
Material Selection in Additive Manufacturing for Aerospace 

Applications using Multi-Criteria Decision Making

By 

Muhammad Junaid 

(Registration No: 00000362423) 

Thesis Supervisor: Dr. Uzair Khaleeq Uz Zaman 

Department of Engineering Management 

College of Electrical and Mechanical Engineering (CEME) 

National University of Sciences & Technology (NUST) 

Islamabad, Pakistan 

(2024) 





DEDICATION 

This thesis is dedicated to my dear parents, who have been a constant source of 

support and encouragement during the challenges of my post graduate studies and life 

and whose good examples have taught me to work hard for the things that I aspire to 

achieve. 



i

ACKNOWLEDGEMENT 

First and foremost, I would like to express my deepest gratitude to Almighty Allah 

for granting me the strength, knowledge, and perseverance to complete this research. 

Without His blessings, this achievement would not have been possible. 

I would like to extend my heartfelt thanks to my supervisor, Dr. Uzair Khaleeq Uz 

Zaman, for his unwavering support, insightful guidance, and encouragement throughout 

this research. His expertise and dedication were instrumental in shaping the direction and 

quality of my work. 

I am also immensely grateful to my co-supervisor, Dr. Afshan Naseem, for her 

valuable advice, constant support, and constructive feedback. Her contributions greatly 

enhanced the rigor and depth of this study. 

Special thanks to my mentor, Dr. Yasir Ahmad, from whom I have learned so much 

both as a student and as an employee. His mentorship has been a source of inspiration and 

growth for me. I am also thankful for his role as a member of my evaluation committee 

and providing invaluable insights and suggestions. 

I would like to extend my sincere thanks to Dr. Anas bin Aqeel, another esteemed 

member of my GEC. His thorough evaluation and thoughtful feedback were crucial in 

refining this research. 

I am also grateful to my little brother, Muhammad Fahad, for his constant 

encouragement and the joy he brings to my life. His presence was a source of motivation 

and strength throughout this journey. 

Finally, I am thankful to my family and friends for their unconditional love, 

patience, and support. Their belief in me has been a source of strength and motivation. 

Merci beaucoup to everyone who contributed to this thesis in one way or another. 

Your support has been invaluable, and I am truly grateful. 



ii

ABSTRACT 

A decision-making methodology for the material selection is presented in this 

paper. A multi-criteria decision-making (MCDM) based hybrid approach, AHP-TOPSIS, 

was used to choose the appropriate additive manufacturing (AM) material for aerospace 

applications. This study evaluated nine polymer-based AM materials for an aerospace 

application. Experts from both industry and academia carefully finalized the selection 

criteria by using Delphi technique. Selected criteria are divided into three main categories: 

performance, economic and environmental. Firstly, the AHP approach was used to get the 

weights of criteria chosen via pairwise comparisons. Second, a decision matrix containing 

the properties of materials was created. The TOPSIS method was then applied using the 

AHP criteria weights and decision matrix, resulting in the final ranking of materials. 

ULTEM material ranked number 1 and was selected as the appropriate material for an 

aerospace application. Additionally, sensitivity analysis was also carried out to check the 

proposed method's reliability and robustness. 

Keywords: Additive manufacturing, MCDM, decision making, materials 

selection, AHP, TOPSIS, aerospace 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

During the last ten years, additive manufacturing (AM), also commonly referred to 

as three-dimensional (3D) printing, has emerged as a new technology that is continuously 

growing at a fast pace (Venturi & Taylor, 2023). Various industries, from aerospace to 

healthcare around the globe, are transforming the way of manufacturing and adopting 

additive manufacturing methods for prototyping and end-user products (Fidan et al., 2023). 

A recently published document by the International Organization for Standardization (ISO) 

defines the AM as the “process of joining materials to make parts from 3D model data, 

usually layer upon layer” (ASTM & ISO, 2021), which is opposite to the subtractive or 

traditional methods of manufacturing. 

The ISO/ASTM standard mentioned above also classifies AM processes into seven 

categories that are Material extrusion (MEX), Material jetting (MJ), Directed energy 

deposition (DED), Powder bed fusion (PBF), Binder jetting (BJ), Sheet lamination (SL), 

and Vat photopolymerization (VPP) (ASTM & ISO, 2021). A few main steps involve 

creating a part by additive manufacturing, which starts with creating a 3D model through 

CAD software (e.g., SolidWorks, etc.). After digitally modelling the part shape, the 

designer must convert the required 3D model into Standard Tessellation 

Language/Stereolithography (STL) file format. This file is then transferred into the AM 

machine, which reads the file. Before the setup of an AM machine for manufacturing a 

product/part, it is necessary to involve the stakeholders and their requirements (constraints, 

parameters, etc.) (Palanisamy et al., 2020). During the build stage, the AM machine uses 

the loaded raw material in an automated process and prints the object according to the 

specifications of the CAD model. 3D Printed parts may need post-processing to improve 

the surface quality or increase strength by applying some treatment methods. The final 

stage part is ready for application or may need to be assembled to make a particular product 

(Gibson et al., 2021). 
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When deciding which AM process to use for building an object, material selection 

is crucial in the decision-making process. Selecting the appropriate material depends on its 

availability and its properties. The availability of AM materials and their development are 

highly dependent on the market demand and the economic factors that are determined by 

the application value (D. Patel & Chen, 2022). 

Various AM materials are utilized to manufacture products layer-by-layer, and 

these materials are the main requirement of additive manufacturing technology. Many 

industries around the globe, including aerospace, automotive, healthcare, and consumer 

products, are taking advantage of AM. A broad range of materials is available, and 

manufacturers are producing more and more new materials daily per increasing 

demand(Alami et al., 2023). These materials include thermoplastics, metals, biocompatible 

resins, and advanced composites. Manufacturing sustainable products requires identifying 

AM materials that are suitable for the manufacturing process. The material selection 

procedure is considered complex because of the various processing parameters and criteria 

(e.g., performance-related or cost, etc.) involved (Malaga et al., 2022). 

The choice of materials is of utmost importance in the design process of structural 

components. It becomes crucial for designers or decision-makers to select the appropriate 

material from various options due to the rapid progress of technology (YADAV et al., 

2019) The selection of the best materials helps increase quality and extend the product life 

cycle, whereas inadequate selection might result in sudden failure. The selection process 

typically considers several significant criteria, such as physical properties (density, etc.), 

mechanical features, wear and durability, material cost, environmental concerns associated 

with materials, aesthetics, and recyclability (P. Chatterjee et al., 2018). When choosing 

suitable material for developing or designing a new product from a large option or set of 

materials, designers face challenges because of the conflicting criteria. This finally creates 

a strong relation between the decision of materials selection and multi-criteria decision-

making (MCDM) methods (Siva Bhaskar & Khan, 2022). 

MCDM methods are a set of mathematical techniques applied to address 

complicated MCDM problems. These problems frequently occur in practical scenarios 
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when decision-makers must choose from a wide range of options with multiple criteria or 

dimensions. A few main MCDM methods were highly cited between the years 2021 and 

2022, such as Elimination and Choice Expressing Reality (ELECTRE), graph theory, 

Analytic Hierarchy Process (AHP) which is also used in AM by various researchers (Abas 

et al., 2023; Alghamdy et al., 2019; Armillotta, 2008; Kadkhoda-Ahmadi et al., 2019; L. 

Kumar & P. K., 2010; Liu et al., 2020; Mançanares et al., 2015; Zaman et al., 2018), 

Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), Analytic 

Network Process (ANP) which is also used in fibre based composite materials selection 

(Mastura et al., 2022), VIKOR, Decision Making Trial and Evaluation Laboratory 

(DEMATEL), Fuzzy Analytic Hierarchy Process (FUZZY AHP), Simple Additive 

Weighting (SAW), and Best Worst Method (Taherdoost & Madanchian, 2023c).  

The objective of MCDM is to determine the right choice of alternatives by 

considering the weights and priorities given by subject matter experts or decision-makers. 

MCDM problems are frequently shown using a matrix format. The matrix values or 

elements show the properties of an alternative according to the related criterion. The 

experts are thereafter required to assign priorities or weights to criteria by pairwise 

comparisons or the comparative weight given to each criterion in the decision-making 

procedure. A participant involved in judgment needs to ensure that the significance of each 

criterion has been well assessed and the alternatives are well chosen. Deciding on material 

selection requires the consideration of various criteria, including performance, durability, 

physical and technical characteristics, price of material, and environmental considerations. 

Because of the involvement of multiple values and properties for these criteria brings 

difficulty in comparing and assessing alternatives using just one parameter or a single value 

(Zakeri et al., 2023). 

1.2 AM Material Selection in Aerospace Industry 

The right materials selection is crucial to producing high-quality, stronger, lightweight, and 

high-fatigue strength parts in aerospace applications (Omidvarkarjan et al., 2023). The 

aerospace sector was one of the early adopters of AM when 3D Systems, a world-leading 

AM company, made a 3D printer in the 1980s. Many companies in Europe and the USA, 
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such as Pratt & Whitney, started their manufacturing of aerospace components using AM 

(Gibson et al., 2021). In the 1990s, polymer materials were initially used by Boeing to 

produce non-structural uses, but since then, the company has been using both metals and 

plastic materials in their production of end-user parts. To date, more than 50,000 aerospace 

parts manufactured by Boeing have been incorporated into military and commercial aircraft 

(Wohlers Associates, 2020). Space companies such as ESA, SpaceX and NASA also use 

parts manufactured by AM in their space vehicles and rockets (Sacco & Moon, 2019). 

Several factors are involved while choosing AM materials, such as functional and 

structural needs, environmental considerations, and lowering maintenance and 

manufacturing costs (Zaharia et al., 2023). To minimize the environmental concerns (such 

as carbon emissions), saving fuel cost and meeting the safety regulations, materials must 

possess the combination of lightweight and high strength properties (Cruz & Borille, 2017). 

As the aerospace industry grows rapidly, the environmental problems have also increased. 

To overcome this issue, aerospace manufacturers are prioritizing alternate lightweight 

materials to minimize the environmental impact. Various AM materials can be used in AM 

technology according to their compatibility. Metallic (such as titanium, steel, aluminum, 

and nickel-based alloys) and non-metallic (such as thermoplastics) materials in AM 

techniques are used for aerospace applications. Metallic materials are best known for their 

high strength and are an excellent choice when high-temperature resistance and thermal 

conductivity are required. The issues with metallic materials are heavy weight, low 

corrosion resistance, high costs, low availability and limited AM processes. The aerospace 

industry uses metal alloys to produce jet engine parts, airframes, propulsion systems, rocket 

parts and other structural components. The AM of non-metallic parts mainly includes the 

production using polymer materials such as Acrylonitrile butadiene-styrene (ABS), most 

commonly used, Polycarbonate (PC), an engineering grade industrial material, Polyether 

ether ketone (PEEK), an ultra-performance material, Polyethylene terephthalate glycol 

(PETG), etc. These polymer materials are utilized in various applications, from prototyping 

to end-use parts such as cabin & interior parts, unmanned aerial vehicles (UAV) or drone 

parts (Cruz & Borille, 2017). FDM technology is well known for processing polymer 

materials through the MEX process. This technology is fast and provides low-cost 

manufacturing of complex parts of UAVs(Klippstein et al., 2018). In a recent development, 
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Aurora Flight Sciences, a US-based UAV manufacturer, built an aircraft using 80% of its 

parts manufactured by AM using FDM technology. Lightweight thermoplastic materials 

were also used to achieve speed and reduce the overall weight to just 14 kg(Aaron Pearson, 

2020). 

1.3 Research Gap 

Based on the limitations of studies in literature review, the research gap was drawn 

• Selecting suitable materials for the aerospace industry is complex due to the 

diverse range of available materials. 

• MCDM techniques have shown potential in material selection. However, the 

combined application of AHP-TOPSIS (MCDM) specifically for aerospace 

functional parts using AM remains unexplored. 

• Various studies are available pertaining to the selection of AM processes 

neglecting materials’ selection. 

• AM material selection considering environmental criteria are rare. 

• A comprehensive material selection strategy employing MCDM methods is 

needed. 

1.4 Problem Statement 

Additive manufacturing has emerged as a transformative technology and providing 

significant benefits to the industry in terms of design flexibility, weight reduction, and cost 

savings in aerospace industry. Full potential of AM is not being obtained due to improper 

selection of materials. The wide range of material options is available in AM which 

necessitates a systematic approach that may account multiple criteria such as mechanical 

properties, cost, weight, durability, recyclability and environmental factors. Failure to 

consider these factors comprehensively may result in suboptimal material choices and less 

environment-friendly materials. 
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1.5 Research Questions 

The primary aim of this research is to select the appropriate AM materials for 

aerospace applications. The following research questions have been developed to achieve 

the goal: 

Question 1: What are the critical criteria for selecting materials in additive 

manufacturing for aerospace applications? 

Question 2: What are the suitable materials in AM available for aerospace? 

Question 3: How can the weightage of finalized criteria be determined and rank the 

materials with MCDM methods? 

Question 4: How can the materials’ ranking order change by changing criteria 

importance? 

1.6 Research Objectives 

The research objectives of study are: 

i. To identify and establish the criteria including environment conscious 

criteria for the selection of materials in AM for aerospace 

ii. To identify suitable materials available in AM 

iii. To determine the weightage of the finalized criteria and rank the materials 

using MCDM methods 

iv. To analyze the rank changing by varying the criteria weights 

1.7 Thesis Structure 

This thesis is structured into six chapters as follows: 

1.7.1 Chapter 1: Introduction 

This chapter provides an overview of the study, presenting the background, 

problem statement, research objectives, and research questions. It sets the context for the 
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research by highlighting the importance of material selection in additive manufacturing for 

aerospace applications and the need for a comprehensive evaluation framework. 

1.7.2 Chapter 2: Literature Review 

An extensive review of the existing literature related to material selection, additive 

manufacturing, and multi-criteria decision-making (MCDM) methods was done. This 

chapter examines previous studies on AM processes, material selection and MCDM 

approaches to identify gaps in the literature and provides a theoretical foundation for the 

research. 

1.7.3 Chapter 3: Research Methodology 

This chapter covers the research methodology employed in the study. It describes 

the research design, the selection, and characteristics of research participants, and the 

MCDM techniques used, specifically focusing on the Analytic Hierarchy Process (AHP) 

and the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). 

1.7.4 Chapter 4: Application 

This chapter presents an industrial case study in the aerospace sector. It outlines the 

criteria relevant to aerospace applications and describes the procedure for selecting these 

criteria. The chapter also details how these criteria are applied to the case study, 

demonstrating the practical implementation of the research framework. 

1.7.5 Chapter 5: Results and Analysis 

This chapter explains the findings of the study and discusses their implications. The 

results of the material selection process using the combined AHP-TOPSIS approach are 

presented, and their significance is analyzed in the context of aerospace applications. 

1.7.6 Chapter 6: Conclusion and Recommendations 

This chapter summarizes the key findings of the study and offers recommendations 

based on the results. It reflects on the research objectives and questions, discusses the 
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contributions of the study to the field of additive manufacturing, and suggests directions 

for future research.  
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CHAPTER 2: LITERATURE REVIEW 

2.1 Additive Manufacturing Process 

Although there are many different types of additive manufacturing (AM) processes 

discussed in the literature and will be addressed later on, but all AM processes follow the 

same workflow from the design phase to build phase. An eight-step method for additive 

manufacturing is depicted by Gibson et al. (2021), as seen in the Figure 1. 

 

Figure 1: Workflow of an AM process from CAD to final part for use (Gibson et al., 2021) 

2.1.1 CAD Model 

Computer-Aided Design (CAD) model is the first step for an any AM process 

which plays a crucial role in AM. It is utilized for creating and evaluating 3D models 

suitable for practical applications. This 3D model helps to define the part’s surface 

boundaries, external & internal geometry, and tolerances. AutoCAD, SolidWorks and Creo 

are the main CAD software products for professional use and commonly used across 

industries. 

2.1.2 STL File Creation 

After creating the CAD file of the part, the next step is conversion of this file to 

STL (Standard Tessellation Language / Stereolithography) which is a triangulated 
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representation of the 3D model. STL file describes the surface geometry of the part or 

object using a series of interconnected triangles. It also represents outer closed surfaces of 

the originally created 3D model and serves as the foundation for calculating the individual 

slices. Converting to STL is a crucial step to verify that all surfaces are completely specified 

and enclosed. 

2.1.3 Slicing and Transferring of File 

By using slicing software, an STL file is transformed into several thin layers and 

produces a set of code-driven instructions for the AM machine. Slicing software comprises 

front-end and back-end components. The front-end facilitates user interaction and 

visualization of the CAD model and G-code, while the back end manages the logic and 

processing of data flow in AM. The sliced file is divided into layers and contains 

information pertaining to the material to be utilized in the layer-by-layer deposition 

process, layer height, AM machine's nozzle settings and machine configurations. Software 

also facilitates the use of support structures for objects, infill patterns, adjustments of 

density, and other configurations which affect the print quality and structural integrity 

(Fabheads). 

2.1.4 AM Machine Setup 

Before starting the AM process, it is necessary to properly configure the machine. 

These configurations or settings would apply to manufacturing parameters such as power 

source, material feedstock, calibration, speed or feed rate of machine, slice height, safety 

checkups, environmental controls to avoid humidity and warping issues. 

2.1.5 Building the part 

Once the AM machine is set at desired parameters, part will be built in an automatic 

process with minimal supervision. At this point, a basic level of monitoring is enough to 

prevent any problems like power disruption, software malfunctions or shortage of material. 
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2.1.6 Removal  

This step includes the removal of objects from machine after completion of build 

process. During this stage, it may be required to work on AM machine, which may have 

safety interlocks installed. These interlocks are used to check that specific requirements are 

fulfilled prior to the removal procedure, such as ensuring that the temperature has 

decreased or that there are no active machine parts that may pose a danger. Implementing 

these safety procedures is essential for the safety of both the operator and the installed 

system. 

2.1.7 Post-Processing 

After the AM process, the newly manufactured object may need some extra work 

or treatment to meet the quality standards and design specifications. This includes heat 

treatment to enhance the mechanical properties, surface finish to improve surface quality 

and aesthetics, UV curing and supports removal. After this step the part becomes ready for 

use.  

2.2 Materials in AM Processes 

2.2.1 Material Extrusion (MeX) 

Material Extrusion (MeX) process commonly uses polymer materials such as 

thermoplastics in its feedstock to build a 3D object. This process involves pushing a 

material continuously through a tiny orifice or heated nozzle and material in feedstock 

deposits layer by layer to create parts of a 3D model. Commercially this process is also 

known as Fused Deposition Modelling (FDM) which is the most famous technology of 

AM. In 1990, an American based AM company Stratasys, Ltd. commercialized the FDM 

technology, originally developed by S. Scott Crump through an US patent (Scott Crump, 

1992). This is now second most used technology in AM (Choong, 2022). When using FDM 

technology, it is important to consider that the presence of air gaps in layers, filament 

material orientation, breadth and layer height are the main factors which can affect 

mechanical properties of the part. Platform in the material extrusion must be heated 

properly and fillets should be incorporated in sharp corners to mitigate the risk of warpage 
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(Mohamed et al., 2015). A wide range of polymeric materials for different applications are 

used in MeX such as PP (Polypropylene) a flexible material, Polycarbonate (PC) having 

high tensile strength, ABS (acrylonitrile butadiene styrene) used for general purpose 

applications, Polyethylene terephthalate glycol (PETG) usually used in bottle 

manufacturing, (PA / Nylon) Polyamide a tough material, and PPSF (Polyphenylsulfone) 

etc. are among common materials used in this process. (Choong, 2022; Haghighi, 2023; 

Saleh Alghamdi et al., 2021). The FDM technology has been extensively embraced by 

various sectors such as hobbyists, academics, manufacturing industries, and consumers for 

fabricating prototypes, scale models, end-user products and working components using 

general and high-performance thermoplastics. This is because it is reliable, inexpensive, 

and simple (Daminabo et al., 2020; Penumakala et al., 2020). For some applications, MeX 

might be a more cost-effective option than traditional processes such as injection molding, 

especially in low-volume scenarios (Chua & Leong, 2016) 

2.2.2 Vat Photopolymerization (VPP) 

In this AM technology, polymerization of liquid photopolymers takes place in a vat 

through UV laser beam or light source to form objects. VPP technology is categorized into 

two categories which are “top-down” and “bottom-up” configuration. The latter 

configuration uses curable resin from the base of the vat and then cures the resin layer-by-

layer by raising the build platform. In former configuration light or laser source placed 

above and cures each layer by descending the build platform. Recent study indicates that 

for some parts geometries being fabricated such as the ratio of 
𝑙𝑒𝑛𝑔𝑡ℎ

𝑤𝑖𝑑𝑡ℎ
⁄ > 2, the 

“bottom-up” and “top-down” configurations could bring different results. The parts 

fabricated using “bottom-up” method may have more failures Click or tap here to enter 

text.(Santoliquido et al., 2019). The main technologies in VPP are DLP (Digital light 

processing) which cures the area using light-emitting diodes (LEDs) or lamp as the UV 

source and SLA (Stereolithography) which is an old technology and broadly used in AM 

invented by Charles W. Hull and patented in 1986 (W. Hull, 1986). Polymer based UV 

resin used in VPP process and divided into six categories that are standard resins, structural 

(Grey pro), elastic & flexible (Elastomeric polyurethane & flexible polyurethane), tough 

& durable (polypropylene & ABS-like), ceramic and castable Wax (filled with silica & 
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20% wax), bioinks (hydrogel) and biocompatible (dental resins) (Pagac et al., 2021). 

VisiJet FTX Silver, VisiJet SL Clear, VisiJet SL Tough, VisiJet FTX Cast, E-Dent 100, E-

Guard and Accura 60 are the most common and well-known commercially available 

materials in SLA & DLP and manufactured by 3D Systems and EnvisionTEC (Choong, 

2022). VPP could be seen in water resources, robotics, tissue engineering, dental, 

automobile and aerospace applications (Pagac et al., 2021). 

2.2.3 Material Jetting (MJ) 

MJ is defined as “An additive manufacturing process in which droplets of build 

material are selectively deposited” (ASTM & ISO, 2021) MJ build objects through a 

process that closely resembles to 2D inkjet printer. The working principal of MJ is that the 

build material is filled into a container to heat the loaded material and convert it to the 

liquid form. The stream or droplets of liquefied build material is produced and emitted 

through a nozzle for the deposition at the exact location on a platform to create layers. The 

material spreads and undergoes through a process of curing or solidification when it lands 

on or next to the previously created layer. This process continues until the desired 3D shape 

or part is manufactured. MJ techniques combine the operation of melting and jetting 

simultaneously to avoid the overtime and extra costs associated with pre-processing (e.g. 

powder preparation in powder-based AM processes).  

Therefore, MJ technologies saves cost and give higher speed in comparison with 

other AM processes Click or tap here to enter text.(Gilani et al., 2023). Waxes and 

polymers (e.g., ABS-like, PP, MED610 & rubber-like) are suitable materials for this 

process because of the transformation of these materials into liquid form. But overall, the 

number of materials is limited to use in MJ. The main strength of this process is that it can 

print multiple materials at the same time and makes it perfect for prototypes that need to 

be practical with smooth surface finish and similar in the properties (thermal & mechanical) 

of part created with injection molding (Saleh Alghamdi et al., 2021). This strength of MJ 

also provides major possibilities for the development of novel materials for the broad range 

of AM applications and fabrication of microstructures (Ren et al., 2022). For instance, in a 
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study researchers designed and manufactured microfluidic circuits using the MJ process 

and materials (Sochol et al., 2016). 

2.2.4 Sheet Lamination (SL) 

SL is defined as “an AM process in which sheets of material are bonded to form 

an object” (ASTM & ISO, 2021) In SL both metal (Aluminum, titanium, copper etc.) and 

polymer materials as well as paper are used to create objects. There are few technologies 

that are subset of SL process including UAM (ultrasonic additive manufacturing) 

technology which processes metal sheets and bound together through ultrasonic welding, 

LOM (laminated object manufacturing) creates object using layer-by-layer approach, but 

the material used to manufacture is paper and instead of welding which bounds the material 

in UAM, paper bounds together using adhesive. In UAM post-processing is required to 

remove the extra material or unbounded material, mostly CNC machines used for post-

processing operations. Parts that are created by LOM technology are not a good choice for 

functional components, but parts or products can be used for visual and aesthetics models. 

The most common applications of LOM and UAM are full color architectural 

models/topography visualization and hybrid manufacturing respectively Click or tap here 

to enter text.(Dassault Systèmes). PSL (plastic sheet lamination) is another technology used 

in SL and processes polymers or plastic sheets such as PVC sheets which melt together by 

heat and pressure and do not require adhesive. Layer thickness of material influences the 

quality of manufactured parts in SL (Saleh Alghamdi et al., 2021). 

2.2.5 Powder Bed Fusion (PBF) 

It is defined as “An additive manufacturing process in which thermal energy 

selectively fuses regions of a powder bed” (ASTM & ISO, 2021). In the last few years, 

PBF process has grown and become an advanced technology in AM. The reason behind 

that it can manufacture highly valuable and complex parts at low cost that are not feasible 

to manufacture using traditional manufacturing methods. Aerospace and medical industry 

are the two top users of PBF to produce highly complex geometries at low production scale. 

PBF is also the most popular area of interest among researchers. In this process powder-

based materials are used to produce objects with no or minimal support structure. It enables 
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the selection of different materials including polymers, glass, metals, and their alloys in 

powder form. Recycling of material is also possible and one of its best qualities as the 

powder can be recycled (Leary, 2020; R. Singh et al., 2019). In PBF process, laser or 

electron beam works as a heat source to melt or fuse powder material and consolidates fine 

powder layer-by-layer to form 3D object. During the process, depending on the build 

material, manufacturing system operates at room temperature under Nitrogen or Argon 

environment. PBF process is further divided into different technologies based on heat 

source and material class used in each such as SLM (Selective Laser Melting) for metals, 

SLS (Selective Laser Sintering) for thermoplastics, EBM (Electron Beam Melting) both 

for metals and thermoplastics and MJF (MultiJet Fusion) for rigid and flexible 

thermoplastics and use infrared energy source. In metals nickel-based alloys (Inconel 625 

and Inconel 618), copper and bronze alloys, and Aluminum (AlSi10Mg) are most common 

in aerospace and biomedical. In polymers nylon with glass filled, polyamide, polyurethane 

powders are widely used to form parts. (Choong, 2022). 

2.2.6 Binder Jetting (BJ) 

 “An additive manufacturing process in which a liquid bonding agent is selectively 

deposited to join powder materials” (ASTM & ISO, 2021) In this process powder material 

is used which is placed on the powder bed and through moving inkjet nozzles, drops of 

adhesive material (usually glue) fall to bind the build material powder on platform. BJ is 

mostly used for metal materials but other materials such as ceramics and polymers can be 

used for fabricating 3D objects. In BJ process no support structures are required which 

saves the material and it has ability to create complex geometries at higher printing speed 

with high surface finish. Most common materials in BJ are stainless steel, glass, zircon, 

plaster-like and silica. Recent research showed that the molds printed using silica sand as 

printing material in BJ provides better properties, accuracy, and less harmful chemicals 

than the traditional method of making sand molds Click or tap here to enter text.(Hasbrouck 

et al., 2020). 
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2.2.7 Directed Energy Deposition (DED) 

This process is defined as “An additive manufacturing process in which focused 

thermal energy is used to fuse materials by melting as they are being deposited” (ASTM 

& ISO, 2021). DED process is similar to PBF, but it is most complex process and 

commonly used for the repairing or adding material into existing parts. In this process, 

build material melted using high energy sources such as electron beam or laser before the 

deposition through nozzle layer-by-layer. DED can process multiple materials at same time 

and most of the material class that is used in this process are metals such as cobalt chrome, 

nickel, zirconium, and titanium. The other commercially available technologies of DED 

are EBAM/BEAM (Electron beam additive manufacturing), (LENS) laser engineered net 

shaping and (DMD) direct metal deposition. Industries are adopting DED with hybrid 

manufacturing options. In a recent development US Airforce took repair services of an US 

based AM company Optomec for repair of titanium-based engine components of F22 

Raptor and F35 Lightning II using DED process which resulted in estimated more than 

80% costs saving (Watson, 2022). 

2.3 Classification of AM Materials 

In AM processes a diverse range of materials available and generally categorized 

into polymers, ceramics, and metals according to their bonding, structure, and strength. 

These classes of materials are further mixed with other materials to form the composites to 

get the desired properties and features through reinforcement. Initially in AM only waxes, 

polymers and paper laminates were used, but with the passage of time more developments 

were seen and now composites, ceramics, biomaterials, and metals are also being used for 

the manufacturing of functional parts(Srivastava et al., 2022) . Hence the AM fabricated 

parts are now having better accuracy, strength, and reliability. In AM, high quality 

materials usage that meet the stringent criteria requirements in process is important to 

fabricate accurate and reliable products. Various industries and researchers are seeking to 

expand the variety of AM materials for developing different products through AM 

(Kanishka & Acherjee, 2023). 

 



17 

2.3.1 Polymers 

Polymer materials could produce parts with complex geometries at the higher level 

of customization and flexibility, because of this reason polymers obtained a lot of attention 

in AM Click or tap here to enter text.(Park et al., 2022). High grade polymers mostly have 

good strength, resistance to corrosion, ease of processing, minimum thermal and electrical 

conductivity, wide range of colors, lightweight, toughness and affordability (Brinson & 

Brinson, 2015). As a result, polymer class is extensively used in AM, making them one of 

the most utilized materials classes. Polymers are further divided into three categories that 

are thermoplastics, elastomers, and thermosets. These materials can be processed in any 

physical form including liquid, solid, powder, sheets, or wire. Thermoplastics can be used 

for manufacturing when heated above their melting point and then phase change occurs 

from solid to liquid form. The cooling process retains the state of thermoplastics, and they 

are also conducive for recycling. Thermoplastics are mainly used for the materials 

extrusion technologies such as FDM while thermosets are used in liquid form for MJ 

technologies and regular UV-curable thermosets are used in VPP processes such as acrylics 

and epoxies. The chances of degradation with the passage of time are high for the parts 

printed from UV-curable thermosets and in that way, parts also become weak in 

mechanical characteristics (Bourell et al., 2017).  

The filaments of PLA (Polylactic acid) and ABS (Acrylonitrile butadiene styrene), 

PA (Nylon) and Polyethylene terephthalate glycol (PETG) are the most common 

thermoplastic materials use in MeX technologies due to their low melting points and 

acceptable mechanical properties. These popular AM materials are not suitable to be used 

for applications where higher levels of strength, thermal characteristics and durability are 

required. To overcome these issues in selection of thermoplastics for engineering or 

functional applications (e.g., aerospace, or automotive), researchers and AM companies 

have developed machines to process the engineering-grade and high-end materials such as 

PEEK (Polyether ether ketone) and polyamide (PEI) which process at higher temperatures 

and exhibits the excellent properties (thermal, mechanical & physical). These special 

materials also have good chemical resistance and not easily degrade (Peng et al., 2020). 
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2.3.2 Metals 

Contrary to polymer, metallic materials have less range and materials are limited in 

metal AM. Mostly metal materials are processed in traditional manufacturing methods to 

make parts. AM has lot of benefits if metal materials are used in compatible AM 

technologies which have abilities to form complex geometries, save costs and time. 

Industries such as biomedical, electrical, automotive, defense and aerospace can take 

advantage of the metal AM for producing functional parts that require high performance 

or working in extreme temperatures. The key advantages offered by metal AM includes 

better part quality with compared to parts manufactured by casting or forging and ability 

to print highly complex 3D shapes such as lattice or structures that are not easily 

manufactured by conventional methods. The manufacturing time is also reduced, extra 

costs is minimized because of the subtraction of traditional manufacturing steps such as 

assembly, cutting, and materials wastage (Gorsse et al., 2017).  

Literature has found in metal AM materials that are used for different applications 

for example titanium alloys have been used for the fabrication of implants and prostheses 

(Amaya-Rivas et al., 2024). In another study titanium-based alloy (Ti Al) is reported to 

produce more than 300 parts of GE9X engine which is most powerful jet engine, these 

additively manufactured parts installed in different sections of engine for Boeing 777X 

which resulted overall 10% of fuel saving, 25% cost cutting and 40% lightweight for each 

component (Armstrong et al., 2022; Blakey-Milner et al., 2021). The National Aeronautics 

and Space Administration (NASA) used Fe-Ni superalloy to develop their own AM 

material NASA HR-1for rocket engine. NASA HR-1 is excellent in fatigue strength, 

resistance to corrosion, elongation, resistance to hydrogen and thermal properties (Gradl et 

al., 2021). SpaceX has adopted AM technology and produced engine chambers of its Super 

Darco rockets using Inconel material, a metal superalloy that is used for high stress 

applications. After multiple tests of this additively manufactured component, SpaceX 

approved the rocket’s engine for human flight (Sher, 2019). The construction industry is 

also benefited by AM, a Dutch company MX3D constructed 3D printed world’s first 

footbridge which has 10.5 meters span. Stainless steel AM material (308 LSi) was used in 

metal AM process and resulted in saving time and cost (Gardner et al., 2020). 
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2.3.3 Ceramics 

The AM of ceramic materials with compared to polymer and metal materials is in 

early stages, but it has attained significant attention of researchers in this area (Cramer et 

al., 2022; Wu et al., 2023). The addition of ceramics in AM has increased the prospects for 

the practical applications and gave the hope to industries or manufacturers to print the 

complex parts that are not possible through traditional methods such as tape casting, 

ceramic injection molding and slip casting. Manufacturing through these traditional 

techniques involves consuming lot of time in process and costs. The post processing 

methods drilling and milling are also required which affects the properties of ceramic-built 

part because of its brittle nature and lead to significant costs. Parts with interconnected 

channels and high complexity are unfeasible to manufacture through molding methods. By 

considering all these concerns researchers and scientists or AM materials manufacturers 

has introduced ceramic materials to provide characteristics such as high strength properties, 

hardness, heat and chemical resistance, insulation, and compatibility with living tissues for 

uses in aerospace, automobile, defense, and power sectors (Bai et al., 2023). Ceramics 

materials have been extensively used in the production of electronics equipment due to its 

higher insulation characteristics. The chances of expansion in ceramics are also very low 

and maintains the shape even in changing temperatures because they have low thermal 

expansion coefficients. They are also resistant to wear, friction, and corrosion with offering 

excellent mechanical properties which attract the industries especially aerospace, nuclear 

power sector and automotive (Saha & Mallik, 2021). 

There are two main methods to process ceramic materials, one is single step or 

direct and the second method is multi-step and indirect process. In multi-step method, the 

final part needs post-processing steps that are de-binding and sintering of formed green 

body, while single step method sinters the ceramic material directly to create a final part. 

(Lakhdar et al., 2021). Mainly two AM processes Powder based fusion (PBF) and Binder 

jetting (BJ) are used in ceramics AM. Common materials are zirconia, silicon carbide, 

alumina, boron carbide, hydroxyapatite, porcelain, and nitride aluminum. Zirconia 

ceramics materials are used for dental applications and processed in AM technologies such 

as SLA, inkjet and BJT. A new AM process “IntrinSIC” has been developed by Schunk 
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Group for printing complex parts with maximizing the part quality (Wätjen et al., 2014). 

Alumina has been widely used for structural applications because of its excellent hardness, 

thermal properties and affordable. Silicon nitride and silicon carbide materials have 

attained considerable attention as very strong materials, especially in aerospace, because 

denser parts with excellent mechanical properties are required. Hydroxyapatite and bio-

glasses are biocompatible materials used to produce implants and synthetic bone grafts 

(Dadkhah et al., 2023). 

2.4 Materials Selection 

There are various materials as mentioned previously in the materials section that 

have been developed for additive manufacturing and commercially available for usage in 

multiple industries according to their need. The appropriate selection of material becomes 

difficult for the manufacturer or designer from the large pool of materials available in 

market. The right materials selection has great importance in the new product development 

and manufacturing environment. This task is time-consuming and careful considerations 

are required, because there are complex relationships between various conflicting criteria 

for choosing the best alternative. Appropriate selection also has an impact on 

manufacturing costs which govern the competitive position of the industries. The kind of 

material used in a manufacturing process to create a product determines its performance, 

quality, weight, reliability, and robustness. For example, weight is the most important 

factor in the aerospace industry and selection of materials must have the criteria to reduce 

the weight of a component or product (Emovon & Oghenenyerovwho, 2020). The main 

aspects that need to be considered during the material selection process are the mechanical, 

physical, environmental, durability, cost, and the manufacturing capabilities. The selection 

criteria and their significance vary depending on the sector in which the material is used. 

Research and development are increasing at rapid pace and in a result number of 

alternatives (materials) with different characteristics is also increased (Ajith et al., 2022). 

High production costs are incurred due to the inappropriate choice of materials. Many 

resources are allocated by industries towards lowering costs initiatives such as process 

innovations to stay in competition, the presence of higher production costs clearly hinders 

these attempts. Furthermore, poor material selection might result in decreased productivity, 
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unfavorable design, dissatisfied customers, operational breakdowns, and unsatisfactory 

performance (S. Chatterjee & Chakraborty, 2021) In this scenario, a multicriteria analysis 

is crucial for the selection of materials. Materials could not be selected as individual 

without the consideration of other factors such as related process for material shaping, 

assembly, associated costs and environmental impact of production and application both 

Click or tap here to enter text.(Zheng et al., 2023b). The individuals that are involved in 

the decision-making process must possess a deep knowledge of the functional requirements 

of each component and a strong understanding of the criteria associated with a particular 

application to choose the most suitable material from a wide range of alternatives, each 

with unique properties, uses, strengths, and limitations.  

An online database of AM materials Senvol has reported a total of 4186 AM 

materials by various manufacturers in their records till date and this wide range of materials 

are available to engineers and designers. The continuous emergence of novel materials with 

unique properties has extended the range of alternatives and posed a challenge for designers 

to decide the best material for their purpose and meet their needs (Senvol, 2024; Zheng et 

al., 2023a). In some designs, selected criteria are required to minimize or maximize by 

decision makers for example while designing a part the criteria of its durability should be 

maximized, costs and environmental impact should be minimized. Additionally, the 

materials also have different properties which makes the selection process more 

complicated. This process complexity is also because of the two reasons as highlighted in 

some studies. First, thorough comprehension is required regarding the uses, performance, 

strengths and shortcomings of various materials and their impact on the quality and 

characteristics of manufactured part, which is challenging task. Second, several materials 

within the same material class might exhibit significant overlapping similarities in terms 

of properties, limitations, performance, and suitability, which further makes the materials 

selection process difficult (Rodrigues, Bairrão, et al., 2022; Rodrigues, Cipriano Farias, et 

al., 2022). In that context, a decision methodology is required for this tedious material 

choosing task (Şahin, 2023). In various studies researchers used and developed different 

tools for the materials selection and presented this as a multi-criteria decision making 

(MCDM) problem.  
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2.5 MCDM Methods for Selection and Ranking 

MCDM is a subfield within the domain of operations research focuses on the 

comprehensive assessment of various conflicting criteria during the decision-making 

process (A. Kumar et al., 2017). First developed in the 1970s and until now more than 60 

methods have been established (Więckowski et al., 2023). MCDM methods have gained 

significant attention from researchers and can be further divided mainly into two categories 

that are multi-objective decision making (MODM) and second is multi-attribute decision 

making (MADM). In MODM, multiple objectives are optimized simultaneously by 

considering the preferences and constraints from the decision maker (A. Singh & Kumar 

Malik, 2014). It is particularly useful in situations where there are a large or infinite number 

of alternatives and multiple, often conflicting, objectives that need to be balanced, such as 

in resource allocation, project selection, or environmental management. On the other hand, 

in MADM, the appropriate alternative is selected from a predetermined set of alternatives 

depending on their properties with the single goal of choosing the best option. Limited 

number of alternatives are typically used for problems in MADM methods and are known 

for their ability to provide a ranking of alternatives based on their overall performance 

(Rao, 2007).  Within the field of MCDM, various strategies have been devised, each with 

its own analytical models or frameworks, information criteria, underlying suppositions, 

and decisions (Aruldoss et al., 2013). The selection of the most suitable methodologies is 

of paramount importance to figure out the problem under investigation. Otherwise, opting 

for an unsuitable methodology may lead to improper selections. As a result, financial losses 

could occur due to poor decisions. Hence, the selection of the most suitable method to 

tackle the problem is of utmost importance and requires careful consideration to choose 

from the extensive range of MCDM approaches available. The MCDM approaches are 

used in literature for industry problems such as AM process selection (Mançanares et al., 

2015), supplier selection (Ashish Vishnu et al., 2018), material selection (Babu et al., 

2017), and facility location selection (Liang & Wang, 1991), capacity allocation (Kang, 

2011). Still, MCDM approaches have advantages and disadvantages. All the alternatives 

(materials) that are being considered are evaluated in terms of their strengths and 

weaknesses by comparing them with each other and then ranked according to the technical, 

environmental, and economic criteria. This evaluation is carried out with the help of 
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MCDM methods (Kappenthuler & Seeger, 2020) In addition to the properties of materials, 

MCDM approaches can also be applied for the evaluation of appropriate solution for the 

manufacturing processes and ranking the solutions according to how well they perform in 

terms of required attributes Click or tap here to enter text.(Ghaleb et al., 2020).  There are 

MCDM methods that are designed to assist decision makers to solve complex AM 

materials selection problems. These approaches are employed to offer the best solution to 

the modern decision-making problems that include multiple criteria and alternatives 

(Ceballos et al., 2016). Various researchers and studies discussed the MCDM approaches 

with their use for different kinds of applications. For instance, the tools of MCDM used for 

decision making processes are AHP (analytic hierarchy process), FAHP (fuzzy analytic 

hierarchy process), TOPSIS (technique for order performance by similarity to ideal 

solution) and COPRAS (complex proportional assessment), DEMATEL (decision making 

trial and evaluation laboratory) etc., (A. Kumar et al., 2017). DEMATEL, TOPSIS and 

FAHP methods are found in literature used for AM applications (Durão et al., 2018; Z. J. 

Wang, 2018). Apart from that, MCDM methodologies are also used in various sectors and 

captured a lot of attention within the domains of strategic management (Mardani et al., 

2015; Radmehr et al., 2022), sustainable supplier selection (Amindoust et al., 2012; 

Karakoç et al., 2024), inventory management (de Assis et al., 2019), green supply chain 

management (Banasik et al., 2018; Paul et al., 2021), product planning and development 

(W.-C. Chen et al., 2022). The Fuzzy TOPSIS method is also employed for facility layout 

planning and design and failure modes and effects analysis (FMEA) risk evaluation 

(Nenzhelele et al., 2023; P. Sharma & Singhal, 2017; Vahdani et al., 2015). 

MCDM methods are widely used by authors in various research studies and 

literature for several applications including AM. These methods are used to help decision 

makers consider all criteria or objectives simultaneously to rank or select the best 

alternative. Below is a brief overview of different MCDM approaches frequently used in 

literature including in material selection and additive manufacturing applications. These 

methods were also compared with each other to create a proposed MCDM framework that 

can be used for decision-makers to choose the best alternative efficiently from the available 

large pool of options. This section also presents the hybrid MCDM methods as studied in 

the literature reviewed. 
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2.5.1 AHP: 

For solving the material selection problems AHP method has been widely used and 

found beneficial by researchers (Huang et al., 2011; Jahan et al., 2011; Roth et al., 1994). 

This method was developed by Thomas Saaty and starts by the decomposition of decisions 

into hierarchical framework which consist of goal on top level and then criteria and 

alternatives (T. Saaty, 2001; T. L. Saaty, 1990. When compared to other MCDM methods 

the advantages of AHP method are ease of use, flexibility, ability to convert verbal 

judgments into quantifiable format, assurance of consistency and ability to provide 

efficient solutions to a real world complex hierarchical problem (Hambali et al., 2010; 

Ishizaka & Labib, 2011. Because AHP method is dependent on the decision maker’s criteria 

judgments, understanding, intellect, intentions, it lies in the category of subjective 

weighting approaches which uses experts’ level of knowledge and expertise. These 

methods are frequently employed when insufficient data is available and challenging to 

quantify (Zakeri et al., 2023. 

The pairwise comparisons in AHP method are used to simplify the process and 

conceptual complexity is reduced. These pairwise comparisons are performed between the 

identified criteria to create an evaluation framework for assigning weights to criteria and 

develop a hierarchy. Afterwards, the alternatives are prioritized according to their relative 

significance, with the most important one being listed first and the least important one 

being placed last (Uğur & Baykan, 2017. During the sensitivity analysis of AHP method 

for the selection of material in research, it showed that the material ranked by AHP is 

matched in 6 different sensitivity analysis approaches (Hambali et al., 2010. This method 

also gives a coherent hierarchal ranking of alternatives according to the importance given 

to the criteria (Zhao & Cheng, 2013).  The process of establishing criteria weights to 

address interdependencies within a system enables quick revision of assigning weights to 

check the consistency in the judgments by decision maker. This also allows to involve 

group of decision makers for group judgements when natural consensus cannot be reached, 

making AHP a valuable contribution in the domain of MCDM. Since the AHP approach is 

developed, it is used in numerous fields because this method has a strong mathematical 

algorithm and process of collecting data through pairwise comparisons. The areas include 
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management, engineering, economics, and sciences (Vaidya & Kumar, 2006). There is a 

diverse range of research studies seen in literature during past years. In a study, researchers 

replaced the conventional materials with the natural fiber materials to reduce the 

environmental impact. The AHP method was used for assigning weights to criteria and sub-

criteria then a software tool “Expert Choice” was used to compute the results. The fiber 

based composite material hemp-polypropylene (hemp + pp) was ranked first aligned with 

the industrial specifications and recommended to parts manufacturers in the automotive 

sector (Ali et al., 2015). In the context of additive manufacturing AHP is used for solving 

multiple problems and provided the optimal decisions. For example, AHP approach was 

used for the selection of AM process by (Bikas et al., 2021; Liu et al., 2020), AM machine 

selection (Raja et al., 2022), evaluation and selection of alternative mechanical system 

(Psarommatis & Vosniakos, 2022), selection of adhesives for the bonding of AM built parts 

(Arenas et al., 2012), selection of parts suitable for AM (Foshammer et al., 2022; Muvunzi 

et al., 2021), selection of material-design-process (Hodonou et al., 2019), assessment of 

AM social impacts (Bappy et al., 2022), ranking of AM implementation factors (Sonar et 

al., 2021), production scheduling in AM (Ransikarbum et al., 2020), 3D printed COVID-

19 mask design selection by (Rochman et al., 2021). 

2.5.2 ANP 

Analytic network process (ANP) is an expanded version of AHP that allows the 

exchange of information and interaction within and between clusters, resulting in an all-

encompassing tool for the decision-making process (Taherdoost & Madanchian, 2023b). 

Although AHP method is used in many scenarios to solve the complex problems, but the 

elements or criteria in this method are considered independently without consideration of 

possible interdependencies or interrelationships among them (Thomas & Sodenkamp, 

2010). Consequently, a new generalized approach was presented by (T. L. Saaty, 2006) to 

solve this problem. ANP consists of a generic form of decision model which uses network 

interactions between the criteria and alternatives which leads to better modeling of the 

complexity using networks (T. Saaty & Kułakowski, 2016). Since these interrelationships 

can be seen between any of the ANP decision model elements, this model will not remain 
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a hierarchy as in AHP, clusters substitute the levels of hierarchy and each cluster contains 

elements and form a network in ANP (Gonzalez-Urango et al., 2024).  

Material selection problems could be solved through the ANP approach. There is 

evidence in literature that some researchers used this method for material selection. For 

instance, it was discussed that how the material selection process for non-metallic gear is 

a network problem and criteria and alternatives have interdependencies as opposed to the 

classic AHP (Milani et al., 2013). The ANP method was applied to help designer in 

choosing the sustainable materials to minimize environmental impact (Mahmoudkelaye et 

al., 2018). Some other researchers used the ANP approach with other MCDM techniques. 

In the field of additive manufacturing, selection of natural fibers was carried out using the 

integration of AHP and ANP methods for the AM technology FDM (Mastura et al., 2022). 

2.5.3 TOPSIS 

TOPSIS is a well-known and widely used MADM method for solving the decision-

making problems and it was developed by (Hwang & Yoon, 1981). This method is 

categorized in the distance based MCDM methods. The rationale underlying the TOPSIS 

method is very logical and easily comprehensible, so the mathematical calculations in this 

method are more precise and straightforward. There are numerous research papers 

available in literature in which researchers used a single TOPSIS approach or integrated 

with any other MCDM method. Basically, the logic behind this method is that the ranked 

alternative should have least distance from the ideal solution and greatest distance from the 

negative or worst ideal solution (Swain, 2014). For the material selection problems, 

TOPSIS is an excellent choice because it allows many alternatives (materials) and the 

criteria. Therefore, TOPSIS can effectively provide realistic modelling approach and an 

optimal decision to a decision maker through measurement of distance (Rahim et al., 2020). 

In a study, researchers used TOPSIS method to rank the biodegradable composite 

materials (Jha et al., 2018). A methodological tool was developed by (Shanian & Savadogo, 

2006c) to assist the designer in the selection of appropriate material based on required 

criteria for metallic bipolar plates for PEFC. In another study material selection 

methodology was proposed for the paper making industry using TOPSIS (Anupam et al., 
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2014). In the field of additive manufacturing, TOPSIS studies in literature were also found 

such as AM process and technology selection by (Iç, 2012; Saxena et al., 2021; Yildiz & 

Uğur, 2018), AM machine selection (Raja & Rajan, 2022), part orientation (Yu et al., 

2019), prioritization of sustainable AM challenges (Alsaadi, 2021), AM process parameter 

optimization by (Kamaal et al., 2021; M. et al., 2021). 

2.5.4 BWM 

The best worst method (BWM) is a latest, but a popular and advanced MCDM 

approach (Kheybari & Ishizaka, 2022). The method was developed by (Rezaei, 2015) to 

address some limitation of the AHP method, which used to solve the decision-making 

problem using the large number of pair-wise comparisons. The BWM method is used to 

solve the complex problems which helps decision makers in better comprehension of 

problem (van de Kaa et al., 2020). The number of comparisons in BWM are reduced to 2n-

3, which enhances its usability. By using the small numbers of comparisons, the user 

chooses the best and worst criteria, afterwards by pairwise comparisons user compares the 

best criterion with each individual criterion, as well as comparing each criterion with the 

worst. (Rezaei, 2015). By eliminating the redundant comparisons during the decision-

making process enhances the consistency of the results (Pamučar et al., 2020).  

The BWM method is utilized for different areas such as in supply chain 

management by (Badri et al., 2017), evaluating the firm’s performance (Salimi & Rezaei, 

2018), segmentation of suppliers (Rezaei et al., 2015), facility location selection (Kheybari 

et al., 2019), sustainability assessment in an aircraft company (Raj & Srivastava, 2018) and 

evaluation of key success factors in remotely-piloted helicopters (RPH) industry (Ghaffari 

et al., 2017). In AM context only one study found in literature that used BWM method for 

the selection of suitable AM machine (Palanisamy et al., 2020). 

2.5.5 PROMETHEE 

The PROMETHEE (preference ranking organization method for enrichment 

evaluation) approach was first proposed by (Brans et al., 1986), and this method belongs 

to the category of outranking MCDM methods. In this class of methods, the decision maker 



28 

compares the alternatives pairwise and assigns a level of preference based on the criteria. 

The PROMETHEE method provides a practical procedure to solve complex MCDM 

problems through partial and comprehensive ranking. The method is very useful in 

complex decision-making environments especially when the criteria are difficult to 

quantify, and decision makers need to compare alternatives based on various criteria 

(Taherdoost & Madanchian, 2023d). Multiple variants of PROMETHEE have been 

developed, each possess its own strengths, properties, and requirements. PROMETHEE I 

and II variants are the most used methods in literature, latter used for the partial ranking 

based on one criterion while the former used for full alternative ranking problems based on 

multiple criteria. PROMETHEE III is designed for ranking based on intervals, whereas IV 

is intended for continuous situations. PROMETHEE V is specifically designed to handle 

problems related to segmentation constraints, while VI focuses on the depiction of human 

brain (Glavinovic & Vukic, 2023). In the material selection problems, PROMETHEE I, II 

and PROMETHEE-GAIA (Brans et al., 2005; Maity & Chakraborty, 2013; Zindani & 

Kumar, 2018) variant have been seen in literature, while the other versions are not reported 

in material selection field. PROMETHEE does not provide specific instructions for 

determining the weight of factors and instead depends on the decision makers to use 

acceptable aggregation criteria. However, incorporating the recommended material from 

PROMETHEE would theoretically enhance the performance and efficiency of the 

application (Rahim et al., 2020). In literature there was no study found using single 

PROMETHEE approach for AM applications. 

2.5.6 ELECTRE 

Like PROMETHEE method, ELECTRE an acronym of ÉLimination Et Choix 

Traduisant la REalité (Elimination and Choice Translating Reality) is also an outranking 

method and belongs to MCDM family. ELECTRE was developed by Benayoun, Roy and 

Sussman in 1960s at a European consultancy company SEMA to solve a real-world 

complex problem (Govindan & Jepsen, 2016). The ELECTRE method is employed to 

eliminate alternatives that do not satisfy the criteria and then the right alternatives are 

generated (Siregar et al., 2021). Further variants of ELECTRE are developed and used by 

researchers in literature such as ELECTRE I, II, III, IV, IS, TRI, TRI-B, and TRI-nC 
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methods. Each method is used for different kinds of decision problems, but the concepts 

behind all methods are the same. Research showed that ELECTRE I appear to be well-

suited for assignment kind of problems and other for the ranking problems especially 

ELECTRE III, a most suitable and used method for different applications (Mary et al., 

2016). 

In the field of materials selection, ELECTRE method was used to select the best 

material for thermal loaded conductor and results showed a good agreement between the 

past research and used methods (Shanian & Savadogo, 2006a). The ELECTRE IV method 

was used to pick the optimal material for the bipolar plate of a polymer electrolyte fuel cell 

by. This solution made it possible to eliminate the problem of optimizing the criteria one 

by one. The effect of changes was examined in the performance indices on the ranks of 

ranking of materials. The results were consistent with previous studies (Shanian & 

Savadogo, 2006b). ELECTRE III technique was applied to solve the problem of selecting 

the best material for a spur gear. The material’s performance indices and specific 

characteristics were evaluated. This method gave different solutions in each case. Results 

differed in terms of ranking when low, mid, and high limits were applied for the criteria. 

The ELECTRE III method considered the uncertainty and incompleteness of the available 

material data. It was determined that the decision maker’s uncertainty in deciding the 

weights may be eliminated by considering the iterative process of dilation and focus 

(Milani & Shanian, 2006).  

However, ELECTRE methods have a significant drawback which is that when the 

alternatives are increased, the complexity of calculations rises. Additionally, it does not 

provide a uniform measure of performance for each alternative; instead, it merely provides 

a ranked shortlist. In the context of AM, a study used ELECTRE method for the selection 

of plastic filament for a 3D printer and results showed virgin high-density polyethylene 

material as the best material among other alternatives (materials) (Exconde et al., 2019a). 

In another recent study employed the ELECTRE method for the selection of appropriate 

recycled material for 3D printing from waste plastic stream that consist of combination of 

polymers. Polyethylene terephthalate (PET) material was ranked as best material and 

surpassed all other plastic material in selection process (D. Zhou, 2022). 
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2.5.7 VIKOR 

VIKOR (Vise Kriterijumska Optimizacija I Kompromisno Resenje) is a well-

known MCDM approach to rank alternatives and identify the compromise solution that is 

most near to the “ideal” (Gul et al., 2016). VIKOR method is developed by Serafim 

Opricovic in 1990s to solve decision-making problems and achieve a multi-criteria 

enhancement of complex systems with criteria that cannot be compared or are 

incompatible. It is used to rank and choose the best alternatives in the presence of 

contradictory criteria. Alternatives can be ranked with various criteria weights and allow 

decision maker to evaluate how these weights influence the compromise solution. 

Decision-makers, in such a way, could minimize the trade-off on achieving the best 

alternative (Opricovic & Tzeng, 2004). VIKOR method can be recommended as the most 

suitable approach for the selection and ranking for the large-scale decision-making 

environments (Ahmed & Majid, 2019). 

The VIKOR method is similar with some concepts of TOPSIS, but there are some 

differences between two methods. TOSPIS uses vector normalization while VIKOR uses 

linear normalization (Taherdoost & Madanchian, 2023a). The appropriate alternative is 

selected and ranked by only considering the closeness to ideal solution. Whereas TOPSIS 

uses both the ideal and non-ideal solutions. When the objective is to achieve a value that is 

as close to the ideal value then the usage of VIKOR method would be an efficient strategy 

(P. Chatterjee et al., 2009). In material selection problems VIKOR is a valuable tool and it 

assist designers when they are unable to articulate their preferences at the beginning of the 

product design phase (Zindani et al., 2020). In the field of AM, fuzzy VIKOR method was 

used to choose the AM technology in an agile environment and results showed that FDM 

technology as the best solution which was then accepted by decision-makers (Vinodh et 

al., 2014). The VIKOR method is also used for the optimization of process parameters for 

the FDM technology by using the ABS material and ranking the set of parameters (Raykar 

& D’Addona, 2020).  
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2.5.8 Hybrid Decision Methods for AM Problems 

Various researchers in literature also integrated two or more MCDM approaches 

simultaneously to solve the complex problem. Several publications have reported on the 

utilization of hybrid method in the field of AM and appeared as a notable development. 

Two or more methods are combined to increase their strength and minimize the limitations. 

Combined approaches also provide increased decision support, accuracy, robustness and 

enables more extensive decision analysis (Sahoo & Goswami, 2023). In AM, six MCDM 

methods were applied to select the appropriate AM process and then compared with each 

other. Research result showed that not all six approaches generated the same process 

rankings (Borille et al., 2010).  

A generic methodology was proposed by (Venkata Rao & Patel, 2010), two MCDM 

approaches AHP and PROMETHEE were used to choose the rapid prototyping system 

among six alternatives. Hybrid MCDM methodology was developed to select the AM 

process from four alternatives (FDM, LOM, SLA & SLS) by considering the sustainability 

concepts. Researcher found that FDM is best process, and combining SWARA and 

COPRAS decision methods helps decision makers and managers for easy implementation 

for manufacturing as well as reducing carbon dioxide emissions (Chandra et al., 2022). By 

considering the design for additive manufacturing (DfAM) guidelines, researchers 

developed a decision methodology combining AHP, DEMATEL and TOPSIS approaches 

for the selection of AM process and machines (Algunaid & Liu, 2022). AM process 

parameters were selected by using VIKOR-AHP method for FDM (Patil et al., 2022). Table 

1 is provided to present the MCDM approaches used for solving AM problems. 

Table 1: MCDM methods in AM 

Publication 
MCDM 

approach 

Application/Case 

study for selection 

No. of 

criteria 

No. of 

Alternatives 

(L. Kumar & 

P. K., 2010) 
AHP 

Generic (Rapid 

prototyping 

technology) 

17 6 

(Armillotta, 

2008) 
AHP 

Techniques for 

prototypes 

manufacturing 

11 16 
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(Kadkhoda-

Ahmadi et al., 

2019) 

AHP 
AM machine for car 

light bezel 
3 6 

(Khaleeq uz 

Zaman et al., 

2017) 

AHP 

Materials & Machine 

selection (Drilling grid 

case study) 

7 

(machines) 

6 

(materials) 

5 (machines) 

32 

(materials) 

(Malaga et al., 

2022) 
IEM-CODAS 

Materials for metal 

AM 
9 8 

(Mançanares et 

al., 2015) 
AHP 

AM Machine (3 case 

studies) 
6 45 

(Liu et al., 

2020) 
AHP 

AM Process Selection 

(Exhaust gas duct) 
5 12 

(Kek et al., 

2016) 
ANP-TOPSIS 

Rapid prototyping 

process selection 
25 4 

(Byun & Lee, 

2005) 
Modified 

TOPSIS 
Process Selection 6 6 

Liao et al. 

(2014) 

DEMATEL-

VIKOR 

Service Providers 

Selection 
12 6 

(Vahdani et al., 

2011) 

Fuzzy 

modified 

TOPSIS 

Process selection 4 6 

(Vinodh et al., 

2014) 

Fuzzy 

VIKOR 

AM technology 

selection (Pump 

impeller) 

5 3 

(Y. Wang et 

al., 2018) 

Modified 

TOPSIS 
Process Selection 4 10 

(Alghamdy et 

al., 2019) 
AHP 

Materials Selection 

(Car door Hinge) 
3 3 

(Abas et al., 

2023) 

AHP-

MARCOS 

Materials Selection 

(Ankle foot orthoses) 
11 7 

(Palanisamy et 

al., 2020) 
BWM 

Materials (Industrial 

Gasket) 
8 7 
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CHAPTER 3: RESEARCH METHODOLOGY 

3.1 Introduction 

This chapter presents a brief overview of the methodology used to evaluate material 

selection problem in additive manufacturing. Research methodology plays an essential role 

as an integral part in the process of conducting research. This section provides how this 

study has been conducted, sources of data, and type of data collection procedure. The 

methodology adopted, in this study, for appropriate material selection has two parts. In first 

part, relevant criteria that used to evaluate material selection problem were identified using 

literature review and expert interviews. Second part was to develop a framework for 

material selection using MCDM. Material selection consists of two MCDM approaches for 

the evaluation of criteria, assigning weights, selection and ranking of appropriate material. 

Developed framework has further divided into two stages, in first stage selected experts 

assigned weights to the criteria and in second stage the alternatives were ranked. 

3.2 Research Design 

The research design delineates the method by which various study components are 

integrated coherently and logically, assuring a comprehensive and successful approach to 

addressing the research problem. It serves as the blueprint for data collection, 

measurement, and data analysis (Saliya, 2022). “Research design is a set of methods and 

procedure using different variables by the researcher to handle the research problem 

efficiently”. The framework for a study is distinguished by various components and 

strategies. The research design process encompasses numerous interconnected decisions 

and gathering the relevant information for a research study (Sileyew, 2019). The type of 

research design can be varied. It could be either exploratory, explanatory, correlational or 

descriptive.  

The proposed research used descriptive research and focused on both the qualitative 

and quantitative types of data. The descriptive research design type analyzes the situation 

as it exists in its current state and identifies the attributes of a particular phenomenon 
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through observations. However, this type works independently without considering 

relationships between variables (Williams, 2011). 

3.3 Research Type 

The research can be categorized into two main types that are fundamental or basic 

and applied research. Fundamental research aims to broaden the current body of knowledge 

in a certain field and has a wide scope. It does not address the creation of a novel product, 

process improvement or solving a present problem. Whereas applied nature of research 

helps in identifying the practical solutions to specific problems by using accepted and well-

known theories or principles (Stewart, 2023). Therefore, this proposed research is applied 

research as the proposed framework is developed by integrating two well-known MCDM 

techniques and then applied on a real-world industrial application.  

3.4 Data Collection 

In research data collection refers to the systematic gathering information or data 

from various sources in order to address research problems, answering research questions, 

assessing outcomes, and predicting trends and probability. It is a crucial stage in all kinds 

of research, decision making and analysis. Mainly, the data collection methods are 

categorized into two classes which are primary data collection and secondary data 

collection. The data collected from the original source and firsthand information that is not 

published anywhere or altered by anyone called primary data while the data collected from 

already published resources or the data collected by any other and used for any purpose. 

Primary data could be obtained by questionnaires, interviews, or observations etc., whereas 

secondary data could be obtained through different techniques including online databases, 

academic journals, publicly available data etc. Figure shows the techniques used for the 

collection of data for research. This research is conducted using both primary and 

secondary data types. For the primary data collection questionnaire and interviews. For the 

secondary data collection different published studies and material properties databases 

used (Taherdoost, 2021). Figure 2 presents the methods of data collection. 
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3.4.1 Questionnaire 

In this study a digital questionnaire with an AHP judgment form was designed and 

disseminate through Google forms to collect the data from experts in the field of aerospace 

and additive manufacturing.  

The questionnaire was structured in the following manner: 

i. Aim of research  

ii. Explanation of Criteria & Sub-Criteria  

iii. Instructions to fill the questionnaire with examples 

iv. Criteria & Sub-Criteria pairwise comparisons 

 

 

Figure 2: Data collection techniques [Adopted from (Taherdoost, 2021)] 
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3.5 Research Participants 

In this study, a group of 6 experts participated in research. These experts were 

selected using the 12-point system that various researchers used to qualify the respondents 

as experts. This scale evaluates and chooses the participants based on their qualifications, 

working experience, expertise & knowledge, and research studies related to the field 

(Hallowell & Gambatese, 2010). Careful selection of experts ensures the results and 

decision-making process are more reliable and robust. All selected experts had more than 

five years of experience. Two senior-level experts were from the aerospace industry, 

having expertise in AM and aerospace, and four experts were from the academic setting, 

having a Doctor of Philosophy (PhD) along with industrial knowledge and expertise in the 

aerospace sector. Selected participants finalized relevant criteria and sub criteria then 

performed pairwise comparisons in AHP for assigning weights to the criteria. 

3.6 Research Philosophy 

Research philosophy involves the nature, source, and evolution of knowledge. It is 

belief regarding the ways or procedures for collecting, analyzing, and using data (Bajpai, 

2018). Research philosophy provides guidance on the appropriate approach to conducting 

research and considers an individual’s beliefs about the nature of reality and the acquisition 

of knowledge (Collis & Hussey, 2014). The four main research philosophies are 

pragmatism, realism, positivism and interpretivism. Positivism involves tangible and 

quantifiable and uses objective nature of measurement to derive the scientific knowledge 

and conclusions. Positivists believe that solutions can be obtained by carefully measuring 

and analyzing numerical data. Realism assumes the presence of an independent reality that 

is distinct from human perception and can be understood through empirical observations 

and data analysis. The concept of realism is commonly associated with qualitative research 

methods. In contrast to positivism, interpretivism assumes that reality is subjective in 

nature and socially developed. This reality could be understood only by human experiences 

and interpreted by individuals. Interpretivism emphasizes the use of qualitative research 

methods such as interviews, observations, and textual analysis to obtain the meanings and 

experiences of research participants. In pragmatism, concepts of both positivism and 
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interpretivism could be combined and qualitative and quantitative both methods can play 

a part depending on the context and research questions of the study. This research paradigm 

is flexible and adaptable and deals with real world problem solving by practical 

applications of knowledge (Rashid, 2023; Tashakkori & Teddlie, 2010). For this research 

study, pragmatism research philosophy has been used as study uses the mixed data types 

considering real industrial material selection problem solution. 

3.7 Data Analysis 

As previously mentioned, data was collected from experts through online forms. 

The type of data was mixed that are qualitative and quantitative data. Identification of 

criteria was based on qualitative data whereas the data used for the AHP judgments was 

quantified by comparing the criteria pairwise using numeric values scale by (T. L. Saaty, 

2008). The values or properties of alternative under their relevant criteria was in the form 

of quantitative data and taken through the secondary data collection methods. In this way, 

to answer the research questions both primary and secondary data were combined which 

resulted in practical, effective, credible, and reliable insights. 

3.8 Participant Confidentiality 

In the conduction of this research all the participants of the research interviewed by 

the researcher are treated with respect. It was ensured in this study that none of the 

participants’ names and organization are disclosed. The data was taken from all the 

participants with their consent. 

3.9 Techniques Used 

Various MCDM techniques are used for problem solving or decision-making 

processes where multiple criteria are involved. Some techniques were discussed in the 

literature review section which were used for the material selection problem by various 

researchers. Two MCDM techniques are selected in this study for the material selection in 

additive manufacturing problem that are AHP and TOPSIS method. Both techniques are 

combined and called hybrid AHP-TOPSIS in this research. The reason of choosing AHP 

over other MCDM techniques is that it compares the criteria pairwise and then the output 
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of comparison extracted in the form of numbers and values that could be measured (Hyun 

et al., 2008). Several researchers have employed the AHP method for assigning weightages 

to criteria and prioritization in different areas as mentioned in previous chapter 2. The 

significance of the factors involved in the process is evaluated based on the weights 

assigned to the criteria. Various techniques have been developed for the weights assigning 

to the criteria such as objective, subjective and hybrid methods. In subjective weighting 

methods, the criteria weights are determined based on the preferences of the user. However, 

this approach is insufficient when the number of criteria increased in a decision-making 

process. Whereas object type of methods considers the computational procedures which 

generate criteria weights by a decision matrix without considering user or decision makers’ 

judgments. The combination of objective and subjective methods is more desirable to get 

the characteristics and qualities of these techniques (Keshavarz-Ghorabaee et al., 2021). 

Combined or integrated MCDM techniques provide more accurate weights by including 

both the judgments by users and data from decision matrix (C.-H. Chen, 2020; Du & Gao, 

2020; Kılıç Delı̇ce & Can, 2020). Hybrid AHP-TOPSIS enhances the decision-making 

process by refining the subjective judgment of decision makers (V. Kumar et al., 2021). 

This approach also gives more reliable and error-free outcomes (Mathew et al., 2020). In 

this study, these methodologies are utilized together because AHP effectively assigns 

weights to criteria using a panel of selected experts, and TOPSIS aids in identifying the 

optimal alternative (material) through the materials properties available in databases or 

directly available on manufacturer’s websites like Stratasys or 3D Systems. As discussed 

earlier in chapter 2, ANP technique is also similar to AHP, but it considers dependence 

between criteria. In this study AHP is chosen due to the independence of the alternatives 

under consideration. The significant benefit of TOPSIS is its ability to rapidly pinpoint the 

best alternative with less subjective involvement from decision-makers (Dağdeviren et al., 

2009). Figure 3 shows the research methodology flow chart.



39 

 

Figure 3: Flowchart of methodology 
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CHAPTER 4: APPLICATION  

A case study was conducted based on the proposed methodology, and an aircraft 

part, "Inlet duct", was selected. The aerospace industry is required to manufacture a strong 

inlet duct for an engine-based UAV by AM and requires polymers as the building material. 

Nine materials were extracted as polymer materials from the literature review and based 

on the availability in the market. The aerospace industry also required that the material 

should give a good balance between performance and cost. Fatigue strength was important 

to maximize to withstand cyclic loading and ensure long-term durability. The goal was to 

select the best material from the set of materials using the given criteria. The materials and 

criteria identified by literature, materials availability in the market and experts are given in 

Table 3. Materials with their properties are given in Table 4. 

4.1 Criteria Identification 

This section contains the criteria and sub-criteria used to select materials, these 

relevant criteria, and sub-criteria specific to the materials in additive manufacturing were 

extracted from the literature. These criteria were discussed with aerospace experts in 

industrial setting and academia, incorporating insights from both industrial and academic 

perspectives. In this research, the criteria and sub-criteria were chosen based on their 

applicability to the aerospace industry. The 3 criteria and their related 32 sub-criteria with 

reference studies are mentioned in the following table and further narrowed down by 

experts. 

Table 2: Identified sub-criteria of performance, economic and environment 

Sr. 

No 

Criteria 

Cluster 
Sub-criteria Source 

1.  Performance Density 
(Malaga et al., 2022; Mousavi-Nasab & 

Sotoudeh-Anvari, 2018), (Karande et al., 
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2013), (Mastura et al., 2022), (Qin et al., 

2023) 

2.  Melting Point 
(Ren et al., 2022), (Malaga et al., 2022), 

(Exconde et al., 2019a) 

3.  Specific heat (Malaga et al., 2022) 

4.  
Operating 

Temperature 

Recommended by experts 

5.  Tensile strength 

(Khorshidi & Hassani, 2013; Mastura et al., 

2022), (Qin et al., 2023), (Palanisamy et al., 

2020) 

6.  Flexural Strength 
(Agrawal, 2021), (Siva Bhaskar & Khan, 

2022), (Abas et al., 2023) 

7.  
Thermal 

Conductivity 

(Mastura et al., 2022), (Alper Sofuoğlu, 

2019) 

8.  Hardness 
(Qin et al., 2023), (Palanisamy et al., 2020), 

(Siva Bhaskar & Khan, 2022) 

9.  
Electrical 

resistivity 

(Qin et al., 2023) 

10.  Youngs modulus 

(Agrawal, 2021), (Fayazbakhsh et al., 2009), 

(Mastura et al., 2022), (V. Sharma et al., 

2022) 

11.  Elongation 

(Khorshidi & Hassani, 2013), (Mastura et 

al., 2022), (Palanisamy et al., 2020), (Zhang 

et al., 2020) 
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12.  Layer adhesion (Agrawal, 2021) 

13.  Visual quality (Agrawal, 2021) 

14.  

Coefficient of 

thermal 

expansion 

(Alper Sofuoğlu, 2019), (Exconde et al., 

2019b) 

15.  
Glass transition 

temperature 

(Mastura et al., 2022), (Exconde et al., 

2019b) 

16.  Specific gravity (Agrawal, 2021) 

17.  
Compressive 

strength 

(Ul Haq et al., 2023) 

18.  Fractural strength (Agrawal, 2021) 

19.  
Heat deflection 

temperature 

(Algunaid & Liu, 2022) 

20.  Durability (Mesa et al., 2020), (Abas et al., 2023) 

21.  Wear Resistance (Karande et al., 2013),  

22.  Fire Resistance (Fayazbakhsh et al., 2009) 

23.  Fatigue Strength 
(Mesa et al., 2020; Mousavi-Nasab & 

Sotoudeh-Anvari, 2018) 

24.  
Specific 

Toughness 

(Alper Sofuoğlu, 2019) 

25.  Economic 
Cost of material 

per Kg 

(Mousavi-Nasab & Sotoudeh-Anvari, 

2018),(Khorshidi & Hassani, 2013), (Qin et 
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al., 2023), (Palanisamy et al., 2020) , 

(Karande et al., 2013) 

26.  Cost of Disposal (Kazemi et al., 2015) 

27.  Recyclability 
(ANSYS Inc., n.d.), (Zhang et al., 2020), (Ul 

Haq et al., 2023) 

28.  

Environment 

Energy 

consumption 

(Mesa et al., 2020), (Zhang et al., 2020), 

(Chandra et al., 2022) 

29.  Carbon Footprint 
(Mesa et al., 2020), (Zhang et al., 2017), (Ul 

Haq et al., 2023) 

30.  Processing CO2 (Mesa et al., 2020), (Zhang et al., 2017) 

31.  Water Usage (ANSYS Inc., n.d.), (Zhang et al., 2017) 

32.  Toxic Level (Ahmed Ali et al., 2015) 

4.2 Experts Selection 

As discussed earlier in Chapter 3, the experts were selected using the 12-points 

scale proposed by Hallowell & Gambatese (2010). According to this method, experts in 

panel must attain a minimum level of qualification by scoring points in different categories, 

as mentioned in Table. It is recommended that each expert earns at least one point in four 

different achievement or experience categories, with a cumulative minimum of 11 points 

to be eligible for participation. Following table 3 contains the point against each category 

and then checked the boxes for each expert, in the end total score has been calculated. 
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Table 3: Experts’ selection points table 

 
Points EXP 

1 

EXP 

2 

EXP 

3 

EXP 

4 

EXP 

5 

EXP 

6 

Professional Registration 3 Y Y Y Y   

Year of Experience  1 Y Y Y Y Y Y 

Conference Presentation 0.5    Y Y  

Member of a committee 1       

Chairperson of committee 3       

Peer-Reviewed Journal 

article 

2 
Y Y Y Y Y  

A faculty member at 

university 

3 
 Y Y  Y Y 

Author of the book 4       

Author of a book chapter 2     Y  

Advanced degrees 

BS 4 Y Y Y Y Y Y 

MS 2 Y Y Y Y Y Y 

Ph.D 4  Y Y Y Y Y 

Total Points 12 19 19 19.5 18.5 14 
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4.3 Delphi Study 

The Delphi method was applied to finalize the criteria, Delphi method is group 

decision making analytical technique commonly used in qualitative research. This method 

was first originated from the defence industry and based on the experts’ judgments (Loo, 

2002). This approach involves assembling a panel of experts who individually complete a 

survey or questionnaire. Their responses are then anonymized and shared with the panel to 

facilitate feedback and discussion. The experts are subsequently given the same questions 

again, and the process is repeated. This iterative process is designed to help the panel reach 

a consensus over time (Linstone & Turoff, 1975).  

The number of experts recommendation is not clear in literature and there is a little 

consensus regarding the exact size of an expert panel (Keeney et al., 2001). The experts’ 

size of Delphi panels in different research studies has varied from as few as three to as 

many as 80 members (Rowe & Wright, 1999).  

The round in Delphi study varies and it is conducted in multiple rounds, and there 

are two main objectives first is to minimize variance and second is to improve the precision 

(Hallowell & Gambatese, 2010). According to different studies the number of rounds in 

Delphi study ranged from 2 to 6 (Linstone & Turoff, 1975; Naseem & Ahmad, 2020; Pill, 

1971). 

This study used 2 rounds of Delphi, in first round an open-ended questionnaire was 

disseminated between the experts and asked to verify the criteria extracted from the 

literature review and add any other related criteria based on the experts’ experience. In 

second round, experts were again asked to give importance to the criteria on a 1-5 Likert 

Scale. 

4.3.1 First Round: 

In these round experts verified the criteria which were extracted from literature 

review relating to Performance, Economic and Environment. Some criteria that was not 

much important, having same meanings or redundant was removed. An updated list was 
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prepared and sent to experts for the second round. Table 4 represents the list of sub-criteria 

through first round. 

Table 4: List of criteria identified through first round of Delphi 

Sr. 

No 

Criteria 

Cluster 
Sub-criteria 

Frequency  Percentage 

1.  

Performance 

Density 6 100% 

2.  Melting Point 4 67% 

3.  Specific heat 2 33% 

4.  Operating Temperature 6 100% 

5.  Tensile strength 6 100% 

6.  Flexural Strength 5 83% 

7.  Thermal Conductivity 2 33% 

8.  Hardness 4 67% 

9.  Electrical resistivity 2 33% 

10.  Youngs modulus 
6 

100% 

11.  Elongation 6 100% 

12.  Layer adhesion 2 33% 

13.  Visual quality 3 50% 

14.  
Coefficient of thermal 

expansion 4 

67% 
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15.  Glass transition temperature 6 100% 

16.  Specific gravity 2 33% 

17.  Compressive strength 2 33% 

18.  Fractural strength 4 67% 

19.  Heat deflection temperature 4 67% 

20.  Durability 6 100% 

21.  Wear Resistance 6 100% 

22.  Fire Resistance 4 67% 

23.  Fatigue Strength 6 100% 

24.  Specific Toughness 1 17% 

25.  

Economic 

Cost of material per Kg 6 100% 

26.  Cost of Disposal 3 50% 

27.  Recyclability 6 100% 

28.  

Environment 

Energy consumption 6 100% 

29.  Carbon Footprint 6 100% 

30.  Processing CO2 6 100% 

31.  Water Usage 5 83% 

32.  Toxic Level 3 50% 
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4.3.2 Second Round 

In the second round of the Delphi study, experts rated the importance of factors 

using a 5-point Likert scale, where 1 indicated "not at all important" and 5 indicated "very 

important." This rating was applied to the updated list of sub-criteria related to the three 

main criteria cluster derived from the first round. There is no universally agreed-upon cut-

off point for consensus in Delphi studies; however, using the mean score as a threshold is 

a common practice (Choi & Sirakaya, 2006). For this study, an average score of 3.5 was 

set as the cut-off point (Naseem & Ahmad, 2020). Following this second round, 14 sub-

criteria with mean scores of 3.5 or higher were selected for the further evaluation through 

AHP and TOPSIS approach and given in table 5. 

Table 5: List of criteria identified through second round of Delphi 

Criteria Cluster Sub-Criteria Mean 

Performance 

Density 3.83 

Operating Temperature 4.17 

Tensile strength 5.00 

Flexural Strength 3.50 

Youngs modulus 3.67 

Elongation at break 3.67 

Durability 4.33 

Fatigue Strength 4.83 

Economic 

Cost of material per Kg 3.83 

Recyclability 3.67 
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Environment 

Energy consumption 3.50 

Carbon Footprint 4.83 

Processing CO2 4.67 

Water Usage 3.67 

 

 

4.4  Criteria Weightage using the AHP Approach 

The decision hierarchy is formed using the finalized criteria and sub-criteria, and 

then weights are computed using the AHP. The process includes the following steps: 

Step i) The MCDM problem was decomposed into a 4-level decision hierarchy. The 

first level shows the overall goal of a problem; at the second level, three main criteria are 

kept, while the third and fourth levels consist of sub-criteria and alternatives (materials). 

In this study, experts identified three main criteria and associated 14 sub-criteria for an 

aerospace application. 

Step ii) After the decision hierarchy was constructed, pairwise comparisons were 

made using Saaty scale rating value from 1 to 9 (Table 6) for each criterion about the goal 

and for each sub-criterion about the major criteria, using the (𝑚𝑥𝑛) decision matrix. 

Step iii) After developing the pairwise decision matrix, the sum of each column in 

the matrix was determined. The matrix was then normalized by dividing each element by 

the total sum of its respective column. 

Step iv) To check the reliability and consistency of judgements, it is important to 

calculate the overall consistency ratio (CR). The CR value must be less than 0.10; if it is 

greater than 0.10, then the pairwise comparisons should be made again. 
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Table 6: 9-point scale for pairwise comparisons of criteria (Saaty, 2008) 

Value Description Value Reciprocal 

9 Extreme Importance 1/9 

8 Very, very strong importance 1/8 

7 Very strong importance 1/7 

6 Strong plus 1/6 

5 Strong importance 1/5 

4 Moderate plus 1/4 

3 Moderate importance 1/3 

2 Weak or Slight Importance 1/2 

1 Equal importance - 

4.5 Ranking using TOPSIS 

Step 1: Through AHP criteria pairwise comparisons from experts, weights of all the 

14 criteria are determined. A normalized matrix will be formed, which will be calculated 

further using the TOPSIS method. Therefore, each criterion will be standardized to the 

same unit scale by this normalization process. Below is equation (1) used to normalize the 

decision matrix containing the criteria values for each alternative (material) 𝑖, and each 

criterion 𝑗. In equation (1), the normalized value is shown by 𝑠𝑖𝑗, 𝑔𝑖𝑗 is the original value 

of alternative 𝑖 on criterion 𝑗, and 𝑝 is the no. of alternatives (materials). 

𝑠𝑖𝑗 =
𝑔𝑖

√∑ (𝑔𝑖𝑗)
2𝑝

𝑗=1
 

  𝑗 = 1,2,3,4 … , 𝑛  ;  𝑖 = 1,2,3,4, … , 𝑝 
   (1) 

Using equation (1), a normalized decision matrix (N) will be formed. 
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Step 2: Equation (2) will be used to calculate the weighted normalized decision 

matrix (WN), the criteria weights (𝑤𝑗) obtained by AHP were multiplied the normalized 

decision matrix (N). 

𝑣𝑖𝑗 = 𝑠𝑖𝑗  ×  𝑤𝑗 ,   𝑗 = 1, … , 𝑝 , 𝑖 = 1, … , 𝑚     (2) 

Step 3: In this step the positive ideal solution (𝐼𝑆++) and negative solution (𝐼𝑆−−) 

will be determined by using this equation: 

Equation for positive ideal solution (𝐼𝑆++) is: 

𝐼𝑆++ = {𝑣1
+, 𝑣2

+, 𝑣3
+, … … … , 𝑣𝑛

+}

=  {(𝑚𝑎𝑥
𝑖

𝑣𝑖𝑗 , 𝑗 ∈ 𝐾) (𝑚𝑖𝑛
𝑖

𝑣𝑖𝑗 , 𝑗 ∈ 𝐾′)} 𝑖 = 1,2, … , 𝑚
   (3) 

Where 𝐾 is representing positive or benefit criteria while 𝐾′is non-beneficial or 

negative criteria. 

Equation for positive ideal solution (𝐼𝑆−−) is: 

𝐼𝑆−− = {𝑣1
−, 𝑣2

−, 𝑣3
−, … … … , 𝑣𝑛

−} 

= {(𝑚𝑖𝑛
𝑖

𝑣𝑖𝑗 , 𝑗 ∈ 𝐾) (𝑚𝑎𝑥
𝑖

𝑣𝑖𝑗 , 𝑗 ∈ 𝐾′)}  𝑖 = 1,2, … , 𝑚   (4) 

Where 𝐾 is representing positive or benefit criteria while 𝐾′is non-beneficial or 

negative criteria. 

Step 4: In this step Euclidean distance of each alternative (material) from the 

positive ideal solution (𝐷++) and negative ideal solution (𝐷−−) is computed using the 

formulas: 

𝐷𝑖
++ = √∑ (𝑣𝑖𝑗 − 𝑣𝑗

+)2𝑝
𝑗=1

2
    , 𝑖 = 1, … , 𝑚     (5) 

𝐷𝑖
−− = √∑ (𝑣𝑖𝑗 − 𝑣𝑗

−)2𝑝
𝑗=1

2
    , 𝑖 = 1, … , 𝑚     (6) 
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Step 5: The closeness from the ideal solution will be calculated using this equation: 

𝐶𝑙𝑖 =
𝐷𝑖

−−

𝐷𝑖
+++𝐷𝑖

−− , 𝑖 = 1, … , 𝑚       (7) 

If 𝐶𝑙𝑖 = 1 → 𝐼𝑆𝑖 = IS++

If 𝐶𝑙𝑖 = 0 → 𝐼𝑆𝑖 = IS−−
 

Here the 𝐶𝑙𝑖 value varies between 0 and 1. If the 𝐶𝑙𝑖 value is near or close to 1, 

alternative priority will be higher. 

Step 6: In this step all alternatives will be ranked.  
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CHAPTER 5: RESULTS AND ANALYSIS 

A case study was conducted based on the proposed methodology, and an aircraft 

part, "Inlet duct", was selected. The aerospace industry is required to manufacture a strong 

inlet duct for an engine-based UAV by AM and requires polymers as the building material. 

Nine materials were extracted as polymer materials from the literature review and based 

on the availability in the market. The aerospace industry also required that the material 

should give a good balance between performance and cost. Fatigue strength was important 

to maximize to withstand cyclic loading and ensure long-term durability. The goal was to 

select the best material from the set of materials using the given criteria. The materials and  

criteria identified by literature, materials availability in the market and experts are 

given in Table 7. Materials with their properties are given in Table 8. 

5.1 Results obtained by AHP 

The AHP approach was used to obtain the expert criteria weights as mentioned 

above in chapter 3. AHP method was performed, and results were generated by using an 

AHP Online System (AHP-OS) software tool (Goepel, 2018). Final weights by pairwise 

Figure 4: AHP Decision Hierarchy 
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comparisons are given in Table 4. It can be observed that experts assigned the highest 

priority to performance criteria and its sub-criteria. The overall weight of performance is 

72.3%, the economy 19.8%, and the environment has less priority, which is 7.9%. Among 

sub-criteria, tensile strength (TS) has the highest weight, 18.3%; cost (C) criteria have the 

second highest weight, 16.8%; Young's modulus and fatigue strength have 13.9 % and 

13.7% weights, respectively. Environment-related criteria have low weights than other 

sub-criteria. The CR value is 0.03, less than 0.1, so it is acceptable for this process. AHP 

decision hierarchy is given in Figure 4. Table 9 shows the weights given by experts.  

Table 7: Selected criteria and alternatives 

Selected AM 

Materials 

ABS, PPSU, PEEK, PEKK, ULTEM, PSU, PC, PVDF, 

Nylon 12 CF 

 

Need to Maximize 

(beneficial) 

8 

Need to Minimize (non-

beneficial) 

6 

Criteria   

Performance (PE) 

Tensile Strength (TS) 

Flexural Strength (FR) 

Elongation at Break (E@B) 

Young’s Modulus (E) 

Fatigue Strength (Sf) 

Operating Temperature 

(OT) 

Durability (DU) 

Density (d) 

Economic (EC) Recyclability (RE) Cost (C) 

Environmental (EV) - 

Processing CO2 (P. CO2) 

Carbon Footprint (FP) 

Water Use (WU) 

Energy Use (EU) 

5.2 Results obtained by TOPSIS 

Using equation (1), the decision matrix in Table 4 will be normalized according to 

step 1 of TOPSIS. In that way, a normalized matrix has been generated, as shown in Table 

6. AHP criteria weights from Table 5 were used to multiply with the normalized matrix to 

form a weighted normalized matrix using equation (2), as shown in Table 9. Using the 

method previously described in TOPSIS, the positive and negative ideal solutions were 

separated using equations (3) and (4). based on the aim to maximize or minimize (Table 
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8). Euclidean distance using equation (5) and equation (6) of each material from the 

positive ideal solution (𝐷++) and negative ideal solution (𝐷−−) was measured, and then 

the closeness (𝐶𝑙𝑖) from the ideal solution was found using equation (7) that is equal to 1. 

The Cl value given in Table 9 will be close to 1 and will be ranked as the best alternative. 

Results show that the value of ULTEM materials is close to 1, and the second close value 

is 0.638, which is PEKK material. The order of ranking is ULTEM > PEKK > NYLON 

12CF > PSU > PC > ABS > PVDF > PPSU >PEEK. Figure 3 illustrates the ranking of 

materials 
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Table 8: Decision Matrix (Properties of materials) (3DX, 2024; 3dxtech, 2024; ANSYS Inc., n.d.; Bourell et al., 2017; Jafferson & 

Chatterjee, 2021; Schiller, 2015; Tan et al., 2020) 

Material 

(Alternatives) 

TS 

(Mpa) 

E 

(Mpa) 

FR 

(Mpa) 

EB 

(%) 

Sf 

(Mpa) 

107 

Cycles 

OT 

(oC) 

d 

(g/cm3) 
DU 

C 

($/kg) 
RE 

P. CO2 

(kg/kg) 

FP 

(kg/kg) 

WU 

(l/kg) 

EU 

(Mj/kg) 

ABS 40 2451 60 10 16 104 1.0 1 36 1 0.43 4 6.0 0.12 

PPSU 70 2344 91 3 28 220 2.6 3 250 1 0.48 13 6.2 0.13 

PEEK 107 3854 110 28 43 150 1.3 4 595 1 0.48 17 6.2 0.13 

PEKK 98 4406 193 5 39 161 1.3 4 195 0 0.79 18 7.9 0.20 

ULTEM 97 5929 152 3 39 216 1.3 4 220 1 0.48 11 6.2 0.13 

PSU 99 2689 121 8 40 189 1.2 2 200 1 0.48 10 6.1 0.13 

PC 63 2306 90 75 25 183 1.2 2 168 1 0.47 5 6.1 0.12 

PVDF 51 2450 80 25 14 160 1.7 4 190 1 0.46 16 6.0 0.12 

Nylon 12 CF 63 3800 90 2.1 59 158 1.2 2 174 0 0.47 27 6.0 0.12 

 

Rating Scale for DU:  Poor = 1, Fair = 2, Good = 3, Excellent = 4 (ANSYS Inc., n.d.) 

Rating Scale for RE: Recyclable = 1, Not Recyclable = 0 
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Table 9: Criteria weights obtained by AHP 

Criteria TS E FR EB Sf OT d DU C RE P.CO2 FP WU EU 

Weights 0.18 0.14 0.08 0.05 0.14 0.04 0.05 0.05 0.17 0.03 0.02 0.02 0.02 0.02 

 

Table 10: Normalized Matrix in TOPSIS 

 TS E FR EB Sf OT d DU C RE P. CO2 FP WU EU 

ABS 0.167 0.230 0.172 0.117 0.147 0.199 0.233 0.108 0.045 0.378 0.282 0.083 0.317 0.300 

PPSU 0.291 0.220 0.262 0.035 0.258 0.420 0.577 0.323 0.313 0.378 0.311 0.286 0.325 0.315 

PEEK 0.448 0.361 0.316 0.329 0.395 0.287 0.292 0.431 0.744 0.378 0.311 0.376 0.325 0.315 

PEKK 0.408 0.413 0.554 0.059 0.358 0.308 0.294 0.431 0.244 0.000 0.513 0.399 0.417 0.487 

ULTEM 0.404 0.556 0.435 0.035 0.358 0.413 0.285 0.431 0.275 0.378 0.314 0.251 0.326 0.318 

PSU 0.415 0.252 0.347 0.094 0.368 0.361 0.278 0.216 0.250 0.378 0.309 0.229 0.324 0.313 

PC 0.264 0.216 0.257 0.881 0.234 0.349 0.258 0.216 0.210 0.378 0.302 0.107 0.321 0.305 

PVDF 0.213 0.230 0.229 0.294 0.129 0.306 0.384 0.431 0.238 0.378 0.296 0.360 0.317 0.298 

Nylon 12 CF 0.263 0.356 0.258 0.025 0.540 0.302 0.263 0.216 0.218 0.000 0.303 0.596 0.317 0.305 
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Table 11: Weighted normalized matrix 

 TS E FR EB Sf OT d DU C RE 
P. 

CO2 
FP WU EU 

ABS 0.0305 0.0318 0.0145 0.0054 0.0201 0.0073 0.0108 0.0056 0.0075 0.0124 0.0060 0.0021 0.0049 0.0052 

PPSU 0.0532 0.0305 0.0221 0.0016 0.0353 0.0154 0.0268 0.0167 0.0518 0.0124 0.0066 0.0071 0.0050 0.0054 

PEEK 0.0819 0.0501 0.0267 0.0152 0.0540 0.0105 0.0135 0.0222 0.1232 0.0124 0.0066 0.0093 0.0050 0.0054 

PEKK 0.0745 0.0572 0.0467 0.0027 0.0490 0.0113 0.0136 0.0222 0.0404 0.0000 0.0109 0.0099 0.0064 0.0084 

ULTEM 0.0737 0.0770 0.0367 0.0016 0.0490 0.0151 0.0132 0.0222 0.0455 0.0124 0.0067 0.0062 0.0050 0.0055 

PSU 0.0758 0.0349 0.0293 0.0043 0.0503 0.0133 0.0129 0.0111 0.0414 0.0124 0.0066 0.0057 0.0050 0.0054 

PC 0.0482 0.0300 0.0217 0.0407 0.0319 0.0128 0.0120 0.0111 0.0348 0.0124 0.0064 0.0027 0.0049 0.0053 

PVDF 0.0389 0.0318 0.0194 0.0136 0.0176 0.0112 0.0178 0.0222 0.0393 0.0124 0.0063 0.0089 0.0049 0.0051 

Nylon 

12 CF 
0.0481 0.0494 0.0218 0.0011 0.0738 0.0111 0.0122 0.0111 0.0360 0.0000 0.0064 0.0148 0.0049 0.0053 

Table 12: Positive ideal solution and negative ideal solution 

 TS E FR EB Sf OT d DU C RE 
P. 

CO2 
FP WU EU 

(𝑰𝑺++) 0.0819 0.0770 0.0467 0.0407 0.0738 0.0154 0.0108 0.0222 0.0075 0.0124 0.0060 0.0021 0.0049 0.0051 

(𝑰𝑺−−) 0.0305 0.0300 0.0145 0.0011 0.0176 0.0073 0.0268 0.0056 0.1232 0.0000 0.0109 0.0148 0.0064 0.0084 
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Table 13: Euclidean distance of each alternative (material) from the positive ideal solution 

(𝑫++) and negative ideal solution (𝑫−−) and closeness (𝑪𝒍𝒊) from ideal solution 

Materials 𝑫++ 𝑫−− 𝑪𝒍 

ABS 0.101 0.118 0.540 

PPSU 0.094 0.080 0.460 

PEEK 0.125 0.073 0.370 

PEKK 0.062 0.110 0.638 

ULTEM 0.062 0.111 0.644 

PSU 0.073 0.103 0.586 

PC 0.081 0.103 0.558 

PVDF 0.098 0.089 0.474 

Nylon 12 CF 0.073 0.109 0.597 

 

 

Figure 5: Materials ranking obtained from AHP-TOPSIS approach 

5.3 Sensitivity Analysis 

To check the robustness of the methodology, sensitivity analysis was performed to 

check how much the proposed model is sensitive to any weight change in selected criteria. 

When solving problems using the MCDM methods, sensitivity analysis is important to 
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understand the impact of varying weights on the final ranking of alternatives. In MCDM 

cases, input data may be incorrect, or erroneous judgments may be made during the 

decision; in that case, the people responsible for decision-making are keen to know how 

the outputs will change by altering the input data. So, in this case, sensitivity analysis 

becomes an effective method to check the stability of the results (Li et al., 2013). In this 

study, a similar method was used, as proposed by (Li et al., 2013). 

 

 Nine designed unitary variation ratios (Table 14) were applied to criteria weights, 

and all 14 weights for nine selected alternatives were recalculated. A total of nine 

sensitivity tests were performed. The results show that there was no significant ranking 

change observed in alternatives, but the PEEK material was sensitive to the imposed 

recalculated weight at the value of 1.5. ULTEM material, originally ranked one from all 

other materials, remained unchanged, but at the test value of 2.00, its rank changed from 

first to second. In most tests, alternative rankings were the same and unchanged. Figure 6 

and 7 shows the results of sensitivity analysis on nine materials. 

Figure 6: Sensitivity Analysis for AM materials [Closeness (Cl) values by applying nine 

unitary variation ratio] 
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Figure 7: Rankings after applying sensitivity analysis 
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Table 14: Criteria weights after changing at different unitary values 

Unitary 

ratios 
TS E FR EB Sf OT d DU C RE 

P. 

CO2 
FP WU EU 

0.01 0.002 0.169 0.103 0.056 0.167 0.045 0.057 0.063 0.202 0.040 0.026 0.030 0.019 0.021 

0.02 0.004 0.169 0.103 0.056 0.167 0.045 0.057 0.063 0.202 0.040 0.026 0.030 0.019 0.021 

0.05 0.009 0.168 0.102 0.056 0.166 0.044 0.056 0.062 0.201 0.040 0.026 0.030 0.019 0.021 

0.1 0.018 0.167 0.101 0.056 0.164 0.044 0.056 0.062 0.199 0.039 0.026 0.030 0.018 0.021 

0.2 0.037 0.163 0.099 0.054 0.161 0.043 0.055 0.061 0.195 0.039 0.025 0.029 0.018 0.020 

0.5 0.091 0.154 0.094 0.051 0.152 0.041 0.052 0.057 0.184 0.036 0.024 0.028 0.017 0.019 

1 0.183 0.139 0.084 0.046 0.137 0.037 0.046 0.051 0.165 0.033 0.021 0.025 0.015 0.017 

1.5 0.274 0.123 0.075 0.041 0.121 0.033 0.041 0.046 0.147 0.029 0.019 0.022 0.014 0.015 

2 0.365 0.108 0.066 0.036 0.106 0.028 0.036 0.040 0.128 0.025 0.017 0.019 0.012 0.013 
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CHAPTER 6: CONCLUSION AND RECOMMENDATIONS 

A robust decision methodology was proposed in this research for the appropriate 

materials selection in additive manufacturing for the aerospace industry. This research 

employed multi-criteria decision-making (MCDM) approaches, combining Analytical 

Hierarchy Process (AHP) and Technique for Order of Preference by Similarity to Ideal 

Solution (TOPSIS) for effective criteria weighting through subject matter experts (SMEs) 

and then ranking of materials by using the realistic data (material properties, cost, etc.).  

An aerospace industrial case study was analyzed in this research by using the 

proposed methodology. Materials selection for UAV inlet duct using additive 

manufacturing technology fused deposition modelling (FDM) using nine polymer 

materials was carried out. Critical criteria for the application were identified and relative 

importance was given to each criterion by pairwise comparisons in AHP carried out by 

SMEs. The AHP results indicates that tensile strength with 18.3% weightage is most 

critical criterion for selected UAV part. This was followed by cost at 16.5%, young’s 

modulus at 13.9% and fatigue strength at 13.7%. These criteria weights were then used in 

TOPSIS method with the real time data of materials to rank the materials. TOPSIS results 

shows that the appropriate material for the part is ULTEM from the list of nine alternatives. 

At the end to check the robustness of method, sensitivity analysis was performed, 

and 9 variation ratios were applied to original weights, ratios modified the original weights 

and produced new weights which were then applied to check the new ranking of materials. 

The ULTEM ranking remained stable up to variation ratio 2 then this material changed its 

ranked from 1 to 2. 

The findings of this study offer significant contributions to both academia and 

industry. In academia setting it opens new avenues for the research in the field of additive 

manufacturing by employing the MCDM approaches to enhance the potential of AM. In 

industry setting, this methodology provides a reliable and systematic approach for 

materials selection to decision makers and professionals in aerospace sector. High-
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performance aerospace parts by considering all critical criteria including environmental 

factors can be produced by using this method.  

Other MCDM methods could be explored in future research work for the further 

improvement of this methodology. In this study materials selection was carried out for 

FDM process and future research may extend this study by employing other AM 

technology to obtain the more detailed insights of the material selection problem. There 

are 9 polymer materials which were taken as alternative for UAV duct, future studies can 

also take broader range of materials and evaluate them. 

Furthermore, additional sustainability criteria (social, environment and economic) 

could also integrate in this methodology for the holistic assessment of materials selection 

problem, this would also help to align with rising emphasis on eco-friendly manufacturing 

practices. 

Development of an automated database containing all aerospace materials 

compatible with AM is recommended in future work. This database would help decision 

makers or designers to pick right materials from easily accessible repository according to 

their requirements. This type of tool would also increase efficiency and accuracy when 

combined with MCDM methods. 
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