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ABSTRACT 

Keyword: Eye Diseases, Deep learning MobileNet, EfficientNet, Multiple eye disease, Diabetic 

retinopathy, hypertensive retinopathy, glaucoma, cataract  

Diabetic retinopathy, hypertensive retinopathy, glaucoma, and cataract are well-established eye 

diseases resulting from elevated blood pressure, increased blood glucose levels, and heightened 

eye pressure. Symptoms typically manifest at later stages, encompassing phenomena such as AV 

(arteriovenous) nicking, constricted veins in the optic nerve, cotton wool patches and blood 

accumulation in the optic nerve. These pathologies can progress to severe complications, including 

retinal artery occlusion, optic nerve damage, and the potential for irreversible vision impairment. 

The integration of artificial intelligence (AI) and deep learning models offers a promising prospect 

for early disease detection. This study utilizes datasets sourced from reputable internet platforms 

to introduce a novel methodology called CAD-EYE designed for the classification of diabetic 

retinopathy, hypertensive retinopathy, glaucoma, and cataract. CAD-EYE employs MobileNet 

and EfficientNet models, with a particular emphasis on feature fusion to enhance overall 

performance of the diagnostic system. The system has been trained on 65,871 digital fundus 

images sourced from diverse datasets. 

In a comparative analysis, CAD-EYE outperforms state-of-the-art models such as CNN+LSTM, 

ResNet, GoogleNet, VGGNet, InceptionV3, and Xception in terms of classification accuracy. 

These findings underscore the efficacy of CAD-EYE as an adept diagnostic tool, designed not to 

replace optometrists but to complement the efforts of healthcare professionals by providing 

valuable assistance in the early identification of ocular pathologies. 
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Chapter 1 

Introduction 

The eye holds a pivotal role among the important organs essential for daily functioning. 

Conditions impacting the eye possess the capacity to inflict irreversible harm to the retina, 

potentially resulting in visual impairment or complete blindness. These ocular disorders present 

challenges to fundamental activities such as reading, driving, recognizing faces, and navigating 

one's surroundings. Consequently, visual impairment exerts a substantial influence on an 

individual's overall quality of life. Globally, a minimum of 2.2 billion struggle with various 

forms of visual impairment, with a concerning aspect being that at least one billion of these 

cases could have been prevented or have not received adequate treatment. The socio-economic 

ramifications of vision impairment are profound, with an estimated annual cost of USD 411 

billion globally, imposing a considerable economic burden on societies worldwide. 

Unfortunately, statistics highlight a substantial disparity in treatment access. Globally, only 36% 

of individuals experiencing vision impairment from refractive errors and a mere 17% of those 

affected by cataracts have undergone necessary and suitable treatments. These small 

percentages prove the pressing requirement for enhanced global initiatives aimed at addressing 

and preventing visual impairments, with a focus on the potential positive impact on both society 

and the economy [1]. 

The recognition and examination of ocular pathologies are intricately linked to the utilization 

of fundoscopy, a diagnostic technique that allows for a detailed examination of eye images. In 

medical terms, Fundoscopy, is a non-invasive process used to assess the inner structures of the 

eye. This includes the retina, blood vessels inside the eyes, head of the optic nerve and to a 

extent, the structure of choroid as well. This examination presents an inspection of all the 
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components of eyes as mentioned before. This kind of inspection is otherwise carried out by 

medical professionals such as ophthalmologists. Other specialists who deal with such 

inspections include neurologists, internists and/ or pediatricians. Its primary purpose lies in the 

diagnosis and monitoring of different kinds of eye conditions. Some of these conditions include 

diabetic retinopathy, macular degeneration, retinal hemorrhages, glaucoma and papilledema [6].  

During the fundoscopic examination, in order to dilate the pupil of patient, parasympatholytic 

eye drops are frequently administered (the drops are topical and short-acting). Following this, 

an ophthalmoscope, a specialized optical device, is employed to illuminate the retina through 

the pupil. This illumination enables the formation of retinal image. This kind of image is visible 

through the pupil, offering valuable insights into overall eye health. It also indicates if there are 

any abnormalities or diseases present [6]. The images obtained from fundoscopy, documenting 

any observed changes in the eye or abnormalities, can also be captured during the examination. 

To obtain these images, a device called ophthalmoscope is used, along with this device, a camera 

is attached which focuses on the retina or other eye structures [7]. The fundoscopic pictures thus 

gathered form an important source of information for the creation of artificially intelligent 

systems. These systems are intended to help the diagnosis of different ailments of eye and then 

to treat them. For the purpose of research, several well-known public datasets such as 

MESSIDOR and EyePACS have been used by researchers working in the field of Machine 

Learning (ML). Other similar datasets include DRIVE & E-optha [8–11]. Computer systems 

can be made to acquire the capability to recognize and scrutinize patterns associated with 

distinct eye conditions through the integration of AI algorithms with datasets of fundoscopic 

images. The AI systems thus formed have the potential to help professionals in the medical field 

to diagnose and treat eye diseases with enhanced accuracy. This, ultimately helps conserve time 

and moreover improves access to care. Moreover, these systems can make the treatment 

procedures more standardized. They can also help to develop personalized plans for treatment. 
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1.1 Medical Background of Diseases 

Despite Subsequent paragraphs delve into a comprehensive exploration of the diseases 

elucidated in this research paper, namely diabetic retinopathy, hypertensive retinopathy, 

glaucoma and cataract; unraveling their intricate mechanisms and elucidating their profound 

impacts on vision impairment. 

Glaucoma, a sight-threatening condition, can lead to vision loss and blindness if left untreated 

or inadequately managed. Globally, glaucoma is regarded as one of the primary causes of 

irreversible blindness and ultimately it leads to a diminished quality of life [17]. Early 

identification and detection of glaucoma plays a crucial role in preventing irreversible vision 

loss, as the condition can lead to permanent visual impairment. Traditional methods for 

glaucoma detection have often shown limited accuracy [2]. However, a novel approach has been 

developed, enabling faster and more effective disease detection by analyzing the characteristics 

of the optic disc in retinal images. An essential factor in glaucoma is intraocular pressure (IOP), 

analogous to blood pressure but specific to eye pressure can be used for classification of this 

issue. Elevated IOP can cause damage to the optic nerve, resulting in symptoms such as blurred 

vision and eventual blindness over time [3-5]. Manual analysis of eye images is time-consuming 

and subject to variations in accuracy based on the examiner's expertise, highlighting the 

necessity for automated methods in glaucoma detection. These days, automated computerized 

retinal image analysis has become a useful screening technique for detecting a range of eye 

conditions and hazards. Glaucoma manifests in two primary types: first category is that of open-

angle glaucoma (also known as chronic glaucoma) and the second category is that of closed-

angle glaucoma (also known as acute glaucoma), both of which can increase intraocular 

pressure. Notably, during the early stages of glaucoma, patients often do not exhibit noticeable 

visual signs or symptoms, posing a challenge to early detection. 
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Detecting glaucoma at its early stages is crucial to prevent progression to irreversible blindness. 

In recent years, digital retinal images have emerged as a valuable tool for conducting glaucoma 

screenings. Various techniques and procedures have been developed to identify retinal 

abnormalities associated with glaucoma, enabling early detection and intervention for this 

vision-threatening condition. The integration of machine learning (ML) and artificial 

intelligence (AI) techniques into telemedicine screening programs holds the potential to further 

enhance diagnostic accuracy, increase detection rates, and improve overall program efficiency. 

This advancement is essential for identification of cases involving glaucoma. Moreover, it also 

helps manage such cases. Many researchers working on glaucoma detection have faced 

challenges related to datasets. This includes datasets being not large enough. Moreover in 

several cases, images are taken from private sources, therefore, they often lack the actual 

changes in images observed in real-time. This further leads to limited robustness of the systems. 

In addition to that the generalizability of models is also affected [26-27]. 

A common complication related to diabetes, called diabetic retinopathy, affects the eyes. It 

stands as a leading reason that leads to loss of vision particularly, in age groups of in middle-

aged and elderly individuals. It poses a significant global public health concern [12]. In the 

United States, the estimated prevalence of diabetic retinopathy and vision-threatening diabetic 

retinopathy (VTDR) among adults with diabetes is 28.5% and 4.4%, respectively [13]. 

Projections suggest that in around 10 years, the prevalence figures of diabetic retinopathy will 

reach around 160.50 million and those of  vision threatening diabetic retinopathy will reach 

around 44.82 million. The estimates also indicate that the populations most affected by these 

diseases would include those of Middle East and North Africa. Other regions include the 

Western Pacific areas [14]. Diabetic retinopathy is diagnosed by identifying specific 

characteristics of the retina. These features include microaneurysms, exudates and hemorrhages. 

Clinical classification includes various types of DR including mild DR, moderate DR, 

proliferative DR and severe non-proliferative DR.[12]. 
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Efficient screening of these kind of complications and furthermore, timely treatment can lead 

to reduce blindness. This has been proven in countries with substantial services, one example 

of which is United Kingdom [15]. By using the photos of the retina, screening of diabetic 

retinopathy is done. Furthermore, manual interpretation, is also widely and it has shown 

superior performance in certain cases compared to in-person dilated eye exams [16]. However, 

many low- and middle-income countries face challenges in implementing systematic diabetic 

retinopathy screening programs due to the lack of well-established primary care infrastructure. 

Consequently, there is a critical need for customized and cost-effective plans particularly aimed 

to address; first screening and then treatment for a considerable portion of the population 

suffering from diabetes [15]. Deep learning (DL), has the capability to automatically learn 

important image features when it is aided by a consolidated dataset including labeled examples 

[10]. DL has exhibited profound results in the automated image analysis of fundus photographs, 

achieving high sensitivity and specificity. The integration of deep neural networks into the 

screening process using images of retina can significantly improve the identification of diabetic 

retinopathy and other risk factors with exceptional accuracy and reliability [15].  

Another type of eye disease which is quite commonly widespread all around the world is 

hypertensive retinopathy (HR). It is caused by hypertension, the cause of which is increased 

vascular resistance [59]. Several human tissues are damaged by this ailment, including those of 

the eyes, and the heart [60]. Apart from these health issues, hypertensive retinopathy (HR) is 

one of the most prominent causes of cardiovascular disease. Moreover, it ultimately leads to 

mortality [61]. As indicated by the name, Hypertensive retinopathy is an anomaly of the retina 

which occurs due to hypertension. Several significant signs are depicted because of HR-related 

retinal irregularities such as the development of arteriolar narrowing and retinal hemorrhage. 

Some other indicators include arteriovenous nicking, cotton wool spots, microaneurysms and 

papilledema. In some extreme cases, macular edema and/ or optic disc, can also be observed 
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[62]. In order to ensure timely medical intervention for the sake of avoiding greater damage, 

early diagnosis of hypertensive retinopathy is essential [63].  

Yet another commonly prevalent eye disease called cataract is also associated with lens of the 

eye and it leads to the patients finding it difficult to see. Potential causes of cataract include 

either the lens’s hydration (fluid increase) or the denaturation of proteins in the lens. In general, 

cataract is a disease that attacks the elderly, but in several cases, issues such as congenital 

abnormalities can be the cause. Similarly, eye diseases can also cause cataracts. Some such eye 

diseases that trigger the ailment of cataract include glaucoma, ablation, uveitis, retinitis 

pigmentosa, and other intraocular disorders [65]. Cataract can be categorized into several types 

based on its stage: these categories include incipient cataract, intumescent cataract, immature 

cataract, mature cataract, hyper-mature cataract, and morgagnian cataract. 

Quality of life of patients suffering from cataract is impacted. The impact includes the 

productivity of patients as well as their mobility. Situation like these results in a decrease in 

quality of life of such people [66]. Cataracts can be anticipated by early detection when the eye 

begins to experience disturbances. At present several methods are used ophthalmologists to 

diagnose the presence of cataracts. These tests include visual acuity tests, retina exams and slit-

lamp tests. Another such test is the applanation tonometry. These methods are also not adequate 

enough for timely detection of cataract owing to two reasons; first, the time duration needed for 

detection and secondly, the limited stages of cataracts that can be identified. Therefore, the need 

for developing a cataract identification system based on image processing through automated 

process such as AI/ DL arises. 

It is imperative to develop a model capable of effectively handling images acquired under 

various environmental conditions. This is to ensure that the limitations of existing techniques 

and systems are addressed. This research focuses on not only enhancing the robustness of 

machine learning-based classification of retinal images, but also to increase the generalizability. 



7 
 

In order to complete this aim, Large-Scale Dataset, consisting of approximately 65000 diverse 

images, has been used. Additionally, a machine learning model, though highly complex but 

capable of efficiently processing such huge chunk of data has been developed. The combination 

formed by using this diverse dataset along with a robust model is intended to improve the 

performance and significantly alleviate the reliability classification system for retinal images. 
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Figure.1.1: Illustration of Eye Diseases 
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1.2 Research Motivation 

Despite advancements in diverse methodologies for diagnosing eye disorders including diabetic 

retinopathy, hypertensive retinopathy, glaucoma, and cataract, from images, considerable 

challenges persist. Figure 1.1 displays images depicting various eye disorders. 

• Despite the application of advanced image processing technologies during and after image 

acquisition, accurately delineating distinctive eye features in images related to normal cases, 

diabetic retinopathy, hypertensive retinopathy, glaucoma, and cataract poses a significant 

challenge. The intricacies involved in precisely identifying and further extracting features 

related to eye disorders contribute to the complexity of this task. 

• Datasets available publicly encompass a diverse range of images related to normal cases, 

diabetic retinopathy, hypertensive retinopathy, glaucoma, and cataract, however they often 

lack comprehensive professional medical annotations. Consequently, computerized systems 

encounter difficulties in precisely diagnosing the symptoms associated with specific 

disorders. 

This research has a dual objective. Firstly, it aims to construct a comprehensive dataset for the 

classification of normal, diabetic retinopathy, hypertensive retinopathy, glaucoma, and cataract 

eye disorders. Secondly, it aims to bring forth a deep learning (DL) model that can 

autonomously classify images of eye diseases. To achieve this, a multilayered system has been 

employed to create the  CAD-EYE system. Through rigorous training, this CAD-EYE system 

becomes proficient in reliably recognizing eye-associated disorders, including anatomical 

component identification, across diverse images. The significance of this work lies in the fact 

that it suggests an innovative system for categorization of eye diseases, potentially offering real-

world applications in medical diagnosis. 
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1.3 Research Contribution 

Within the framework of research, a novel deep learning (DL) model has been introduced to 

tackle the challenge of identifying various eye diseases. Furthermore, new dataset—a 

meticulously curated collection sourced from reputable internet resources and complemented 

by some private datasets from previous studies, is also presented. Significant contributions of 

the research are highlighted as follows: 

• Substantial dataset consisting of 65 thousand  photos sourced from reputable internet 

platforms and supplemented by private datasets from previous studies, has been compiled. 

This extensive dataset is crucial in ensuring that the trained model attains considerably high 

classification accuracy. 

• During construction of the CAD-EYE system, the study has utilized two models; namely 

MobileNet and EfficientNet, employing a technique called feature-fusion. This approach 

has led to the development of a multi-layered architecture that proved adept at effectively 

addressing the classification challenge. 

• The system design of the CAD-EYE model integrates additional layers for the identification 

of ocular diseases. The purpose of using CNN model is to extract attributes associated with 

eye disorders, and these features are subsequently enhanced through the feature fusion 

approach. 

• The classification approach proposed in this study for eye disorders relies on deep features 

and color space phases, constituting the core of the methodology. An attempt to establish a 

computerized technique that surpasses existing methods in the detection of normal, diabetic 

retinopathy, hypertensive retinopathy, glaucoma, and cataract has been made, as illustrated 

in Figure 1. 

• Our system has exhibited superior performance compared to the approaches proposed 

previously, achieving accuracy of 98%, which is considerably higher. 
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1.4 Outline Report 

This research report has been organized in a way that section 2 encompasses the literature 

review, covering relevant research work done in our domain, section 3 outlines the method to 

be employed. Section 4 presents the architecture that has been used, whereas section 5 

highlights the experimental outcomes. In section 6, our findings are compared with those of 

contemporary studies already conducted in the field. Section 7 conducts a comprehensive 

examination of the research findings. Finally, Section 8 presents the study's conclusions. 
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Chapter 2 

Literature Review 

Numerous research studies have explored the identification of eye diseases, employing diverse 

methodologies and technologies crucial for enhancing the precision and efficiency of disease 

diagnosis in the field of ophthalmology. In this context, we provide an overview of notable 

studies. There has been emphasis on applying artificial intelligence techniques in healthcare 

systems, particularly for fast diagnosis [39]. Several machine learning algorithms such as 

Decision Tree and Random Forest have been made use of for this purpose. Similarly, other such 

algorithms include Neural Networks and Naïve Bayes. The models were trained with varied 

data, including patient information, age, disease history, and clinical observations. Notably, the 

Random Forest and Decision Tree algorithms demonstrated exceptional accuracy rates, 

surpassing 90% when compared to alternative approaches. Venturing beyond algorithmic 

approaches, Gelder et al. [40] delved into the realm of human clinical trials and explored the 

potential of retinal pigment epithelium (RPE) transplantation. Their study scrutinized the 

advancements in retinal regenerative medicine over the past decade, shedding light on human 

clinical trials related to RPE transplantation.  The application of deep learning (DL) in 

ophthalmology, has facilitated the identification of conditions such as glaucoma-like disc, 

macular edema and age-related macular degeneration.  The fields of ophthalmology where DL 

has been used include fundus pictures, visual fields and optical coherence tomography. DL in 

ocular imaging and telemedicine allows several steps to be conducted in an improved manner. 

The areas of application include screening and identification. Consequently, the stage of 

monitoring patients in primary care is also affected for such systems in community settings [34-

35]. However, the use of DL in ophthalmology comes with its own set of concerns, including 

aspects related to clinical implementation as well as technically ensuring that everything runs 



13 
 

smoothly. Other similar challenges include conveying the findings of algorithm, considerations 

related to legality of processes and finally difficulties in convincing people to adopt artificially 

intelligent algorithms. These individuals range from doctors and physicians to patients. 

The fundamental layer of a CNN architecture is the convolutional layer. Its main task is to 

perform the extraction of features from images given to it as input. For the purpose of generating  

diverse feature outputs, multiple convolution kernel filters are employed by the convolution 

layer. Next comes the layer that plays a role in reducing the dimensionality of extracted features 

and compressing data to avoid overfitting. This layer is called the pooling layer, also known by 

the name of down-sampling layer and it works to make better the fault tolerance of the model 

being developed. The final results of the object classification task are generated by a layer called 

the fully connected dense layer. In this layer, image classification is carried out by amalgamation 

of the feature data from each neuron as acquired from the convolution layer. In order to have an 

optimal performance, with the exception of the final layer that deals with the weights allotted, 

other layers of a CNN model/ architecture are calibrated as not-trainable. Typically, there are  

three prominent layers of a CNN architecture. The convolutional layer, which serves to extract 

features from images provided to it, employs multiple convolution kernel filters to produce 

diverse image feature results.  

A prevalent aspect in current literature often involves the extraction of blood vessels or the 

segmented identification of lesions. The intricacy of framework design is further heightened by 

the diverse instruments and strategies employed for these purposes [28-29]. The present system 

employs an algorithm based on Convolutional Neural Network to recognize various stages and 

types of glaucoma. In their research, Linglin Zhanga highlighted that in the developed world, 

cataracts, emerge as one of the most prevalent causes of blindness and accounts for more than 

half of all cases. Timely identification and treatment of cataract can alleviate the botheration 

caused to patient and moreover can help to avoid blindness . However, identification of 
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cataract in clinical settings require the expertise of eye doctors who are adequately qualified. 

This kind of situation has the potential to make early ramification a challenging process due to 

invisible  costs. Based on the recent study on automated identification of cataract based on 

fundus images, a predefined set of features is utilized, which can possibly lead to inaccurate 

results. This is due to redundancy and/ or noisy representation [30]. Ele. Daniel Shu Wei Ting 

et al., emphasizes that deep learning has fostered prominent consideration in recent years, hence 

enhancing the artificially intelligent systems [31]. Researchers have found applications of deep 

learning in several fields such as speech recognition and natural language processing. Similarly, 

image recognition is another area impacted by it however, the healthcare industry has only 

recently started to witness its impacts [32-33]. 

In a recent study, it has been indicated that diabetic retinopathy, a common complication caused 

by diabetes leads to retinal lesions which impair vision [36].  DR, if not detected early, can lead 

to vision loss. It is highlighted that unfortunately, there is no way to ensure that diabetic 

retinopathy does not occur and treatments can only sustain eyesight. Manual diagnosis of DR 

retina fundus photographs by ophthalmologists is expensive, time-consuming, and prone to 

errors. Deep learning, particularly convolutional neural networks, has shown enhanced 

performance in the categorization and interpretation of medical images, offering a promising 

avenue for the diagnosis of DR and other medical conditions [36-37].  

Study presented in [38] examines and discusses the latest methodologies and techniques being 

used to detect diabetic retinopathy and further classify its types by making use of color fundus 

images through deep learning. The analysis also includes an assessment of datasets specific to 

DR in color fundus retinas. Additionally, certain complex challenges have been identified, 

calling for further research. The proposed approach significantly enhances the detection of the 

disc and cup. It is based on super-pixel classification. However, the model exhibits a bias that 

causes it to understate large cups whereas the small ones are overvalued. The techniques used 
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typically depend on the differences found regarding the cup and the neuro-retinal rim. This is 

essential for the computation of  cup-to-disc ratio (CDR). It is a complex task which is affected 

by the contrast observed and can become difficult in case of minimal contrast. Regarding 

glaucoma detection, the traditional method involved analyzing pressure inside the eye also 

known as the intraocular pressure or the IOP. In one of the previous studies, features have been 

computed through the image, by making use of the characteristics. These features help to create 

a binary distinction as to whether the subject has glaucoma or is healthy.  

This study presented a comprehensive overview of the dynamic landscape of regenerative and 

restorative medicine for various eye diseases, emphasizing the potential for future 

advancements in disease diagnosis and treatment. Another compelling investigation conducted 

by Abbas [41] concentrated on the development of automated computer-aided diagnostic 

(CAD) systems for glaucoma detection. To achieve this, the study employed Convolutional 

Neural Networks (CNN) architecture to extract crucial features from retinal images. The 

primary objective was to discern between glaucoma and non-glaucoma retinal fundus images, 

utilizing a dataset comprising 1200 retinal images. Impressively, the model achieved an average 

accuracy (ACC) of 99%, showcasing its potential to enhance glaucoma diagnosis. In the domain 

of feature extraction, Jain et al. [42] aimed to differentiate individuals with retinal problems 

from those without such issues. They accomplished this task through the analysis of retinal 

images, utilizing a model trained on datasets containing both patient and normal individual 

retinal fundus images.  

The outcomes revealed remarkable accuracy (ACC) rates ranging from 96.5% to 99.7%, 

underscoring the effectiveness of their approach. Metin et al. [43] addressed the critical concern 

of retinal diseases, particularly emphasizing the significance of early diagnosis. To address this 

challenge, they utilized machine learning and deep learning methodologies, incorporating 

CNN-based ResNet50 and MobileNetV2 models. These models were employed for the 
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classification of retinal diseases, yielding promising results. The models achieved average 

macro ACC values ranging from approximately 81% to 94%, along with an average F1 score 

of 0.96 for normal retinas, further emphasizing the potential of AI-driven solutions in early 

disease detection. Shifting the focus to diabetic eye disease (DED), Rarki et al. [44] applied 

CNN methods for the detection of retinal eye diseases in multiclass scenarios. Their study 

covered various classes of DED, and the model underwent testing using a diverse dataset of 

retinal fundus images, meticulously assessed by an ophthalmologist. The overall accuracy 

(ACC) reached 81.33%, accompanied by 100% sensitivity and 100% specificity for multiclass 

classification, showcasing the potential of CNNs in detecting a range of diabetic eye diseases.  

Umer et al. [45] investigated the application of Optical Coherence Tomography (OCT) in 

automating the detection and classification of retinal eye diseases. Currently, ophthalmologists 

rely on manually examining OCT images, a process prone to inaccuracies and subjectivity. To 

address this, the study introduced various methods to automate disease detection, utilizing a 

dataset comprising of four-class retinal eye disease images. Modified versions of two models; 

first namely AlexNet and second namely ResNet-50 models were employed to extract feature 

vectors. The method proposed for detecting retinal diseases achieved an impressive overall 

average accuracy index (ACC) of over 99.95%, highlighting the potential for precise disease 

diagnosis.  

Gargeya et al. [46] addressed the automatic diagnosis of diabetic retinopathy (DR) using image 

processing techniques and CNN models. Their study involved a substantial dataset comprising 

75,137 publicly available retinal fundus images from diabetic patients. The assessment of model 

performance utilized the area under the receiver operating characteristic curve (AUC) as a 

metric, employing 5-fold cross-validation. Notably, the model achieved a 97% AUC, along with 

94% sensitivity and 98% specificity for DR diagnosis, highlighting its effectiveness in 

automated disease diagnosis. In summary, these studies collectively showcase diverse 
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approaches and technologies in the field of ophthalmology for detecting and diagnosing a wide 

spectrum of eye diseases. They underscore the potential of artificial intelligence, deep learning, 

and automated diagnostic systems in enhancing accuracy, objectivity, and efficiency in disease 

diagnosis, ultimately benefiting patients and healthcare practitioners alike. 

The authors tackle the crucial challenge of detecting and classifying Diabetic Retinopathy (DR), 

a significant concern for diabetic patients vulnerable to severe visual impairment. They 

introduce an innovative automated system named DR-NASNet, which employs advanced 

techniques, including preprocessing methods such as Ben Graham and CLAHE, data 

augmentation to address class imbalance. Moreover, it involves integration of dense blocks 

within the NAS-Net architecture. The consequent system not only attains remarkable state-of-

the-art results with high accuracy but also maintains a compact model size and lower 

complexity. Through the utilization of combined datasets and a linear SVM classifier, DR-

NASNet proficiently categorizes DR images into five severity levels. This breakthrough holds 

the promise of providing valuable support to ophthalmologists, offering an efficient tool for the 

early classification of DR, thereby assisting in its timely management and potentially preventing 

vision loss in diabetic patients [47]. 

There are studies that marks a notable advancement in the early detection and management of 

Hypertensive Retinopathy (HR). Optometrists who are the clinical experts for eye related 

diseases, use image recognition technology for the retinal fundus images to ascertain the 

presence of ocular ailments related to hypertensive retinopathy. These procedures offer both a 

non-restrictive solution as well as a cost-effective way forward. The foremost advantage 

achieved through the use of detection systems that are automated is to help in the process of 

image evaluation/ assessment that is done by optometrists. This in turn ensures an important 

step for recognizing and consequently, treating the presence of hypertensive retinopathy [64]. 
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 The introduction of the Incept-HR methodology, coupled with the creation of the Pak-HR 

dataset, underscores the potential of AI and deep learning in the healthcare domain. Incept-HR 

demonstrates its efficacy through impressive performance, deeming it a valuable tool that can 

be used for diagnosis. It is essential to state that the proposed system is designed as a 

supplementary tool for healthcare professionals, augmenting their capacity to promptly identify 

HR. Furthermore, Incept-HR's outperformance of established models like VGG19 and VGG16 

suggests its potential to elevate HR detection and contribute to enhanced patient care. This 

research signifies a step forward in achieving more effective screening, early intervention, and 

improved healthcare for individuals at risk of HR due to hypertension [48]. 

"Mobile-HR" introduces a novel diagnostic system for Hypertensive Retinopathy (HR) based 

on the MobileNet architecture, optimized through transfer learning. HR is a significant eye 

disease characterized by alterations in retinal arteries due to elevated blood pressure, resulting 

in various visual symptoms. Traditionally, ophthalmologists diagnose HR by analyzing fundus 

images, emphasizing the importance of early detection to prevent vision loss. Prior computer-

aided diagnostic (CADx) systems encountered challenges like hyperparameter tuning, class 

imbalance, and overfitting. Mobile-HR addresses these issues by incorporating dense blocks, 

employing transfer learning, and applying data augmentation. Experimental results showcase 

its effectiveness, positioning Mobile-HR as a promising tool for HR diagnosis. These findings 

open up new possibilities for enhancing HR detection and patient care, offering potential 

benefits for both ophthalmologists and patients [49]. 

The classification and investigation of cataracts necessitate a comprehensive understanding of 

their diverse manifestations within the eye lens. Both subjective observation and objective 

measurement techniques continue to be widely employed in this field. Notably, techniques such 

as Scheimpflug slit image analysis, among the latter, offer a more precise means of identifying 

early transparency breakdowns. Objective approaches are pivotal in epidemiological research 
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as they facilitate the accurate monitoring of risk variables, including UV-B radiation exposure, 

and their potential role in cataract development. This significance arises from the fact that age-

related changes in lens transparency occur before apparent opacifications. Longitudinal cohort 

studies, involving repeated examinations, are imperative for gaining deeper insights into the 

multifactorial processes associated with cataracts. Subjective evaluations alone may fall short 

in detecting minor changes in transparency. In summary, objective techniques for categorizing 

cataracts are indispensable for advancing our understanding of this vision-impairing disorder 

and the linked risk factors [50]. 

A substantial contributor to visual impairment and a critical public health issue, cataracts are 

addressed through an automated identification method utilizing retinal image categorization 

rooted in computer science. Recognizing the crucial role of early diagnosis in preventing 

blindness, the approach involves employing deep learning networks to extract distinctive 

features from fundus images, coupled with preprocessing using the maximum entropy 

approach. Subsequently, the automated identification of four classes of cataract photos—

normal, mild, medium, and severe—is carried out using conventional classification techniques, 

specifically SVM and Softmax. Noteworthy in the findings is emphasis on the aspect that 

features obtained through deep learning and categorized by Softmax exhibit superior accuracy. 

The overarching objective is to enhance the prospects for timely intervention and improved 

visual outcomes by advancing the early detection of cataracts through the fusion of computer 

science and medical imaging [51]. 

For a detailed overview of research findings related to the identification and categorization of 

eye illnesses, refer to Table 2.1 

Table 2.1. Comparison and Analysis of Present Studies 

Title Methodology Data Information Models 
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Classification of retinal 

images with deep 

learning for early 

detection of diabetic 

retinopathy disease [27] 

Classification was made 

by Convolutional Neural 

Network which is a deep 

learning algorithm 

MESSIDOR, 

DIARETDB, 

STARE 

CNN 

Deep Learning Method 

for the detection of 

Diabetic Retinopathy 

[28] 

Deep Learning 

Approach is applied in 

which the processed 

image is fed into a 

Convolutional Neural 

Network to predict 

whether the patient is 

diabetic or not 

High-Resolution 

Fundus (HRF) 

CNN 

Diabetic retinopathy 

detection using soft 

computing techniques 

[29] 

Gray level co-

occurrence matrices 

(GLCM), Classifiers 

such as Support Vector 

Machine (SVM), 

Random Forests, 

Gradient boost, 

AdaBoost, Gaussian 

Naive Bayes 

MESSIDOR GLCM 

Disc-Aware Ensemble 

Network for Glaucoma 

Disc-aware ensemble 

network 

SCES, SINDI CNN 
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Screening from Fundus 

Image [33] 

Detection and 

classification of 

diabetic retinopathy 

using retinal images 

[35] 

Random Forests 

technique based on the 

area and perimeter of the 

blood vessels and 

hemorrhages 

STARE Filters and 

Random 

Forests 

Weakly-supervised 

localization of diabetic 

retinopathy lesions in 

retinal fundus images 

[37] 

CNN architecture DiaretDB1 CNN 

Glaucoma-Deep: 

Detection of Glaucoma 

Eye Disease on Retinal 

Fundus Images using 

Deep Learning [40] 

Convolutional neural 

network (CNN) and 

deep-belief network 

(DBN) 

DRIONS-DB, 

sjchoi86-HRF 

CNN 

Convolutional Neural 

Network for Multi-class 

Classification of 

Diabetic Eye Disease 

[43] 

Multi- class DED, 

automated classification 

framework 

MESSIDOR CNN 

A deep feature fusion 

and selection-based 

retinal eye disease 

Selection based retinal 

disease detection, 

- AlexNet, 

ResNet50 



22 
 

detection from OCT 

images [44] 

Modified-Alexnet and 

ResNet-50 

DR-NASNet: 

Automated System to 

Detect and Classify 

Diabetic Retinopathy 

Severity Using 

Improved Pretrained 

NASNet Model [45] 

Detection and 

classification of severity 

of  DR using an 

improved version of 

NASNet Model that has 

been pre-trained 

APTOS-2019, 

PAK-DR(Private) 

NASNet 

FAS-Incept-HR: a fully 

automated system based 

on optimized inception 

model for hypertensive 

retinopathy 

classification[46] 

Automated early 

detection of this illness 

can be aided by AI and 

deep learning models. 

PAK-HR (Private) InceptionV3 

Mobile-HR: An 

Ophthalmologic-Based 

Classification System 

for Diagnosis of 

Hypertensive 

Retinopathy Using 

Optimized MobileNet 

Architecture [47] 

MobileNet architecture 

to optimize the diagnosis 

of HR disease using 

dense blocks  

PAK-HR (Private), 

DRIVE, 

DiaRetDB0 

MobileNet 
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Chapter 3 

Materials and Methods 

In our research, we present a novel framework named CAD-EYE, combining the strengths of 

EfficientNet and MobileNet. CAD-EYE approach is used to categorize images of eye diseases, 

discerning between diabetic retinopathy, hypertensive retinopathy, glaucoma, cataract -related 

issues and normal cases. Within the CAD-EYE system, the feature fusion methodology of 

EfficientNet and MobileNet is utilized to extract valuable features, employing transfer learning 

for training on eye-related abnormalities. The CAD-EYE system incorporates essential 

mechanisms for detecting images depicting eye diseases and recognizing the mentioned issues. 

The different phases of the system are depicted through a flow chart in Figure 3.1. Features 

obtained from EfficientNet and MobileNet are amalgamated and the model parameters undergo 

continuous refinement throughout the training period.  

  



24 
 

 

The creation of the CAD-EYE model marks an advancement in the field of deep learning as 

well as computer vision. Two well-established deep learning models, EfficientNet & 

MobileNet, are made use of, culminating in a unique hybrid model with the potential to surpass 

its predecessors. By combining the effective feature extraction of EfficientNet with the strong 

training stability and transferability of MobileNet, this paradigm shows potential of improved 

performance on variety datasets. Notably, its adaptability to distinct domains stands out as a 

distinctive feature, achieved through the deliberate integration of intricate components. 

The incorporation of the "EfficientNet and MobileNet feature fusion technique" has stood out 

as an innovative and notable contribution with regards to solutions based on deep learning. This 

approach is highly favored in diverse computer vision tasks, effectively blending the strengths 

of EfficientNet and MobileNet. Key attributes include commendable interpretability, minimal 

resource utilization, and demonstrated real-world efficacy. Moreover, this methodology aims to 

improve not only efficiency but also the performance within the realm of computer vision. The 

training process that the model undergoes, utilizes a designated dataset and incorporates 

Figure 3.1: Systematic flow chart of CAD-EYE model for identification of eye diseases 
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techniques like feature fusion from EfficientNet and MobileNet to enhance the model's 

performance and versatility. 

Tailoring tasks to specific requirements becomes particularly valuable when generic models 

encounter challenges in achieving optimal performance. An outstanding feature of the 

innovative model under study, which combines EfficientNet and MobileNet architectures, lies 

in its extensive empirical validation.  

This hybrid model demonstrates high efficiency with regards to utilization of resources, 

rendering it well-suited for deployment in environments where resources are restrained; this 

includes edge devices, for which memory constraints as well as computational constraints are 

critical considerations. Apart from enhanced efficiency, the model ensures greater standards of 

interpretability, a crucial aspect in industries like healthcare and autonomous driving. The 

elucidation of the decision-making process, achieved through the integration of thick blocks 

from EfficientNet and MobileNet components, proves pivotal for applications where trust and 

safety are paramount concerns. 

3.1 Data Acquisition and Pre-Processing 

The CAD-EYE model underwent training and evaluation using the Multiple-EYE dataset, 

which comprises 65,871 photos. These images were gathered from both private and public 

sources, including reputable eye facilities in different countries and well-known internet 

platforms. Prior to data sharing, explicit consent was obtained from patients and physicians, 

with a commitment to maintaining confidentiality by providing the data anonymously without 

revealing any clinical details. This approach ensured accessibility for research purposes while 

safeguarding patient data. The Multiple-EYE dataset, compiled from various sources, includes 

eye fundus images related to diverse eye conditions such as diabetic retinopathy, hypertensive 

retinopathy, glaucoma, cataract, and normal images. A meticulous curation process was 

undertaken by qualified ophthalmologists in the training dataset, who discerned normal and eye 
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disease photos to establish a standardized dataset. The expertise of these ophthalmologists, well-

versed in detecting eye-related traits, played a pivotal role in this manual curation process. To 

enhance the interpretability and explainability of the CAD-EYE model, the HISTOMSR pre-

processing approach has been employed. HISTOMSR's ability to generate clear heatmaps 

highlighting essential areas in an image, along with its user-friendly nature and suitability for 

object localization, positions it as a valuable tool for understanding the decision-making process 

of the model. The selection of HISTOMSR approach aligns with the goals of this research. The 

incorporation of HISTOMSR approach reflects ongoing efforts that aim to improve the 

reliability of models based on DL, fostering their accessibility and trustworthiness in diverse 

applications, as illustrated in Figure 3.2. 

 

Figure 3.2: Results of Image Preprocessing technique HISTOMSR 

Figure 1.1 shows a representation of a meticulous examination of 65,871 eye photographs. 

Table 3.1 provides a breakdown of the datasets utilized to formulate the set of fundus images 

for training and testing. All experiment images were uniformly downsized to 700×600 pixels 

and processed to generate binary labels. The complete dataset comprises of  65,871 photos, with 

9,393 utilized for system evaluation. To ensure impartiality, the dataset has been initially 

categorized into different classes, with an aim to balance the overall number of photos for each 

class. Prior to input into an algorithm tailored specifically for the CAD-EYE model, photos 

have undergone pre-processing involving resizing to 700×600 pixels. Standardization has also 

been applied to minimize variation between data points. The CAD-EYE system has been trained 
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and evaluated using data from Multiple-EYE, wherein resolution of each image is 1125×1264 

pixels. 

Table 3.1. Dataset of Eye diseases for the CAD-EYE framework 

Ref Dataset 

Used 

Normal 

Eye 

DR HR Glaucoma Cataract Total 

[53] Eyepacs, 

Aptos, 

Messidor 

23,125 23,125 - - - 46,250 

[54] Eye disease 

dataset 

- - - 50 100 150 

[55] Eye 

Diseases 

Classificatio

n 

250 250 - 250 250 1000 

[56] Dataset for 

different eye 

disease 

1,637 - - 1,637 1,637 4,101 

[57] DiaRetDB1 100 100 - - - 200 

Private PAK-HR 3,000 - 3,000 - - 6,000 

Private DR-Insight 1,000 - 4,000 - - 5000 

Private Imam-HR 1,130 - 2,040 - - 3,170 

  30,242 23,475 9,040 1,937 1,987 65,871 
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The images, sourced from various sources, were resized to a standard dimension of 700×600 

pixels for the purpose of simplification and standardization of the dataset. Additionally, 

seasoned pulmonologists played a crucial role in generating both eye disease and non-eye 

disease data during the dataset construction process for accurate ground truth evaluation. To 

enhance image features and eliminate interference, the Grad-Cam technique has been applied 

to preprocess the images, as depicted in Figure 3.2. Employing Grad-Cam on eye fundus images 

facilitated the identification of key regions in detecting the presence of eye diseases. This 

technique aided in recognizing distinctive characteristics that significantly made an impact on 

the predictions made by CNN, for the diagnosis of diabetic retinopathy, hypertensive 

retinopathy, glaucoma and cataract images. 

3.2 Data Augmentation 

The dataset table clearly indicates an uneven distribution of data, potentially leading to bias in 

favor of a particular class during the process of training the model. Rather than acquiring 

additional data, this challenge can be addressed through a method known as "data 

augmentation”. Data augmentation deliberately generates additional data points from existing 

ones, thereby enhancing the diversity of dataset. This approach is instrumental in making the 

performance of system better as well as preventing overfitting in it. During the process of 

training, images can be enhanced using the approach known as AutoAugment. Alongside data 

augmentation technique, other techniques may be applied to solve the data balancing problem. 

These techniques include resampling methods like oversampling and under sampling. Also, 

other ensemble methods including bagging and/or boosting may also be used. Moreover, GAN 

which is a data generation technique may also be used. Each of these techniques has its own 

advantages and can be tuned to the specific dataset used. These techniques are critical for 

achieving robust and generalized machine learning models with high accuracy. Each of these 

approaches offers unique advantages and can be tailored to the specific characteristics of the 
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dataset and the objectives of the machine learning task. Employing these advanced approaches 

to tackle imbalance of classes is crucial in order to achieve enhanced accuracy, as well as more 

robust and equitable models of machine learning.  

A widely used approach which is also effective for resolving imbalance class problem, is that 

of Data Augmentation. First off, data augmentation is a simple procedure that doesn't require a 

lot of changes to the hyperparameters or model architecture. It entails applying different 

transformations, including rotation, flipping, cropping, or noise introduction, to existing data in 

order to create new training samples. This creates an artificially larger minority class, which 

helps to achieve a more even distribution of classes. It uses existing data to create new instances 

that can aid the model for generalizing. This strategy is essential for enhancing and maintaining 

the model's functionality while preventing overfitting.  For our research, we detail the 

AutoAugment transformation policy, and construct a set of procedures for transformation that 

includes resizing the pictures, flipping the images horizontally and then applying a policy of 

AutoAugment.  During this process, training images are taken in from dataset organized in a 

directory structure under the './dataset/train' folder. ImageFolder class from Torchvision dataset 

helps apply the AutoAugment transformation to each image. Training a DL model on a dataset 

that has been customized, involves making use of augmented photos provided by the 

DataLoader in batches. This is done to enhance performance and generalization. While 

recognizing the challenge of imbalanced class is important and highlights a persistent issue in 

machine learning, it doesn't offer a comprehensive solution beyond the use of data augmentation 

strategies. Exploring better and more efficient approaches for dealing with this issue is crucial 

in order to achieve more effective, robust and consistent outcomes. The overall procedure of 

data augmentation is explained as follows:  
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Table 3.2. Steps for Data Augmentation 

Step No Process 

1 Importing torch, torchvision & albumentation (all the necessary libraries 

required). 

2 Defining the function 𝑔𝑒𝑡_𝑎𝑢𝑡𝑜𝑎𝑢𝑔𝑚𝑒𝑛𝑡_𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚() to construct the channel 

for AutoAugment transformation. AutoAugment policy and other image 

transformations are defined through Albumentations. The resulting channel 

resizes images, by horizontal flips, and normalizing the values of  pixel. 

3 Carrying out following actions related to the dataset: 

a. Load custom dataset from torchvision.datasets. using ImageFolder 

b. Apply onto the dataset, the AutoAugment transformation, which has been 

previously defined 

4 Creating a class to handle batching and shuffling of dataset through the course of 

training process. This will be created through DataLoader using 

torch.utils.data.DataLoader.  

5 Defining a simple CNN model class SimpleCNN using nn.Module. Pertinent loss 

function and optimizer are prepared for training the model. Hyperparameters like, 

the number of training epochs, batch size and learning are also defined 

Examples of loss function include CrossEntropyLoss and example of optimizer 

include SGD or Adam 

6 Training of model using specified epochs by repeatedly executing following 

steps:  

a. Call 𝑚𝑜𝑑𝑒𝑙. 𝑡𝑟𝑎𝑖𝑛(). in order to set the model to training mode 

b. Obtain batches of augmented images as well as the labels corresponding to 

them. This will be done by looping through the DataLoader  
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c. Forward pass is implemented on the model.  

d. Defined loss function is used to calculate the difference between expected 

outputs and ground truth label 

e. Backward pass is implemented to compute gradients of the model's 

parameters with respect to the loss. 

f. Parameters  of the model are updated through computed gradients as well as 

the chosen optimizer 

7 Model becomes ready for inference and evaluation once the training is complete, 

(on new data) 
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Chapter 4 

Proposed Architecture 

The comprehensive model structure seamlessly integrates the distinctive capabilities of 

MobileNetV2 and EfficientNet through a meticulous feature fusion process, ultimately leading 

to a final layer compatible with an XGBoost classifier for image classification. This innovative 

approach involves leveraging the pre-trained convolutional neural networks, MobileNetV2 and 

EfficientNet, each renowned for its specific architectural strengths. The fusion methodology, 

facilitated by global average pooling and concatenation, strategically captures and harmonizes 

spatial information from both architectures. Subsequent dense layers further refine the feature 

space, extracting nuanced relationships. The final architectural element introduces an XGBoost 

classifier, extending the model's versatility beyond the neural network domain. This hybrid 

architecture, combining deep learning with gradient boosting, offers a sophisticated ensemble 

approach for image classification tasks, leveraging the strengths of both paradigms to achieve 

enhanced predictive performance. The model is poised not only to benefit from the hierarchical 

feature extraction capabilities of deep neural networks but also to capitalize on the 

interpretability and ensemble learning process of XGBoost, ensuring robust and accurate 

classification outcomes as illustrated in Figure 4.1. 
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Let  𝑀 represent the MobileNetV2 model, and  𝐸 represent the EfficientNet model. 

 

𝑀𝑜𝑏𝑖𝑙𝑒𝑁𝑒𝑡𝑉2 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠: 𝑋𝑀 = 𝑀(𝐼𝑛𝑝𝑢𝑡)                                                                                   (4.1) 

 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑁𝑒𝑡𝐵0 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠: 𝑋𝐸 = 𝐸(𝐼𝑛𝑝𝑢𝑡)                                                                               (4.2) 

 

Set all layers of both models as non-trainable. 

 

𝑋𝑀
𝑓𝑟𝑜𝑧𝑒𝑛

= 𝐹𝑟𝑒𝑒𝑧𝑒(𝑋𝑀)                                                                                                                      (4.3) 

 

𝑋𝐸
𝑓𝑟𝑜𝑧𝑒𝑛

= 𝐹𝑟𝑒𝑒𝑧𝑒(𝑋𝐸)                                                                                                                      (4.4) 

 

Let GlobalAveragePooling2D ( ⋅ ) GlobalAveragePooling2D(⋅) represent the global average 

pooling operation, and Dense ( ⋅ ) Dense(⋅) represent a dense layer. 

Figure 4.1: Proposed Architecture of CAD-Eye System12 
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𝑋𝑀
𝑃𝑜𝑜𝑙𝑒𝑑 = 𝐺𝑙𝑜𝑏𝑎𝑙𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑜𝑜𝑙𝑖𝑛𝑔2𝐷(𝑋𝑀

𝑓𝑟𝑜𝑧𝑒𝑛
)                                                                       (4.5) 

 

𝑋𝐸
𝑃𝑜𝑜𝑙𝑒𝑑 = 𝐺𝑙𝑜𝑏𝑎𝑙𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑜𝑜𝑙𝑖𝑛𝑔2𝐷(𝑋𝐸

𝑓𝑟𝑜𝑧𝑒𝑛
)                                                                       (4.6) 

 

𝑋𝐶𝑜𝑛𝑐𝑎𝑡 = 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑋𝑀
𝑃𝑜𝑜𝑙𝑒𝑑, 𝑋𝐸

𝑃𝑜𝑜𝑙𝑒𝑑)                                                                                  (4.7) 

 

𝑋𝑑𝑒𝑛𝑠𝑒1 = 𝐷𝑒𝑛𝑠𝑒(128, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = ’𝑟𝑒𝑙𝑢’)(𝑋𝐶𝑜𝑛𝑐𝑎𝑡)                                                             (4.8) 

 

𝑋𝑑𝑒𝑛𝑠𝑒2 = 𝐷𝑒𝑛𝑠𝑒(𝑛𝑢𝑚𝑐𝑙𝑎𝑠𝑠𝑒𝑠, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = ’𝑠𝑜𝑓𝑡𝑚𝑎𝑥’)(𝑋𝑑𝑒𝑛𝑠𝑒1)                                       (4.9) 

 

𝑓𝑢𝑠𝑖𝑜𝑛𝑚𝑜𝑑𝑒𝑙 = 𝑀𝑜𝑑𝑒𝑙(𝑖𝑛𝑝𝑢𝑡𝑠 = [𝑀. 𝑖𝑛𝑝𝑢𝑡, 𝐸. 𝑖𝑛𝑝𝑢𝑡], 𝑜𝑢𝑡𝑝𝑢𝑡𝑠

= 𝑋𝑑𝑒𝑛𝑠𝑒2)                                                                                                               (4.10) 

𝑓𝑢𝑠𝑖𝑜𝑛𝑚𝑜𝑑𝑒𝑙. 𝑐𝑜𝑚𝑝𝑖𝑙𝑒(𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 = ’𝑎𝑑𝑎𝑚’, 𝑙𝑜𝑠𝑠 = ’𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙𝑐𝑟𝑜𝑠𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑦’, 𝑚𝑒𝑡𝑟𝑖𝑐𝑠

= [’𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦’])                                                                                                     (4.11) 

𝑓𝑢𝑠𝑖𝑜𝑛_𝑚𝑜𝑑𝑒𝑙. 𝑓𝑖𝑡([𝑡𝑟𝑎𝑖𝑛𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟. 𝑛𝑒𝑥𝑡( )[0], 𝑡𝑟𝑎𝑖𝑛𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 . 𝑛𝑒𝑥𝑡( )[0]. 

 𝑡𝑟𝑎𝑖𝑛𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 . 𝑛𝑒𝑥𝑡( )[1], 𝑒𝑝𝑜𝑐ℎ𝑠 = 10, 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛_𝑑𝑎𝑡𝑎 =

([𝑡𝑒𝑠𝑡_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟. 𝑛𝑒𝑥𝑡()[0], 𝑡𝑒𝑠𝑡_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟. 𝑛𝑒𝑥𝑡()[0]], 𝑡𝑒𝑠𝑡_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟. 𝑛𝑒𝑥𝑡()[1]) (4.12) 

 

The proposed model architecture initiates with the extraction of features from input images 

through the pre-trained MobileNetV2 (𝑀) and EfficientNet (𝐸) models, represented by 

Equations (4.1) and (4.2) respectively. Following this, all layers of both models are rendered 

non-trainable to preserve their learned weights (Equations 4.3 and 4.4). Subsequently, global 
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average pooling is applied to the frozen features, producing 𝑋𝑀
𝑃𝑜𝑜𝑙𝑒𝑑 and 𝑋𝐸

𝑃𝑜𝑜𝑙𝑒𝑑 (Equations 4.5 

and 4.6). These pooled features are then concatenated, forming 𝑋𝐶𝑜𝑛𝑐𝑎𝑡 (Equation 4.7). The 

concatenated features are subjected to dense layers with rectified linear unit (ReLU) activation, 

resulting in 𝑋𝑑𝑒𝑛𝑠𝑒1 and 𝑋𝑑𝑒𝑛𝑠𝑒2 (Equations 4.8 and 4.9). Finally, the fusion model is defined 

with two inputs (from MobileNetV2 and EfficientNet) and one 𝑋𝑑𝑒𝑛𝑠𝑒2 , denoted by Equation 

(4.10). Subsequent to model definition, the architecture is compiled using the Adam optimizer, 

categorical cross entropy loss, and accuracy as the monitoring metric (Equation 4.11). The 

training phase, Equation (4.12), involves fitting the fusion model to the training dataset utilizing 

data generators for a specified number of epochs, thus culminating in a meticulously crafted 

model capable of leveraging the complementary strengths of both MobileNetV2 and 

EfficientNet for image classification tasks. Figures 4.2, 4.3, 4.4 and 4.5 show the visual results 

of the predicted CAD-EYE system. Process to carry out feature map extraction using CAD-

EYE model, is enumerated in Table 4.1. 

Table 4.1. CAD-EYE feature map extraction method 

Step No Operations Explanation 

1 Load Pre-

trained Models 

𝑋𝑀= 𝑀(𝐼𝑛𝑝𝑢𝑡) Extract features using MobileNetV2. 

𝑋𝐸= 𝐸(𝐼𝑛𝑝𝑢𝑡)   Extract features using EfficientNetB0. 

2 Freeze Layers 𝑋𝑀
𝑓𝑟𝑜𝑧𝑒𝑛

= 𝐹𝑟𝑒𝑒𝑧𝑒(𝑋𝑀) Set MobileNetV2 layers as non-

trainable. 𝑋𝐸
𝑓𝑟𝑜𝑧𝑒𝑛

= 𝐹𝑟𝑒𝑒𝑧𝑒(𝑋𝐸) Set EfficientNetB0 layers as 

non-trainable. 

3 Global 

Average 

Pooling 

𝑋𝑀
𝑃𝑜𝑜𝑙𝑒𝑑 = 𝐺𝑙𝑜𝑏𝑎𝑙𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑜𝑜𝑙𝑖𝑛𝑔2𝐷(𝑋𝑀

𝑓𝑟𝑜𝑧𝑒𝑛
) Apply 

global average pooling to MobileNetV2 features. 𝑋𝐸
𝑃𝑜𝑜𝑙𝑒𝑑 =

𝐺𝑙𝑜𝑏𝑎𝑙𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑜𝑜𝑙𝑖𝑛𝑔2𝐷(𝑋𝐸
𝑓𝑟𝑜𝑧𝑒𝑛

) Apply global average 

pooling to EfficientNetB0 features. 
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4 Concatenation 𝑋𝐶𝑜𝑛𝑐𝑎𝑡 = 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑋𝑀
𝑃𝑜𝑜𝑙𝑒𝑑, 𝑋𝐸

𝑃𝑜𝑜𝑙𝑒𝑑) Concatenate 

pooled features. 

5 Dense Layers 𝑋𝑑𝑒𝑛𝑠𝑒1 = 𝐷𝑒𝑛𝑠𝑒(128, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = ’𝑟𝑒𝑙𝑢’)(𝑋𝐶𝑜𝑛𝑐𝑎𝑡) Apply 

dense layer with ReLU activation. 𝑋𝑑𝑒𝑛𝑠𝑒2 =

𝐷𝑒𝑛𝑠𝑒(𝑛𝑢𝑚𝑐𝑙𝑎𝑠𝑠𝑒𝑠, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = ’𝑠𝑜𝑓𝑡𝑚𝑎𝑥’)(𝑋𝑑𝑒𝑛𝑠𝑒1) Final 

dense layer for classification. 

6 Fusion Model 

Definition 

𝑓𝑢𝑠𝑖𝑜𝑛𝑚𝑜𝑑𝑒𝑙 = 𝑀𝑜𝑑𝑒𝑙(𝑖𝑛𝑝𝑢𝑡𝑠 =

[𝑀. 𝑖𝑛𝑝𝑢𝑡, 𝐸. 𝑖𝑛𝑝𝑢𝑡], 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 = 𝑋𝑑𝑒𝑛𝑠𝑒2) Compile with Adam 

optimizer. 

7 Compile the 

Model 

𝑓𝑢𝑠𝑖𝑜𝑛_𝑚𝑜𝑑𝑒𝑙. 𝑐𝑜𝑚𝑝𝑖𝑙𝑒(𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 = ’𝑎𝑑𝑎𝑚’, 𝑙𝑜𝑠𝑠 =

’𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙_𝑐𝑟𝑜𝑠𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑦’, 𝑚𝑒𝑡𝑟𝑖𝑐𝑠 = [’𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦’]). 

Compile with Adam optimizer. 

8 Train the 

Model 

𝑓𝑢𝑠𝑖𝑜𝑛_𝑚𝑜𝑑𝑒𝑙. 𝑓𝑖𝑡([𝑡𝑟𝑎𝑖𝑛_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟. 𝑛𝑒𝑥𝑡()[0], 𝑡𝑟𝑎𝑖𝑛_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟. 𝑛𝑒𝑥𝑡()[0]], 𝑡𝑟𝑎𝑖𝑛_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟. 𝑛𝑒𝑥𝑡()[1], 𝑒𝑝𝑜𝑐ℎ𝑠 =

10, 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛_𝑑𝑎𝑡𝑎 =

([𝑡𝑒𝑠𝑡_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟. 𝑛𝑒𝑥𝑡()[0], 𝑡𝑒𝑠𝑡_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟. 𝑛𝑒𝑥𝑡()[0]], 𝑡𝑒𝑠𝑡_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟. 𝑛𝑒𝑥𝑡()[1]). 

Train using data generators. 
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Figure 4.2: Results produced by the CAD-EYE architecture for DR 
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Figure 4.3:  Results produced by the CAD-EYE architecture for HR 
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Figure 4.4:  Results produced by the CAD-EYE architecture for Cataract 
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Figure 4.5: Results produced by the CAD-EYE architecture for Glaucoma 
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4.1 Recognition of Eye Diseases 

In an effort to automate the challenging process of diagnosing eye conditions using fundus 

photos, our novel fusion system, aptly named CAD-EYE-Fusion, ingeniously combines the 

influential features of MobileNetV2 and EfficientNetB0. Illustrated in Figure 4.1, this 

innovative architecture seamlessly amalgamates features from both models through a strategic 

fusion mechanism, integrating layers such as Global Average Pooling, Dense, and Batch 

Normalization. Intricately woven skip connections expedite the learning process within the 

network. The holistic CAD-EYE-Fusion system leverages the combined feature representation 

to significantly enhance image classification performance for eye diseases. The architecture 

boasts multiple dense blocks, constructed with depth wise convolutional layers. One of these 

layers is the ReLU activation layer. Similarly, other layers include the max pooling and the 

batch normalization layers. The skip connections within these dense blocks facilitate efficient 

training and connectivity. Comprising a total of three dense blocks, our model ensures 

consistency in input and output sizes, enabling effective feature learning. The final classification 

output is obtained through an additional layer that tailors the categorization process, including 

layers such as Dense and Batch Normalization, maintaining 850 nerve cells for optimal 

performance. Batch normalization layers are seamlessly integrated into CAD-EYE-Fusion as a 

preprocessing step, contributing to improved training and convergence of the model. The 

detailed incorporation of batch normalization is provided in Table 4.2, emphasizing its 

significance in the comprehensive fusion system designed for robust eye disease classification 

from medical images. 

𝐵 =  { 𝑋1…..𝑚}, 𝛾, 𝛽                                                                                                                               (4.13) 

 

{𝑦𝑖 = 𝐵𝑁𝛾𝛽(𝑋𝑖)}                                                                                                                                     (4.14) 
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𝜇𝐵 ←
1

𝑚
 ∑ 𝑋𝑖𝑚

𝑖=1                                                                                                                                      (4.15) 

 

𝜎𝐵 ←  
1

𝑚
 ∑ 𝑋𝑖𝑚

𝑖=1 −  𝜇𝐵                                                                                                                        (4.16) 

 

𝑋𝑖 ←  
𝑋𝑖− 𝜇𝐵

𝜎𝐵
2+ 𝜖

                                                                                                                                          (4.17) 

 

𝑦𝑖 ← 𝑌𝑋𝑖 +  𝛽 = 𝐵𝑁𝛾𝛽(𝑋𝑖)                                                                                                               (4.18) 

 

Table 4.2. Symbol Table 

Symbol Values/ Meaning 

𝑩 Batch 

𝒙 Batch minimum activating value 

𝝐 Constant used for numerical stability 

𝝁𝑩 Mean of the mini-batch  

𝜸 Learning variable 

𝝈𝑩
𝟐  Variance of the mini-batch  

𝜷 Learning variable 

 

4.2 XGBoost Classifier 

In our research, we have also explored the efficacy of the XGBoost algorithm for the task of 

recognizing features associated with diabetic retinopathy, hypertensive retinopathy, glaucoma 

and cataract. The algorithm, outlined in detail as Algorithm 1, employs a gradient boosting 

framework with decision trees as base learners. XGBoost is particularly well-suited for binary 

classification tasks, and we have configured it with hyperparameters such as the learning rate 
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(𝜂), regularization term (𝜆), and the number of trees (𝑇). For the feature extraction process in the 

realm of computer vision, we adopted Depthwise Conv2D, providing a more specialized 

convolutional operation. This alteration aimed to enhance the model's ability to discern intricate 

patterns in retinal images. The training process involves iteratively constructing decision trees 

and updating the model based on the calculated gradients (𝑔𝑖) and Hessians (ℎ𝑖) for each 

training sample. During the training of the XGBoost model, the prediction of the 𝑡-th tree is 

sequentially incorporated into the ensemble, guided by the learning rate and the weights 

determined by the optimization process. The final prediction for a testing sample is the sum of 

predictions from all trees in the ensemble, resulting in a robust recognition model. 

Mathematically, the XGBoost algorithm optimizes an objective function that balances a loss term 

and a regularization term. The output for a testing sample (𝐴𝑡𝑒𝑠𝑡) is computed as the sum of the 

predictions from each tree, weighted by the learning rate and tree weights. This ensemble 

approach allows XGBoost to find out the complex relationships in the data and also to generate 

a reliable recognition outcome for the classification of diabetic retinopathy, hypertensive 

retinopathy, glaucoma and cataract samples. Proposed XGBoost classifier is explained in Table 

4.3. 

Table 4.3. Proposed XGBoost classifier 

Step No Description Input Output 

1 Initialize XGBoost 

model 

- XGBoost model 

with 

hyperparameters 

(𝜂, 𝜆, 𝑇) 

2 Train XGBoost model on 

normal and abnormal 

samples 

Training data: 𝑋 =

{(𝑥1, 𝑎1), (𝑥2, 𝑎2), … . , (𝑥𝑚, 𝑎𝑚)} 

Trained XGBoost 

model 
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Labels: 𝑎 = {0,1} 

3 Use Depthwise Conv2D 

instead of Conv2D 

Feature map 𝑥 =

{𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛} 

Modified feature 

map 

4 Build classifier based on 

XGBoost. 

• Train XGBoost 

model. 

• Generate 

ensemble of trees 

• Training data: 𝑋, 

Labels: 𝑎 

Trained XGBoost model 

Ensemble of decision trees 

 

5 Allocate class label for 

testing samples 

Testing data: 𝑥 =

{𝑥𝑡𝑒𝑠𝑡1, 𝑥𝑡𝑒𝑠𝑡2, 𝑥𝑡𝑒𝑠𝑡3, … , 𝑥𝑡𝑒𝑠𝑡𝑘} 

Predicted class 

labels for 𝑋𝑡𝑒𝑠𝑡 

6 Recognition of four types 

of diseases in retinal 

image samples 

Predicted class labels Recognition results 

for diabetic 

retinopathy, 

hypertensive 

retinopathy, 

glaucoma, cataract 

samples 

 

 

 



45 
 

Chapter 5 

Results 

A dataset comprising of 65,871 fundus images, encompassing high-resolution normal, diabetic 

retinopathy, hypertensive retinopathy, glaucoma and cataract images has been utilized to train 

the CAD-EYE model. These images were sourced from various reliable online platforms. For 

feature extraction and classification activities, all 65,871 images were resized to 700 x 600 

pixels. The CAD-EYE system has been trained for a total of 100 epochs. The optimal model 

has been identified in the 30th epoch, leading to achieving an f1-score of 0.97. Statistical 

analysis has determined the metrics such as the values for accuracy/ ACC, sensitivity/ SE and 

specificity/ SP for the proposed CAD-EYE system, which have further been compared with 

those of other systems. The development of the CAD-EYE architecture has been conducted on 

a machine equipped with an HP-i7 CPU. Other technical specifications include the CPU having 

8 cores. Storage capacities include 32 GB of RAM. Moreover, for graphics processing, a 2 GB 

Gigabyte NVIDIA GPU has been used. The operating system used for building and developing 

this system was Windows 11 Professional 64-bit. 

5.1 Test 1 

For the purpose of assessing the performance of DL models against CAD-EYE system, a test 

was conducted. It is worth mentioning that an equal number of epochs were employed for 

training each DL model. Table 5.1 presents the comparative results of the CAD-EYE system 

and other models in terms of sensitivity, area under the curve/ AUC, specificity and accuracy. 

Results acquired indicate that CAD-EYE system outperforms several other types of deep 

learning models, depicting a far better outcome. Figure 5.1 visually depicts the comparison 

between various deep learning models including CAD-EYE. 
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Table 5.1. Comparison of various deep learning models including CAD-Eye 

Models Sensitivity Specificity Accuracy 

VGG19 75 77 79.2 

InceptionV3 80.1 81.5 82.4 

Xception 79.2 80.4 83.8 

VGG16 72 76 78.6 

ResNet50 82.5 84.9 86.7 

MobileNet 83.6 84.7 87.5 

CAD-EYE 95.2 96.7 97.7 

 

 

Figure 5.1: Comparison between different DL models & CAD-Eye 
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5.2 Test 2  

To evaluate the effectiveness of our proposed CAD-EYE approach, we utilized the dataset of 

65,871 fundus images obtained from different reputable sources. Initially, we employed the 

datasets to assess the performance of the model on both the training dataset as well as the 

validation datasets and to evaluate the function used for loss. A visual representation of the 

accuracies ( training and validation ) of the CAD-EYE model, is presented in Figures 5.2 and 

5.3. The results unequivocally demonstrate the high efficacy of our model. 

 

Figure 5.2: Results of accuracy and loss for training and validation of proposed model 
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Figure 5.3: Confusion matrix for CAD-EYE 

5.3 Test 3 

Lastly, we have assessed the efficacy of our proposed CAD-EYE system using the EDC dataset 

[55]. Initially, we examined the loss function. Subsequently, we appraised the model's 

performance with EDC dataset. After training on this dataset, the accuracies achieved by the 

CAD-EYE model, are visually presented as per Figure 5.4. The results demonstrate the 

remarkable effectiveness of our model in both training and validation scenarios. Furthermore, 

as outlined in Table 5.2, by utilizing the EDC dataset, we achieved a notable accuracy of 99% 

on both the training and validation sets. 
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Table 5.2. Performance Assessment of EDC Dataset 

Dataset Sensitivity Specificity F1-Score Recall Accuracy 

EDC [55] 99.50 99.68 99.95 99.98 1.0 

 

 

Figure 5.4: Results of accuracy and loss for training and validation of proposed model through 

EDC Dataset 
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 Chapter 6 

State of the art Comparison 

There is only a limited number of studies that have explored the application of deep learning 

techniques for identifying eye diseases in retinal images. Among these, the EDC research [58] 

stands out for utilizing deep learning with a small dataset to detect normal, cataract, glaucoma, 

and diabetic retinopathy in retinal images. The latest deep learning model addressing normal, 

cataract, glaucoma, and diabetic retinopathy detection is referred to as EDC [58].  

Table 6.1. Superior Performance of CAD-EYE than EDC [58] 

Dataset Sensitivity 

(SE) 

Specificity 

(SP) 

F1-Score Recall Accuracy 

EDC Model 

[58] 

98.7 96.3 98.7 98.7 99.4 

CAD-EYE 99.50 99.68 99.95 99.98 1.0 

 

The CAD-EYE system we developed has demonstrated outstanding outcomes, achieving values 

of 99.50%, 99.68%, 99.98%, 99.95%, 99.98%, and 1.0 for SE, SP, F1-Score, Recall, and ACC, 

respectively. In EDC [58], it is noted that a very limited set of input fundus images for training, 

resulting in high precision and accuracy has been utilized. However, it is crucial to mention that 

the EDC dataset lacked approval from expert optometrists. In our case, the CAD-EYE system 

underwent testing and training on a dataset of 65,871 images, which received validation from 

expert optometrists. Consequently, we achieved a classification accuracy of 98%, representing 

a substantial improvement over the current state-of-the-art work. 
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Chapter 7 

Summary of Research Work 

The eye is a vital organ of human body and holds paramount significance in facilitating an 

individual's professional and daily activities. Various maladies can impact ocular functionality, 

underscoring the critical importance of early detection for effective intervention. This study 

introduces a classification system designed to discern and categorize four distinct eye diseases: 

diabetic retinopathy, hypertensive retinopathy glaucoma, and cataract. The proposed system 

employs innovative approaches to achieve a unified model capable of classifying diverse ocular 

conditions within the provided categories. The incorporation of novel ideas is deemed essential 

to realize the objective of disease classification through a singular model in this research 

endeavor. First an innovative image processing algorithm is proposed. The novel method is 

called HISTOMSR method. This image processing algorithm focuses on areas that are crucial 

for classification. Second, a feature fusion between the features extracted from state-of-art 

models (MobileNet, EfficientNet) is proposed. Also, a dataset is created that combines different 

datasets collected from online sources. This step is necessary since the model will be trained on 

classifying four different diseases.  

The proposed model is experimented through three different experiments to prove its superior 

performance. The aim of first experiment has been to compare the performance of the model in 

comparison to other state-of-art models. These models include VGG16, VGG19, ResNet, 

Xception, InceptionV3 and MobileNet. Outcome generated shows the superior performance of 

our model in comparison to these models. The results indicate that CAD-EYE was able to 

achieve 97% accuracy which is higher than the best state-of-art model by 10%. The second 

experiment conducted in this research is to test our proposed model using a dataset created by 
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combining images from different online sources. The dataset contains 65,871 fundus images. 

The dataset contains high-resolution normal, diabetic retinopathy, hypertensive retinopathy, 

glaucoma and cataract eye disease images. The presented results show the ability of the 

proposed models to achieve accuracies higher than 95%. The third experiment conducted in this 

research is aimed to test our proposed model against the EDC (Kaggle’s eye disease 

classification) dataset. It is noted that EDC dataset contains a very limited set of input fundus 

images for training. Moreover, it is important to mention that EDC dataset lacks approval from 

expert optometrists. Our collected dataset for CAD-EYE system consists of 65,871 images 

which received validation from expert optometrists. The experiment is necessary to evaluate the 

model against similar work from literature.  

A state-of-art comparison with a similar work from literature shows the better performance of 

the proposed system. The proposed system has been able to achieve accuracies higher than the 

reported accuracies in literature. 

In conclusion the classification approach proposed in this study for eye disorders relies on 

features extraction and features fusion as a core of the methodology.  This represents a pioneer 

attempt to establish a computerized technique that surpasses existing methods in the detection 

of normal, diabetic retinopathy, hypertensive retinopathy, glaucoma and cataract eye diseases. 
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Chapter 8 

Conclusion 

Millions of individuals worldwide are affected by eye diseases such as diabetic retinopathy, 

hypertensive retinopathy, glaucoma and cataract. Early detection is pivotal for preventing the 

progression of these diseases. For the purpose of our research, we have proposed a completely 

automated system for carrying out first the detection and then the classification of diabetic 

retinopathy, hypertensive retinopathy, glaucoma and cataract. Innovative preprocessing stages 

have been used. Furthermore, deep learning models have been utilized to achieve accuracy 

which is optimal. Newly introduced HISTOMSR image preprocessing technique is employed 

to reduce noise, highlight lesions, and enhance the classification performance of these diseases. 

This novel image processing approach focuses on crucial areas in affected images, aiding in 

their identification. Additionally, we propose a feature fusion between the features extracted 

from state-of-art models (MobileNet, EfficientNet). The model is thoroughly evaluated using a 

diverse dataset, comprising of data from various sources. Comparative analysis with state-of-

the-art models in the literature reveals the superior performance of our proposed methodology. 

An examination of their strengths and limitations proves the effectiveness of our approach over 

other models. In order to validate the efficacy of the proposed method, further evaluation on a 

large, diverse dataset, encompassing a significant number of prospective disease instances, is 

essential. Future research may explore the analysis of new datasets using NASNet or 

MobileNet. Moreover, other augmentation techniques may also be utilized. This method can be 

used as an automatic prescreening tool for disease recognition. However, future developments 

may incorporate knowledge-based information to extend the CAD-EYE model, providing 
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insights into issues related to dynamic blood glucose levels. Moreover, addressing quality of 

images can become a focus of further research to ascertain a better, more efficient system, which 

can be further utilized in various clinical settings. 
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