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Abstract 
 

Keywords: Leukemia, CNN, feature fusion, accuracy, classification. 

Acute Lymphoblastic Leukemia (ALL) a medical threat which principally affects the pediatric 

population, demands early diagnosis for fruitful treatment results. Deep learning models have set a 

really high standard in medical imaging by providing extensive applications for the identification 

and categorization of ALL. Over time, convolutional neural networks (CNN) have made significant 

stature in medical image analysis, especially when it comes to detection and categorization of ALL. 

The proposed study presents a pioneering classification model, XIncept-ALL, which benefits from 

the transfer learning technique. Furthermore, by improving generalization with incorporation of 

valuable traits extracted a diverse dataset, the projected model mitigates the concerns of overfitting 

with the help of two pre-trained models, Inception and Xception, both of which are trained on the 

widespread ImageNet dataset. Additionally, through merger of distinctive features extracted from 

both models, the proposed system is expected to refine feature representation and overall 

performance by using feature fusion. Nevertheless, the anticipated model proves itself as a unique 

and remarkable framework with not only an exceptional accuracy of 99.0% on the ALL dataset, but 

also the capability to classify various ALL subtypes (Benign, Earl, Pre-Acute and Pro-Acute) with 

unequalled correctness within a single classifier. Our results show the superior performance of 

XIncept-ALL for accurate and rapid effective classification of acute lymphocytes images, thereby 

highlighting its competence as an efficient diagnostic tool. Furthermore, this model has the potential 

to be employed in diverse medical imaging contexts, beyond leukemia. 
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Chapter 1 

Introduction 
 

 

Cancer is the considered to be one of the foremost causes of death worldwide. One of the deadliest 

types of cancer is Acute Lymphoblastic Leukemia (ALL).  ALL is a blood cell cancer that begins 

from the bone marrow and is characterized by an uncontrolled, accelerated growth of immature 

blood cells that affects both children and adults. The three primary components of blood have 

varying weights: red blood cells, plasma, and white blood cells (WBC). One WBC for every 100 

red blood cells, or approximately 1% of the blood, are WBCS cells [1]. WBCs consists of five 

different types and there is a standard count of each type of these from the total WBC count. Any 

change in the percentage of each type is considered an abnormality that can lead to immune 

disorders. These include basophils, eosinophils, neutrophils, lymphocytes, and monocytes. 

According to the total WBC count, the standard counts for these cells are 60%, 30%, 5%, 4%, and 

less than 1%, correspondingly [2]. Any abnormalities in these counts can be considered as a 

probable sign of cancer. The abnormality in the WBC count can be related to the production of 

other unwanted cells. The overproduction of cells, sometimes referred to as blasts or leukemic 

cells, causes them to hinder normal hematopoiesis and push out healthy leukocytes in the bone 

marrow. This makes it more difficult for the body to fight infections and control bleeding [3].  
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Figure 1.1: Different Types in White Blood Cell (WBC) 

In ALL the malignant WBC are produced. These malignant cells attack normal blood cells which 

may cause death as a worst-case scenario. Malignant WBC also causes other types of deadly 

illnesses by travelling through the circulation thus harming the liver, spleen, kidneys, brain, and 

other organs. Leukemia is a deadly disease and the most common one disease between children 

and adults. It is linked to cancer that primarily arises from the production of immature white blood 

cells by the bone, which subsequently compromises the immune system [4]. It can be divided into 

four types: chronic myelogenous leukemia (CML), acute lymphoblastic leukemia (ALL), acute 

myelogenous leukemia (AML), and chronic lymphocytic leukemia (CLL). ALL being one of the 

most prevalent cancers affecting children has a decent chance of being cured. However, adults may 

also experience this, but the prospects of a recovery are minimal if discovered at a later stage. 

Direct blood infusions into veins, chemotherapy, and any type of transplant that involves moving 

organs or tissues inside the body or from one person to another are all forms of treatment for acute 

lymphocytic leukemia. For doctors to detect this kind of disease. stained blood smear microscopy 
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pictures are manually evaluated to provide the first diagnosis of ALL. This method can cause an 

error in diagnosing the disease and requires an expert eye to detect the disease. This method is also 

quite time consuming.  

 

Figure 1.2: Types of Leukemia 

It is imperative to develop a model capable of effectively handling images acquired under various 

environmental conditions. This is to ensure that the limitations of existing techniques and systems 

are addressed. To solve this issue computer aided design tools are usually proposed. Automated 

analysis is provided by computer vision techniques, which can aid in the diagnosis of this illness 

by professionals. These tools help doctors diagnose the disease at early stage and hence increase 

the patient’s survival rate. There are many tools in literature that provide an automated system for 

diagnose of this disease. These systems rely on deep learning models to classify images. 
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1.1 Medical Background Information about Acute Lymphoblastic Leukemia 

The malignancy known as acute lymphoblastic leukemia (ALL) affects B or T lymphoblasts and 

is typified by the unchecked growth of aberrant, immature lymphocytes and their progenitors. This 

finally leads to the replacement of additional lymphoid organs and parts of the bone marrow, 

resulting in a distinctive pattern of illness.  

The following are some of the medical information about ALL:  

1. Signs and symptoms: Bone marrow infiltration and/or extramedullary illness are frequently 

observed in patients with ALL. Anemia, thrombocytopenia, and neutropenia are symptoms 

of bone marrow failure that individuals experience when leukemic blasts replace their bone 

marrow. Additionally, people may exhibit fever, bleeding, blood clots, disseminated 

intravascular coagulation (DIC) and anemia symptoms such tiredness, pallor, palpitations, 

heart murmur, and dyspnea even with little exercise. 

 

2. Treatment: The subtype of ALL, the patient's age, and the existence of certain genetic 

abnormalities are some of the variables that affect how an individual with ALL is treated. 

Utilizing risk-adapted treatment methods has reduced medication toxicity while increasing 

cure rates. Treatment options for pediatric ALL include chemotherapy, stem cell 

transplantation, and radiation treatment. 

 

3. Prognosis: Various factors, including the patient's age, subtype of ALL and presence of 

specific genetic anomalies contribute significantly to the prognosis of ALL. Enhanced 

diagnostic techniques and therapeutic interventions have led to significant advancements, 

resulting in a remarkable 90% overall cure rate among pediatric patients diagnosed with 

acute lymphoblastic leukemia [5]. Different classes of ALL are shown in Figure 1.3. 
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Figure 1.3: A Visual Diagram of Benign, Early Lymphoblastic Leukemia, Pre-Acute and Pro-

Acute Lymphoblastic Leukemia via Diagnosis by Images 

 

Understanding the medical information behind ALL is crucial for healthcare professionals and 

patients to develop effective treatment plans and manage the physical and emotional challenges 

associated with this disease. 

1.2 Background 

Numerous studies on the subject of white blood cell classification can be found in the literature. 

Earlier methods classify the blood picture data by combining a machine learning model with an 

image processing technique. In [6] a traditional approach of ALL classification is proposed which 

involves using a handcrafted image features extraction method along with support vector machine 

classifier. The authors of [7] offer yet another technique for using SVM classifiers to identify acute 

lymphoblastic leukemia (ALL), in which the classifier is trained using the geometrical and 

statistical characteristics of nuclei. In [8] the authors present a proposal using handcrafted 

quantitative features to build a system for automatic cell image recognition. For the purpose of 

detecting pediatric ALL, tests with a variety of models are presented in [9]. Based on the results 
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of these experiments, it is determined that the CART model was the most appropriate model for 

the dataset used in the study.  

In [10] an automatic approach for classifying ALL from blood smear images using ML algorithms 

combined with digital image processing techniques is presented. The method makes use of a three-

phase filtration algorithm and thorough preparation. From the picture, sixteen manually created 

features are extracted out and fed into SVM and ANN classifiers. Recent papers have effectively 

applied deep learning-based approaches to ALL classification. Numerous cell categorization tasks 

have seen successful training and testing of pretrained CNNs. In [11] the authors use pretrained 

Deep learning models (GoogleNet, AlexNet, and ResNet-101) to build a system for white blood 

cells (WBCs) classification. The authors compare between the models in terms of classification 

accuracies. In [12] the authors propose a comparison between conventional digital image 

processing approaches and deep learning architectures for the task of classifying WBCs. The 

results prove the superior performance of deep learning architectures over traditional methods. A 

customized CNN architecture for classifying WBCs cells is presented in [13]; High accuracy 

scores are obtained by this design in multiclass and binary classification scenarios.  

In [14] a novel system that combines ResNet and Inception networks for WBCs classification is 

proposed. In the preprocessing phase, the suggested method additionally makes use of a number 

of augmentation strategies. CNNs use hierarchical topological feature extraction to classify WBCs. 

A model that uses the most important features of a color picture to detect ALL is provided in [15]. 

The suggested technique consists of four basic stages: accuracy measurement, feature extraction, 

segmentation, and improvement. The ALL-IDB dataset's highest accuracy was archived using the 

suggested approach. The authors of [16] suggest a comparison study of several approaches for the 

early identification of ALL. This study compares and analyses the various phases of the diagnostic 

process.  A methodology for recognizing ALL using WBC microscopic pictures is presented in 

[17]. For classification, four distinct ML models are used, and the results are compared. The 
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authors find that the SVM model provided the best accuracy for the used dataset based on the 

experimental results.  

The work in [18] provides a unique method for segmenting the WBC's cytoplasm and nucleus. 

The work evaluates several approaches utilized in the literature to segment WBCs. The 

microscopic images are then classified into the four classes of ALL using supervised classification 

models constructed to extract characteristics. The authors of [19] suggest using an aggregated 

pretrained CNN algorithm to identify ALL in microscopic WBC images. The authors prevent 

overfitting by employing a number of data augmentation strategies. The VGG19 and 

NASNetLarge collectively make up the grid, which is applied for classification. As a result, the 

overall accuracy achieved by the final collaborative models was calculated to be higher as 

compared to the individual networks. An in-depth synopsis of the trends and techniques used to 

identify Leukemia from microscopic images have been described in [20–22]. 

1.3 Research Motivation 

Despite advancements in varied methodologies for diagnosing ALL considerable challenges still 

persist. Even with the application of sophisticated image processing technologies during and after 

image acquisition, accurately delineating distinctive abnormal features in images related to normal 

cases pose a significant challenge. The intricacies involved in precisely identifying and extracting 

relevant features associated with ALL contribute to the complexity of this task. Publicly available 

datasets encompass a diverse range of images. Therefore, feature extraction of pertinent and 

valuable traits is crucial. Consequently, computerized systems encounter difficulties in precisely 

diagnosing the symptoms associated with ALL. This research has a dual objective. Firstly, it aims 

to construct a comprehensive dataset for the classification of benign, early, pre-acute and pro-acute 

lymphoblastic leukemia. Secondly, the study seeks to develop feature fusion model deep learning 

(DL) model capable of autonomously interpreting images relevant to ALL. To achieve this, a 
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hybrid model called XIncept is proposed, engaging two pre-trained models from the ImageNet 

dataset: Inception and Xception. This work is significant as it proposes an innovative classification 

system for ALL, potentially offering real-world implications in medical diagnosis and treatment. 

1.4 Research Contribution 

In this research, a novel system (XIncept-ALL) is premeditated to address the challenging task of 

ALL classification. This research focuses not only on enhancing the robustness of machine 

learning-based classification of ALL images but also to increase the generalizability. In order to 

complete this aim, a diverse dataset has been used. Additionally, a machine learning model, though 

highly complex but capable of efficiently processing such varied data has been developed. This 

tedious task is achieved by classifying available data into Benign, Early, Pre-Acute and Pro-Acute 

using the proposed architecture. The combination formed by using this diverse dataset along with 

a robust model is intended to improve the performance and significantly alleviate the reliability 

classification system for ALL images. The following points are the XIncept-ALL system’s 

important contributions points. 

1. Integration of Inception and Xception blocks was used to formulate a multilayer 

architecture of the XIncept-ALL system. To identify any illness affiliated with ALL, 

Inception blocks were added to the multifaceted formation of the XIncept-ALL model. 

This approach led to the development of a multi-layered architecture that proved adept at 

effectively addressing the classification challenge. 

2. The classification approach proposed in this study for ALL relies on deep features and 

color space phases, constituting the core of the methodology. An intricate color scheme 

and various deep features were made the foundations of the classification technique 

employed in the projected model. To the best of the author’s knowledge there is no work 

in literature that works more efficiently than the proposed systems. 
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3. Our system has exhibited superior performance compared to other state-of-the-art methods 

proposed in the current literature, achieving a significantly higher accuracy rate since the 

proposed model (XIncept-ALL) is trained with a large dataset of ALL images. The 

significance of this extensive dataset is crucial in empowering the trained model to attain 

exceptionally high classification accuracy. 

 

1.5 Paper Organization 

This thesis is divided into seven chapters: 

1. Chapter 1: This chapter includes the basic introduction, background, research 

motivation and research contribution. 

2. Chapter 2: This chapter provides an overview of relevant literature, encompassing 

articles pertinent to the scope of this study. 

3. Chapter 3:  This chapter presents the material and methods. 

4. Chapter 4:  This chapter delivers the experimental results. 

5. Chapter 5:  This chapter describes the discussion. 

6. Chapter 6:  This chapter presents a comparative analysis between our research and the 

latest advancements in the field. 

7. Chapter 7:  This chapter concludes the report and highlights the direction for future 

work. 
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Chapter 2 

Literature Review 

 

Plentiful research studies have explored the identification of ALL, employing various 

methodologies and technologies critical for enhancing the precision and efficiency of disease 

diagnosis. This section summarizes papers from literature that apply deep learning models on the 

(ALL) classification problem.  

2.1 Advanced Techniques in ALL Diagnosis using CNNs 

In [23] a novel automated system for diagnosis of acute lymphoblastic leukemia (ALL) using CNN 

is proposed. The fundamental layer of a CNN architecture is the convolutional layer, tasked with 

extracting image features from input images. To generate diverse image feature outcomes, a 

convolution layer generally employs multiple convolution kernel filters. Next comes the layer that 

plays a role in reducing the dimensionality of extracted features and compressing data to avoid 

overfitting. The pooling layer, also referred to as the down-sampling layer, plays a role in reducing 

the dimensionality of extracted features and compressing data to prevent overfitting, enhancing 

the model's fault tolerance. We utilize max-pooling, and the final results of the object classification 

function are generated by the fully connected dense layer. Image classification occurs in this layer 

by amalgamating the feature data from each neuron in the top layer. With the exception of the final 

weighted layer, the layers of the CNN architecture are set to a not-trainable mode to ensure optimal 

performance. Typically, a CNN architecture comprises three main layers. The convolutional layer, 

serving the purpose of extracting image features from input images, employs multiple convolution 

kernel filters to produce diverse image feature results. However, the use of DL comes with its own 

set of concerns, including aspects related to clinical implementation as well as technically ensuring 
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that everything runs smoothly. Other similar challenges include conveying the findings of 

algorithm, considerations related to legality of processes and finally difficulties in convincing 

people to adopt artificially intelligent algorithms. These individuals range from doctors and 

physicians to patients. Researchers have found applications of deep learning in several fields such 

as speech recognition and natural language processing. Similarly, image recognition in another 

area impacted by it however, the healthcare industry has only recently started to witness its 

impacts. 

The model was made capable to work on labelled microscopic blood images to recognize 

malignant leukemic cells obtained from a database called ALL-IDB. In this model, in order to 

quantity the obtained data from said dataset, the authors perform multiple data augmentation 

procedures which also helps in reducing the issue of over-training the model. Through a five-fold 

validation process, the model was trained on 515 photos, achieving 95.54% accuracy rate. The 

model has been tested on the remaining 221 photos, obtaining nearly 100% accuracy during the 

majority of the trials, retaining an average of 99.5% accuracy. The approach effectively uses 

unprocessed data without the requirement for pre-processing or segmentation. Thus, using this 

technique can help pathologists accurately diagnose ALL. In [24] a novel system for ALL 

classification is proposed. The initial step of the system is preprocessing of image. The authors use 

Gaussian Blurring (GB) method for enhancing the image before classification. The Gaussian Blur 

technique is employed to lessen the noise/ irrelevant fragments in an image. The picture is then 

subjected to a segmentation phase employing the Hue Saturation Value (HSV) technique and 

morphological stage. The HSV method works in three steps representing colors that matches with 

how human eye perceives a color. Starting off with Hue, a channel which performs color encoding 

when translated from RGB. As a second step, saturation codes the purity and intensity of the color. 

Lastly, value encrypts the brightness, gloss and shading features of a color. Grouping of two 

datasets with real-time is used by authors to evaluate their proposed model. A total of 190 images 

(89 cancerous images and 101 non-cancerous images) are taken for experimentation. In order to 
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improve and enhance the quality of dataset images, various pre-processing techniques including 

edge smoothing, noise removal and contrast enhancement are used. Overall, the system achieved 

an accuracy of 96.30% on author’ dataset, while achieving 95.41% accuracy on ALL-IDB1 

dataset.  

In [25] a novel diagnostic model based on CNN is projected. The suggested approach is built on 

deep learning processing of medical images. The authors have used C-NMC 2019 for training their 

model which is a publicly available dataset. The main goal of this research is to create a computer-

aided design (CAD) which would facilitate in differentiation of leukemic cells in images pf blood 

clotting from normal cells. In this study, a non-invasive diagnostic method based on CNN is 

presented which consists of a CNN-based model, uses the visual geometry group from Oxford 

(VGG16) and an attention module called Efficient Channel Attention (ECA) to extract better 

quality deep features from the image dataset, improving feature representation and classification 

outcomes. The attention module used by the authors forces the system to learn the high-level 

features. The proposed technique shows how the ECA module helps in minimizing morphological 

similarities between photos of healthy and cancerous cells. Using a range of augmentation 

techniques also increases the quantity and quality of training data. As for the performance 

evaluation, five metrics including accuracy, sensitivity, precision, specificity and F1 score are used 

by the authors. In [26] a novel algorithm for classification of leukemic cells to healthy and non-

healthy blood cells is proposed. The algorithm is implemented with CNN to predict the disease 

from microscopic images. The trained system reached maximum accuracy of 95.54% on a dataset 

procured from “ALL Challenge Dataset of ISBI, 2019”’ which contains cell images belonging to 

both healthy individuals and patients diagnosed with ALL. Imbalance in images of dataset was 

removed using various augmentation techniques namely vertical horizontal flipping, clockwise 

and anti-clockwise rotation, random brightness adjustments and Gaussian blur. Moreover, auto-

orientation and resizing were used to remove bias from images. For this research, segmented while 

blood cell regions are used for CNN categorization of leukemia. Advantage of this work is that it 
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is capable to operate on all available data while reducing the error rate and computational time 

during the screening process. In summary, these studies collectively showcase diverse approaches 

and technologies in the field of oncology for detecting and diagnosing a wide spectrum of cancers. 

They underscore the potential of artificial intelligence, deep learning, and automated diagnostic 

systems in enhancing accuracy, objectivity, and efficiency in disease diagnosis, ultimately 

benefiting patients and healthcare practitioners alike. 

2.2 Progressive Ensemble and ML Practices for ALL Identification 

In [27] an ensemble automated prediction model is proposed. C-NMC leukemia dataset publicly 

available in Kaggle repository is employed by authors to evaluate the performance of their model 

for detection of leukemia. The system is first built using a data preprocessing step in which the 

image is cropped in order to exclude the noisy data which adversely affects the performance of the 

model. Generally, all useful information obtained from raw data is acquired using machine learning 

(ML) models on the dataset. After data preprocessing step, feature extraction is performed using 

pre-trained convolutional neural network architectures (VGG19, ResNet50 or ResNet101). The 

MinMaxScaler normalization technique is used to scale the data. For feature selection methods, 

the authors employed random forest, recursive feature removal, and analysis of variance 

(ANOVA). Selected features must exhibit relevant traits that helps classify data into classes or 

groups ultimately facilitating decision-making to attain high accuracy. Ensemble voting of the 

classifications machine learning algorithms is applied which shows that SVM can reach 90% 

accuracy. 

Manual examination and dependence on experience of medical specialists for detection of ALL 

are time-consuming conventional methods. Automated detection systems are introduced to 

minimize human intervention and provide more accurate clinical outcomes. In order to 

automatically identify ALL, a novel method based on ML algorithms and digital image processing 
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techniques is presented in [28]. In order to get the best segmentation results, a pre-processing step 

using three phase filtering algorithms is suggested following a segmentation step to tackle this 

issue. Moreover, to increase the capability of classifiers to better recognize leukemic cells in 

images, 16 robust features were extracted from available images. For classification of images two 

machine learning classifiers (ANN, SVM) are proposed which utilize the whole range of samples 

from dataset to find the optimal characteristics possessed by both classifiers. The authors used a 

local dataset for training and testing of their procured from University Hospital Ostrava. Native 

experts performed manual examination on blood smear images using multiple morphological 

methods to differentiate between normal and leukemic cells. Standard arithmetic operations are 

employed as pre-processing steps to enhance the quality of images in dataset. The system achieved 

98.25% and 100% accuracies respectively. Afterwards, the authors also carried out a reverse 

analysis to determine the primary failures encountered in the classification process. In [29] novel 

modifications to conventional neural network architectures are implemented. In this study, two 

datasets namely ALL-IDB1 and ALL-IDB2 containing blood smear images of normal individuals 

and leukemic patients along with cropped images featuring relevant parts of an image are used to 

evaluate the performance and efficiency of the proposed model. As far as the training of the model 

is concerned, authors employed another dataset called C-NMC 2019 which consists of images of 

both healthy and leukemic cells. Various data augmentation methods and image transformation 

practices including mirroring, rotation and Gaussian blurring are used to balance dataset images 

for proper training and validation of the model. The modifications suggested by authors result in 

good performance in classification of malignant leukocyte. Some of the image processing steps 

applied to images are spinning, fading, shearing, and inserting salt-and-pepper noise. The testing 

model used for testing are VGG16, VGG19, and Xception. Moreover, the proposed model uses 

achieves f1-score of 92.6 using data augmentation. 
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2.3 Innovative DL Models for Enhanced ALL Classification 

In [30] the authors propose a new hybrid model for the classification of ALL disease. In this model, 

the residual convolutional neural network (CNN), ResNet-50V2 is trained with the GA method to 

determine the optimal hyperparameters that maximize accuracy.  The reason for using GA is to 

ensure accurate predication which would lead to highest accuracy rate. This method of using 

optimization algorithms is normally used instead of tuning values obtained manually which is a 

time-consuming task and does not always result in best accuracies. A striking accuracy of 98.4% 

is achieved by the authors by employing GA optimization for enhancing the accuracy of the 

classifier. In [31] an explainable system for ALL classification is applied. This study proposes 

novel deep learning model for ALL classification that is extremely accurate and understandable 

due to the visual aids added to the model. The proposed model is trained and tested on digitalized 

images of blood/ bone marrow from 6 diverse databases. Images available in each database have 

distinct characteristics such as saturation, color of image, size of image, number of images, 

illumination etc. The authors employed 7 of the most widely used performance metrics to evaluate 

the efficiency of their model which include accuracy, precision, recall, specificity, dice similarity 

coefficient and intersection over union. The study suggests a leveraging robust segmentation of 

White Blood Cell (WBC) nuclei as a stringent attention mechanism within an Explainable AI 

(XAI) framework for leukemia classification, aiming to address this challenge effectively. 

Achieving WBC segmentation is facilitated by integrating image processing and U-Net 

methodologies, thereby bolstering the system’s overall efficacy. 

This study [32] proposes a variant of deep neural networks called (ALNett) model that uses depth-

wise convolution with different dilation rates to categorize images of tiny white blood cells. 

Convolution, max-pooling, and normalization are the specific cluster layers that are used to 

accurately predict ALL by taking powerful local and global information from the microscopic 

blood images. These layers also give richer structural and contextual data. When compared with 
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other models including VGG16, ResNet-50, GoogleNet and AlexNet, the model's performance 

was impressive. Based on metrics such as precision, recall, accuracy, F1 score, loss accuracy, and 

receiver operating characteristic (ROC) curves, the suggested ALNett model produced the 

maximum classification accuracy of 91.13% and an F1 score of 0.96 with reduced computational 

complexity, according to experimental data. ALNett outperformed the other training networks and 

showed promising ALL classification. 

2.4 Latest Advancements in ALL Detection and Categorizations  

In [33] a new deep learning model system is executed to classify the images of C-NMC 2019 and 

ALL-IDB2 datasets with high efficiency and accuracy. In the proposed system blood micrographs 

were enhanced and the WBC-only areas were then extracted using the active contour approach and 

sent to three different CNN models (ResNet50, DenseNet121, and MobileNet) for additional 

analysis.  In this study, a novel hybrid model was developed by integrating CNN-RF and CNN-

XGBoost techniques, marking the inaugural attempt at analyzing ALL images within the two 

datasets. Deep feature maps are extracted in this hybrid model using the DenseNet121, ResNet50, 

and MobileNet models. With redundant and insignificant features, these CNN models generate 

large feature counts. To ensure the selection of highly representative features, deep feature maps 

extracted by CNN were subjected to Principal Component Analysis (PCA). From there, the 

features were given to the classifiers (RF,XGBoost) for classification.  

In [34] the advancement of cutting-edge medical technology, especially when it comes to the 

crucial area of leukemia research; its detection and diagnosis. The convolution technique, which 

is frequently applied in this field, might result in human mistake. In order to diagnose and 

categorize leukemia cases, instruments such as the Adaptive Network-Based Fuzzy Inference 

Systems (ANFIS) are used to handle this problem. ANFIS is a useful tool because of its reputation 

for function approximation. Nevertheless, its accuracy could be improved. An enhanced ANFIS (I 
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ANFIS) model is suggested in order to get over this restriction. By comparing training and test 

feature data, it makes use of Euclidean distance to predict leukemia data. Noteworthy in our 

findings is the demonstrated efficacy and utility of our study, emphasizing that features obtained 

through deep learning. Our overarching objective is to enhance the prospects for timely 

intervention and improved outcomes by advancing the early detection of ALL through the fusion 

of computer science and medical imaging. For a detailed overview of research findings related to 

the identification and classification of ALL, refer to Table 2.1. 

Table 2.1. Contributions and Outcomes of Different Articles for the Classification of 

ALL Images 

Authors Publication 

Year 

Contribution Results 

Vaghela, 

Himali P [1] 

2020 Used CNN for classification of 

ALL disease 

99.5% in average of all trials 

Alexandrea 

Bodzas [28] 

2020 Used neural network and support 

vector machine as a classifier for 

their own dataset 

The neural network model 

achieved 97.5% which is better 

than the SVM model 

Zakir Ullah 

[25] 

2021 Performed attention 

enhancement of VGG6 

91.1% on C-NMC 2019 

de Oliveira 

[29] 

2021 Made small modifications to 

different neural network models 

(VGG16, VGG19, Xception) 

and used image augmentation 

methods to balance the training 

and validation sets 

Accuracy is not reported 

however the model achieves f1-

score of 92.6 
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Larissa 

Ferreira 

Rodrigues 

[30] 

2022 Used genetic algorithm to 

optimize deep residual neural 

network 

98.46%  

Ghada Atteia 

[35] 

2022 Tuned the hyperparameters of 

CNN using Bayesian 

optimization algorithm 

 

100% accuracy on ALL-IDB 

dataset 

Ahmad 

Almadhor 

[27] 

2022 Contrasted several machine 

learning algorithms such as RF, 

SVM, KNN, and NB, as well as 

ensemble voting classifiers using 

predefined CNN architectures 

(VGG16, ResNet50, or 

ResNet101) for feature 

extraction methods 

Superior performance of the 

SVM model over other 

techniques reaching 90% on C-

NMC 2019 is reported. 

Ibrahim 

Abdulrab 

Ahmed [33] 

2023 After merging DenseNet121-

ResNet50-MobileNet's deep 

features map, RF or XGBoost 

were used to classify the data 

Accuracy 98.8% on C-NMC 

2019 

Accuracy 100% on ALL-IDB2 

Tulasi 

Gayatri Devi 

[24] 

2023 Proposed a novel GBHSV-Leuk 

to detect an classify ALL disease 

The method consists of two 

stages Gaussian blurring 

Using the ALL-IDB1 public 

dataset, the accuracy was 

95.41%. 
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technique and Hue Saturation 

Value (HSV) technique 

Jose Luis 

Diaz 

Resendiz 

[31] 

2023 Implemented an explainable 

model to solve the problem of 

black-box and used novel image 

segmentation technique 

combining image processing and 

U-net techniques 

 

Accuracy 98.51 % on ALL-IB2 

M.Anline 

Rejula, [34] 

2023 Classification of ALL using 

improved ANFIS 

Accuracy 97.4% on ALL image 

dataset 
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Chapter 3 

Materials and Methods 

 

The proposed architecture of this work is illustrated in Figure 3.1. To improve picture 

visualization, a pretreatment procedure is applied once the image is first obtained using appropriate 

image processing techniques. Subsequently, the deep learning model under discussion is deployed 

to detect features within the images and identify the most relevant features for Acute lymphoblastic 

leukemia (ALL) classification. Finally, a XGBoost classifier is utilized to categorize the image 

into distinct ALL-related categories. This paper introduces the XIncept-ALL system for the 

categorization of blood related illnesses, specifically ALL. The XIncept-ALL system leverages the 

InceptionV3 model and Xception model. Deep learning is instrumental in extracting meaningful 

characteristics from the computer-Aided Diagnosis (CAD) system. In order to retain an already 

learned model on ALL dataset, transformation learning is employed. The XIncept-ALL 

architecture, designed for extracting relevant ALL characteristics from images, comprises six 

major phases as depicted in Figure 3.1. The properties derived from both the InceptionV3 model 

and Xception model are synergistically combined. Notably, the proportions of the thick blocks 

continuously evolve during the training process. The classifier layer, is incorporated as the final 

step to detect the image as Benign, Early Lymphoblastic Leukemia, Pre-Acute and Pro-Acute. The 

XGBoost classification process, thereby enhances overall classification outcomes. 

An outstanding feature of the innovative model under study, which combines Inception and 

Xception architectures, lies in its extensive empirical validation. Through a multitude of 

comprehensive studies spanning diverse datasets and real-world applications, the combined model 

consistently exhibits superior performance compared to conventional methods. The robust 

empirical evidence holds particular significance in the domains of deep learning and computer 
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vision. Moreover, this hybrid model demonstrates high resource efficiency, rendering it well-suited 

for deployment in resource-constrained environments, such as edge devices, where computational 

and memory constraints are critical considerations. In addition to its enhanced efficiency, the 

model stands out for improved interpretability, a crucial aspect in industries like healthcare and 

autonomous driving. The elucidation of the decision-making process, achieved through the 

integration of blocks from Inception and Xception components, proves pivotal for applications 

where trust and safety are paramount concerns. 

 

Figure 3.1: Block Diagram of a Proposed XIncept-ALL Model 

3.1 Dataset 

The dataset under consideration was meticulously curated within the bone marrow laboratory of 

Taleghani Hospital in Tehran, Iran. Comprising 3256 PBS images derived from 89 subjects 

suspected of ALL, these images were prepared and stained by adept laboratory professionals. The 

dataset has four classes Benign, Early Lymphoblastic Leukemia, Pre-Acute, and Pro-Acute. All 

images were captured with a Zeiss camera under a microscope at 100x magnification and saved in 
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JPG format. Definitive cell type and subtype determinations were made by a specialist employing 

the flow cytometry tool. Additionally, to enhance analysis, segmented images were generated 

through HSV color space image segmentation (using thresholding), providing a valuable resource 

for further investigation and interpretation. Samples from dataset are shown in Figure 3.2. Table 

3.1 shows the details numbers of each class in ALL. 

 

Figure 3.2: The First, Second, Third and Fourth Rows represent Benign, Early Lymphoblastic 

Leukemia, Pre-Acute and Pro-Acute stage of ALL 
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Table 3.1. Data Division Detail of ALL Datasets for Benign, Early, Pre and Pro Classes 

Stages Number of Images Size of Images 

Benign 504 224x224 

Early 985 224x224 

Pre 963 224x224 

Pro 804 224x224 

Total 3,256  

 

3.2 Preprocessing and Augmentation 

The preprocessing of ALL photos entails a multifaceted series of procedures aimed at refining the 

raw data. Initially, the raw data of the photos was extracted, followed by a careful cleaning process 

utilizing a flip-flop procedure and an array of procedures to ensure their suitability for subsequent 

processing. The comprehensive approach encompassed addressing missing or inaccurate pixel 

values and eliminating outliers within the dataset. Additionally, two distinct preprocessing 

techniques were employed: CAMSR and Gradient-weighted Class Activation Mapping (Grad-

Cam). It is pertinent to highlight that the preprocessing stage featured extensive feature 

engineering endeavors. This involved the normalization of data and the deliberate selection or 

generation of additional characteristics designed to enhance the efficacy of the algorithms 

employed. Each of these measures was strategically implemented to optimize algorithmic 

performance on the dataset. Table 3.2 presents multiple preparatory approaches used in our model, 

hence giving an inclusive illustration of the meticulousness intrinsic in the preprocessing stage. 
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Table 3.2. Preprocessing Steps applied on the Dataset Images 

Preprocessing step Parameters used 

Zoom Range 0.2 

Crop True 

Width shift range 0.2 

Rotation range 15 

Vertical Flip False 

Horizontal Flip True 

Furthermore, data augmentation stands out as a widely used and effective strategy for solving class 

imbalance problem, owing to various reasons. First off, data augmentation is a simple procedure 

that doesn't require a lot of changes to the hyperparameters or model architecture. It entails 

applying different transformations, including rotation, flipping, cropping, or noise introduction, to 

existing data in order to create new training samples. This creates an artificially larger minority 

class, which helps to achieve a more even distribution of classes. Secondly, data augmentation is 

a data-driven technique that requires no external knowledge about the data distribution. It uses 

existing data to create new instances that can aid the model for generalizing. This strategy is 

essential for enhancing and maintaining the model's functionality while preventing overfitting. The 

dataset photos underwent various processing operations such as cropping, contrast correction, 

horizontal flipping, spinning, panning, and boosting during the preparatory phase using the 

CAMSR approach. The outcomes of the preprocessing steps applied on images prior to being 

inserted in the proposed model are demonstrated in Figure 3.3. In order preserve the desired 

portions of the image, the undesirable ones had to be cropped out. Images brightness levels were 

adjusted with the help of contrast filter. Moreover, image was reoriented to respective axes using 

horizontal and vertical flips. Furthermore, to provide depth and texture to a picture, pixels were 
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moved up or down using the embossing process. The combined impact of these procedures 

enhanced both image quality and classification accuracy.  

 

Figure 3.3: Results of Image Preprocessing Steps to Enhance, Contrast and Adjust Noise 

Training a DL model on a dataset that has been customized, involves making use of augmented 

photos. This is done to enhance performance and generalization. While recognizing the challenge 

of imbalanced class is important and highlights a persistent issue in machine learning, it does not 

offer a comprehensive solution beyond the use of data augmentation strategies. Exploring better 

and more efficient approaches for dealing with this issue is crucial in order to achieve more 
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effective, robust and consistent outcomes. Grad-CAM serves as a methodology for visualizing the 

distinctive features extracted by a Deep Learning (DL) architecture pertaining to a specific class 

or category. In our endeavor to assess the severity of ALL, we have utilized Grad-CAM to highlight 

the features extracted from a proposed XIncept-ALL model, as illustrated in Figure 3.4. To analyze 

these patterns, a pretrained XIncept-ALL model is employed, requiring prior training on a dataset 

consisting of ALL images labeled with varying degrees of severity. The resulting Grad-CAM 

heatmap is normalized to values ranging from 0 to 1. Subsequently, this heatmap is superimposed 

onto the original image, thereby visually indicating the specific regions within the image upon 

which the model focuses to determine the severity level. 
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Figure 3.4: HeatMap and Gradcam Patterns identified Proposed XIncept-ALL System when 

Diagnosed by ALL Images 
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Chapter 4 

Proposed Architecture 
 

 

Deep learning algorithms can handle huge volumes of data. This allows DL algorithms to have 

excellent processing skills and effective classification of ALL images. The utilization of these 

algorithms enables the comprehensive management of each phase within the modeling process, 

encompassing tasks like data preparation, architectural design, hyperparameter optimization and 

the selection and refinement of architectural parameters. In this study, two models, InceptionV3 

and Xception, are presented to build a model for ALL classification. These two models offer 

multiple noteworthy benefits, including remarkable outcome, well thought-out feature extraction 

architecture along with capability to capture both large and small-scale features because of their 

variable filter size (within range "1 × 1 to 7 × 7”). Furthermore, these models enhance the quality 

of feature representation, and mitigate the existing problem of gradient vanishing by addressing 

issues such as residual connections and linear units. To lower the chance of overfitting, they 

additionally use dropout layers and global average pooling (GAP). Identification of ALL images 

is made further efficient and effective by adding Batch Normalization layers which also expedite 

the training process.  

The fusion methodology, facilitated by global average pooling and concatenation, strategically 

captures and harmonizes spatial information from both architectures. Subsequent dense layers 

further refine the feature space, extracting nuanced relationships. The final architectural element 

introduces an XGBoost classifier, extending the model's versatility beyond the neural network 

domain. This hybrid architecture, combining deep learning with gradient boosting, offers a 

sophisticated ensemble approach for image classification tasks, leveraging the strengths of both 

paradigms to achieve enhanced predictive performance. The model is poised not only to benefit 
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from the hierarchical feature extraction capabilities of deep neural networks but also to capitalize 

on the interpretability and ensemble learning process of XGBoost, ensuring robust and accurate 

classification outcomes. A brief description of the sophisticated models used in this work will be 

provided in the paragraphs that follow. 

4.1 InceptionV3 Architecture 

The InceptionV3 architecture represents an advanced deep CNN designed to extract features 

across various scales [36]. The three primary structural components of this design are the final 

layers, initiation blocks, and stem. The stem block reduces the computational complexity in the 

model following layers. The inception block consists of convolutional layers and inception 

modules. Deepening the network is the main focus of inception blocks. Within this framework, 

convolutional layers contribute to the network’s depth, while the inception modules play a crucial 

role in capturing features at multiple scales. The last layer minimizes the spatial resolution of the 

feature maps and generates the model's output, consisting of many convolutional layers and a GAP 

layer. The final classification is produced by a completely linked layer, which receives the output 

from the previous layers. Figure 4.1 shows the structure of the InceptionV3 model. 
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Figure 4.1: the InceptionV3 architecture 

4.2 Xception Architecture 

The Xception model is another erudite deep CNN model [37] that makes advantage of depth wise 

separable convolution, a more efficient convolutional procedure. The convolution process is 

divided into two stages: a pointwise convolution that combines the output of the depth-wise 

convolution and a depth-wise convolution that deals with application of one filter to each input 

channel. This reduces the number of parameters in the network and speeds up processing. The 

architecture reduces the spatial dimensions of the feature map and inhibits overfitting by 

incorporating fully connected layers, a GAP layer, and an optionally included dropout layer [38]. 

Structure of the Xception model is illustrated in Figure 4.2. 
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Figure 4.2: Flow Diagram of Xception Model 

4.3     The Proposed Fusion Model 

Three essential modules make up the structure of the proposed Fusion model, each contributing to 

its comprehensive functionality: a cooperative Convolutional Neural Network module, a feature 

fusion module, and a feature classification module. The visual representation of the Fusion model 

is encapsulated in Figure 4.3. Starting with the collaborative CNN module, the model carefully 

extracts significant features by utilizing the strengths of two pre-trained CNN models, Xception 

and InceptionV3. These CNN models, initially trained on the ImageNet dataset, undergoes fine-

tuning through Transfer Learning (TL) to extract pertinent features from images. Following the 

extraction of features from collaborative CNN, the feature fusion module merges them into a 

cohesive feature pool, which acts as the input for the subsequent feature classification phase. This 

module employs a range of machine learning classifiers such as Support Vector Machine, K-

Nearest Neighbor, AdaBoost, Logistic Regression, Random Forest, XGBoost, and LightGBM. 

This module ascribes class probabilities and distinguishes between four distinct classes: Benign, 
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Early Lymphoblastic Leukemia, Pro-Acute and Pro-Acute. Notably, the classification process 

dynamically trains the weights of the features. The Fusion model is intentionally crafted to provide 

multiple beneficial features, making it a robust and versatile tool for behavior classification and 

detection. To avoid the arduous process of repeatedly training the models, an adaptable 

methodology for integration of multiple Convolutional Neural Network (CNN) has been 

presented. The models are trained independently on relevant dataset, thereby making the proposed 

approach effectual. As a result, existing feature pool is populated with extracted features extracted 

from the individually trained models. In terms of time and resource efficiency, this approach bears 

notable advantages. A considerable reduction in time and computational resources is attained by 

eliminating the need to retrain pre-existing models and allowing for the independent training of 

new models. Thus, a practical solution for prompt integration and adaptability is formulated which 

not only enhances efficiency but also removes the requirement for redundant training efforts on 

pre-existing models. 

 

Figure 4.3: Schematic Diagram of the Proposed Architecture highlighting each Layer from 

Preprocessing Steps to Final Output 
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Feature extraction from diverse models proposed by this approach, contributes to an enhanced 

feature representation which exceeds the results achieved by a singular model. It is pertinent to 

highpoint that various models have their own capability with varying degrees of effectiveness 

when it comes to identifying particular features or patterns in data. A wider range of inherent data 

patterns and relationships is acquired with the help of these models’ integration which provides an 

inclusive and varied feature representation. Moreover, the risk of overfitting can be reduced subject 

to combination of multiple models with addition to enhancement of the model’s ability to 

generalize effectively. In a nutshell, an adaptable and resilient predictive framework is fostered 

with the above described synergistic integration which minimizes the impact peculiarities in 

disparate models, augments its capacity to extrapolate patterns to unseen data and bolster the 

model's robustness. Algorithm 1 presents the steps of the proposed XIncept-ALL model. 

Algorithm 1: Detailed Steps of XIncept-ALL Model for Feature Extraction 

𝑰𝒏𝒑𝒖𝒕 Image dataset with labeled classes: {(𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . , (𝑥𝑁, 𝑦𝑁)} 

𝑶𝒖𝒕𝒑𝒖𝒕 Trained combined model for image classification 

𝑆𝑡𝑒𝑝 1 Initialize Xception and InceptionV3 base models: 𝑀𝑋𝑐𝑒𝑝 ←

𝑋𝑐𝑒𝑝(𝑤𝑒𝑖𝑔ℎ𝑡𝑠 =  "𝑖𝑚𝑎𝑔𝑒𝑛𝑒𝑡", 𝑖𝑛𝑐𝑙𝑢𝑑𝑒_𝑡𝑜𝑝 = 𝐹𝑎𝑙𝑠𝑒, 𝑖𝑛𝑝𝑢𝑡_𝑡𝑒𝑛𝑠𝑜𝑟 =

𝐼𝑛𝑝𝑢𝑡(𝑠ℎ𝑎𝑝𝑒 =  (224,224,3))) 𝑎𝑛𝑑 𝑀𝐼𝑛𝑐𝑒𝑝 ← 𝐼𝑛𝑐𝑒𝑝(𝑤𝑒𝑖𝑔ℎ𝑡𝑠 =

"𝑖𝑚𝑎𝑔𝑒𝑛𝑒𝑡", 𝑖𝑛𝑐𝑙𝑢𝑑𝑒_𝑡𝑜𝑝 = 𝐹𝑎𝑙𝑠𝑒, 𝑖𝑛𝑝𝑢𝑡_𝑡𝑒𝑛𝑠𝑜𝑟 = 𝐼𝑛𝑝𝑢𝑡(𝑠ℎ𝑎𝑝𝑒 =

(224,224,3))). 

𝑆𝑡𝑒𝑝 2 𝐹𝑋𝑐𝑒𝑝 ← 𝑋𝑐𝑒𝑝_𝑙𝑎𝑠𝑡_𝑙𝑎𝑦𝑒𝑟(𝑋𝑡𝑟𝑎𝑖𝑛) Get features from the desired layer in 

Xception. 
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𝑆𝑡𝑒𝑝 3 𝐹𝐼𝑛𝑐𝑒𝑝 ← 𝐼𝑛𝑐𝑒𝑝_𝑙𝑎𝑠𝑡_𝑙𝑎𝑦𝑒𝑟(𝑋𝑡𝑟𝑎𝑖𝑛) Get features from the desired layer in 

InceptionV3. 

𝑆𝑡𝑒𝑝 4 𝐷𝑋𝑐𝑒𝑝 ← 𝐷𝑒𝑛𝑠𝑒(𝐹𝑋𝑐𝑒𝑝, 𝑢𝑛𝑖𝑡𝑠 = 64, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = "𝑟𝑒𝑙𝑢") Dense layer 

for Xception features. 

𝑆𝑡𝑒𝑝 5 • 𝑂𝑋𝑐𝑒𝑝 ← 𝐷𝑒𝑛𝑠𝑒(𝐷𝑋𝑐𝑒𝑝, 𝑢𝑛𝑖𝑡𝑠 = 2, 𝑘𝑒𝑟𝑛𝑒𝑙𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑟 =

𝑙2(0.01), 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = linear) Linear output layer for Xception 

features. 

• 𝑂𝐼𝑛𝑐𝑒𝑝 ← 𝐷𝑒𝑛𝑠𝑒(𝐷𝐼𝑛𝑐𝑒𝑝, 𝑢𝑛𝑖𝑡𝑠 = 2, 𝑘𝑒𝑟𝑛𝑒𝑙_𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑟 =

𝑙2(0.01), 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = "𝑙𝑖𝑛𝑒𝑎𝑟") Linear output layer for 

InceptionV3 features. 

𝑆𝑡𝑒𝑝 6 • 𝑀𝑋𝑐𝑒𝑝 ← 𝑀𝑜𝑑𝑒𝑙(𝑖𝑛𝑝𝑢𝑡𝑠 = 𝑋𝑐𝑒𝑝𝑖𝑛𝑝𝑢𝑡, 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 = 𝑂𝑋𝑐𝑒𝑝) Create 

model for Xception. 

• 𝑀𝐼𝑛𝑐𝑒𝑝 ← 𝑀𝑜𝑑𝑒𝑙(𝑖𝑛𝑝𝑢𝑡𝑠 = 𝐼𝑛𝑐𝑒𝑝_𝑖𝑛𝑝𝑢𝑡, 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 = 𝑂𝐼𝑛𝑐𝑒𝑝) 

Create model for InceptionV3 

𝑆𝑡𝑒𝑝 7 Set all layers in 𝑀𝑋𝑐𝑒𝑝 and 𝑀𝐼𝑛𝑐𝑒𝑝 as non-trainable. 

𝑆𝑡𝑒𝑝 8 𝐹𝑓𝑢𝑠𝑖𝑜𝑛 ← 𝐶𝑜𝑛𝑐𝑎𝑡([𝑂𝑋𝑐𝑒𝑝, 𝑂𝐼𝑛𝑐𝑒𝑝]) Concatenate the output features 

from Xception and InceptionV3 models. 

𝑆𝑡𝑒𝑝 9 • 𝐹𝑓𝑢𝑠𝑖𝑜𝑛 ← 𝐷𝑒𝑛𝑠𝑒(𝐹𝑓𝑢𝑠𝑖𝑜𝑛, 𝑢𝑛𝑖𝑡𝑠 = 128, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = "𝑟𝑒𝑙𝑢") 

Additional dense layer. 

• 𝐹𝑓𝑢𝑠𝑖𝑜𝑛 ← 𝐷𝑒𝑛𝑠𝑒(𝐹𝑓𝑢𝑠𝑖𝑜𝑛, 𝑢𝑛𝑖𝑡𝑠 = 64, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = "𝑟𝑒𝑙𝑢") 

Additional dense layer. 

𝑆𝑡𝑒𝑝 10 𝑂𝑓𝑖𝑛𝑎𝑙 ← 𝐷𝑒𝑛𝑠𝑒(𝐹𝑓𝑢𝑠𝑖𝑜𝑛, 𝑢𝑛𝑖𝑡𝑠 = 2, 𝑘𝑒𝑟𝑛𝑒𝑙_𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑟 =

𝑙2(0.01), 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = "𝑙𝑖𝑛𝑒𝑎𝑟") Final output layer. 
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𝑆𝑡𝑒𝑝 11 𝑀𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 ← 𝑀𝑜𝑑𝑒𝑙(𝑖𝑛𝑝𝑢𝑡𝑠 = [𝑋𝑐𝑒𝑝_𝑖𝑛𝑝𝑢𝑡, 𝐼𝑛𝑐𝑒𝑝_𝑖𝑛𝑝𝑢𝑡], 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 =

𝑂𝑓𝑖𝑛𝑎𝑙) Build the combined model. 

𝑆𝑡𝑒𝑝 12 Print the summary of 𝑀𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑. 

𝑆𝑡𝑒𝑝 13 Compile 𝑀𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 with appropriate loss, optimizer. 

𝑆𝑡𝑒𝑝 14 Train 𝑀𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 on the training dataset 𝑋𝑡𝑟𝑎𝑖𝑛. 

𝑆𝑡𝑒𝑝 15 Evaluate 𝑀𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 on validation and testing datasets 𝑋𝑣𝑎𝑙 and 𝑋𝑡𝑒𝑠𝑡. 

𝑆𝑡𝑒𝑝 16 Fine-tune 𝑀𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 based on evaluation results. 

𝑆𝑡𝑒𝑝 17 Visualize learned features for model interpretability. 

𝑆𝑡𝑒𝑝 18 The trained combined model 𝑀𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 is ready for image classification 

tasks. 

 

The efficacy of the XGBoost algorithm for recognizing features associated with ALL was also 

discovered in our research. Using decision trees as base learners, a gradient boosting framework 

is employed as outlined in Algorithm 1. Binary classification tasks are better handled with 

XGBoost, and therefore we configured it with hyperparameters such as the learning rate (𝜂), 

regularization term (𝜆), and the number of trees (𝑇). 
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A Depth-wise Conv2D was adopted for the task of feature extraction for provision of a more 

specialized convolutional operation. Iterative construction of decision trees leading to update in 

model based on the calculated gradients (𝑔𝑖) and Hessians (ℎ𝑖) for each training sample is all part 

of the training process. 

Optimization of an objective function and that balances a loss and regularization term is part of 

XGBoost model training. 

                                 Objective= ∑𝑖 = 1𝑚[𝐿(𝑎𝑖, 𝑎̂𝑖) + 𝜆 ⋅ 𝛺(𝑓)]                                           (4.1) 

where 𝑚 is the number of training samples, 𝑎𝑖 is the true label, 𝑎̂𝑖 is the predicted output, 𝜆 is the 

regularization term, and 𝛺(𝑓) is the regularization term for the function 𝑓. 

The calculation of the 𝑡 − 𝑡ℎ tree is sequentially merged into the ensemble during the training of 

the XGBoost model: 

                                 𝑎̂𝑖(𝑡) = 𝑎̂𝑖(𝑡 − 1) + 𝜂 ⋅ 𝑓𝑡(𝑥𝑖)                                                 (4.2) 

Sum of predictions from all trees in the ensemble is the final prediction for a testing sample: 

                                 𝑎̂𝑡𝑒𝑠𝑡 = ∑𝑡 = 1𝑇𝜂 ⋅ 𝑓𝑡(𝑥𝑡𝑒𝑠𝑡)                                                 (4.3) 

Algorithm 2 presents a detailed account of the operational principles of our recommended 

classifier. 

Algorithm 2: XGBoost Classifier to Recognize ALL Extracted Features 

𝑰𝒏𝒑𝒖𝒕 Initialize XGBoost model with hyperparameters such as learning rate 

(𝜂), regularization term (𝜆), and the number of trees (𝑇). 

𝑆𝑡𝑒𝑝 1 Train the XGBoost model with the extracted features 𝑥 =

(𝑎1, 𝑎2, . . . , 𝑎𝑛) and annotations 𝑎 =  0,1. 
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𝑆𝑡𝑒𝑝 2 Replace 𝐶𝑜𝑛𝑣2𝐷 with 𝐷𝑒𝑝𝑡ℎ𝑤𝑖𝑠𝑒 𝐶𝑜𝑛𝑣2𝐷 in the feature extraction 

process. 

𝑆𝑡𝑒𝑝 3 Computing gradients (𝑔𝑖) and Hessians (ℎ𝑖) for each sample in the 

training set, constructing decision trees, and updating the model 

iteratively combined make up the training process. Refer to the 𝑋𝐺𝐵𝑜𝑜𝑠𝑡 

algorithm steps for details. 

𝑆𝑡𝑒𝑝 4 The final model is an 𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 of decision trees, each contributing to 

the overall prediction. 

𝑆𝑡𝑒𝑝 5 Use the XGBoost model to allocate class labels for testing samples. The 

prediction can be calculated as 𝐴𝑡𝑒𝑠𝑡 = ∑ 𝑛𝑇
𝑡=1 .𝑤𝑡.ℎ(𝑥𝑖), where 𝑤𝑡 is the 

weight of tree 𝑡 and ℎ(𝑥𝑖) is the prediction of the tree for the input 𝑥𝑖 

𝑆𝑡𝑒𝑝 6 The output is the recognition result based on the 𝑋𝐺𝐵𝑜𝑜𝑠𝑡 model. 
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Chapter 5 

Experimental Results 

 

A dataset of 3256 Acute Lymphoblastic Leukemia (ALL) pictures acquired from Kaggle was used 

to train the XIncept-ALL. All 3256 photos were resized to 700 × 600 pixels in order to perform 

the feature extraction and categorization tasks. The proposed XIncept-ALL system is a 

combination of InceptionV3 and Xception models.  

The most optimal F1-score of 0.99 was achieved during 20th epoch after training the XIncept-ALL 

model over 100 epochs. Based on the statistical methods, the effectiveness of the proposed XIncept 

model was evaluated by calculating the values of performance metrics including accuracy (ACC), 

specificity (SP), and sensitivity (SE). System performance of the projected model was then 

compared with the existing or similar systems present in literature based on the computed values 

of these metrics. To construct and enhane the XIncept-ALL system, a PC equipped with an HP-i7 

CPU, boasting 8 cores, 16 GB of RAM, and a 2 GB NIVIDA GPU were employed. The computer 

had Windows 11 Professional 64-bit operating system. 

Following equations facilitate the calculation of above-mentioned statistical indicators: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁) × 100                            (5.1) 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) × 100                                                                   (5.2) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁/(𝑇𝑁 + 𝐹𝑃) × 100                                                          (5.3) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 × (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙)/(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙)                 (5.4) 
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Concept of true positive (TP) and true negative (TN) values was used to compute these metrics 

which indicate how well the model predicts whether the data is real or fake or the data prediction 

was accurate or false. The other two values required in the calculations are false positive (FP) 

and false negative (FN). These values show whether the false classification is accurate or not. 

The tabulated data reveals a distinctive feature of the model when compared with conventional 

generic CNN. Notably, the model avoids channel-wise convolution, resulting in a reduction in the 

number of connections. This deliberate design choice imparts a lightweight characteristic to the 

model, facilitating the attainment of exceptional accuracy with a scant number of epochs. 

Evidently, the training accuracy of 99.0% is achieved within a mere 10 epochs, underscoring the 

efficacy of the proposed XIncept-ALL architecture. 

Furthermore, a comparative analysis presented in Table 5.1 and Figure 5.1 delves into the 

contrasting performance of the original CNN+LSTM, ResNet, GoogleNet, VGGNet, InceptionV3 

and Xception architectures and the proposed XIncept-ALL architecture. In this context, the 

XIncept-ALL architecture emerges as the frontrunner, exhibiting the highest level of accuracy. 

This notable achievement can be attributed to the strategic fusion of the InceptionV3 and Xception 

architectures. The incorporation of these architectures proves instrumental in elevating the overall 

performance of the XIncept-ALL model, as validated by the comparative results outlined in the 

table. 
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Table 5.1. Results of Typical DL Algorithms' Classification in terms of Several Metrics in 

Comparison to the Suggested Approach 

Ser No Architectures Sensitivity Specificity Accuracy Precision F1-Score 

1 CNN+LSTM 0.838 0.840 0.860 0.849 0.845 

2 ResNet 0.843 0.840 0.824 0.818 0.807 

3 GoogLeNet 0.880 0.884 0.845 0.885 0.867 

4 VGGNet 0.734 0.843 0.840 0.807 0.818 

5 InceptionV3 0.840 0.838 0.860 0.837 0.849 

6 Xception 0.858 0.850 0.880 0.855 0.847 

7 XIncept-ALL 0.990 0.988 0.990 0.989 0.990 

 

 

Figure 5.1: Comparative Analysis of Various Deep Learning Models  
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5.1 Computational Cost 

A comprehensive evaluation of computational complexity was conducted to compare deep 

learning models with the proposed XIncept-ALL system. As delineated in Table 5.2, a total 

processing time of approximately 184.5 seconds was exhibited by the suggested DL architecture. 

In contrast, the total processing times for prominent models such as VGGNet, InceptionV3, 

ResNet, GoogleNet, CNN+LSTM and Xception were recorded at 211.8 s, 207.5 s, 230.1 s, 217.4 

s, 246.2 s, and 194.4 seconds respectively. 

This comparison proves the efficiency of our suggested XIncept-ALL technique, which needs less 

processing time for the identification of various severity levels of ALL. The expeditious processing 

time is particularly pivotal in settings where computational performance is of paramount 

importance. This not only underscores the efficacy of the proposed approach but also highlights 

its relevance in the current paradigm. 

Furthermore, in-depth experiments were meticulously conducted as elaborated in subsequent 

paragraphs, augmenting the robustness of the findings. Additionally, Table 5.2 and Figure 5.2 

illuminates the enhanced computational speed of the XIncept-ALL model when compared with 

the original architecture of the InceptionV3 and Xception models, further substantiating the 

advancements introduced in our proposed methodology. 
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Table 5.2. DL Algorithms Average Processing Time Comparison 

Model Preprocessing 

(seconds) 

Feature Extraction 

(seconds) 

Training Time 

(seconds) 

Prediction Time 

(seconds) 

Overall Result 

(seconds) 

CNN+LSTM 19.5  15.4  250.5  11.8  250.2  

ResNet 17.6  13.2  200.5  9.8  240.1  

GoogLeNet 15.3  15.8  198.5  8.8  227.4  

VGGNet 16.2  18.3  180.5  7.8  221.8  

InceptionV3 17.1  14.1  175.5  9.8  217.5  

Xception 7.8  8.3  195.5  4.8  198.4  

XIncept-ALL 1.7  1.9  160.5  1.8  187.5  

 

 

Figure 5.2: Enhanced Computational Speed of the XIncept-ALL Model 
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5.2 Experiment 1 

A thorough 10-fold cross-validation approach is used to evaluate the effectiveness of our proposed 

model in the first experiment. As a principal metric for the assessment of categorization 

performance, Area under the curve (AUC) was employed. Table 5.3 presents the outcomes of the 

quantitative evaluation, defining the efficacy of the XIncept-ALL system. With a training error as 

low as 0.1, the developed XIncept-ALL model exhibited a commendable performance. Moreover, 

the model’s exceptional ability to detect and classify cases symbolic of ALL was demonstrated 

with a high AUC of 99%. The effectiveness of the XIncept-ALL system is characterized by these 

quantitative indicators which reflect a judicious balance between training error minimization and 

robust discriminatory capacity, as indicated by the high AUC. In the context of ALL disease 

detection, our findings contribute to a wholesome understanding of the model's proficiency.  

 

Table 5.3. Performance Metrics of the XIncept-ALL 

ALL Types SE SP ACC AUC Error 

Benign 0.99 0.99 0.99 0.99 0.1 

Early 0.99 0.99 0.99 0.99 0.1 

Pre-Acute 0.99 0.99 0.99 0.99 0.1 

Pro-Acute 1.0 1.0 1.0 1.0 0 

Average Results 0.99 0.99 0.99 0.99 0.1 
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5.3 Experiment 2 

Our second experiment involves the application of binary classification techniques, specifically 

our novel XIncept-ALL model to analyze the ALL-image dataset. Keeping in mind analysis of 

both training and validation aspects along with a careful examination of loss functions, model’s 

effectiveness was assessed. Figure 5.3 visually depicts the commendable performance, notable 

training and validation accuracy of 100% within a concise ten-epoch training period in XIncept-

ALL model that we put forth. A loss function of under 0.1 for both the training and validation 

datasets, the model demonstrated exceptional performance. The efficacy of our proposed model in 

the realm of binary classification on the ALL-image dataset can be underscored with these 

compelling results. Factors such as model generalization, overfitting, and the need for robust 

performance across various datasets are required to be kept into consideration while 

acknowledging the significance of these findings. The aptitude of XIncept-ALL model for 

classification can be represented through attainment of high accuracy and low loss.  In addition to 

these achievements, it is imperative to note that, a thorough assessment of the model’s suitability 

for unseen data and its ability to withstand variations is indispensable for comprehension of its 

practical value. Moreover, credibility and completeness of the experimental findings can be 

improved by incorporating insights from a separate test dataset, not explicitly mentioned in the 

provided excerpt would. 
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Figure 5.3: XIncept-ALL Accuracy and Loss Using the Binary Classification with Acute 

Lymphoblastic Leukemia (ALL) Image Dataset 

 

5.4 Experiment 3 

In our third experiment, we used another Acute Lymphoblastic Leukemia (ALL) image dataset 

acquired from Kaggle. The dataset used in this research was selected from the Taleghani Hospital's 

bone marrow laboratory in Tehran, Iran which encompasses 3256 Peripheral Blood Smear (PBS) 

images derived from 89 subjects suspected of Acute Lymphoblastic Leukemia (ALL). These 

images were prepared and stained by highly skilled laboratory professionals. The dataset is 

organized into four distinct classes: Benign, Early Lymphoblastic Leukemia, Pre-Acute, and Pro-

Acute. A Zeiss camera mounted on a microscope employed with 100x magnification was used to 

capture these images. The images were saved in JPG format. A specialist with the help of flow 

cytometry tool conducted the distinctive determination of cell types and subtypes. Segmented 

images were produced using color thresholding-based segmentation within the HSV color space 
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for in-depth examination which enhances the dataset's utility, thus providing valuable resources 

for subsequent investigation and interpretation.  

 

 

Figure 5.4: Accuracy and Loss versus Epochs for Training and Validation of the Proposed Model  

5.5 Experiment 4 

An alternative dataset consisting of 150 professionally labelled images by expert oncologists (with 

each class containing 50 images) procured from Kaggle is used in our fourth experiment to assess 

the efficiency of the proposed model. According to French-American-British (FAB) classification, 

these images are divided into three classes. 

L1 - Blasts that are small, homogeneous with regular nuclei but a little clefted and inconspicuous 

nucleoli. Cytoplasm is scanty and usually without vacuoles. 

L2- Blasts that are large, heterogeneous with irregular nuclei and often clefted. Usually, one large 

nucleolus is present. The volume of cytoplasm is variable, but often abundant and may contain 

vacuoles. 
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L3- Blasts are moderate-large in size and homogeneous. The nuclei are regular and round-oval in 

shape. One or more prominent nucleoli are present. The volume of cytoplasm is moderate and 

contains prominent vacuoles. 

The confusion matrix show that the proposed model was able to classify the first two classes with 

100% accuracy while the third class was classified with 97.5% accuracy.  

 

 

Figure 5.5: Accuracy and Loss versus Epochs for Training and Validation of Proposed Model  

 

Figure 5.6. Confusion Matrix L1, L2, L3 are the Class Labels 
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Chapter 6 

State-of-the-Art Comparison 

 

In this section, a state-of-the-art comparison between the proposed work and previous work from 

literature is introduced. First, it can be seen that the proposed model is compared with advanced 

models (CNN+LSTM, ResNet, GoogleNet, VGGNet, InceptionV3, Xception). The data presented 

in Table 5.2 and Table 5.3 illustrates that the suggested model attains the highest level of accuracy 

while requiring the least amount of computational time.  Our proposed model accomplishes higher 

accuracy over other deep learning models by over 10% increase in accuracy. This shows the 

superior performance of the proposed architecture over other architectures. In [34] the authors 

propose an Improved ANFIS model for solving the same problem. The authors use the same 

dataset of Experiment 1. The maximum achieved accuracy is 97.4%. Our model on the other hand 

shows 99.0% accuracy on same dataset that proves the improved performance of our model. The 

proposed system was also experimented on ALL dataset with small number of samples (150) in 

which the system was able to achieve more than 99% on average on the three classes. This again 

signifies the enhanced performance of the model while achieving high classification accuracy on 

a small dataset without using data augmentation techniques. 

Table 6.1. State-of-the-Art Comparison 

 Iranian Dataset ALLBD1 Kaggle 

Proposed XIncept-ALL model 99.0% 99.0% 

Adaptive Network-Based Fuzzy Inference 

System (ANFIS)  

97.4%  
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Chapter 7 

Summary of Research Work 

 

Ensuring accurate results in the classification of ALL necessitates addressing the challenge of data 

imbalance. While deep learning (DL) methods leverage multiple artificial neuron layers for 

effective image recognition, the issue of class imbalance is mitigated through the implementation 

of a data augmentation approach with image dimensions set at (700 × 600, 3) pixels. The correction 

of class imbalance through dataset augmentation proves pivotal, circumventing the need for 

additional processing power and memory. Our commitment is directed towards streamlining 

structures and expediting computations. To this end, we introduce the XIncept-ALL design 

featuring a balanced layer architecture, aimed at offering a less intricate framework. 

In our quest for faster computations, we integrated different blocks with kernel regularizations 

ranging from 0.001 into the framework. Kernel regularization plays a central role in mitigating 

overfitting concerns associated with the complex architecture. In order to effectively address the 

issue of noise present in ALL images, an XGBoost classifier is used in our study to identify ALL. 

With the help of multiple optimizers excluding GELU due to performance considerations, our 

projected system establishes efficacy. Our proposed XIncept-ALL model consistently outshines 

existing models when applied on publicly curated datasets, thereby effectively utilizing them. Our 

research offers following key advantages: 

1. Our research centers around a significant innovation that is the formation of a novel 

Convolutional Neural Network (CNN) model specifically designed for detecting Acute 

Lymphoblastic Leukemia (ALL). Our proficient and advanced proposed model stands out 

when compared with existing deep learning (DL) frameworks. It works to improve both 
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speed and accuracy by simplifying complex network through integration of Inception and 

Xception architectures. Both InceptionV3 and Xception play a pivotal role when it comes 

to refining accuracy without impacting the model's complexity or computational rate. An 

optimization with respect to model’s classification capability is achieved with the help of 

this distinguished approach, while keeping in mind the balance between accuracy, 

computational efficiency and model complexity. This distinctive characteristic highlights 

the effectiveness and significance of the XIncept-ALL architecture within the realm of 

deep learning methodologies for ALL detection. 

2. Highlighting its robust and adept nature, XIncept-ALL displays a rather versatile capability 

without encountering issued of overfitting or underfitting. Use of GELU function as a 

deliberate alternation was employed in place of RELU while keeping in mind the critical 

role of the activation function in refining model accuracy. This modification proves to be 

a remarkable enhancement in the model’s overall performance indicated by our research. 

Proficiency of our proposed model’s capability to differentiate between classes of ALL is 

clearly enhanced with the integration of GELU activation function. This premeditated 

choice emphasizes the perceptive approach adopted in optimization of the model's 

architecture to achieve superior outcomes in ALL classification. 
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Chapter 8 

Conclusion and Future Work 

 

A considerable global population contends with the burdens of Acute Lymphoblastic Leukemia 

(ALL), emphasizing the pressing need for widespread and efficient detection methods. Early 

identification of the disease is fundamental for effective prevention strategies. To meet this 

necessity, our work presents a completely automated ALL identification and categorization method 

that maximizes accuracy by utilizing deep learning models and creative preprocessing steps. The 

model integrates CAMSR technique to mitigate noise, accentuate lesions and enhance ALL 

classification performance. A distinctive contribution to this research is the incorporation of the 

Grad-CAM technique, illuminating crucial locations on ALL-affected images essential for 

identification. Furthermore, our study introduces a novel deep learning model based on 

InceptionV3 and Xception, evaluated on the publicly available dataset.  

Comparative analyses with up-to-date models in the literature showcase the superior performance 

of our proposed methodology. The proposed system has been able to achieve accuracies higher 

than the reported accuracies in literature. An exploration of strengths and limitations reinforces the 

efficacy of our model against existing benchmarks. It is crucial to clarify that the proposed method 

serves as a pre-screening and automatic tool for recognizing ALL severity, distinct from a decision 

support system. Future iterations may incorporate knowledge-based information to extend the 

XIncept-ALL model's utility in providing insights into uncontrolled blood symptoms among ALL 

patients. Additionally, future studies will prioritize picture quality sensitivity in order to guarantee 

the model's dependability and applicability in a variety of clinical contexts. Rigorous evaluation 

on large and intricate datasets, encompassing a substantial number of prospective ALL instances, 

remains imperative for validating the robustness and real-world effectiveness of our proposed 
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approach. In conclusion, the classification approach proposed in this study relies on feature 

extraction and features fusion as a core of the methodology. This represents a pioneer attempt to 

establish a computerized technique that surpasses existing methods in the detection of ALL.  
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