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Abstract

In this research study, we use the Lie symmetry analysis and the optimal systems of

subalgebras that underlie it to study the invariant solutions to the nonlinear hyperbolic

heat equation. Optimal systems of two specific cases for the equation are obtained.

We apply an invariance method to determine the optimal set of non-similar symmetry

generators for the nonlinear hyperbolic heat equation and present the results in a con-

venient tree leaf diagram. Complete symmetry reductions and the invariant solutions

corresponding to each case are computed. Subsequently, a thorough analysis is pro-

vided, leading to a graphical representation of the solutions of non linear hyperbolic

heat equation.
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Chapter 1

Introduction

Differential equations have a significant role in the framework of our universe because

they demonstrate connections between mathematical ideas and complex physical pro-

cesses. As we can see from the past several centuries, differential equations have made

it possible for us to comprehend the motion of celestial or heavenly bodies, model fluid

flow, understand electrical circuit behavior, and disclose the mysteries of quantum me-

chanics etc. Differential equations have emerged as essential tools for explaining the

relationships between quantities and their rates of change from the conceptual under-

pinnings of calculus. Numerous interconnected elements in our cosmos demonstrate

ongoing progression. Differential equations can be classified into two categories: One

type of differential equations is called ordinary differential equations (ODE), which

only has one independent variable and their derivatives with respect to the indepen-

dent variable. The other type of differential equations is called partial differential

equations (PDE), which includes an unknown function of two or more variables and its

partial derivatives with respect to those variables. Furthermore, both of these types

can be categorized into two distinct forms: a linear differential equation, in which the

unknown function and its derivatives only appear with a power of one and are com-

bined linearly, without multiplication or raising to a power; and a nonlinear differential

equation, in which the unknown function and its derivatives appear in any nonlinear

form or be multiplied together, raised to a power, or in any other nonlinear manner.

PDEs have their origins in the mathematical modeling of physical processes. Solutions

to a broad spectrum of physical, technical, and scientific events are described in terms

of PDEs. PDEs are crucial for comprehending and forecasting the behavior of complex
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systems because they emerge often in several fields, including physics, engineering,

economics, biology, and computer science.

In the 17th and 18th centuries, physicists and mathematicians like Isaac Newton,

Joseph Fourier, and Jean-Baptiste le Rond d’Alembert produced the first substantial

contributions in the field of DEs. Scientists from the 18th century who introduced

the PDEs were Euler, Lagrange, and Laplace [1]. However, it was not until the 19th

century that it truly gained popularity, mostly as a result of Reimann’s influence on

certain fields of mathematics [1]. The study of PDEs has benefited significantly from

the contributions of James Clerk Maxwell, a prominent physicist and mathematician

of the 19th century. Maxwell’s equations [1] briefly capture the essence of the entire

theory of electricity and magnetism through four fundamental differential equations.

1.1 Symmetry

One of the useful techniques for solving DEs is symmetry method. Symmetry can be

thought of as a transformation that preserves the properties of a given structure when

applied to it. Scientists use symmetry as a tool for understanding current problems.

The classical symmetry method is used to determine exact solutions to differential

equations, sometimes referred to as group analysis.

A variety of methods, including the separation of variables, the superposition prin-

ciple, the Laplace transform, the Fourier transform, etc, can be used to solve linear

partial differential equations. Non-linear partial differential equations, however, are dif-

ficult to solve analytically. Solving non-linear PDEs analytically is challenging. These

types of equations often show up in engineering and science problems, and they are

generally more complex and harder to understand compared to linear PDEs. To be

able to study and solve PDEs, symmetry approaches are of the utmost importance

because they simplify equations by reducing variables, recognizing patterns, applying

group transformations (e.g., Lie groups), derive accurate solutions, and identify con-

servation laws. A method based on symmetry is now regarded as one of the finest

ways to solve PDEs. Due to the inherent complexity of nonlinear DEs, a complete

classification of such equations is unattainable. Symmetry methods for the solution of

DEs, whether linear or nonlinear, may be considered as valuable tools, providing an
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adaptable approach for analyzing and solving DEs [2–14]

The theory of symmetry methods was first established by a Norwegian mathemati-

cian, Marius Sophus Lie. He worked in the area of continuous symmetries, which he

put to use in the study of DEs and geometry and was inspired by Galois’ theory.

Evariste Galois (1811-1832) made fundamental mathematical contributions, especially

in Integrating the theory of equations into the field of symmetry. Galois developed

the concept of Galois groups, which provide a thorough understanding of the algebraic

equations’ symmetries. Evariste Galois used the theoretical method of groups to solve

algebraic problems such as quadratic, cubic, and quartic during in the 19th century.

Based on the concept of comparison, Lie proposed the idea that infinite groups, which

consistently depend on at least one real or complex variable, are likely to play a cru-

cial role in addressing ODEs and PDEs, similar to how finite groups are essential for

determining the solvability of finite-degree polynomial equations [10, 12, 15, 16].

The significance of continuous symmetries in the study of DEs was recognized by

Lie. Lie groups are mathematical structures that represent the idea of continuous

symmetry, were also introduced by him. The transformations that establish invariance

of a specific differential equation can be understood within the approach of Lie groups.

The modern concept of transformation groups is based on his work. Lie formulated the

notion of Lie algebra, serving as a linear approximation of Lie group. The examination

of infinitesimal symmetries in DEs can be carried out via the analysis of Lie algebras.

Local symmetries and conservation laws of a differential equation can be determined by

employing the Lie algebra connected to a Lie group. Powerful techniques for analyzing

and solving differential equations have been made possible due to Lie’s work on Lie

algebras. To construct the symmetries of DEs, Lie developed the basic concepts and

techniques that are necessary for transformation group theory. He developed the theory

of infinitesimal transformations, which serves as a tool to derive Lie’s symmetries. The

study of differential equations and modern group theory are both based on Lie’s work

on transformation groups.

Symmetries can be categorized mainly into two categories: discrete symmetries and

continuous or Lie point symmetries. Discrete symmetries, as the term suggests, are

non-continuous symmetries that fall outside the realm of Lie groups. These symmetries

are characterized by finite or countable collections of distinct transformations. Unlike
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continuous symmetries, which include smooth and continuous transformations, discrete

symmetries involve well-defined transformations that result in identical or similar con-

figurations of an object or system. Discrete symmetries of differential conditions have

certain significant applications, which are discussed in [14, 17–19].

It is indeed important to have efficient methods for determining the discrete sym-

metries, especially when dealing with equations that possess a finite-dimensional Lie

algebra of infinitesimal generators, which corresponds to the Lie group of point sym-

metries. Peter E. Hydon is a renowned mathematician who has made significant con-

tributions to the field of symmetry methods for differential equations. His work has

focused on developing systematic approaches for finding and analyzing symmetries of

differential equations, including discrete symmetries [14, 17, 18, 20, 21]. The founda-

tion of his strategy is the notion that any point symmetry generates an automorphism

for the Lie algebra of the Lie point symmetry generators.

1.2 Optimal Systems

In the late 1950s, a renowned Soviet scientist, Lev Vasilyevich Ovsyannikov (1919–2014),

revived the application of Lie group theory [2], [6]. Ovsyannikov’s work was primarily

concerned with applying group-theoretical methods to the study of differential equa-

tions. Lie’s work has been firmly established, involving the exploration of various topics

and ongoing research since the rebirth of applying Lie theory to DEs. These topics

include the linearization of ordinary and partial differential equations, generating new

solutions based on existing ones, the development of an equivalence group, the reduc-

tion of PDEs through similarity or invariant solutions, consideration of approximate

symmetries, and investigation of classification problems related to groups involving the

development of generalized local and nonlocal symmetries. Significant progress has

been made by identifying symmetries in stochastic differential equations (SDEs) [22],

as well as in the context of conservation laws, integro-differential equations, difference

equations, algebraic equations, geodesic equations, functional differential equations,

and other related areas [23]. Employing Lie group analysis, Ovsyannikov [2] examine

the realm of differential equations in 1958. His outstanding research and theory are

based on the concept of continuous transformation groups. These classifications offer
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a unique examination of solutions for particular differential equations. He presented

partially invariant and invariant solutions, along with an efficient algorithm for their

development.

Solutions invariant influenced by a subgroup within a symmetry group are referred

to as invariant solutions. Symmetries are employed to construct these solutions, aiding

in the simplification of differential equations or systems of differential equations. In the

context of partial differential equations, simplification can occur in two ways: either in

relation to the order of the partial differential equation or system of partial differential

equations, as well as the count of independent variables.

One of Ovsyannikov’s major contributions was the formulation of the notion of

an optimal system. He created a general framework to construct optimal systems of

differential equations that capture the symmetries in a given problem. Ovsyannikov’s

method allowed for the systematic reduction of differential equation complexity by

identifying transformations that maintained their form. The optimal system is de-

termined by systematically constructing non-equivalent classes of invariant solutions

[2, 4, 6, 9, 10]. It’s essential to derive a single invariant solution from each category;

subsequently, by using symmetries, the entire class can be constructed. This approach

reduces the effort needed to acquire invariant solutions.

Ovsyannikov [6] employed the concept of optimal systems of subalgebras within a

specific Lie algebra to elucidate fundamentally distinct invariant solutions. This con-

cept proves valuable when addressing mathematical models. Ovsyannikov [6] explored

the similarity between two subalgebras, investigating whether a symmetry group trans-

formation could align both subalgebras in the same class. If such alignment occurs,

the same transformation connects the associated invariant solutions. Consequently, to

attain an optimal system, one must construct conjugacy classes for these subalgebras.

A considerable body of literature is dedicated to group-invariant solutions and optimal

systems [24–26].

1.3 Background of Hyperbolic Heat Equation

Heat flows through a material due to a temperature difference when it is heated un-

evenly because of the varying temperature within the material. The parabolic heat
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conduction equation, which is the classical model of heat conduction, has been widely

used to study this heat conduction process. Furthermore, the second law of thermody-

namics is incompatible with the parabolic model. The telegrapher’s equation, which

represents a hyperbolic model of heat conduction

wtt + wt = (K(w)wu)u, K(w) ̸= const,

is considered more physically accurate because it predicts the finite speed at which

heat diffuses through a material. The damped wave equation, which serves as a model

for hyperbolic heat conduction, was initially introduced by Carlo Cattaneo using ki-

netic theory. It is also possible to obtain this equation through alternative physical

principles, such as the second law of thermodynamics. When the thermal diffusivity

remains constant, the speed at which temperature disturbances propagate is
√
K which

addresses the unphysical infinite propagation speed.
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Chapter 2

Preliminaries of Lie Point
Symmetries of Differential
Equations

This section aims to provide a comprehensive ellaboration of fundamental concepts

associated to Lie point symmetries of DEs. We intend to gain a thorough insight of

these notions and their significance in the field of mathematical analysis by studying

the available literature. The fundamental definitions and notations are introduced.

Furthermore, criteria that serve as guidelines for establishing the Lie point symmetries

of DEs are presented. Relevant references are provided throughout this chapter for

more detailed proofs and insights. All of the theorems are stated without proof. Each

theorem and its significance will be explained concisely.

2.1 One-Parameter Lie Group of Point Transfor-

mation

This section delves into the theory of one-parameter Lie groups of point transforma-

tions. One-parameter Lie groups are important in understanding the transformations

that preserve the form and behavior of differential equations. A point transformation

refers to a change of variables that maps one set of independent and dependent variables

to another set in the context of DEs, it is defined as the transformation of independent

and dependent variables, that is t and w respectively. A point transformation maps
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points (t, w) into points (t̃, w̃) [7]

t̃ = t̃(t, w),

w̃ = w̃(t, w),
(2.1)

where t̃ and w̃ are continuous functions. Furthermore, in some cases the transformation

may depend on at least one continuous parameter say ε, that is

t̃ = t̃(t, w, ε),

w̃ = w̃(t, w, ε),
(2.2)

where t̃ and w̃ are infinitely differentiable with respect to (t and w).

This section provides the basic definitions required for the point transformations

within the one-parameter Lie group [10].

Definition 2.1.1. If the group operations

f : G× G → G, f(p, q) = p · q, p, q ∈ G,

and

f̃ : G → G, f̃(p) = p−1, p ∈ G,

of a group G are r-parameter Lie groups, the group is described as an r-parameter Lie

group. The smooth maps between the manifolds act on the r-dimensional C∞-manifold.

Definition 2.1.2. Let M be a C∞-manifold, and there is an r-parameter Lie group G,

in the presence of a smooth map

φ : G×M → M, φ(p,m) = pm,

then the Lie group G is stated as the Lie group of transformation satisfying the following

two conditions:

1. (p1 · p2)m = p1(p2m), ∀ p1, p2 ∈ G and m ∈ M.

2. Let I be the identity element of G then Im=m ∀ m ∈ M.

8



Now if

υ̃ = φ(υ, ε), (2.3)

and

˜̃υ = φ(φ(υ, ε), ν) = φ(υ̃, ν), (2.4)

where υ= (υ1, υ2, ..., υn), υ̃= (υ̃1, υ̃2, ..., υ̃n), φ= (φ1, φ2, ..., φn) and Φ(ε, ν) be the law

of composition of parameters ε, ν ∈ V, if the following conditions hold [27], in region

D, a one-parameter group of transformations is established.

1. V constitutes a group under the law of composition Φ.

2. For each υ in the region D, we have υ̃ = υ, for ε = ε0, which corresponds to an

identity element.

3. For υ̃ ∈ D the transformation in D for each ε ∈ V must be injective.

4. We can deduce from Eqs. (2.3) and (2.4), that

˜̃υ = φ(υ,Φ(ε, ν)), (2.5)

where υ̃, ˜̃υ ∈ D.

Definition 2.1.3. Suppose G be a Lie group and M be the C∞-manifold, where Φ(ε, ν)

is a composition function. Then a Lie group is said to be a one-parameter Lie group

of transformation if it meets the subsequent criteria

i. For the parameter ε= 0, it relates to the identity transformation, and for ε= -ε or

ε−1, it corresponds to the inverse transformation group. Here, ε is a continuous

parameter with ε ∈ V ⊂ R.

ii. Let x and u be any points in the region D ⊂ R, then the functions x̃ and ũ are

continuously differentiable with respect to x & u. Moreover, these functions are

analytic in ε ⊂ V.

iii. The composition function Φ(ε, ν) is an analytic function with respect to both

parameters ε and ν, where ε, ν ∈ V.
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2.2 Infinitesimal Transformation and the Symme-

try Generators

Infinitesimal transformations and their generators are essential mathematical concepts

used to describe infinitesimally small changes in dynamic systems. We now define the

infinitesimal transformations and their corresponding generators. Consider Eq. (2.3)

υ̃ = φ(υ, ε),

then Taylor expansion at ε= 0, gives us

υ̃ = υ + ε
∂

∂ε
φ(υ, ε)

∣∣∣∣∣
ε=0

+
ε2

2

∂2

∂ε2
φ(υ, ε)

∣∣∣∣∣
ε=0

+O(ε3).

Now we will consider

∂

∂ε
φ(υ, ε)

∣∣∣∣∣
ε=0

= α(υ). (2.6)

Subsequently, the Lie group’s infinitesimal transformation can be expressed as

υ̃ = υ + εα (υ) . (2.7)

The application of Eq. (2.6) forms the basis for Lie’s first fundamental theorem,

offering a method to re-parameterize a one-parameter group of transformations with a

well-defined structure.

Theorem 2.2.1. To establish the equivalence between the Lie group of transformations

(2.3) and the solution of an initial value problem for the autonomous system of first-

order ODEs, a parametrization function ζ(ε) is presented, as

∂υ̃

∂ζ
= α (υ) , (2.8)

with the given condition that υ̃ = υ at ζ = 0 [16]. Specifically,

ζ (ε) =

∫ ε

0

Λ
(
ε
′
)
dε

′
, (2.9)

where

Λ (ε) =
∂

∂j
Φ (i, j)

∣∣∣∣
(i,j)=(ε,ε′)

, Λ(0) = 1. (2.10)
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In the following definition, we incorporate a representation of a one-parameter Lie

group of transformations in the form of a group generator [10, 16].

Definition 2.2.1. The infinitesimal generator for a one-parameter Lie group of trans-

formations can be defined by a linear differential operator

Γ = α (υ) .∇ =
n∑

k=1

αk (υ)
∂

∂υk
, (2.11)

where α (υ) = (α1(υ), α2(υ), ..., αn(υ)) and ∇ is the gradient operator.

For any given differential equation

F (t) = F (t1, t2, ..., tn) , (2.12)

we can express

ΓF (t) = α(υ).∇F (t) =
n∑

k=1

αk(υ).
∂F (t)

∂υk
. (2.13)

Theorem 2.2.2. Let us define the linear operator Γ using the expression in Eq. (2.13)

and consider Eq. (2.3) given by

υ̃ = φ(υ, ε),

then the associated generators for the one-parameter Lie group of transformations are

υ̃ = φ (υ, ε) = eεΓυ = υ + εΓυ +
ε2

2
Γ2υ +O

(
ε3
)
,

=
∞∑
n=0

εn

n!
Γnυ,

and Γn = ΓΓn−1 [10, 16].

Furthermore, considering a one-parameter Lie group of transformation described

by Eq. (2.3) and its corresponding infinitesimal generator Eq. (2.13), the extension of

Theorem 2.2.2 for any analytic function V is provided by the generalization [10, 16],

which can be expressed as

V (υ̃) = V
(
eεΓυ

)
= eεΓV (υ) .
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2.3 Prolongation of Lie Group of Point Transfor-

mations and Their Symmetry Generators

The expression of Lie’s first fundamental theorem in Eq. (2.6) for an ODE involving

one dependent and one independent variable is expressed as

α(t, w) =
∂t̃

∂ε
(t, w, ε)

∣∣∣∣
ε=0

, β(t, w) =
∂w̃

∂ε
(t, w, ε)

∣∣∣∣
ε=0

, (2.14)

respectively. Now if we intend to employ Eq. (2.2) to an ordinary differential equation

[7]

F
(
t, w, ẇ, ẅ, ..., w(n)

)
= 0, (2.15)

where dot represents derivative with respect to t, then the initial step involves extending

the point transformation to include the mth order derivative of w(n), n = 1, 2, ...,m.

Consequently, through a recursive relation, we obtain

w̃(n) ≡ Dtw̃
(n−1)

Dtt̃
, (2.16)

using w̃(0) ≡ w̃, and Dt representing the total derivative with respect to t provided by

Dt =
∂

∂t
+ ẇ

∂

∂w
+ ẅ

∂

∂ẇ
+ · · · .

As a result, we can express it as follows

t̃ = t+ εα (t, w) + · · · = t+ εΓt+ · · · , (2.17)

w̃ = w + εβ(t, w) + · · · = w + εΓw + · · · , (2.18)˜̇w = ẇ + εβ̇(t, w) + · · · = ẇ + εΓẇ + · · · , (2.19)

...

w̃(m) = w(m) + εβ(m)(t, w) + · · · = w(m) + εΓw(m) + · · · , (2.20)

where β, β̇, β̈,· · · , β(m) are defined by

β =
dw̃

dε
, β̇ =

d ˜̇w
dε

, β̈ =
d ˜̈w
dε

, · · · , β(m) =
dw̃m

dε
, at ε = 0. (2.21)
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Now, upon comparing Eqs. (2.16) and (2.20), we can deduce that

w̃(m) = w(m) + ε
(
Dtβ

m−1 − w(m)Dtα
)
, (2.22)

with β(0) ≡ β.

In addition, the computation of β, β̇, β̈, and other successive derivatives up to β(m)

can be achieved by

β(s) = Dtβ
s−1 − w(s)Dtα. (2.23)

Likewise, the extension of generator Γ can be obtained using Eqs. (2.17)-(2.20)

Γ(s) = α
∂

∂t
+ β

∂

∂w
+ β̇

∂

∂ẇ
+ · · ·+ β(s) ∂

∂w(s)
. (2.24)

2.4 Multi-Parameter Lie Group of Point Transfor-

mation and Their Infinitesimal Symmetry Gen-

erators

Lie groups of point transformations with multiple-parameters involve transformations

along with more than one parameter, and their infinitesimal generators are vector

fields representing small changes induced by each parameter. This section focuses

on extending the notion of one-parameter Lie groups of point transformations to Lie

groups with r-parameters [10, 16]. Now considering the transformation

υ̃ = φ(υ, ε),

where υ̃ = (υ̃1, υ̃2, · · · , υ̃n), and υ = (υ1, υ2, · · · , υn) belong to the region D ⊂ Rn with

φ = (φ1, φ2, · · · , φn). It relies on more then one parameter, i.e., r-parameters εN , that

is ε = (ε1, ε2, · · · , εr) ∈ V ⊂ Rn satisfying all the properties of a group. The group

operation is defined as Φ (ε, ν). The Lie group of transformation, which depends on

the r-parameter is given by

υ̃ = φ (υ, ε) =
r∏

N=1

exp (εNΓN)υ. (2.25)
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Additionally, the corresponding general infinitesimal transformation [7] for a system

with one dependent and one independent variable, as described in Eq. (2.3) can be

stated in the form

ΓN = αN(t, w)
∂

∂t
+ βN(t, w)

∂

∂w
, (2.26)

with

αN(t, w) =
∂t̃

∂εN

∣∣∣∣
ε=0

, and βN(t, w) =
∂w̃

∂εN

∣∣∣∣
ε=0

. (2.27)

In case of r-parameter group, the vector α (υ) takes the form of a matrix αNj(Γ), where

ε = 1, 2, · · · , r and j = 1, 2, · · · , n. Then, the associated generator ΓN in accordance

with the parameter εN of the r-parameter Lie group of transformation is defined as

ΓN =
n∑

j=1

αNj(υ)
∂

∂υj
, N = 1, 2, · · · , r. (2.28)

2.5 Lie Algebra of Infinitesimal Symmetry Gener-

ators

The Lie algebra of infinitesimal generators is a crucial concept linking continuous group

elements and the algebraic structure of Lie groups. This section begins by presenting

the definition of a Lie algebra, which serves as an algebraic structure [10].

Definition 2.5.1. Consider a vector space K over a field F, where a commutator

product [ , ] is defined. In such case, K is known as a Lie algebra if it meets the

following conditions.

i. [Γu,Γv] ∈ K, ∀ Γu,Γv ∈ K.

ii. [Γu,Γv] = − [Γv,Γu], ∀ Γu,Γv ∈ K.

iii. [Γu, a1Γv + a2Γs] = [Γu, a1Γv] + [Γu, a2Γs], ∀ Γu,Γv,Γs ∈ K and for all a1, a2

∈ F.

iv. [Γu, [Γv,Γs]] + [Γs, [Γu,Γv]] + [Γv, [Γs,Γu]] = 0, ∀ Γu,Γv,Γs ∈ K.
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As a consequence of the second property it follows that [Γu,Γv] = 0, as a result of

this property, it yields the following definition of an abelian Lie algebra [7].

Definition 2.5.2. A Lie algebra K is known as abelian if and only if for all Γu,Γv ∈ K,

the following condition holds

[Γu,Γv] = 0.

The definition of commutators for two generators, Γu and Γv is as follows

[Γu,Γv] = ΓuΓv − ΓvΓu. (2.29)

As Eq. (2.29) satisfies all the properties of a Lie algebra, it implies that the set of

all {Γu}, combined with the commutator, forms a Lie algebra within the group. The

subsequent two theorems illustrate how a Lie algebra can be represented as a linear

combination of r basic generators, commonly referred to as Lie’s second and third

fundamental theorems [16], respectively.

Theorem 2.5.1. Consider Γu and Γv as any two infinitesimal generators within an r-

parameter Lie group of point transformations. In such a case, the commutator [Γu,Γv]

is again an infinitesimal generator

[Γu,Γv] =
r∑

e=1

Ce
uvΓe, (2.30)

where the coefficients Ce
uv, u,v=1,2,· · · ,r are called structure constants.

Theorem 2.5.2. According to Eq. (2.30), the structure constants demonstrate follow-

ing two key properties.

i. The lower two indices of the structure constants exhibit antisymmetry.

Ce
uv = −Ce

vu.

ii. The structure constants are required to adhere to Lie’s identity, that is

r∑
f=1

[
Cf

uvC
h
fg + Cf

vgC
h
fu + Cf

guC
h
fv

]
= 0.
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2.6 Symmetry Condition for Ordinary Differential

Equations

Having laid down the foundational mathematical concepts, we are now in a position to

present a fundamental theorem that allows us to ascertain the Lie point symmetries of

a DE.

Theorem 2.6.1. An ordinary differential equation

F
(
t, w, ẇ, ẅ, · · · , w(n)

)
= 0.

A diffeomorphism that transforms the solution set of the ODE into itself is a symmetry.

Any diffeomorphism,

Γ : (t, w) → (t̃, w̃),

connects smooth planar curves to one another. To address the influence of Lie sym-

metries on nth-order derivatives, we introduce the extended infinitesimal generator.

Γ(n) = α∂t + β∂w + β(1)∂ẇ + · · ·+ β(n)∂w(n) .

An ODE possesses a group of symmetries represented by generator Γ if and only if

Γ(n)F
∣∣
F=0

= 0, (2.31)

holds [7].

2.7 Lie Point Symmetries of Partial Differential Equa-

tions

Taking into account the system of non-linear PDEs of pth order, involving both R-

independent and S-dependent variables as

Fm

(
t,w,w(1),w(2), · · · ,w(p)

)
= 0, m = 1, 2, 3, · · · , l, (2.32)

where t =
(
t1, t2, · · · , tR

)
∈ T ⊂ RR and w =

(
w1, w2, · · · , wS

)
∈ W ⊂ RS are the

associated R-independent and S-dependent variables [7]. Furthermore, wp signifies all
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the nth order partial derivatives of w with respect to t with the corresponding coordi-

nate for w(n) is ∂pw
(∂tr1∂tr2 ···∂trn ) given by wp

r1r2···rj , r = 1, 2, 3, · · · , R for n = 1, 2, 3, · · · , S.
Considering the coordinates t,w1,w2, · · · ,wp, Eq. (2.32) can be expressed as an al-

gebraic equation that represents a hypersurface in (t,w,w1,w2, · · · ,wp)-space.

The point transformation represented by Eq. (2.1) is applied to the independent vari-

ables t̃r, r = 1, 2, 3, · · · , R and the dependent variables w̃s, s = 1, 2, 3, · · · , S of the pth

order system of PDE is

t̃r = t̃r
(
tf , wg

)
, w̃s = w̃s

(
tf , wg

)
, (2.33)

where f, r = 1, 2, 3, · · · , R, and g, s = 1, 2, 3, · · · , S. Similarly, for any specific param-

eter denoted as ε ∈ V ⊂ R, Eq. (2.33) can be expressed as follows

t̃r = t̃r
(
tf , wg; ε

)
, w̃s = w̃s (tr, wg; ε) . (2.34)

Then the infinitesimal generator of the one-parameter Lie group of point transforma-

tions can be described as follows

Γ = αr
(
tf , wg

) ∂

∂tr
+ βs

(
tf , wg

) ∂

∂ws
. (2.35)

The corresponding infinitesimal transformation can be described as

αr ≡ ∂t̃r

∂ε

∣∣∣∣
ε=0

, βs ≡ ∂w̃s

∂ε

∣∣∣∣
ε=0

. (2.36)

Furthermore, the extension of the infinitesimal generator, as presented in Eq. (2.35)

for arbitrary order derivatives [7], can be expressed as

Γ = αr ∂

∂tr
+ βs ∂

∂ws
+ βs

r

∂

∂ws
r

+ βs
rc

∂

∂ws
rc

+ βs
rcd

∂

∂ws
rcd

+ · · · , (2.37)

where

βs
r =

Dβs

Dtr
− ws

f

Dαf

Dtr
, (2.38)

βs
rc =

Dβs
r

Dtc
− ws

rf

Dαf

Dtc
, (2.39)

with the total derivative D
Dtr

can be define as

D

Dtr
=

∂

∂tr
+ ws

r

∂

∂ws
+ ws

rc

∂

∂ws
c

+ · · · . (2.40)

The subsequent theorem represents the symmetry condition applicable to a partial

differential equation [7].
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Theorem 2.7.1. Let

Γ(P ) = αr(t, w)
∂

∂tr
+ β(t, w)

∂

∂w
+ β(1)

r

(
t, w, w(1)

) ∂

∂w1
+ · · ·

· · ·+ β(P )
r1,r2,··· ,rj

(
t, w, w(1), w(2), · · · , w(P )

) ∂

∂wr1,r2,··· ,rn
, (2.41)

be the P th order prolonged infinitesimal generator Eq. (2.35) of the corresponding one-

parameter Lie group of transformation

t̃ = T (t, w; ε) , (2.42)

w̃ = W (t, w; ε) , (2.43)

with

β1
r = Drβ − (Drαr)wn, r = 1, 2, 3, · · · , R, (2.44)

βn
r1,r2,··· ,rP = DrPβ

(P−1)
r1,r2,··· ,rP−1

− (DrPαn)wr1,r2,··· ,r(P−1)n, (2.45)

where rn = 1, 2, 3, · · · , R for n = 1, 2, 3, · · · , P with P = 1, 2, 3, · · · . Then a partial

differential Eq. (2.32) admits one-parameter Lie group of transformations Eqs. (2.41)-

(2.43) iff

Γ(P )F
(
t, w, w(1), w(2), · · · , w(P )

) ∣∣
F=0

= 0, (2.46)

holds.

Specifically, when dealing with two independent variables (t, y) and one dependent

variable w, the expression for Eq. (2.41) with P = 2 can be represented as

Γ(2) = α(t, y, w)
∂

∂t
+ ζ(t, y, w)

∂

∂y
+ β(t, y, w)

∂

∂w
+ βt (t, y, w, wt)

∂

∂wt

+ βy (t, y, w, wt, wy)
∂

∂wy

+ βtt (t, y, w, wt, wy, wtt)
∂

∂wtt

+ βty (t, y, w, wt, wy, wtt, wty)
∂

∂wty

+ βyy (t, y, w, wt, wy, wtt, wty, wyy)
∂

∂wyy

.
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Eqs. (2.44) and (2.45) give

βt = Dt (β)− wyDt(ζ)− wtDt (α) ,

= βt + (βw − αt)wt − ζtwy − αw (wt)
2 − ζwwywt. (2.47)

βy = Dy (β)− wyDy(ζ)− wyDy (α) ,

= βy + (βw − ζy)wy − αywt − ζw (wy)
2 − αwwywt. (2.48)

βtt = Dt (βt)− wytDt(ζ)− wttDt (α) ,

= βtt + (2βtw − αtt)wt − ζttwy + (βw − 2αt)wtt − 2ζtwyt

+ (βww − 2αtw) (wt)
2 − 2ζtwwywt − αww (wt)

3 − ζwwwy (wt)
2

− 3αwwtwtt − ζwwywtt − 2ζwwtwyt. (2.49)

βty = Dt (βy)− wyyDt(ζ)− wytDt (α) ,

= βyt + (2βyw − αyt)wt + (βwt − ζyt)wy + (βww − ζyw − αwt)wywt

+ (βw − ζy − αt)wyt − ζwt (wy)
2 − ζwwwt (wy)

2 − αwwywtt − αyw (wt)
2

− αywtt − ζtwyy − αwwwy (wt)
2 − 2αwwtwyt − ζwwtwty − 2ζwwywty. (2.50)

βyy = Dy (βy)− wyyDy(ζ)− wytDy (α) ,

= βyy + (2βyw − ζyy)wy + (βww − 2ζyw) (wy)
2 − ζww (wy)

3 − 3ζwwywyy

− αyywt − 2αwywywt − 2αywyt − αwwwt (wy)
2 − αwwtwyy − 2αwwywty. (2.51)

Where

Dt =
∂

∂t
+ wt

∂

∂w
+ wty

∂

∂wy

+ wtt
∂

∂wt

+ · · · ,

and,

Dy =
∂

∂y
+ wy

∂

∂w
+ wyt

∂

∂wt

+ wyy
∂

∂wy

+ · · · .

In general, when considering one independent variable t and one dependent vari-

able w, the symmetry condition described in Eq. (2.46) results in a non-linear partial
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differential equation involving the functions (α(t, w), β(t, w)). By examining the coef-

ficients of the derivatives of w, this equation gives rise to a system of PDEs. For every

infinitesimal generator, a solution to the system of PDEs can be obtained by expressing

it in terms of α and β. This process results in the formation of a Lie algebra.

Now, let’s provide an illustration to understand the process.

Example 2.7.1. Consider the Pavlov equation [28]

wvv = wtu + wvwuu − wuwuv, (2.52)

Pavlov equation has 3 independent variables and 1 dependent variable, where w(u, v, t)

represents the magnitude of the relevant wave, which varies based on the spatial factors

u, v and time t.

The Pavlov equation is nonlinear PDE, where αu, αv, αt and β are the infinitesimals.

Hence the associated vector field is

Γ = αu ∂

∂u
+ αv ∂

∂v
+ αt ∂

∂t
+ β

∂

∂w
.

Now, the first prolongation is

Γ1 = Γ + βu ∂

∂wu

+ βv ∂

∂wv

+ βt ∂

∂wt

.

As Eq. (2.52) is a second-order equation, we use the following second-order prolonga-

tion which is required for this infinitesimal operators

Γ2 = Γ + βu ∂

∂wu

+ βv ∂

∂wv

+ βt ∂

∂wt

+ βuu ∂

∂wuu

+ βut ∂

∂wut

+ βuv ∂

∂wuv

+ βvv ∂

∂wvv

with the coefficients given in Eqs. (2.47)-(2.52). To employ the condition of Lie point

symmetry for partial differential equations, let us take into account the following

P = wvv − wtu − wvwuu + wuwuv (2.53)

then by Theorem (2.7.1), we have

Γ2P
∣∣
P=0

= 0. (2.54)
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Eq. (2.54) yields

βvv = βtu + βvwuu + wvβ
uu − βuwuv − wuβ

uv. (2.55)

With coefficients

βu = Du (β)− wuDu(ξ
u)− wvDu (ξ

v)− wtDu

(
αt
)
,

βv = Dv (β)− wuDv(ξ
u)− wvDv (ξ

v)− wtDv

(
αt
)
,

βuu = Du (β
u)− wuuDu(ξ

u)− wuvDu (ξ
v)− wutDu

(
αt
)
,

βuv = Dv (β
u)− wuuDv(ξ

u)− wuvDv (ξ
v)− wutDv

(
αt
)
,

βut = Dt (β
u)− wuuDt(ξ

u)− wuvDt (ξ
v)− wutDt

(
αt
)
.

Now, substituting the respective values of βvv, βtu, βv, βuu, βu and βuv and comparing

the powers of dependent variable w and its partial derivatives, we obtain the following

determining equations

βtu = αv
tt, (2.56)

βuu = 0, (2.57)

βuv = αt
tt, (2.58)

βvv = αv
tt, (2.59)

αv
tv = αt

tt, (2.60)

αv
vv = 0, (2.61)

βw = −2αt
t + 3αv

v, (2.62)

αt
w = 0, (2.63)

αt
u = 0, (2.64)

αt
v = 0, (2.65)

αu
t = βv, (2.66)

αu
w = 0, (2.67)

αu
u = −αt

t + 2αv
v, (2.68)

αu
v =

1

2
βu +

1

2
αv
t , (2.69)
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αv
w = 0, (2.70)

αv
u = 0. (2.71)

As a result, the solutions to the aforementioned equations lead to the following in-

finitesimals:

αu = (ġ1(t) + 2c1)u+
1

2
g̈1(t)v

2 + (ġ2(t) +
1

2
c2)v + g3(t) + c3, (2.72)

αv = (ġ1(t) + c1)v + g2(t), (2.73)

αt = g1(t), (2.74)

β = (ġ1(t) + 3c1)w + (g̈1(t)v + ġ2(t) + c2)u+
1

6

...
g1(t)v

3 +
1

2
g̈2(t)v

2 + ġ3(t)v + g4(t).

(2.75)

The infinitesimals undergo a transformation when considering g1(t) = c4 + tc6, g2(t) =

c5, g3(t) = 0, and g4(t) = c7

αu = c6u+ 2c1u+
1

2
vc2 + c3, (2.76)

αv = c6v + c1v + c5, (2.77)

αt = c4 + tc6, (2.78)

β = (c6 + 3c1w) + c2u+ c7. (2.79)

Hence, the Pavlov equation possesses a seven-dimensional Lie algebra, which is gener-

ated by the following vector fields

Γ1 =
∂

∂u
, (2.80)

Γ2 =
∂

∂v
, (2.81)

Γ3 =
∂

∂t
, (2.82)

Γ4 =
∂

∂w
, (2.83)
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Γ5 =
1

2
v
∂

∂u
+ u

∂

∂w
, (2.84)

Γ6 = 2u
∂

∂u
+ v

∂

∂v
+ 3w

∂

∂w
, (2.85)

Γ7 = u
∂

∂u
+ v

∂

∂v
+ t

∂

∂t
+ w

∂

∂w
. (2.86)

The commutator relations among these vector fields are provided in Table 2.1,

Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 Γ7

Γ1 0 0 0 0 Γ4 2Γ1 Γ1

Γ2 0 0 0 0 1
2
Γ1 Γ2 Γ2

Γ3 0 0 0 0 0 0 Γ3

Γ4 0 0 0 0 0 3Γ4 Γ4

Γ5 -Γ4 -1
2
Γ1 0 0 0 Γ5 0

Γ6 -2Γ1 -Γ2 0 -3Γ4 −Γ5 0 0
Γ7 -Γ1 -Γ2 -Γ3 -Γ4 0 0 0

Table 2.1: Commutator Table for Symmetries of Pavlov Equation
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Chapter 3

Optimal Systems of Differential
Equations

The primary emphasis of this chapter is to offer a thorough presentation of the core

principles related to optimal systems governed by differential equations. The study

of optimal systems has evolved as a powerful and adaptable tool for optimizing and

controlling complex systems within a wide range of differential equations. Our study

begins with an examination of the fundamental principles and the historical back-

ground surrounding optimal systems, laying the basis for the subsequent chapters of

this thesis.

Sophus Lie developed an extremely useful approach for finding solutions that is appli-

cable to all types of DEs. This approach is based on the set of transformations inherent

in a given DE. Every set of transformations corresponds to a distinct set of solutions

that remain invariant under these transformations. An infinite number of such groups

can be constructed by examining the group of transformations of a DE, leading to an

infinite number of group invariant solutions. These invariant solutions can be classified

into equivalence classes. A collection that includes precisely one generator from each

equivalence class is referred to as an optimal set of generators. In other words, it rep-

resents group invariant solutions. These solutions serve as the foundational basis from

which all other solutions can be derived [10]. Several techniques for obtaining optimal

systems are available in the literature [29–41].

Our main goal is to understand the structure of optimal system of algebra. Before

looking into the exact mathematical definition of an optimal system, it’s essential to
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provide an overview of crucial findings and key terminologies.

3.1 Optimal Systems and Group-Invarient Solutions

By applying the proposition below, the arrangement of subgroups within the group G

of symmetries through the binary operation of conjugation could lead to the group-

invariant solutions.

Therefore, the mapping h 7→ ghg−1 within a Lie group carries substantial significance.

Proposition 1. Let G be the symmetry group of a system of DEs (2.15), and let H
be an r-parameter subgroup of G. If there exists a solution w = f(t) that is invariant

under the subgroup H in Eq. (2.15), then the transformed function w = f̃(t) = g.f(t),

where g is a member of the group G and H̃ = gHg−1 represents the subgroup conjugate

to H under G. The transformed function f̃(t) is also an H̃-invariant solution [10].

3.1.1 Adjoint Representation

Given knowledge of the adjoint action Ad L within the Lie group G, reconstructing the

adjoint representation of the underlying group, Ad G, becomes possible.

Definition 3.1.1. Consider a Lie group G and its associated Lie algebra L. The adjoint

representation of a group G is differential related to the conjugtation of the group or

the conjugacy mapping [10]

Og : k 7→ gkg−1; k, g ∈ G. (3.1)

This representation operates on the group G itself.

Adg(Γ) ≡ dOg(v); ∀g ∈ G, Γ ∈ L. (3.2)

Remark 1. If Γ ∈ L produces a single-parameter subgroup H = eεΓ, where ε ∈ R,
then the element Adg(Γ) forms the single-parameter subgroup obtained by conjugating

H by g. This is expressed as Og(H) = gHg−1.

In a systematic context, the adjoint representation can be described as a func-

tion that maps the group G to the set of linear operators acting on the tangent space
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at the identity, denoted as T e(G). This mapping satisfies the property Og(hh′) =

Og(h)Og(h′), where Og denotes the adjoint representation. This homomorphism en-

sures the preservation of the identity element by mapping it to the identity element for

each element g ∈ G:

Og(e) = geg−1 = gg−1 = e.

This characteristic implies that every curve traversing the identity element e on the

manifold G will be transformed by this homomorphism into a distinct curve, which may

not necessarily be the same as the original one. As a result, the adjoint representation

transforms any tangent vector (associated with a curve on G) within the tangent space

Te(G) into another tangent vector within the same tangent space Te(G).

Currently, we are demonstrating that the Lie algebra’s adjoint action on itself is

achieved through the commutator (Lie bracket). Examine the manifold G and a curve

c(t) with c(0) = e ∈ G and the tangent vector c′(0) = Γ ∈ T e(G). Moreover, suppose

that the curve traverses any element g within the set G. By employing this curve, we

can represent the adjoint action Adg(Γ) = gΓg−1 as:

Adg(Y) = Adc(t)(Y) = c(t)Γc(t)−1.

Taking the derivative of this function at the identity t = 0 results in

d

dt
Adc(t)(Y)

∣∣∣∣
t=0

= c(t)Yc(t)−1

∣∣∣∣
t=0

,

= c(0)Yc(0)−1 + c(t)Y d

dt
c(t)−1

∣∣∣∣
t=0

.

(3.3)

For the computation of
d

dt
c(t)−1

∣∣∣∣
t=0

, we will make use of the following identity

d

dt
B−1(t) = −B−1(t)

(
d

dt
B(t)

)
B−1(t). (3.4)

This equation originates from

d

dt

(
B(t)B−1(t)

)
=

d

dt
(e) = 0. (3.5)
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Applying the product rule and left-multiplying with B−1(t) results in

B−1(t)
d

dt
(B(t))B−1(t) +B−1(t)B(t)

d

dt
(B−1(t)) = 0,

d

dt
(B−1(t)) = −B−1(t)

d

dt
(B(t))B−1(t).

It follows that,

d

dt
Adc(t)(Y)

∣∣∣∣
t=0

= c(0)Yc(0)−1 + c(t)Y d

dt
c(t)−1

∣∣∣∣
t=0

,

= c(0)Yc(0)−1 + c(0)Y(−c(0)−1c′(0)c(0)−1),

= ΓYe+ eY(−eΓe),

= [Γ,Y ] = adY
∣∣
c(t)

.

3.2 Adjoint Representation Table.

If details about the adjoint action adL concerning a Lie algebra L acting on itself

are available, the reconstruction of the adjoint representation AdG pertaining to the

underlying Lie group can be accomplished, either through the integration of a system

of linear ordinary differential equations.

dY
dε

= adΓ|Y , Y(0) = Y0, (3.6)

with solution Y(ε) = Ad(exp(εΓ))Y0. Alternatively, we can define this solution by

employing a Lie series in cojugation with a table of commutation relation.

Ad(exp(εΓ))Y0 =
∞∑
n=0

εn

n!
(adΓ)n(Y0)

= Y0 − ε[Γ,Y0] +
ε2

2
[Γ, [Γ,Y0]]− · · · ,

where [Γ,Y0] denote the commutator operation applied to the generators Γ and Y0.

Adjoint representation tables are employed to depict the relationships between conju-

gacy mappings within a specific Lie algebra. It is suitable to represent the conjugacy

relationships between every subalgebra and each subsequent subalgebra presented in

tabular form. In the context of an n-dimensional Lie algebra denoted as L, the adjoint

representation table can be described as an n × n matrix. In this matrix, each entry
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in the (i, j) position signifies the adjoint action of Γi on Γj as Ad(exp(εΓi))Γj. It’s

important to note that the adjoint representation associates a linear operator with a

group element rather than a matrix.

The result of the following proposition emphasizes that the process of computing an

optimal system for a given subgroup is intricately linked to the challenge of determining

the optimal system for subalgebras.

Proposition 2. Consider two connected, r-dimensional Lie subgroups, H1 and H2, of

the Lie group G. These subgroups are themselves Lie groups and have associated Lie

subalgebras, h1 and h2 of the Lie algebra L of G. Then H2 = gH1g
−1 are conjugate

subgroups if and only if h2 = Adg(h1) are conjugate subalgebras [10].

3.2.1 Optimal Systems

In the realm of a Lie group G, the term optimal system of r-parameter subgroups

refers to a set of r-parameter subgroups that are distinct under conjugation, and any ad-

ditional subgroup is conjugate to precisely one subgroup within this designated group-

ing.

In a similar manner, an optimal system is formed by a group of r-parameter subal-

gebras if each r-parameter subalgebra within L can be associated with a single member

from that collection under some element of the adjoint representation: h2 = Adg(h1),

g ∈ G.

There are essentially two methods for generating the one-dimensional optimal sys-

tem of subalgebras. One approach, as outlined by Ovsiannikov [2, 6], involves the

calculation of the inner automorphism matrix that corresponds to the operators in the

adjoint group associated with a specified Lie algebra. The other approach, as presented

by Olver [10], involves simplifying the generator extensively to the fullest extent by ap-

plying the selected adjoint transformation to it. In this context, we choose to adopt

and provide a concise overview of Olver’s approach for further discussion.
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3.2.2 Algorithm of 1-dimensional Optimal System

Examine the n-dimensional Lie algebra Ln, associated with a Lie group G in a differen-

tial equation (or system of differential equations), generated by Γi, where i = 1, . . . , n.

Step 1: Commutator Table. The commutator table, displaying the structure con-

stants of G, provides a comprehensive representation of the group’s structure, offering

a complete description of its properties and relationships, often up to isomorphisms.

This is accomplished by creating a table that outlines the Lie brackets of the generators

Γi.

Step 2: Adjoint Representation Table. The adjoint operator, also known as the

adjoint transformation or Hermitian adjoint, can be described as

Ad(eεΓ)Y ≡ e−εΓYeεΓ.

Here Γ ∈ L and Y ∈ K (K ⊂ L). By using the well-known Campbell-Hausdorff

theorem (as referenced in [3]), the operation can be expressed as

Ad(eεΓ)Y = Y − ε[Γ,Y ] +
ε2

2
[Γ, [Γ,Y ]]− · · · . (3.7)

The adjoint representation table is then employed to produce the adjoint transforma-

tions in subsequent steps.

3.3 Invariant Solutions

Once we have identified an optimal system of generators, the method of characteristics

can be used to calculate the corresponding invariant solutions. An optimal system

of invariant solutions refers to a complete collection of these solutions, providing a

basis for deriving all other invariant solutions. Two challenges may arise: The initial

challenge is that a generator in the optimal system may not necessarily lead to any

invariant solutions. The second challenge lies in the potential difficulty of analytically

solving the reduced equation(s) that establish one or more invariant solutions. Even

when we do not achieve an optimal system, there is still a possibility of discovering

certain invariant solutions [14].
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Definition 3.3.1. Consider two manifolds, M and N . Let G represents the local

group of transformations that operate on M . A function f : M −→ N is considered

G-invariant function when the subsequent equality [10]

f(g.x) = f(x), (3.8)

holds for every x ∈ M and g ∈ G. An invariant of G is a real-valued function

that remains unchanged under G-invariant transformations. A similar definition can

be applied in situations where N = Rn. In this scenario, f is considered G-invariant

when each component fi is itself an invariant of G. Here, f = f1, f2, · · · , fn.

Infinitesimal Invariance. The infinitesimal criteria will be essential in identifying

the symmetry group of the system of differential equations. The conditions for infinites-

imal invariance [10] can be derived directly by considering the formula that describes

how a function changes under the influence of the flow induced by a vector field.

3.4 Method for Constructing Invariants

Now, let’s outline the systematic procedure for creating the invariants associated with

a group action, providing a clear step by step approach. Initially, consider G as a group

of transformations operating on M , where G is characterized by one parameter for a

system of ODEs and has a generator

Γ = α(t, wi)∂t+ βj(t, wi)∂wj, (i, j = 1, · · · , k)

A local invariant χ is a mathematical function that satisfies the given PDEs

Γχ = α(t, wi)∂tχ+ βj(t, wi)∂wjχ = 0. (3.9)

The solution of Eq. (3.9) is derived by solving the characteristic system of ODEs,

dt

α(t, wi)
=

dw1

β1(t, wi)
= · · · = dwk

βk(t, wi)
. (3.10)

The solution to Eq. (3.10) can be expressed in a more general form as

χ1(t, wi) = I1, · · · , χk−1(t, wi) = Ik−1,
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the constants of integration are I1, · · · , Ik−1. The functions χ
1, · · · , χk−1 are solutions

to Eq. (3.9) that are functionally independent solutions.

This approach entails identifying invariants from the prolongations of given symme-

tries. In simpler terms, if presented with a second-order ordinary differential equation,

reducing the order of this equation by one can be achieved by deriving invariants from

the first extension of the provided symmetry generator.

3.5 Review of One-dimensional Optimal System of

Subalgebras

The objective of seeking the optimal set of Lie symmetries is to discern unique, non-

equivalent classes referred as the optimal system of subalgebras. Every element from

the optimal set illustrates a general class of symmetry and contributes to the construc-

tion of a general class of invariant solutions. To achieve this objective, the methodology

outlined by Olver [10], as illustrated in [42], is adopted. The adjoint representation

can be expressed as

Ad(exp(εΓi))Γj = Γj − ε[Γi,Γj] +
ε2

2!
[Γi, [Γi,Γj]]− · · · , (3.11)

where ε ∈ R and [Γi,Γj] signifies the Lie product defined by

[Γi,Γj] = ΓiΓj − ΓjΓi. (3.12)

3.6 Optimal System of Generalized Fisher Equa-

tion in Cylindrical Coordinates

In this section, we delve into a comprehensive review of the paper by Ali Raza et al.,

titled “Optimal System and Conservation Laws for the Generalized Fisher Equation

in Cylindrical Coordinates” [43]. Fisher proposed the Fisher equation for population

dynamics in 1937. The Fisher equation can be expressed in cylindrical coordinates as

wt −
1

u
.(ul(w)wu)u = m(w), (3.13)
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where l(w) and m(w) are arbitrary functions. The optimal system for all of the cases

are presented here:

3.6.1 Principal Case

The optimal set of subalgebras for the principal algebra is provided here.

Γ1 = Γ1. (3.14)

3.6.2 Case-1

For this case, l(w) = w and m(w) = w(1− w):

It has two-dimensional algebra and is expressed as outlined,

Γ1 = e−t ∂

∂t
+ we−t ∂

∂w
,

Γ2 =
∂

∂t
,

With a non-zero commutator as specified by,

[Γ1,Γ2] = Γ1. (3.15)

The adjoint representations correspond to Case 1, as detailed in Table3.1.

Ad Γ1 Γ2

Γ1 Γ1 Γ2 − εΓ1

Γ2 eεΓ1 Γ2

Table 3.1: Adjoint Representation Table for Case-1

When we apply the adjoint representation to a general element Γ, represented as a

linear combination of elements Γ = a1Γ1 + a2Γ2 ∈ L2, we derive an optimal system of

one-dimension that includes every subalgebra in Case-1, represented by

a2

a2 ̸= 0 a2 = 0
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The comprehensive details of each leaf are given below.

Case i. a2 ̸= 0

In this case, Γ = a1Γ1 + a2Γ2 ∈ L2, we apply the adjoint action to Γ1, and we have

obtained

Γ′ = Ad(eaΓ1)Γ = Γ− a[Γ1,Γ] +
a2

2!
[Γ1, [Γ1,Γ]]− · · · ,

= Γ− a[Γ1, a2Γ2] +
a2

2
[Γ1, [Γ1, a2Γ2]]− · · · ,

= Γ− aa2Γ1 +
a2

2
[Γ1, a2Γ1]]− · · · ,

= Γ− aa2Γ1

= a1Γ1 + a2Γ2 − aa2Γ1; a =
a1
a2

,

= a2Γ2; a2 = 1

= Γ2

Hence on adjoint action on Γ1, we possess

Γ′ = Γ2. (3.16)

Case ii. a2 = 0

In this case, Γ = a1Γ1. After applying the adjoint action to Γ2 and examining the

outcomes,

Γ′ = Ad(eaΓ2)Γ = Γ− a[Γ2,Γ] +
a2

2!
[Γ2, [Γ2,Γ]]− · · · ,

= Γ− a[Γ2, a1Γ1] +
a2

2
[Γ2, [Γ2, a1Γ1]]− · · · ,

= Γ− aa1(−Γ1) +
a2

2
[Γ2, a1(−Γ1)]− · · · ,

= Γ + aa1Γ1 +
a2

2
a1Γ1 − · · · ,

= a1Γ1 + aa1Γ1 +
a2

2
a1Γ1 − · · · ,

= a1Γ1(1 + a+
a2

2
+ · · · ),

= a1Γ1e
a; a1e

a = ±1; a = ln

∣∣∣∣± 1

a1

∣∣∣∣ ,
= ±Γ1
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Non-similar symmetry generators for Case-1:

Γ1 = Γ2

Γ2 = ±Γ1

3.6.3 Case-2

In this case, l(w) = mw and m(w) = pw2:

The two-dimensional algebra is written as

Γ1 =
∂

∂t
,

Γ2 = t
∂

∂t
− w

∂

∂w
.

The non-zero commutator is given by:

[Γ1,Γ2] = Γ1.

In this case, the one-dimensional optimal system is the similar to the one described in

Case-1 from Table-3.1 because they share the same algebraic structure. Non-equivalent

symmetry generators for this case are also the same as the previous ones, as shown in

the tree leaf diagram.

a2

a2 ̸= 0 a2 = 0

Non-equivalent symmetry generators for Case-2:

Γ1 = Γ2

Γ2 = ±Γ1
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3.6.4 Case-3

We consider l(w) = mwn and m(w) = pwq:

The non-zero commutator is presented as,

[Γ1,Γ2] = 2(q − 1)Γ1. (3.17)

The adjoint representations associated with Case-3 are outlined in the Table3.2.

Ad Γ1 Γ2

Γ1 Γ1 Γ2 − 2ε(q − 1)Γ1

Γ2 e2ε(q−1)Γ1 Γ2

Table 3.2: Adjoint Representation Table for Case-3

When the adjoint representation is applied to a general element, Γ, which is repre-

sented as a linear combination of components, Γ = a1Γ1 + a2Γ2 ∈ L2, we establish a

one-dimensional optimal system including every subalgebras in Case-3 provided by

a2

a2 ̸= 0

q ̸= 1 q = 1

a2 = 0

All the specific information for each individual leaf is provided here.

Case-i. a2 ̸= 0 and q ̸= 1.
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In this case Γ = a1Γ1 + a2Γ2. Through the adjoint action applied to Γ1, we acquire

Γ′ = Ad(eaΓ1)Γ = Γ− a[Γ1,Γ] +
a2

2!
[Γ1, [Γ1,Γ]]− · · · ,

= Γ− a[Γ1, a2Γ2] +
a2

2
[Γ1, [Γ1, a2Γ2]]− · · · ,

= Γ− aa2(2(q − 1))Γ1 +
a2

2
[Γ1, 2a2(q − 1)Γ1]]− · · · ,

= Γ− aa2(2(q − 1))Γ1,

= a1Γ1 + a2Γ2 − 2aa2(q − 1)Γ1; a =
a1
a2

,

= a1Γ1 + a2Γ2 − 2a1(q − 1)Γ1; as q ̸= 1, q =
3

2
,

= a1Γ1 + a2Γ2 − a1Γ1,

= a2Γ2,

= Γ2.

Case-ii. a2 ̸= 0 and q = 1.

Γ = a1Γ1 + a2Γ2 in this case. By using the adjoint operation on Γ1, we obtain

Γ′ = Ad(eaΓ1)Γ = Γ− a[Γ1,Γ] +
a2

2!
[Γ1, [Γ1,Γ]]− · · · ,

= Γ− a[Γ1, a2Γ2] +
a2

2
[Γ1, [Γ1, a2Γ2]]− · · · ,

= Γ− aa2(2(q − 1))Γ1 +
a2

2
[Γ1, 2a2(q − 1)Γ1]]− · · · ; q = 1,

= Γ,

= a1Γ1 + a2Γ2,

= a1Γ1 + Γ2; a2 ̸= 0, a2 = 1.

Case-ii. a2 = 0.

Γ = a1Γ1 in this case. When we consider the adjoint action applied to any element Y
and for any given arbitrary value of ε, we get the following result

Γ′ = Ad(eεY)Γ = Γ1. (3.18)

Non-similar symmetry generators for Case-3:
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Γ1 = Γ2,

Γ2 = a1Γ1 + Γ2,

Γ3 = Γ1.

3.6.5 Case-4

We consider l(w) = awn and m(w) = w:

The algebra is three dimensional, which is written as,

Γ1 =
∂

∂t
,

Γ2 = u
∂

∂u
+

2

n
w

∂

∂w
,

Γ3 = e−nt ∂

∂t
+ we−nt ∂

∂w
.

The non-zero commutator can be expressed as,

[Γ1,Γ3] = −nΓ3, n ̸= 0. (3.19)

The adjoint representations are presented in Table 3.3.

Ad Γ1 Γ2 Γ3

Γ1 Γ1 Γ2 enεΓ3

Γ2 Γ1 Γ2 Γ3

Γ3 Γ1 − nεΓ3 Γ2 Γ3

Table 3.3: Adjoint Representation Table for Case-4

The adjoint representation, when applied to a general element Γ = a1Γ1 + a2Γ2 +

a3Γ3 ∈ L3, establishes the one-dimensional optimal system that encompasses all sub-

algebras in this particular case, given by

a1

a1 ̸= 0

a2 ̸= 0 a2 = 0

a1 = 0

a2 ̸= 0 a2 = 0
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Each leaf is described in detail, with its characteristics and features explained thor-

oughly.

Case-i. a1 ̸= 0 and a2 ̸= 0.

We determine the basis for the optimal system by applying the adjoint action on Γ3

for ε = a, using the procedure mentioned in earlier cases, we obtain

Γ′ = Γ− aa1(nΓ3) +
a2

2
[Γ3, a1(nΓ3)]− · · · ,

= Γ− aa1(nΓ3),

= a1Γ1 + a2Γ2 + a3Γ3 − aa1nΓ3; a =
a3
a1

, n = 1,

= a1Γ1 + a2Γ2.

Hence,

Γ′ = Ad(eaΓ3Γ) = Γ1 + Γ2. (3.20)

Case-ii. a1 ̸= 0 and a2 = 0.

In this situation, the adjoint action on Γ3 yields the basis for the optimal system for

ε = a and Γ = a1Γ1 + a3Γ3,

Γ′ = Ad(eaΓ3Γ) = a1Γ1 + a3Γ3 − aa1nΓ3; a =
a3
a1

, n = 1,

= a1Γ1,

= Γ1.

Therefore,

Γ′ = Ad(eaΓ3Γ) = Γ1. (3.21)

Case-iii. a1 = 0 and a2 ̸= 0.

Γ = a2Γ2 + a3Γ3 in this case. By employing the same method as in previous cases and

employing the adjoint action to Γ1 with ε = a, we obtain,

Γ′ = Ad(eaΓ1Γ) = Γ + aa3(nΓ3) +
a2

2
a3n

2Γ3 − · · · ,

= a2Γ2 + a3Γ3 + aa3nΓ3 +
a2

2
a3n

2Γ3 − · · · ,

= a2Γ2 + a3Γ3e
an,

= a2Γ2 ± Γ3.
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Hence,

Γ′ = Ad(eaΓ1Γ) = a2Γ2 ± Γ3, (3.22)

where a =
1

n
ln

∣∣∣∣± 1

a3

∣∣∣∣.
Case-iv. a1 = 0 and a2 = 0.

In this instance, with Γ = a3Γ3, we follow the same approach used in earlier cases and

apply the adjoint action to Γ1 for ε = a, we obtain the following result,

Γ′ = Ad(eaΓ1Γ) = ±Γ3, (3.23)

Non-equivalent symmetry generators for Case-4:

Γ1 = Γ1 + Γ2,

Γ2 = Γ1,

Γ3 = a2Γ2 ± Γ3,

Γ4 = ±Γ3.

3.6.6 Case-5

l(w) = n
√
w and m(w) = w

The algebra is three-dimensional, and Γ1,Γ2 and Γ3 are as follows,

Γ1 =
∂

∂t
,

Γ2 = e−
1
n
t ∂

∂t
+ we−

1
n
t ∂

∂w
,

Γ3 = u
∂

∂u
+ 2nw

∂

∂w
,

and the non-zero commutator is,

[Γ1,Γ2] = − 1

n
Γ2, n ̸= 0. (3.24)

Table-3.4 provides information about the adjoint representations for the functions

l(w) = n
√
w and m(w) = w.
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Ad Γ1 Γ2 Γ3

Γ1 Γ1 e
1
n
εΓ2 Γ3

Γ2 Γ1 − 1
n
εΓ2 Γ2 Γ3

Γ3 Γ1 Γ2 Γ3

Table 3.4: Adjoint Representation Table for Case-5

The adjoint representation, when applied to the general element Γ = a1Γ1+a2Γ2+

a3Γ3 ∈ L3, determines the one-dimensional optimal system of all subalgebras.

a1

a1 ̸= 0

a3 ̸= 0 a3 = 0

a1 = 0

a2 ̸= 0 a2 = 0

Each leaf is thoroughly examined below

Case-i. a1 ̸= 0 and a3 ̸= 0.

Through the adjoint action applied to Γ2 and by using the same procedure as in earlier

cases, we have

Γ′ = Ad(eaΓ2)Γ = Γ− a[Γ2, a1Γ1] +
a2

2!
[Γ2, [Γ2, a1Γ1]]− · · · ,

= Γ− aa1(
1

n
)Γ2,

= a1Γ1 + a2Γ2 + a3Γ3 −
1

n
aa1Γ2,

= a1Γ1 + a3Γ3.

Therefore,

Γ′ = Ad(eaΓ2)Γ = Γ1 + Γ3, (3.25)

where a =
a2
a1

, and n = 1.

Case-ii. a1 ̸= 0 and a3 = 0.

When we apply the adjoint action on Γ2, we get the similar result as described in case-i.

Γ′ = Ad(eaΓ2)Γ = Γ1. (3.26)
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Case-iii. a1 = 0 and a2 ̸= 0.

When we perform an adjoint action on Γ1, the outcome is as follows,

Γ′ = Ad(eaΓ1)Γ = Γ− aa2(−
1

n
)Γ2 +

a2

2!
[Γ1, a2(−

1

n
)Γ2]− · · · ,

= a2Γ2 + a3Γ3 + aa2(
1

n
)Γ2 +

a2

2
a2(

1

n2
)Γ2 − · · · ,

= a2Γ2e
a
n + a3Γ3,

hence,

Γ′ = Ad(eaΓ1)Γ = ±Γ2 + a3Γ3, (3.27)

where, a = (n)ln

∣∣∣∣± 1

a2

∣∣∣∣.
Case-iv. a1 = 0 and a2 = 0.

the adjoint action on Γ1 provides

Γ′ = Ad(eaΓ1)Γ = Γ3. (3.28)

Non-equivalent symmetry generators for Case-5:

Γ1 = Γ1 + Γ3,

Γ2 = Γ1,

Γ3 = ±Γ2 + a3Γ3,

Γ4 = Γ3.

3.6.7 Case-6

l(w) = awn and m(w) = m
√
w

The algebra under consideration is a two-dimensional algebra, and the basis elements

Γ1 and Γ2 can be represented as follows,

Γ1 =
∂

∂t
,

Γ2 = 2t(m− 1)
∂

∂t
+ u[(n+ 1)m− 1]

∂

∂u
+ 2mw

∂

∂w
.

41



With a commutator that is not equal to zero,

[Γ1,Γ2] = 2(m− 1)Γ1. (3.29)

The adjoint representations for the given functions l(w) = awn and m(w) = m
√
w can

be found in Table 3.5.

Ad Γ1 Γ2

Γ1 Γ1 Γ2 − 2ε(m− 1)Γ1

Γ2 e2ε(m−1)Γ1 Γ2

Table 3.5: Adjoint Representation Table for Case-6

The one-dimensional optimal system of subalgebras for this instance is provided

below when applying the adjoint representation to a general element Γ = a1Γ1+a2Γ2 ∈
L2.

a2

a2 ̸= 0

m ̸= 1 m = 1

a2 = 0

Below are the particulars for each leaf:

Case-i. a2 ̸= 0 and m ̸= 1.

We achieve this by applying the adjoint action on Γ1, using a similar approach as above

for ε = a,

Γ′ = Ad(eaΓ1)Γ = Γ− 2aa2(m− 1)Γ1,

= a1Γ1 + a2Γ2 − 2aa2(m− 1)Γ1,

= a2Γ2,

therefore,

Γ′ = Ad(eaΓ1)Γ = Γ2, (3.30)
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where, a = a1
a2

and m = 3
2
.

Case-ii. a2 ̸= 0 and m = 1.

Through the adjoint action on Γ1 and ε = a, we have acquired

Γ′ = Ad(eaΓ1)Γ = a1Γ1 + Γ2. (3.31)

Case-iii. a2 = 0.

The outcome of the adjoint action for any Y and for any ε is as follows,

Γ′ = Ad(eεY)Γ = Γ1. (3.32)

Non-similar symmetry generators for Case-6:

Γ1 = Γ2,

Γ2 = a1Γ1 + Γ2,

Γ3 = Γ1.

While reviewing Ali Raza et al.’s paper on the “Generalized Fisher Equation in Cylin-

drical Coordinates,” we came across the absence of Γ2 in Cases-4 and Case-5, and

adding it will make a complete set of non similar symmetry generators for Case-4 and

Case-5.
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Chapter 4

Optimal System and Exact Soutions
of the Hyperbolic Heat Equations

In the study of heat transfer, the solutions of hyperbolic heat equations [44] provide

an essential framework to understand how temperature distribution varies dynamically

over time. The primary objective of this chapter is to determine the optimal systems

of the hyperbolic heat equations and try to find their exact solutions. These equations

wtt + wt = (K(w)wu)u, K(w) ̸= const, (4.1)

were proposed by Alexander Oron and Philip Rosenau in 1986.

4.1 Lie Point Symmetry Generators of the Hyper-

bolic Heat Equations

This segment examines the group properties of Eq. (4.1), taking into account Lie

symmetries, and investigates various cases by considering values of the arbitrary func-

tion K(w). As Eq. (4.1) represents a second-order PDE, it is necessary to employ

the second-order prolongation Γ2 to get the symmetry generators. This involves using

the associated coefficients provided in Eqs. (2.47)-(2.51). To apply the infinitesimal

criterion of invariance, let us introduce

H = wtt + wt − (K(w)wu)u, (4.2)
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hence, using Theorem (2.7.1), we have

Γ2H|H=0 ≡ 0, (4.3)

that can be simplified to

βtt + βt −K(w)βuu − K̇(w)wu = 0. (4.4)

Eq. (4.4) yields the results that follow using the values of βt, βtt and βuu from Eqs.

(2.47)-(2.51).

(−w2
uK(w) + w2

t )(βw,w) + (w3
uK(w)− w2

twu)(α
u)w,w

+ (wtw
2
uK(w)− w3

t )(α
t)w,w + 2wt(βw)t,w − 2(β)w,uK(w)wu

− 2(αu)t,wwuwt + 2(αu)w,uK(w)w2
u − 2(αt)t,ww

2
t + 2(αt)w,uK(w)wtwu

+ (β)t,t − (β)u,uK(w)− (αu)t,twu + (αu)u,uK(w)wu

− (αt)t,twt + (αt)u,uK(w)wt + ((−2wtwu,u + 2wuwu,t)K(w) + 2w2
t (α

t)w

+ (2wuwu,uK(w)− 2wu,twt)(α
u)w + (−wu − 2wu,t)(α

u)t

+ (−2K(w)wu,u + wt)(α
t)t − β(t, u, w)(Kw)wu,u + 2(αu)uK(w)wu,u

+ 2(αt)uK(w)wu,t + βt = 0.

(4.5)

The following determining equations are now obtained by comparing different powers

of partial derivatives of dependent variable w.

(αt)t = 0, (4.6)

(αt)w = 0, (4.7)

(αt)u = 0, (4.8)

(αu)t = 0, (4.9)

(αu)w = 0, (4.10)

(αu)u = 0, (4.11)

β(t, u, w) = 0. (4.12)

Simplifying the given set of determining equations allows us to get the values of in-

finitesimals. Consequently, for the arbitrary function K(w), we have

β(t, u, w) = 0, αt(t, u, w) = C1, αu(t, u, w) = C2,
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The obtained symmetry generator comprises the principal Lie algebra given by

Γ1 =
∂

∂t
, Γ2 =

∂

∂u
.

Here, we explore the group properties by examining different K(w) values. There is

one additional symmetry in each of the following cases [44].

Case-1: K = Λeρw, Λ ̸= 0, ρ ̸= 0 :

In this case, the symmetry algebra is expanded by

Γ3 = ρu
∂

∂u
+ 2

∂

∂w
.

Case-2: K = Λ(w + µ)ρ, Λ ̸= 0, ρ ̸= 0,−4/3,−2 :

In this case, the symmetry algebra is expanded by

Γ3 = ρu
∂

∂u
+ 2(w + µ)

∂

∂w
.

In the next section the one dimensional optimal system of both algebras are obtained.

4.2 One-dimensional Optimal System of Subalge-

bras

4.2.1 Optimal System for Principal Case

For principal case,

Γ1 =
∂

∂t
, Γ2 =

∂

∂u
.

The algebraic structure in this case is two-dimensional, and it exhibits no non-zero

commutators.

[Γ1,Γ2] = 0. (4.13)

The adjoint table that aids in calculating the optimal system of one-dimensional sub-

algebras for principal case is shown in table 4.1.

Ad Γ1 Γ2

Γ1 Γ1 Γ2

Γ2 Γ1 Γ2

Table 4.1: Adjoint Representation Table for Principal Algebra
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Take an arbitrary element Γ ∈ L2. We have

Γ = a1Γ1 + a2Γ2. (4.14)

Thus, using the adjoint Table 4.1 and the adjoint operator in Eq. (3.10) on a general

element Γ given in Eq. (4.14), we establish an optimal system of one-dimensional

subalgebras for the principal case, given below.

a2

a2 ̸= 0

a1 = 0 a1 ̸= 0

a2 = 0

Below are the specifics for each leaf:

Case-i. a2 ̸= 0 and a1 = 0:

When the adjoint action of the element ε = a is applied to Γ, we observe the following:

Γ′ = Ad(eaΓ1)Γ = Γ− a[Γ1,Γ] +
a2

2!
[Γ1, [Γ1,Γ]]− · · · ,

= Γ− a[Γ1, a2Γ2] +
a2

2
[Γ1, [Γ1, a2Γ2]]− · · · ,

= a2Γ2, a2 ̸= 0,

= Γ2,

we get

Γ1 = Γ2. (4.15)

Case-ii. a2 ̸= 0 and a1 ̸= 0:

The following is evident when we apply the adjoint action of the element ε = a on Γ

Γ′ = Ad(eaΓ1)Γ = Γ− a[Γ1,Γ] +
a2

2!
[Γ1, [Γ1,Γ]]− · · · ,

= Γ− a[Γ1, a2Γ2] +
a2

2
[Γ1, [Γ1, a2Γ2]]− · · · ,

= a1Γ1 + a2Γ2.
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We deduce that

Γ2 = a1Γ1 + a2Γ2. (4.16)

Case-iii. a2 = 0:

The following is evident when we apply the element ε = a on Γ,

Γ′ = Ad(eaΓ2)Γ = Γ− a[Γ2,Γ] +
a2

2!
[Γ2, [Γ2,Γ]]− · · · ,

= Γ,

= a1Γ1, a1 ̸= 0,

= Γ1,

It follows that,

Γ3 = Γ1. (4.17)

The following are the non-similar symmetry generators for the principal case that can

be determined using Eqs. (4.15), (4.16) and (4.17).

Generators Conditions
Case-i: Γ1 = Γ2 a2 ̸= 0 and a1 = 0
Case-ii: Γ2 = a1Γ1 + a2Γ2 a2 ̸= 0 and a1 ̸= 0
Case-iii: Γ3 = Γ1 a2 = 0

Table 4.2: Symmetry Generators for Principal Case

4.2.2 Optimal System for Case-1

For Case-1,

Γ1 =
∂

∂t
, Γ2 =

∂

∂u
, Γ3 = ρu

∂

∂u
+ 2

∂

∂w
.

The algebraic structure is three-dimensional with non-zero commutators,

[Γ2,Γ3] = ρΓ2. (4.18)

Table 4.2 displays the adjoint table for Case-1, which facilitates the computation of

the optimal system of one-dimensional subalgebras.
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Ad Γ1 Γ2 Γ3

Γ1 Γ1 Γ2 Γ3

Γ2 Γ1 Γ2 Γ3 − ερΓ2

Γ3 Γ1 eερΓ2 Γ3

Table 4.3: Adjoint Representation Table for Case-1

Let Γ ∈ L3. Consequently, we have

Γ = a1Γ1 + a2Γ2 + a3Γ3. (4.19)

Similarly, the adjoint representation governs the determination of the one-dimensional

optimal system for all subalgebras in this case.

a3

a3 ̸= 0

a2 ̸= 0

a1 ̸= 0 a1 = 0

a2 = 0

a1 = 0

a3 = 0

a2 ̸= 0

a1 ̸= 0 a1 = 0

a2 = 0

a1 ̸= 0

Each leaf is illustrated in detail below.

Case-i. a3 ̸= 0, a2 ̸= 0 and a1 ̸= 0:

The following is observed when Γ is subjected to the adjoint action of the element

ε = a.

Γ′ = Ad(eaΓ2)Γ = Γ− a[Γ2,Γ] +
a2

2!
[Γ2, [Γ2,Γ]]− · · · ,

= Γ− a[Γ2, a3Γ3] +
a2

2
[Γ2, [Γ2, a3Γ3]]− · · · ,

= Γ− aa3ρΓ2,

= a1Γ1 + a2Γ2 + a3Γ3 − aa3ρΓ2,

= a1Γ1 + a3Γ3, a =
a2
a3

, ρ = 1.

49



Hence, we can conclude that

Γ1 = a1Γ1 + a3Γ3. (4.20)

Case-ii. a3 ̸= 0, a2 ̸= 0 and a1 = 0:

In the presence of the adjoint action on Γ induced by ε = a, we have

Γ′ = Ad(eaΓ1)Γ = Γ− a[Γ1,Γ] +
a2

2!
[Γ1, [Γ1,Γ]]− · · · ,

= Γ− a[Γ1, a2Γ2 + a3Γ3] +
a2

2
[Γ1, [Γ1, a2Γ2 + a3Γ3]]− · · · ,

= Γ,

= a2Γ2 + a3Γ3.

From this we get,

Γ2 = a2Γ2 + a3Γ3. (4.21)

Case-iii. a3 ̸= 0, a2 = 0 and a1 = 0:

Under the influence of the adjoint action on Γ with ε = a, we have the following

outcome,

Γ′ = Ad(eaΓ1)Γ = Γ− a[Γ1,Γ] +
a2

2!
[Γ1, [Γ1,Γ]]− · · · ,

= Γ− a[Γ1, a3Γ3] +
a2

2
[Γ1, [Γ1, a3Γ3]]− · · · ,

= Γ,

= a3Γ3, a3 ̸= 0,

hence, we have

Γ3 = Γ3. (4.22)

Case-iv. a3 = 0, a2 ̸= 0 and a1 ̸= 0:
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Through the adjoint operation on Γ for ε = a, we have

Γ′ = Ad(eaΓ3)Γ = Γ− a[Γ3,Γ] +
a2

2!
[Γ3, [Γ3,Γ]]− · · · ,

= Γ− a[Γ3, a2Γ2] +
a2

2
[Γ3, [Γ3, a2Γ2]]− · · · ,

= Γ− aa2(−ρΓ2) +
a2

2
[Γ3, a2(−ρΓ2)− · · · ,

= Γ + aa2ρΓ2 +
a2

2
a2ρ

2Γ2 − · · · ,

= a1Γ1 + a2Γ2 + aa2ρΓ2 +
a2

2
a2ρ

2Γ2 − · · · ,

= a1Γ1 + a2Γ2e
aρ,

= a1Γ1 ± Γ2, aρ = ± ln(
1

a2
),

= Γ1 ± Γ2, a1 ̸= 0,

we get the result as,

Γ4 = Γ1 ± Γ2. (4.23)

Case-v. a3 = 0, a2 ̸= 0 and a1 = 0:

By employing the adjoint operation on Γ with ε = a, we derive

Γ′ = Ad(eaΓ3)Γ = Γ− a[Γ3,Γ] +
a2

2!
[Γ3, [Γ3,Γ]]− · · · ,

= Γ− a[Γ3, a2Γ2] +
a2

2
[Γ3, [Γ3, a2Γ2]]− · · · ,

= Γ− aa2(−ρΓ2) +
a2

2
[Γ3, a2(−ρΓ2)− · · · ,

= Γ + aa2ρΓ2 +
a2

2
a2ρ

2Γ2 − · · · ,

= a2Γ2 + aa2ρΓ2 +
a2

2
a2ρ

2Γ2 − · · · ,

= a2Γ2e
aρ,

= ±Γ2, aρ = ± ln(
1

a2
).

Consequently, we obtain

Γ5 = ±Γ2. (4.24)
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Case-vi. a3 = 0, a2 = 0 and a1 ̸= 0:

Γ′ = Ad(eaΓ2)Γ = Γ− a[Γ2,Γ] +
a2

2!
[Γ2, [Γ2,Γ]]− · · · ,

= Γ− a[Γ2, a1Γ1] +
a2

2
[Γ2, [Γ2, a1Γ1]]− · · · ,

= Γ,

= a1Γ1,

= Γ1, a1 ̸= 0.

Thus, we get

Γ6 = Γ1. (4.25)

The non-equivalent symmetry generators for Case-1 can be identified using Eqs. (4.20)-

(4.25).

Generators Conditions
Case-i: Γ1 = a1Γ1 + a3Γ3 a3 ̸= 0, a2 ̸= 0 and a1 ̸= 0
Case-ii: Γ2 = a2Γ2 + a3Γ3 a3 ̸= 0, a2 ̸= 0 and a1 = 0
Case-iii: Γ3 = Γ3 a3 ̸= 0, a2 = 0 and a1 = 0
Case-iv: Γ4 = Γ1 ± Γ2 a3 = 0, a2 ̸= 0 and a1 ̸= 0
Case-v: Γ5 = ±Γ2 a3 = 0, a2 ̸= 0 and a1 = 0
Case-vi: Γ6 = Γ1 a3 = 0, a2 = 0 and a1 ̸= 0

Table 4.4: Symmetry Generators for Case-1

4.2.3 Optimal System for Case-2

For Case-2 following is the is three dimensional algebra.

Γ1 =
∂

∂t
, Γ2 =

∂

∂u
, Γ3 = ρu

∂

∂u
+ 2(w + µ)

∂

∂w
.

The only non-zero commutator is.

[Γ2,Γ3] = ρΓ2. (4.26)
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Table4.3 shows the adjoint table for Case-2.

Ad Γ1 Γ2 Γ3

Γ1 Γ1 Γ2 Γ3

Γ2 Γ1 Γ2 Γ3 − ερΓ2

Γ3 Γ1 eερΓ2 Γ3

Table 4.5: Adjoint Representation Table for Case-2

Using the adjoint representation on the general element, Γ = a1Γ1 + a2Γ2 + a3Γ3 ∈
L3, the optimal system of one-dimensional algebra for Case-2 is obtained. The obtained

optimal system is identical to the optimal system derived for Case-1. Hence, the non-

equivalent symmetry generators for Case-2 are as follows:

Generators Conditions
Case-i: Γ1 = a1Γ1 + a3Γ3 a3 ̸= 0, a2 ̸= 0 and a1 ̸= 0
Case-ii: Γ2 = a2Γ2 + a3Γ3 a3 ̸= 0, a2 ̸= 0 and a1 = 0
Case-iii: Γ3 = Γ3 a3 ̸= 0, a2 = 0 and a1 = 0
Case-iv: Γ4 = Γ1 ± Γ2 a3 = 0, a2 ̸= 0 and a1 ̸= 0
Case-v: Γ5 = ±Γ2 a3 = 0, a2 ̸= 0 and a1 = 0
Case-vi: Γ6 = Γ1 a3 = 0, a2 = 0 and a1 ̸= 0

Table 4.6: Symmetry Generators for Case-2
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The procedure for constructing optimal systems of Lie algebras allowed by Eq.

(4.1) has been illustrated above, where each example corresponds to a specific value of

K(w). Using the symmetry generators identified in the optimal system, the associated

class of invariant solutions is established in the following segment. We also observe a

reduction in order of Eq. (4.1) under the optimal system of symmetry generators that

has been computed.

4.3 Reduction and Similarity Solutions

Using the one-dimensional optimal systems of algebras from the preceding section, we

now reduce the Eq. (4.1). By using symmetry reduction, it is possible to generate

exact solutions to the corresponding equations using the equivalence classes of sym-

metry generators. Authoritative texts on the subject explain the well-known and very

algorithmic process of symmetry reduction with respect to algebras of Lie invariance

algebras [10, 27]. The concept of seeking group-invariant solutions extends naturally

to partial differential equations involving any number of independent and dependent

variables. One can reduce the number of independent variables by one by employing

a one-parameter group that has a nontrivial impact on one or more of the indepen-

dent variables. A one-parameter group that has a nontrivial impact on one or more

independent variables allows for a reduction of the number of independent variables by

one. In this part, our emphasis is on the invariant form method, where we explicitly

solve the conditions for surface invariance by addressing the associated characteristic

equation as provided by

dt

αt(t, u, w)
=

du

αu(t, u, w)
=

dw

β(t, u, w)
. (4.27)

Additionally, we have performed all possible reductions for Eq. (4.1) for every optimal

system of obtained subalgebras in our study. From the optimal systems (section 4.2),

we obtain reductions of Eq. (4.1) for the following nontrivial symmetry generators.

4.3.1 Symmetry Reductions for Principal Case

Case-i. Consider Γ1 = Γ2. The corresponding characteristic equation is

du

1
=

dt

0
=

dw

0
.
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The similarity variables are obtained as follows:

w = F (T ), T = t,

now, differentiating w with respect to t and u, we get

wt =
∂w

∂t
=

∂

∂t
(F (T )) = Ḟ ,

wtt = F̈ ,

wu =
∂

∂u
(F (T )) = 0.

With the help of this transformation, the simplified form of Eq. (4.1) can be expressed

as follows:

Ḟ + F̈ = 0,

F = c1 + c2e
−T .

Consequently, the solution to Eq. (4.1) that is invariant under Γ2 is

w = c1 + c2e
−t. (4.28)

We now plot the 2D graph of this solution of the ODE with different values of c1 and

c2.
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Figure 4.1: 2D plot of w = c1 + c2e
−t

The function w(t, c1, c2) is expressed as the sum of a constant term c1 and an

exponentially decreasing term c2e
−t. Each curve illustrated on the plot corresponds

to a unique combination of c1 and c2. The graphical examination is intended to offer

insights into how changes in the constants c1 and c2 influence the overall behavior of

the function.

Case-ii. For this case, we have Γ2 = a1Γ1 + a2Γ2. The associated characteristic

equation can be expressed as

du

a2
=

dt

a1
=

dw

0
.

We derive the similarity variables as

w = F (g), where g = u− ct, c =
a2
a1

.
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By differentiating w with respect to both t and u, we get the subsequent expressions,

wt =
∂

∂t
(F (g)) =

∂F

∂g

∂g

∂t
= −cḞ ,

wtt = c2F̈ ,

wu =
∂

∂u
(F (g)) =

∂F

∂g

∂g

∂u
= Ḟ ,

wuu = F̈ .

Therefore, Eq. (4.1) becomes.

c2F̈ − cḞ − K̇(F )(Ḟ )2 −K(F )F̈ = 0, (4.29)

F = c1 ,

∫ F eDb(bK − c2)
Dc2

K∫
− (bK − c2)

Dc2−K
K ceDbdb+ c1

db− F − c2 = 0. (4.30)

Hence, the following equation represents a solution to Eq. (4.1).

w = c1,

∫ w eDb(bK − c2)
Dc2

K∫
− (bK − c2)

Dc2−K
K ceDbdb+ c1

db− w − c2 = 0 (4.31)

Case-iii. Consider Γ3 = Γ1. The corresponding characteristic equation is

du

0
=

dt

1
=

dw

0
.

The invariant variables can be obtained in this manner

let u = U,w = F (U),

The results of differentiating w with respect to t and u are as follows;

wt =
∂

∂t
(F (U)) = 0, wtt = 0,

wu =
∂

∂u
(F (U)) =

∂F

∂U

∂U

∂u
= Ḟ , wuu = F̈ .

K̇(F )(Ḟ )2 −K(F )F̈ = 0. (4.32)

Consequently, the form of an invariant solution is

F = c1, F =
K ln( K̇(c1U+c2 )

K
)

K̇
. (4.33)

Hence,

w = c1, w =
K ln( K̇(c1u+c2 )

K
)

K̇
. (4.34)

Eq. (4.34) represent solutions to Eq. (4.1).
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4.3.2 Symmetry Reductions for Case-1

Case-i. Now we examine Γ1 = a1Γ1 + a3Γ3. The characteristic equation associated

with this is

du

ρa3u
=

dt

a1
=

dw

2a3
.

The invariant variables can be obtained this way

lnu = (a3/a1)ρt− ξ, ξ = (a3/a1)ρt− lnu, and

U = 2 lnu− ρw, w =
2 lnu− U

ρ
.

After w differentiates with respect to t and u, the following occurs

wt =
∂w

∂ξ

∂ξ

∂t
= −(a3/a1)U̇ ,

wtt = −(a3/a1)Ü ,

wu =
∂w

∂U

∂U

∂u
= − 2

ρu
,

wuu =
2

ρu2
.

This transformation can be used to express the simplified version of Eq. (4.1) as follows:

Ü + U̇ + 6Λ

(
a1

a3eU

)
= 0. (4.35)

with symmetry generator,

Γ =
∂

∂ξ
.

We consider the transformations ξ = s and U = r. Now,

dr

ds
= ṙ = ṡ−1,

r̈ =
−s̈

ṡ3
.

By using this transformation in Eq. (4.35), we obtain

−s̈+ ṡ2 + 6Λṡ3
(

a1
a3er

)
= 0. (4.36)
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Now, let ṡ = S and s̈ = Ṡ. Using this in Eq. (4.36), we can transform the ODE into a

reduced form as given.

Ṡ − S2 − (6Λ
a1
a3

)
S3

er
= 0. (4.37)

Case-ii. In this case, consider Γ2 = a2Γ2 + a3Γ3. The characteristic equation that

corresponds to this is as follows,

du

(a2 + a3ρu)
=

dt

0
=

dw

2a3
.

In the following manner, one can acquire the variables that remain invariant

w =
2

ρ
ln(ρu+ 1) + ξ, a3 ̸= 0,

ξ = w − 2

ρ
ln(ρu+ 1), and

t = T,

By calculating the derivatives of w for both t and u, the following takes place

wt = −Ḟ ,

wtt = −F̈ ,

wu =
2

ρu+ 1
,

wuu = − 2ρ

(ρu+ 1)2
,

the application of this transformation enables the representation of the simplified form

of Eq. (4.1) as,

F̈ + Ḟ + Λ(4ρ− 1)e−ρF = 0. (4.38)

With symmetry generator,

Γ =
∂

∂t
.

We consider the transformations t = s and F = r. Now,

dr

ds
= ṙ = ṡ−1,

r̈ =
−s̈

ṡ3
.
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By using this transformation in Eq. (4.38), we obtain

−s̈+ ṡ2 +
3Λṡ3

er
= 0, ρ = 1. (4.39)

Now, let ṡ = S and s̈ = Ṡ. Using this in Eq. (4.39), we can transform the ODE into a

reduced form as given.

Ṡ − S2 − 3ΛS3

er
= 0. (4.40)

Case-iii. Consider Γ3 = Γ3. The following is an expression for the corresponding

characteristic equation.

du

ρu
=

dt

0
=

dw

2
.

The invariant variables can be obtained with this approach,

w = ln(u
2
ρ )− ξ,

ξ = ln(u
2
ρ )− w, and

t = T.

By computing the derivatives of w with respect to both t and u, the following unfolds,

wt = −Ḟ ,

wtt = F̈ ,

wu =
2

ρu
,

wuu = − 2

ρ(u)2
,

The implementation of this transformation allows for the expression of the simplified

form of Eq. (4.1) as follows:

F̈ − Ḟ − 2Λ

ρ
e−ρF = 0. (4.41)

With symmetry generator,

Γ =
∂

∂t
.

60



We consider the transformations t = s and F = r. Now,

dr

ds
= ṙ = ṡ−1,

r̈ =
−s̈

ṡ3
.

By using this transformation in Eq. (4.41), we obtain

−s̈− ṡ2 − 2Λṡ3

er
= 0, ρ = 1. (4.42)

Now, let ṡ = S and s̈ = Ṡ. Using this in Eq. (4.42), we can transform the ODE into a

reduced form as given.

Ṡ + S2 +
2ΛS3

er
= 0. (4.43)

Case-iv. Consider the following, Γ4 = Γ1 ± Γ2. The characteristic equation for

this has the following expression

du

1
=

dt

1
=

dw

0
.

We can obtain the variables that are invariant in the following way:

w = F (ξ),

u = t− ξ, and

ξ = t− u.

The following can be observed by calculating the derivatives of w with respect to both

t and u.

wt = Ḟ ,

wtt = F̈ ,

wu = −Ḟ ,

wuu = F̈ .

The implementation of this transformation enables the expression of the simplified form

of Eq. (4.1) as follows:

F̈ − Ḟ − ΛeρF (ρḞ 2 + F̈ ) = 0. (4.44)
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Therefore, the exact solutions of Eq. (4.44) is.

w = c1 , e
RootOf (ΛEi1(−ρeZ)+c2 eρc1 +Zeρc1 +ξeρc1 ) − c1 , (4.45)

is the solution to Eq. (4.1).

Case-v. The exact solution for this case are the same as we already did for Case-i

of the principal case.

Case-vi. We consider Γ6 = Γ1. The characteristic equation associated with this is as

follows:

du

0
=

dt

1
=

dw

0
.

We determine the similarity variables in the following manner:

w = F (U), u = U,

after w is differentiated with respect to t and u, the resulting expressions are obtained.

wt = 0,

wtt = 0,

wu = Ḟ ,

wuu = F̈ .

By applying this transformation, we can express the simplified form of Eq. (4.1) as

follows:

ρḞ 2 + F̈ = 0, (4.46)

F =
ln(Uc1ρ+ c2ρ)

ρ
. (4.47)

Consequently, the exact solution to Eq. (4.1) is,

w =
ln(uc1ρ+ c2ρ)

ρ
. (4.48)
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Figure 4.2: Graphical representation of the function w = ln(−uc1ρ−c2ρc1 )
ρ

4.3.3 Symmetry Reductions for Case-2

Case-i. Consider Γ1 = a1Γ1 + a3Γ3. The characteristic equation is given as

dt

a1
=

du

a3ρu
=

dw

2a3(w + µ)
.

The similarity variables are,

ξ = (a3/a1)ρt− lnu, and

U =
2

ρ
lnu− ln(w + µ).

Case-ii. Consider Γ2 = a2Γ2 + a3Γ3. The corresponding characteristic equation takes

the following form

du

a2 + a3ρu
=

dt

0
=

dw

2a3(w + µ)
, a3 ̸= 0.
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We now derive the invariant variables as,

t = T,

w = F (T )(ρu+ 1)
2
ρ − µ, F (T ) = (w + µ)(ρu+ 1)−

2
ρ ,

The following can be observed by calculating the derivatives of w with respect to both

t and u.

wt = Ḟ (ρu+ 1)
2
ρ ,

wtt = F̈ (ρu+ 1)
2
ρ ,

wu = 2(ρu+ 1)
2
ρ
−1F,

wuu = 2(2− ρ)(ρu+ 1)
2
ρ
−2F.

This transformation allows Eq. (4.1) to be expressed in a simplified form as,

F̈ + Ḟ − 6ΛF 2 = 0. (4.49)

With symmetry generator,

Γ =
∂

∂t
.

We consider the transformations t = s and F = r. Now,

dr

ds
= ṙ = ṡ−1,

r̈ =
−s̈

ṡ3
.

By using this transformation in Eq. (4.49), we obtain

−s̈+ ṡ2 − 6Λr2ṡ3 = 0, ρ = 1. (4.50)

Now, let ṡ = S and s̈ = Ṡ. Using this in Eq. (4.50), we can transform the ODE into a

reduced form as given.

Ṡ − S2 + 6Λr3S3 = 0. (4.51)

Case-iii. The solution in this case are the same as employed in case-ii above.
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Case-iv. In this instance, evaluate Γ4 = Γ1±Γ2. The following is the characteristic

equation associated with this

du

1
=

dt

1
=

dw

0
.

The similarity variables are,

u = t− ξ, and

w = F (ξ).

Determining the derivatives of w with respect to both t and u will result in

wt = Ḟ ,

wtt = F̈ ,

wu = −Ḟ ,

wuu = −F̈ .

After putting this transformation into practice, Eq. (4.1) can be expressed in the

following simplified form

F̈ (1 + ΛF + Λµ)− Ḟ (ΛḞ − 1) = 0. (4.52)

As a result, the exact solution for Eq. (4.52) is

F =
−c1Λ

2µ+ ΛeΛc1 (c2+ξ) − Λc1 − 1

Λ2c1
. (4.53)

Now, the solution to PDE (4.1) by putting ξ = t− u is

w =
ΛeΛc1 (c2+t−u) − Λc1 (Λµ+ 1)− 1

Λ2c1
. (4.54)
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Figure 4.3: 3D plot of w = ΛeΛc1 (c2+t−u)−Λc1 (Λµ+1)−1
Λ2c1

Case-v. Here, analyze Γ5 = ±Γ2. The characteristic equation linked to this is as

follows:

du

1
=

dt

0
=

dw

0
.

We proceed to deduce the invariant variables as follows:

w = F (T ), T = t.

Now, differentiating w with respect to t and u, we get

wt = Ḟ ,

wtt = F̈ ,

wu = 0.

This transformation allows us to describe the simpler form of Eq. (4.1) as

Ḟ + F̈ = 0,

F = c1 + c2e
−T .
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the exact solution is,

w = c1 + c2e
−t. (4.55)

Case-vi. Here, examine Γ6 = Γ1. The characteristic equation associated with this is

du

0
=

dt

1
=

dw

0
.

The invariant variables are then determined as

u = U, and

w = F (U).

Calculating the derivatives of w with respect to t and u yield,

wt = 0,

wtt = 0,

wu = Ḟ ,

wuu = F̈ .

This conversion enables us to express the simplified version of Eq. (4.1) as,

Λ(Ḟ )2 + Λ(F + µ)F̈ = 0. (4.56)

Therefore, the solution to Eq. (4.56) is

F = −µ±
√
2c1U + µ2 + 2c2 . (4.57)

The exact solution of Eq. (4.1) is

w = −µ±
√
2c1u+ µ2 + 2c2 . (4.58)
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Figure 4.4: 2D plot of w = −µ±
√
2c1u+ µ2 + 2c2

Figure 4.4 displays multiple curves, each corresponding to a different value of µ.

For each µ, there are two curves indicating the positive and negative solutions of the

function. As µ undergoes changes, the complete set of curves vertically shifts. This

adjustment occurs because of the term −µ in the function, which causes a vertical

translation of the graph.

The primary form of each curve is parabolic, representing the quadratic term√
2c1u+ µ2 + 2c2 . The quadratic equation’s solutions are shown by the places where

the positive and negative curves overlap. The intersection of the function’s two branches

is at these points.
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Chapter 5

Summary

We study the basic ideas that have shaped the field of our research in the introduc-

tory chapter. We start by looking at symmetry and optimal systems, which lay the

groundwork for our study. Lastly, we dig into the hyperbolic heat equation, a way to

understand how heat transfers over time.

The key concepts for understanding Lie point symmetries of differential equations is

covered in the second chapter. The first part of the chapter introduces the basic ideas

and fundamental concept related to Lie point symmetries. A thorough examination of

the essential theoretical aspects is included, such asa definition of Lie point symmetries

and their significance in solving differential equations. To illustrate the application of

these concepts, an example of the Pavlov equation is presented towards the end of the

chapter.

Chapter 3 provides a detailed study of optimal systems, the adjoint representation,

and one-dimensional optimal system algebras within the scope of Lie point symme-

tries. To further improve the reader’s understanding, the chapter includes a review

of the paper by Ali Raza et al., titled ”Optimal System and Conservation Laws for

the Generalized Fisher Equation in Cylindrical Coordinates.” The study of six cases

in this paper highlights the identification of a missing generator in Case-4 and Case-5,

as emphasized in the paper’s review.

In the final chapter, we study the invariant solutions for the nonlinear hyperbolic

heat equation using Lie symmetry analysis and optimal systems of subalgebras. The

focus lies on categorizing Lie generators through optimal systems, with special atten-

tion given to two specific cases identified in the study. Using an invariance method,
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we determine the optimal set of non-similar symmetry generators for the nonlinear hy-

perbolic heat equation, which is visually represented in a convenient tree leaf diagram.

The study further involves computing complete symmetry reductions and correspond-

ing invariant solutions for each case. In certain cases, we were able to find the exact

solutions, however, in the remaining cases, we have non-linear ODEs whose solutions

can be obtained using some other techniques. That solution, if exists, will lead to the

exact solution of Eq. (4.1). A detailed analysis is then provided, offering insights into

the characteristics of the nonlinear hyperbolic heat equation solutions, all presented in

a graphical format for enhanced understanding.
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