: 

uint32_t start_time, end_time,peak_time; 

float bpm; 

  start_time = millis(); 

 while (peak1 <= 1000) 

Figure 22 Flow chart for calculation of peak to peak time 
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    {  peak1 = adc_read(); 

    } 

     while (peak2 <= 1000) 

        { 

        peak2 = adc_read(); 

        } 

     end_time = millis(); 

        peak_time = (end_time - start_time); 

        printf("Peak time %.2f\n", peak_time); 

         bpm = 60.00 / peak_time; 

     while (peak2 <= 1000) 

        { 

        peak2 = adc_read(); 

        } 

     end_time = millis(); 

        peak_time = (end_time - start_time); 

        printf("Peak time %.2f\n", peak_time) 

         bpm = 60000.00 

According to the research, the fetal heart rate in one minute is around 110 to 160 bpm, 

which classifies our algorithm as true.  
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3.7 Tiny Machine learning Model using Edge Impulse Studio: 

To do the analysis of fetal heart signal the Embedded Machine learning is used. 

Embedded machine learning is also known as Tiny Machine Learning (TinyML). 

Embedded Machine Learning or Tiny ML is On-device machine learning 

applications in the single mW and below. 

The method for the classification of fetus heart signal used is ML classification. The 

approach used is to collect the data using the microcontroller and deploy the ML model 

on the microcontroller. 

 

Figure 23 Basic Approach to train and deploy model [21] 

 

The said model was trained and tested using holdout method. In which the dataset is 

divided into 80% training and 20% validation set. And when the model is trained then 

the model is tested using 20% test set. 
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Figure 24 Basics of Model Training in Embedded Machine Learning [21] 

The dataset can be fed and deployed using edge impulse using the following ways as 

described by the edge impulse: 

 

Figure 25 Ways to feed, train and deploy data in edge impulse [21] 

In our case we have stored the data of fetal heart signal using .csv file. 
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3.7.1 What is classification in Machine learning: 

Classification is a supervised machine learning method where the model tries to predict 

the correct label of a given input data. In classification, the model is fully trained using 

the training data, and then it is evaluated on test data before being used to perform 

prediction on new unseen data. 

In the case of fetal heart signal classification, I have used neural network classification. 

The basic idea is that a neural network classifier will take some input data and output a 

probability score that indicates how likely it is that the input data belongs to a particular 

class.  

 

Figure 26 Classification Algorithm in ML [21] 

3.7.2 Dataset and its preparation for Fetal Heart Signal Classification: 

An abdominal fetal database was taken from Physionet Bant ATM. Heartbeat signals 

were captured at a sample rate of 1 kHz and were digitized in 16-bit resolution. Several 
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four different abdominal readings were recorded using ECG electrodes placed on five 

different women in labor who were between 38 to 41 weeks (about 9 and a half months) 

of gestation. In we chose only the recording from the abdomen electrodes. Every 

recording consisted of five signals, four from the abdomen and one from the head of the 

fetus, the duration of each signal is about five minutes. In which we have taken only one 

recording of 1 minute. The abdominal electrodes contain four electrodes which were 

placed around the navel, a reference electrode, and a common mode reference electrode 

(with active ground signal) placed above the pubic symphysis, and on the left leg, 

respectively. The data was separated into two different files with fetal heart recordings. 

One file contains the label “Normal Fetal Heart Signal” and the other file has the label 

of “Abnormal Fetal Heart Signal.” 

Each 1-minute recorded signal is sub-divided into sixty signals of one second duration. 

The heart rate was recorded using the algorithm as described in earlier chapter. 

 

Figure 27 Data of normal fetus heart beats 
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Figure 28 Data of abnormal fetus heart beats 

 

Figure 29 Data from proposed device 

 

3.7.3 TinyML Framework and Modeling: 

Edge Impulse Studio (EIS) is a cloud-embedded Machine Learning platform specifically 

designed for developing, training, evaluating, and deploying models. When executing 

ML models on embedded devices, such as those based on the ARMTM architecture, 

TinyML is employed. This involves using TensorFlow Lite (tflite) for microcontrollers, 

which quantizes the originally trained float32 precision models into int8 precision tflite 

models. The modeling process begins with training the model on the cloud using high-

performance computing. Once training is complete, the model is converted into a flat 
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buffer format and then transformed into a binary C program. This program is integrated 

into the firmware of the edge device to enable edge inference. 

In the EIS modeling process, 80% of the dataset was utilized for training, while 20% 

was reserved for testing purposes. Within the training dataset, 20% of the data was 

further set aside for validation. To segment the data for analysis, a window size of 1000 

ms (approximately 1 second) was chosen. 

The TFlite code for training the model is: 

import tensorflow as tf 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Dense, InputLayer, Dropout, Conv1D, Conv2D, 

Flatten, ReLU, Softmax 

from tensorflow.keras.optimizers import Adam 

EPOCHS = args.epochs or 30 

LEARNING_RATE = args.learning_rate or 0.005 

# this controls the batch size, or you can manipulate the tf.data.Dataset objects yourself 

BATCH_SIZE = 32 

train_dataset = train_dataset.batch(BATCH_SIZE, drop_remainder=False) 

validation_dataset = validation_dataset.batch(BATCH_SIZE, drop_remainder=False) 

 

# model architecture 

model = Sequential() 

model.add(Dense(20, activation='relu', 

    activity_regularizer=tf.keras.regularizers.l1(0.00001))) 
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model.add(Dense(10, activation='relu', 

    activity_regularizer=tf.keras.regularizers.l1(0.00001))) 

model.add(Dense(classes, name='y_pred', activation='softmax')) 

 

# this controls the learning rate 

opt = Adam(learning_rate=LEARNING_RATE, beta_1=0.9, beta_2=0.999) 

callbacks.append(BatchLoggerCallback(BATCH_SIZE, train_sample_count, 

epochs=EPOCHS)) 

 

# train the neural network 

model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy']) 

model.fit(train_dataset, epochs=EPOCHS, validation_data=validation_dataset, 

verbose=2, callbacks=callbacks) 

# Use this flag to disable per-channel quantization for a model. 

# This can reduce RAM usage for convolutional models, but may have 

# an impact on accuracy. 

disable_per_channel_quantization = False 

3.7.4 Performance of TinyML Model for Fetal Heart Signal Classification: 

We selected the RNN classifier as our learning block for training because our models 

are intended for deployment on edge devices where memory size is a cost consideration. 

Compared to other neural networks, RNN requires less memory, making it a suitable 

choice. The fundamental concept behind the RNN classifier is to take input data and 

generate a probability score indicating the likelihood of that data belonging to a specific 

class. Throughout the training process, we adjusted and utilized model training 
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hyperparameters, such as the number of training cycles and learning rate, to attain 

maximum accuracy from our TinyML model [22]. The achieved accuracy was 

determined through the classification of the fetus's heart signal. To optimize the model 

for deployment on microcontrollers, the weights and biases of the originally trained 

model, which were in float32 precision, were quantized into an int8 precision model 

using the tflite for micro-controller framework. To evaluate the performance of the 

model on the test and validation sets, a confusion metric was computed and analyzed. 

 

Figure 30 Impulse Design on Edge Impulse studio 

 

S.No. Training 

cycles 

Learning 

Rate 

Accuracy 

1.  100 0.5 69.2% 

2.  100 0.05 89.7% 

3.  100 0.005 92.3% 

4.  40 0.005 92.3% 

5.  30 0.005 92.3% 
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Table 1 Variation in Parameters of RNN Model 

 

Figure 31 : Confusion Matrix for binary classification of Fetal Heart Signal 

3.7.4.1 Accuracy (Acc) 

Ratio of correct prediction and the total number of predictions. 

𝐴𝑐𝑐 =
𝑇𝑝 + 𝑇𝑛

𝑇𝑝 + 𝐹𝑝 + 𝑇𝑛 + 𝐹𝑛
 

3.7.4.2 Sensitivity (Sen) 

The ability of a model to predict true positives in each of the available categories. 

 

𝑆𝑒𝑛 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑛
 

3.7.4.3 Specificity (Spec) 

The ratio of true negatives to all negatives. 

𝑆𝑝𝑒𝑐 =
𝑇𝑛

𝑇𝑛 + 𝐹𝑝
 

Where, 

𝑇𝑝: Correct values which are detected as correct. 

𝑇𝑛: Incorrect values which are detected as correct. 

𝐹𝑝: Correct value which is detected as incorrect. 

𝐹𝑛: Incorrect values which are detected as incorrect. 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/10028979/10028744/10029140/rahma.t3-p5-rahma-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/10028979/10028744/10029140/rahma.t3-p5-rahma-large.gif
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S.No. Metrics Validation 

set 

Test 

set 

1 Acc 92.3% 91.67% 

2 Spec 89.2% 88.3+ 

3 Sen 0.085 0.08 

Table 2 Model Evaluation using Test and Validation set 

3.7.4.4 F1 Score (F1) 

F1 score measures the percentage of correct predictions that a machine learning model 

has made. 

𝐹1 =
2 ∗ 𝑃 ∗ 𝑅

𝑃 + 𝑅
 

Where, P is the precision … R is the recall. 

3.8 Deployment of Machine Learning Model on RP2040 Microcontroller 

The most difficult part was to deploy the trained machine learning model from edge 

impulse on the microcontroller we chose was RP2040 microcontroller. 

In order to deploy machine learning model on any microcontroller edge impulse offers 

the following ways which are in the scope of our microcontroller: 

• Arduino Library 

• C++ Library 

• STM cube ide library 

Edge impulse can also give the .uf2 binary file to deploy to microcontroller to test the 

inference using edge impulse data forwarder. 

Here I have chosen to deploy the C++ library to the RP2040 microcontroller as the 

library is customizable and can be used to show only the desired results to users on 
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UI/UX or LCD screen. This is also useful for utilizing less memory rather than the binary 

file directly from the edge impulse, which is also not customizable.  

As already discussed in the earlier chapter, the about the binary classification of the fetus 

heart signal and the trained model. I have downloaded the C++ library by the name of 

“Binary Classification of Fetal Heart Signal” to deploy onto the RP2040. 

Edge impulse library give us the a .zip file which has the follow folders and files: 

 

Figure 32 SDK files from Edge impulse 

These files have all your signal processing blocks, configuration and learning blocks up 

into a single package that were shown in the impulse design in previous chapter. 

To compile this library for RP2040 you will need the pico-sdk, CMake, a cross-platform 

tool used to build the software, and the GNU Embedded Toolchain for Arm which are 

given in the references section. 

In the files mentioned above in the figure there is the following C++ header file “edge-

impulse/classifier/ei_run_classifier.h” which is the use full purposes and is used in the 

mai.cpp program. 
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Figure 33 Important Header File in EI SDK 

Add this header file to your main.cpp file using preprocessor directive, to access all the 

functions and results provided by the edge impulse. 

3.8.1 Printing inference and prediction results on serial monitor: 

In order to get the idea how the model is progessing on he edge device I have designed 

an algorithm that how we can get the desird classification results on the VS code. 

 

Figure 34 Flow chart for printing inference and classification results 
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Following code which I used to print the inference results and prediction results on the 

serial monitor of the VS code. 

const uint LED_PIN = 25; 

float features[]={ 

    //paste raw features from edge impulse here 

}; 

int raw_feature_get_data(size_t offset, size_t length, float *out_ptr) { 

  memcpy(out_ptr, features + offset, length * sizeof(float)); 

  return 0; 

void print_inference_result(ei_impulse_result_t result) { 

    // Print how long it took to perform inference 

    ei_printf("Timing: DSP %d ms, inference %d ms \r\n", 

            result.timing.dsp, 

            result.timing.classification); 

    // Print the prediction results (classification) 

    ei_printf("Predictions:\r\n"); 

    for (uint16_t i = 0; i < EI_CLASSIFIER_LABEL_COUNT; i++) { 

        ei_printf("  %s: ", ei_classifier_inferencing_categories[i]); 

        ei_printf("%.5f\r\n", result.classification[i].value); 

    } 

} 
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In the above code I have used the functions from ei_classifier header file such as 

print_inference_result() and  print_classification_result(). These functions print the the 

inference and classification results of Fetus heart signal as per the model deployed on 

the microcontroller. 

The flow chart for the main function code is shown below: 

 

Figure 35 Flow chart of main function 
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Following is the main function code for getting the classification results for fetus heart 

signal: 

int main() { 

    stdio_usb_init(); 

    stdio_init_all(); 

    printf("ADC Example, measuring GPIO26\n"); 

    adc_init(); 

    // Make sure GPIO is high-impedance, no pullups etc 

 adc_gpio_init(26); 

    gpio_init(LED_PIN); 

    gpio_set_dir(LED_PIN, GPIO_OUT); 

    ei_impulse_result_t result = {nullptr}; 

    ei_printf("Edge Impulse standalone inferencing (Raspberry Pi Pico)\n"); 

    if (sizeof(features) / sizeof(float) != EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE) 

{ 

        ei_printf("The size of your 'features' array is not correct. Expected %d items, but 

had %u\n", 

        EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE, sizeof(features) / sizeof(float)); 

        return 1;} 

    while (true) { 

        gpio_put(LED_PIN, !gpio_get(LED_PIN)); 

        signal_t features_signal; 

        features_signal.total_length = sizeof(features) / sizeof(features[0]); 
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        features_signal.get_data = &raw_feature_get_data; 

        EI_IMPULSE_ERROR res=run_classifier(&features_signal, &result, false); 

        if (res != EI_IMPULSE_OK) { 

            ei_printf("ERR: Failed to run classifier (%d)\n", res); 

            return res;  } 

        print_inference_result(result); 

        ei_sleep(2000); 

    } 

} 

This code helped to get the inference, timing and classification results from the trained 

neural network. 

By this the trained neural network model “Binary Classification of Fetus Heart Signal” 

is ready to be deployed on the RP2040 micro controller. 

Now, after configuring and building the whole project the build directory is read and a 

standalone_infernce.uf2 is ready to be deployed on to the microcontroller. 

To burn the file, press the bootsel button of the RP2040 microcontroller and drag the file 

into the disc of RP2040 microcontroller.  

Now in the features array we are supposed to give 1000 samples of raw features of Fetal 

heart signal which we can copy and paste from the edge impulse model testing tab uder 

the head  of the raw features as shown in the figure below of raw fetus signal on edge 

impulse: 
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Figure 36 Raw Fetus Signal on Edge Impulse Studio 

 

The results on the edge impulse model testing tab are shown in the figure below: 

 

Figure 37 Classification Results on Edge impulse 

These raw features are those features which are gathered from the ADC of 

microcontroller in the coming section I will explain how I automated the result to copy 

the raw feature into the features array. 
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Meanwhile for this the inference was showed the following results on the serial monitor 

for VS code: 

 

Figure 38 Classification Results from Algorithm Deployed on RP2040 

Now do the same thing with the normal fetal heart signal. The following raw feature is 

given to the features array in main.cpp: 

 

Figure 39 Normal Fetus signal on Edge impulse studio 

These raw features are those features which are gathered from the ADC of 

microcontroller in the coming section I will explain how I automated the result to copy 

the raw feature into the features array. 

 

Meanwhile for this the inference was showed the following results on the serial monitor 

for VS code: 
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Figure 40 Classification Results of ML Model deployed on RP2040 

These results verified that the raw data in the edge impulse and the same raw data given 

to the features array in the C++ code resulted in the same classification results. This 

means that the method of deploying the Edge impulse SDK is correct and ready to be 

automated. 

3.8.2 Automation of features Array in C++ code: 

To automate the features array in C++ code I have written the following code: 

adc_select_input(0); 

for (int i = 0; i < 1000; i++) { 

const float conversion_factor = 3.3f / (1 << 12); 

        uint16_t result = adc_read(); 

        const float Voltage = result * conversion_factor; 

        printf("%d\n", result); 

        features[i]=Voltage; 

        sleep_ms(1); 

    } 

As in the earlier section you have seen that the features array is defined globally. Now 

in the above code the for loop runs for 1000 times and stores the ADC values in result 

and a conversion factor is applied to convert 12-bit ADC values into decimal values 

which are stored in “voltage” variable. Which are eventually stored in a features array.  
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Conversion Factor: 

The conversion factor mentioned in the code snippet is used to convert the ADC 

(Analog-to-Digital Converter) readings into voltage values. 

Let's break down how the conversion factor is calculated: 

The maximum value of the ADC is decided by the number of bits it uses. In this case, 

the code snippet assumes a 12-bit ADC, which means it can be 2^12 (4096) discrete 

levels. 

The voltage range the ADC covers is specified as 3.3V, the reference voltage used. To 

convert the ADC readings to voltage, the conversion factor is computed by dividing the 

voltage range (3.3V) by the maximum ADC value (4096). This division results in a 

scaling factor that maps each ADC level to its corresponding voltage value. The 

conversion factor is then stored as a constant float variable called conversion_factor for 

later use in converting the ADC readings to voltage. 

By multiplying the ADC readings by the conversion factor, the code snippet calculates 

the corresponding voltage value for each reading. 
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Figure 41 Flow chart for Automation Features Array 

Also define the features array globally as: 

#define NUM_SAMPLE 1000 

float features[NUM_SAMPLE]; 

Hence the following modification in the code will automate the features and will be 

updated every time when the probe is placed on the womb of mother. 
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3.9 Summary of Fetal Heart Rate Calculation and Fetal Signal Analysis: 

The flow of fetal heart rate monitoring is divided into five steps, with a focus on the 

microcontroller part and displaying the results on an LCD display. The algorithm for 

calculating beats per minute (BPM) is implemented using two approaches: FHR (Fetal 

Heart Rate) estimation by peak-to-peak time between Doppler shifts and FHR estimation 

using the peak-to-peak time between Doppler shifts. The fetal signal is obtained using a 

probe that measures Doppler shift, and the signal is filtered using bandpass filters before 

being fed into the Raspberry Pi Pico's 12-bit ADC. 

The filtered fetal signal is recorded and logged on to a laptop using a C program. The 

data acquisition is performed by visiting a hospital and using a probe, filter circuit, and 

the mentioned code. The acquired data is then used to develop an algorithm for finding 

peaks in the signal, which is used to calculate the beats per minute (BPM) of the fetal 

heart rate. 

For classification of fetal heart signal non-invasive data of fetal heart taken is taken. The 

dataset consists of abdominal fetal recordings captured at a sample rate of 1 kHz and 

digitized in 16-bit resolution. The signals are divided into normal and abnormal fetal 

heart signals, and an algorithm is applied to classify them. 

The classification is done using the TinyML framework and modeling in Edge Impulse 

Studio. An RNN classifier is trained on 80% of the dataset, and the performance is 

evaluated using the remaining 20%. The accuracy, sensitivity, specificity, and F1 score 

are computed to analyze the model's performance. During training the accuracy of 91.5% 

was achieved. The beauty of the model is that it is deployed on the embedded system. 

Once the model is trained, it is deployed on the RP2040 microcontroller using the Edge 

Impulse C++ library. The deployment involves incorporating the trained model into the 

microcontroller firmware. The main.cpp program is modified to include the necessary 

headers and functions to access the results provided by Edge Impulse. 
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The inference results and prediction results from the trained neural network are printed 

on the serial monitor of VS code. The features array in the C++ code is automated by 

reading the ADC values and applying a conversion factor to convert them into voltage 

values. This automation ensures that the features array is updated every the probe is 

placed on the mother's womb. 

Concluding all testing of the model in Benazir Bhutto Hospital, Murree Road 

Rawalpindi, and the need for further evaluation of the system's performance and 

accuracy. 

In summary, the described project focuses on the development of a fetal heart rate 

monitoring system using an AI interface. It involves calculating the beats per minute 

from fetal heart signals, deploying a machine learning model on the Raspberry Pi Pico 

microcontroller, and analyzing the fetal heart signals for classification. The system 

shows promising results and can improve the detection and monitoring of fetal heart 

diseases. 
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Chapter 4 -   Results 

This section includes the results that we achieved In our hardware and software section. We 

were able to acquire the desired simulation of piezoelectric disc, analoge filter response, 

algorithm efficiency, beats per minute of fetus and their classification as normal and abnormal 

heart beats. 

4.1 Device Hardware: 

We successfully fabricated the circuit of our device. We made a single layer PCB from 

the schematic describing chapter 3. Our hardware device include: 

• LCD display 

• Pico microcontroller development kit 

• Analog front end 

• Batteries 

• 3-megahertz probe 

• On off switch 

• Acrylic base 

We were able to power-up and operate the 3 MHz probe directly from our circuit. Thus 

we were able to get the doppler signal from probe and were able to calculate beats per 

minute and displayed them on the LCD screen. The images of ours hardware device are 

shown in  figures on next pages. This is now a complete handheld device that is portable, 

cost effective, and intelligent. The device is mounted on acrylic 2mm sheet to protect 

the soldering and to make it a one complete unit. 
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Figure 42 Final Device that we were able to operate and calculate BPM of fetus 
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Figure 43 Side view of the device 
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Figure 44 Device placed in hand 
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4.2 Analog Filter Response:  

Our device includes one bandpass filter that has a pass band frequency bandwidth of 7hz-160hz. 

We simulated the schematic of our circuit in Lt. spice to get the bode plot. This is how a bode 

plot resulted: 

This body plot is of our complete circuit that includes a bandpass filter and an amplifier. There 

are ripples at the start and at the end of border plot other than that the response is stable. These 

ripples or actually our corner frequencies. Through this body plot we can easily observe that the 

frequencies other than 7 Hertz-160Hz attenuated by our filter.  

Similarly we used Lt. spice to get the transient response of our filter. We got a good transient 

response that is shown on next page. 

Figure 45 Bode plot of our filter 
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Figure 46 Transient response of our filter 

This transient response has following characteristics: 

• Delay time =  0.03s 

• Steady state error = Zero 

• Peak time = 0.05s 

• Settling time = 0.5s 

Therefore, a transient response this stable 
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4.3 Output of analog front end: 

We are testing our circuit by rubbing the finger of our hand adt the head of our probe and 

observed the inputs and outputs of our circuit on oscilloscope. Figure 47 shows the response of 

our complete circuit. Our input signal coming from the probe as noise and  amplitude in 

millivolts. Whereas our output signal only contain the peaks that resembles to the heartbeat of 

fetus. You can also see the change in amplitude. Our output signal is greater than 1Volt. You 

can see that noise is efficiently removed and only the required output signal is generated by our 

circuit. 

 

 

Figure 47 Response of our complete circuit 
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Similarly, here is the response of our bandpass filter. The peaks are still over there but they are 

not amplified. And has the same amplitude as of input signal. However there is almost no noise 

in the output signal. 

 

Figure 48 Output of bandpass filter only. 

Similarly, you can also see the output response of our high pass filter only. The high 

pass filter removes the noise but is not able to remove the noise presenting heartbeat 

signal. This noise may include maternal heartbeat noise and other noises related to the 

flow of blood. However, this filter is not able to be implied that signal. Therefore, the 

result of output signal is also in millivolts. 
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Figure 49 Result of High pass signal only 

4.4 Beats per Minute of Fetus: 

To get the beats per minute the peak time is an important factor to calculate as discussed in 

chapter 3. So, after the immense testing of the proposed device the average peak time came out 

to be around 250 ms to 450 ms for the case of fetus which give us accurate results of 110 to 150 

BPM with an accuracy of almost 90%. 

4.5 TinyML Model Testing Results: 

For the Embedded machine learning model testing we have given 20 samples to the trained 

model which gave the model accuracy of  91.67%. Which shows that our model is best fitted 

for the classification as shown in the figure 40. 



66 

 

 

 

 

Figure 50 Classification Model testing results 

In the above figure, 20 different unknow samples are given to the trained model of classification 

on edge impulse studio. The trained model of classification classifies the signal as normal and 

or abnormal fetus heart signal. Only 3 samples were not classified by the model and all the 

remaining samples were classified into normal and abnormal fetus heart signal. 

Upon the deployment of the classification model on the RP2040 microcontroller the latency, 

RAM, flash, Accuracy in real time were detected. Which was quite good for the RP2040 which 

has only 2 Mega bytes of flash memory. 

 FLATTEN 
SPECTRAL 

FEATURES 
CLASSIFIER TOTAL 

 

LATENCY 
17 ms. 234 ms. 20 ms. 252 ms. 

RAM 7.8K 8.3K 1.3K 8.3K 

FLASH  - - 13.1K - 

ACCURAC

Y 
   91.67% 

Table 3 Results of model optimization using EON compiler. 
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4.6 Piezo Disc Simulation Results 

The dimensions of the piezoelectric disc used in the analysis are a thickness (TH) of 1 mm and 

an outer diameter (OD) of 30 mm. The resonance frequencies of the piezoelectric disc in the 

radial disc mode and thickness disc mode were calculated: 

a. The resonance frequency in the radial disc mode is approximately 50.8 kHz 

(0.0508 MHz). 

b. The resonance frequency in the thickness disc mode is approximately 2.1 MHz 

Using the COMSOL Analysis of the disc, the following the outcomes for Eigenfrequencies, 

Angular frequencies, Damping ratios and Quality Factors. The imaginary part in the 

eigenfrequencies shows the losses factors. 

Eigenfrequency (Hz) Angular frequency 

(rad/s) 

      Damping ratio Quality Factor 

4.6086E5+238.45i 2.8957E6+1498.3i 5.1741E-4 966.35 

4.6109E5+238.24i 2.8971E6+1496.9i 5.1670E-4 967.68 

4.6237E5+241.27i 2.9051E6+1515.9i 5.2181E-4 958.21 

4.6248E5+241.52i 2.9058E6+1517.5i 5.2222E-4 957.45 

4.6376E5+231.92i 2.9139E6+1457.2i 5.0008E-4 999.84 

4.6516E5+244.78i 2.9227E6+1538.0i 5.2623E-4 950.15 

Table 4 Eigen Frequencies  
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Chapter 5 -    Conclusions and Future Work 

In this methodology, we discussed the process of data collection, hardware design, and 

the development of a machine learning model for fetal heart signal analysis. The data 

collection involved obtaining fetal Doppler data from an online dataset and using a 

3MHz probe connected to an oscilloscope. The hardware design included the use of a 

piezoelectric disk, a PCB for filtering and data transmission, and a microcontroller with 

an LCD display. 

For the digital filter design, we implemented a 4th order bandpass filter with a gain of 

9.2dB to remove noise and unwanted signals, followed by a linear non-inverting 

amplifier with a gain of 4.6dB to amplify the filtered signal. This resulted in a clear and 

detectable fetal heartbeat signal. 

The microcontroller used in the system was the Raspberry Pi Pico, which featured a 

built-in Analog-to-Digital Converter (ADC) to measure the analog voltages from the 

filtered signal. We developed an algorithm to calculate the beats per minute (BPM) 

based on the recorded signal peaks. 

Furthermore, we explored the application of machine learning for the analysis of fetal 

heart signals. A dataset containing normal and abnormal fetal heart signals was prepared 

and used to train a classification model using the Edge Impulse Studio platform. The 

model was deployed on the microcontroller for real-time classification of fetal heart 

signals as normal or abnormal. 

COMSOL analysis was conducted on the disc, providing outcomes such as 

eigenfrequencies, angular frequencies, damping ratios, and quality factors. The 

imaginary part in the eigenfrequencies indicates the losses factors. 

Overall, this methodology provides a comprehensive approach to the development of a 

fetal heart rate monitor, including data collection, hardware design, signal processing, 

beats per minute calculation, and machine learning-based signal analysis. The designed 
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system can help healthcare professionals monitor fetal health and detect abnormalities 

in a timely manner. 

While the presented methodology provides a solid foundation for a fetal heart rate 

monitor, there are several avenues for future work and improvements that can be 

explored: 

1. Enhanced Signal Processing Techniques: The current methodology utilizes basic digital 

filters to remove noise and extract the fetal heart rate. Further research can be conducted 

to develop advanced signal processing techniques, such as adaptive filtering or wavelet 

transform, to improve the accuracy and robustness of fetal heart rate extraction. These 

techniques can help in handling noisy and complex fetal heart signals more effectively. 

2. Wireless Monitoring: The developed hardware system relies on a wired connection 

between the probe and the monitoring unit. Future work can focus on incorporating 

wireless communication capabilities, such as Bluetooth or Wi-Fi, to enable remote 

monitoring of fetal heart signals. This would provide greater mobility and convenience 

for both healthcare professionals and expectant mothers. 

3. Real-Time Visualization and Alerts: Currently, the hardware system displays the fetal 

heart rate on an LCD screen. Expanding the system to include real-time visualization of 

the fetal heart waveform can offer additional insights and assist healthcare professionals 

in better understanding the fetal heart patterns. Furthermore, implementing an alert 

system that notifies medical staff in case of abnormal heart rates or patterns can enhance 

the timely detection of potential fetal distress. 

4. Long-Term Monitoring and Data Analysis: Extending the monitoring capabilities 

beyond real-time tracking can be valuable for longitudinal studies and monitoring high-

risk pregnancies. Developing a mechanism to store and analyze long-term data can help 

identify patterns, trends, and correlations that contribute to a deeper understanding of 

fetal health. 
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5. Clinical Validation and Regulatory Approval: To ensure the reliability and safety of the 

fetal heart rate monitor, future work should involve clinical validation studies involving 

a larger sample size of pregnant women. This would provide valuable data for assessing 

the accuracy, sensitivity, and specificity of the developed system. Also, seeking 

regulatory approval and compliance with relevant medical device standards is essential 

for the technology's widespread adoption. 

6. Integration with Electronic Health Records (EHR): Integrating the fetal heart rate 

monitor with existing electronic health record systems can streamline the documentation 

process and enable seamless sharing of fetal health data between healthcare providers. 

This integration can enhance the continuity of care and facilitate collaboration among 

different healthcare professionals involved in the management of pregnancies. 

In conclusion, future work in the field of fetal heart rate monitoring can focus on 

advancing signal processing techniques, incorporating wireless monitoring capabilities, 

enabling real-time visualization and alerts, facilitating long-term monitoring and data 

analysis, conducting clinical validation studies, seeking regulatory approval, and 

integrating with electronic health record systems. These efforts will contribute to the 

development of more accurate, reliable, and accessible tools for monitoring fetal health 

and ensuring the well-being of expectant mothers. 
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