DESIGN OF 150 TONNES/DAY PRODUCTION OF GREEN AMMONIA PLANT

By

Momina Mushtaq

Maryam Abbasi

Muhammad Araheem Abaid

Muhammad Uzair

School of Chemical and Materials Engineering National University of Sciences and Technology June 2024

DESIGN OF 150 TONNES/DAY PRODUCTION OF GREEN AMMONIA PLANT

By

Leader- 344173 -Momina Mushtaq Member 1- 343730 -Maryam Abbasi Member 2- 338602 -Muhammad Araheem Abaid Member 3- 332529 -Muhammad Uzair

A THESIS

Submitted to:

National University of Sciences and Technology in partial fulfillment of the requirements for degree of

BE CHEMICAL ENGINEERING

School of Chemical and Materials Engineering (SCME) National University of Sciences and Technology (NUST) June 2024

CERTIFICATE

This is to certify that work in this thesis has been completed by Ms. Momina Mushtaq, Ms. Maryam Abbasi, Mr. Muhammad Araheem Abaid and Mr. Muhammad Uzair under the supervision of Dr. Waheed Miran at the school of Chemical and Materials Engineering (SCME), National University of Science and Technology, H-12, Islamabad, Pakistan.

Dr. Waheed Miran Associate Professor Jept. of Chemical Engineering SCME, NUST, H-12, Islamabar

Advisor:

Dr. Waheed Miran

Department of Chemical Engineering School of Chemical and Materials Engineering National University of Sciences and Technology

Submitted Through:

HOD-----Chemical Engineering School of Chemical and Materials Engineering National University of Sciences and Technology

Principal/Dean

Bilal R

School of Chemical and Materials Engineering National University of Sciences and Technology

DEDICATION

This Thesis is dedicated to our parents, for their unwavering support and belief in us. To our friends for their love and encouragement and to our mentors here at SCME, whose guidance has been invaluable throughout this journey.

ACKNOWLEDGMENT

First and foremost, we are truly grateful to Allah Almighty for His countless blessings and guidance, which provided us with the strength and patience to complete this thesis.

We are profoundly thankful to our supervisor **Dr. Waheed Miran** for his invaluable guidance, encouragement and insightful feedback. It is with his generous support that we have completed this project successfully. We are thankful to other faculty members of SCME as well for their assistance.

We would also like to thank our industrial supervisor **Mr. Muhammad Naveed** for his cooperation and **Fauji Fertilizer Company Ltd** for providing us with all the necessary information needed for this project.

We would like to acknowledge our families, colleagues, seniors and anyone else who directly or indirectly contributed to this work.

Authors

ABSTRACT

Ammonia, with annual production of about 176 million tonnes, is a key component of many fertilizers. The conventional Haber-Bosch process for ammonia production relies on nonrenewable resources (natural gas) which are rapidly depleting. In addition, it contributes to about 1.8% of global carbon emissions annually causing serious environmental problems.

A significant amount of work has been done in exploring the alternatives for the conventional process and green ammonia emerges as a prominent contender. The purpose of this project is to address the above-mentioned challenges and develop an eco-friendly process utilizing renewable raw materials and energy resources.

The project proposes the production of 150 tonnes/day of green ammonia from green hydrogen and nitrogen. Green hydrogen is produced via water electrolysis using a Proton Exchange Membrane Electrolyzer. Water is split into hydrogen and oxygen gas using electricity produced from renewable resources (solar and wind). Nitrogen is separated from air via Pressure Swing Adsorption. Carbon molecular sieve is used as the adsorbent that selectively absorbs oxygen from air leaving behind the pure nitrogen gas. Hydrogen and nitrogen are then reacted in a fixed bed reactor to produce ammonia. This catalyst driven exothermic reaction is carried out under high pressures and moderate temperatures. The ammonia produced as the result can be stored and utilized as a fuel or for production of different fertilizers.

Use of such sustainable methods for ammonia production can help address major environmental problems and contribute to the net zero carbon future.

TABLE OF CONTENTS

LIST OF TABLES	ix
LIST OF FIGURES	xi
CHAPTER 1	1
INTRODUCTION	1
1.1 Problem Statement	1
1.2 Purpose of Study	
1.3 Brief Introduction of Products	2
1.3.1 Green Hydrogen	2
1.3.2 Nitrogen	
1.3.3 Ammonia	
CHAPTER 2	5
LITERATURE REVIEW	5
2.1 Different Techniques for Ammonia Synthesis	5
2.1.1 Biomass Gasification	5
2.1.2 Electrochemical Process	6
2.1.3 Water Electrolysis and Air Separation	7
2.1.4 Steam Methane Reforming	
CHAPTER 3	9
PROCESS SELECTION AND DESCRIPTION	9
3.1 Hydrogen Production	9
3.1.1 Process Selection	9
3.1.2 Process Description	9
3.2 Nitrogen Separation	
3.2.1 Process Selection	
3.2.2 Process Description	
3.3 Ammonia Synthesis	
3.3.1 Process Selection	
3.3.2 Process Description	
3.4 Process Flow Diagram	

CHAPTER 4	
MATERIAL BALANCE	14
4.1 Basis	14
4.2 General Mass Balance	14
4.3 Component Wise Material Balance	14
4.3.1 Electrolyzer	14
4.3.2 Separator 1	
4.3.3 Separator 2	
4.3.4 Air Filter	
4.3.5 Adsorption Column	
4.3.6 Ammonia Reactor	
4.3.7 Ammonia Separator	20
CHAPTER 5	21
ENERGY BALANCE	21
5.1 General Energy Balance	21
5.2 Component Wise Energy Balance	21
5.2.1 Water Pump	21
5.2.2 Electrolyzer	
5.2.3 Multistage Compressors	23
5.2.4 Adsorption Column	25
5.2.5 Ammonia Reactor	
5.2.6 Heat Exchangers	27
CHAPTER 6	
EQUIPMENT DESIGN	
6.1 Electrolyzer	
6.1.1 Designing Steps	
6.1.2 Results	
6.2 Ammonia Reactor	
6.2.1 Assumptions	
6.2.2 Available Information	
6.2.3 Designing Steps	
6.2.4 Results	
6.3 Adsorption Column	
6.3.1 Choice of adsorbent and its properties	
	v

6.3.2 Assumptions	44
6.3.3 Designing Steps	
6.3.4 Results	
6.4 Heat Exchanger	
6.4.1 Choice of Exchanger	
6.4.2 Stream Condition	
6.4.3 Designing Steps	
6.4.4 Results	56
CHAPTER 7	
SIMULATION	57
7.1 Simulation tool	
7.2 Components	57
7.3 Fluid Package	
7.3.1 STEAM-TA	
7.3.2 PENG-ROB	
7.4 Overall Process Flow Sheet	
7.5 Hydrogen Production Unit	59
7.5.1 Process Flow Sheet	59
7.5.2 Pump P-1	59
7.5.3 Stack	60
7.5.4 Membrane	60
7.5.5 Product stream	63
7.6 Nitrogen Separation Unit	64
7.6.1 Process Flow Sheet	64
7.6.2 Air Compressor	64
7.6.3 Adsorption column (AD-1 and AD-2)	65
7.6.4 Product stream (Nitrogen)	
7.7 Ammonia Synthesis	67
7.7.1 Process Flow Diagram	67
7.7.2 Reactor Feed Compressor	67
7.7.3 Ammonia Reactor	
7.7.4 Heat Exchangers	71
7.7.5 Ammonia Separator	72
7.7.6 Product Stream (Ammonia)	

CHAPTER 8	74
PROCESS CONTROL AND INSTRUMENTATION	74
8.1 Introduction	74
8.2 Feed Forward Control Loop	74
8.2.1 Ratio Control Loop	74
8.3 Feed Backward Control Loop	75
8.3.1 Temperature Control Loop	75
8.3.2 Pressure Control Loop	76
8.3.3 Level control Loop	77
CHAPTER 9	
ECONOMIC ANALYSIS	
9.1 Introduction	
9.2 Purchased Equipment Cost	
9.2.1 Water Pump P-1	
9.2.2 Electrolyzer	
9.2.3 Hydrogen Separator	
9.2.4 Oxygen Separator	80
9.2.5 Air compressor C-1	
9.2.6 Adsorption Column	
9.2.7 Reactor Feed compressor C-2	
9.2.8 Ammonia Reactor	
9.2.9 Ammonia separator	
9.2.10 Summary	
9.3 Total Investment	
9.3.1 Fixed Capital	
9.3.2 Working Capital	
9.3.3 Total Investment	
9.4 Annual Operating Cost	
9.4.1 Fixed operating Cost	
9.4.2 Variable Operating Cost	
9.5 Annual Revenue	
9.6 Annual Profit	
9.7 Payback Period	

CHAPTER 10	94
HAZOP ANALYSIS	94
10.1 Introduction	94
10.2 Electrolyzer	94
10.3 Heat Exchanger	96
CONCLUSION	98
REFERENCES	99

LIST OF TABLES

Table 4.1Material balance for PEM Electrolyzer	15
Table 4.2 Material balance for Separator1 and Dryer	16
Table 4.3 Material balance for Separator 2	17
Table 4.4 Material Balance for Air Filter	
Table 4.5 Material Balance for Adsorption Columns	
Table 4.6 Material balance for Ammonia Reactor	19
Table 4.7 Material Balance for Ammonia Separator	20
Table 5.1 Energy Balance for Water pump	22
Table 5.2 Energy Balance for PEM Electrolyzer	23
Table 5.3 Energy balance for Two stage Compressor	24
Table 5.4 Energy Balance for 4 stage Feed Compressor	25
Table 5.5 Energy balance for Adsorption Column	26
Table 5.6 Energy Balance for Ammonia Reactor	27
Table 5.7 Energy Balance for HX-1	28
Table 5.8 Energy balance for HX-2	
Table 5.9 Energy balance for HX-3	29
Table 5.10 Energy balance for HX-4	29
Table 5.11 Energy balance for HX-5	
Table 5.12 Energy balance for HX-6	
Table 5.13 Energy Balance for HX-7	31
Table 5.14 Energy balance for HX-8	
Table 6.1 Results for Electrolyzer design	35
Table 6.2 Temperature conditions for gas stream	
Table 6.3 Bed 1 inlet conditions	
Table 6.4 Bed 2 inlet conditions	
Table 6.5 Bed 3 inlet conditions	
Table 6.6 Results for conversion from 0.189 to 0.241- Bed 2	40
Table 6.7 Results for conversion from 0.189 to 0.241- Bed 2	41
Table 6.8 Results for Reactor Design	43
Table 6.9 Properties for CMS	44

Table 6.10 Results for Adsorption Column Design	46
Table 6.11 Tube side specifications	47
Table 6.12 Shell side specifications	47
Table 6.13 Results for Heat Exchanger design	56
Table 9.1 Purchased cost of equipment	89
Table 9.2 CEPCI	89
Table 9.3 Typical factors for estimating Fixed Capital cost (Sinnott et al., 2005)	90
Table 9.4 Fixed Operating Cost (Sinnott et al., 2005)	91
Table 9.5 Payback period calculations	93
Table 10.1Hazop Analysis for Electrolyzer	94
Table 10.2 Hazop Analysis for Heat Exchanger	96

LIST OF FIGURES

Figure 2.1 Biomass gasification process for ammonia synthesis	6
Figure 2.2 Electrochemical production of Ammonia	7
Figure 2.3 Water electrolysis and Air separation for Ammonia production	7
Figure 2.4 Steam Methane Reforming and other steps in Ammonia production	
Figure 3.1 PEM Electrolyzer	
Figure 3.2 Pressure Swing Adsorption of Air	12
Figure 3.3 Ammonia production via Haber Bosch	13
Figure 3.4 Process Flow Diagram	13
Figure 5.1 Water Pump	21
Figure 5.2 PEM Electrolyzer	22
Figure 5.3 Two Stage Air Compressor	24
Figure 5.4 Four Stage Feed Compressor	24
Figure 5.5 Adsorption Columns	25
Figure 5.6 Ammonia Reactor	26
Figure 5.7 HX-1	27
Figure 5.8 Heat Exchangers (HX-2 to HX-5)	
Figure 5.9 Evaporators and Heat Exchanger	
Figure 6.1 Inverse of rate vs Conversion - Bed 1	
Figure 6.2 Inverse of rate vs Conversion - Bed 2	40
Figure 6.3 Inverse of rate vs Conversion - Bed 3	41
Figure 6.4 Temperature Correction factor	49
Figure 6.5 Typical Overall coefficient	49
Figure 6.6 Standard Dimensions for Steel tubes	50
Figure 6.7 Tube side heat transfer coefficient	51
Figure 6.8 Constants for Bundle Diameter Calculations	52
Figure 6.9 Shell bundle clearance	52
Figure 6.10 Shell side heat transfer coefficient	53
Figure 6.11 Tube side friction factor	54
Figure 6.12 Shell side friction factor	55
Figure 7.1 List of components	57
	xi

Figure 7.2 Fluid Package- 1	58
Figure 7.3 Fluid Package-2	58
Figure 7.4 Overall Process flow diagram	58
Figure 7.5 Process Flow Diagram for Water Electrolysis	59
Figure 7.6 Specifications for P-1	59
Figure 7.7 Reaction for Stack	60
Figure 7.8 Reaction stoichiometry for Stack	60
Figure 7.9 Hydro calculator block specification	61
Figure 7.10 Hydro calculator block equation	61
Figure 7.11 Oxy Calculator block Specification	62
Figure 7.12 Oxy calculator block equation	62
Figure 7.13 Stream results for Hydrogen	63
Figure 7.14 Process Flow Sheet for PSA	64
Figure 7.15 Specification for C-1-1	64
Figure 7.16 Specification for C-1-2	65
Figure 7.17 Specification for Separator AD-1	65
Figure 7.18 Stream results for Nitrogen	66
Figure 7.19 Process Flow Sheet- Ammonia Synthesis	67
Figure 7.20 Specifications for C-2-1	67
Figure 7.21 Specifications for C-2-2	68
Figure 7.22 Specifications for C-2-3	68
Figure 7.23 Specifications for C-2-4	68
Figure 7.24 Reaction kinetics	69
Figure 7.25 Driving Force for reaction kinetics	69
Figure 7.26 Adsorption term for reaction kinetics	70
Figure 7.27 Reactor Specifications	70
Figure 7.28 Reactor configuration	70
Figure 7.29 Reactor catalyst data	70
Figure 7.30 Input Specification of HX-2	71
Figure 7.31 Input Specification of HX-3	71
Figure 7.32 Steam results for HX-3	72
Figure 7.33 Input Specification of HX-4	72
Figure 7.34 Specification of Ammonia Separator	72
	xii

Figure 7.35 Stream results for Ammonia	73
Figure 8.1 Ratio Control Loop	75
Figure 8.2 Temperature Control Loop	76
Figure 8.3 Pressure Control Loop	76
Figure 8.4 Level Control Loop	77
Figure 9.1 Purchased equipment cost (Towler & Sinnott, 2007)	79
Figure 9.2 Cost for vertical pressure vessel (Sinnott et al., 2005)	80
Figure 9.3 Purchased equipment cost (Towler & Sinnott, 2007)	81

CHAPTER 1

INTRODUCTION

1.1 Problem Statement

Most used method for ammonia production worldwide developed in 20th century is Haber-Bosch process. One of the major drawbacks of this method is that it relies on nonrenewable energy sources. Natural gas (CH₄) and coal are mainly used as a raw material for ammonia production and generation of energy and electricity. Both are finite resources and are being depleted at an alarming rate.

In addition, the use of fossil fuels is a major source of emission of greenhouse gases. There is a large amount of net-Carbon release in the environment mainly in form of Carbon dioxide. Approximately 1.8 to 2% of the total carbon emissions comes from ammonia synthesis. This is posing serious threats to the environment including global warming and climate change.

1.2 Purpose of Study

The object is to study alternative methods to produce hydrogen and nitrogen for ammonia synthesis that can help combat the harmful effects of traditional ammonia production process. These are the methods that make use of renewable resources and avoid carbon emission into the atmosphere. One such alternative is the production of 'Green Hydrogen' and 'Green Ammonia'.

Green Hydrogen refers to hydrogen produced using renewable resources via processes that avoid the emission of greenhouse gases. This hydrogen is playing an important role in reaching the goal of net zero carbon future.

Green Ammonia refers to the ammonia produced from green hydrogen, and renewable energy sources like wind and solar. This is mainly used as a clean fuel and for synthesis of different fertilizers.

1.3 Brief Introduction of Products

Major products produced in this project are Green Hydrogen and Nitrogen (intermediate products) and Ammonia (final product). A brief introduction and major uses of each are given below.

1.3.1 Green Hydrogen

Hydrogen is a colorless, odorless and highly flammable gas present in abundance in the universe. It is commonly found in water and organic matter. It has different types each represented by a color. Major types include grey hydrogen, brown hydrogen, blue hydrogen and green hydrogen. These names are based on the method adopted for its production. Unlike grey hydrogen, which is produced from natural gas and is responsible for carbon emissions, green hydrogen is produced using renewable raw materials and energy sources and emits no greenhouse gases. Green hydrogen finds various applications in daily life, some of which are listed below.

Chemical Production: Green hydrogen is a major feedstock for production of green ammonia and methanol.

Transportation: It can serve as a clean fuel to power vehicles, proving a zero-emission alternative to the traditional diesel and gasoline engines. It is commonly used in trains, ships and heavy-duty trucks.

Industrial Uses: It can be used as fuel for processes that are energy intensive and require high operating temperature such as cement manufacturing. It can also replace use of coke and coal in steel production.

Oil Refinery: Hydrogen is commonly used in some basic processes of oil refineries such as desulphurization and hydrocracking.

Energy Storage: It can be used to store large amounts of renewable energy that can be converted into different forms for easy usage.

1.3.2 Nitrogen

Nitrogen, making up almost 78% of the total air in earth's atmosphere, is a tasteless colorless and odorless element. It is found in gaseous form in nature and is known to be inert under normal conditions. Nitrogen finds many applications in different processes, some of which are listed below.

Industrial Chemical Production: Nitrogen is a major raw material in ammonia production. It is also used in the production of other fertilizers, nitric acid, explosives, nylon and dyes.

Food Industry: Liquid nitrogen is used in preservation of food items usually by freezing.

Medical Applications: It can be used in different cryogenic applications such as preservation of cells and other biological organisms.

Purging: It is performed to avoid explosions in equipments by displacing the oxygen present in them using some inert gas. Nitrogen is the most common inert gas used for purging storage tanks, reactor vessels and pipes.

1.3.3 Ammonia

Ammonia (NH₃) is one of the most crucial chemicals that is produced within the chemical industry. It is conventionally produced via the Haber-Bosch process by reacting Hydrogen and Nitrogen gas in presence of catalyst. Being one of the most widely produced chemicals in the world, great work has been done to ensure that the production of Ammonia is as efficient as possible, giving the maximum possible yield at the lowest possible cost. Ammonia plays a vital role in different sectors due to its versatile applications. Some of which are listed below.

Fertilizer Production: Ammonia's most significant contribution is in the agricultural sector, where it serves as a vital nitrogen source for fertilizers, enhancing soil fertility and crop production. Some of the major fertilizers produced from ammonia are Urea, Ammonium Nitrate, Ammonium Phosphate and Ammonium Sulphate.

Industrial Chemical Production: Ammonia is also an important contributor in the production of various industrial chemicals, including those used in making nitric acid, plastics, synthetic fibers like nylon and resins, textiles, and pharmaceuticals.

Cleaning: It is also used in household and industrial cleaning products, especially glass cleaners and surface cleaners. Ammonia's ability to tackle stubborn stains and dissolving grease and grime makes it a preferred ingredient in cleaning solutions.

Refrigeration: Ammonia's role in refrigeration, especially within the food and beverage industry, highlights its utility in preserving freshness through cooling and freezing, as it has excellent thermal properties and a minimal environmental footprint.

Textile Industry: The textile sector utilizes ammonia in processing and dyeing fabrics, ensuring better colors adhesion and smooth textiles finish. It is also used in textile finishing process as a pH adjuster.

Food Industry: Ammonia is used in meat processing as an antimicrobial agent to control growth of bacteria in meat. It also finds its use as a leavening agent and acidity regulator.

Water treatment: Ammonia is used with chlorine as a disinfectant in water treatment plants providing protection against microbial regrowth. It is also used to adjust the pH level of water especially where water is too acidic.

CHAPTER 2

LITERATURE REVIEW

2.1 Different Techniques for Ammonia Synthesis

There are several techniques available for the synthesis of ammonia. Some of which are at experimental level and some are well developed and commonly used in the industry. Each has its own pros and cons . some if the major techniques are listed below.

2.1.1 Biomass Gasification

Biomass gasification for ammonia production encompasses a series of steps. Different biomass sources, including wood, crop residues, or organic waste, are utilized as raw materials. The gasification process occurs under controlled conditions with restricted oxygen supply, generating a synthetic gas (syngas) primarily composed of hydrogen (H₂) and carbon monoxide (CO). The subsequent stages involve the purification and conditioning of the syngas, aimed at eliminating impurities like sulfur compounds and tar, while ensuring compliance with downstream processing requirements. Postcleaning, the conditioned syngas serves as the feedstock for the Haber-Bosch process, a well-established technique for ammonia synthesis. Here, nitrogen from the air reacts with hydrogen in syngas to produce ammonia (NH₃).

Gasification operates within the temperature range of 700 to 1,500 degrees Celsius. Gasification Pressure is variable, often elevated to enhance gas yields and reaction rates. Catalysts based on iron or ruthenium may be employed to facilitate ammonia synthesis at lower temperatures and pressures. (Martín & Sánchez, 2024)

Drawbacks: Major drawbacks include inconsistent feedstock quality, potential emissions of tar and particulates, and the need for advanced gas cleaning systems to ensure the purity of the syngas. Additionally, the process may face challenges in achieving high efficiency and cost competitiveness compared to traditional methods.

Figure 2.1 Biomass gasification process for ammonia synthesis

2.1.2 Electrochemical Process

Ammonia synthesis through electrochemical processes involves the direct reduction of nitrogen (N_2) and protons (H^+) to form ammonia (NH_3) using renewable electricity. The process requires lower temperatures and pressures compared to traditional methods, potentially offering energy efficiency advantages.

An electrochemical device employs electrical energy for a chemical reaction, comprising two electrodes, an anode (positive) and a cathode (negative). At anode the hydrogen is broken down to produce H⁺ ions and release electrons. This ion moves towards cathode where they are combined with nitrogen to produce ammonia. The electrolyte facilitates ion passage between electrodes and can be either aqueous or solid. While aqueous electrolytes pose a challenge due to the necessity for low operating temperatures, which can impede reaction kinetics.(Juangsa et al., 2021)

Drawbacks: The challenges include developing efficient electrocatalysts for nitrogen reduction and addressing issues related to cell stability and selectivity. While electrochemical ammonia synthesis shows promise for sustainable production, further research and technological advancements are needed to overcome these challenges and make it a commercially viable alternative.

Figure 2.2 Electrochemical production of Ammonia

2.1.3 Water Electrolysis and Air Separation

Water electrolysis is another method that can lead to the production of ammonia. Electricity obtained from renewable resources is used to break down water into hydrogen and oxygen. The oxygen can be vented into air or used for other processes while hydrogen is used in ammonia production. Nitrogen is generally separated from air. The hydrogen and nitrogen are then combined using the Haber-Bosch process or electrochemical cell to produce ammonia.

Drawbacks: Some of the electrolyzes used in this process are still at experimental level and more research is needed to make them mature. The huge requirement of electricity from renewable resources and its high price is also an obstacle in large amount of ammonia production from this process.

Figure 2.3 Water electrolysis and Air separation for Ammonia production

2.1.4 Steam Methane Reforming

Conventionally ammonia is produced by Haber-Bosch process, coupled with steam methane reforming (SMR). During SMR, methane reacts with steam to generate carbon monoxide and hydrogen. SMR operates at high temperatures, typically around 800°C to 1000°C, to facilitate the endothermic reaction.

Hydrogen produced is then combined with nitrogen in the presence of an iron catalyst under moderate temperature (400-500°C) and high pressure (150-300 atm). This chemical reaction yields ammonia (NH₃). The high pressure facilitates the conversion, while the iron catalyst enhances the reaction rate. The produced ammonia is then separated and collected for further use.

Drawbacks: It is energy-intensive, requiring high temperatures and pressures to drive the reaction. Also, the process relies on non-renewable natural gas as a hydrogen source, contributing to carbon emissions.

Figure 2.4 Steam Methane Reforming and other steps in Ammonia production

CHAPTER 3

PROCESS SELECTION AND DESCRIPTION

In the initial phase, several publishing materials were read extensively to understand the nature of Green Hydrogen and Green Ammonia, as these were the primary objectives of the project. Several methodologies were studied before finalizing the processes to produce hydrogen and nitrogen. All other methodologies were excluded either because of a lack of efficiency and high operating cost, or because they led to the production of hydrogen type other than green hydrogen (Ayub et al., 2024).

Detailed process selection and description is given below.

3.1 Hydrogen Production

3.1.1 Process Selection

To produce ammonia fertilizer through a clean and green process an important reagent required is green hydrogen. Electrolysis is a promising option for carbon free hydrogen production .Three major Electrolysis were considered for this process (Guo et al., 2019)

- · Alkaline Electrolysis
- · Solid Oxide Electrolysis
- Polymer Exchange Membrane Electrolysis

After an in-depth study of these Electrolyzer, PEM electrolysis process was selected due to following reasons:

- High purity hydrogen production (99.99%)
- Easy operation in low temperature and pressure conditions
- High efficiency and faster response time
- · Compact design and structure

3.1.2 Process Description

For PEM electrolysis, Proton Exchange Membrane PEM Electrolyzer is used. A PEM Electrolyzer (like a cell) consists of Anode , Cathode separated by a solid polymer electrolyte membrane. During the electrolysis reaction water is split into its constituent

parts on either side of polymer exchange membrane. (Rashid et al., 2015), (Carmo et al., 2013)

When direct voltage is applied to the PEM Electrolyzer highly pure water at the anode is oxidized to produce oxygen, protons, and electrons. Protons selectively move across the positive ion exchange membrane (hydrogen ions) while electrons flow through the external circuit towards cathode.

• Anode Reaction:

 $H_2O \rightarrow 1/2O_2 + 2H^+ + 2e^-$

At the cathode hydrogen ions combine with the electrons to produce hydrogen gas

• Cathode Reaction:

 $2H^+ + 2e^- \rightarrow H_2$

The hydrogen gas produced is then dried and fed into ammonia reactor.

Figure 3.1 PEM Electrolyzer

3.2 Nitrogen Separation

3.2.1 Process Selection

For the separation of nitrogen from air three major processes were taken under consideration.

- Membrane Air separation
- · Cryogenic Air separation
- Pressure Swing Adsorption

After performing literature review PSA was chosen for nitrogen separation due to the following reasons

- Simple Operation
- · Cost effectiveness
- High performance under ambient temperature
- High regeneration rate
- Low energy intensity

3.2.2 Process Description

Pressure Swing Adsorption PSA is an economical and reliable non cryogenic method used to separate nitrogen gas (in high purity) from air.

In PSA, gaseous species are separated under pressure based on their molecular characteristics and affinity for an adsorbent material. It is based on the principle of adsorption. Adsorption is a surface-based procedure during which agas, or liquid molecules adhere on the surface of the absorbent and a film of adsorbing material is created on the surface of adsorbent. (Ivanova & Lewis, 2012)

PSA system uses specialized adsorbent materials such as zeolites, molecular sieves, activated carbon as a trap, ideally adsorbing the target gas species at high pressure. The process then shifts toward low pressure to desorb the adsorbed material (oxygen) hence the name pressure swing adsorption. Main components of PSA system include two adsorption towers filled with adsorbent material, filters, and a storage tanks. (Lemcoff, 1999)

Two main simultaneous processes that occur in the PSA adsorption towers for nitrogen generation are:

- · Separation
- · Regeneration

Separation Process

The adsorbent selected for nitrogen generation in this process is Carbon molecular sieve CMS, a strong and chemically inert material that captures mainly oxygen gas under high pressure. Air under ambient conditions passes through the filter system. It is then compressed and enters one of the two adsorption towers. CMS has a high affinity to

adsorb Oxygen while leaving Nitrogen untouched, allowing it to pass through easily. This process continues till the adsorbent gets saturated.

Regeneration Process

The first column reaching its maximum capacity for adsorbing results in the desorbing phase, in which the pressure of the column is reduced, and Oxygen is separated out from the carbon molecular sieves and is vented out from the column.

Figure 3.2 Pressure Swing Adsorption of Air

3.3 Ammonia Synthesis

3.3.1 Process Selection

To produce ammonia from nitrogen and hydrogen produced in the previous steps, the **Haber Bosch process** is used. As it is the most used process and is already being utilized at FFC for ammonia synthesis.

3.3.2 Process Description

Nitrogen and hydrogen are compressed and heated to reach the temperature and pressure suitable for the Haber process.

Ammonia synthesis reaction is as follows:

$$N_2 + 3H_2 \leftrightarrow 2NH_3$$

It is a reversible exothermic reaction which occurs in the presence of iron catalyst under the suitable temperature of approximately 400-450 °C and the atmospheric pressure of 150-300 bar.

The Ammonia produced is cooled, liquified and stored while some the unreacted gases (inert) are purged to lower their buildup and most of them are recycled to achieve the desire ammonia productivity. (Moulijn et al., 2013)

Figure 3.3 Ammonia production via Haber Bosch

3.4 Process Flow Diagram

The proposed Process Flow Diagram is shown below

Figure 3.4 Process Flow Diagram

CHAPTER 4

MATERIAL BALANCE

4.1 Basis

The basis for the material balance is taken to be 150 tonnes of ammonia produced per day.

4.2 General Mass Balance

Mass in – Mass out + Generation – Consumption = Accumulation

• Steady state non-reactive system:

Mass in = Mass out

DOF = No of unknown variables – No of independent Equ- additional info

• Steady state Reactive system:

Mass in + Generation - Consumption = Mass out

DOF = No of unknown variables + No of reactions – No of independent Equation – additional info

4.3 Component Wise Material Balance

Balance for each component present in the system is given below:

4.3.1 Electrolyzer

Pure water is split into hydrogen and oxygen by applying electrical energy in PEM Electrolyzer using proton conducting polymer as an electrolyte.

Oxygen is generated at the anode side. While Hydrogen is produced at cathode side.

Figure 4.1 PEM Electrolyzer

Reactions and Equations used are mentioned below:

At Anode: $H_2O \rightarrow 2H^+ + \frac{1}{2}O_2 + 2e^-$

H₂O req = $\frac{H + Generated}{Conversion \times 2}$

At Cathode: $2H^+ + 2e^- \rightarrow H_2$

 $H + req = H_2 Produced \times 2$

Table 4.1 Material balance for PEM Electrolyzer

MATERIAL BALANCE				
Components	Water in	Separator 2 in	Separator 1 in	
	kg/h	kg/h	kg/h	
Water	16900	2113	2113	
Oxygen	0 11260		traces	
Hydrogen	0	traces	1419	
	16900	13373	3532	

4.3.2 Separator 1

This separates hydrogen and water. Hydrogen is sent for ammonia formation and water is sent to water storage tank. For further purification of hydrogen dryer can be used.

Figure 4.2 Separator 1 and dryer

Equation used are mentioned below:

- Hydrogen in (dryer) = efficiency of Separator × Hydrogen in(separator)
- Efficiency of separator = 99%
- Purity of hydrogen at dryer outlet = 99.9%

MATERIAL BALANCE				
Components	Separator 1 in	To water Tank	Dryer in	Hydrogen
	kg/h	kg/h	kg/h	kg/h
Water	2113	2092	21.1	1.3
Oxygen	traces	traces	traces	traces
Hydrogen	1419	14.2	1405	1405
	3532	2106	1426	1406

Table 4.2 Material balance for Separator1 and Dryer

4.3.3 Separator 2

This separator serves 2 purposes. It separates oxygen and water and acts as a water storage tank. The oxygen is vented into air and the water along with fresh water is fed to the Electrolyzer.

Equation used are mentioned below:

Figure 4.3 Separator 2

- Oxygen out = efficiency of Separator × Oxygen in
- Efficiency of separator = 99%

Table 4.3 Material balance for Separator 2

MATERIAL BALANCE					
Components	Separator 2 in	To water Tank	Oxygen out		
	kg/h	kg/h	kg/h		
Water	2113	2092	21.1		
Oxygen	11260	traces	11147		
Hydrogen	traces	traces	traces		
	13373	2092	11168		

4.3.4 Air Filter

Filter removes any solid particles from the air to purify it for smooth operation of adoption columns.

Composition of air used is as follows:

N₂= 78%

 $O_2 = 21\%$

Inert = 1%

Equation used is mentioned below:

Air Required= Nitrogen produced/0.78 .

Figure 4.4 Air Filter

Table 4.4 Material Balance for Air Filter

MATERIAL BALANCE					
	Air in	Air Out			
	kg/h	kg/h			
Nitrogen	9300	9300			
Oxygen	2860	2860			
inert	170	170			
Solid particles	Traces	-			
	12330	12330			

4.3.5 Adsorption ColumnS

Equations used are mentioned below:

Nitrogen purity= 99.8%

Nitrogen Recovery = 70%

(Ruthven et al., 1994)

Figure 4.5 Adsorption Columns

Table 4.5 Material Balance for Adsorption Columns

MATERIAL BALANCE						
Components	Off gases					
	kg/h	kg/h	kg/h			
Nitrogen	9300	6506	2790			
O ₂ +inert	3030	154	2870			
12330		6660	5660			

4.3.6 Ammonia Reactor

Fresh feed (containing hydrogen produced from electrolysis and nitrogen from PSA) and recycle stream are mixed. This mixed stream is then fed to the ammonia reactor.

Figure 4.6 Ammonia Reactor

Equations used are mentioned below:

• Mixed Feed = Recycle + Fresh Feed

Ammonia Synthesis Reaction:			$N_2 + 3 H_2 \leftrightarrow 2 NH_3$		
	N ₂ out	= N_2 in – N_2 consumed	= N_2 in – (N_2 in × conversion)		
•	H ₂ out	= H ₂ in – H ₂ consumed	= H_2 in – (N_2 consumed × 3)		

NH₃ out = NH₃ in + NH₃ generated = NH₃ in + (N₂ consumed \times 2)

Conversion = 30%

Table 4.6 Material balance for Ammonia Reactor

MATERIAL BALANCE						
Components	Fresh Feed F	Recycle R	Mixed feed M	Reactor out		
	kg/h	kg/h	kg/h	kg/h		
Nitrogen	6506	11019	17524	12276		
Hydrogen	1405	2379	3784	2649		
Ammonia	-	1318	1318	7711		
	7911	14716	22626	22626		

4.3.7 Ammonia Separator

This separates the liquid ammonia from the unreacted gases. Part of unreacted gases is purged, and rest is recycled back to ammonia reactor.

Figure 4.7 Ammonia Separator

Equations used are mentioned below:

- Product (ammonia)= 150 ton/day
- Product purity = 99.8%

Tahle 4 7	Material	Ralance	for	Ammonia	Senarator
TUDIC T.7	material	Dulunce	JUI	Апппотпи	Separator

MATERIAL BALANCE					
Components	Reactor Out	Ammonia	Recycle	Purge	
	kg/h	kg/h	kg/h	kg/h	
Nitrogen	122767	5.1	11019	1244	
Hydrogen	2649	1.1	2379	269	
Ammonia	7711	6244	1318	149	
	22626	6250	14716	1661	
CHAPTER 5

ENERGY BALANCE

5.1 General Energy Balance

For open system:

$$\Delta H + \Delta Ek + \Delta Ep = Q - Ws$$

 $\Delta Ek = 0$ $\Delta E p = 0$

$$\Delta H = Q - Ws$$

Where, $\Delta H = \Delta U + W_{flow}$ Ws = shaft work Q = Heat

5.2 Component Wise Energy Balance

5.2.1 Water Pump

Figure 5.1 Water Pump

Pump duty is calculated using the following relation. Adiabatic efficiency of pump is taken as 75 % (assuming no temperature rise)

$$\mathbf{Q}_{\text{pump}} = \frac{\dot{\mathbf{m}}}{\eta} \left(\frac{\Delta \mathbf{P}}{\rho} \right)$$

Table 5.1 Energy Balance for Water pump

ENERGY BALANCE								
Properties	Units	Water In	Water Out					
Temperature	°C	20	20					
Pressure	bar	1	15					
Density	kg/m ³	1000	1000					
Mass flow rate	Kg/h	16904	16904					
Adiabatic Efficiency		0.75						
Pump Duty	kW	8.77						

5.2.2 Electrolyzer

Electrical energy consumption for the Electrolyzer is given by the following equation:

Figure 5.2 PEM Electrolyzer

For 75 % Electrolyzer efficiency,

 $Q = \frac{\dot{m}H_2 * HHV_{H_2}}{\eta_{electrolyzer}}$

39.39 kWhkg HHV_{H_2} (Higher heating value of H_2)

1405 kg/h $\,{\rm H_2}\,$ (mass flow rate of H2 produced) Energy required is calculated.

Also Specific energy consumption is given by

$$SEC = rac{Q_{IN}}{mH_2}$$

Table 5.2 Energy Balance for PEM Electrolyzer

ENERGY BALANCE								
Properties	Units	Electrolyzer in	Electrolyzer out					
Temperature	°C	60	60					
Pressure	bar	15	14.5					
Efficiency		0.75						
Qin	kW	73000						
SEC	kWh/kg		52					

5.2.3 Multistage Compressors

Compressors are used for compression of gases within the process. Intercoolers are installed after each compressor unit to reduce compressor duty and proper functioning. (Sinnott et al., 2005)

The polytropic work for each stage is given by.

W=
$$\frac{Z*R*T1}{MW}(\frac{n}{n-1})((P_2/P_1)^{n/(n-1)}-1)$$

Where, Z is Compressibility factor

n is Polytropic exponent given by

$$n = \frac{\gamma E p}{\gamma E p - \gamma + 1}$$

Mw is Molecular weight

Ep is polytropic efficiency.

 $\Upsilon = Cp/(Cp - R)$

P2 and P1 are pressure at inlet and outlet

Two main compressors are used in this process. Detailed calculations for each are shown below:

• Two Stage Air Compressor

This is used for compressing the air before entering the adsorption column.

Figure 5.3 Two Stage Air Compressor

ENERGY BALANCE									
Properties	Units	Sta	ge 1	Sta	ge 2				
		Air in	Air out	Air in	Air out				
Temperature	°C	25	180	45	180				
Pressure	bar	1	3.54	3.54	12				
Flowrate	kg/h	12300	12300	12300	12300				
Avg Υ		1.403 1.409							
Actual Work	kW	630 650							
Total Work	kW	1280							

Table 5.3 Energy balance for Two stage Compressor

• Four Stage Feed Compressor

This compresses the ammonia reactor feed to the desired pressure.

Figure 5.4 Four Stage Feed Compressor

Table 5.4 Energy Balance for 4 stage Feed Compressor

ENERGY BALANCE										
Properties	Units	Sta	Stage 1 Stage 2 Stage 3 Stage					ge 4		
		Feed	Feed	Feed	Feed	Feed	Feed	Feed	Feed	
		in	out	in	out	in	out	in	out	
Temperature	°C	55	182	45	176	45	180	35	53	
Pressure	bar	11.3	25.6	25.6	58	58	132	132	142	
Flowrate	kg/h	7910	7910	7910	7910	7910	7910	22630	22630	
Avg Υ		1.4	1.413 1.419 1.432 3.295							
Actual Work	kW	97	978 958 979 203							
Total Work	kW				31	18		·		

5.2.4 Adsorption Column

The temperature and pressure conditions for inlet and outlet streams are shown in the figure.

The equation used is

 $Q = m C_p \Delta T$

Figure 5.5 Adsorption Columns

ENERGY BALANCE									
Properties	Units	Air in	Nout	off gases					
Temperature	°C	40	35	30					
Pressure	bar	12	11.3	0.3					
Ср	kJ/kg °C	1.006	1.042	0.8887					
Mass Flow Rate	Kg/h	12330	6660	5660					
Heat Flow	kW	51.7	19.3	7.0					
Heat Absorbed	kW	25.4							

Table 5.5 Energy balance for Adsorption Column

5.2.5 Ammonia Reactor

As single chemical reaction is involved Heat of Reaction method is used for reactor's energy balance.

of reaction method

 $\Delta \dot{H} = \dot{\xi} \Delta \widehat{H_r} + \sum \dot{n}_{out} \widehat{H}_{out} - \sum \dot{n}_{in} \widehat{H}_{in}$

Where, ξ is the extent of reaction given by

$$\xi = \frac{|n_{N_2,out} - n_{N_2,in}|}{|v_{N_2}|}$$

	Table 5.6	Energy	Balance	for A	mmonia	Reactor
--	-----------	--------	---------	-------	--------	---------

ENERGY BALANCE									
Properties	Units	l	Reactor In	L	F	Reactor ou	t		
		N2	H ₂	NH ₃	N2	H ₂	NH ₃		
Enthalpy Ĥ	kJ/kmol	6.7x10 ³	6.6x10 ³	9.1x10 ³	1.3x10 ⁴	1.3x10 ⁴	1.8x10 ⁴		
Flow rate (n)	kmol/h	626 1877 77 438 1314 453							
$\Sigma(\mathbf{n}, \widehat{H})$	kJ		17.32x10 ⁶	1		30.27x10 ⁶	1		
Extent of reaction	kmol/h	188							
ΔĤr̈́	kJ/kmol		-9.5x10 ⁴						
ΔΗ	kW			-1.38	x10 ³				

5.2.6 Heat Exchangers

Heat exchangers are used to exchange heat between two fluids. The amount of heat released by the hot fluid is equal to the amount of heat absorbed by the cold fluid. This is given by:

$\Delta H_{hot} = \Delta H_{cold}$

$$m_1 C_{p,1} \Delta T_1 = m_2 C_{p,2} \Delta T_2$$

The energy balance for the exchangers used in the process is given below.

Figure 5.7 HX-1

Table 5.7 Energy Balance for HX-1

ENERGY BALANCE									
Properties	Units	Water in	Water out	Air in	Air out				
Temperature	°C	25	60	180	40				
Pressure	bar	30	30	12	12				
Flowrate	kg/h	16904	16904	8626	8626				
Avg Cp	kJ/ kg°C	4	.17	1.0)36				
Q	kW	4	·85	-4	85				

Figure 5.8 Heat Exchangers (HX-2 to HX-5)

Table 5.8 Energy balance for HX-2

ENERGY BALANCE									
]	HX-2						
Properties	PropertiesUnitsWater inSteamProcess S inProcess S out								
			out						
Temperature	°C	25	179	454	290				
Pressure	bar	10	9.5	139	138.5				
Flowrate	kg/h	n 7700 7700 22626 22626							
Avg Cp	kJ/kg°C	2.0)17	3.23					
Q	kW	33	360	-3	360				

Table 5.9 Energy balance for HX-3

ENERGY BALANCE									
			HX-3						
Properties	Units	M in (1)	M out (1)	Process S	Process S out				
				in					
Temperature	°C	90	246	290	78				
Pressure	bar	142	141.5	138.5	138				
Flowrate	kg/h	22630	22630	22626	22626				
Avg Cp	kJ/kg°C	4.1		3.15					
Q	kW	4060		-4060					

Table 5.10 Energy balance for HX-4

ENERGY BALANCE										
			HX-4							
Properties	Units	Water in	Water out	Process S in	Process S out					
Temperature	°C	25	45	78	36					
Pressure	bar	1	1	138	137.5					
Flowrate	kg/h	50400	50400	22626	22626					
Avg Cp	kJ/kg°C	4.18 3.15								
Q	kW	8	57	-{	857					

Table 5.11 Energy balance for HX-5

ENERGY BALANCE									
			HX-5						
Properties	Units	Recycle in	Recycle out	Process S in	Process S out				
Temperature	°C	13	21	36	30				
Pressure	bar	134.5	134	137.5	137				
Flowrate	kg/h	14716	14716	22626	22626				
Avg Cp	kJ/kg°C	3.24 2.955							
Q	kW	1	11	-:	111				

Figure 5.9 Evaporators and Heat Exchanger

Table 5.12 E	Energy bal	ance for HX-6
--------------	------------	---------------

ENERGY BALANCE							
		HX-6					
PropertiesUnitsRefrigerant inRefrigerant out							
Temperature	°C	0.5	0.5				
Pressure	bar	4.5	4.5				
Flowrate	kg/h	27700	27700				
Q	kW	929	97				

Table 5.13 Energy Balance for HX-7

	ENERGY BALANCE				
HX-7					
Properties	Units	Recycle in	Recycle out	Process S in	Process S out
Temperature	°C	-5	13	18.3	5.2
Pressure	bar	13240	13240	13900	13900
Flowrate	kg/h	14716	14716	22626	22626
Avg Cp	kJ/kg°C	3.	232	2.9	924
Q	kW	1	43	-1	.43

Table 5.14 Energy balance for HX-8

ENERGY BALANCE						
	HX-8					
Properties	Units	Refrigerant in	Refrigerant out			
Temperature	°C	-8.9	-8.9			
Pressure	bar	3	3			
Flowrate	kg/h	29800	29800			
Avg Cp	kJ/kg°C	250	1400			
Q	kW	953				

CHAPTER 6

EQUIPMENT DESIGN

6.1 Electrolyzer

PEM Electrolyzer is selected for Hydrogen production via water electrolysis (Barbir, 2005)

6.1.1 Designing Steps

Designing of PEM Electrolyzer involves following steps (Ifkovits et al., 2021)

• Total current required to produce the desired amount of Hydrogen (1418 kg/h) is calculated using Faraday's Law for electrolysis.

Operating conditions: 60°C and 15 bar

Total Current: $I_{total} = F * mH_2 * n$

Where,

•

F is Faraday's constant

 mH_2 is Molar flow rate of hydrogen produced in mole/s

n is number of electrons taking part in the reaction

 $I_{total} = 96485 * 197 * 2 = 38015090 A$

Calculating the total voltage of the cells by taking a sum of all four voltages namely activation overpotential, ohmic overpotential, concentration overpotential and reversible overpotential.

$$V_{cell} = V_{concentration} + V_{ohmic} + V_{reversible} + V_{activation}$$

i. Activation overpotential is associated with the activation energy barrier that must be exceeded to allow the electrochemical reactions at the electrodes.

 $V_{activation} = \frac{RT_o}{nF} * ln \frac{j}{j_o} = \frac{8.314 * 333}{2 * 96485} * ln \frac{2}{0.1}$ $V_{activation} = 0.0535 V$ Where, $R = 8.3145 \frac{J}{Kelvin * Mole}$ $j_0 (exchange current density) = 0.1 \frac{A}{cm^2}$ $j (current density) = 4.15 \frac{A}{cm^2} (From literature)$

ii. Ohmic overpotential arises from the resistance offered by the electrolyte (or more specifically the proton exchange membrane) to the flow of ions and the resistance in the electrodes and other constituent parts of the cell.

 $V_{ohmic} = I * \frac{\rho}{2}$ $V_{ohmic} = 0.2544 \text{ V}$ Where, $\rho \text{ is the thickness of the membrane} = 1.125 * 10^{-6} m$

iii. The reversible cell potential is given by the thermodynamics of the water splitting reaction and is equal to approximately 1.23 V at standard conditions, which is minimum amount of energy which is needed for electrolysis reaction to take place.

 $V_{reversible} = 1.229 - 0.9 * 10^{-3}(T_o - T)$ $V_{reversible} = 1.1975 V$ Where,
Process temperature (*T*_o)= 333 K
Room temperature (*T*)= 298 K

iv. Concentration overpotential refers to the overpotential occurring because of concentration gradients of reactants and products at the electrode surface.

 $V_{concentration} = 0.4145 V$ (From literature)

Now V_{cell} is given by:

$$V_{cell} = 0.4145 + 0.2544 + 0.0535 + 1.1975$$

 $V_{cell} = 1.92 V$

By using the values for cell voltage and resistance, to calculate the current of one cell.

$$I_{cell} = \frac{V_{cell}}{R_{internal}}$$

Where,

•

•

$$R_{internal} = 4.245 * 10^{-6} \Omega$$

$$I_{cell} = 452350 A$$

Calculating the number of cells, using the ratio of total heat produced by the Electrolyzer to the heat produced in a single cell.

$$n_{cells} = \frac{Q_{heat, electrolyzer}}{Q_{heat, cells}}$$

Where,

 $\begin{aligned} Q_{heat,electrolyzer} &= 73000 \ kW \ (From \ energy \ balance) \\ Q_{heat,cells} &= V_{cell} \ * \ I_{cell} = 1.92 \ * \ 452350 = 868.5 \ kW \\ \mathbf{n_{cells}} &= \mathbf{84.05} \approx \mathbf{84} \ cells \end{aligned}$

• Area of electrodes is calculated using the values obtained for current and current densities.

Area of
$$Electrode = \frac{I_{total}}{j}$$

Area of Electrode = 109047
$$cm^2 \approx 10.9 m^2$$

6.1.2 Results

Property	Units	Value
I _{total}	А	38015090
I _{cell}	А	452350
Area of Electrode	<i>m</i> ²	10.9
V _{concentration}	V	0.4145
V _{ohmic}	V	0.2544
V _{activation}	V	0.0535
V _{reversible}	V	1.1975
V _{cell}	V	1.92
$oldsymbol{Q}_{heat, cells}$	kW	868.5
n _{cells}		84

Table 6.1 Results for Electrolyzer design.

6.2 Ammonia Reactor

6.2.1 Assumptions

Following assumptions were taken for the designing of ammonia reactor.

REACTOR

- Adiabatic fix bed reactor type
- Axial flow of gas within reactor
- Three catalyst bed within reactor
- Operation is autothermal.
- indirect cooling mechanism using three heat exchangers.
- Single pass conversion 30%

CATALYST

- Magnetic Iron oxide catalyst
- Promotors Aluminum oxide (3%), Potassium oxide (1%)
- The density of catalyst is 850 kg/m3.
- Void fraction is 0.4.
- The bulk density of catalyst is 2650 kg/m3.
- Diameter of catalyst particles is 0.003m

6.2.2 Available Information

Temperature of gas stream at the inlet and outlet of each bed

Table 6.2 Temperature conditions for gas stream

Specification	Bed 1	Bed 2	Bed 3
Inlet Temperature (C)	347.6	436.1	409.4
Outlet Temperature (C)	495.3	466.1	442.7

Assuming the conversion across each bed material balance was done and following results were obtained

Conversion for Bed 1 = 19%

Table 6.3 Bed 1 inlet conditions

Components	Mol percent (%)	Mol Frac	Kmol/hr.	Kg/hr
N2	24.25	0.2425	625.5785	17524.33
H2	72.75	0.7275	1876.735	3783.499
NH3	3	0.03	77.39115	1318.049
F	100	1	2579.705	22625.88

Conversion for Bed 2 = 24%

Table 6.4 Bed 2 inlet conditions

Components	Mol Percent (%)	Mol Frac	Kmol/hr.	Kg/hr
N2	21.63628	0.216363	506.7186	14194.71
H2	64.90885	0.649089	1520.156	3064.634
NH3	13.45487	0.134549	315.111	5366.655
Rout	100	1	2341.985	22626

Conversion for Bed 3 = 30%

Table 6.5 Bed 3 inlet conditions

Components	Mol Percent (%)	Mol Frac	Kmol/hr.	Kg/hr
N2	20.85785	0.208579	475.4396	13318.49
H2	62.57356	0.625736	1426.319	2875.459
NH3	16.56858	0.165686	377.6688	6432.078
Rout	100	1	2279.427	22626.03

6.2.3 Designing Steps

Following Steps were taken while solving each bed.

• To determine Volumetric flow rate first we need to determine Molar density.

Molar density = <u>Generalgas constant*temperature*Compressibility Factor</u>

Then

Average Density = Molar Density * Molecular weight

The molecular weight of gas stream can be calculated by multiplying molar mass of components with their mole fraction and adding them.

Volumetric flowrate can be determined using formula.

Volumetric Flow rate = Mass flowrate of inlet stream/ Average Density

• Residence time can be determined using formula.

T = Area under the curve * Initial Concentration of (N2)

N2 is the Limiting reactant.

Area under the curve

To Determine Area under the curve Graph is plotted by varying conversion and determining the value of 1/rate.

Simple rate equation used is.

 $rate = K [H]^{2}[N2]$

K= rate constant

It is calculated using equations:

 $lnk = -2.691122log(T) - 5.519265 * E - 5(T) + 1.848863 * E - 7(T^{2}) + 2001.6/T + 2.68$

Dividing the answer with constant factor 17.09

[H2]=Concentration of Hydrogen

[N2]=Concentration of Nitrogen

Concentration of nitrogen and hydrogen is determined using formula.

$$Concentration = Initial Concentration * [(1 - conversion)/(1 + \\ \in * Conversion)]$$

Initial concentration of nitrogen and hydrogen is determined.

 $\in = \frac{\text{Total molar flow out-Total molar flow in}}{\text{Total molar flow in}}$

Calculations for each bed in detail are given below

For Bed 1

By varying the Conversion from 0 to 0.188 following results are obtained.

Graph is plotted between inverse of rate and conversion.

Figure 6.1 Inverse of rate vs Conversion - Bed 1

For Bed 2

We vary conversion from 0.189 to 0.241.

Sr No	X	Сн	C _N	ra	1/r _a
1	0.189	1.230248	0.410083	0.004381	228.2817
2	0.202	1.21095	0.40365	0.004178	239.3702
3	0.215	1.191639	0.397213	0.003981	251.1972
4	0.228	1.172314	0.390771	0.00379	263.8255
5	0.241	1.152976	0.384325	0.003606	277.3244

Table 6.6 Results for conversion from 0.189 to 0.241- Bed 2

Figure 6.2 Inverse of rate vs Conversion - Bed 2

For Bed 3

By varying the Conversion from 0.242 to 0.3 following results are obtained

Table 6.7 Results for conversion from 0.189 to 0.241- Bed 2

Sr no	X	Сн	С	ra	1/ra
1	0.242	1.151518	0.383839	0.004173	239.6249
2	0.2565	1.130034	0.376678	0.003944	253.5533
3	0.271	1.108529	0.36951	0.003723	268.5975
5	0.285	1.087747	0.362582	0.003518	284.2891
6	0.3	1.065458	0.355153	0.003306	302.5062

Figure 6.3 Inverse of rate vs Conversion - Bed 3

Area under the curve can be determined using formula.

$$\left(\frac{Yn+1+Yn}{2}\right)*(X(n+1)-Xn)$$

• To determine the volume of catalyst bed

Volume of Bed = Volumetric flow rate * Residence time

Actual Volume of bed = Volume of bed (1 + void fraction)

To determine Radius , Diameter, and length of bed

Considering bed as a cylinder

Actual Volume of Bed = pie * radius^2 * length (Length)/(Diameter) = 3 (for catalyst bed) Diameter = 2 * radius Length of catalyst bed = 6 * radius Actual Volume of Bed = pie * 6 * radius^3 Radius of bed = [(Volume of bed)/(pie * 6)]^1/3

• To determine Mass of catalyst

Mass = Bulk Density of Catalyst * Actual Volume of Bed

• To determine Volume of catalyst bed

Vol of Catalyst = Mass of Catalyst / Density of catalyst

• Pressure Drop Calculation

Pressure drop is calculated using Ergun equation:

 $\Delta P/L = (150 * (1 - void fraction)^2)/(Dp2 * void fraction^3) * Vs) + (1.75 * (Vs2*density 1-void fraction) / (Dp*void fraction^3))$

Where,

Vs = superficial velocity

= volumetric flowrate/ area of cross section

6.2.4 Results

The results obtained by solving all above-mentioned equations are given below:

Table 6.8 Results for Reactor Design

Specification	Catalyst Bed 1	Catalyst Bed 2	Catalyst Bed 3
Molar Density (kgmol/m3)	2.54	2.32	2.41
Average Density (kg/m3)	2.23E+01	2.25E+01	2.39E+01
Volumetric Flow rate (m3/h)	1.01E+03	1.01E+03	9.46E+02
Initial Concentration of H2	1.85	1.51	1.51
Initial Concentration of N2	6.17E-01	5.03E-01	5.02E-01
(kgmol/m3)			
E	-0.09	-2.6711E-02	-3.29E-02
Residence time (s)	7.25	6.59	7.85
Actual Volume Of bed (m3)	2.9	2.6	2.9
Radius of catalytic bed (m)	0.5	5.15E-01	5.35E-01
Diameter of bed (m)	1.07	1.03	1.07
Length of catalyst bed (m)	3.2	3.1	3.2
Mass of catalyst (kg)	7573.9	6837.4	7659.31
Volume of catalyst (m3)	8.91	8.04	9.01
Pressure drop (bar)	0.40	0.448	0.375

6.3 Adsorption Column

6.3.1 Choice of adsorbent and its properties

The adsorbent used for PSA is Carbon molecular sieve CMS. Some of the important properties of CMS are given below (Green, 2007)

	Table	6.9	Properties	for	CMS
--	-------	-----	------------	-----	-----

Properties		
Porosity	0.5	
Density	700 kg/m3	
Adsorption Capacity	50% (0.5)	

6.3.2 Assumptions

(Arnold & Stewart, 1998)

- The time for 1 cycle is 8 hours.
- Height to diameter ratio for adsorption column is 3:1

6.3.3 Designing Steps

• The adsorption capacity for any adsorbent is given by:

Adsorbent Capacity = $\frac{\text{mass of adsorbate}}{\text{mass of adsorbent}}$

For nitrogen adsorbed in 1 cycle (8 working hours),

Mass of adsorbate = mass in – mass out

= (9294.71 – 6506.3) kg/hr * 8hr

Mass of adsorbate = 22307kg

Substituting values in above equation gives

Mass of adsorbent = $\frac{\text{mass of adsorbent}}{\text{adsorbent Capacity}} = \frac{22307.2}{0.5}$

Mass of adsorbent = 44614kg

• Volume for porous adsorbent is given by:

Volume of adsorbent = mass/ (density * porosity)

= 44614.4/(700*0.5)

Volume of adsorbent = 127.5 m³

• The diameter of cylindrical column is given by

Volume of cylindrical column = $\frac{\pi}{4} * D^2 * H$

As Height to diameter = H:D = 3:1

$$= \frac{\pi}{4} * D^{2} * 3 * D$$
$$= \frac{\pi}{4} * D^{3} * 3$$

Diameter of adsorbent column = $\sqrt[3]{\frac{4*V}{3\pi}}$

$$=\sqrt[3]{\frac{4*127.5}{3\pi}}$$

Diameter of adsorbent column = 3.7 m

Also,

Height of adsorbent column = 3*D

= 3* 3.7

Height of adsorbent column = 11.1m

With a compensation of about 1 ft above and 1 ft below the adsorbent column, the length of adsorption column is given by

Length of Adsorption Column =11.1 + 0.61m

Length of Adsorption column = 11.71 m

6.3.4 Results

Table 6.10 Results for Adsorption Column Design

Properties	Values
Mass of Adsorbate	22307 kg
Mass of Adsorbent	44614 kg
Volume of adsorbent	128 m ³
Column Length	11.7 m
Column Diameter	3.7 m

6.4 Heat Exchanger

6.4.1 Choice of Exchanger

Shell and Tube heat exchanger is used due to high flowrates. Counter-Current Flow is applied as outlet temperature of water is greater than outlet temperature of air.

6.4.2 Stream Condition

Water is placed at the tube side while air is present in the shell. Conditions and commonly used properties of both hot and cold fluid are given in the table below.

Table 6.11 Tube side specifications

TUBE SIDE		
Fluid	Water	
Inlet Temperature (°C)	25	
Outlet Temperature (°C)	60	
Average cp (kJ/kgK)	4.180	
Average Density (kg/m ³)	995	
Average Viscosity (mNs/m ²)	0.8	
Average Thermal Conductivity (W/m ^o C)	0.59	
Mass Flow Rate (Kg/hr)	16,904	

Table 6.12 Shell side specifications

SHELL SIDE		
Fluid	Air	
Inlet Temperature (⁰ C)	180	
Outlet Temperature (°C)	40	
Average cp (kJ/kgK)	1.008	
Average Density (kg/m ³)	0.922	
Average Viscosity (mNs/m ²)	18.97 x 10 ⁻³	
Average Thermal Conductivity (W/m ^o C)	0.028	
Mass Flow Rate (Kg/hr)	8,626	

Also, the Average Temperature of Water = (25+60)/2 = 45.2 °C

6.4.3 Designing Steps

Following are the main steps involved in designing of heat exchanger from 'Chemical Engineering Design' by R. K. Sinnott, J. M. Coulson and J. F. Richardson.

• Heat Transfer Rate Q

 $Q = m^*Cp^*\Delta T$ Q = (16904) * (4.180) * 35 Q = 2473055.2 kJ/hQ = 2473055.2/3600

• LMTD

$$LMTD = \frac{(180 - 60) - (40 - 35)}{\ln \frac{180 - 60}{40 - 35}}$$

LMTD = 36.2 °C

• Corrected LMTD

Corrected LMTD = F*LMTD

Where, F= Correction Factor

$$R = \frac{(T_{hot in} - T_{hot out})}{(t_{cold out} - t_{cold in})} = \frac{(180 - 40)}{(60 - 25)}$$

$$S = \frac{(t_{cold out} - t_{cold in})}{(T_{hot in} - t_{cold in})} = \frac{(60 - 25)}{(190 - 25)}$$

$$S = 0.226$$

Using values of R and S, we find the value of the Correction factor from the given graph.

Figure 6.4 Temperature Correction factor

From the graph. F = 0.95Corrected LMTD = F^*LMTD = 0.95 * 36.2

Corrected LMTD = 34.4 °C

- Heat Transfer Area A
 - $Q = U^*A^*LMTD$

U = Heat Transfer Coefficient A = Heat Transfer Area

Air-cooled exchangers		
Process fluid		
Water	300-450	
Light organics	300-700	
Heavy organics	50-150	
Gases, 5-10 bar	50-100	
10-30 bar	100-300	
Condensing hydrocarbons	300-600	

Figure 6.5 Typical Overall coefficient

Assuming $U = 440 \text{ W/m}^{20}\text{C}$

Also, the area is given by:

$$A = \frac{Q}{U * LMTD}$$

A = (686950)/(440*34.4)

$$A = 45.3 m^2$$

• Tubes Specifications

Outside diameter (mm)	Wall thickness (mm)				
16	1.2	1.6	2.0	_	_
20	—	1.6	2.0	2.6	_
25	_	1.6	2.0	2.6	3.2
30	—	1.6	2.0	2.6	3.2
38	_	—	2.0	2.6	3.2
50	—	—	2.0	2.6	3.2

Figure 6.6 Standard Dimensions for Steel tubes

The following values are used for steel tubes.

Outer Diameter = 50 mm , Tube Thickness = 2 mm , Inner Diameter = 48 mm

The pitch chosen for this type of heat exchanger is *"Triangular Pitch"*, as shell side cleaning is not required frequently also the higher rates of the heat transfer provided by this type of pitch.

Tube Pitch = 1.25 * Outer Diameter

Pitch = 1.25 * 50

Pitch = 62.5 mm

Length of Tube = 9.90 m

Allow Tube Sheet Thickness of 0.05 m

Tube Length = 9.90 – 0.05

Tube Length = 9.85 m

Area of 1 tube = $9.85 * (50 \times 10^{-3}) * \Pi$

Area of 1 tube = 1.55 m³

Number of tubes = $\frac{\text{Total Heat Transfer Area}}{\text{Area of 1 tube}}$ = 45.3/1.55

Number of tubes = 30 tubes

Tube Side Coefficient

Mean Water Temperature = (60 + 25)/2 = 42.5 °C

Tube Cross Sectional Area = $\frac{\Pi}{4}$ * (50 x 10⁻³)² Tube Cross Sectional Area = 1.96 x 10⁻³ m²

Tubes per pass = 30/8 = 3.75 = **4 tubes per pass** Total Flow Area = 3.75 * (1.963 x 10⁻³) **Total Flow Area = 7.032 x 10⁻³ m³**

Flowrate of Water = 16904/3600 = **4.6956 kg/s** Water Mass Velocity = 4.6956/(7.032 x 10⁻³) = **680 kg/m²s** Velocity of Water = 680/995

Velocity of Water = 0.7 m/s

di = $48 \times 10^{-3} \text{ m}$ Viscosity of water = 0.8 mNs/m^2 Thermal conductivity = $0.59 \text{ W/m}^0\text{C}$

 $h^{i} = \frac{jh * Re * Pr0.33 * kF}{di}$

Re = (density * u * di)/viscosity

Re = 41,790

Figure 6.7 Tube side heat transfer coefficient

Jh = 3.9×10^{-2}

 $\label{eq:Pr} \begin{array}{l} \mbox{Pr} = (\mbox{cp * viscosity}) \ / \ \mbox{thermal conductivity} \\ \mbox{Pr} = (\mbox{4.18 * } 0.8 \ \mbox{x } 10^{-3}) \ / \ \mbox{0.59} \end{array}$

$$Pr = 5.67 \times 10^{-3}$$

hi = { $(3.5 \times 10^{-2}) * (41790) * (5.67 \times 10^{-3})^{0.33} * (0.59)$ } / (48 x 10⁻³)

Tube side Coefficient = $hi = 3261 W/m^{20}C$

• Shell Side Specifications

Triangular pitch	$p_t = 1.25d_o$				
No. passes	1	2	4	6	8
$K_1 \\ n_1$	0.319 2.142	0.249 2.207	0.175 2.285	0.0743 2.499	0.0365 2.675

Figure 6.8 Constants for Bundle Diameter Calculations

Bundle Diameter = $D_b = 62.5 * (\frac{30}{0.0365})^{1/2.675}$

Bundle Diameter = D_b = 768 mm

Figure 6.9 Shell bundle clearance.

Pull Through Floating Head Shell Inside Dia – Bundle Dia = 93 mm

Baffle Spacing = $D_s/2.5$ = 859/2.5 Baffle Spacing = 344 mm Cross Flow Area = $A_s = \frac{(pt-do)*Ds*Lb}{pt}$ $As = \frac{(63-50)*859*(0.000344)}{63}$

Cross Flow Area = As = 0.061 m^2

Mass Velocity = $G_s = (8626) / (3600 * 0.061)$ Mass Velocity = $G_s = 39 \text{ kg/m}^2 \text{s}$

Equivalent Dia = de = $(1.10 / do) * (pt^2 - 0.917 do^2)$ de = $(1.10/50) * (63^2 - 0.917(50)^2)$

Equivalent Dia = de = 36.9 mm = 0.0369 m

Using specification of Air Baffle Cut = 25% Re = (Mass velocity * de) / viscosity Re = (30 * 0.0369) / (18.97 x 10⁻⁶)

Re = 58,355

Figure 6.10 Shell side heat transfer coefficient

From the graph,

$$J_h = 2.5 \times 10^{-2}$$

Pr = (heat capacity * viscosity) / (thermal conductivity) $Pr = {(1.008 * 1000) * (18.97 x 10⁻⁶)} / (0.028)$ Pr = 0.68

hs = $(0.028 / 0.0369) * (2.5 \times 10^{-2}) * (58355) * (0.08)^{0.33}$ hs = 975 W/m²°C

• Overall heat transfer coefficient

Fouling factor = 7500 Dirt coefficient = 5000

 $\frac{1}{\text{Uo}} = \frac{1}{\text{hs}} + \frac{1}{\text{fouling factor}} + \frac{(0.005)ln\frac{50}{48}}{2*45} + \frac{50}{48} \frac{1}{\text{inside dirt coefficient}} + \frac{50*1}{48*\text{hi}}$

 $Uo = 585 W/m^{20}C$

Which is above the assumed value of 440

• Tube Side Pressure Drop

$$\Delta P_t = N_p \left[8j_f \left(\frac{L}{d_i}\right) \left(\frac{\mu}{\mu_w}\right)^{-m} + 2.5 \right] \frac{\rho u_t^2}{2}$$

Figure 6.11 Tube side friction factor

$$\Delta P = 24,182 \text{ N/m2} = 24.182 \text{ kPa} = 3.48 \text{ psi} = 0.24 \text{ bar}$$

• Shell Side Pressure Drop

Linear Velocity = Gs / density = **30 m/s** Number of Baffles = 5

l/lb = Number of Baffles + 1

$$l/lb = 6$$

Now, the pressure drop is given by:

$$\Delta P_s = 8j_f \left(\frac{D_s}{d_e}\right) \left(\frac{L}{l_B}\right) \frac{\rho u_s^2}{2} \left(\frac{\mu}{\mu_w}\right)^{-0.14}$$

Figure 6.12 Shell side friction factor

ΔP = 29,257 N/m2 = 29.3 kPa = 4.3 psi = 0.30 bar

6.4.4 Results

Table 6.13 Rest	ılts for Heat	Exchanger design
-----------------	---------------	------------------

Property	Unit	Value
HEAT DUTY	kJ/hr	2,473,055
LMTD	^o C	34.4
Area	m ²	45.3
Uo	W/m ² °C	585
	Tubes	1
Number		30
Length	m	9.85
Outer diameter	m	0.05
Pitch	m	0.0625
Passes		8
Jh		3.9 x 10 ⁻²
hi	W/m ² °C	3261
Pressure drop	psi	3.48
	Shell	
Inner diameter	m	0.859
Baffle Spacing	m	0.344
Passes	-	2
Jh	-	2.5 x 10 ⁻²
hs	W/m ² °C	975
Pressure drop	psi	4.3
CHAPTER 7

SIMULATION

7.1 Simulation tool

Aspen Plus has been used for simulation of this this project.

Aspen Plus is a powerful process simulation software widely used in the chemical engineering field for designing, optimizing, and analyzing chemical processes. Developed by Aspen Technology, this software provides a comprehensive environment for modeling a wide range of chemical processes, from simple unit operations to complex, integrated systems. Aspen Plus enables engineers to simulate the behavior of chemical processes using detailed thermodynamic and kinetic data, facilitating the accurate prediction of process performance. Its robust capabilities in process simulation, combined with a user-friendly interface, make it an essential tool for both academic research and industrial applications.

7.2 Components

The raw material for this process includes air (O2 and N2) and water and the major products are H2, N2 and Ammonia. List of components used for simulation are given below:

Component ID	Туре	Component name
WATER	Conventional	WATER
HYDRO-01	Conventional	HYDROGEN
OXYGE-01	Conventional	OXYGEN
NITRO-01	Conventional	NITROGEN
AMMON-01	Conventional	AMMONIA

Figure 7.1 List of components

7.3 Fluid Package

Two property packages are used for this simulation:

7.3.1 STEAM-TA

This is used only for water system (water electrolysis).

Property options		
Property method	STEAM-TA	
Henry components ID	▼	

Figure 7.2 Fluid Package- 1

7.3.2 PENG-ROB

This property package is used for the rest of the system.

Property options		
Property method	PENG-ROB	-
Henry componen	its ID	~

Figure 7.3 Fluid Package-2

7.4 Overall Process Flow Sheet

Figure 7.4 Overall Process flow diagram

7.5 Hydrogen Production Unit

7.5.1 Process Flow Sheet

Figure 7.5 Process Flow Diagram for Water Electrolysis

Anode Section

7.5.2 Pump P-1

Pump intakes water at room temperature and discharges it at a pressure of about 15 bar

Specifications	Calculation Option	s F	lash Options	Utility	Comments			
Model —								
Pump	(🔘 Tu	rbine					
C Pump outlet specification								
 Discharge pres 	sure	15.5	bar		•			
O Pressure increa	se		bar		•			
Pressure ratio								
Power required			kW		-			
© Use performance curve to determine discharge conditions								
C Efficiencies								
Pump	0.75	Driv	ver					

Figure 7.6 Specifications for P-1

7.5.3 Stack

This is a conversion reactor that splits water into hydrogen and oxygen (water electrolysis). Some of the major specifications and the reaction used in the reactor are shown below.

ſ	Reactions								
		Rxn No.	Specification type	Molar extent	Units	Fractional conversion	Fractional Conversion of Component	Stoichiometry	
	►	1	Frac. conversion		kmol/hr	0.75	WATER	WATER> HYDRO-01(MIXED) + 0.5 OXYGE-01(MIXED)	
Γ									

Figure 7.7 Reaction for Stack

action No.	-			
Reactants		F	Products	
Component	Coefficient		Component	Coefficient
WATER	-1		HYDRO-01	1
			OXYGE-01	0.5
Products generation	kmol/hr			

Figure 7.8 Reaction stoichiometry for Stack

7.5.4 Membrane

A combination of splits is used to demonstrate the membrane present between anode and cathode. Two calculator blocks are used to calculate the permeation of hydrogen from cathode section to anode and permeation of oxygen from anode section to cathode section. (Zaccara et al., 2020)

Hydrogen permeation calculator block uses the following equation.

$$H_2^{perm} = (0.0009. e^{0.025T}). \Delta P. A$$

Where,

T = Temperature

 ΔP = Pressure difference between cathode and anode

A = active area

Specification used in the hydrogen calculator block are shown below

✓ Define		e 🥝 Sec	quence	Tears	Stream Flash	Commen	nts			
Active	✓ Active									
(*) Sampled variables (drag and drop variables from form to the grid below)										
Va	ariable	Informat	tion flow				Definition			
H2PERM		Export vari	able	Block-	Var Block=S-2 Variab	le=FLOW/FRA	AC Sentence=FLOW/FRAC	ID1=H2P		
*										
New	Del	ete	Сору		Paste Move Up Move Down View Variables					
 Edit selecte 	ed variable									
Variable	ØH2PERM	•	Reference	e]	Information flow			
Category —			Туре	Bl	ock-Var		Import variable			
© All			Block:	S-	2	•	Export variable			
Blocks			Variable:	FL	OW/FRAC	- #	🔘 Tear variable			
Streams			Sentence	FL	OW/FRAC					
🔘 Model Utili	ty		ID1:	H	2P	•				

Figure 7.9 Hydro calculator block specification

Oefine Calculate	Sequence Tears S	Stream Flash Comments
Calculation method Fortran Excel	O Neural Network	Open Excel Spreadsheet
Pcat =	15	bar
Pan =	1.5	i bar
Area=	10.9) m3
T=	60	C
H2PERM	2.136717	

Figure 7.10 Hydro calculator block equation

For permeation of oxygen following relation is used

$$O_2^{perm} = 0.5 H_2^{perm}$$

Specification used in the hydrogen calculator block are shown below

🖉 Define	✓ Calculate	e 🤇 Sec	quence	Tears	Stream Flash	Commen	ts			
Active	Active									
Sampled v	Sampled variables (drag and drop variables from form to the grid below)									
Va	ariable	Informa	tion flow				Definition			
O2PERM		Export vari	able	Block-	Var Block=S-1 Variab	ole=FLOW/FRA	C Sentence=FLOW/FRAC ID	1=02P		
H2PERM				Stream	n-Var Stream=H2P St	ubstream=MIX	ED Variable=MOLE-FLOW U	nits=kmol/hr		
New	De	lete	Сору		Paste	Move Up	Move Down	iew Variables		
 Edit selecte 	ed variable									
Variable	WH2PERM	•	Reference				- Information flow	ן		
Category —			Туре	Sti	ream-Var	•	Import variable			
O All	O All Stream:		Stream:	H2	2P	•	Export variable			
O Blocks	O Blocks Substream:		i: MI	MIXED -		🔘 Tear variable				
Streams			Variable:	M	MOLE-FLOW 🔻 🏔					
🔘 Model Utili	ity		Units:	kn	nol/hr	-				

Figure 7.11 Oxy Calculator block Specification

🖉 Define	🖉 Calculate	Sequence	Tears	Stream Flash	Comments			
Calculation	method © Excel	O Neural Ne	twork		Fortran Declarations			
O2PERM=0.5*H2PERM								

Figure 7.12 Oxy calculator block equation

7.5.5 Product stream

The amount of hydrogen produced by this simulation is equivalent to the one calculated in material balance. The results are shown below.

Main Flow	sheet × HYDR	OGEN (MATE	RIAL) - Results	(Default) $ imes$	+
Material	Vol.% Curves	Wt. % Curves	Petroleum	Polymers	Solids
			Units	HYDROGEN	-
Pha	ase			Vapor Phase	
> Ten	nperature		с	5	9.9
Pre	ssure		bar		15
Mo	lar Vapor Fraction				1
Mo	lar Liquid Fraction				0
> Mo	lar Solid Fraction				0
Ma	ss Vapor Fraction				1
Ma	ss Liquid Fraction				0
Ma	ss Solid Fraction				0
> Mo	lar Enthalpy		cal/mol	236.4	38
Ma	ss Enthalpy		cal/gm	117.1	74
> Mo	olar Entropy		cal/mol-K	-4.592	24
Ma	ss Entropy		cal/gm-K	-2.275	83
> Mo	lar Density		mol/cc	0.0005380	26
Ma	ss Density		gm/cc	0.001085	65
▶ Ent	halpy Flow		cal/sec	4572	2.1
Ave	erage MW			2.017	83
+ Mo	ole Flows		kmol/hr	696.1	65
+ Mo	le Fractions				
🕨 🕂 Ma	iss Flows		kg/hr	1404.	74

Figure 7.13 Stream results for Hydrogen

7.6 Nitrogen Separation Unit

7.6.1 Process Flow Sheet

Figure 7.14 Process Flow Sheet for PSA

7.6.2 Air Compressor

This is 2 stage compressor (C-1-1 and C-1-2) with an inter cooler to compress the incoming air up to 12 bar.

Specification used for compressor simulation are shown below

Specifications	Calculation Option	ns Power l	.oss Converge	nce Integration Paramete					
Model and type Model Compressor Turbine									
Type Poly	pe Polytropic using ASME method								
Outlet specificati	Outlet specification								
Oischarge pre	essure 3	3.5 bar	-						
O Pressure incre	ase	bar	-						
Pressure ratio									
O Power require	d	kW	~						
🔘 Use performa	O Use performance curves to determine discharge conditions								
Efficiencies									
Isentropic	Polytropic	0.75	Mechanical						

Figure 7.15 Specification for C-1-1

Specificati	ions	Calcul	ation Options	Power	Loss	Converg	gence	Integration	Paramete
Model and t Model () Type	ype – O Cor Polyt	npressc ropic u	or ©) Turbine		1		•	
Outlet speci	ficatio	n —							
Oischarge	e pres	sure	1/	2 bar		•			
Pressure	increa	se		bar		T			
Pressure	ratio								
O Power ree	quired			kW		T			
🔘 Use perfo	orman	ce curve	es to determir	ne dischar	ge con	ditions			
Efficiencies									
Isentropic			Polytropic	0.75	Me	echanical			

Figure 7.16 Specification for C-1-2

7.6.3 Adsorption column (AD-1 and AD-2)

Combination of mixer, tee and separators are used to demonstrate the adsorption column with the nitrogen purity of about 98% and recovery of 70 %. (Sutradhar et al., 2019)

The separations used in the separator are shown below.

Sub	ostream	MIXED		▼ Outlet	stream	19		•
Stre	am spec	Split fract	tion	•		▼		T
	Compo	onent ID	1	st Spec		2nd Spec		
►	WATER		Split fraction)	Mole frac		
Þ	HYDRO-0)1	Split fraction)	Mole frac		
Þ	OXYGE-0	1	Split fraction			Mole frac		
	NITRO-0'	1	Split fraction	0.	7	Mole frac	0.98	
$\left \cdot \right $	AMMON	-01	Split fraction)	Mole frac		

Figure 7.17 Specification for Separator AD-1

7.6.4 Product stream (Nitrogen)

The amount of nitrogen produced in this simulation is equivalent to the one calculated in material balance. The results for the stream are given below.

Μ	laterial	Vol.% Curves	Wt. % Curves	Petroleum	Poly	/mers	Solids
				Units		NITROO	SEN 🔻
	Ten	nperature		С			40
	Pre	ssure		bar			12
	Мо	lar Vapor Fraction					1
•	Mo	olar Liquid Fraction					0
	Мо	lar Solid Fraction					0
	Ma	ss Vapor Fraction					1
	Ma	ss Liquid Fraction					0
	Ma	ss Solid Fraction					0
	Mo	olar Enthalpy		cal/mol			84.9758
	Ma	ss Enthalpy		cal/gm			3.02478
	Mo	olar Entropy		cal/mol-K		-	4.42751
	Ma	ss Entropy		cal/gm-K		-0	.157601
	Mo	olar Density		mol/cc		0.000)462354
	Ma	ss Density		gm/cc		0	.012989
	Ent	halpy Flow		cal/sec			5602.33
•	Ave	erage MW					28.0932
	+ Mo	ole Flows		kmol/hr		2	237.343
	+ Mo	le Fractions					
	+ Ma	ass Flows		kg/hr		(5667.72

Figure 7.18 Stream results for Nitrogen

7.7 Ammonia Synthesis

7.7.1 Process Flow Diagram

Figure 7.19 Process Flow Sheet-Ammonia Synthesis

7.7.2 Reactor Feed Compressor

This is 4 stage compressor (C-2-1 to C-2-4) with inter coolers to compress the incoming air up to 142 bar.

The specification used for each stage of compressor are shown below.

Specificatio	ons Calcul	ation Options	Power L	oss Converg	gence Inte					
⊂ Model and ty	⊂ Model and type									
Model 🧕	Model © Compressor © Turbine									
Туре	Polytropic u	sing ASME me	ing ASME method							
Outlet specifi	cation —									
Oischarge	Discharge pressure 25.6 bar									
Pressure in	ncrease		bar	Ŧ						
O Pressure r	atio									
Power req	uired		kW	Ŧ						
O Use performance curves to determine discharge conditions										
Efficiencies –										
Isentropic		Polytropic	0.75	Mechanical						

Figure 7.20 Specifications for C-2-1

1	-								
Specificati	ions	Calcula	ation Options	Power L	.oss	Converg	gence	Integration P	
Madel and time									
riviodel and l	type –								
Model (Model O Compressor O Turbine								
Туре	Type Polytropic using ASME method								
Outlet speci	ficatio	n ——							
Oischarge	e pres	sure	58	bar		•			
Pressure	increa	se		bar		-			
O Pressure	ratio								
O Power ree	quired			kW		-			
🔘 Use perfo	orman	ce curve	es to determine	e discharg	e conc	litions			
- Efficiencies -									
Linconcies									
Isentropic			Polytropic	0.75	Me	chanical			

Figure 7.21 Specifications for C-2-2

1	1								
Specificati	ons C	alculation (Options	Power L	oss Conver	gence	Integrat		
⊂ Model and t	⊂ Model and type								
Model Compressor Turbine									
Туре	Polytrop	oic using A	SME me	thod			•		
Outlet specif	fication -								
Oischarge	Discharge pressure 132 bar								
🔘 Pressure i	increase			bar	~				
O Pressure i	ratio								
O Power rec	quired			kW	Ŧ				
\bigcirc Use performance curves to determine discharge conditions									
- Efficiencies -									
Isentropic		Polyt	ropic	0.75	Mechanical				

Figure 7.22 Specifications for C-2-3

Specificat	tions	Calcula	ation Option	s	Power L	oss	Converg	gence	Integrat
Model and type									
Model	Model Compressor Turbine								
Туре	De Polytropic using ASME method								
- Outlet spec	ificatio	n ——							
 Discharg 	Discharge pressure 142 bar								
O Pressure	increa	se			bar		-		
Pressure	ratio								
O Power re	quired				kW		•		
\bigcirc Use performance curves to determine discharge conditions									
Efficiencies									
Isentropic			Polytropic		0.75	Mee	chanical		

Figure 7.23 Specifications for C-2-4

7.7.3 Ammonia Reactor

Three plug flow reactors are used to demonstrate the three beds of ammonia reactor. The same kinetics and reaction set is used for each reactor. Inter coolers are placed between each bed to maintain the temperature.

Reaction kinetics for one of the reactors is shown below:

Stoichior	metry 🛛 🖉 K	inetic Equilibrium	Activity	Comn	nents			
1) 3 HYDRO	1) 3 HYDRO-01 + NITRO-01> 2 AMMON-01(MIXED)							
Reacting pha	se Vapor		▼ Rate	basis	Cat (wt)	-	
LHHW kine	tic expressior	۱]	
r =	[Kinetic fac	ctor][Driving force exp	pression]					
	[A	dsorption expression						
Kinetic facto	or							
If To is spec	cified	Kinetic factor =k(T/To	o) ⁿ e -(E/R	k)[1/T-1/	To]		Solids	
If To is not	specified	Kinetic factor =kT ⁿ	e -E/RT					
k	1						Driving Force	
n	0						Adsorption	
E	0	cal/mol	•					
То		С	•					

Figure 7.24 Reaction kinetics

Driving	Force Exp	ression						×
Reacting pl	nase Va	apor						i
[Ci] basis	Pa	artial p	ressure		•			
Enter term	Те	erm 1			Ŧ			
Term 1 –								
Concentr for reacta	ation expo nts	onents		Co for	ncentration exp products	onents		
Со	mponent	Ex	ponent		Component	t Ex	ponent	
► HYD	RO-01		1.5		AMMON-01		0	
► NITI	RO-01		1					
Coefficier	nts for driv	ving for	ce constan	ıt				
A:	-17	В:	-1046	68 C:	0	D:		0
			k		Close			

Figure 7.25 Driving Force for reaction kinetics

Ad	lsorption Ex	pressio	n						>
React	ing phase	ng phase Vapor							
[Ci] bi	i] basis Partial pressure								
Adsor	Isorption expression exponent								
Con	centration e	expone	nts						
	Compone	ent Te	rm No. 1	Т	erm No. 2	Term No. 3	Term No. 4		Ter 📤
	NITRO-01			0	0		0	0	=
•	HYDRO-0	1		0	0		0	0	
	AMMON-	01		0	1		0	0	-
4						1			•
Ads	orption con	stants -							
	Term no.		1		2	3	4		
	Coefficient	A		0	0	0	0		
	Coefficient	в		0	-10.8329	0	0		
	Coefficient	С		0	0	0	0		
	Coefficient	D		0	0	0	0		

Figure 7.26 Adsorption term for reaction kinetics

Specification used in each bed is according to the reactor design. Specifications of the 1st reactor are shown below.

Specifications	Configuration	Streams	Reactions	✓ Pressure	Holdup	⊘Catalyst
Reactor type Adia	batic reactor			•	•	
COperating conditi	on					
No additional spe	ecification required!					

Figure 7.27 Reactor Specifications

Specifications	Configuration	Streams	✓ Reactions						
 Multitube reactor Diameter varies a 	r Number of along the length of	tubes the reactor							
Lenath	3.2	meter	•						
Diameter 1.07 meter •									
Elevation									

Figure 7.28 Reactor configuration

Specifications	Configuration	Streams 🤇	Reactions	Pressure	Holdup		
Catalyst present in reactor							
📃 Ignore catalyst vo	olume in rate/residen	ice time calcula	tions				
Specifications							
Catalyst loading		•	7574	kg	•		
Bed voidage		•	0.4		-		

Figure 7.29 Reactor catalyst data

7.7.4 Heat Exchangers

Series of heat exchangers are used to condense ammonia. Short model is used for each shell and tube exchanger with counter current flow. Details of a few of them are shown below.

-									
/	Main Flowsheet $ imes$	HX-2 (Hea	tX) × [-	Ð					
	Specifications	Streams	LMTD	✓ Pressure Dro	p 🕝 U	Methods	Film Coefficients	Utilities	Com
	Model fidelity	Hot fluid		SI	Shortcut flow direction				
	Shortcut		0	hell	(Counterce	urrent		
	🔘 Detailed		© T	ube	(🔘 Cocurren	t		
	🔘 Shell & Tube				(🔘 Multipas	s, calculate number	of shells	
	🔘 Kettle Reboiler				(Multipass	s, shells in series	1 💌	
	O Thermosyphor	ı							
	🔘 Air Cooled								
	🔘 Plate								
	Calculation mode	Design		•					
	Exchanger specifi	cation							
	Specification	lot stream c	outlet ter	nperature		•			
	Value			290	с	•			

Figure 7.30 Input Specification of HX-2

Main Flowsheet \times	Main Flowsheet × HX-3 (HeatX) × +						
Specifications	Streams 🔇	SIMTD	🔮 Pressure (Drop	🔮 U Methods	Film Coefficients	Utilities
Model fidelity	Hot fluid		Shortcut flow d	lirection			
Shortcut		💿 She	II		Countercurr	ent	
🔘 Detailed		🔘 Tub	e		Cocurrent		
🔘 Shell & Tube					🔘 Multipass, c	alculate number of s	shells
🔘 Kettle Reboiler					🔘 Multipass, s	hells in series	2 💌
Thermosyphon							
🔘 Air Cooled							
O Plate							
Calculation mode	Design		•				
Exchanger specific	ation						
Specification C	old stream ou	utlet temp	perature		•		
Value			248.37	С	•		

Figure 7.31 Input Specification of HX-3

Ma	Main Flowsheet × HX-3 (HeatX) - Stream Results (Boundary) × +								
м	Material Vol.% Curves Wt. % Curves Petroleum Polymers Solids								
		Units	29 🗸	37 🔻	30 •	38 •			
•	Description								
Þ	From		C-2-4	HX-2	HX-3	HX-3			
Þ	То		HX-3	HX-3	H-R	HX-4			
▶	Stream Class		CONVEN	CONVEN	CONVEN	CONVEN			
•	Maximum Relative Error								
▶	Cost Flow	\$/hr							
▶	- MIXED Substream								
Þ	Phase		Vapor Phase	Vapor Phase	Vapor Phase	Vapor Phase			
•	Temperature	С	44.3631	290	248.37	73.2434			
•	Pressure	bar	142	138.5	142	137.5			

Figure 7.32 Steam results for HX-3

Main Flowsheet \times	Main Flowsheet × HX-8 (HeatX) × +								
Specifications	Streams	LMTD	🕜 Pressur	e Drop	🔮 U Methods	Film Coefficients	Utilities		
Model fidelity	Hot fluid			Shortcut flow	Shortcut flow direction				
Shortcut		0	Shell		Counterce	urrent			
🔘 Detailed		0	Tube		Cocurren	t			
🔘 Shell & Tube					Multipass	s, calculate number o	of shells		
🔘 Kettle Reboiler					Multipass	s, shells in series	1 💌		
Thermosyphor	1								
🔘 Air Cooled									
O Plate									
Calculation mode	Design		•						
Exchanger specific	ation								
Specification	lot stream	outlet te	mperature		•				
Value				-5 C	•				

Figure 7.33 Input Specification of HX-4

7.7.5 Ammonia Separator

The is a two-phase separator that separates liquid ammonia from unreacted gases. It is simulated for 80% ammonia recovery and 99.8% purity. Specifications of ammonia separator are shown below.

⊘ S∣	Specifications Feed Flash Outlet Flash Utility Comments									
Sub	ostream	MIXED		• 0	utlet stream	AMMONIA		•		
Stream spec Split fraction										
	Compo	inent ID				1st Spec			2nd 5	pec
	WATER		Split fraction						Mole frac	
	HYDRO-0)1	Split fraction						Mole frac	0.0015
	OXYGE-0	1	Split fraction						Mole frac	0
	NITRO-0		Split fraction						Mole frac	0.0005
	AMMON	-01	Split fraction				0.8		Mole frac	0.998

Figure 7.34 Specification of Ammonia Separator

7.7.6 Product Stream (Ammonia)

The amount of ammonia produced in this simulation is equivalent to the one calculated in material balance. The results for the stream are given below.

Main Flow	Main Flowsheet × AMMONIA (MATERIAL) - Results (Default) × +								
Material	Vol.% Curves	Wt. % Curves	Petroleum	Polymers Soli					
			Units	AMMONIA -					
Ter	nperature		С	-5					
Pre Pre	essure		bar	135					
Mo	olar Vapor Fraction			0					
Mo	olar Liquid Fraction			1					
Mo	olar Solid Fraction			0					
Ma	ass Vapor Fraction			0					
Ma	ass Liquid Fraction			1					
Ma	ass Solid Fraction			0					
Mo	olar Enthalpy		cal/mol	-16524.2					
Ma	ass Enthalpy		cal/gm	-971.237					
Mo	olar Entropy		cal/mol-K	-47.092					
Ma	ass Entropy		cal/gm-K	-2.76791					
Mo	olar Density		mol/cc	0.0378363					
Ma	ass Density		gm/cc	0.643729					
Ent	thalpy Flow		cal/sec	-1.68882e+06					
Av	erage MW			17.0135					
► + Me	ole Flows		kmol/hr	367.931					
• + Me	ole Fractions								
▶ + Ma	ass Flows		tonne/day	150.235					

Figure 7.35 Stream results for Ammonia

CHAPTER 8

PROCESS CONTROL AND INSTRUMENTATION

8.1 Introduction

Instrumentation and process control is an essential part of any chemical plant. It refers to the evaluation, measurement and control of different process parameters using different instruments and softwares. It helps minimize/mitigate the effect of any external disturbance, ensure the stability and safety of an operation, and optimize the performance of an industrial process.

Two major type of control loops are discussed below:

- Feed Forward control loops.
- Feed Backward control loops.

8.2 Feed Forward Control Loop

Feed forward control measures one or more input variables and takes preventive actions accordingly. In this type of control, the disturbance is eliminated before it enters the system, and the system works smoothly.

8.2.1 Ratio Control Loop

H2 and N2 are required in a specific ratio for ammonia synthesis. The ratio can be maintained by applying a simple ratio control loop. For the loop shown below the flowrate of N2 stream is measured and transmitted by the Flow Transmitter. The measured value is multiplied by a user defined number (k) according to the ratio to be adjusted in Ratio station. For example, if the N2:H2 = 1:3, the k should be 3. The output of ratio station becomes the set point for Flow Controller. The controller then calculates the required H2 flowrate accordingly. A transducer then converts the electric signal into pneumatic signal to operate the pneumatic valve and adjust the H2 flowrate.

Figure 8.1 Ratio Control Loop

8.3 Feed Backward Control Loop

Feedback control measures one or more output variables and then takes the corrective actions. It waits until the disturbance occurs and then mitigates the effect of the disturbance bringing the system back to stable condition.

8.3.1 Temperature Control Loop

The temperature at the inlet of each bed of ammonia reactor should be maintained properly as the ammonia synthesis reactor is only carried out within a specific temperature range. An intercooler is installed at the outlet of each bed to reduce temperature so that it is within the reaction temperature range. A temperature control loop is applied to control this temperature. Temperature transmitter measures the temperature of the outlet of 1st intercooler (bed 2 inlet) and transmits it to the controller. The controller sets the temperature according to the step point. The electric signal is sent to the transducer which converts it into pneumatic signal. This signal then operates the pneumatic valve installed at the coolant supply of heat exchanger to set the flowrate accordingly.

Figure 8.2 Temperature Control Loop

8.3.2 Pressure Control Loop

Pressure of air should be maintained at the inlet of adsorber for proper adsorption and desorption. A compressor is installed at the inlet to get the desired pressure. Pressure control loop is applied here. A pressure transmitter measures the pressure at compressor outlet and transmits it to the controller. Controller performs the necessary calculation using the setpoint. The outlet of the controller is converted into pneumatic signal by transducer. The air in stream is then throttled accordingly by throttling valve to adjust the pressure.

Figure 8.3 Pressure Control Loop

8.3.3 Level control Loop

The liquid level of ammonia in the separator should be maintained for proper separation. A level control loop is installed for this purpose. Level transmitter measures the level of liquid in the separator and sends the signal to the controller. Controller according to the setpoint calculates the required output. The output of controller is converted by transducer from electrical signals into pneumatic signals. The valve is then operated to remove the ammonia from the separator accordingly.

Figure 8.4 Level Control Loop

CHAPTER 9

ECONOMIC ANALYSIS

9.1 Introduction

The economic analysis of a chemical plant is a crucial step that determines its success and financial viability. It is critical in maintaining high standards by ensuring that the primary objective of generating revenue is met without compromising on production's quality or quantity. While economic analysis is a specialized field, a design engineer should be able to make rough cost estimates. This helps choose between different design options and ensure overall feasibility of the process.

It involves determining initial capital investment, including costs for land, equipment purchase and installation and plant construction. Operating cost, such as the cost for raw material, utilities, labors, and maintenance is estimated according to production capacity and efficiency. Revenue projections are made based on market demand and pricing strategies. Cost estimation helps stakeholders in making informed decisions and maximizes the economic return ensuring the business is sustainable and profitable.

Two major books are used for costing purposes. 'Chemical Engineering Design by R. K. Sinnott, J. M. Coulson and J. F. Richardson' & 'Chemical Engineering Design by G. Towler and R. Sinnott'.

9.2 Purchased Equipment Cost

Purchased of each equipment is discussed in detail below:

9.2.1 Water Pump P-1

Type: single stage centrifugal

Flow rate = S = 4.74 l/s

Formula used : Purchased $Cost = a + b(S)^n$

Using the values from Figure 9.1

a = 3300

b = 48

n = 1.2

Cost of Pump (2006) = 3600 \$

Equipment	Units for Size, S	\$ _{Lower}	S _{Upper}	а	b	n	Note
Exchangers							
U-tube shell and tube	area, m ²	10.0	1,000.0	10,000	88	1.0	
Floating head shell and tube	area, m ²	10.0	1,000.0	11,000	115	1.0	
Double pipe	area, m ²	1.0	80.0	500	1,100	1.0	
Thermosyihon reboiler	area, m ²	10.0	500.0	13,000	95	1.0	
U-tube Kettle reboiler	area, m ²	10.0	500.0	14,000	83	1.0	
Plate and frame	area, m ²	1.0	180.0	1,100	850	0.4	3
Filters							
Plate and frame	capacity, m ³	0.4	1.4	76,000	54,000	0.5	
Vacuum drum	area, m ²	10.0	180.0	-45,000	56,000	0.3	
Furnaces							
Cylindrical	duty, MW	0.2	60.0	53,000	69,000	0.8	
Box	duty, MW	30.0	120.0	7,000	71,000	0.8	
Pachings							
304 ss Raschig rings	m ³			0	3,700	1.0	
Ceramic intalox saddles	m ³			0	930	1.0	
304 ss Pall rings	m ³			0	4,000	1.0	
PVC structured packing	m ³			0	250	1.0	
304 ss structured packing	m ³			0	3,200	1.0	4
Pressure vessels							
Vertical. cs	shell mass, kg	150.0	69.200.0	-400	230	0.6	5
Horizontal, cs	shell mass, kg	250.0	69.200.0	-2.500	200	0.6	-
Vertical, 304 ss	shell mass, kg	90.0	124.200.0	-10.000	600	0.6	5
Horizontal, 304 ss	shell mass, kg	170.0	114,000.0	-15,000	560	0.6	0
		1.010	,	10,000	000		
Pumps and drivers	0 T: (0.2	500.0	2 200	10	1.2	
Single-stage centrifugal	flow Liters/s	0.2	500.0	3,300	48	1.2	
Explosion-proof motor	power, kW	1.0	2,500.0	920	600	0.7	
Condensing steam turbine	power, kW	100.0	20,000.0	-19,000	820	0.8	

Figure 9.1 Purchased equipment cost (Towler & Sinnott, 2007)

9.2.2 Electrolyzer

Estimated cost of PEM Electrolyzer is determined as follows:

Capacity of Electrolyzer = 33600 kg H2/day

Power of Electrolyzer = 73000 kW

Cost in 2019 = 324 \$/kW

Cost of 2035 = 143 \$/kW

Expected cost in 2024 = 265 \$/kW

Cost of Electrolyzer (2024) = 19345000 \$

9.2.3 Hydrogen Separator

Length of vessel = 3.42 m

Diameter of vessel = 0.49 m

Formula used: Cost = (bare cost from figure × material factor × Pressure factor)

Using values from Figure 9.2

Bare cost of vessel = 5900 \$

Material factor (CS) = 1

Pressure factor (15 bar) = 1.2

Cost of Hydrogen Separator (2004) = 7080 \$

Figure 9.2 Cost for vertical pressure vessel (Sinnott et al., 2005)

9.2.4 Oxygen Separator

Length of vessel = 2.85 m

Diameter of vessel = 0.73 m

Formula used: Cost = (bare cost from figure × material factor × Pressure factor)

Using values from Figure 9.2

Bare cost of vessel = 7500 \$

Material factor (CS) = 1

Pressure factor (15 bar) = 1

Cost of Hydrogen Separator (2004) = 7500 \$

9.2.5 Air compressor C-1

It is a 2-stage compressor with an inter cooler . The cost of each unit is calculated separated below.

Equipment	Units for Size, S	S _{Lower}	Supper	а	b	n	Note
Agitators & mixers							
Propeller	driver power, kW	5.0	75.0	4,300	1,920	0.8	
Spiral ribbon mixer	driver power, kW	5.0	35.0	11,000	420	1.5	
Static mixer	Liters/s	1.0	50.0	780	62	0.8	
Boilers							
Packaged, 15 to 40 bar	kg/h steam	5,000.0	200,000.0	4,600	62	0.8	
Field erected, 10 to 70 bar	kg/h steam	20,000.0	800,000.0	-90,000	93	0.8	
Centrifuges							
High-speed disk	diameter, m	0.26	0.49	63,000	260,000	0.8	
Atmospheric suspended basket	power, kW	2.0	20.0	37,000	1,200	1.2	
Compressors							
Blower	m ³ /h	200.0	5,000.0	4,200	27	0.8	
Centrifugal	driver power, kW	132.0	29,000.0	8,400	3,100	0.6	
Reciprocating	driver power, kW	100.0	16,000.0	240,000	1.33	1.5	

Formula used : Purchased $Cost = a + b(S)^n$

Figure 9.3 Purchased equipment cost (Towler & Sinnott, 2007)

Compressor Stages

Type: Centrifugal compressor

Using the values from Figure 9.3

a = 8400

b = 3100

n = 0.6

• Stage 1

Power = S = 634.3 kW

Cost of stage 1 (2006) = 157200\$

• Stage 2

Power = S = 597.6 kW

Cost of stage 2 (2006) = 152000\$

Inter Cooler

• Inter Cooler 1

Type: Floating head Shell and tube

Heat transfer Area = S = 72.3 m2

Using the values from Figure 9.1

a = 11000

b = 115

n = 1

Cost of IC (2006) = 19300 \$

Total Cost of Air Compressor C-1 (2006) = 328500 \$

9.2.6 Adsorption Column

Two adsorption columns are used. Cost of each includes the cost of vessel and the adsorbent used.

• Cost of vessel

Length of vessel = 11.7 m Diameter of vessel = 3.7 m *Formula used: Cost = (bare cost from figure × material factor × Pressure factor)* Using values from Figure 9.2 Bare cost of vessel = 150000 \$ Material factor (CS) = 1 Pressure factor (12 bar) = 1.2 **Cost of vessel (2004) = 202400 \$**

• Cost of Adsorbent

Type: Carbon Molecular sieve

Mass of Adsorbent = 44614 kg

Market price in 2004 = 2.8 \$/kg

Cost of Adsorbent (2004) = 124600 \$

Cost of Adsorption column = Cost of vessel + Cost of Adsorbent

Cost of 1 column (2004) = 304600 \$

Cost of 2 columns (2004) = 609200 \$

9.2.7 Reactor Feed compressor C-2

It is a 4-stage compressor with inter coolers between each stage. The cost of each unit is calculated separated below.

```
Formula used : Purchased Cost = a + b(S)^n
```

Compressor Stages

Type: Centrifugal compressor

Using the values from Figure 9.3

a = 8400

b = 3100

n = 0.6

• Stage 1

Power = S = 978 kW

Cost of Pump (2006) = 201400\$

• Stage 2

Power = S = 958.3 kW

Cost of Pump (2006) = 199000\$

• Stage 3

Power = S = 979 kW

Cost of Pump (2006) = 201500\$

• Stage 4

Power = S = 202.5 kW

Cost of Pump (2006) = 83400\$

Inter Coolers

Type: Floating head Shell and tube

Using values from Figure 9.1

a = 11000

b = 115

n = 1

• Inter Cooler 1

Heat transfer Area = S = 38.9 m2

Cost of IC (2006) = 15480\$

• Inter Cooler 1

Heat transfer Area = S = 38.8 m2

```
Cost of IC (2006) = 15470$
```

• Inter Cooler 1

Heat transfer Area = S = 39.7 m2

Cost of IC (2006) = 15560\$

Total cost of compressor is sum of each unit discussed above.

Cost of Reactor Feed Compressor (2006) = 731800 \$

9.2.8 Ammonia Reactor

• Vessel

Shell mass of vessel = 28600 kg

Using the values from Figure 9.1

a = -400

b = 230

n = 0.6

Cost of vessel (2006) = 108100\$

• Catalyst

Mass of Catalyst = 25400 kg Cost of catalyst (2006) = 0.76 \$/kg Cost of Catalyst (2006) = 19350 \$

• Inter Coolers

Formula used : Purchased $Cost = a + b(S)^n$

Type: Floating head Shell and tube

Using values from Figure 9.1

a = 11000

b = 115

n = 1

• Inter Cooler 1

Heat transfer Area = S = 9.7 m2

Cost of IC (2006) = 12100\$

• Inter Cooler 1

Heat transfer Area = S = 9.5 m2

Cost of IC (2006) = 12000\$

Cost of Ammonia Reactor +IC (2006) = 151600 \$

9.2.9 Ammonia separator

Shell mass of vessel = 3118 kg

Formula used : Purchased $Cost = a + b(S)^n$

Using the values from Figure 9.1

a = -400

b = 230

n = 0.6

Cost of vessel (2006) = 28300\$

9.2.9 Heat Exchangers

Type: Floating head Shell and tube

Using Values from figure 9.1

a = 11000

b = 115

n = 1

Heat Exchange area of each exchanger is obtained from Aspen Plus

• HX-1

Heat transfer Area = S = 45.3 m2

Cost of IC (2006) = 16200\$

• HX-2

Heat transfer Area = S = 19.8 m2

Cost of IC (2006) = 13300\$

• HX-3

Heat transfer Area = S = 153.1 m2

Cost of IC (2006) = 28600 \$

• HX-4

Heat transfer Area = S = 60.8 m2

Cost of IC (2006) = 18000\$

• HX-5

Heat transfer Area = S = 38.6 m2

Cost of IC (2006) = 15400\$

• HX-6

Heat transfer Area = S = 39.5 m2

Cost of IC (2006) = 15500\$

• HX-7

Heat transfer Area = S = 17.1 m2

Cost of IC (2006) = 12900 \$

• HX-8

Heat transfer Area = S = 118.2 m2

Cost of IC (2006) = 24600\$

Total cost of Heat exchangers = 144500

9.2.10 Summary

Given of is the cost of all equipments calculated in different years.

Table 9.1 Purchased cost of equipment

Equipment	Year	Equipment	Equipment	Year	Equipment
		Cost (\$)			Cost (\$)
Pump P-1	2006	3600	HX-1	2006	16200
Electrolyzer	2024	19345000	HX-2	2006	13300
H2 Separator	2004	7080	HX-3	2006	28600
02 Separator	2004	7500	HX-4	2006	18000
Air Compressor C-1	2006	328500	НХ-5	2006	15400
Adsorption Columns	2004	609200	НХ-6	2006	15500
Reactor Feed Compressor C-2	2006	731800	HX-7	2006	12900
Reactor +IC	2006	151600	HX-8	2006	24600
NH3 Separator	2006	28300			

Cost of each unit is converted in year 2024 using the chemical engineering plant cost index (CEPCI) published in *Chemical Engineering* magazine. The indices are given in the following table.

Table 9.2 CEPCI

Year	Indices
2004	444.2
2006	499.6
2024	800.3

Sum of all equipment cost in 2024 given the purchased cost of equipment (PCE)

PURCHASED COST OF EQUIPMENT (PEC) = \$22694000 = \$22.6M

9.3 Total Investment

9.3.1 Fixed Capital

Factors for estimating the fixes capital cost of any project are given below:

f1 (Equipment erection)	0.4
f2 (Piping)	0.7
f3 (Instrumentation)	0.2
f4 (Electrical)	0.1
f5 (Buildings, process)	-
f6 (Utilities)	-
f7 (Storages)	0.15
f8 (Site development)	-
f9 (Ancillary buildings)	-
f10 (Design and Engineering)	0.3
f11 (Contractor's fee)	0.05
f12 (Contingency)	-

Total Physical Plant Cost(PPC) = PCE (1+f1+.....+f9)

PPC = \$ 57.8M

(Fixed Capital) FC = PPC (1+f10+f11+f12)

Fixed Capital Cost = FC = \$78.0M

9.3.2 Working Capital

Working capital id generally 10 to 15% of the fixed Capital

Working Capital = 0.1 (FC)

Working Capital = \$ 7.8M

9.3.3 Total Investment

Total investment is the sum of fixed and working capital.

Total Investment = \$85.8M

9.4 Annual Operating Cost

Plant attainment = 97%

No of operation days per year = 347

9.4.1 Fixed operating Cost

Table 9.4 Fixed Operating Cost (Sinnott et al., 2005)

Maintenance	3% of FC	\$ 2203000
Operating Labor OL	1300\$ annually (30 workers)	\$ 39000
Laboratory	20% of OL	\$ 7800
Supervision	20% of OL	\$ 7800
Plant Overheads	40% of OL	\$ 19400
Capital Charges	2% of FC	\$ 7344000
Insurance (1% of FC)	1% of FC	\$734400

Fixed operating Cost = \$ 10.9M

9.4.2 Variable Operating Cost

• Utilities

Electricity (annual)

Mass of H2 = 116650000 kg Cost of electricity per kWh = 0.036 \$/kWh Total Electricity Cost = \$20.9M

Cooling water (Annual)

Mass of water = 63.24×10^8 kg Cost of water per kg = 1.1×10^{-5} \$/kg

Total cost of water = \$ 0.12M

• Miscellaneous Material (5% of Maintenance Cost) = \$ 0.23 M

Total Variable Cost = \$21.3 M

9.4.3 Annual Production Cost

Annual Production Cost = Total Variable Cost + Fixed Operating Cost

Annual Production Cost = \$32.3M

9.5 Annual Revenue

Market price of ammonia = 0.8 \$/kg

Production capacity = 54.57×10^8 kg

Annual Revenue = \$ 43.8M

9.6 Annual Profit

Annual Profit = Annual revenue – Annual production cost

Annual Proft = \$11.5M
9.7 Payback Period

Pay Back Period = Total Investment / Annual profit

Payback Period = 7.4 years

Detailed calculation for payback period is given below:

Table 9.5 Payback period calculations

No. of	Cash Inflow (\$)	Cash Outflow	Net Cash Flow	Cumulative		
Years		(\$)	(\$)	Present Worth (\$)		
0	0	85.8M	-85.8M	-85.8M		
1	43.8M	32.3M	11.5M	-74.3M		
2	43.8M	32.3M	11.5M	-62.8M		
3	43.8M	32.3M	11.5M	-51.4M		
4	43.8M	32.3M	11.5M	-39.9M		
5	43.8M	32.3M	11.5M	-28.4M		
6	43.8M	32.3M	11.5M	-17.0M		
7	43.8M	32.3M	11.5M	-5.53M		
8	43.8M	32.3M	11.5M	5.95M		
Pay Back Period is between 7 th and 8 th year.						

CHAPTER 10

HAZOP ANALYSIS

10.1 Introduction

Hazard and Operability analysis is a standard tool used in risk assessment to identify the potential hazards and operability issues in chemical processes.

It consists of following steps. (Crowl & Louvar, 2011)

- 1. Breaking down the flow sheet into several units and selecting one unit for study.
- 2. Choose a study node.
- 3. Describe the design intent of study node.
- 4. Choose a process parameter (Flow, temperature, pressure etc.)
- 5. Apply guide words.
- 6. Identify possible causes.
- 7. Look for possible consequences.
- 8. Recommend action.

10.2 Electrolyzer

Study	Process	Guide	Possible	Possible	Action
Node	Parameter	Word	Causes	Consequences	Required
			Possible	Incomplete	Install strainer in
			blockage/	reaction, reduced	the lines, check and
		No/Low	leakage in the	production rate	repair/replace
Water			line, RO system		faulty valves.
inlet	Flow		failure, Inlet		
line			valve		
			malfunctioning		

Table 10.1Hazop Analysis for Electrolyzer

			Inlet valve	Accumulation of	check and repair/
			malfunctioning,	unreacted	replace faulty valves,
		High	(Fail Open)	reactant,	install pressure
				compressor duty	release valves.
				increased, over	
				pressurization	
			Faulty heat	Overheating,	Repair/ relace faulty
		Higher	exchanger,	membrane	components of temp
			failure of	degradation,	control system,
			Temperature	catalyst	install additional
			control system	deactivation	temp sensors
	Temperature		Faulty heat	Decreased rate of	Proper cleaning of
		Lower	exchanger	reaction reduced	exchangers
		Lower	fouling	production	exenangers
			iounig.	production	
		High	Faulty wiring,	Overheating,	Voltage regulator,
			lightening	possibility of	Interlocks
_	_			blast	
Voltage	Electricity	Low	Faulty wiring	Shut down of	Proper monitoring.
supply	(voltage)			Electrolvzer	Repair/replace
				y	faulty wiring
		High	Outlet valves	Pressure built up	Proper maintenance
			fail closed,	leading to blast	of valves, installing
			outlet line		pressure sensors
			blockage		
Cell	Pressure	Low	Leakage in cell	Reaction rate can	Proper checking of
			or lines	be affected	cell and lines,
					installing pressure
					sensors

10.3 Heat Exchanger

Table 10.2 Hazop Analysis for Heat Exchanger

Study Node	Process Parameter	Guide Word	Possible Causes	Possible Consequences	Actions Required
Heat Exchanger	Flow	Less	Line Blockage, Valve failure	No heat transfer, Higher temperature of product gas	Install flow alarms, Temperature sensors at outlet and implementation of control for flow rates of streams
		More	Failure of inlet valve to close	Less than required temperature of exiting stream achieved. High pressure on shell side. Incomplete Heat Exchange	Install temperature alarms. Install flow meter. High Pressure alarms for safety consideration
		Reverse Blockage in shell or tubes outlet	No heat exchange	Install automatic sensors and control devices Install check valves	
	Pressure	High	Product line blockage Higher temp leading to high Pressure	Improper flow/heat exchanger shell or tubes might leak or blast	Install a high- pressure alarm Install PSV's

	Low	Leakage in the shell Leakage in tubes	Improper Heat Exchange	Install low- pressure indicator, Check for leakages.
	High	high heating supply Temp	Required outlet temp is not achieved	Install high flow temperature and flow alarm
Temperature	Low	low heating supply Temp	Improper heat exchange	Install controllers

CONCLUSION

The Haber-Bosch process has improved global food production to a great extent. But at the same time, it has posed serious threats to our environment. Now is the best time to look for alternatives as fossil fuels consumed in this process are rapidly depleting and a significant amount of damage has already been done to the environment. This project has presented a great alternative to the conventional ammonia production process in the form of green ammonia. It focuses on using technologies that are sustainable in the long run. The versatility of green ammonia, serving various industries and applications positions it as a crucial element in decarbonizing sectors and can play a great role in achieving the goal of net-zero carbon emission by 2050.

The successful application of green ammonia technology can help transform various sectors. In agriculture, it provides an environmentally friendly alternative for fertilizer production, mitigating the environmental footprint of food production. In the energy sector, green ammonia serves as a versatile energy carrier and a potential fuel for power generation and transportation.

With further research and development, the technical and economic challenges associated with this technology can be overcome and green ammonia can emerge as an effective method for large scale ammonia worldwide.

REFERENCES

- [1] Arnold, K., & Stewart, M. (1998). *Surface Production Operations, Volume 1:: Design of Oil-Handling Systems and Facilities.* Elsevier Science.
- [2] Ayub, H. M. U., Alnouri, S. Y., Stijepovic, M., Stijepovic, V., & Hussein, I. A. (2024). A cost comparison study for hydrogen production between conventional and renewable methods. *Process Safety and Environmental Protection*, *186*, 921-932.
- [3] Barbir, F. (2005). PEM electrolysis for production of hydrogen from renewable energy sources. *Solar Energy*, *78*(5), 661-669.
- [4] Carmo, M., Fritz, D. L., Mergel, J., & Stolten, D. (2013). A comprehensive review on PEM water electrolysis. *International Journal of Hydrogen Energy*, *38*(12), 4901-4934.
- [5] Corti, H. R. (2022). Polymer electrolytes for low and high temperature PEM electrolyzers. *Current Opinion in Electrochemistry*, *36*, 101109
- [6] Crowl, D. A., & Louvar, J. F. (2011). *Chemical Process Safety: Fundamentals with Applications*. Pearson Education International.
- [7] Green, D. W. (2007). *PERRY'S CHEMICAL ENGINEER'S HANDBOOK 8/E SECTION 12 PSYCHROMETRY,EVAPO... (POD)*. McGraw-Hill Education.
- [8] Guo, Y., Li, G., Zhou, J., & Liu, Y. (2019). Comparison between hydrogen production by alkaline water electrolysis and hydrogen production by PEM electrolysis. *IOP Conference Series: Earth and Environmental Science*, *371*(4), 042022.
- [9] Ifkovits, Z., Evans, J., Meier, M., Papadantonakis, K., & Lewis, N. (2021). Decoupled Electrochemical Water-Splitting Systems: A Review and Prospective. *Energy & Environmental Science*, 14.
- [10] Ivanova, S., & Lewis, R. (2012). Producing nitrogen via pressure swing adsorption. *Chemical Engineering Progress, 108,* 38-42.
- [11] Juangsa, F. B., Irhamna, A. R., & Aziz, M. (2021). Production of ammonia as potential hydrogen carrier: Review on thermochemical and electrochemical processes. *International Journal of Hydrogen Energy*, *46*(27), 14455-14477.
- [12] Lemcoff, N. O. (1999). Nitrogen separation from air by pressure swing adsorption.
 In A. Dąbrowski (Ed.), *Studies in Surface Science and Catalysis* (Vol. 120, pp. 347-370). Elsevier.
- [13] Martín, M., & Sánchez, A. (2024). Biomass pathways to produce green ammonia and urea. *Current Opinion in Green and Sustainable Chemistry*, 47, 100933.

- [14] Moulijn, J. A., Makkee, M., & van Diepen, A. E. (2013). *Chemical Process Technology*. Wiley.
- [15] Rashid, M., Al Mesfer, M., Naseem, H., & Danish. (2015). Hydrogen Production by Water Electrolysis: A Review of Alkaline Water Electrolysis, PEM Water Electrolysis and High Temperature Water Electrolysis. *International Journal of Engineering and Advanced Technology, ISSN*, 2249-8958.
- [16] Ruthven, D. M., Farooq, S., & Knaebel, K. S. (1994). *Pressure Swing Adsorption*. VCH Publishers.
- [17] Santhosh, C. R., & Sankannavar, R. (2023). A comprehensive review on electrochemical green ammonia synthesis: From conventional to distinctive strategies for efficient nitrogen fixation. *Applied Energy*, *352*, 121960.
- [18] Sinnott, R. K., Coulson, J. M., & Richardson, J. F. (2005). *Chemical Engineering Design*. Elsevier Butterworth-Heinemann.
- [19] 9). Modelling and optimization of PSA (Pressure swing adsorption) unit by using aspen Plus® and design expert ®. *International Journal of Innovative Technology and Exploring Engineering*, *8*, 64-69.
- [20] Towler, G., & Sinnott, R. (2007). *Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design*. Elsevier Science.
- [21] Zaccara, A., Petrucciani, A., Matino, I., Branca, T., Dettori, S., Iannino, V., Colla, V., Bampaou, M., & Panopulos, K. (2020). Renewable Hydrogen Production Processes for the Off-Gas Valorization in Integrated Steelworks through Hydrogen Intensified Methane and Methanol Syntheses. *Metals - Open Access Metallurgy Journal, 10*.