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ABSTRACT 

This study explores how smart charging with dynamic hourly pricing can address grid 

congestion concerns arising from the growing adoption of electric vehicles (EVs) in 

Pakistan. We propose an optimization technique to establish an hourly pricing model for 

Pakistani distribution companies, promoting off-peak charging behavior among EV 

owners. An agent-based energy management system is then introduced to facilitate 

coordination between EV aggregators and the grid. This system employs machine learning 

to accurately predict battery state-of-charge and integrates both grid-to-vehicle (G2V) and 

vehicle-to-grid (V2G) functionalities for optimized energy flow. The model is evaluated 

using real distribution network data with seasonal load variations. The results reveal that 

with 10% EV penetration, hourly pricing can significantly reduce charging costs for EV 

owners (up to 28% and 31% during summer and winter, respectively). Additionally, it 

offers substantial relief for the grid by considerably reducing peak transformer load 

compared to flat or 2-part tariffs. This research demonstrates the potential of smart 

charging with dynamic pricing as a cost-effective and efficient solution for promoting EVs 

in Pakistan while mitigating grid congestion. 

Keywords: Distribution Grid; Electric Vehicles Smart Charging; Energy Management; 

Machine learning; Optimization; V2G & G2V  
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CHAPTER 1: INTRODUCTION 

1.1 Overview: 

As the world evolves toward greater industrialization and improved living 

standards, the need for energy is rising. Oil, natural gas, and coal, which are all fossil fuels, 

encounter a substantial percentage of this energy need. Fossil fuel emissions that contribute 

to global warming harm the ecosystem. Fossil fuel consumption has negative effects, some 

of which include climate change, altered rainfall patterns, and unpredictable weather. 

Fossil fuels are heavily used in the transportation industry. The majority of the world's 

energy demand is accounted for by the transportation sector's reliance on fossil fuels. Due 

to continuously evolving environmental issues, there is a need to boost green technology. 

Concerns about conventional cars and energy sources are currently being raised due 

to environmental and climate change issues [1]. The transportation sector is a significant 

contributor to pollution worldwide due to its role in increasing levels of fine particulate 

matter (PM2.5), ozone, and nitrogen dioxide [2]. This is what has sparked the 

electrification of transportation worldwide. As a result, researchers around the world are 

concentrating on using renewable energy sources (RES) to power the transportation sector.   

 

Figure 0.1: Increasing CO2 Emissions due to transport sector 
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The popularity of electric vehicles has grown due to environmental concerns 

regarding exhaust emissions and the insufficiency of petroleum resources. Electric vehicles 

provide promising solutions regarding environmental concerns [3]. However, the growing 

use of PEVs in distribution power networks is causing many difficulties, for instance, 

distribution transformer stress, undesirable peaks, congestion in transmission lines, voltage 

violations, and growing system losses [4]. Issues like the heavy cost and deterioration of 

electric vehicle batteries as well as the time needed for charging them should also be 

considered [5].  

Uncoordinated charging of electric vehicles negatively impacts the grid such as 

deteriorating the system's voltage profile [6]. According to some researchers, up to 10% 

penetration of uncoordinated charging of EVs is acceptable, but more than that harms the 

system. 

It is worth exploring the possibilities of using PEVs to provide auxiliary services to 

the distribution power grid in controlling active and reactive power [7]. A lot of researchers 

are working on various aspects of charging electric vehicles. Control of the charging of 

PEV batteries is essential for integrating PEVs into the distribution grid and minimizing 

the impacts of widespread PEV adoption. Vehicle-to-grid (V2G) and grid-to-vehicle 

(G2V) technologies were put up as mutually beneficial options for PEV owners and the 

grid operator. In G2V mode, extra electricity from the grid can be stored in the PEVs' 

batteries during off-peak hours. In the V2G mode of operation, PEVs can sell electricity 

back to the grid during the discharging phase [8]. Controlled EV charging has various 

potential benefits because charging can begin when electricity is inexpensive or when 

energy from other renewable sources is offered. Moreover, EVs can power resident loads 

connected to the distribution network. In this method, the congestion in the electric 

transmission network is reduced and EV owners can make money. However, the 

algorithms for charging and discharging EVs must consider the needs of EV users and the 

finite number of cycles for electric vehicle batteries [9].  
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1.2 Motivation: 

On the transportation front, Bloomberg New Energy Finance predicts that electric 

vehicles will account for the majority (54 percent) of new car sales worldwide by 2040, 

and 33 percent of all light-duty vehicles on the road. The study's main finding is that the 

EV revolution will impact the car market considerably harder and faster than expected a 

year ago. It predicts that by 2040, EVs would account for 54% of all new light-duty vehicle 

sales worldwide as shown in Figure 0.2. 

 

Figure 0.2: Electric vehicles sale is getting increased 

Uncoordinated charging of electric vehicles negatively impacts the grid such as 

deteriorating the system's voltage profile [6]. According to some researchers, up to 10% 

penetration of uncoordinated charging of EVs is acceptable, but more than that harms 

the system. The main motivation behind this study is to develop coordinated charging 

for the electric vehicles that helps to reduce the negative impacts on the power system.  

Since EV chargers are already widely used, it is important to highlight the risks 

and discuss potential fixes in order to prevent the power grid from failing. Since most 

EVs are plugged in at night, the load of EV charging in residential areas may increase 

during the nighttime electricity requirements. Commercial chargers with high power 

might introduce a new peak to the system load and violate important electrical 
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distribution system characteristics, which is a severe issue. 10% and 20% penetration 

of electric vehicles can result in 17.9% and 35.8% increase in peak load for a typical 

distribution system respectively [10]. Power losses and voltage variations in the system 

are increased with higher peak load. Transformer and line heat limits may also be 

violated as a result [11].  

As the penetration of EVs is increasing, the risks need to be pointed out along 

with possible solutions to avoid the failure of the power system. In residential areas, 

EV charging load may increase power requirement at night-time as most people plug 

EVs at night- time. To overcome the issues that result due to uncoordinated charging 

of electric vehicles, this study has proposed an energy management strategy.  

1.3 Research Objectives: 

The main objective of this study is to develop an energy management strategy 

for the electric vehicles in order to accommodate the increasing penetration of electric 

vehicles and to minimize the negative impacts of electric vehicles penetration on the 

power system in the developing countries like Pakistan. Another objective of this study 

is to mitigate the congestion in the distribution system that results due to the un-

coordinated charging of electric vehicles. The primary goal of this research is to 

propose some cost-effective EV charging solutions to induce users to use electric 

vehicles. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction: 

In this chapter, the literature review is presented. In section 2.2 different strategies 

have been highlighted for the controlled electric vehicles charging for energy management 

of electric vehicles. Different methodologies have been discussed in detail and their pros 

and cons have also been discussed. In section 2.3 novelty points of this research have been 

discussed.   

2.2 Strategies for Energy Management of Electric Vehicles: 

For energy management of electric vehicles, multiple approaches have been 

discussed in the literature. They are related to machine learning, mathematical modeling, 

heuristic, statistical, practical utility approaches, market-based strategies, and agent-based 

modelling. 

2.2.1 Machine Learning Based Strategies: 

A variety of machine learning-based strategies have been proposed. A study [12] 

developed a deep learning framework based on the harmony search algorithm for 

distribution automation system management that considered the social and technical costs 

of using renewable energy sources and electric vehicles. A study in [13] provides a three-

stage deep learning-based system to develop the day-ahead optimal charging schedule for 

electric vehicles. Since the driving cycle significantly influences the performance of the 

energy management system, an adaptive wavelet transform-fuzzy logic control energy 

management strategy based on driving pattern recognition was proposed in [14]. Hybrid 

energy storage systems are composed of batteries and supercapacitors in electric vehicles. 

Fuzzy logic control was used to maintain the state of charge of the supercapacitor and the 

battery. 
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2.2.2 Mathematical Modelling: 

Some researchers have adopted mathematical modeling to regulate the energy of 

electric vehicles. A mixed-integer linear programming model was proposed for intelligent 

energy management with a hybrid PV scheme [15]. It minimized energy consumption costs 

by optimizing residential appliances and Electric vehicle charging. The grey wolf 

optimization algorithm was proposed in [12] to solve mixed integer non-linear 

programming models. Peak shaving can be used to provide load balancing when using EVs 

as energy storage devices [16]. To overcome the uncoordinated charging problem and to 

avoid the peak load a study was performed for charging EVs during the off-peak time to 

fill the demand valley and clip the peak load by discharging EVs during peak hours [17].  

2.2.3 Heuristic Approaches: 

Heuristic and statistical approaches have also been reported in the literature. By 

considering load forecasting, co‐optimization of load frequency control error and V2G was 

implemented by using the numerical properties of the active power network [18]. 

Integrated demand response was used to alleviate the congestion in the transmission and 

distribution network [19]. A heuristic supervisory rule-based energy management strategy 

was proposed in [20] to control loads of electric vehicles by using PV generators. The 

battery storage facility offers reduced costs for continuous daylight charging compared to 

direct charging through the grid. An energy management strategy was proposed for a large 

electric vehicle charging station by chance-constrained programming and Monte Carlo 

simulation [21]. To alleviate the congestion in the distribution system, the optimal location 

of charging spots was proposed in [22], after running the load flow analysis using Newton 

Raphson method. 

2.2.4 Practical Utility Approaches: 

Practical utility approaches have been explored for mitigating congestion. A study 

in [23] discusses the effects of increasing EV adoption and the possibility for higher 

demand on the distribution system, which demands load optimization to maintain 

sustainable development. A distribution Locational Marginal Price algorithm-based study 
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found that including electric bus charging load in demand response helped alleviate the 

network congestion and reduce the power loss by 7.2% in the distribution network [24]. 

Using the day ahead framework, an optimization algorithm was proposed for the optimum 

charging of EVs by using the charging data from a real-world pilot program [25]. By using 

time-of-use pricing, optimal charging was scheduled by connecting reactive power-

compensating devices in the system to maintain the voltage profile [26]. In [27], renewable 

energy resources and electric vehicles’ battery storage were combined by considering the 

demand response approaches such as critical peak pricing (CPP), real-time pricing (RTP), 

and time of use (TOU). By analyzing results, it has been observed that real-time pricing 

gives more savings as compared to the other two pricing schemes.  

2.2.5 Market Based Approaches: 

Some researchers have discussed market-based approaches for the energy 

management of electric vehicles. An algorithm was proposed in [28] to prevent line 

congestion by motivating EV aggregators to actively participate in the market. The market-

based strategy used the concept of network-constrained transactive energy to address the 

conflicts between TSO and DSO in congestion inhibition. A decentralized market 

framework strategy was proposed in [29] for the active contribution of market participants 

to alleviate the congestion in the system. EVs act as distributed generation sources along 

with other renewable energy sources. A decentralized framework was proposed for the 

active distribution network by considering the active participation of EV aggregators [30]. 

In [31], an algorithm was proposed by considering the EV aggregators, distributed 

generation, and market operators to alleviate the congestion in the distribution system. 

Researchers suggested a framework for deregulated market participation where 

participants using renewable energy sources are urged to assist the system to reduce 

congestion. To maintain system security, electric vehicles not only served as a load but 

also as a source of generation [32]. 

2.2.6 Agent Based Modelling: 

Agent-based modeling has been discussed in reference [33] to handle the energy 

for EVs and EV charging stations (EVCSs). The system operator acted as the master 
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decision maker while EVs and EVCSs worked as independent decision makers to handle 

their energy scenarios. EVs’ and EVCSs wanted to maximize their financial profit while 

the system operator indirectly controlled their energy scenarios to maintain the system 

constraints.  GAMS software was used to implement this optimization process. Multi-agent 

selfish collaborative architecture (MASCO) was proposed in [34]. A multi-agent multi-

objective reinforcement learning architecture was designed to facilitate EV charging while 

reducing energy bills and preventing transformer overloads. MASCO was configured to 

the customer choices, worked under any form of tariff, and required very few assumptions 

about the distribution grid. 

2.2.7 Pricing Strategies: 

Many studies analyze the effect of EV charging on operating costs and grid 

conditions under different pricing regimes and propose various pricing strategies for 

effective management. Due to the growth of electric vehicles intricacy between electric 

power and transportation systems increases so enhancing their operational performance 

becomes vital. In [35] an electric vehicle charging station and an electric vehicle aggregator 

coordinate without exchanging or disclosing private information. The gameplay between 

two non-cooperative stakeholders is represented by a marginal price-based coordination 

model. The merits of the suggested model are demonstrated by a numerical analysis that 

shows an overall 78.3% drop in costs. In [33], a quarter-hourly dynamic pricing solution 

based on the deep deterministic policy gradient reinforcement learning algorithm is 

implemented to fully exploit EV scheduling potential by overcoming the discrete problem 

of the usual time-sharing pricing model for EVs. Using annual actual EV trip data from a 

specific region of North China and price data from the electric power trading market, three 

distinct pricing regimes are used to analyze scenarios of EV revenue and load variations. 

Analysis in [36] particularly focused on the state of California to 10% of overall 

costs). By considering Time-of-use (TOU) prices for charging during night hours 

comparable cost savings are attained. The findings indicate that smart charging in 

combination with TOU rates with expanded daytime periods are the policies most likely to 

progress California's dual PEV and RE targets. 
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Multi-objective techno-economic-environmental optimization in [37] is used for 

planning out the charging and discharging of electric vehicles. In comparison to 

uncontrolled electric vehicle charging, the suggested strategy reduces energy costs, battery 

deterioration, CO2 emissions, and grid utilization by 88.2%, 67%, 34%, and 90%, 

respectively. Additionally, the system operator needs to pay the end-user of electricity and 

the owner of an electric vehicle to increase participation in energy services and improve 

grid utilization by 41.8%. Without modeling the distribution network, a techno-economic 

study for an aggregator-controlled electric vehicle charging station in Egypt is proposed in 

[38]. In the first stage, Mixed-integer linear programming (MILP) is used, and the peak 

demand value is reduced to 48.17% without using any additional battery storage devices. 

In the second stage, MILP and Markov Decision Process Reinforcement Learning (MDP-

RL) increased EVCS revenue by 28.88% and 20.10%, respectively. 

2.3 Novelty Points of this Research: 

Despite extensive research on energy management of electric vehicles and 

congestion management of the power system, no work reported using a real distribution 

network model and proposing any new type of Hourly Price that can help to enhance the 

use of electric vehicles while coping with the energy crisis in developing countries such as 

Pakistan. The proposed strategy has the following properties that distinguish it from the 

existing literature:  

• A real distribution feeder network of LESCO populated with real load profile data 

of typical houses in Lahore is modeled for meaningful impact analysis of EV 

penetration in developing countries like Pakistan. 

• A real dataset for conventional vehicles in Pakistan is updated for electric vehicles 

and used to accurately predict SOC for EVs. Different machine-learning models 

are explored for SOC prediction accuracy and a gradient-boosting regression 

algorithm renders the most accurate results.  

• In the absence of wholesale/retail real-time market pricing, a new method is 

proposed for discovering hourly variable retail pricing for Pakistan, by considering 

the feeder's load profile. 
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• K-means clustering is performed to analyze the feeder condition. 

• Modeling and simulation are done in Jupyter Notebook by using Pandapower 

libraries. It is an open-source Python-based tool that can achieve quicker load flow 

solutions than other power systems tools. Agent-based modeling has been 

employed to mimic private data and decision-making by EV owners, EV 

aggregators, and utility operators. 
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CHAPTER 3: METHODOLOGY 

3.1 Introduction: 

The proposed work is about the energy management of electric vehicles at the 

minimum cost and congestion management of the power system. The methodology 

adopted for conducting the proposed research work is explained in the following six steps. 

3.1.1 State of Charge Calculations: (EV Load Estimation) 

The cubic capacity of the engine in a conventional vehicle is measured in centimeter 

cubes (cc). Therefore, the vehicles dataset published in [39] contains cc ratings of the 

vehicles. For this research, using the information on electric vehicle batteries in [40], the 

cc of vehicles is converted into the battery capacity for electric vehicles. Electric vehicles' 

load on the feeder depends on the final state of charge of vehicles upon reaching back 

home. However, since the dataset [30] is for conventional vehicles, it lacks data on the final 

state of charge of electric vehicles. Therefore, calculations for the final state of charge of 

the electric vehicles are carried out by using the following formula proposed in [41].  

SOCfinal = SOCinitial −
du

c
∗ 100 (3.1) 

where d indicates the distance traveled by the vehicles, u represents the specific energy 

consumption in kWh/km and c is the capacity of the battery in kWh. SOCinitial and  SOCfinal 

are the states of charge of the battery at the start and end of the day, respectively. Cinitial is 

randomly initialized for all the electric vehicles. Electric vehicles that are connected to the 

feeder have a battery capacity in the range of 15 kWh to 20 kWh. The charging and 

discharging rate of electric vehicles is considered 1.9 kW according to the specification of 

level-I chargers [42]. Since we are proposing a solution for a typical residential feeder, EVs 

returning home in the evening need overnight charging to be ready for the next day. 

Therefore, the final state of charge is required as input for the proposed algorithm to devise 

the least cost overnight charging schedule according to the requirements of the EV owners. 
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The updated electric vehicles dataset is utilized for training the machine learning 

algorithms to predict the final SOC. 

3.1.2 State of Charge Estimation by Machine Learning Algorithms: 

To design the charging schedule for the electric vehicles, the first step is to identify 

the state of charge of the electric vehicles. The final state of charge of electric vehicles is 

predicted by using the initial parameters of different electric vehicles. Multiple ML 

algorithms including random forest regression, XGBoost regressor, CatBoost regression, 

and gradient boosting regression tree, have been used to predict the accurate SOC.  

The random forest regression algorithm is bootstrapping the data by choosing subsamples 

randomly for every iteration of building trees. XGBoost regressor combines the best 

features of AdaBoost and random forest. By adding some additional features such as 

minimizing the loss function using gradient descent, this algorithm performs better as 

compared to AdaBoost and random forest [43]. CatBoost expands on gradient boosting and 

decision tree theory. The basic goal of boosting is to successfully combine many weak 

models that just slightly outperform to produce a strong and competitive predictive model 

through greedy search [44]. 

 

Ensemble-based algorithms are becoming popular for their ability to solve 

prediction and classification problems. The tree-based ensemble method intentionally 

combines various simple tree models to improve predictive performance rather than fitting 

the one best model. Additionally, the tree-based ensemble method can fit complex 

nonlinear relationships, requires minimum data preparation, and handles numerous 

predictor variables. Gradient boosting algorithms have great significance in predicting 

travel time [45].  

Different parameters affect the performance of the gradient-boosting algorithm 

such as the depth of the tree and the number of estimators. Assume that J leaves are present 

on each tree. Each tree divides the input into J disjoint regions R1m, R2m, ……, RJm and 

forecasts a constant value bJm for region RJm. Regression tree can be mathematically 

written as [44]: 
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gm(x) = ∑ bJmI(x ∈ RJm

J

J=1

 

 

(3.2) 

 

These algorithms are trained and tested on a dataset used in [45]. The dataset, 

comprising of 187 various kinds of vehicles, contains information regarding the distance 

travelled by vehicles in km, their departure time, arrival time, and battery capacity. The 

dataset is divided into training and testing datasets by using Scikitikit learn library in 

Jupyter Notebook. Training and testing datasets are considered 70% and 30%, respectively, 

of the complete dataset. By using GridSearchCV, initial parameters for the different 

algorithms have been tuned.  

3.1.3 Battery Degradation Costing: 

Battery degradation cost is the main consideration for EV owners while considering 

V2G mode. During the V2G mode, EV owners supply the power to the grid at a price 

higher than the charging price because it is economically beneficial. However, rapid 

charging and discharging reduces the battery life thus there is a need to replace the battery 

more frequently. In this study, the degradation cost of a lithium-ion battery is modeled 

because it is a popular choice for an EV due to its relatively higher energy density, greater 

efficiency, and longer life. The cost of battery degradation is formulated as a function of 

battery power and depth of discharge during a specific time interval [47], as shown below: 

 

Cb
d(t) =

Cb ∗ Pb(t) ∗ Δ(t)

EVbcap
∗ Ic(DODb(t)) ∗ Ƞ

 (3.3) 

Ic(DODb(t)) = 694 ∗ (DODdb(t))
−0.795

                (3.4) 
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Where Cb
d(t) is the battery degradation cost at time t in $, Cb is the capital cost of 

the battery ($), Pb(t) is the amount of power discharged by battery at time t, Δ(t) is the 

time interval taken as 1 hour in this study, EVbcap
 represents the electric vehicle battery 

capacity and EVb(t) battery SOC at time t, DODb(t) is the battery depth of discharge status 

at time t, Ic(DODb(t)) is the number of cycles of battery storage, and Ƞ is efficiency of the 

battery. 

3.1.4 Real Feeder with Synthesized Load: 

Security and privacy policies regulating critical infrastructure data can restrict 

researchers from accessing data of real power systems, but data access is essential for 

technical development [48]. A small number of standardized networks, such as the IEEE 

transmission and distribution test cases, have been widely utilized by academics for 

decades. More recently, researchers have tried to generate synthetic distribution systems 

but studies involving real distribution system data are not common.  

A model of the Gulshan-e-Iqbal distribution feeder of LESCO is used for this 

research work. All system parameters such as conductor specifications, buses, and 

transformers are similar as reported in [49]. However, the load of the feeder is synthesized 

from data of typical summer and winter load profiles of Pakistan reported in the State of 

Industry Report published by NEPRA in 2019.  

LESCO has provided the load data for the Gulshan-Iqbal feeder only for the peak 

hours that are utilized in [42] and [50]. Using typical summer and winter season load 

variations in Pakistan, 24-hourly load curves shown in Figure 0.1 are constructed for the 

DODb(t) = 1 −
EVb(t)

EVbcap

                 (3.5) 
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Gulshan-e-Iqbal feeder for summer and winter season. It is observed that during summer 

season peak demand occurs at 01.00 and during winter season peak demand occurs at 

19.00.  

 

Figure 0.1: Load profile of Gulshan-e-Iqbal feeder 

3.1.5 Proposed Price: 

In Pakistan, DISCOs offer a Flat Rate to most residential customers connected by 

single-phase meters and a 2-part Tariff to the minority provided by three-phase meters. 

Prices considered in this research are 37.8 Rs/kWh as the Flat Rate whereas 35.57 Rs/kWh 

and 41.89 Rs/kWh as the 2-part Tariff of LESCO for off-peak time and on-peak time, 

respectively as reported on the LESCO website. However, since hourly variable pricing 

signals do not currently exist, optimal power flow is run on a reduced 114-bus network of 

the national grid to find a new Hourly Price for this research. The resulting Hourly Price 

curves for the summer and winter seasons are shown in Figure 0.2 and Figure 0.3 

respectively. 

Figure 0.2 shows that during summer season for Hourly Price case, price is highest 

at 01.00 hour and for 2-part tariff case peak hours are from 19.00 to 23.00. Figure 0.3 

indicates a new trend for Hourly Price case during winter season, as maximum price is on 

19.00 hour and for 2-part case, peak hours are from 17.00 to 21.00. Flat rate remains same 

for both seasons. 
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Figure 0.2: Price during summer season  
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Figure 0.3: Price during winter season 
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3.1.6 Agent-based Modelling: 

The proposed work for the energy management of electric vehicles to mitigate the 

congestion of the power system is tested over the 11KV feeder of Gulshan-e-Iqbal LESCO. 

The feeder has 60 transformers of different KVA ratings. This work relies on programming 

in Python by using Anaconda Jupyter Notebook, whereas the feeder is designed by using 

Pandapower libraries. Load flow studies have been performed by using the Newton-

Raphson algorithm. The planning departments of all Discos in Pakistan use synergy 

software. After extracting the .kmz file of the Gulshan-e-Iqbal feeder from the synergy 

software, it was loaded into Google Earth to visualize the route of the feeder. Figure 0.4 

shows the resulting street layout of the Gulshan-e-Iqbal feeder on a Google map. The 

feeder, managed by a utility operator, is divided into six zones as shown in Figure 0.4, each 

managed by an EV aggregator. The maximum load on the feeder is 0.8624 MW. The 

formula used to calculate the number of EVs is given below: 

 

 

From the equation (3.7), for 5% and 10% penetrations, 23 and 46 electric vehicles 

have been considered, respectively. The number of electric vehicles for each zone is 

selected based on the number of nodes in each zone and placed randomly. Electric vehicles 

connected in each zone convey their information to their relevant aggregator, and the utility 

operator provides information related to the loading of transformers and the tariff to all six 

EV aggregators. When the utility operator conveys the information regarding the loading 

conditions and the tariff to the EV aggregator, it has the private information of all the EVs 

that are connected in its zone. Therefore, the EV aggregator develops the optimal charging 

schedule for its electric vehicles with the objectives of mitigating the high loading 

conditions and charging the vehicles at the least cost.  

EVLoad = %age EV Penetration ∗ Maximum Load on the Feeder  (3.6) 

Total EVs = round (
EV Load

1.9KW
) 

              (3.7) 
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Figure 0.4: 6 Zones in Gulshan-e-Iqbal Feeder 
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CHAPTER 4: CASE STUDIES 

4.1 Introduction: 

Three case studies have been explored in this work namely Flat Rate, 2-part Tariff, 

and Hourly Price. Since it is a residential feeder, it is assumed that all the electric vehicle 

owners come back home between 4 p.m. and 9 pm. The number of electric vehicles 

returning home for each hour is formulated by using the MATLAB curve fitting tool and 

it is given by the equation (4.1). 

 

 

here EV(x) indicates the probability density function (PDF) for the electric vehicles 

returning home in an hour x. For this Gaussian PDF, mean is 18.5 and the standard 

deviation is 1.668. 

4.2 Flat Rate: 

Figure 0.1 shows that in case of Flat Rate, the EV owners connect their vehicles as 

soon as they come back home. Due to the Flat Rate, they do not consider loading conditions 

or the peak time of the load. Therefore, the system may experience heavy loading and 

consequently congestion in the power system.  

 

 

EV(x) =
1

1.668√2π
 exp−0.5((

x−18.5

1.668
)

2
)
 (4.1) 
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Figure 0.1: Flow chart for Flat Rate 

4.3 Two-Part Tariff: 

In the second case of the 2-part Tariff, the price of electricity is high from 6 pm to 

11 pm as noted in [51]. Consequently, vehicle owners do not charge their vehicles right 

away upon returning home, as shown in Figure 0.2. Instead, vehicle owners with adequate 

SOC communicate with their aggregator upon reaching home. In the meantime, 

aggregators get the status of network conditions from the utility side. Therefore, the 
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aggregator has information on both network conditions and SOC of EVs. If transformers 

are loaded above 80% and EV owners have charged their vehicles at a low price, e.g. from 

solar PV in the afternoon to discharge at a higher evening peak price, then the aggregator 

will communicate to the utility operator and discharge batteries of vehicles in V2G mode. 

Meanwhile, voltage improvement by mitigating feeder overloading is beneficial for the 

utility and customers alike.  

 

 

Figure 0.2: Flow chart for 2-part Tariff 
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4.4 Hourly Price:  

In the last case, an Hourly Price is proposed for energy management by using both 

V2G and G2V modes, as shown in Figure 0.3. In this case, when the EV owners come back 

home, they inform their aggregator about their charging requirement for the next day. Since 

all the vehicles don't have to achieve 100% charging, all the vehicles are charged according 

to their next-day requirements. The algorithm finds out the least cost hours according to 

the charging requirement of EVs. This enables EV aggregators to develop charging 

schedules for their EVs to achieve the least-cost operation.  

 

Figure 0.3: Flowchart for Hourly Price 
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1. CHAPTER 5: RESULTS AND DISCUSSION 

The results of our research are presented and discussed as follows:  

 5.1 State of Charge Estimation by Machine Learning: 

The state of charge at the end of the day is predicted by using multiple machine 

learning algorithms for comparison. Four machine-learning regression algorithms were 

tested to determine the final state of charge of different electric vehicles. Results for the 

final predicted SOC vs. actual SOC are presented in Figure 1.1. The results illustrate that 

the random forest algorithm has the least accuracy because predicted SOC values are lying 

away from the actual SOC line, as shown in Figure 1.1 (d). In comparison, Figure 1.1 (a) 

illustrates that the most accurate SOC predictions have been achieved by the gradient-

boosting regression algorithm. Note that the results of the other two algorithms, depicted 

in Figure 1.1 (b), and (c) show intermediate accuracy as compared to the random forest and 

gradient boosting algorithms. 
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Figure 1.1: Machine Learning Algorithms (a) Gradient boost (b) Xgboost (c) Cat boost (d) 

Random Forest 

The four algorithms have been compared based on the following three parameters; 

mean absolute error, mean squared error, and R2 value. The comparative results of these 

parameters are listed in Table 1.1. R2 value of 1 indicates the ideal case where all the 

predicted values are equal to the actual values. Gradient boosting regressor showed the best 

prediction results for this study because its R2 value is 0.99, the mean squared error 

percentage is 0.0069 and the mean absolute error percentage is 0.0083. The worst results 

(a)     (b) 

  (c)  
     (d) 
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were delivered by the random forest regression tree algorithm with R2 value of 0.93, the 

mean squared error percentage of 0.017 and the mean absolute error percentage of 0.065. 

In this research, gradient boosting algorithm has more accurately predicted SOC, as 

compared to its earlier reported applications in [23] and [52]. R2 values obtained in [23] 

and [52] are 0.94 and 0.97, respectively, whereas in this study R2 =0.99 has been achieved.  

Table 1.1: Comparison of SOC Estimation Results by Different Machine learning Algorithms 

Algorithm name 
Mean Absolute 

error percentage 

Mean squared error 

percentage 
R2 Value 

Random Forest 

Regressor 
0.017 0.065 0.93 

Cat Boost 

Regressor 
0.015 0.066 0.93 

XG boost 

Regressor 
0.0027 0.0082 0.98 

Gradient boosting 

Regressor 
0.0083 0.0069 0.99 

 

In applied machine learning, cross-validation is generally used to estimate the skill 

of a machine learning model on unseen data. That is, to use a small sample to assess how 

the model will perform in general when used to generate predictions on data that was not 

utilized during the model's training. The process has a single parameter called k that 

specifies the number of groups into which a given data sample should be divided. As a 

result, the process is frequently referred to as k-fold cross-validation. When a specific value 

for k is chosen, it may be substituted for k in the model's reference, such as k=10 for 10-

fold cross-validation. In this research by using multiple values of k=2, k=3 and k=5 results 
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have been observed. By using different values of k, it has been observed that there is no 

overfitting in the described results. 

 

5.2 Variation in Transformer Loading under Alternative Pricing Regimes: 

The transformer loading condition of the Gulshan-e-Iqbal feeder with different 

penetrations of electric Vehicles has been analyzed. During the summer season from base 

case results, when no electric vehicles were connected to the system, three nodes (21, 27, 

and 32) were observed as weak nodes. During the winter season, the base load is less as 

compared to the summer season. In the winter season only two nodes (21 and 27) have 

been identified as weak nodes, their loading increases by 80% during some hours when 

electric vehicles are connected to the system.  

The detailed loading conditions for three selected nodes are presented here for 

brevity. For the rest of the system, K-means clustering indicated three clusters representing 

the whole feeder condition. The number of nodes in each cluster for the summer and winter 

seasons is presented in Table 1.2.  

Cluster 1 for the summer season in Table 1.2 indicates the nodes whose loading is 

less than 10%. Cluster 2 indicates those nodes whose loading lies between 30% to 40% 

and Cluster 3 indicates those nodes whose loading is beyond 50%. Table 1.2 indicates there 

are 9 nodes in the feeder whose loading increases beyond 50% during the summer season.  

During the winter season, Cluster 1 in Table 1.2 indicates the nodes whose loading 

is less than 10%. Cluster 2 indicates those nodes whose loading lies between 20% to 30% 

and Cluster 3 indicates those nodes whose loading is beyond 40%. It is observed that most 

of the nodes in the winter season are lightly loaded. There are 5 nodes in the feeder whose 

loading increases beyond 40% however during the summer season there are a greater 

number of nodes whose loading get beyond 50%.   
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 Table 1.2: Clusters Data for Transformer Loading During Summer and Winter Season 

 

5.2.1 5% and 10% EV Penetration: 

By using the predicted state of charge, EVs’ charging schedule is designed for 2-

part Tariff and Hourly Price. Electric vehicles were randomly connected at different nodes, 

out of the 60 load nodes. Then nodes 21, 27, and 32 were identified as three weak nodes of 

the feeder. As shown in Figure 0.4, Node 21 lies in zone 2 and the rating of its transformer 

is 25kVA. Node 27 is present in zone 3 and the rating of the transformer connected there 

is also 25kVA. Moreover, a 25kVA transformer is connected at node 32 in zone 5.  By 

connecting electric vehicles over these nodes, transformer loading gets very high as they 

are already heavily loaded even in the base case.  

Since it is reported in [42] that there is no congestion in the distribution lines of this 

feeder, the focus of this work is on the management of charging and discharging the electric 

vehicles in the distribution feeder while considering the congestion of the distribution 

transformers. 

Cluster 

Number of 

Nodes During 

Summer 

Season 

Transformer 

Loading Condition 

During Winter 

Season 

Number of 

Nodes During 

Winter Season 

Transformer 

Loading Condition 

During Winter 

Season 

1 44 Less than 10% 45 Less than 10% 

2 7 
Between 30% and 

40% 
10 

Between 20% and 

30% 

3 9 More than 50% 5 
Between 40% and 

50% 
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Figure 1.2 depicts the transformer loading results of node 21 for all three case 

studies. This node is selected because it is heavily loaded even in the base case when no 

electric vehicle is connected. Transformers that are operating within prescribed limits of 

80% loading are indicated by green color. Yellow color depicts transformers that operate 

between 80% to 100%. Red color indicates the transformers when they start operating 

beyond 100% of operational limits. In Figure 1.2 (a), for the Flat Rate, the 0.8 p.u. threshold 

limit of the transformer is violated because vehicle owners have no incentive to change 

their charging patterns. In case of 2-part Tariff, transformer loading clearly dropped within 

limits between 19.00 to 23.00. EV owners with sufficient state of charge will discharge to 

get a high energy price and as a result transformer loading will drop within the limits. When 

the price of electricity varies hourly, EV aggregator decides whether to charge or discharge 

for each hour. EV owner returned home in the evening and their vehicles start charging as 

price of electricity during these hours are low as observed in Figure 1.2 (a). During late 

night hours from 1 a.m. to 7 a.m. price of electricity is high, Consumers can discharge their 

vehicles to mitigate congestion as it is observed from the Hourly Price bars in Figure 1.2 

(a). During daytime hours from 8 a.m. to 4 p.m., EVs are not available at home so, during 

these hours power transformers are violating the limits even in the Hourly Price case as 

shown in Figure 1.2 (a). One major difference in the 5% and 10% penetration results is that 

violation of limits gets increased. The height of the red bars in Figure 1.2 (b) indicates 

greater limit violations for the 10% penetration. As depicted in Figure 1.2 (b) this 

transformer gets severely affected by 10% EV penetration. Since the rating of this 

transformer is just 25KVA, it is essential to upgrade this transformer for catering the 

anticipated load of EVs.  

Figure 1.2 (c) illustrates the transformer loading for 5% EV penetration during the 

winter season. During some hours, when EV owner returns home transformer loading is 

greater than 80% in case of Flat rate and 2-part tariff as it is the peak loading time, when 

EVs get connected to the system during these hours transformer loading increases, however 

for the hourly price case during peak loading hours, transformer loading remains less than 

80% even for the 10% EV penetration as depicted in Figure 1.2 (d). Major difference is 

observed during the summer and the winter charging pattern in case of 2-part tariff, as peak 

hours are different in both cases. For the summer season in the 2-part tariff case peak hours 
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are from 19.00 to 23.00, and loading decreases as shown in Figure 1.2 (a) and (b), during 

the winter season peak hours are from 17.00 to 21.00 as shown in Figure 1.2 (c) and (d). 
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(a) 

 

 

(c) 

 

 (d) 

 

Figure 1.2: Transformer loading percentage at node 21 (a) 5% EV penetration during summer 

(b) 10% EV penetration during summer (c) 5% EV penetration during winter (d) 10% EV 

penetration during winter 

(b) 
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In Figure 1.3 node 27 results have been presented. It shows that this node has a 

better condition as compared to the previous node. The limits that are violated in the Flat 

Rate and 2-part Tariff are greater as compared to the Hourly Price case, it depicted from 

the height of red bars in Figure 1.3 (a).  For Flat Rate, transformer loading is getting 

increased from 16.00 to 21.00. For the 2-part Tariff case, loading behavior is different from 

the Flat Rate, as transformer loading increases from 16.00 to 19.00, and then on-peak hours 

start and vehicles are discharged to overcome the congestion or get the financial benefit of 

high price in those hours. From 23.00 onwards again vehicles get charged. For 10% 

penetration as shown in Figure 1.3 (b) violation of limits gets increased as more numbers 

of electric vehicles are getting connected. Figure 1.3 (c) and (d) shows the transformer 

loading condition during the winter season. Similar behavior has been observed as of the 

previous node for Flat rate and 2-part tariff. For hourly price case loading increases during 

late night hours as prices get reduced during that time. 
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(a) 

 

(b) 

 

(c) 

 

 (d) 

 

Figure 1.3: Transformer loading percentage at node 27 (a) 5% EV penetration during summer 

(b) 10% EV penetration during summer (c) 5% EV penetration during winter (d) 10% EV 

penetration during winter. 
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Figure 1.4 shows the results of all three case studies for node 32. Figure 1.4 (a) 

indicates transformer loading limits are violated for Flat Rate when EV started charging 

after returning home height of yellow bars increased.  For the 2-part Tariff, four hours from 

19.00 to 23.00. Rate of electricity is high, people discharge their vehicles and transformer 

loading decreases and EVs are charged from 12.00 to onward until they get the required 

percentage of charging, yellow bars indicating that transformer loading exceeds the 

recommended limits. For the Hourly Price, it is observed that during peak loading hours, 

loadings get lowered since the price is high in those hours, EVs owners get ready to 

discharge. In Figure 1.4 (b) Hourly Price case indicates that during V2G mode 

transformers, loading is exceptionally lowered, in those hours’ the transformer load is 

about less than half because in 10% penetration number of vehicles increased larger 

vehicles discharged, consequently the loading of transformers decreased. Figure 1.4 (c) and 

(d) indicate the transformer loading during the winter season. It depicts that the transformer 

is operating within safe limits even for the 10% EV penetration. 



34 

 

 

(a) 

 

(b) 

 

 (c) 

 

 (d) 

 

Figure 1.4: Transformer loading percentage at node 32 (a) 5% EV penetration during summer 

season (b) 10% EV penetration during summer season. (a) 5% EV penetration during the winter 

season (b) 10% EV penetration during the winter season 
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5.3 Voltage Profile of Feeder: 

Since there are 301 nodes in the Gulshan-e-Iqbal feeder, it is not feasible to 

represent the voltage condition of every node. By using K-means clustering, it has been 

identified three clusters adequately represent the variety of voltage conditions in feeder. In 

Table 1.3 Cluster 1 indicates the nodes whose per unit voltages are in the range of 0.97 p.u 

to 0.98 p.u. Cluster 2 indicates the nodes whose per unit voltages are violating under-

voltage limit of 0.95 p.u. Cluster 3 indicates the nodes whose per unit voltages are above 1 

p.u but not greater than upper-voltage limit of 1.05 p.u.  

During winter season, again by using K-means clustering, it has been identified 

there are three clusters would be enough to represent the condition of feeder. During winter 

season Cluster 1 in Table 1.3 indicates the nodes whose per unit voltages are in the range 

of 0.98 p.u to 0.99 p.u. Cluster 2 indicates the nodes whose per unit voltages are violating 

under-voltage limit of 0.95 p.u. Cluster 3 indicates the nodes whose per unit voltages are 

above 1 p.u but not greater than upper-voltage limit of 1.05 p.u.  It is observed that most 

of the nodes in the winter season are within safe voltage operating limits. Only 25 nodes 

are violating the under-voltage limit.  

Table 1.3: Clusters Data for per-unit voltage of feeder During Summer and Winter Season 

Cluster 

Number of 

Nodes During 

Summer 

Season 

Per-unit 

Voltage During 

Summer 

Season 

Number of 

Nodes During 

Winter Season 

Per-unit 

Voltage During 

Winter Season 

1 192 0.97 to 0.98 190 0.98 to 0.99 

2 28 Less than 0.95 25 Less than 0.95 

3 81 1 to 1.01 86 1 to 1.01 
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By using distribution code threshold of 0.95 p.u. for under voltage and 1.05 for over 

voltage, it has been observed that no node is violating over voltage limit. By representing 

the results for all three case studies, it is identified that the voltage condition for the hourly 

price case is better as compared to the other two cases.  Figure 1.5 and Figure 1.6 show the 

effect on voltage profile for 5% and 10% EV penetration in the system.  

 

(a) 

 

(b) 

Figure 1.5: Voltage profile for 5% EV penetration during summer season (a) Node 190 (b) Node 

208 
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(a) 

 

(b) 

Figure 1.6: Voltage profile for 10% EV penetration during summer season (a) Node 190 (b) 

Node 208 

Figure 1.7 and Figure 1.8 depicts that voltage profile for Hourly Price case is better 

as compared to other two cases and it has been observed voltage profile for winter season 

is better as compared to summer season. 

 

 (a) 

 

(b) 

Figure 1.7: Voltage profile for 5% EV penetration during winter season (a) Node 153 (b) Node 

208 
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(a) 

 

 (b) 

Figure 1.8: Voltage profile for 10% EV penetration during winter season (a) Node 153 (b) Node 

208 

5.4 Effect of Alternative Pricing Regimes on Hourly SOC: 

Although results are available for all EVs, but for brevity only two EVs is selected 

to showcase how charging and discharging patterns of typical electric vehicles in our 

simulation change with the pricing regime. The selected EVs in summer season required 

60% charge for the next day are connected in zone 1 and for winter season EVs required 

charging 100% for the next day and it is connected in zone 6. Two different EVs are 

presented to observe the different behaviors in summer and winter season as hourly price 

is different for both seasons.   

Figure 1.9 illustrates the SOC pattern for all three case studies for the EV connected 

in zone 1 that required 60% charge for the next day. The charging pattern of the EV for 

Flat Rate is indicated by blue bars. EV reached home at 17.00 with 30% SOC, started 

charging right away and got fully charged by 20.00. It remained charged until 8 a.m. when 

the owner left home for his work. Looking at the orange bars for the 2-part Tariff case, EV 

started charging at 17.00 upon returning home. EV discharged between 19.00 to 23.00. 

(EVs cannot discharge after 20% SOC as it decreases the battery life) which are the peak 

hours. Subsequently, the EV started charging at 23.00 and got fully charged by 04.00. 
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Thereafter, the EV retained its charging level till 08.00 departure time. SOC of EV due to 

Hourly Price is illustrated as grey bars. Since the price is low at 17.00., the vehicle started 

charging ang got fully charged by 12.00. Subsequently, EV started discharging till its SOC 

reached 60% that is the required charging for next day. In this case vehicle get charged at 

low price and subsequently discharged at higher price that results financial benefit for the 

owner. 

 

Figure 1.9: SOC Patterns of EV that required 60% charging for next day 

Figure 1.10 shows the SOC pattern in winter season for all three case studies for 

the EV that is connected in zone 6 and required 100% charging for the next day. The 

charging schedule of the EV for Flat Rate is shown in blue bars. When the EV arrived 

home at 16.00 with 70% SOC, it began charging and was fully charged by 19.00. Owner 

left for his work at 08.00 till that EV remained fully charged. Orange bars in Figure 1.10 

represent the 2-part Tariff case. Owner returned home at 16.00 and started charging till 

17.00, then during peak hours EV started discharging till 20.00 and then again charged 

from 21.00. to 03.00. It was fully charged and remained 100% charged until 08.00. SOC 

for Hourly Price case is represented in grey bars. Since the price is high upon returning 

home at 16.00, the vehicle started supplying energy to the grid until its SOC reached the 

bottom granted level of 20% by 23.00. This EV connected for charging from 12.00 to 07.00 

as prices are low and it required 100% charging for the next day.  
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Figure 1.10: SOC Patterns of EV that required 100% charging for next day 

5.5 Effect of Alternative Pricing Regimes on Cost of EVs: 

One of the most important objectives of this study is to minimize the cost of EV 

charging. Figure 1.11  illustrate the effect of cost in case of 5% and 10% EV penetration in 

summer season. The purple bars show that charging cost for the 10% EV penetration is 

higher as compared to the cost for 5% penetration because a greater number of EVs are 

getting charged, in all three case studies.  

Charging cost in case of Flat Rate is 3024 Rs. The charging cost decreases by 5.9% to 

2845.60 Rs in case of 2-part Tariff and decreases by 18.9% to 2453.82 Rs when Hourly 

Price is introduced. Similarly, for the 10% penetration, cost is 6615 Rs for Flat Rate. In 

case of 2-part Tariff charging cost is 6224.75 Rs, it gets decreases by 5.91%. The charging 

cost decreases by 28.46% to 4732 Rs in case of Hourly Price. Time-varying, Hourly Price 

enables the least typical daily cost for charging the EVs, as owners try to charge their EVs 

during the least costly hours.  
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Figure 1.11: Charging Cost During Summer Season 

Figure 1.12 illustrate the effect of cost in case of 5% and 10% EV penetration in 

winter season. By comparing the cost with summer season, it is identified that in case of 

hourly price charging cost decreased in winter season. For the rest of two cases, cost is 

same as in summer season because Flat Rate and 2-part tariff remain same for both seasons. 

Figure 1.12 illustrates charging cost in case of Flat Rate is 3024 Rs. The charging 

cost decreases by 5.9% to 2845.60 Rs in case of 2-part Tariff and decreases by 23.24% to 

2321 Rs when Hourly Price is introduced. Similarly, for the 10% penetration, cost is 6615 

Rs for Flat Rate. In case of 2-part Tariff charging cost is 6224.75 Rs, it gets decreases by 

5.91%. The charging cost decreases by 31.5% to 4532 Rs in case of Hourly Price. 
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Figure 1.12: Charging cost during winter season 
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CHAPTER 6: CONCLUSION AND FUTURE WORKS 

This research demonstrates the significant potential of smart charging with dynamic 

hourly pricing to address grid congestion and promote EV adoption in Pakistan. By 

implementing an optimized pricing model and an agent-based energy management system, 

the proposed solution offers cost savings for EV owners while mitigating grid strain during 

peak hours. 

Further research could explore the integration of renewable energy sources with 

this system to maximize environmental benefits. Additionally, investigating consumer 

behavior and acceptance of dynamic pricing models could provide valuable insights for 

large-scale implementation. Moreover, this research emphasizes the critical role of smart 

charging and dynamic pricing in facilitating a smooth transition to a future dominated by 

EVs in Pakistan. This approach promotes the sustainable adoption of EVs by offering a 

win-win scenario for both EV owners (through cost reductions) and the power grid 

(through congestion alleviation). 

Based on these findings, we recommend that policymakers in Pakistan consider the 

implementation of dynamic pricing models for EV charging. In addition, fostering 

collaboration between government agencies, distribution companies, and EV aggregators 

will be crucial for establishing the necessary infrastructure and consumer awareness 

programs for a successful large-scale rollout of smart charging solutions. 
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