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ABSTRACT 

 

Under ideal circumstances, every energy generating systems created by mankind gives near perfect 

result. However, we hardly ever get the chance to work under such impeccable conditions. The 

same will always be true for any solar system. With varying temperature and solar irradiation, we 

may mistake the local peak power as the true potential of our systems. This may lead us to add 

additional panels to meet our demand, thus increasing the overall price of the system. To offset 

this predicament, we use various MPPT optimization. algorithm. Two of these optimization 

techniques are grey wolf and ant colony optimization. Both techniques have remarkable 

performance, yet we must still pick one MPPT as efficiency is paramount. Even if we do manage 

to select one, considering the escalating impact of global climate change leading to heightened 

temperature extremes and an alarming increase in rainfall in certain regions, the need for a robust 

comparative analysis of these optimization techniques becomes more pronounced. This research 

conducts a comprehensive comparative analysis of the grey wolf and ant colony optimization 

techniques under diverse climate conditions. The simulation, conducted in Simulink, meticulously 

presents each technique independently, culminating in a detailed evaluation and comparison of 

their performance under the dynamic scenarios posed by varying temperatures and near-total 

shading conditions, yielding nigh on kindred results.  

 

Keywords: Grey wolf algorithm, ant colony algorithm, maximum power point tracking, PV 

system 
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CHAPTER 1:       INTRODUCTION 

 

          When a design engineer constructs any system, no matter to which field they belong, they 

always start from the system’s exemplar conditions. After working in these conditions, they 

intentionally degrade the system’s state and observe its performance. For a solar system, these 

ideal conditions are an abundance of solar irradiance and a temperature range which is neither too 

low nor too high. Naturally, in the complete lifetime of a solar system, these outstanding operating 

conditions do not last for a long time. 

           

          The distribution of sunshine across Earth's surface is a dynamic phenomenon shaped by a 

myriad of intricate factors. Geographical location, Earth's axial tilt, and atmospheric conditions all 

contribute to the varying amounts of sunlight received by different regions. Colombia has a city 

by the name of Totoró, and this unfortunate city has approximately 637.0 hours of sunshine 

annually. Tórshavn in the Faroe Island and Chongqing in China also share a similar fate with 

receiving only 840.0 and 954.8 hours of sunshine annually respectively. On the opposite end we 

have the city of Yuma in the United States receiving an astonishing 4015.3 hours of sunshine on a 

annual bases. And similarly, we have the city of Marsa Alam and Dakhla Oasis in Egypt receiving 

3958.0 and 3943.4 hours of sunshine respectively. 

           

          As for solar irradiance, it too is also distributed unequally just like sunshine hours. Solar 

irradiation’s distribution across the Earth's surface is a phenomenon of paramount importance, 

driving a plethora of natural processes and shaping the planet's climate and ecosystems. The main 

factor which determines how much solar irradiance will an area receive is the angle at which the 

sun rays hit the surface. The closer the rays are to 90 degrees, the more irradiance that surface will 

receive. Under this fact, the two poles, north and south, are regions which receive the least amount 

of irradiance with the values remaining in the range of 500-0 W/m2, depending on the month [1]. 

Now, if we take the atmospheric conditions into account then it’s a competition between the area 

between Spitzbergen and Iceland in the north and the areas just off the cost off the Antarctica in 

the south. 

           

          The other element which alters the output of a solar systems is temperature. The temperature 

distribution on Earth is influenced by a complex interplay of various factors, including 

geographical location, altitude, ocean currents, and atmospheric circulation. Understanding these 

temperature patterns are crucial for comprehending the global climate system and its impact on 

various ecosystems. As of today, the hottest place know to us on the surface is the Lout desert of 

Iran with temperatures reaching more than 70 degrees Celsius [2]. Followed by Death Valley in 

the USA with a maximum temperature recorded of 56.7 degrees Celsius. As for the coldest regions, 
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it is found in east Antarctica, the temperatures dipping to -98 degrees Celsius [3]. Followed by 

Denali in Alaska with a record of -73.8 degrees Celsius. 

           

          Undoubtedly, with an average increment of 1.5 °C in global temperature and in climate 

change stand as formidable global predicaments woven into the fabric of this world. As the world 

warms due to human activities like deforestation and combustion of fossil fuels, the equilibrium 

of our climate system falters, setting off a chain reaction of profound consequences. This 

phenomenon, a consequence of global warming, manifests as climate change, a sweeping 

transformation that encompasses altered weather patterns, rising sea levels, extreme climatic 

events, and disruptions to ecosystems. These changes reverberate across the globe, jeopardizing 

biodiversity, food security, water resources, and human well-being. The disintegration of polar ice 

caps accelerate as temperatures climb, imperiling coastal settlements through escalating sea levels. 

Concurrently, precipitation shifts intensify droughts, floods, and storms, amplifying agricultural 

challenges and exacerbating water scarcity [4]. 

          

          The repercussions of climate change and global warming are starkly evident in the surge of 

frequent and intensified extreme weather conditions experienced worldwide. As temperatures rise, 

the delicate balance of atmospheric dynamics is disrupted, culminating in more frequent and severe 

weather events. Heatwaves have become more frequent and intense, subjecting regions to 

sweltering temperatures that threaten public health, strain energy resources, and pose formidable 

challenges [6]. Moreover, the frequency and intensity of heavy rainfall and flash floods have 

surged, endangering communities, infrastructure, and livelihoods. What this means is that we will 

be witnessing weather conditions which we do not desire for our systems more frequently [7].  

          

           In terms of peak summer monthly temperatures, a substantial 79% of the climate model 

presents a significant trend statistically. The implications of this trend are particularly pronounced, 

as it  has led to an escalation in the graveness and likelihood of achieving the summer’s maximum 

peak value across 97% of the climate model. Notably, this phenomenon is especially conspicuous 

in a significant portion of the tropics, where the trend's contribution reaches a minimum of 50% of 

the magnitude. 

 

          Redirecting our attention to the highest daily temperature experienced throughout the year., 

only 41% of the climate model demonstrates a statistically significant trend. However, despite the 

modest prevalence of this trend, its impact has been substantial. The trend has notably intensified 

both the severity and the likelihood of attaining the highest recorded value in over 82% of the 

model. This effect is notably evident across Europe and eastern Asia, where the trend's influence 

is particularly notable, contributing to at least 30% of the magnitude [8]. 
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          In a separate climate model, the same trend of declination can be seen for the cold end of 

the temperature scale. In the mid-winter of 2020/21, Successive episodes of extremely wintry 

weather took place across the continents of the Northern Hemisphere. Remarkably, there were two 

instances of wintry air outbreaks that traveled from Siberia to East Asia from December 2020 to 

January 2021. These occurrences resulted in the establishment of record-shattering wintry surface 

air temperatures, coupled with powerful winds across extensive regions. In Beijing and Tianjin, 

China, temperatures dropped to –19.6°C and –19.9°C on the 7th of January 2021, respectively, 

setting new records for that date. After this period, Deep South of North America and Great Plains 

experienced impactful snow and ice storms, accompanied by the intrusion of cold airmasses, in 

February 2021. Unprecedentedly low temperatures and prolonged duration were observed in the 

South of United States, such as Oklahoma and Texas. Like on 15 February, Austin and Houston 

experienced temperatures of –13.3°C and –8.3°C, respectively, breaking previous records. The 

gravity and socioeconomic consequences of these chilling events are rarely seen on the same dates 

or within a single winter season in the past century. Nevertheless, an rise in the occurrence of 

extreme chilly weather events has been noted in North America and Eurasia over not long past 

decades [5, 9]. 

 

          Regarding annual precipitation patterns, a discernible trend has emerged, indicating an 

escalation in both graveness and likelihood of the min annual precipitation across 42% of the 

observed area. Remarkably, the dominance of this trend is predominantly observed in the tropics. 

Examining the most damp 5-day duration of the year, a historical trend is by stats significantly 

over just 18%. This trend has significantly escalated the graveness and likelihood of experiencing 

the maximum event in more than 58%. This influence is notably apparent in regions encompassing 

the United States and Europe [8]. 

 

1.1 Problem Statement 

 

          Issues: Inefficient MPPT- Maximum power point technique techniques pose a significant 

challenge to optimal solar panel performance and, consequently, diminish energy output. 

Traditional MPPT algorithms, designed for relatively stable conditions, often struggle to adapt to 

the dynamic environmental factors inherent in real-world solar energy systems. This limitation can 

result in substantial power loss and decreased overall power efficiency. 
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          Resolutions: To address these challenges, a comprehensive comparative analysis of different 

MPPT algorithms is crucial. Such an analysis offers a nuanced understanding of the pros and cons 

of each algorithm. By identifying the most suitable MPPT technique for specific environmental 

conditions, solar energy systems can be equipped to navigate dynamic scenarios more effectively. 

This, in turn, facilitates informed decision-making for implementing the most appropriate MPPT 

technique in solar energy systems. 

 

          Outcomes: The outcomes of a well-informed choice in MPPT technique are substantial. 

Precise MPPT algorithms, tailored to environmental dynamics, contribute to increased power 

generation and enhanced energy efficiency. This, in turn, translates into higher overall system 

performance, optimizing the utilization of available solar energy. Additionally, the implementation 

of a well-suited MPPT technique holds the potential for cost savings in solar installations, ensuring 

a more sustainable and economically viable approach to harnessing solar power.   

 

1.2 Research Aims and Objectives 

 

1. To implement Ant Colony and Grey Wolf optimization algorithms in a simulated 

environment.  

 

2. To investigate the performance characteristic of Grey Wolf and Ant Colony optimization 

algorithms for MPPT for PV panels. 

 

3. To quantify and differentiate the efficiency of Grey Wolf and Ant Colony in regard to power 

extraction and speed of convergence.  

 

4. To assess the stability and sensitivity of the algorithms to changes in parameters during 

extreme weather conditions. 

 

5. To assess the robustness and adaptability of the algorithms under various environmental 

conditions. 
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 1.3 Research Significance  

 

          The investigation into the comparative performance of Grey Wolf and Ant Colony 

optimization algorithms for PV panels under extreme weather conditions holds paramount 

significance within the realm of renewable energy and sustainable technology. The global drive to 

transition towards clean and efficient energy sources underscore the need for highly effective 

MPPT techniques. As solar energy systems become increasingly integral to power generation, 

ensuring their optimal performance under diverse climatic conditions becomes imperative. 

 

          This study addresses a critical knowledge gap in the existing literature by examining the 

effectiveness of two prominent optimization algorithms, Grey Wolf and Ant Colony, in the context 

of extreme weather conditions. Extreme weather events, including both severe cold and scorching 

heat, have gained significant attention due to their increasing frequency and implications for 

renewable energy systems. Understanding how these algorithms respond to such conditions is vital 

for enhancing the resilience and adaptability of photovoltaic systems. 

 

          Furthermore, the outcomes of this research have direct implications for practical 

applications in various sectors. Solar energy installations are deployed across a wide range of 

geographical locations, each with its unique climate and weather patterns. By comparing the 

performance of Grey Wolf and Ant Colony algorithms, this study contributes valuable insights for 

designing and deploying efficient MPPT techniques tailored to specific environmental conditions. 

This knowledge is instrumental in enhancing the reliability and efficiency of solar energy systems, 

reducing operational costs, and ensuring consistent power generation, even in challenging weather 

scenarios. 

 

          Moreover, the study's findings hold relevance for policy makers, energy planners, and 

industry stakeholders who seek to optimize the employment of renewable sources. The 

identification of superior optimization algorithms for extreme weather conditions can guide the 

development of standardized practices, regulations, and recommendations for PV system 

integration, maintenance, and performance assessment. 

 

          This research extends beyond algorithmic comparison and emerges as a crucial endeavor 

with implications for sustainable energy adoption, technological advancement, and climate 

resilience. By shedding light on the performance of Grey Wolf (GW) and Ant Colony (AC) 



 
 

6 
 

algorithms in extreme climate conditions, this study contributes to the broader goals of achieving 

a greener and more sustainable energy landscape. 

 

1.4 Thesis Structure 

 

1.  Chapter 1: This chapter contains the necessary context required to understand the content 

of     this thesis. It also contains the thesis significance along with the aims and   objectives. 

 

2. Chapter 2: This chapter contains the literature review, which contains the information 

acquired from different sources used as a foundation of this thesis. The content within it 

includes information on grey wolf and ant colony algorithms used for MPPT. 

 

3. Chapter 3: This chapter is reserved for the methodology used to detail how the goals of this 

thesis were achieved. It includes the software used and the details of the setup within in it. 

 

4. Chapter 4: In the chapter for result and discussion the observations are analyzed and 

interpreted. 

 

5. Chapter 5: This chapter concludes the thesis by summarizing the finding and giving a 

conclusion. It also mentions the limitations of this thesis. 
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CHAPTER 2:          LITERATURE REVIEW 

 

          As we navigate through the challenges posed by our changing global climate, where extreme 

temperatures and increased cloud cover are becoming the new norm, the demand for resilient 

energy solutions comes sharply into focus. This sets the backdrop for our exploration towards the 

realm MPPT. In the face of adverse weather conditions, traditional solar energy systems often face 

inefficiencies and reduced power output. Mankind developed MPPT as adaptive tools that can 

dynamically optimize solar panel performance, even under challenging weather scenarios. By 

understanding what MPPT and their algorithms are and how they function in less-than-ideal 

conditions, we aim to unearth strategies that promise not only to withstand the blow of climate 

crises but also to elevate solar energy systems to new heights of efficiency, ensuring optimal power 

harvest even in the harshest weather conditions. 

 

2.1 Maximum Power Point Tracking (MPPT) 

 

          MPPT is a critical technology implemented in solar, wind, and other renewable sources 

systems. Its primary goal is to optimize the energy output of these systems by periodically checking 

and maintaining the operating point known as the Maximum Power Point (MPP). The MPP is the 

peak at which energy source generates the maximum available energy for a given environmental 

conditions. 

 

          MPPT work by continuously monitoring the PV panel’s output, specifically the voltage and 

current it produces. They employ various sensors and circuitry to measure the panel's electrical 

characteristics in real-time. Sensors include photodiodes, voltage sensors, and current sensors. 

Based on these measurements, the MPPT calculates the instantaneous power output of the panel. 

The algorithm compares the calculated power output with the previous values or a predefined 

reference value representing the MPP. If the calculated power is less than the reference value, it 

implies that the panel is not operating at its MPP. The algorithm then decides whether to increment 

or decrement the operating voltage to bring the panel closer to the MPP. The adjustment is typically 

made by controlling power electronics, like DC to DC converters or inverters, which modify the 

voltage and current supplied to the load or battery [10]. 

 

          In PV systems, the relationship of voltage and current is governed by the fundamental 

principles of electrical circuits and the physical characteristics of solar cells. Understanding this 
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relationship is crucial for optimizing the performance of PV panels, especially when implementing 

MPPT algorithms. Unlike many linear electrical devices, PV panels exhibit a nonlinear 

relationship between voltage and current. This nonlinearity arises from the intrinsic properties of 

semiconductor materials used in solar cells.  

 

          As the voltage produced by a PV panel increases, the current generated by the panel 

decreases. This behavior is described by the panel’s IV curve. The IV curve typically shows a 

steep drop in current as voltage increases. Conversely, if the voltage produced by the PV panel 

decreases, the current it produces will increase. Lowering the voltage results in a steeper incline in 

current on the IV curve [11]. 

 

          The nonlinearity of PV panels can be likened to the behavior of a diode. This is because 

solar cells can be seen as a semiconductor device with characteristics like a diode. In a diode, 

operating in reverse biased mode, as voltage increases, current decreases (and vice versa). The 

same principle applies to a PV cell, which operates as a PN junction in reverse biased mode, falling 

in the 3rd quadrant of its V-I characteristics. The point of operation of a PV cell on its IV curve 

determines its power output [12]. Notably, the point of max power output, also called the max 

power point, is a critical aspect of a solar cell's performance. At the MPP, the product of voltage 

and current is maximized, signifying the optimal conditions for obtaining power from the solar 

module. Understanding and effectively tracking the MPP is fundamental in the design and 

implementation of mppt technique, which play a massive role in optimizing the energy harvesting 

efficiency of solar panels. 
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Fig 2.1: I-V curve [46] 

 

          It's essential to recognize that point of operation, denoted on the IV curve, is not static and 

can vary significantly. This variability is attributed to instantaneous changes in solar irradiation 

and temperature. For optimal performance and to extract the max power from a solar cell, it's 

imperative to dynamically position the operating point at the max power. Ensuring this alignment 

guarantees optimal operation of the solar cell, irrespective of the surrounding environmental 

conditions. Thus, understanding and manipulating the point of operation to track the MPP become 

central in the quest for obtaining the highest possible energy from the solar cell. 

 

          In the pursuit of dynamically adjusting the operating point of a solar cell to the Maximum 

Power Point (MPP), a crucial component comes into play – the DC to DC converter. This 

electronic device facilitates the alteration of voltage levels in the solar cell. By modulating the 

voltage, the DC-DC converter ensures that the solar cell operates optimally under varying 

environmental conditions. It acts as a automatic tuning feature, allowing for precise adjustments 

in the operating point to track the fluctuating MPP. In essence, the DC to DC converter has a 

pivotal role in optimizing the output of solar cells by changing their voltage to match the ever-

changing requirements for maximum efficiency and energy extraction. 
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2.2 Advantages of MPPT 

 

1) Increased Energy Harvesting: MPPT algorithms enable PV systems to consistently work 

at   their MPP, ensuring that the system captures the most energy available from the sun. 

This results in higher energy yields and increased overall system efficiency. 

 

2) Adaptation to Changing Conditions: PV systems are subject to variations in sunlight 

intensity and temperature throughout the day and across seasons. MPPT algorithms 

continuously moves   the operating current or voltage to adapt to these changing conditions, 

maximizing energy   production. 

 

3) Improved Energy Conversion Efficiency: By operating at the MPP, MPPT techniques 

reduce energy losses that occur when the PV array operates at suboptimal points on its 

voltage-current curve. This leads to higher conversion efficiency and superior utilization 

of the available sunlight. 

 

4) Enhanced Production in Partial Shading: MPPT algorithms excel in scenarios with partial 

shading or when only a segment of the PV array is under sunlight. They can identify and 

track the MPP of the unshaded portion, mitigating the impact of shading on energy 

generation. 

 

5) Battery Charging Optimization: In off-grid and hybrid PV systems with energy storage, 

MPPT controllers optimize the charging of batteries. They ensure that the battery bank is 

charged efficiently, extending battery life and improving system reliability. 

 

6) Reduced Payback Period: By increasing energy production and overall system efficiency, 

MPPT controllers help reduce the payback period for PV installations. This makes solar 

energy systems more financially attractive. 

 

7) Environmental Benefits: Maximizing the energy output of PV systems through MPPT 

reduces the need of fossil fuels and decreases emission of greenhouse gases, contributing 

to a more sustainable and environmentally friendly energy source. 
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2.3 Common Traditional MPPT Techniques 

 

          In the realm of solar energy systems, several traditional MPPT algorithm have been created 

to optimize output from PV panels. These methods, although varied in approach, share the 

common goal of efficiently tracking the MPP in changing environmental scenario. Below are brief 

descriptions of some commonly used traditional MPPT techniques: 

 

1. Perturb and Observe (P&O): 

          The Perturb and Observe (P&O) algorithm is one of the most common employed MPPT. It 

works by disturbing the point of operation of the PV panel and observes the change in output. 

Using this observation, the method incrementally changes the operating V or I to reach MPP. It 

may be simple to implement, but the P&O method may suffer from oscillations around the ma 

power point, particularly under rapidly changing solar irradiation conditions. 

 

2. Incremental Conductance (IncCond): 

          The Incremental Conductance (IncCond) is another popular MPPT technique utilized in 

solar systems. IncCond utilizes the derivative of the PV panel's power-voltage curve to know the 

direction of perturbation. By checking the difference bewteen the instantaneous conductance with 

the incremental conductance, this method ensures continuous adjustment towards the MPP, 

offering improved tracking accuracy, especially under dynamic weather conditions. 

 

3. Hill-Climbing: 

          Hill-Climbing algorithm is a heuristic-based MPPT technique that operates by iteratively 

adjusting the point of operation of the PV panel in the direction of increasing output. Similar to 

climbing a hill to reach the peak, this method continuously evaluates the power output at 

neighboring points and adjusts the operating parameters accordingly. While conceptually 

straightforward, the Hill-Climbing method may suffer from slow convergence and oscillations, 

particularly in regions with rapidly changing solar irradiance. 

 

          These traditional MPPT techniques provide the foundation for optimizing the performance 

of solar energy systems. However, advancements in MPPT technology, particularly through the 



 
 

12 
 

integration of nature-inspired algorithms, offer enhanced efficiency and robustness in tracking the 

MPP under diverse environmental conditions. 

 

2.4 Superiority of Nature MPPT Techniques Over Traditional Techniques 

 

          The advent of nature inspired MPPT algorithms represents a significant leap forward in the 

field of solar energy systems. These algorithms demonstrate superior performance compared to 

traditional methods, primarily due to their enhanced capability to reach the MPP under challenging 

conditions like partial shading. Notably, in [13] and [14] Satyajit Mohanty and R. Sridhar, 

respectively, presented compelling evidence. Their studies showcased that Grey Wolf 

Optimization and Ant Colony optimization technique exhibits superior power output in partial 

shading scenarios, outperforming traditional P and O technique. These findings underscore the 

promising potential of nature-inspired MPPT methods in upgrading the reliability and production 

of solar systems, particularly in adverse environmental scenarios. 

 

2.5 Factors Influencing Power Output 

 

Temperature: 

          The behavior of a solar cell, known as its I-V characteristic, is influenced by two key factors: 

the intensity of sunlight, represented by “S” in units of W/m², and the cell’s temperature in degrees 

Celsius, denoted as “t”. In simple terms, you can think of it as a relationship of current and voltage 

the solar cell produces, which is also affected by these two variables, sunlight intensity and 

temperature. When we consider a load that’s purely resistive, the cell’s behavior may be accurately 

represented by a specific circuit, as illustrated in the figure. This circuit depiction helps us 

understand how the solar cell responds to varying conditions [15]. 
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Fig 2.2: Solar Cell’s Representation as a Circuit 

 

𝐼 = 𝐼𝐿 − 𝐼𝑜 [ 
exp 𝑞(𝑉+𝐼𝑅𝑠)

𝐴𝑘𝑇
− 1] − (𝑉 +  

IRs

𝑅𝑠ℎ
)                (2.1) 

 

𝐼𝑑 = 𝐼𝑜 [
exp 𝑞(𝑉+𝐼𝑅𝑠)

𝐴𝑘𝑇
] − 1                                  (2.2)        

 

𝑉𝑜𝑐 = (
kT

𝑞
) ln ( 

𝐼𝐿

𝐼𝑜
) + 1                                     (2.3) 

I – Load’s current. 

Il -- Photovoltaic current. 

Id – Junction’s current of the diode. 

Io -- Reverse saturation’s current. 

q -- Boltzmann constant. 

V.oc -- Open circuit voltage. 

T – Temperature. 
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A – Diode quality factor. 

“Rs” - Resistance 

“Rsh” – Resistance in parallel 

 

          With rising temperature, two significant effects occur in solar cells. Firstly, as temperature 

increases, the intrinsic semiconductor's band gap contracts. Consequently, the Voltage (V.oc) of 

open circuit falls, in accordance with the temperature dependence observed in the “q/kT” diode 

factor. This means that solar cells exhibit a sub-zero temperature coefficient for V.oc (represented 

as $\beta$). Furthermore, even with the same amount of incident light, higher temperature results 

in a lower output power due to charge carriers being set free at a lower potential. This temperature-

dependent reduction in Voc, as described in the Fill Factor calculation, leads to a decrease in the 

solar cell's theoretical maximum power, even if the current in short circuit (Isc) remains constant. 

 

          Secondly, with rising temperature, the band gap of the intrinsic semiconductor narrows. 

Consequently, additional energy is captured since a larger portion of the incoming light possesses 

sufficient energy to elevate carriers of charges from the band known as valence band to the band 

known as conduction band. This leads to a increased photocurrent; thus, for a given level of solar 

radiation (insolation), Isc increases. Solar cells, in this context, exhibit a positive temperature 

coefficient for Isc (denoted as α). 

 

Solar Irradiation: 

          At the heart of solar energy harnessing lies a fundamental determinant, solar irradiation. The 

radiant energy from the sun, measured as solar irradiance in W/m², stands as the primary architect 

shaping the output of solar cells. Across the globe, the intensity of this solar irradiation undergoes 

a symphony of variations; some regions bask in an abundance of radiant energy, while others 

receive a more modest share. It is within this interplay of sunlight intensity that we discern the 

essence of solar power generation. Understanding how solar irradiance intricately weaves itself 

into the fabric of power output is indispensable for unlocking the full potential of PV systems. 

          Hiroyuki Nakamura in his paper [16] talks about the performance ratio of the module $K_A$ 

as a performance index for understanding the conditions for operation of a solar setup. The formula 

for module performance ratio is given by: 
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𝐾𝐴 = (
EA

𝑃𝐴𝑆
) / ( 

𝐻𝐴

𝐺𝑆
)                                      (2.4) 

 

Where “EA” is the power output from the module 

“HA” is the sun’s solar irradiation 

“PAS” is the output of the module at STC 

“GS” is the solar irradiance at STC 

 

          Based on the provided formula for the module performance ratio KA an increase in solar 

irradiation HA would generally result in an increase in the module output power EA  if all other 

factors remain constant. This is because the ratio (EA/PAS) in the numerator is directly influenced 

by the actual module yield, and an increase in solar irradiation typically leads to a higher yield, 

assuming the module operates efficiently. P. Attaviriyanupap [17] in his paper shows the link 

between PV output and solar irradiance using the data he obtained. 

 



 
 

16 
 

 

Fig 2.3: Solar Irradiation Relation with Power Output [17] 

Here we can see the power output being exactly proportionate to the solar energy the panels 

receive. 

 

2.6 Limitations of Other Research Papers 

 

          In the pursuit of enhancement of the performance of a solar setup, a multitude of MPPT 

algorithms have been explored in existing database. Noteworthy contributions from various 

researchers have extensively covered various aspects of MPPT, ranging from conventional 

methods to cutting-edge nature-inspired algorithms. While each of these works provides valuable 

insights, a distinct opportunity arises to delve deeper into the unexplored terrain where solar 

irradiance interacts dynamically with temperature variations. This comparative analysis uniquely 

navigates the intricate landscape of MPPT by introducing the nuanced interplay between reduced 

solar irradiance and extreme temperatures, shedding light on critical performance aspects that 

remain underrepresented in current studies. 
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          Kashif Ishaque [18] delves into a comprehensive examination of MPPT algorithms, 

encompassing both orthodox and soft computing ones. Notably, he explores widely adopted 

techniques like P and O and Incremental Conductance. However, the distinctive aspect of his 

analysis lies in the absence of a specific focus on scenarios involving reduced solar irradiance 

coupled with varying temperatures. Unlike the unique combination explored in my work, Ishaque's 

study primarily centers on uniform insolation and partial shading conditions, offering a valuable 

perspective but stopping short of integrating the intricate interplay of temperature and solar 

irradiance. 

 

          Alivarani Mohapatra's [19] paper contributes significantly to the literature by concentrating 

on emerging MPPT optimization algorithms, particularly those inspired by nature. Grey wolf, ant 

colony, firefly, and artificial bee algorithms take center stage in Mohapatra's exploration. However, 

the distinctive element absent in Mohapatra's comparative analysis is the integration of extreme 

temperature variations in conjunction with reduced solar irradiance. The dynamics of how solar 

panels respond to the dual challenges of diminished sunlight and temperature extremes, a central 

aspect of my investigation, find a unique place in your work that sets it apart from Mohapatra's 

exploration. 

 

          Bo Yang's [20] paper stands out for its all-encompassing survey of MPPT algorithms. From 

biology-inspired to physics and sociology-inspired algorithms, Yang covers a wide spectrum. 

Noteworthy is his incorporation of hybrid algorithms, showcasing the multifaceted landscape of 

MPPT techniques. However, his work introduces a novel dimension by including scenarios with 

reduced solar irradiance down to 200 W/m², offering a nuanced perspective on the challenges 

posed by low sunlight conditions. Despite this inclusivity, Yang's study, like others, does not delve 

into the synergistic effects of solar irradiance and temperature fluctuations, a unique aspect that 

defines my comparative analysis. 

Table 2.1: Solar irradiation and temperature choice of other authors. 

Author Solar Irradiation W/m2 Temperature C 

Kashif Ishaque [18] 1000 25 

Alivarani Mohapatra [19] Not Specified Not Specified 

Bo Yang [20] 200-1000 25-40 
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2.7 MPPT Market Status 

 

          The growth of the solar charge controller market is propelled by the rising use of renewable 

energy sources for power generation. The global market size for Charge Controllers with MPPT 

was valued at USD 1.55 billion in 2021 and is anticipated to increase from USD 1.70 billion in 

2022 to USD 3.27 billion by 2030, with a compound annual growth rate (CAGR) of 9.8% from 

2023 to 2030. [21]. 

 

          The solar charge controller market is segmented based on Type, Current Capacity, and End 

User. Regarding Type, it includes pulse width modulation (PWM) charge controllers, maximum 

power point tracking (MPPT) charge controllers, and simple 1 or 2 stage controls. Current 

Capacity is divided into three categories: less than 20A, 20A to 40A, and more than 40A. The End 

User segment encompasses the residential users, the commercial & utility users and the industrial 

users. Geographically, the following markets have been observed: Europe, North America, 

LAMEA, and Asia-Pacific [22]. 

 

          MPPT sector, classified by type, reported the prime share of the controller marketplace in 

2021, comprising approximately 43.3%. This segment is anticipated to continue its leadership 

throughout the conjecture period for the solar controller market. This prominence may be 

attributed to the increasing adoption of solar power generation infrastructure worldwide. 

Furthermore, MPPT solar charge controllers excel in extracting the max output, and their superior 

productivity and performance in comparison to PWM controllers are anticipated to be key drivers 

of market growth in the estimate period [22]. 
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Fig 2.4: Solar Controller By Type [22] 

 

          Concerning current size, the 20A - 40A slice currently commands the peak revenue portion 

and is projected to sustain its headship in the conjecture period. This expansion can be linked to 

the increasing need for solar controllers with a current size ranging from 20A - 40A in various 

applications such as off-grid cabinets, residential installations, caravans, telecommunications, and 

remote solar power generation facilities. Additionally, the substantial investments being made in 

solar power generation are likely to further drive the growth of the solar controller’s market in the 

forthcoming years [11]. 
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Fig 2.5: Solar Controller By Current Capacity [22] 

 

          In terms of end-user segments, the commercial sector currently boasts the major profits share 

and is projected to endure its predominance in the forecasted period. This surge can be credited to 

the increasing demand for solar charge controllers in various commercial applications, including 

information hubs, clinics/hospitals, restaurants/shops, offices, and more. Furthermore, the 

adoption of solar power solutions within the commercial domain is regarded as a rapid remedy for 

addressing energy shortages, thus augmenting the call for solar controllers throughout the 

conjecture period [21, 22]. 
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Fig 2.6: Solar Controller By Application [23] 

 

          In terms of geographical regions, the marketplace is examined athwart 4 major areas:  N. 

America, LAMEA, Europe, and Asia Pacific. In 2020, Asia Pacific secured the leading segment, 

and it is expected to continue its supremacy in the solar controller marketplace trends throughout 

the conjecture period. This can be credited to the region's substantial consumer base and the 

presence of key industry players [22, 23]. 
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Fig 2.7: Solar Controller By Region [22] 

 

          One major potential obstacle to marketplace evolution is the increasing acceptance of 

alternative clean energy sources. A noteworthy danger to the business comes from the expanding 

utilization of wind power. Numerous projects are underway to harness wind energy, and fresh 

technical progressions are creating floating wind power plants economically viable. This 

development is likely to have an adverse impact on the solar industry, potentially hindering market 

growth [23]. Another hurdle in the MPPT marketplace is the relatively expensive price of these 

solar controllers when equated to orthodox controllers. Controllers equipped with MPPT tend to 

be extra pricy because of the technology being additionally complex and the greater productivity 

they offer. As a result, they may be less accessible to customers seeking a more budget-friendly 

solution [21]. 
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CHAPTER 3:          NATURE INSPIRED MPPT TECHNIQUES 

 

          Nature has long been a source of inspiration for solving complex problems, and the field of 

MPPT PV systems is no exception. Nature-inspired MPPT algorithms draw inspiration from 

biological, physical, and social phenomena to optimize the performance of solar energy systems. 

These algorithms leverage the inherent intelligence of natural processes to dynamically adapt to 

changing environmental conditions and efficiently track the MPP of PV panels. By mimicking the 

adaptive behaviors observed in natural systems, such as the foraging patterns of animals or the 

collective behavior of social insects, nature-inspired MPPT procedures offer robustness, 

scalability, and improved performance compared to old-style MPPT procedures. 

 

3.1 Grey Wolf Algorithm 

       3.1.1           Real Behavior of Wolfs 

 

          Inspired by the behavior of wolf, the GWO algorithm tries to replicate the hunting strategies 

of wolfs. When a hunting expedition begins, the wolf pack departs from its den or place of rest, 

commencing the quest for food. The initiation of a hunt is prompted by hunger. The direction the 

wolves choose and how far they are willing to journey are influenced by their past experiences, 

including both successful and unsuccessful hunts. During their search, they rely on their keen 

senses, making use of wide lateral vision and adjustable ears to survey the environment for possible 

unsuspecting prey. Once they spot potential target, they begin their approach [24, 25]. 

 

          If the wolf pack comes across herd of elk or some other creature, they close in at a steady 

pace. Unlike some other predators, wolves typically do not employ stealth tactics to approach the 

target, nor will they specifically choose an individual until the herd starts fleeing. This strategy 

puts them into the category of cursorial predators, setting their hunting etiquette apart from others. 

When wolves approach, elk will react by either holding their position or fleeing [26]. 

 

          As the prey attempts to flee, they disperse in various directions, requiring the wolves to 

divide up to pursue as much as feasible. In this phase, these carnivores meticulously assess the 

clusters of prey, aiming to identify the most vulnerable target that offers the highest chance of a 

successful kill. One gain of pursuing the prey until they are exhausted is that it opens up the 
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chances for the prey to make critical mistakes, such as stumbling. Additionally, it serves as a 

practical means for the wolves to evaluate the weakest animal among the group [24]. 

 

          At this stage, the wolves are in an intensified pursuit, with a heightened focus on the specific 

prey individual they've targeted. The objective during this behavioral phase is to close in on the 

prey closely enough to initiate biting as a try to subdue it. Whether alone or a group of wolves, the 

act of biting down the prey marks the change into the capture phase. 

 

          The primary objective during the capture state is to secure a kill on the prey. When dealing 

with smaller prey like a calf, a single wolf may directly target the throat as it can effectively handle 

the animal on its own. In cases where the target is of greater size and there are multiple wolves, 

their strategy often involves biting at the hindmost legs and rump, aiming to make the prey sluggish 

before going for the neckline. If the target is genuinely frail, these carnivores are expected to 

achieve a fruitful kill. However, if they had mistakenly perceived a durable animal as frail, they 

could encounter difficulties and may either abandon the pursuit or revert to a previous hunting 

phase. 

 

          Contrary to the common perception of wolves as highly coordinated hunters utilizing 

teamwork and strategic planning to kill the larger target, observations spanning over 2000 hours 

of wolf behavior pattern in Yellowstone Park suggest a different reality. These observations 

indicate that wolves do not exhibit signs of elaborate strategies or clear communication during 

hunts. For instance, when going after the same herd, wolves don’t synchronize their change 

between states: one wolf might identify a feeble prey and move in to attack while the others 

continue in an attack squad. This disconnection can even lead to a situation where one wolf has 

successfully slayed a prey and begins consuming it while the rest are in the 'attack squad' state. 

Interestingly, the wolf that scored the kill does not appear to make any effort to communicate its 

success to the others [27]. 

 

          In the untamed wilderness, grey wolves, with their remarkable social structure and hunting 

prowess, navigate a complex world in search of prey. These apex predators exhibit a finely tuned 

balance of teamwork and individuality during their hunts, mirroring nature's delicate equilibrium. 

It is this remarkable interplay between the pack's collective intelligence and the instincts of each 

wolf that has inspired computer scientists to develop optimization algorithms rooted in the wolves' 

hunting behavior. In this section, we delve into the world of Grey Wolf Optimization (GWO), an 

algorithmic marvel that draws its inspiration from the collaborative yet independent strategies of 
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real grey wolves. Much like their wild counterparts, GWO leverages the strength of a 'pack' of 

solutions to tackle complex optimization challenges while allowing each 'wolf' to adapt its search 

independently. As we explore the inner workings of the Grey Wolf Algorithm, we reveal how it 

emulates the intriguing dynamics of wolf pack hunts to efficiently seek optimal solutions in diverse 

domains. 

 

        3.1.2           Social Hierarchy of Wolfs 

 

          In the intricate society of grey wolves, a structured hierarchy reigns supreme, with each 

member playing a distinct role in the pack's survival. At the apex stands the 'alpha' wolf, the leader, 

and decision-maker. Alpha wolves exhibit dominance, not only in securing the choicest prey but 

also in guiding the pack's movements. Next in line are the 'beta' wolves, the right-hand wolves of 

the alpha. They act as lieutenants, assisting the alpha in maintaining order within the pack. 

Following them are the 'delta' wolves, respected for their skills and contributions. They often lead 

the pack during hunts, ensuring the pursuit remains coordinated. Lastly, there are the 'omega' 

wolves, the most submissive members, who play crucial roles in reinforcing pack unity. This 

hierarchical structure is not only a testament to the remarkable social dynamics of wolves but also 

serves as a fascinating analogy for the GWO technique. In GWO, a similar hierarchy of results is 

established, mirroring the “alpha α”, “beta ß”, “delta δ”, and “omega Ω” wolves. This stratified 

approach enables GWO to explore a diverse solution space efficiently, allowing the 'alpha' 

solutions to guide the search while 'beta,' 'delta,' and 'omega' solutions adapt and contribute 

collaboratively, much like the harmonious wolf pack. Through this hierarchical framework, GWO 

captures the essence of leadership and cooperation observed in grey wolf societies, translating it 

into a powerful optimization tool [28]. 
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Fig 3.1: Social Hierarchy in Wolf Pack 

 

        3.1.3           Flow Chart Grey Wolf Algorithm 

 

          The flow chart presented below provides a structured glimpse into the workings of GWO, a 

fascinating optimization tool motivated by the collaborative hunting strategies of wolf packs. The 

journey begins with the ‘Initialization’ step, where a set of potential solutions is generated, much 

like a pack of wolves setting out in search of prey. These solutions are then evaluated in the 

‘Evaluate Fitness’ phase, akin to wolves assessing the fitness of their prey before launching a 

coordinated attack. The algorithm then identifies the ‘α,’ ‘ß,’ and ‘δ’ solutions, symbolizing the 

leaders of the pack, in the ‘Find First, Second, and Third Best’ phase. With this information in 

hand, GWO embarks on the ‘Update Position’ step, mirroring the precise movements of wolves 

as they close in on their quarry. The algorithm calculates latest solutions’ fitness value in the 

‘Calculate Fitness Value for New Solution’ phase, ensuring that it remains on the right track. GWO 

diligently stores the finest solution in the ‘Store the finest/Best’ phase, akin to a wolf securing its 

catch. This process continues until a predefined ‘Max Iteration Reached’ condition is met, 

signifying the algorithm’s relentless pursuit of optimization. In essence, GWO encapsulates the 

essence of wolf society, employing teamwork, leadership, and relentless pursuit in its quest for 

optimal solutions [29, 30]. 
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Fig 3.2: Grey Wolf Flow Chart 
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        3.1.4          Pseudo Code  Grey Wolf Algorithm 

 

Following is GWO’s pseudo code: 

 

Commence 

Prepare the populace of grey wolves Xi (i = 1, 2, ..., n) 

Prime/Set a, A, and C 

Compute the fitness values of each wolf and rank them. (Xα, Xβ, and Xδ) 

t = 0 

While Loop Start (t < Max number of iterations) 

For Loop Start each search agent 

Revise the location of the current wolf or search agent! 

End For Loop 

Renew the value of a, A, and C 

Determine the fitness values of all search agents or wolfs and rank them! 

Renew the positions or location of Xα, Xβ, and Xδ 

t = t+1 

End While Loop 

End Algorithm 

 

Following is the explanation of the pseudo code: 

Initialization: 

  1) Initialize a population of grey wolves, represented as Xi (i = 1, 2, ..., n), where 'n' is  

      the amount of search agents/wolfs. 

  2) Initialize control parameters: 'a' represents a constant, while 'A' and 'C' are also  

      constants that will be used during the optimization. 



 
 

29 
 

  3) Compute the fitness of the initial search agents/wolfs and rank them based on their 

      fitness. Among these agents, identify: 

         Xα: The finest result or solution. 

         Xβ: The runner up result or solution. 

         Xδ: The third-best result or solution. 

  4) Initialize a counter 't' to 0, representing the current iteration. 

Iterative Optimization: 

Enter a loop that continues until 't' reaches the max number of iterations specified. 

    For each wolf or search agent: 

   A) Revise the location of the current wolf or search agent based on specific rules defined by  

       the GWO algorithm. 

   B) After updating all search agent positions, proceed to update the control parameters 'a',  

       'A', and 'C'. 

   C) Recalculate the fitness values of all wolfs or search agents and rank them according to their  

       fitness. 

   D) Renew the location of Xα, Xβ, and Xδ based on the new fitness evaluations. 

   E) Increment the iteration counter 't' by 1 to move to the next iteration [29,30]. 

 

        3.1.5          Mathematical Model of Grey Wolf Algorithm 

 

          In GWO we have “alpha α”, “beat β” and ‘delta δ”, which represents the best or finest , 

runner up and third best results respectively. When the prey has been isolated from the heard and 

the wolf have surrounded the prey, represented by the equations below: 

 

 D = C*Xp(t) - X(t)                                           (3.1) 

                                                              X(t=1) = Xp(t) – D*A                                                      (3.2)    
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          In this context, D represents the separation between the hunters and their target, XP denotes 

the prey's position vector, and t signifies the ongoing iteration. Meanwhile, A and C are values 

within the vector associated with the Xth grey wolf [20]. 

 

                                                                   A = 2ar1 – a                                                             (3.3) 

                                                                       C = 2r2                                                                 (3.4) 

 

          Here, ‘r’ is a random vector with its ranging from anywhere from ‘0’ to ‘1’. The ‘a’ vector 

is to decline from ‘2’ to ‘0’ as the iteration goes on. 

 

          Grey wolf optimization involves Alpha in the hunting strategy. In the theoretical space, 

there's no knowledge of the ideal hunt location. Alpha α, represents the best solution within this 

hunting method, followed by Beta ß and Delta δ as the next best results. Consequently, the first 

three readings are documented, and the location of the remaining wolves, including Omega Ω, are 

adjusted based on the best result [31]. 

 

                                                                 Dα = C1*Xα - X                                                          (3.5)   

                                                                 Dβ = C2*Xβ – X                                                         (3.6) 

                                                                 Dδ = C3*Xδ – X                                                         (3.7) 

 

                                                               X1 = Xα - A1*(Dα)                                                       (3.8)   

                                                               X2 = Xβ - A2*(Dβ)                                                       (3.9)  

                                                               X3 = Xδ – A3*(Dδ)                                                     (3.10)  

 

                                                           X(t+1) = (X1 +X2 + X3) / 3                                               (3.11) 
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          When the prey comes to a halt, Grey Wolves initiate their attack, marking the conclusion of 

the hunt. The mathematical model uses vector “A” to depict the route towards the prey. A's 

amplitude is a random number that lies in the range of [2a, -2a]. The 'a' vector decreases from 2 to 

0 during the iterations. When 'A' is within the limits of [-1, 1], the next location for any wolf or 

search agent might fall within a random location between their current location and the target's 

location. When the vector 'A' is less than 1, the location of the wolves and target are conducive to 

an attack, and the wolves engage in the attack. Conversely, when 'A' exceeds 1, the location of the 

wolves and target favor a retreat, and the wolves begin moving away from the target, preparing for 

a new hunting endeavor [31]. 

 

        3.1.6          Modifications Done to Grey Wolf Algorithm 

 

Let see what modification have been made to grey wolf algorithm over time. 

 

D J Krishna Kishore’s work [32]: 

          In the modified GWO, with Dimension Learning-Based Hunting (DLH), three distinct 

stages govern its operation: initialization, movement, and choosing and renewing. During the 

initialization phase, a population of N wolves is randomly distributed within specified limits. The 

movement stage introduces a key enhancement called Dimension Learning-Based Hunting (DLH). 

This innovative technique aims to enhance the hunting behavior of individual wolves by leveraging 

interactions with their peers. In DLH, every wolf learns from the positions and behaviors of its 

neighboring wolves, leading to updated positions. To regulate the extent of learning and 

exploration, a radius is computed for each wolf. This radius, determined through the Euclidean 

distance between a wolf's current position and the positions of neighboring wolves, defines the 

wolf's search area. The incorporation of DLH and radius calculation aims to mitigate premature 

convergence and establish a equilibrium between search and exploitation, thereby making the 

GWO more effective in searching for optimal solutions. The result are decreased time to settle. 

 

          Muhammad Ilyas’s work [33]: In the traditional GWO, “Alpha α” and “Beta β” agents or 

wolves are primarily dedicated to the search process and are not significantly involved in 

converging to an optimal solution. As a result, this approach leads to a larger population of search 

agents and increased time consumption in the quest for the best solution. In the modified version 

of GWO, specifically in the β and omega step, the pursuit of an entirely precise optimal solution 

is eliminated. Simulation output demonstrate that when contrast to the basic GWO, the proposed 

algorithm exhibits enhanced convergence speed. 
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          Muhammad Hamza Zafar’s work [34]: A novel hybrid algorithm, combining elements of 

GWO with the Sine Cosine function has been introduced. In this modified approach, the Sine 

Cosine technique is employed to enhance the speed of the alpha α agent within the framework. 

The objective is to elevate the overall capabilities of global merging, search, and exploitation. This 

Hybrid GWO-Sine Cosine Algorithm (HGWOSCA) demonstrates improvements in the 

convergence rate and the positioning of alpha agents. 

 

          Merna M. Eshak’s work [35]: The paper highlights a comparison between the GWO and a 

hybrid AI-MPPT optimizer. This evaluation aimed to strike a balance between time reaction and 

the accuracy of picking the GMPP or Global Maximum Power Point. The conclusion drawn from 

the analysis indicates that EGWO is better suited for situations requiring swift responses to 

changes in irradiance, whereas the hybrid AI-MPPT optimizer is more suitable in scenarios where 

a high degree of localized clearance is needed. 

 

3.2 Ant Colony Algorithm 

        3.2.1          Forging Behavior of Ants 

 

          Ants are remarkable creatures renowned for their highly efficient foraging behavior, which 

has long fascinated biologists and inspired the development of optimization algorithms. When ants 

venture out of their nests in search of food, they don't do so haphazardly. Instead, they employ a 

sophisticated system that involves both individual actions and collective decision-making to find 

the shortest path to their goal. This behavior is often referred to as the foraging trail. Ant foraging 

begins with scouts leaving the nest in search of potential food sources. These scouts roam the 

surroundings, and when they stumble upon a food item, they assess its quality and quantity. If a 

scout discovers something promising, it grabs a piece and heads back to the nest, leaving behind a 

chemical trail known as a "pheromone trail" as it goes. Strength of pheromone trail is directly 

proportional to the quality of the food source [36]. 

 

          When a scout returns to the nest with nutriment, it unloads the food and reinforces the 

pheromone trail on its way back out. The scent of these pheromone trails is a vital form of 

communication among ants. Other ants in the colony detect the pheromones with their antennae, 

and the intensity of the scent provides crucial information. Stronger trails indicate higher-quality 

food sources or shorter paths. As more scouts follow the initial track to the source of food and 
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return with food, they reinforce the pheromone trail. This process creates a positive feedback loop, 

whereby a stronger trail attracts more ants. Essentially, ants are additional expected to take a well-

marked trail with a strong pheromone scent [37, 39]. 

 

          Over time, the pheromone trail that leads to the best food source becomes the most attractive 

to foragers. Since ants typically choose the path with the strongest scent, this naturally directs them 

toward the shortest possible route to the nutrition source. In such a manner, the colony collectively 

optimizes its foraging path based on the quality of the food and the distance to the source [38]. 

Ants also display adaptive behavior. If a previously productive food source becomes depleted, 

scouts eventually stop reinforcing the trail, and it fades away. This encourages scouts to explore 

alternative routes and discover new food sources. 

 

 

Fig 3.3: Ant Colony Algorithm Starting 
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Fig 3.4: Ant Colony Algorithm Middle 

 

Fig 3.5: Ant Colony Algorithm Near End 
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        3.2.2          Flow Chart  Ant Colony Algorithm 

 

          The algorithm initiates with the "Start" step, commencing its execution. Following this, the 

"Launch New Iteration of Ants" phase begins, marking the start of a new iteration cycle. Within 

each iteration, a group of artificial ants is unleashed to explore the solution space in search of 

optimal solutions. During the "Find New Solutions" stage, every ant in the population embarks on 

its journey to seek a solution to the given optimization problem. These ants employ a combination 

of two guiding mechanisms: pheromone trails collected from previous iterations and heuristic 

information, which encapsulates problem-specific knowledge. 

 

          Once an ant completes its journey and constructs a solution, the "Solution Evaluation" 

process comes into play. Here, the quality of the solution is meticulously assessed, relying on how 

effectively it aligns with the optimization criteria pertinent to the problem at hand. The algorithm 

periodically checks whether "Termination Criteria" have been met. These criteria can encompass 

factors like a predefined max number of iterations, a target quality for solutions, or specified 

convergence conditions. If any of these conditions are satisfied, the algorithm proceeds; otherwise, 

it continues to run iterations. 

 

          The "Pheromone Deposition" phase follows, where ants deposit pheromone along the paths 

they have traversed during solution construction. The quantity of pheromone deposited typically 

correlates with the worth of the solutions obtained, reinforcing trails that guides to superior 

outcomes. Lastly, in the "Pheromone Evaporation" step, the algorithm simulates the gradual decay 

of pheromone on all paths. This emulates the natural evaporation process found in the 

environment. The rate of pheromone evaporation is a parameter of the algorithm, playing a pivotal 

role in sustaining diversity in path exploration throughout the optimization process [40]. 
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Fig 3.6: Ant Colony Flow Chart 

 

        3.2.3          Pseudo Code  Ant Colony Algorithm 

 

Below is ACO’s pseudo code: 

 

Commence 

Prime/Set 

While Loop - ending criteria not met, Do 

place each ant in a initial or starting node 

Repeat 

For Loop each ant, Do 

Next node will be chosen by applying the state transition rule 

Apply a step-by-step update for pheromones 
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End For Loop 

Until every ant has generated a result 

Best result to be updated 

Update the pheromones 

End While Loop 

Conclusion 

 

Below is the code’s explanation: 

 

          Prime/Set: This initial step serves as the preparation phase for the ACO. It involves the setup 

and initialization of all the necessary variables and parameters required for the algorithm to 

function effectively. Essentially, this step lays the groundwork for the problem at hand and gets 

the artificial ants ready for their exploration journey. 

 

          While Loop Stopping Criteria Not Met: This pivotal part of the algorithm introduces the 

main control loop. As long as the specified stopping criteria are not met, the algorithm remains 

active. The stopping criteria can vary but typically include conditions like attainment a max 

number of iterations or achieving a predefined target quality for solutions. This loop governs the 

execution of the algorithm, ensuring it continues until the desired convergence or result is 

achieved. 

 

          Place Each Ant in a initial Starting Node: At the commencement of each iteration, a crucial 

task is undertaken: placing each artificial ant in its respective starting node. These starting nodes 

represent the initial states from which the ants begin their exploration. This step effectively sets 

the stage for the ants' solution construction process. 

 

          Repeat: This instruction initiates a loop within each iteration, marking the beginning of a 

repetitive process. The primary goal of this loop is to guide each ant through its journey to construct 

a solution. It ensures that each artificial ant has the opportunity to navigate through the problem 

space. 
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          For Loop - Each Ant: Nested within the repetition loop, this segment orchestrates the core 

activities of the algorithm. Within this loop, each ant, representing a potential solution, follows a 

set of rules known as the state transition rule to select its succeeding node or path. This phase 

drives the exploration and solution-building process, a fundamental aspect of the ACO algorithm. 

 

          Apply Step by Step Pheromone Update: As the ants navigate through their chosen paths, this 

step is responsible for managing the pheromone levels on the paths in a systematic manner. 

Pheromones are adjusted incrementally along the routes taken by the ants. This process of gradual 

pheromone update has a significant part in shaping the collective conduct of the ant population. 

 

          Until Every Ant Has Generated Solution: The loop introduced by this statement ensures that 

the algorithm continues until every artificial ant in the population has successfully constructed a 

solution. It guarantees that each ant has had the opportunity to explore and contribute to the search 

for an optimal solution. 

 

          Best Result to be Updated: This stage of the algorithm focuses on assessing the superiority 

of the results made by the individual ants. It selects and updates the finest solution found 

throughout the AOC's execution. The finest solution represents the most promising outcome in 

terms of meeting the optimization criteria. 

 

          Update the Pheromone: After completing each iteration, the algorithm proceeds to apply a 

pheromone update. The amount and distribution of pheromone along the paths are adjusted based 

on the quality of solutions constructed. This step reinforces the paths that lead to better solutions 

while diminishing the influence of paths associated with poorer outcomes. 

 

          End While Loop: Signifying the conclusion of the primary control loop, this statement 

terminates the iterative process. It does so when the stopping criteria have been met, indicating 

that the algorithm has either converged or satisfied other predefined conditions. 
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          Conclusion: This is the ultimate endpoint of the ACO algorithm. Once the algorithm has 

accomplished its task as per the stopping criteria, it concludes, and its execution comes to an end 

[41]. 

 

        3.2.4          Mathematical Model of Ant Colony Algorithm 

 

1. Pheromone Update: 

          The pheromone update process is a fundamental aspect of ACO. It involves both 

pheromone evaporation and pheromone deposition. 

 Pheromone Evaporation: 

          Evaporate a fraction (ρ) of pheromone on all paths at each iteration: 

τ_ij(t+1) = (1 - ρ) * τ_ij(t), where τ_ij(t) is the pheromone level on the edge (i, j) at time step t. 

 Pheromone Deposition: 

          Ants deposit pheromone on the paths they have taken, and the quantity of pheromone 

depends on the caliber of the result found. 

 

          The amount of pheromone (Δτ_ij) deposited by ant k on the edge (i, j) is typically related 

to the quality (or fitness) of the solution made by ant k: 

Δτ_ij(k) = Q / L_k, where Q is a constant, and L_k is the length (or cost) of the solution found by 

ant k. 

 

2. State Transition Rule: 

          The state transition rule guides ants in pick out the next node to visit grounded on 

pheromone levels and problem-specific heuristic information. The probability of decide on the 

edge (i, j) by ant k is often expressed using a probabilistic formula, such as: 

p_ij(k) = [τ_ij^α * η_ij^β] / Σ[(τ_uv^α * η_uv^β) for all valid edges (u, v)] 

    Where: 

        τ_ij: Pheromone level on edge (i, j) 
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        η_ij: Heuristic information on the edge (i, j) (problem-specific knowledge) 

        α and β: Control parameters to balance the influence of pheromone and heuristic 

information. 

 

3. Objective Function: 

          In optimization problems, an objective function f(x) is used to appraise the caliber of a 

result x. The objective function represents the goal of the optimization problem (e.g., minimizing 

or maximizing a specific criterion). In ACO, the quality of a solution constructed by an ant is 

evaluated using the objective function. 

 

4. Global Best Solution: 

          During the algorithm's execution, the global finest solution is tracked.The global best 

solution (x*) is the best solution found by any ant up to the current iteration: 

        x* = arg max{f(x_k) for all ants k} 

          These mathematical expressions represent the core components of the ACO algorithm. The 

specific formulation may vary based on the problem being solved and the ACO variant used. 

Researchers often customize these equations to adapt the algorithm to different optimization  

Tasks [42]. 

 

        3.2.5          Modification done to Ant Colony Algorithm 

 

Let’s see what modification have been done to ant colony algorithm over time. 

 

          In Rakesh Kumar Phanden’s work [43] the modifications made aim to fine-tune the ant 

colony optimization technique for MPPT in PV systems. Instead of starting with a larger 

population of ants, the researchers begin with only three ants. With a narrow search domain, fewer 

ants may be sufficient. A crucial modification involves constraining the maximum deviation of 

ants from the best solution (Best-ant). In this case, the maximum deviation allowed is ±0.2 of the 

duty ratio.  Ants' positions are updated based on a conditional rule. If an ant's deviation from the 

best solution is greater than 0.2, it is adjusted to be exactly 0.2 greater than the best solution (Ant 
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= Best-ant + 0.2). Conversely, if an ant's deviation is less than -0.2, it is adjusted to be exactly 0.2 

less than the best solution (Ant = Best-ant - 0.2). If neither of these conditions is met, the ant's 

position remains unchanged. These modifications are intended to prevent the ACO algorithm from 

overshooting the GMPPT and to improve convergence behavior. By constraining the ant's 

deviations and using the best solution as a reference, the algorithm is fine-tuned to achieve better 

MPPT performance in PV systems. 

 

          Kinattingal Sundareswaran’s [44] paper discourses the use of ACO and the P and O in the 

context of MPPT for partially shaded PV systems. The paper highlights the potential of the ACO 

method in capturing the GMPP in partially shaded PV setups. This suggests that ACO shows 

promise in optimizing PV system performance under challenging conditions where shading 

occurs.  Despite its promise, the paper acknowledges certain drawbacks associated with the ACO 

method. These include continued oscillations in PV output during tracking and amplified 

convergence time. In other words, ACO may exhibit fluctuations in power output and take longer 

to reach the optimal point. The basic P&O method is mentioned as an alternative. It's noted that 

P&O has limitations in recognizing the GMPP, potentially settling for a local power peak and, 

consequently, reducing energy extraction from the PV system. However, the gain of P&O is that 

it typically results in a smoothly varying output power curve without significant fluctuations. The 

paper proposes a cross approach that combines the strengths of both ACO and P and O methods. 

The idea is to use ACO for global search, allowing it to explore a wider solution space and identify 

the GMPP. Once ACO has found an approximate solution, the system can then transition to the 

traditional P&O method for local search. 

 

          In Badreddine Babes’s paper [45], the hybrid ACO and ANN (Artificial Neural Network) 

MPPT controller is designed to optimize the operation of PV setup by guiding them to operate as 

near as it can to their MPP. This controller combines the strengths of both ACO and ANN 

methodologies. Initially, it starts with an initial duty cycle setting for the DC-to-DC boost 

converter and an initial population of artificial ants for ACO. ACO conducts a global search, where 

each artificial ant explores various duty cycle settings. Simultaneously, the ANN takes electrical 

measurements from the solar setup as feed in and estimates the optimal duty cycle based on its 

training. The hybrid controller integrates the outcomes of ACO and the ANN's estimation. If 

ACO's duty cycle deviates significantly from the ANN's estimate, it's adjusted to align with the 

ANN's value, preventing overshooting. The controller aims to minimize the mistake between the 

real and optimal power during ACO's global search, ensuring the PV system operates near the 

MPP. This hybrid approach enhances MPPT performance, particularly under changing 

environmental conditions or partial shading scenarios. 
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CHAPTER 4:          MATERIALS AND METHOD 

 

4.1 Methodology of Research Design 

          In our simulation conducted using Simulink, we designed a photovoltaic (PV) system 

comprising four solar panels connected in series, with each panel modeled after the 'Tata Power 

Solar Systems TP250MBZ' specifications. Under standard conditions of 1000 (W/m²) of solar 

energy or irradiance, each of these panels is designed to produce an output of 30 volts and 8.3 

amps. 

 

Fig 4.1: Solar Panel Array 
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Fig 4.2: Solar Panel IV-Chart 

 

          These PV panels are an integral part of our system and serve as the primary energy source. 

Their combined output is directed to a DC-to-DC converter. To enhance the efficiency and energy 

harvesting capabilities of our PV system, we've implemented MPPT techniques. Specifically, 

we've integrated the GW and ACO to continually adjust the operating parameters of the DC-to-

DC converter, ensuring that it operates at or near its MPP under changeable environmental 

circumstances. 



1 
 

 

 

Fig 4.3: Main Circuit



1 
 

 

4.2 Research Approach: 

          Existing literature was given a thorough review for understanding the in MPPT procedures 

and their uses. This involved an exploration of orthodox algorithms, such as P and O, alongside a 

comprehensive survey of nature-inspired algorithms, including Ant Colony and Grey Wolf 

optimization. This literature appraisal smoothed the identification of research slits and guided the 

selection of algorithms for comparative analysis. 

The study strategically selected Ant Colony and Grey Wolf optimization algorithms based on their 

adaptability and resilience in adverse conditions, as suggested by literature findings. These nature-

inspired algorithms were chosen for their potential to address challenges posed by reduced solar 

irradiance and fluctuating temperatures, which are common in real-world scenarios. 

 

4.3 Data Collection  

          To enhance the practical relevance of the research, geographical locations with diverse 

climatic conditions were chosen for analysis. This includes regions with extreme temperatures, 

such as Lut Desert and Yellowknife, as well as areas with varying solar irradiance levels, like 

Torshavn. The goal was to assess the algorithms' performance under conditions mirroring actual 

photovoltaic installations. 

 

4.4 Ethical Consideration 

          Ensuring the ethical integrity of this research was paramount throughout all stages of 

planning, execution, and reporting. The privacy and confidentiality of individuals and 

organizations providing data were strictly maintained. All data, whether obtained from public 

sources or collaborators, were anonymized, and aggregated to prevent the identification of specific 

entities. Every effort was made to minimize bias in the selection of geographical locations, data 

sources, and simulation parameters. Objective criteria guided these decisions to ensure the research 

remains impartial and unbiased. The findings of this research are reported transparently and 

accurately, without manipulation or selective reporting. Any limitations or challenges encountered 

during the research process are openly discussed to provide a comprehensive understanding of the 

study's scope. All contributions from other researchers, organizations, or sources are duly 

acknowledged through proper citations. This practice acknowledges the intellectual property and 

efforts of others, fostering a culture of academic honesty and respect.  
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Chapter 5:          Results and Discussion 

 

          Now to first demonstrate the superiority of Nature inspired algorithms using my own 

simulation, the following are the results obtained when the system was operated during partial 

shading. The irradiation was kept at 500, 800, 1000, 1000 W/m2 respectively (more detail of the 

simulation in the simulation section) and the temperature was kept at 25 degrees Celsius. With 

this, Grey Wolf Optimization and Ant Colony Optimization yielded 627 and 635 watts 

respectively. While P&O algorithm was lagging behind with 483 watts output. 

 

 

Fig 5.1: Ant Colony, grey wolf and P&O’s performance in partial shading 

 

Table 5.1: Reading obtained under partial shading from ant colony, grey wolf and P&O. 

Under Partial Shading 

Ant Colony 635 watts 

Grey Wolf 627 watts 

P and O 483 watts 

 



 
 

47 
 

5.1 Lut Desert, Iran  

 

          Located in southeastern Iran, the Lut Desert, also known as Dasht-e Lut, is renowned for 

being one of the hottest places on Earth. Its extreme arid landscape is marked by vast sand dunes, 

salt flats, and unique geological formations. In our simulation, we emulated the challenging 

conditions of Lut Desert, setting the solar radiation at a scorching 1000 watts per square meter 

(W/m²) and the temperature soaring to a blistering 70 degrees Celsius. Under these harsh 

environmental parameters, our research explored the performance of two MPPT procedures. The 

the ACO achieved 798.4 watts in 78.240ms with osilation of 0.6w, while GWO yielded an output 

of 796.5 watts in 74.700ms with osilation of 1w. Under a normal hot day in summer, 1000 w/m² 

and 50 degrees Celsius, ACO gives 896.5w and GWO gives 892.3w. 

          The selection of radiation and temperature levels aligns with the solar irradiance commonly 

experienced in regions known for their intense sunlight, particularly in areas classified as sunbelts. 

The term "sunbelt" refers to geographic zones characterized by consistently high levels of solar 

radiation throughout the year. These regions, often located near the equator or in arid climates, 

boast minimal cloud cover and atmospheric interference. Consequently, the sun's rays penetrate 

the atmosphere with greater intensity and are more direct, facilitating the transmission of higher 

levels of solar radiation to the Earth's surface. 

 

 

Fig 5.2: Ant Colony and grey wolf’s performance in Lut desert 
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Table 5.2: Readings obtained in Lut desert from ant colony and grey wolf. 

Lut Desert 

MPPT Watts Generated Time Taken to 

Reach Peak 

Oscillations 

(watts) 

Watts in 

normal 

summer day 

Ant Colony 798.4w 78.240ms 0.6 896.5 

Grey Wolf 796.5w 74.700ms 1 892.3 

 

5.2 Extremadura, Spain  

 

          Situated in southwestern Spain, Extremadura is characterized by its diverse landscapes, 

encompassing vast plains, rugged mountains, and historic towns. It experiences a Mediterranean 

climate with scorching summers and mild winters. In our simulation, we mirrored the sun-

drenched conditions of Extremadura, setting the solar radiation at a blazing 1000 watts per square 

meter (W/m²) and the temperature at a sizzling 60 degrees Celsius. Within this challenging 

environment, we assessed the performance of two MPPT procedures. the ACO excelled with 849.4 

watts in 88.920ms with osilation of 0.6w, while GWO achieved an output of 846.7 watts in 

87.400ms with osilation of 1w. Under a normal hot day in summer, 1000 w/m² and 40 degrees 

Celsius, ACO gives 936.7w and GWO gives 930.5w. 

 

          The choice of radiation and temperature is influenced by its mediterranean climate, 

characterized by long, hot summers and mild winters, which contribute to high levels of solar 

irradiance. Additionally, Extremadura boasts relatively clear skies and low levels of atmospheric 

pollution, further enhancing solar radiation levels. 
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Fig 5.3: Ant Colony and grey wolf’s performance in Extremadura 

 

Table 5.3: Readings obtained in Extremadura from ant colony and grey wolf. 

Extremadura 

MPPT Watts 

Generated 

Time Taken to 

Reach Peak 

Oscillation Watts in normal 

summer day 

Ant Colony 849.4w 88.920ms 0.6 936.7 

Grey Wolf 846.7w 87.400ms 1 930.5 

 

5.3 Novosibirsk, Russia  

 

          Located in southwestern Siberia, Novosibirsk is Russia's third-largest city and an industrial 

hub. It experiences a harsh continental climate, with bitterly cold winters and warm summers. In 

our simulation, we emulated Novosibirsk's frigid conditions by setting the temperature at a bone-

chilling -46 degrees Celsius and the solar radiation at 300 watts per square meter (W/m²). Within 

this challenging environment, we evaluated the performance of two optimization algorithms. The 

Ant Colony Optimization algorithm yielded an output of 84.35 watts in 107.440ms with osilation 

of 0.15, while the Grey Wolf Optimization algorithm achieved 83.74 watts in 106.100ms with 
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osilation of 0.5w. Under a normal cold day in winter, 450 w/m² and -20 degrees Celsius, ACO 

gives 195w and GWO gives 193.7w. 

          The temperature selection is affected by the high latitude and continental climate. The 

region's location in the heart of Siberia exposes it to frigid Arctic air masses, resulting in bitterly 

cold winters with temperatures plummeting well below freezing. The presence of the Siberian 

High, a large area of high pressure centered over Siberia during winter, exacerbates the cold 

conditions. The low solar irradiance in Novosibirsk can be attributed to its high latitude, which 

places it far from the equator and reduces the intensity of sunlight reaching the Earth's surface. 

Additionally, the region experiences short daylight hours during winter due to its proximity to the 

Arctic Circle, further limiting solar energy input. 

 

 Fig 5.4: Ant colony and grey wolf’s performance in Novosibirsk 

 

Table 5.4: Readings obtained in Novosibirsk from ant colony and grey wolf. 

Novosibirsk 

MPPT Watts 

Generated 

Time Taken to 

Reach Peak 

Oscillations 

(watts) 

Watts in normal winter 

day 

Ant Colony 84.35 107.440ms 0.15 195 

Grey Wolf 83.74 106.100ms 0.5 193.7 
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5.4 Yellowknife, Canada  

 

          Nestled in the Northwest Territories of Canada, Yellowknife is renowned for its stunning 

wilderness and northern lights. This city faces a subarctic climate, characterized by brutally cold 

winters and warm summers. In our simulation, we mirrored Yellowknife's icy conditions by setting 

the temperature at a frosty -30 degrees Celsius and the solar radiation at 250 watts per square meter 

(W/m²). Within this challenging environment, we evaluated the performance of two optimization 

algorithms. The Ant Colony Optimization algorithm generated an output of 59.91 watts in 

109.000ms with osilation of 0.17w, while the Grey Wolf Optimization algorithm achieved 59.47 

watts in 108.310ms with osilation of 0.6w. Under a normal cold day in winter, 400 w/m² and -20 

degrees Celsius, ACO gives 154.4w and GWO gives 154w. 

          The preference of radiation and temperature is guided by being one of Canada's 

northernmost cities, Yellowknife is situated at approximately 62° latitude, placing it well within 

the Arctic Circle. This high latitude results in significant variations in daylight hours throughout 

the year, with extended periods of darkness during winter and continuous daylight during summer. 

The low solar irradiation in Yellowknife can be attributed to several factors, including its high 

latitude, which reduces the angle of sunlight reaching the Earth's surface, and the presence of 

atmospheric conditions such as clouds and haze that further attenuate solar radiation. Additionally, 

during winter, the city experiences short daylight hours and frequent overcast skies, further 

limiting solar energy input. 

 

 

Fig 5.5: Ant colony and grey wolf’s performance in Yellowknife 
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Table 5.5: Readings obtained in Yellowknife from ant coly and grey wolf. 

Yellowknife 

MPPT Watts Generated Time Taken to 

Reach Peak 

Oscillation 

(watts) 

Watts in normal 

winter day 

Ant Colony 59.91 109.000ms 0.17 154.4 

Grey Wolf 59.47 108.31ms 0.6 154 

 

5.5 Sao Joaquim, Brazil  

 

          Sao Joaquim, situated in south of Brazil, finds itself amid the captivating landscapes of the 

Santa Catarina state. This region undergoes a subtropic upland weather, characterized by cool 

winters and mild summers. In our simulation, we mirrored São Joaquim's pleasant climate with a 

temperature setting of 17 degrees Celsius and a solar radiation level of 480, 275, 330, 200 watts 

per square meter (W/m²) respectively. Within this temperate environment, we evaluated the 

performance of two optimization algorithms. The Ant Colony Optimization algorithm yielded an 

output of 110.9 watts in 109.220ms with osilation of 0.1w, while the Grey Wolf Optimization 

algorithm achieved 109.5 watts in 91.680ms with osilation of 0.5w. Under a normal cloudy day, 

500 w/m² and 20 degrees Celsius, ACO gives 253.2w and GWO gives 252.2w. 

 

          The choice of solar irradiation is affected by Soa Joaquim's heavy clouds primarily due to 

its geographical features and prevailing weather patterns. Situated in the Serra Catarinense region 

of the state of Santa Catarina, Sao Joaquim is characterized by its elevated terrain, with many areas 

located at altitudes above 1,000 meters (3,280 feet). The municipality's proximity to the Atlantic 

Ocean plays a significant role in its weather patterns. Moisture-laden air masses from the ocean 

often interact with the region's mountainous terrain, leading to orographic lifting, a process in 

which air is forced to rise over elevated landforms. As the air ascends, it cools and condenses, 

forming clouds and precipitation. The orographic lifting effect, combined with the region's variable 

topography and prevailing winds, contributes to the formation of heavy clouds over Sao Joaquim. 

These clouds can manifest in various forms, including stratocumulus and nimbostratus clouds, 

which are often associated with overcast skies and periods of rainfall. 
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Fig 5.6: Ant colony and grey wolf’s performance in Sao Joaquim 

 

 

Table 5.6: Readings obtained in Sao Joaquim from ant colony and grey wolf. 

Sao Joaquim 

MPPT Watts 

Generated 

Time Taken to 

Reach Peak 

Oscillation 

(watts) 

Watts in normal cloudy 

day 

Ant Colony 110.9w 109.220ms 0.1 253.2 

Grey Wolf 109.5w 91.680ms 0.5 252.2 

 

5.6 Torshavn, Faroe Islands  

 

          Tórshavn, the capital of the Faroe Islands, is nestled on Streymoy’s east coast, the biggest 

island in this North Atlantic archipelago. Renowned for its stunning landscapes, this city is 

surrounded by mountains, including Mt. Húsareyn and Mt. Kirkjubøreyn. It is worth noting that 

Tórshavn ranks among the cloudiest places globally, with only 2.4 hours of daily sunshine on 

average. This unique climate is attributed to its sub polar oceanic climate, resulting in mild winters 
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and cool summers. In our simulation, we emulated Tórshavn's characteristic conditions, setting the 

temperature at 12 degrees Celsius and solar radiation at 500, 300, 450, 250 watts per square meter 

(W/m²) respectively. Under these climatic parameters, we assessed the efficiency of two 

optimization algorithms. The Ant Colony Optimization algorithm produced an output of 201 watts 

in 116.440ms with osilation of 0.3w, while the Grey Wolf Optimization algorithm achieved 200.7 

watts in 115.640ms with osilation of 0.9w, showcasing their adaptability to challenging 

environments. Under a normal cloudy day, 550 w/m² and 20 degrees Celsius, ACO gives 306w 

and GWO gives 304.8w. 

          The choice is shaped by the maritime subpolar climate characterized by frequent cloud 

cover, precipitation, and relatively mild temperatures. The Faroe Islands are surrounded by the 

cold waters of the North Atlantic Ocean, which contribute to the formation of dense fog and low-

level clouds. The proximity to the ocean moderates temperature extremes but also leads to 

persistent cloud cover, especially during the cooler months. The rugged terrain of the Faroe 

Islands, characterized by steep cliffs, fjords, and rolling hills, enhances the orographic lifting 

effect. As moist air masses encounter the elevated landforms, they are forced to rise, cool, and 

condense, leading to the formation of clouds and fog. Torshavn and the surrounding areas 

frequently experience low-level stratocumulus and stratus clouds, which can persist for extended 

periods, particularly during the cooler seasons. These clouds contribute to the overall cloud cover 

and reduce the amount of sunlight reaching the surface. 

 

 

Fig 5.7: Ant colony and grey wolf’s performance in Torshavn 
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Table 5.7: Readings obtained in Torshavn from ant colony and grey wolf. 

Torshavn 

MPPT Watts 

Generated 

Time Taken 

to Reach Peak 

Oscillation 

(watts) 

Watts in normal 

cloudy day 

Ant Colony 201w 116.440ms 0.3 306 

Grey Wolf 200.7w 115.640ms 0.9 304.8 

 

All locations together: 

Table 5.8: Readings from all locations. 

All Readings Together 

Location MPPT Watts 

Generated 

Time Taken 

To Reach 

Peak 

Oscillation 

(watts) 

Normal 

hot/cold/cloudy 

day 

Lut Desert 

Iran 

Ant Colony 798.4w 78.240ms 0.6 896.5 

Grey Wolf 796.5w 74.700ms 1 892.3 

Extremadura 

Spain 

Ant Colony 849.4w 88.920ms 0.6 936.7 

Grey Wolf 846.7w 87.400ms 1 930.5 

Novosibirsk 

Russia 

Ant Colony 84.35w 107.440ms 0.15 195 

Grey Wolf 83.74w 106.100ms 0.5 193.7 

Yellowknife 

Canada 

Ant Colony 59.91w 109.000ms 0.17 154.4 

Grey Wolf 59.47w 108.310ms 0.6 154 

Sao Joaquim 

Brazil 

Ant Colony 100.9w 109.220ms 0.1 253.2 

Grey Wolf 100.2w 91.680ms 0.5 252.2 

Torshavn 

Faroe Islands 

Ant Colony 201w 116.440ms 0.3 306 

Grey Wolf 200.7w 115.640ms 0.9 304.8 
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Conclusion 

 

          The results of my comparative analysis between Ant Colony and Grey Wolf optimization 

algorithms under real-world conditions are intriguing. The minimal differences observed in power 

outputs suggest that both algorithms perform remarkably well in adverse conditions, such as those 

encountered in diverse geographical locations. The marginal variations between the two 

algorithms can be attributed to nuances in the tuning of the DC converter or specific elements 

within the MPPT convergence mechanisms embedded in the code. 

 

          These outcomes underscore the robustness and adaptability of both Ant Colony and Grey 

Wolf optimization algorithms across a spectrum of challenging environmental scenarios. The 

convergence of results highlights the effectiveness of nature-inspired algorithms in extracting 

optimal power from photovoltaic systems under non-ideal conditions. It's worth considering that 

the intricacies of real-world conditions, including fluctuations in solar irradiance and temperature, 

can introduce complexities that are sensitively managed by these algorithms. 

 

          In conclusion, the close proximity of results indicates the resilience of ACO and GWO in 

navigating the complexities of diverse environmental parameters. Further investigation into the 

tuning and specific code elements could provide valuable insights for refining these algorithms, 

potentially unlocking even greater performance gains in adverse conditions. 

 

          While this research endeavors to deliver valued understandings into the presentation of 

MPPT procedures under diverse environmental conditions, certain limitations should be 

acknowledged to contextualize the scope and generalizability of the findings. 

     

          The study focuses on six distinct geographical locations, namely Lut Desert, Extremadura, 

Novosibirsk, Yellowknife, Sao Joaquim, and Torshavn. While these locations offer a range of 

environmental conditions, the research could be enhanced by expanding the geographic scope to 

include a more comprehensive array of locations, encompassing various climatic and geographical 

characteristics. 

 

          The research primarily employs GWO and ACO to compare their performance in varying 

conditions. Although GWO and ACO are representative nature-inspired algorithms, the study does 
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not encompass the entire spectrum of available algorithms. Future research could explore 

additional nature-inspired algorithms to offer a more holistic understanding of their comparative 

effectiveness. 

     

          The study employs the base or standard versions of the Grey Wolf and Ant Colony 

algorithms. While this choice ensures a foundational understanding of their performance, it leaves 

out the exploration of modified or advanced versions of these algorithms. Investigating modified 

iterations could offer nuanced insights into the impact of algorithmic enhancements on 

performance. 
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APPENDIX 

Tata Power Solar Systems TP250MBZ:  

Power at STC (W) 250 

Power at PTC (W) 222.7 

Bifacial No 

Bifaciality (%) - 

Lower Power Tolerance (%) - 

Upper Power Tolerance (%) - 

Power Density at STC (W / m2) 151.515 

Power Density at PTC (W / m2) 134.97 

Module Efficiency (%) - 

Cell Efficiency (%) - 

Vmp: Voltage at Max Power (V) 30.0 

Imp: Current at Max Power (A) 8.3 

Voc: Open Circuit Voltage (V) 36.8 

Isc: Short Circuit Current (A) 8.83 

Max System Voltage (V) - 

Series Fuse Rating (A) - 

Bypass Diode - 

Nominal Operating Cell Temp (°C) 48.8 

Open Circuit Voltage Temp Coefficient (% / °C) -0.33 

Short Circuit Current Temp Coefficient (% / °C) 0.064 

Max Power Temp Coefficient (% / °C) -0.438 

Cell Type Poly 
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Connector Type - 

Connector Cable Length (mm) - 

Length (mm) 1660.0 

Width (mm) 994.0 

Module area (m2) 1.65 

Depth (mm) - 

Weight (kg) - 

Frame Color - 


