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ABSTRACT 

 

The project is to develop a framework for abnormal activity detection. This includes 

the collection of datasets, which were collected personally as well as from Internet platforms 

such as Twitter and YouTube. The datasets included different scenarios such as wall 

climbing, entrance into sensitive premises and intrusion through a window. For object 

detection the YOLO algorithm is used and only “person” class is detected. The algorithms 

provided us with accurate bounding boxes of detected objects and this data is further used 

to track people and analyze their activity. For object tracking the Deep SORT algorithm is 

used which retains the identities of detected objects in consecutive frames and helps to 

extract trajectories of detected person class. Trajectories are then analyzed to detect 

abnormal activity. The intrusion is considered an abnormal activity for this project. For 

greater accuracy of intrusion detection some features were introduced, which includes the 

translation of centroid to the bottom of the detected bounding box to avoid any intrusion 

remain undetected, since in majority of cases the area of restriction is highlighted on bottom 

surfaces. The distance between centroid and line of restricted area is calculated by using the 

formula of the distance between a point and line of restriction. This made the algorithm 

robust enough to detect intrusion from any side of the restricted zone. The packages required 

by the algorithm were installed and dependencies were resolved for the proper execution. 

The evaluation was performed on collected datasets as well as on the real time video feed 

and the algorithm was able to detect intrusion in all scenarios. The developed algorithm is 

then ported to an edge device Jetson Nano for real-time analyses. For optimization of 

algorithm different techniques were used such as down-sampling and the usage of light 

weight model. The input video feed was given by a single camera and after analyzing the 

input video Jetson Nano generates a warning if it detects an intrusion. For complete setup 

all the input and output devices such as power adapter, internet connection, display were 

managed for the smooth operation of project.      
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Chapter 1 - INTRODUCTION 

 

1.1. Motivation 

The abnormal activity detection focused on intrusion detection has a major 

contribution in the surveillance of public spaces, residential and commercial areas. Currently 

there are high concerns to deal with the unauthorized access to sensitive premises or critical 

infrastructures, so for the growing demand the development of efficient intrusion systems 

can prevent potential security breaches. 

Currently several surveillance systems require human operators to monitor cameras. 

Due to limitations of human performance to monitor multiple camera feeds and observe for 

a long duration with the same attention, there is a chance of errors in the security system. So, 

the development of a framework to detect an intrusion automatically would help the security 

personnel to effectively respond to any incident with reduced response time. 

Such automated abnormal detection system would also be scalable and adaptable 

because for changing security requirements it is much easier to expand this system rather 

than following a resource intensive approach of hiring more video monitoring personnel. 

Along with the security benefits, this automated system could also help us in post 

event analysis or investigations. The stored data could be used to analyze patterns and 

improve the systems to further enhance the security protocols. 

 

1.2. Background Knowledge 

The background knowledge for this project includes basic concepts of image 

processing such as the structure of images, how images are stored, how to manipulate image 

data and how videos work at different frames per second. It also needs to have some key 

concepts of computer vision, for example object detection, feature extraction and tracking. 

It also involves some concepts of machine learning and deep learning. For example, 

YOLOv4 is based on darknet framework so one needs to have some prior knowledge of the 
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working of this framework, how the manipulation of parameters could improve the working 

of framework. 

It is also important to keep an eye on the latest research and publications in the field 

of video surveillance, some features of this project are based on the ideas developed from 

available research. Along with this, awareness of the availability of publicly available 

datasets is also important. 

The basic concepts of edge computing, which includes dealing with the edge devices 

(such as Jetson Nano for our project) is critically important. The requirements of peripherals 

to be attached with edge devices are also of great importance for example the Jetson Nano 

requires a power adapter of 5V 4A ratings, slight changes in the rating would result in 

malfunctioning of the device. Similarly, basic knowledge of Linux based operating system 

is also required. 

 

1.3. Problem Formulation 

 

 

 

 

 

Figure 1. Problem formulation 

 

The input feed 𝑣 of video frames is fed into object detection and tracking algorithms which 

extracts the motion trajectories 𝑤. Based on predefined criteria, the motion is classified as 

either normal or abnormal. The input feed 𝑣 could be either from already collected datasets 

or a real time video by a camera. The algorithms extract information from input frames to 

get motion trajectories 𝑤 which is then used to detect motion to be normal or abnormal. 
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1.4. Contribution 

For this project, first the datasets were collected. Some video clips of different 

scenarios are recorded personally. The scenarios include intrusion into sensitive premises, 

multiple people travelling on road, intrusion into space allocated for special people. Digital 

platforms such as YouTube and Twitter were also used to collect datasets. These includes a 

person trying to intrude through a window, and a person trying to get into a house by 

climbing a wall. 

Then object detection and object tacking algorithms were used for detection and 

tracking respectively. For object detection YOLOv4 was used while for object tracking deep 

SORT was implemented. Since our project is focused on the intrusion of person class, the 

algorithm was restricted to detect only person. For the implementation of these 

algorithms, the environments were managed, and their conflicts were resolved. For example, 

NumPy was downgraded to 1.23.5 from its latest version to resolve the conflict. Due to 

computational limitations of local machine google colab was used to utilize its GPU. 

There are several abnormal activities, but our project was focused on detecting 

intrusion as an abnormal activity. First, the centroid was extracted from the detected 

bounding boxes. Then it was translated to the bottom of bounding box because in most of 

the cases restricted area or line of restriction is defined on ground surfaces so there is a 

chance that our algorithm misses the intrusion. Trajectories were extracted and highlighted 

for each tracked id. The distance formula of distance between a point and a line was used to 

detect the intrusion which made our algorithm robust enough to detect intrusion from any 

side. 

Then Jetson Nano was set up for porting algorithm into it. The setup included 

managing its hardware peripherals such as a power adapter of accurate ratings as prescribed 

by NVIDIA and other input/output devices. The internet connection was established for 

jetson nano by using a third-party software in a computer so that the ethernet port of a local 

computer could act as an internet provider. The Linux operating system was installed on 

Jetson Nano with the help of microSD card and a local computer. The libraries were installed 

in an environment and different conflicts were resolved among the packages for the proper 

execution of the algorithm. USB based camera was used to get live feed and detect an 
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intrusion on real-time. The algorithm was optimized by down sampling the input image and 

by using YOLOv4 Tiny wights. 

 The algorithm was tested and evaluated on the collected datasets and on a live feed 

from a camera. The algorithm was proved to be robust enough to detect intrusion from any 

side of the restricted area. 

 

1.5. Organization of Thesis 

  There are five chapters in this thesis. The first chapter gives the introduction 

and overview of the complete project. The second chapter describes the framework of the 

project, detailed working, and the implementation of the project. The third chapter describes 

the experimental setup and results in detail. Finally, the last chapter gives a conclusion to the 

thesis. References are added to the Bibliography section. Appendix is added at the end for 

the list of packages installed in the environment.  
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 Chapter 2 - LITERATURE REVIEW 

 

2.1. Overview 

 This chapter reviews the research work in the field of abnormal activity detection 

going all the way from object detection to tracking and then review of detection of different 

abnormal activities. For object detection both single stage and two stage detectors were 

reviewed. Single stage detectors included SSD and YOLO while two stage detectors 

included variants of RCNNs. In object tracking, the working and performance of trackers 

such as deep SORT, Tracktor++ and MDNet was reviewed and in the last section before 

discussion different abnormal activities such as intrusion, loiter and fall detection are studied 

which includes different approaches of detection and some improvements in previous work. 

 

2.2. Object Detection 

Object detection is used for many applications such as automated vehicles, 

surveillance, machine inspection and many more. There are two categories, machine 

learning algorithms and deep learning algorithms. A decade back most of the object detection 

used classical machine learning (ML) techniques. After the deep learning (DL) has taken 

off, most of the object detection is done through deep learning-based approaches. 

Machine learning algorithms have lower accuracy and shorter training while deep 

learning have higher accuracy and longer training this is because machine learning makes 

simple linear correlations while deep learning makes complex and non-linear correlations.  

Machine learning can train on small datasets while deep learning requires large 

datasets, thus in this era of big data the deep learning algorithms are proved to be more 

productive.  Along with this, the performance of deep learning is increased with the increased 

size of neural network. The comparison is illustrated as follows. 
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Figure 2. Comparison of data size and model performance. Image courtesy [31] 

 

In deep learning object detection is categorized into two types: 

i. Single stage object detectors 

ii. Two stage object detectors 

 

Some algorithms of both categories are shown in the following block diagram. 

 

 

 

 

 

 

 

 

 

Figure 3. Block diagram of object detection algorithms. Image courtesy [32] 
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2.2.1. You Only Look Once (YOLO) 

YOLO’s first version (YOLOv1) [1] was published in 2015. It achieved mAP of 

63.4% with 45 FPS on PASCAL VOC 2007 dataset. The CNN predicts bounding boxes and 

class probabilities in only one look at the full image (while in two staged algorithms first 

region proposals are generated and then further evaluation is completed). 

First SxS sized grid cells are formed of an input image. Then bounding box 

generation and calculation of confidence score is performed. Along with this conditional 

probability P (class | object) for each grid cell is also created. Finally NMS is applied for the  

calculation of final predictions. This process is depicted in the diagram below. 

 

Figure 4. YOLO algorithm single stage process. Image courtesy [33] 

Five parameters are generated for each bounding box which are width, height, center 

coordinates (x, y) and confidence score. It was found that version 1 has difficulty in detecting 

small objects present in groups and in detecting unconventional aspect ratios. 

In version 2 [2] some improvements are introduced. Batch normalization is applied 

on each convolutional layer, as a result mAP improved by 2%. A higher resolution classifier 

is used which increased mAP by 4%. Anchor Boxes were also introduced which improved 

recall by a big margin. 

Version 3 [3] also came up with some incremental improvements. Independent 

logistic classifiers were used for the prediction of classes rather than using softmax layer to 

enable multi-label classification. Detection on varying scales was also introduced in version 
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3. This version gave mAP of 57.9% on the COCO dataset with an IoU of 0.5 in comparison 

to mAP of 44% by version 2 with same dataset and IoU. 

In version 4 [4] CSPDarknet53 convolutional neural network was introduced, and 

spatial pyramid pooling (SPP) is added to CSPDarknet53. mAP and the FPS were increased 

by 10% and 12% respectively in compared to version 3. 

Version 5 improved its performance by using PyTorch training procedure while 

remaining of the model architecture remains similar to version4. 

 

2.2.2. Single Shot Detector (SSD) 

SSD [5] was published in 2016. It is also a single stage detector that outperforms 

other algorithms with its high speed and accuracy. On PASCAL VOC 2007 dataset it gives 

mAP of 74.3% at 59 FPS as compared to mAP of 73.2% at 7 FPS by Faster RCNN and mAP 

of 63.4% at 45 FPS by YOLO. SSD improved different things such as it used small 

convolutional filter for the prediction of object categories, sperate filters were used for the 

detection of different aspect ratios, multiple layers were used for the prediction of different 

scales. 

 

2.2.3. Region-based Convolutional Neural Networks (R-CNN) 

RCNN [6] was proffered in 2014. It gave mAP of 53.3% on the PASCAL VOC 2012 

dataset which was 30% more than the previous highest score on the same dataset. This 

detector is divided into three parts. First is generation of category independent region 

proposals, around 2000 region proposals are produced. The second part is CNN which then 

extracts feature vector from each region. To give fixed size CNN input “affine image 

warping” technique is used. The third part consists of class specific linear support vector 

machines (SVMs) for the classification of each region. The following diagram depicts the 

steps involved in algorithm: 
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Figure 5. RCNN object detection system. Image courtesy [34] 

 

2.2.4. Fast R-CNN 

Fast RCNN [7] was proposed in 2015. The developers identified the following drawbacks 

in R-CNN 

i. Multistage pipeline:  First the tuning of CNN is done on object proposals 

(candidate object locations) then SVMs are used for object detection by using 

CNN features and finally bounding box regression. 

ii. Expensive training: For bounding box regression and SVM the object proposals 

are extracted from every image which occupies hundreds of gigabytes disk space 

and training of networks. For example, VGG16 with 5k images of VOC07 dataset 

takes about 2.5 GPU days. 

iii. Slow Object Detection:  The algorithm extracts feature from each object 

proposal, and it takes 47 seconds per image with VGG16. 

In Fast RCNN input is given to CNN for the creation of feature map rather than giving 

region proposals to CNN (this method is applied in RCNN) and then from feature map the region 

proposals are extracted. To feed these region proposals to fully connected layers the region 

proposals are warped with the help of ROI pooling layer. Softmax layer is used for prediction 

of classes and bounding box regressor is used for bounding-box regression offsets. 

Since in Fast RCNN we don’t have to feed 2000 regions for every image and only single 

convolution operation is required for each image thus Fast R-CNN is 9 times faster at 
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training time and 213 times faster at test time for VGG16 network. The following diagram 

illustrates the working of algorithm: 

 

 

 

 

 

 

Figure 6. Fast RCNN object detection system. Image courtesy [35] 

 

2.2.5. Faster RCNN  

This algorithm [8] was also published in 2015 and developers find out that selective 

search region proposal algorithm is a bottleneck in Fast RCNN. So, to solve this problem 

region proposal network (RPN) was used instead of selective search algorithm.  

Thus, Faster RCNN has two parts. The first part is RPN which is a deep fully 

convolutional network, its job is to predict bounds of objects and object presence scores 

simultaneously for every position. The second module is Fast RCNN, proposed regions are 

given as input to Fast RCNN detector. 

Following diagram depicts the structure of algorithms: 

 

The image is fed into CNN 

to get feature maps. 

The region proposals 

are identified from 

feature maps then 

warped using ROI 

pooling layer to feed 

them to FC layers  

The softmax layer predicts 

the class while bounding 
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Figure 7. Faster RCNN object detection system. Image courtesy [36] 

 

2.2.6. Region-based Fully Convolutional Networks(R-FCN) 

It was published in 2016. It showed mAP of 83.6% on PASCAL 2007 dataset and 82% 

on 2012 dataset. This architecture is 2.5 to 20 times faster than Faster RCNN. In the previous 

algorithms fully connected layers for bounding box classification and regression are located 

after ROI layer. This architecture has drawbacks, first that the fully connected (FC) layers 

process is not shared with ROI pooling layer thus the process takes more time. Secondly, the 

FC layers located after ROI pooling layer increase number of connections which as a result 

increases complexity. So, in RFCN [9] the FC layers located after ROI layer are removed 

and placed before ROI layer. Now the score maps produced by FC layers will be utilized by 

ROI layer to perform average voting where average voting is a very simple calculation. This 

makes RFCN faster and more accurate. The following diagram depicts RFCN architecture. 

 

Figure 8. RFCN object detection dystem. Image courtesy [37] 
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2.3. Object Tracking  

It is to predict or estimate the position and related information of moving objects. To 

track objects first they are detected using object detection algorithms and then object tracking 

algorithms are applied.  

Object tracking consists of the following four stages: 

i. Target initialization 

ii. Appearance modeling 

iii. Motion estimation 

iv. Target positioning 

 

Object tracking has two levels.  

i. Single Object Tracking (SOT) 

ii. Multiple Object Tracking (MOT) 

 

The computer vision community is contributing a lot in research for multiple object 

tracking (MOT) for example “mot challenge” [30] is a platform where different researchers 

compete for the best tracking algorithm. 

Since our project will use Multiple Object Tracking, only MOT algorithms will be 

reviewed. 

 

2.3.1. SORT and Deep SORT 

In the past object tracking algorithms (for example algorithms developed using Joint 

Probabilistic Data Association (JPDA) filter), it was identified that they incorporate 

complexities such as re-identification, which limits their use in real time applications. Thus, 

only bounding box position and size are utilized from objection detection data for motion 

estimation and data association.  
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The accuracy of algorithm is dependent on the type of detector, like the performance is 

better on Faster RCNN models than Autocorrelation Function (ACF) algorithm. The Multi-

object tracking accuracy (MOTA) for these algorithms are as follows. 

 

TABLE I. COMPARISON OF OBJECT DETECTION ALGORITHMS. 

Detector MOTA 

ACF 15.1 

Faster RCNN(ZF) 24.0 

Faster RCNN(VGG16) 34.0 

 

Thus, Faster RCNN detector is used. 

The Kalman filter and Hungarian methods are utilized by SORT algorithm for object 

tracking. Some algorithms give greater accuracy at the cost of runtime processing, But the 

SORT algorithm gives higher accuracy and fast runtime processing simultaneously which 

makes it useful for surveillance applications. 

The developers of Deep SORT [10] found that SORT [11] is not able to perform well in 

occlusions lasting for longer time which increases identity switches. So, they proposed deep 

association metric for person re-identification (which is basically to incorporate deep neural 

networks for the estimation of object location). As a result, identity switches decreased by 

45%.  

To keep the algorithm fast this computationally complex learning is placed in offline 

pre-training stage. 

 

2.3.2. MDNet 

The founders of MDNet [12] observed that it is difficult to learn unified representation 

from video sequences which have different characteristics. Each sequence has different 

targets which have different moving patterns, appearances, and class labels. So, they 

proposed CNN architecture named Multi-Domain Networks which take sequence 

independent information. The algorithm performs online visual tracking. 
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This architecture has a small number of layers as compared to VGG and Alex network. 

The MDNet architecture consists majorly of three parts as shown in the following diagram. 

First shared layers then come domain specific layers and finally classification layers.  

 

 

 

Figure 9. MDNet object tracking system. Image courtesy [38] 

 

2.3.3. Tracktor++ 

This algorithm introduced a new paradigm. Previously developed algorithms specifically 

focus on tasks such as object re-identification, dealing with occlusion and motion prediction. 

But this makes algorithm computationally complex. So Tracktor++ [13] came up with a 

solution to this problem. It used bounding box regression of the detector for motion 

prediction and no optimization or training was performed on tracking data. Thus, 

transforming a Detector into Tracktor.   

Two extensions are also added to Tracktor named motion model and re-identification 

Siamese network. The first one is used to deal with the issue of slow frame rate and moving 

camera. Re-identification Siamese network is to verify that the location of target in frame t-

1 is matched with the estimated location in next frame t. Otherwise, the tracklet is considered 

to be dead because of its deactivation. Due to these two extensions Tracktor is named 

Tracktor++. 

 



 

15 
 
 

2.4. Abnormal Activity Analysis 

The object tracking algorithms as we discussed before are used to produce trajectories 

which are then used to analyze activities in different scenarios, for example traffic 

management, video analysis in sports, video surveillance. 

Many challenges are faced during trajectory analysis. Diverse surveillance scenes, for 

example the scene could be either indoor or outdoor, many object classes observed in a single 

scene, big datasets such as surveillance scene recordings. 

There are different datasets [17] available for different scenarios. The following table 

classifies these datasets with respect to each scenario. 

 

TABLE II. DIFFERENT SCENARIOS AND THEIR RESPECTIVE AVAILABLE DATASETS 

Scene Datasets 

Indoor activity and event detection UMN, ISE Lab, VAVIAR 

Outdoor activity and interaction analysis  UCF101, PETS2001 

Traffic monitoring and pattern understanding MIT, QMUL Junction 

Crowd analysis CUHK, GCS 

Human robot interaction MHHIRI 

University events ERCe 

 

Trajectory extraction involves different techniques such as heat maps and qualitative 

trajectory calculus (QTC). For visualization of movement patterns and abnormalities 

trajectory clustering is performed. 

Defining abnormal activities is context dependent and subjective. There are several 

research covering different types of abnormal activities such as illegal U-turn, stopped or 

slow vehicle, restricted movement of traffic, crowd changes, loitering, falling on floor, off 

road driving, intrusion and many more.    

Since our project is related to abnormal activity analysis for surveillance, only the 

following activities will be reviewed further. 
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2.4.1. Intrusion 

The intrusion detection systems developed are designed to detect unauthorized entry in 

sensitive areas. Different techniques are used and some of them are discussed as follows. 

Background subtraction and frame difference methods are combined to detect 

pedestrians. Then the vertex of pedestrian and vertex of sensitive areas are analyzed for 

intrusion detection [18]. The frame difference method is divided into two methods, the 

double frame difference method and triple frame difference method. The triple frame 

difference method suppresses noise and is more accurate. To detect the intrusion in sensitive 

area first the fixed area of pre-defined sensitive ROI is calculated, if any object intrudes that 

specified ROI the change in area of indicates intrusion. The following diagram describes the 

situation. 

  

 

 

 

 

 

 

Figure 10.   Intrusion detection using changes in area. Image courtesy [39] 

 

 Another way to detect intrusion is to track the centroid of intruder [19] and when the 

centroid of an object enters a defined ROI an intrusion warning is generated, this method 

decreases computational complexity. Since the cameras are located at certain height and a t 

some inclination as a result the algorithm sometimes miss the intrusion even if an object 

passes through an ROI, to solve this issue, centroid of object was shifted to the bottom of 

object which is depicted in the following diagram. 
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Figure 11.   Shifting centroid of an object to bottom. Image courtesy [40] 

 

2.4.2. Crowd Analysis 

 Crowds are analyzed from microscopic, mesoscopic, and macroscopic perspectives 

[20]. In macroscopic approach the crowd is treated by its overall performance in which 

crowds have same movement pattern. Individual movement is neglected in this approach. 

Different techniques are proposed for this approach such as unsupervised feature extraction 

and optical flow which are used to detect emergency event in large crowds, spatio-temporal 

motion model for the detection abnormal behavior in large crowds, Bernoulli statistical 

shape model is utilized to find the number of people in a busy area. The microscopic 

approach focuses on each individual. Techniques for this approach include Bayesian 

clustering, which is used to analyze abnormal behavior of individuals, AdaBoost classifier 

for the detection of fight scenes, shape and motion template to identify an individual’s 

movement in crowd. Mesoscopic approach is used for medium sized crowds in which people 

don’t have same movement patterns. Small groups are identified by using agglomerative 

clustering. 

 Some researchers model crowd motion to fluid flow motion. For which crowd is 

represented as a flow field and “optical flow estimation” is utilized to transform crowd into 

a vector field. Now methods for fluid flow analysis are implemented on crowd motion. 

 Force based models are also used to analyze crowd activities. This includes social 

force model in which three forces are considered: influence force from people, driving force 

towards destination, repulsive force from other objects, for example a barrier. This model is 

used to monitor escape and panic situations. This model was further modified by assigning 
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weights to people for the calculation of their relative speeds. PSO is also used to further 

increase the efficiency of social force model. 

 

2.4.3. Loiter 

 To determine the anomalous behavior of waiting, standing, or walking apparently 

with no purpose, different methods have been proposed such as TDHA method [21]. In this 

method first the moving object is detected and then a trajectory consisting of centroids of 

moving object is generated. If the distance between consecutive points in trajectory increases 

by specified threshold than the trajectory is regenerated by using Representative Points (RP) 

which could be written as: 

𝑑 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 

If d > threshold, then the trajectory is regenerated by using RPs 

𝑝𝑛 = (𝑥, 𝑦) ,    𝑇𝑛
1 = {𝑝1, 𝑝2, 𝑝3, … … … 𝑝𝑛} 

 Adjacent points 𝑝1(𝑥1, 𝑦1), 𝑝2(𝑥2, 𝑦2) are calculated by the following equations to 

analyze the direction history of trajectory: 

𝑣 = (𝑣𝑥 , 𝑣𝑦), 𝑣𝑥 = (𝑥1 − 𝑥2), 𝑣𝑦 = (𝑦1 − 𝑦2) 

𝑇𝑛
2 = {𝑣1, 𝑣2, 𝑣3, … … … 𝑣𝑛−1 } 

Normal trajectory will show small variation in directions between the two vectors while in 

abnormal trajectory large or irregular variation in direction is observed. Another technique 

known as IPM is also proposed to remove distortion in direction due to perspective effect.  

2.4.4. Fall Detection 

 According to WHO 28-35% people of age 65 and above fall each year. There are 

different fall types and features which are used to detect them. They are discussed in the 

following table. 
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TABLE III. FEATURES USED TO DETECT CERTAIN FALL TYPES. 

Features used for detection Fall types 

Geometrical orientation and state of silhouette Lying down in stretched position & tucked position 

Vertica and horizontal gradient distribution  Forward, sideways, backward 

Near-field imaging floor Onto knees, rotate right to left and vice versa 

Floor pressure angle Forward, backward, and sideways 

Silhouette and center of mass Forward, backward, and lateral  

Height, width, and depth of human posture  // 

Deformation and change in height Fall from standing position or from chair 

 

2.4.5. Trajectory Clustering 

Information is analyzed across multiple frames to get object trajectories, which are 

then clustered to get motion patterns to study different behaviors. Frequency domain features 

and clustering spatio temporal features are used [23-26]. In clustering there are multiple 

techniques such as generating subclusters for different object trajectories [27], fusing 

clusters [25]. For aerial videos it is very challenging to extract motion patterns since they 

require camera motion compensation [28]. While applying clustering discrete wavelet 

transform coefficients are used. 

 To aid clustering of trajectories and motion pattern extraction, deep trajectory 

representation is used [29]. This utilizes the result from the hidden layer of the smallest size 

for the encapsulation of trajectory. To get dominant trajectory clusters mean shift clustering 

framework is used. Then to extract motion pattern, distance minimization from centroids 

technique is used. 

2.5. Discussion 

 The research papers provided great insight to the current trends in object detection, 

object tracking algorithms and abnormal activity detection techniques. Both single stage and 

two stage detectors were studied, and it was found that single stage detectors would be more 

suitable for our project because our algorithm is to be ported on an edge device which has 

limited computational capacity. Among object tracking algorithms deep SORT found to be 

an advanced algorithm that deals with occlusions and retains identities with greater accuracy. 

In the research for abnormal activity analysis, a very important point of translating centroid 
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to the bottom of the bounding box for intrusion detection was mentioned which I used in my 

project. 
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Chapter 3 - FRAMEWORK 

 

 

 

 

 

 

 

 

 

 

Figure 12. Block diagram of project framework. 

 

3.1. Overview 

This chapter gives an overview to all of the components of the framework for our 

project. Starting from the implementation of YOLOv4 for object detection and extracting 

the parameters of bounding boxes of the person class. Then the implementation of object 

tracking using deep SORT by utilizing the information of bounding boxes gathered from 

detection algorithm. For the improvement in the accuracy of abnormal activity of detection 

translation of centroid to the bottom of bounding boxes. Extracting trajectories of the motion 

of people and then utilizing all this information to detect intrusion into a specified restricted 

zone. Further to implement the concept of edge computing the algorithm is ported to an edge 

device the jetson nano. Then for the smooth execution of algorithm the creation and 

maintenance of the environment along with conflict resolutions. Finally for relatively fast 

detections of real time input feed, the optimization by using different approaches such as 

using light weight models and down sampling of input feed.  

Object Detection 
Object Tracking 

Intrusion Detection 

Input Feed Detected 

Bounding Boxes 

Trajectories 
Intrusion 

Detected/Undetected  
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3.2. Object Detection 

This is used to classify and localize objects within a given frame. The localization 

includes providing a very precise location of the object within the frame either in the form 

of bounding box or a region enclosing classified object. Usually input feed is given in the 

form of images or video frames. The images are represented as a matrix of pixels and each 

pixel represents the color intensity within its region. Usually, pretrained object detection 

algorithms have predefined classes such as person, cars, bottles etc. For classification the 

algorithms extract features based on color, shape, or texture to distinguish from other objects 

and background. Generally, there are two main approaches for object detection: deep 

learning-based approach and traditional approach. The first method includes convolutional 

neural networks while traditional methods include cascade classifiers, sliding window 

method etc.   

 

3.2.1. YOLOv4 

For the project YOLOv4 object detection algorithm was used. The pretrained model 

was used to detect only “person” class. Its training is performed on COCO dataset. The 

dataset contains 80 classes. The structure of object detector is given as follows. 

 

Figure 13. Anatomy of YOLOv4. Image courtesy [4] 

 

The YOLOv4 takes images from input feed and compress features by using a 

convolutional neural network-based backbone. CSPDarknet53 is implemented as a 

backbone for YOLOv4 which consists of 53 layers. Feature aggregation is performed at neck 

where the features formed in backbone are mixed and combined to prepare for the detection. 
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PANet is used for feature aggregation in YOLOv4. A spatial pyramid pooling block is also 

placed next to the backbone for the increase in receptive field and to extract important 

features. Head is considered as a detection step where the authors of YOLOv4 used same 

head of YOLOv3. YOLO is one stage detector because it predicts classification and 

localization simultaneously as also obvious from the name You Only Look Once. 

 

3.3. Object Tracking  

It follows and monitors the motion of an object within the sequence of images. The major 

objective is to retain the identity of moving object, track the exact position and other related 

features. In general, the object of interest is initialized in a frame using object detection 

algorithms. Then important features are extracted, and the motion is estimated on the basis 

of these extracted features. 

 

3.3.1. Deep SORT 

Deep SORT is the upgraded version of SORT algorithm. It involves deep learning in 

SORT by including appearance descriptor for the reduction of identity switches. In SORT 

there are 4 key stages, First comes detection, and in our project, detections were passed by 

YOLOv4. The second step is estimation in which Kalman filter is used to estimate the 

position of object as it moves from one frame to another. The third step is data association, 

in which cost matrix is calculated as IOU for the detected bounding box and the target 

bounding box. Hungarian algorithm is used in this step. The final step is to create and delete 

track identities. If IOU is less, then a predefined threshold, the track is terminated otherwise 

retained. Since SORT fails if occlusion occurs and the identities are lost. So deep SORT 

comes up with a better association matric in which appearance descriptors and motion are 

combined. In other words, we can also say that deep SORT does not only considers velocity 

and motion but also incorporates the appearance of the moving object. 
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3.3.2. Centroid Extraction & Translation 

The centroid of a frame detected for an object is very useful in object tracking. It has a 

key role in object tracking techniques such as mean-shift and Kalman filtering. It helps us to 

get an estimate of motion, for example features such as speed, trajectory and direction could 

be examined. It also helps to localize an object within a frame as now we can relate the 

coordinates of centroid with the coordinates of complete image. They can also help us for 

classification purposes by identifying the features around the centroid.   

To analyze the abnormal activity of an object it is necessary to have some reference point 

on an object. For our project centroid was considered as an important feature to help us in 

abnormal activity detection. The tracked bounding boxes which were detected by YOLOv4 

algorithm contains the following four parameters. 

𝑥, 𝑦, 𝑤, ℎ 

where 𝑥, 𝑦 are coordinates of top left corner of the bounding box and 𝑤, ℎ are the width and 

height of the bounding box. So, the centroid could be calculated as. 

𝑥𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 = 𝑥 +
𝑤

2
 

𝑦𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 = 𝑦 +
ℎ

2
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Figure 14. Bounding box with centroid and its parameters for YOLO 

 

Although the centroid is extracted but for intrusion detection there is a chance that it is 

missed by the algorithm because boundaries of restricted zone or border lines are usually 

drawn on ground surface so there is a chance that a person intrudes but the centroid misses 

the line of restricted area. 

To solve this issue the centroid was translated to the bottom of the bounding box, which 

proved to be very effective technique and now the algorithm was able to detect all intrusions 

successfully. To implement this, the formula of centroid was modified as follows. 

𝑥𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒𝑑_𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 = 𝑥 +
𝑤

2
 

𝑦𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒𝑑_𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 = 𝑦 + ℎ 

 

The graphical representation of translated centroid is as follows. 
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Figure 15. Depiction of the translation of centroid 

 

3.3.3. Trajectories 

Trajectories are the path traced by the detected objects. Since detected objects are 

represented by bounding boxes, the path followed by consecutive frames of same identity 

are represented by trajectories. For the trajectories to be drawn different references can be 

used either with respect to the corner points of bounding boxes or by following the centroids. 

Trajectories can be used to observe different features and scene dynamics. For example, 

features include speed and acceleration and scene dynamics such as vehicle movements and 

motion pattern of people. This helps to identify anomalies in the scene by comparing the 

expected trajectories with the current trajectory of object. Trajectories can also be used to 

predict future positions of objects with the help of previous data of moving object. 

For the project we chose centroid to be the reference for the extraction of trajectories. 

For each object, the centroids of consecutive frames are stored in a dictionary and a trajectory 

is drawn for the complete path history of an object. For each identity a sperate trajectory is 

drawn and if a different identity appears in the frame a separate trajectory appears. The 

trajectories drawn on a video of self-collected dataset are shown in the following image. 
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Figure 16. Trajectories for multiple tracked objects. 

 

3.4. Abnormal Activity Detection 

Abnormal activity detection is to identify behaviors that are deviating from the normal 

patterns. To implement this, various techniques are used. Generally, normal behavior 

activities are modeled by using different techniques such as statistical modeling or deep 

learning, which then are used as a reference to compare with other scenes. In the model, 

features are extracted to identify different events. The examples of features include object 

trajectories, motion patterns and spatial-temporal relationships. The algorithms which are 

generally used to compare scene with pre-built model includes Gaussian models and 

recurrent neural networks.  

Although abnormal activities include a number of activities that are considered to be 

abnormal, but our project is defined for intrusion to an abnormal activity. 

 

 

 

 



 

28 
 
 

3.4.1. Intrusion Detection 

The intrusion detection for our project is defined to identify unauthorized entrance into 

a defined zone. The restricted zone could be an ROI, or a simple border line. Whenever a 

person tries to intrude, the system generates a warning. 

The criterion that is defined in our algorithm for the detection of intrusion is to determine 

whether the perpendicular distance between the centroid and the line of restricted zone is 

less than the defined threshold or not. The technique is illustrated in the following diagram. 

   

 

 

Figure 17. Distance between centroid and the line of restricted area. 

 

The formula used for the calculation of distance between centroid and the line is given 

as. 

𝑑 =
|𝑎𝑥0 + 𝑏𝑦0 + 𝑐|

√(𝑎2 + 𝑏2)
 

 

Where 𝑥0 and 𝑦0 are coordinates of the centroid and 𝑎,𝑏,𝑐 are parameters determined by 

the straight-line equation. 
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This technique makes our algorithm robust enough to identify intrusion from any side of 

restricted zone. The threshold depends on the resolution of image used. Frames with higher 

resolution require greater threshold and vice versa because the distance increases with a 

smaller number of pixels in the same area. 

 

3.4.2. Google Collaboratory GPU Utilization 

Google colab is a development environment which allows the editing and execution of 

python codes and files. The major benefit of using google colab is that that they provide us 

with a GPU or TPU for fast computations. It’s a free platform but has some limits on the 

duration of usage and some features. It has optimized pre-installed packages which 

eliminates the need to build and maintain an environment.  

For our project we used google drive as a container to store files and then execute using 

the Jupyter notebook development environment managed by google colab, which makes it 

useful to get the computational advantage by utilizing their GPU or TPU instead of using 

local machine with lower computing power. 

 

3.5. Jetson Nano 

Jetson Nano is a small single board computational device that is used for edge computing 

applications. It consists of an integrated GPU which helps to execute neural networks in 

parallel, thus making it more useful for image processing applications. It is a part of 

NVIDIA’s Jetson series. It supports different AI frameworks such as caffe, TensorFlow and 

MXNet. 
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Figure 18. Jetson Nano developer kit. Image courtesy [41] 

 

The specifications of board are described in the following table: 

 

TABLE IV. TECHNICAL SPECIFICATIONS 

Properties Description 

Power  5W 

CPU Quad core ARM A57 with the clock speed of 1.43GHz 

GPU 128 core Maxwell 

RAM 4 GB 

Memory card MicroSD (64 GB for the project) 

Camera communication 

protocol 

2x MIPI CSI-2 DPHY lanes 

Data communication 

protocols 

I2C, UART, I2S, SPI, GPIO, USB 2.0, USB 3.0, Micro-B 

Display Ports Display port, HDMI 

Dimensions 69mm x 45mm 
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3.5.1. Operating System Installation 

The Jetson Nano was installed with a Linux based operating system, which is provided 

with JetPack SDK. It is basically a highly optimized version of Ubuntu thus provides us with 

the basic pre-installed libraries and optimized execution of tasks. The provided operating 

system is known as NVIDIA L4T. 

Since the Jetson Nano does not have storage, so to install this OS we have to write the 

image of JetPack SDK on a microSD card with the help of a separate computer with an 

internet connection and the computer should also be able to read and write data on microSD 

cards either with the help of USB based SD card reader or with the built-in SD card reader 

slot. The Jetpack is provided and maintained by the official website of NVIDIA. It was 

downloaded in zip format. There are different procedures of installation for the computer 

having Windows. macOS or Linux based operating system. Since our computer was based 

on Windows OS the image was flashed accordingly. 

First, the microSD card was formatted. NVIDIA recommends using the formatter 

provided by SD Association. From the formatting options of “Overwrite format, Quick 

format and CHS format” the “Overwrite format” was selected. The box for “Volume label” 

was left blank. Now the “Format” button was pressed and if a warning dialog appears, click 

the “Yes” button.  

After the formatting was completed, microSD card was flashed with the provided OS. 

NVIDIA recommends using “Etcher” software for this purpose. In the software, first “Select 

Image” option was selected, which prompted a window to choose the zip file already 

downloaded from the website. Then “Select drive” option was clicked which then prompted 

to select the drive thus microSD was selected. Now the final option “Flash” was selected 

which took approximately 10 minutes to flash the image. It is also highly recommended to 

use USB3.0 slot if you are using USB based SD card reader. Now our microSD card was 

ready for the setup of Jetson Nano. 

The microSD card was inserted into the slot beneath the surface on which heat sink is 

mounted. Then the Jetson Nano was powered, and it started its boot automatically. The first-

time boot required us to follow the following steps. Acceptance and review of end user 

license agreement. Selection of time zone, keyboard configurations, language settings, 
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computer name, username and password. Finally, it asked about the size of APP partition. 

Maximum size is chosen for better performance. After successful procedure the Jetson 

Nano’s user interface was visible.   

 

3.5.2. Configuration of Environment 

To get an isolated space for our algorithm an environment is created by using 

“Anaconda” as an environment management tool. This increased the flexibility and 

reproducibility of our algorithm as now we can run the same algorithm on any machine 

simply by recreating the environment. It also becomes very easy to change the versions of 

packages and their dependencies. 

The Jupyter Notebook is used as a development environment to manage and execute the 

files. The algorithm is primarily based on TensorFlow framework which is executed with 

python 3.6 for our project. 

During the installation of libraries, a lot of conflicts were managed especially between 

the dependencies. For example, NumPy was downgraded to version=1.23.5 from its latest 

version. Similarly, Jupyter notebook was only able to execute when root privileges are 

granted. 

Another issue that was faced was the utilization of GPU. The TensorFlow 2.10.0 and 

onwards for ARM64 architecture are maintained by third party AWS. So, by default it 

installs “tensorflow-cpu-aws” which does not initiate GPU utilization. The TensorFlow 

version used by our algorithm is 2.12.0 and since Jetson Nano is based on ARM64 based 

architecture so the version of TensorFlow is incompatible for GPU utilization. 

To overcome this issue the version of TensorFlow was downgraded to 2.7.0 which also 

required to downgrade its dependencies. Although The GPU was successfully initiated, but 

the algorithm caused the conflicts with the downgraded dependencies. Such as the 

“setuptools” package version 65.5.0 was not satisfied and version compatibility issue with 

keras.  

For details of libraries installed in the environment see Appendix. 
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3.6. Optimization 

There are multiple ways to optimize algorithms, some methods are discussed as follows. 

For example, PyTorch framework is better than TensorFlow on Jetson Nano. Multi-

threading also helps to improve FPS, this could be implemented by executing detection and 

tracking on separate threads. Overclocking is a technique to increase computational 

performance of Jetson Nano, but it also increases heat generation and requires a cooling fan 

to be mounted on heat sink. Among object detection (using YOLOv4) and object tracking 

(using deepSORT), object detection is more computationally extensive. So, the major 

emphasis is on the optimization of YOLOv4. 

 

3.6.1. YOLOv4 Tiny 

YOLOv4 Tiny was used to increase the efficiency of algorithms for real-time detections. 

It is a lighter version of YOLOv4 with reduced computational complexity. It has a small 

network which has less layers and parameters, thus it results in higher inference speed but at 

the cost of some accuracy. Another limitation to the tiny version is that that it only accepts 

a fixed resolution of input image as the tiny version has specific requirements for its network. 

It only accepts the input resolution of 416 x 416 pixels. The tiny version helped us to improve 

the FPS from around 0.5 to 2 on the Jetson Nano. 

 

3.6.2. Down-sampling 

By reducing the resolution of input image, the algorithm can perform fast computations. 

The balance between accuracy and optimization must be maintained. The input resolution 

should be decreased to a level where the essential characteristics are preserved. The down-

sampling is not only applicable for YOLOv4 Tiny because the tiny version is only designed 

for specific resolution as mentioned in the previous section. For our project different 

combinations were tried, for example resolution of 640 x 480 pixels.  
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3.7. Summary 

The intrusion detection of a person in specified zone required us to first detect the 

object using YOLOv4 and extract the centroid from the detected bounding boxes. To track 

classified objects, Deep SORT is used which tracks the objects in consecutive frames and 

retains the identities. The trajectories are then extracted and highlighted in the output video. 

This information is then used to detect intrusion of people into a specified zone. 

Improvements were implemented in the features that are used to detect intrusion with higher 

accuracy includes the translation of centroid to the bottom of bounding box and using 

distance between line and point formula to calculate distance between centroid and the line 

of restricted area. For fast inference different optimization methods were used such as using 

light weight model and down sampling. Next chapter includes all details about the 

experimental setup of this framework along with results of our algorithm implemented on 

datasets of different scenarios. 
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Chapter 4 - EXPERIMENTAL RESULTS AND SETUP 

 

4.1. Overview 

This chapter demonstrates the practical implementation of this project. Starting from 

hardware setup of jetson nano, the detailed explanation of all input and output peripherals 

required and their working. Then the collection of datasets from different sources which 

includes different social media platforms and personal collection as well. The evaluation 

criterion is also explained. Then comes the results section which includes visuals of intrusion 

detection on all datasets of different scenarios. Both qualitative and quantitative aspects are 

also evaluated to give deep insights into the working of this project.   

 

4.2. Experimental Setup 

For real time intrusion detection Jetson Nano was used as an edge device. The input feed 

was given by using a USB camera. Internet was provided by an ethernet cable. For storage 

a 64 GB microSD card was used. The display was given to an LED by using HDMI port. 

The device was powered by a 5V 4A adapter through a DC barrel jack. Other input devices 

such as keyboard and mouse were connected to through USB ports. 

 

Figure 19. Input/output ports for jetson nano. Image courtesy [42] 
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1. microSD card 

2. expansion header (not used in project) 

3. micro-USB port (not used in project) 

4. Ethernet port 

5. 4x USB ports 

6. HDMI port 

7. Display port (not used in project) 

8. DC Barrel Jack 

9. MIPI CSI-2 camera connectors (not used in project) 

 

4.3. Datasets 

Datasets were collected both personally and using digital platforms such as Twitter and 

YouTube. The view of sensitive premises, entrance and ramp for special people were 

collected personally while the view of wall and window were calculated from digital 

platforms. The field of view of collected datasets is shown as follows. 

 

 

. 

   

Sensitive Premises  Entrance 
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Figure 20. Datasets 

 

4.4. Evaluation Criteria 

To evaluate the developed algorithm, datasets were collected from different scenarios 

both personally and from online platforms. The scenarios included wall climbing, window 

intrusion, premises intrusion and area specified for special people. The criterion was whether 

a warning is generated or not in the case of intrusion. After testing all dataset videos and real 

time video feed it was proved that the algorithm is working accurately. For wall climbing 

dataset the red signal was generated when the person crosses the line of restriction. Similarly 

for window intrusion clip the intrusion was detected despite the fact that only the top view 

of person was visible, but the algorithm was smart enough to detect it. Also, for the case of 

specified zone of special people a warning of intrusion was generated. For real time video 

feed both the intrusion of single object and multiple objects was tested, and both were 

successfully detected.   
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4.5. Results and Evaluation 

The algorithm was evaluated on datasets collected for different scenarios and on the real 

time video feed from the USB camera. The results proved the algorithm to be accurate and 

robust enough to detect every intrusion. The datasets included wall intrusion, window 

intrusion, ramp intrusion and sensitive premises intrusion. In wall intrusion datasets the 

algorithm smoothly tracks the person climbing the wall and warns of an intrusion occurs, 

despite a lot of changes in posture of climbing person there is only one identity switch. For 

window intrusion, despite the fact that the camera is located at an inclination, and it is tough 

to detect a person, the algorithm detects that person right after his appearance in camera 

throughout the end of his appearance. A smooth trajectory is generated without any identity 

switch and an intrusion warning is generated. In ramp intrusion video two people appear in 

the frame one near the camera and the other one in background occluded with vegetations. 

Both people are detected and tracked. A warning is also generated for the person intruding 

into the restricted area. The final dataset is of sensitive premises intrusion. There are multiple 

people in that video sequence. The object detection and tracking algorithms are successfully 

able to get trajectories of all people accurately with only two identity switches and right after 

a person intrudes at the entrance of premises a warning signal is generated. 

 

4.6. Qualitative Evaluation 

The developed algorithm was implemented on different datasets, both personally 

collected datasets and from digital platforms as mentioned in the datasets section. The 

algorithm was able to detect intrusion successfully in all scenarios. First, simple object 

detection and tracking algorithms were tested on dataset then intrusion was evaluated. The 

algorithm generated a warning and displayed it on the screen whenever intrusion was 

detected. Similar was the case for all datasets of wall climbing, window intrusion, ramp 

intrusion and sensitive premises intrusion. The object detection and object tracking are 

illustrated as. 
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Figure 21. Evaluation of object detection and object tracking. 

The intrusion detection by our algorithm on different datasets is illustrated as follows. 

I. Sensitive premises intrusion detection. 

 

Figure 22. Sensitive premises intrusion detection. 
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II. Wall intrusion detection. 

 

Figure 23. Wall climbing intrusion detection. Image courtesy [43] 

 

III. Window Intrusion detection. 

 

Figure 24. Window intrusion detection. Image courtesy [44] 
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IV. Ramp for special people intrusion detection. 

 

Figure 25. Ramp intrusion detection. 

 

4.7. Quantitative Evaluation 

The intrusion detection algorithm is computationally complex algorithm because it goes 

through all the processes of detection, tracking and finally the intrusion detection. Before the 

optimization of algorithms, the real time inference occurred at around 0.5 FPS but after the 

optimization of algorithm by using different techniques (as mentioned in framework section) 

the FPS improved to 2 FPS approximately. 

The further quantitative detail of evaluation on datasets is as follows. 
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TABLE V. QUANTITATIVE EVALUATION. 

Evaluation 

Criteria 

Sensitive 

Premises 

Wall Intrusion Window Intrusion Ramp Intrusion 

Number of people 6 1 1 2 

Successfully 

Tracked 

6 1 1 2 

Identity Switches 2 1 0 0 

Intrusion 

Detected/ 

Undetected 

Detected Detected Detected Detected 

Number of people 

intruded 

1 1 1 1 

 

4.8. Discussion 

The results of this project were found to be very insightful that how the algorithm 

detects every person with accurate bounding boxes and then the tracking algorithm works 

accurately even in occlusions, especially for sensitive premises dataset. The identities are 

retained despite significant changes in the posters as observed in the wall climbing video, 

the person in video completely bends his body but still a perfect trajectory is traced. The 

tracker also works fine in the scenarios when there are multiple objects, and it does not 

compromise on the accuracy of tacking as observed in sensitive premises scenario. The 

detector and tracker are also very sensitive to background motion, as in the ramp intrusion 

scene it also detects a person walking far away behind vegetation. In all four datasets the 

intrusion is detected successfully, and the algorithm is proved to be robust enough to detect 

intrusion in any case. The improved intrusion detection algorithms could have a great impact 

on the robustness of video surveillance systems. 
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Chapter 5 - CONCLUSIONS 

 

This chapter concludes this thesis by reiterating the major achievements and some 

recommendations for the future work.  

 

5.1. Summary of Achievements 

The final year project named “single camera based abnormal activity analysis for 

surveillance applications” focused on intrusion detection as an abnormal activity was 

implemented. The literature was reviewed to get an insight into the status of work already 

accomplished in this field and the improvements that are considered nowadays. Different 

techniques for object detection, object tracking, and abnormal activity detection were 

reviewed. The object detectors included both single stage and two stage detectors and for 

our project it was decided to use single stage object detectors because they provide us with 

higher computational speeds rather than two stage detectors. Among object trackers different 

trackers were reviewed which were based on methods such as Hungarian algorithm or 

Kalman filters and for our project it was decided to use deep SORT due to its better speed 

and higher accuracy. After research the object detection and tracking were performed by 

integrating YOLOv4 and Deep SORT algorithms. The YOLOv4 provided us with the 

parameters of detected bounding boxes of person class. These important features were then 

used to track the objects and retain their identities in consecutive frames. To detect intrusion 

the formula of distance between a point and a line was used and if the distance falls below a 

predefined threshold the intrusion is detected. To further enhance the accuracy of algorithm 

the centroid of bounding box was translated to the bottom of bounding box because in most 

of the cases the line of restricted zone is located on ground surfaces and there is a chance 

that intrusion remains undetected. After intrusion is detected, the system generates a warning 

on the display. The project was initially developed on a local computer and then ported to 

Jetson Nano. The environment containing required libraries for the algorithm was created 

and maintained along with resolving dependency issues and conflicts. The algorithm was 

tested on different datasets. For fast inference, optimization was performed by using light 
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weights of object detector and by downsampling the input video feed. Finally, the 

experimental setup was established for real time intrusion detection on a real time camera 

feed. 

 

5.2. Future Recommendations 

 

There could be multiple improvements to this project which are listed below. 

• The latest version of YOLO (currently YOLOv8) could be integrated with the deep 

SORT for greater efficiency and accuracy. 

• The TensorFlow Lite or TensorFlow-TensorRT can be used for inference optimization 

on Jetson Nano. 

• Docker container can be used to avoid conflicts among packages and for the optimized 

versions of packages. 

• Batch size of YOLOv4 can be adjusted for fast inference. 

• PyTorch framework can be used instead of TensorFlow since several platforms 

recommend that PyTorch provides better performance on Jetson Nano. 

• Multi-threading can also be used for fast performance, for example detection and 

tracking could be processed on different threads. 

• A custom board could be developed instead of using Jetson Nano because there are some 

extra features which are not utilized in our project for example an extra USB port, a 

display port. This could be useful for commercialization purposes of this project. 

• A casing could be developed to hold embedded systems such as Jetson Nano or any 

customized board, camera, and power supply so that this project can be considered as a 

completely marketable product. 

• An IP camera can also be interfaced with Jetson Nano, this would enable the device to 

process input feed remotely. 

• An android/iOS app could be developed for the users of this project to monitor the 

activity remotely. 

• An indicator could also be integrated which alarms the user in case of any intrusion.  



 

45 
 
 

BIBLIOGRAPHY 

 

[1] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, "You Only Look Once: Unified, Real-Time Object Detection," 2016 IEEE 

Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 779-788, doi: 10.1109/CVPR.2016.91. 

[2] J. Redmon and A. Farhadi, "YOLO9000: Better, Faster, Stronger," 2017 IEEE Conference on Computer Vision and Pattern 

Recognition (CVPR), 2017, pp. 6517-6525, doi: 10.1109/CVPR.2017.690. 

[3] Redmon, J., & Farhadi, A. (2018). YOLOv3: An Incremental Improvement. arXiv. https://doi.org/10.48550/arXiv.1804.02767 

[4] Bochkovskiy, A., Wang, C., & Liao, H. (2020). YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv. 

https://doi.org/10.48550/arXiv.2004.10934 

[5] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C., & Berg, A. C. (2015). SSD: Single Shot MultiBox Detector. arXiv. 

https://doi.org/10.1007/978-3-319-46448-0_2 

[6] R. Girshick, J. Donahue, T. Darrell and J. Malik, "Rich Feature Hierarchies for Accurate Object Detection and Semantic 

Segmentation," 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 580-587, doi: 10.1109/CVPR.2014.81.  

[7] R. Girshick, "Fast R-CNN," 2015 IEEE International Conference on Computer Vision (ICCV), 2015, pp. 1440-1448, doi: 

10.1109/ICCV.2015.169. 

[8] S. Ren, K. He, R. Girshick and J. Sun, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks," in 

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137-1149, 1 June 2017, doi: 

10.1109/TPAMI.2016.2577031. 

[9] Dai, J., Li, Y., He, K., & Sun, J. (2016). R-FCN: Object Detection via Region-based Fully ConvolutionalNetworks. arXiv. 

https://doi.org/10.48550/arXiv.1605.06409 

[10] N. Wojke, A. Bewley and D. Paulus, "Simple online and realtime tracking with a deep association metric," 2017 IEEE International 

Conference on Image Processing (ICIP), 2017, pp. 3645-3649, doi: 10.1109/ICIP.2017.8296962. 

[11] A. Bewley, Z. Ge, L. Ott, F. Ramos and B. Upcroft, "Simple online and realtime tracking," 2016 IEEE International Conference on 

Image Processing (ICIP), 2016, pp. 3464-3468, doi: 10.1109/ICIP.2016.7533003. 

[12] H. Nam and B. Han, "Learning Multi-domain Convolutional Neural Networks for Visual Tracking," 2016 IEEE Conference on 

Computer Vision and Pattern Recognition (CVPR), 2016, pp. 4293-4302, doi: 10.1109/CVPR.2016.465. 

[13] P. Bergmann, T. Meinhardt and L. Leal-Taixé, "Tracking Without Bells and Whistles," 2019 IEEE/CVF International Conference on 

Computer Vision (ICCV), 2019, pp. 941-951, doi: 10.1109/ICCV.2019.00103. 

[14] R. Nayak, M. M. Behera, U. C. Pati and S. K. Das, "Video-based Real-time Intrusion Detection System using Deep-Learning for 

Smart City Applications," 2019 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), 

2019, pp. 1-6, doi: 10.1109/ANTS47819.2019.9117960. 

[15] S. A. Ahmed, D. P. Dogra, S. Kar and P. P. Roy, "Trajectory-Based Surveillance Analysis: A Survey," in IEEE Transactions on 

Circuits and Systems for Video Technology, vol. 29, no. 7, pp. 1985-1997, July 2019, doi: 10.1109/TCSVT.2018.2857489. 

[17] S. A. Ahmed, D. P. Dogra, S. Kar and P. P. Roy, "Trajectory-Based Surveillance Analysis: A Survey," in IEEE Transactions on 

Circuits and Systems for Video Technology, vol. 29, no. 7, pp. 1985-1997, July 2019, doi: 10.1109/TCSVT.2018.2857489. 

https://doi.org/10.48550/arXiv.1804.02767
https://doi.org/10.48550/arXiv.2004.10934
https://doi.org/10.48550/arXiv.1605.06409


 

46 
 
 

[18] J. -x. Wang, "Research and implementation of intrusion detection algorithm in video surveillance," 2016 International Conference 

on Audio, Language and Image Processing (ICALIP), 2016, pp. 345-348, doi: 10.1109/ICALIP.2016.7846572. 

[19] R. Nayak, M. M. Behera, U. C. Pati and S. K. Das, "Video-based Real-time Intrusion Detection System using Deep-Learning for 

Smart City Applications," 2019 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), 

2019, pp. 1-6, doi: 10.1109/ANTS47819.2019.9117960. 

[20] X. Zhang, Q. Yu and H. Yu, "Physics Inspired Methods for Crowd Video Surveillance and Analysis: A Survey," in IEEE Access, 

vol. 6, pp. 66816-66830, 2018, doi: 10.1109/ACCESS.2018.2878733. 

[21] J. -G. Ko and J. -H. Yoo, "Rectified Trajectory Analysis Based Abnormal Loitering Detection for Video Surveillance," 2013 1st 

International Conference on Artificial Intelligence, Modelling and Simulation, 2013, pp. 289-293, doi: 10.1109/AIMS.2013.53. 

[22] Igual, R., Medrano, C. & Plaza, I. Challenges, issues and trends in fall detection systems. BioMed Eng OnLine 12, 66 (2013). 

https://doi.org/10.1186/1475-925X-12-66 

[23] W. Hu, X. Xiao, Z. Fu, D. Xie, T. Tan, and S. Maybank, “A system for learning statistical motion patterns,” IEEE Trans. on PAMI, 

vol. 28, no. 9, pp. 1450–1464, September 2006.  

[24] T. Zhang, H. Lu, and S. Z. Li, “Learning semantic scene models by object classification and trajectory clustering,” in Proc. of IEEE 

CVPR, Miami, 2009.  

[25] N. Anjum and A. Cavallaro, “Multi-feature object trajectory clustering for video analysis,” IEEE Trans. on CSVT, vol. 18, no. 11, 

pp. 1555 – 1564, 2008.  

[26] X. Wang, K. T. Ma, G.-W. Ng, and W. E. L. Grimson, “Trajectory analysis and semantic region modeling using nonparametric 

hierarchical bayesian models,” IJCV, vol. 95, no. 3, pp. 287–312, December 2011. 

[27] W. Hu, X. Xiao, Z. Fu, D. Xie, T. Tan, and S. Maybank, “A system for learning statistical motion patterns,” IEEE Trans. on PAMI, 

vol. 28, no. 9, pp. 1450–1464, September 2006. 

[28] T. Nawaz, A. Cavallaro and B. Rinner, "Trajectory clustering for motion pattern extraction in aerial videos," 2014 IEEE 

International Conference on Image Processing (ICIP), 2014, pp. 1016-1020, doi: 10.1109/ICIP.2014.7025203. 

[29] J. Boyle, T. Nawaz and J. Ferryman, "Deep trajectory representation-based clustering for motion pattern extraction in videos," 

2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), 2017, pp. 1-6, doi: 

10.1109/AVSS.2017.8078509. 

[30] https://motchallenge.net/ dated 13.12.2022 

[31] https://ilr.law.uiowa.edu/print/volume-106-issue-2/clearing-opacity-through-machine-learning/ dated 13.12.2022 

[32] https://www.v7labs.com/blog/object-detection-guide dated 13.12.2022 dated 13.12.2022 

[33] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, "You Only Look Once: Unified, Real-Time Object Detection," 2016 IEEE 

Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 779-788, doi: 10.1109/CVPR.2016.91. dated 13.12.2022 

[34] R. Girshick, J. Donahue, T. Darrell and J. Malik, "Rich Feature Hierarchies for Accurate Object Detection and Semantic 

Segmentation," 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 580-587, doi: 

10.1109/CVPR.2014.81.dated 13.12.2022 

[35] R. Girshick, "Fast R-CNN," 2015 IEEE International Conference on Computer Vision (ICCV), 2015, pp. 1440-1448, doi: 

10.1109/ICCV.2015.169.dated 13.12.2022 

https://doi.org/10.1186/1475-925X-12-66
https://motchallenge.net/
https://ilr.law.uiowa.edu/print/volume-106-issue-2/clearing-opacity-through-machine-learning/
https://www.v7labs.com/blog/object-detection-guide%20dated%2013.12.2022


 

47 
 
 

[36] S. Ren, K. He, R. Girshick and J. Sun, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks," in 

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137-1149, 1 June 2017, doi: 

10.1109/TPAMI.2016.2577031.dated 13.12.2022 

[37] Dai, J., Li, Y., He, K., & Sun, J. (2016). R-FCN: Object Detection via Region-based Fully Convolutional Networks. arXiv. 

https://doi.org/10.48550/arXiv.1605.06409 dated 13.12.2022 

[38] H. Nam and B. Han, "Learning Multi-domain Convolutional Neural Networks for Visual Tracking," 2016 IEEE Conference on 

Computer Vision and Pattern Recognition (CVPR), 2016, pp. 4293-4302, doi: 10.1109/CVPR.2016.465. dated 13.12.2022 

[39] Wang, J.X., 2016, July. Research and implementation of intrusion detection algorithm in video surveillance. In 2016 International 

Conference on Audio, Language and Image Processing (ICALIP) (pp. 345-348). IEEE. dated 13.12.2022 

[40] R. Nayak, M. M. Behera, U. C. Pati and S. K. Das, "Video-based Real-time Intrusion Detection System using Deep-Learning for 

Smart City Applications," 2019 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), 

2019, pp. 1-6, doi: 10.1109/ANTS47819.2019.9117960. dated 13.12.2022 

[41] https://developer.nvidia.com/embedded/jetson-nano-developer-kit. Dated 14.5.2023 

[42] https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-devkit#intro Dated 24.5.2023 

[43] https://www.youtube.com/  

[44] https://www.twitter.com/  

 

 

 

 

 

 

 

 

 

 

 

 

 

https://developer.nvidia.com/embedded/jetson-nano-developer-kit.%20Dated%2014.5.2023
https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-devkit#intro
https://www.youtube.com/
https://www.twitter.com/


 

48 
 
 

APPENDIX 

TABLE VI. PACKAGES MAINTAINED IN THE ENVIRONMENT 

Package Name Version Build Channel 

openmp_mutex        4.5 2_gnu conda-forge 

absl-py 1.3.0 pyhd8ed1ab_0 conda-forge 

absl-py             1.4.0 <pip>  

anyio          3.6.2 pyhd8ed1ab_0 conda-forge 

argon2-cffi       21.3.0 pyhd8ed1ab_0 conda-forge 

argon2-cffi-bindings   21.2.0 <pip>  

argon2-cffi-bindings    21.2.0 py310h761cc84_3 conda-forge 

asttokens              2.1.0 pyhd8ed1ab_0 conda-forge 

astunparse           1.6.3 <pip>  

attrs                     22.1.0 pyh71513ae_1 conda-forge 

backcall               0.2.0 pyh9f0ad1d_0 conda-forge 

backports             1.0 py_2 conda-forge 

backports.functools_l

ru_cache  

1.6.4 pyhd8ed1ab_0 conda-forge 

beautifulsoup4          4.11.1 pyha770c72_0 conda-forge 

bleach                    5.0.1 pyhd8ed1ab_0 conda-forge 

brotli                     1.0.9 h4e544f5_8 conda-forge 

brotli-bin              1.0.9 h4e544f5_8 conda-forge 

bzip2                     1.0.8 hf897c2e_4 conda-forge 

ca-certificates      2022.9.24 h4fd8a4c_0 conda-forge 

cachetools             5.3.0 <pip>  

certifi                  2022.12.7 <pip>  

certifi                  2022.9.24 pyhd8ed1ab_0 conda-forge 

cffi                      1.15.1 py310hf0c4615_2 conda-forge 

cffi                      1.15.1 <pip>  

charset-normalizer  3.1.0 <pip>  

colorama                  0.4.6 pyhd8ed1ab_0 conda-forge 

contourpy                 1.0.6 py310hb15e014_0 conda-forge 

contourpy                 1.0.6 <pip>  

cycler                   0.11.0 pyhd8ed1ab_0 conda-forge 

debugpy               1.6.3 py310h130cc07_1 conda-forge 

debugpy                1.6.3 <pip>  
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decorator               5.1.1 pyhd8ed1ab_0 conda-forge 

defusedxml             0.7.1 pyhd8ed1ab_0 conda-forge 

easydict                 1.9 py_0 conda-forge 

entrypoints            0.4 pyhd8ed1ab_0 conda-forge 

executing                 1.2.0 pyhd8ed1ab_0 conda-forge 

flatbuffers               23.3.3 <pip>  

flit-core                 3.8.0 pyhd8ed1ab_0 conda-forge 

fonttools               4.38.0 <pip>  

fonttools                4.38.0 py310h761cc84_1 conda-forge 

freetype                  2.12.1 hbbbf32d_0 conda-forge 

gast                      0.4.0 <pip>  

google-auth         2.17.3 <pip>  

google-auth-oauthlib  1.0.0 <pip>  

google-pasta              0.2.0 <pip>  

grpcio                    1.53.0 <pip>  

h5py                      3.8.0 <pip>  

icu                       70.1 ha18d298_0 conda-forge 

idna                     3.4 pyhd8ed1ab_0 conda-forge 

importlib-metadata  5.0.0 pyha770c72_1 conda-forge 

importlib_resources  5.10.0 pyhd8ed1ab_0 conda-forge 

ipykernel                 6.14.0 <pip>  

ipykernel                 6.14.0 py310h7d5ade6_0 conda-forge 

ipython                   8.4.0 <pip>  

ipython                   8.4.0 py310h4c7bcd0_0 conda-forge 

ipython_genutils    0.2.0 py_1 conda-forge 

ipywidgets        8.0.2 pyhd8ed1ab_1 conda-forge 

jax                       0.4.8 <pip>  

jedi                      0.18.1 pyhd8ed1ab_2 conda-forge 

jinja2                   3.1.2 pyhd8ed1ab_1 conda-forge 

jpeg                     9e h9cdd2b7_2 conda-forge 

jsonschema         4.17.0 pyhd8ed1ab_0 conda-forge 

jupyter                   1.0.0 py310h4c7bcd0_7 conda-forge 

jupyter                   1.0.0 <pip>  

jupyter_client        7.4.7 pyhd8ed1ab_0 conda-forge 

jupyter_console     6.4.4 pyhd8ed1ab_0 conda-forge 

jupyter_core            5.0.0 py310h4c7bcd0_0 conda-forge 
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jupyter_core             5.0.0 <pip>  

jupyter_server           1.23.2 pyhd8ed1ab_0 conda-forge 

jupyterlab_pygments  0.2.2 pyhd8ed1ab_0 conda-forge 

jupyterlab_widgets       3.0.3 pyhd8ed1ab_0 conda-forge 

keras                2.12.0 <pip>  

kiwisolver         1.4.4 py310h9ceb0a0_1 conda-forge 

kiwisolver          1.4.4 <pip>  

lcms2                   2.14 h5246980_0 conda-forge 

ld_impl_linux-

aarch64   

2.39 ha75b1e8_0 conda-forge 

lerc                   4.0.0 h4de3ea5_0 conda-forge 

libblas               3.9.0 16_linuxaarch64_openbla

s 

conda-forge 

libbrotlicommon   1.0.9 h4e544f5_8 conda-forge 

libbrotlidec             1.0.9 h4e544f5_8 conda-forge 

libbrotlienc             1.0.9 h4e544f5_8 conda-forge 

libcblas                 3.9.0 16_linuxaarch64_openbla

s 

conda-forge 

libclang                 16.0.0 <pip>  

libdeflate              1.14 h4e544f5_0 conda-forge 

libffi                    3.4.2 h3557bc0_5 conda-forge 

libgcc-ng            12.2.0 h607ecd0_19 conda-forge 

libgfortran-ng    12.2.0 he9431aa_19 conda-forge 

libgfortran5         12.2.0 hf695500_19 conda-forge 

libgomp                 12.2.0 h607ecd0_19 conda-forge 

libiconv                  1.17 h9cdd2b7_0 conda-forge 

liblapack                3.9.0 16_linuxaarch64_openbla

s 

conda-forge 

libnsl                    2.0.0 hf897c2e_0 conda-forge 

libopenblas          0.3.21 pthreads_h6cb6f83_3 conda-forge 

libpng                    1.6.38 hf9034f9_0 conda-forge 

libsodium               1.0.18 hb9de7d4_1 conda-forge 

libsqlite                 3.40.0 hf9034f9_0 conda-forge 

libstdcxx-ng          12.2.0 hc13a102_19 conda-forge 

libtiff                  4.4.0 hacef7f3_4 conda-forge 

libuuid               2.32.1 hf897c2e_1000 conda-forge 

libwebp-base     1.2.4 h4e544f5_0 conda-forge 
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libxcb                   1.13 h3557bc0_1004 conda-forge 

libxml2                  2.10.3 h249b6dd_0 conda-forge 

libxslt                   1.1.37 h4871090_0 conda-forge 

libzlib                   1.2.13 h4e544f5_4 conda-forge 

lxml                      4.9.1 <pip>  

lxml                      4.9.1 py310h141c14b_1 conda-forge 

Markdown          3.4.3 <pip>  

MarkupSafe         2.1.1 <pip>  

markupsafe           2.1.1 py310hdc54845_2 conda-forge 

MarkupSafe           2.1.2 <pip>  

matplotlib              3.6.2 <pip>  

matplotlib              3.6.2 py310hbbe02a8_0 conda-forge 

matplotlib-base     3.6.2 py310hf92b850_0 conda-forge 

matplotlib-inline     0.1.6 pyhd8ed1ab_0 conda-forge 

mistune                  2.0.4 pyhd8ed1ab_0 conda-forge 

ml-dtypes              0.1.0 <pip>  

munkres                 1.1.4 pyh9f0ad1d_0 conda-forge 

nbclassic                 0.4.8 pyhd8ed1ab_0 conda-forge 

nbclient                 0.7.0 pyhd8ed1ab_0 conda-forge 

nbconvert             7.2.5 pyhd8ed1ab_0 conda-forge 

nbconvert-core     7.2.5 pyhd8ed1ab_0 conda-forge 

nbconvert-pandoc    7.2.5 pyhd8ed1ab_0 conda-forge 

nbformat               5.7.0 pyhd8ed1ab_0 conda-forge 

ncurses                  6.3 headf329_1 conda-forge 

nest-asyncio           1.5.6 pyhd8ed1ab_0 conda-forge 

notebook                6.5.2 pyha770c72_1 conda-forge 

notebook-shim       0.2.2 pyhd8ed1ab_0 conda-forge 

numpy                     1.23.4 <pip>  

numpy                     1.23.5 <pip>  

numpy                     1.23.4 py310he617cf3_1 conda-forge 

oauthlib                  3.2.2 <pip>  

opencv-python      4.7.0.72 <pip>  

openjpeg                  2.5.0 h9b6de37_1 conda-forge 

openssl                   3.0.7 h4e544f5_0 conda-forge 

opt-einsum             3.3.0 <pip>  

packaging                23.1 <pip>  
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packaging                21.3 pyhd8ed1ab_0 conda-forge 

pandoc                   2.19.2 h8af1aa0_1 conda-forge 

pandocfilters         1.5.0 pyhd8ed1ab_0 conda-forge 

parso                     0.8.3 pyhd8ed1ab_0 conda-forge 

pexpect                 4.8.0 pyh1a96a4e_2 conda-forge 

pickleshare            0.7.5 py_1003 conda-forge 

pillow                    9.2.0 py310hd6d4ca1_3 conda-forge 

Pillow                   9.2.0 <pip>  

pip                      22.3.1 pyhd8ed1ab_0 conda-forge 

pkgutil-resolve-name   1.3.10 pyhd8ed1ab_0 conda-forge 

platformdirs             2.5.2 pyhd8ed1ab_1 conda-forge 

prometheus_client   0.15.0 pyhd8ed1ab_0 conda-forge 

prompt-toolkit           3.0.32 pyha770c72_0 conda-forge 

prompt_toolkit          3.0.32 hd8ed1ab_0 conda-forge 

protobuf                 4.22.3 <pip>  

psutil                   5.9.4 <pip>  

psutil                   5.9.4 py310h761cc84_0 conda-forge 

pthread-stubs     0.4 hb9de7d4_1001 conda-forge 

ptyprocess            0.7.0 pyhd3deb0d_0 conda-forge 

pure_eval               0.2.2 pyhd8ed1ab_0 conda-forge 

pyasn1                    0.4.8 <pip>  

pyasn1-modules    0.2.8 <pip>  

pycparser                 2.21 pyhd8ed1ab_0 conda-forge 

pygments                  2.13.0 pyhd8ed1ab_0 conda-forge 

pyparsing                 3.0.9 pyhd8ed1ab_0 conda-forge 

pyrsistent                0.19.2 <pip>  

pyrsistent                0.19.2 py310hdc54845_0 conda-forge 

python                    3.10.6 h92ab765_0_cpython conda-forge 

python-dateutil     2.8.2 pyhd8ed1ab_0 conda-forge 

python-

fastjsonschema  

2.16.2 pyhd8ed1ab_0 conda-forge 

python_abi                3.10 2_cp310 conda-forge 

pyzmq                     24.0.1 py310h7c6bb8d_1 conda-forge 

pyzmq                     24.0.1 <pip>  

readline                  8.1.2 h38e3740_0 conda-forge 

requests                 2.28.2 <pip>  

requests-oauthlib   1.3.1 <pip>  
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rsa                      4.9 <pip>  

scipy                   1.10.1 <pip>  

send2trash         1.8.0 pyhd8ed1ab_0 conda-forge 

setuptools           65.5.1 pyhd8ed1ab_0 conda-forge 

six                      1.16.0 pyh6c4a22f_0 conda-forge 

sniffio                 1.3.0 pyhd8ed1ab_0 conda-forge 

soupsieve           2.3.2.post1 pyhd8ed1ab_0 conda-forge 

stack_data           0.6.1 pyhd8ed1ab_0 conda-forge 

tensorboard         2.12.2 <pip>  

tensorboard-data-

server  

0.7.0 <pip>  

tensorboard-plugin-

wit    

1.8.1 <pip>  

tensorflow             2.12.0 <pip>  

tensorflow-cpu-aws   2.12.0 <pip>  

tensorflow-estimator  2.12.0 <pip>  

tensorflow-io-gcs-

filesystem   

0.32.0 <pip>  

termcolor              2.2.0 <pip>  

terminado              0.15.0 <pip>  

terminado               0.15.0 py310hbbe02a8_0 conda-forge 

tinycss2                 1.2.1 pyhd8ed1ab_0 conda-forge 

tk                       8.6.12 hd8af866_0 conda-forge 

tornado             6.2 <pip>  

tornado              6.2 py310hdc54845_1 conda-forge 

tqdm                    4.64.1 pyhd8ed1ab_0 conda-forge 

traitlets                5.5.0 pyhd8ed1ab_0 conda-forge 

typing_extensions    4.5.0 <pip>  

typing_extensions     4.4.0 pyha770c72_0 conda-forge 

tzdata                   2022f h191b570_0 conda-forge 

unicodedata2       15.0.0 <pip>  

unicodedata2        15.0.0 py310h761cc84_0 conda-forge 

urllib3                  1.26.15 <pip>  

wcwidth               0.2.5 pyh9f0ad1d_2 conda-forge 

webencodings      0.5.1 py_1 conda-forge 

websocket-client   1.4.2 pyhd8ed1ab_0 conda-forge 

Werkzeug                 2.2.3 <pip>  
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wheel                    0.38.4 pyhd8ed1ab_0 conda-forge 

widgetsnbextension   4.0.3 pyhd8ed1ab_0 conda-forge 

wrapt                    1.14.1 <pip>  

xorg-libxau           1.0.9 h3557bc0_0 conda-forge 

xorg-libxdmcp       1.1.3 h3557bc0_0 conda-forge 

xz                       5.2.6 h9cdd2b7_0 conda-forge 

zeromq              4.3.4 h01db608_1 conda-forge 

zipp                    3.10.0 pyhd8ed1ab_0 conda-forge 

zstd                    1.5.2 hc1e27d5_4 conda-forge 

 


