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ABSTRACT 

In this thesis, stereo vision has been explored in the context of autonomous vehicles, for obstacle 

avoidance. Stereo vision involves combining 2D views for 3D depth estimation, similar to how 

human vision works. The emphasis is on real-time algorithms for efficient obstacle tracking and 

navigation. Some of the depth perception algorithms discussed include stereo matching and semi-

global methods. Furthermore, for insights into pixel-level comparison of disparity maps, 

methodologies such as area based disparity, feature based disparity and triangulation have been 

covered. Mobile Robot Navigation strategies, categorized into seven types, are presented, 

including odometry, inertial navigation, magnetic compasses, active beacons, GPS, landmark 

navigation, and map-based positioning. Real-time obstacle avoidance algorithms using depth maps 

have been analyzed for ideal conditions and potential limitations. This thesis also includes a section 

on the design considerations of a four-wheel steering mobile robot platform. It explores adaptive 

steering control algorithms for optimal performance during manual operation, addressing 

challenges associated with four wheel steering mechanisms. This project thesis flow work is 

divided into 3 parts. The first being on ZED Stereo Camera for stereo vision for making of disparity 

maps followed by depth maps which then is used to estimate real time depth of the objects. The 

second is object detection and obstacle avoidance algorithm generation. The object detection 

models such as Yolo V4 lite is used to identify the obstacle in the path and then generated algorithm 

for obstacle avoidance is used as discussed further in the thesis. The final part is Mobile Base 

platform design and integration. A steering controlled mobile base is manufactured for real life 

testing if the algorithms in real time followed by the embedded integration using Jetson Nano. 
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Chapter 1 - INTRODUCTION 

1.1 Overview: 

Our final year project (FYP) focuses on obstacle avoidance for autonomous vehicles using depth 

perception with a stereo camera. By leveraging the ZED SDK stereo camera, we calculate depth maps to 

determine regions of interest (ROI). The depth information from these ROIs guides the motion of the vehicle 

to avoid obstacles. The Jetson Nano handles the processing, while the ESP32 Devkit V1 controls the mobile 

platform. 

1.2 Motivation 

The increasing demand for autonomous vehicles capable of navigating complex environments with 

high reliability drives this project. Efficient obstacle avoidance is crucial for the safe and effective operation 

of these vehicles. By developing a system that uses depth perception from a stereo camera, we aim to 

contribute to advancements in autonomous navigation technology. The previous work in this area, conducted 

by a prior degree project, involved developing an algorithm for depth perception using a combination of a 

stereo camera and LiDAR. Their project focused solely on software implementation and did not include an 

actual mobile platform. Additionally, they used both stereo cameras and LiDAR, and their system suffered 

from low frames per second (FPS), making it unsuitable for real-time processing. In contrast, our project 

implements the system on a physical mobile platform, uses only a stereo camera, and aims to achieve real-

time processing capabilities. 

1.3 Problem Statement 

The main challenge addressed in this project is developing a real-time, efficient obstacle avoidance 

system for autonomous vehicles. This involves processing stereo camera data to create depth maps, 

identifying ROIs, and using depth information to control the vehicle's motion to avoid obstacles. Ensuring 

smooth communication between the Jetson Nano and the ESP32 and protecting the electronics from high 

current spikes are also critical challenges. 

1.4 Our Contribution 

Our project contributes to the field by integrating a Jetson Nano and an ESP32 to create a robust, 

real-time obstacle avoidance system for autonomous vehicles. We use the ZED SDK stereo camera to 

calculate depth maps and determine ROIs, guiding the vehicle's motion to avoid obstacles. Unlike previous 

work, we implement our system on an actual mobile platform, focusing on achieving high FPS for real-time 

processing. We also ensure galvanic isolation using PC817 optocouplers to protect our electronics from high 

current spikes generated by the motors. This is one of the first experiments in the field of self-driving cars 

done on a Mobile platform in real time to provide a proof of concept in the department of Mechatronics 
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Engineering at the College of Electrical and Mechanical Engineering NUST. 

1.5 Organization of Thesis 

The thesis is organized as follows: 

Chapter 1 Deals with the introduction the projects, it’s background knowledge and previous, it’s scope and 

interests in fields, and our contribution in the project. 

Chapter 2 encompasses all the an overview of all the necessary literature required for the start of the 

project which includes all existing methodology and algorithms or approaches and work already done on it. 

Chapter 3 deals with the working, making and generation of algorithm of depth perception using stereo 

vision approach and using hardware such as Stereo Camera. 

Chapter 4 describes the use of the depth perception algorithm for avoiding any of the incoming obstacle in 

the path. 

Chapter 5 explains the working and manufacturing of mobile base platform on which the real time testing 

is performed. 

Chapter 6 deals with the integration of embedded and software algorithms to make a complete working 

autonomous vehicle porotype for testing and evaluation. 
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Chapter 2 – Literature Review 

2.1 Introduction 

Stereo Vision is a domain of machine vison which focuses on obtaining human vision-like view 

of the world by combining two or more 2D views of the same and combining those to obtain 3D depth 

estimation of the scene. 

As an emerging technology, Stereo Vision algorithms are constantly being revised and 

developed, many alternative approaches exist for implementation of a Stereo Vision system.[1] 

Depth Perception using stereo vision is almost based on the human vision perception of the 

world. Human Vision is binocular in nature i.e., two eyes, which basically sees the same scene which is 

then further processed by the brain to create 3D illustration of the real world. 

We will focus on the stereo vision application of Autonomous vehicles. As it is a advancing field 

various research is being going on and advancement comes daily. Autonomous vehicles employing 

Stereo Vision techniques must operate in real time, and thus are driving research for faster and more 

efficient Stereo Vision algorithms, whilst retaining enough accuracy to build a navigable 3D map, track 

moving obstacles, and eliminate a reasonable volume of noise.[1] 

The autonomous vehicle system either based on stereo vision-based depth perception or various 

techniques must be robust enough to cater for the traffic, obstacles, road lanes, passing by pedestrian etc. 

Our research is focused on obstacle avoidance using stereo vision. 

Many researches for autonomous vehicles have been done in the past and is been going on as we 

speak, but only a few have produced a significant and accurate results. It’s not the research that is at fault 

but the limitations of various sensors including stereo vision which is to blame. However, many have 

produced significant results as well such as VaMP Prototype, RALPH system which was based on 

NavLab 5 stereo Vision, ARGO vehicle, etc. 

The stereo vision based application of autonomous vehicle is being also used by NASA for their 

Lunar Rovers as previously they have to control it form command center on earth but due to 

communication speed lags it created several problems. To overcome this NASA is now building 

autonomous rovers which can detect terrains using Stereo vision and can act accordingly. 

2.2. Depth Perception 

2.2.1. Algorithms: 

Many works in the recent years on scene depth perception using stereo camera and for 

that many algorithms based on various datasets have been worked on and is available. Some of 

the algorithms are as follows: 
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2.2.1.1. Stereo Matching Algorithm: 

Binocular vision is an important method for obtaining stereo perception of the 

real world. Stereo matching is the key part of binocular vision [1]. Binocular Stereo 

vision is one of the important field of computer vision widely used in scene 

reconstruction and unmanned driving. 

The basic idea of stereo vision is to is to use two camera system i.e. stereo camera 

to take image of the same scene twice from each camera and then to calculates it’s 

difference using certain mathematical models and find the disparity of the scene to make 

disparity maps.  

Binocular stereo vision uses a computer instead of the human brain to perform 

stereo matching based on the imaging principle of the human eye to obtain parallax and 

then depth of objects in scenes [1]. 

2.2.1.2. Types of Stereo Matching Algorithm: 

Local stereo matching algorithm: 

   The local stereo matching algorithm relies on pixel-level data to calculate 

parallax, utilizing a window of nearby pixels for matching. It assesses the matching cost 

between the pixel of interest and all corresponding pixels in the right and left camera 

images within this local window. The algorithm then selects the parallax by identifying 

the window with the smallest matching cost.  

   Certain researchers have enhanced this algorithm by refining the process 

of computing the matching cost. Zabih [2] et al introduced a novel matching cost 

calculation function census which notably mitigates the impact of lighting variations. 

Zhang [3] et al. proposed a Cross Based adaptive window which reduces computation 

[1]. Liu [4] re al. introduced a shaped window determined through the double helix path 

method, which aligns more closely with intricate image contours. Gerrits [5] introduced 

a local stereo matching algorithm based on segmentation, implementing an adaptive 

window by diminishing the weight of points that do not belong to the same segment. 

Hosin [6] proposed adaptive weighting using a bootstrap filter. Wang [7] et al. proposed 

a quadratic bootstrap filtering with adaptive weights. 

Global Stereo Matching Algorithm: 

  The global stereo matching algorithm creates an energy function 

spanning the entire images. It iterates the matching algorithm iteratively, seeking the 
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global optimal parallax by determining the best solution for this function. Boykov [8] 

suggested employing the graph-cutting algorithm for stereo matching, aiming to 

eliminate parallax maps with lateral stripes that arise from dynamic planning issues. Kim 

[9] et al. introduced a stereo matching algorithm grounded in confidence propagation, 

aiming to address the issue of generating poor parallax maps. Yao [10] et al introduced 

a stereo matching algorithm grounded in confidence propagation, aiming to address the 

issue of generating poor parallax maps. 

Semi-Global Stereo Matching Algorithm: 

  The semi global stereo matching is an optimization of the global matching 

algorithm, which converts finding minimum energy function on 2D image into finding it 

on multiple! D paths. Basically it improves the speed of the algorithm. 

  First of all, Hirsch Muller [11] proposed semi-global matching algorithm, which 

uses a matching cost function of mutual information to fit a global 2D constraint. Zhou 

[12] designed a semi global stere matching method combining improved LBP and multi 

path matching cost aggregation. It improved both accuracy and speed. 

2.2.2 Methodology: 

2.2.2.1 Triangulation: 

Basic Triangulation technique includes taking two point perorally aligned and of 

known distance sees the same scene then calculation is performed to calculate disparity. 

For this purpose, two camera systems i.e. stereo camera is used. 

 

 

 

 

 

 

 

  Referring to figure 1, two cameras (C, C’) separated by a distance (T), are pointed 

at the same feature (S). Bothe of these camera are making an image of same scene whose 

location of points are as A and A’. due the distance between two cameras the location of 

images from each camera will differ with respect to normal axis (U and U’). The Distance 

can be calculated using following formula. 

Figure 1 Triangulation [12] 
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Distance = f___T___ 

                      U-U’  

Where, f is the focal length of the camera 

2.2.2.2 Feature-Based Disparity: 

The Feature Extraction method primarily focuses on identifying and comparing 

various features, such as edges, lines, circles, and curves, between two images. 

Nasrabadi's[13] approach involves a curve segment-based matching algorithm that 

extracts curve segments from detected edge points, using their centers as features for the 

matching process. 

On the other hand, Medioni and Nevatia's[14] method utilizes segments of 

connected edge points as matching primitives and emphasizes minimizing the differential 

disparity measure for global matching, considering factors like end points and segment 

orientation. 

2.2.2.3 Area Based Disparity: 

This method describes two techniques, both involving the use of a window placed 

on one image and scanning the other image using a window of the same size. The pixels 

within each window are compared and manipulated, with their sums producing a 

coefficient for the central pixel. These techniques were developed by Okutomi and 

Kanade [15] 

  The first technique is correlation, where the scanning window's output is 

convolved with the first, and the area that yields the highest convolution coefficient is 

considered the corresponding area. 

  The second method adheres to the same window principle but employs the sum 

of squared differences (SSD). This method assesses the pixel values in both windows 

and estimates the disparity by computing the SSD coefficients. Minimization of the SSD 

coefficient is the goal in this method. 

 

2.3 Obstacle Avoidance 

2.3.1 Mobile Robot Navigation:   

Mobile robot navigation involves various technologies categorized into seven types: 

2.3.1.1 Odometry:  
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  This method is widely used for mobile robot navigation. It involves translating 

wheel revolutions into linear displacement [19]. It provides short-term accuracy but 

accumulates errors over time. 

2.3.1.2 Inertial Navigation:  

  In this method, gyroscopes and accelerometers are used for measuring rotation 

rate and acceleration. However, data drifts over time, and challenges with signal-to-noise 

ratio occur in accelerometers [18]. 

2.3.1.3 Magnetic Compasses:   

  Magnetic compasses, which measure the Earth's magnetic field, serve as a 

fundamental source for obtaining absolute heading information. The fluxgate compass 

emerges as an advantageous choice for mobile robot applications as it exhibits 

characteristics such as low power consumption and the absence of moving parts [16]. 

2.3.1.4 Active Beacons:   

  Active beacons are common navigation aids utilized in determining a vehicle's 

position by measuring distances to known beacon sources. The two primary methods are 

trilateration and triangulation. While these methods offer robust navigation solutions, 

challenges exist in triangulation methods, with no single approach being universally 

suitable [17]. Intelligent combinations of methods may be required to overcome specific 

weaknesses. 

2.3.1.5 Global Positioning Systems (GPS):   

  GPS stands as a revolutionary technology designed for outdoor navigation, 

originally developed by the Department of Defense. Comprising 24 satellites 

transmitting RF signals, GPS utilizes trilateration for position computation, offering 

global coverage. 

  Challenges, such as intentional errors through Selective Availability, are 

addressed by Differential GPS (DGPS) [20]. This correction method, involving a second 

nearby receiver, enhances accuracy to 4-6 meters in commercial GPS receivers. Despite 

its transformative impact, GPS faces challenges such as periodic signal blockage, multi-

path interference, and limitations in accuracy for standalone navigation. 

2.3.1.6 Landmark Navigation:   

  Landmark navigation hinges on identifiable features, categorized as either natural 

or artificial, guiding mobile robots in their environment [20]. These include distinctive 
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features like doors and wall junctions, often detected using computer vision for 

navigation. Designed for optimal contrast, artificial landmarks utilize various patterns 

and shapes for easy detection. Landmark-based navigation offers flexibility, yet it is 

dependent on environmental features. Challenges include accuracy, processing speed, 

lighting conditions, and initial knowledge of the robot's starting position. 

2.3.1.7 Map Based Positioning:    

  This approach leverages naturally occurring structures without modifying the 

environment, allowing for learning, and improving accuracy through exploration. 

However, stringent sensor map accuracy requirements and the need for enough 

stationary, distinguishable features pose challenges. To capture all relevant features of a 

real environment, sensor fusion, combining data from different sensor modalities, 

becomes essential. Establishing correspondence between local and global maps is a 

crucial aspect of map-based navigation.[21] 

2.3.2 Real Time Obstacle Avoidance Using Depth Maps:  

Once depth maps have been created, the next step is obstacle-avoidance in real time. Here 

are 3 different algorithms for real-time obstacle avoidance using stereo vision. 

2.3.2.1 Mean Estimation Method 

The described method involves dividing disparity into three windows, left, 

central and right and calculating  the average disparity for each window. The 

window with the smallest average disparity value indicates the direction with fewer 

obstacles, guiding the robot's decision to steer in that direction.[22]  

In what conditions is this method ideal? 

This method works efficiently when there are few obstacles in one of the windows.  

Shortcomings of this method: 

In cases where there's enough space in front of the robot to move before making a 

steering decision, the algorithm occasionally behaves hesitantly.  

2.3.2.2 Threshold Estimation Method 

The threshold estimation method also involves dividing a disparity map into three 

windows of pixels. It operates in the following manner: 

  In the central window, pixels with a disparity value exceeding a predefined 

threshold (e.g., T = 120) are counted. If this count falls below a predefined rate (e.g., 

20%) of all central window pixels, it signals the absence of obstacles, permitting the robot 
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to proceed. If the count exceeds the rate, the algorithm inspects the other two windows 

and selects the one with the lowest average disparity value. 

  The threshold value (T) and rate (r) are tunable parameters that influence the 

algorithm's hesitance. A higher threshold value reduces hesitance, allowing the robot to 

approach obstacles more closely.  

In what conditions is this method ideal? 

  The T and r parameters are especially useful in navigating confined spaces. For 

instance, when applied to a specific disparity map, the algorithm determines whether the 

robot can move forward and get within approximately 50cm of obstacles before changing 

direction. 

2.3.2.3 The multi-thresholds method 

The algorithm utilizes a modified version of the Threshold Estimation Method, 

employing disparity maps to estimate object distances. The disparity map is divided into 

three vertical windows, with the central window being larger to address camera angle 

limitations, and the side windows adjusted to mitigate noise at map borders. In the 

analysis, the algorithm calculates the percentage of disparity map pixels representing 

nearby objects in each window, considering pixels exceeding a predefined threshold as 

significant. Additionally, pixels lacking disparity information are factored in, with 30% 

of the weight of high-disparity pixels assigned to them for efficiency. The side areas are 

processed selectively [23]. The algorithm first analyzes the central area; if the percentage 

of high-disparity pixels falls below a set threshold, the road is considered obstacle-free, 

and the robot continues its path. If the threshold is surpassed, the algorithm compares the 

percentages of the side windows, selecting the window with the lowest value to 

determine the direction with the fewest obstacles, leading to a corresponding adjustment 

in the robot's path. This approach integrates the directional decision-making aspect of the 

Multi-Thresholds Method, which divides the disparity map into three windows and 

assesses terrain travers ability based on pixel counts exceeding a set threshold. The 

window with the lowest count is chosen, and if this count is below a predefined rate, the 

robot moves in that direction. If all three counts exceed the rate, the algorithm recognizes 

the terrain as non-traversable and suggests a 180-degree rotation to avoid collision. The 

key advantage of this integrated method lies in its comprehensive assessment of terrain 
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travers ability before making navigation decisions, aiding in collision avoidance in non-

traversable terrains. 

2.3.3 Addressing Wireless Transmission and Fixed Camera Constraints: 

Limitations in the wireless transmission link and the fixed stereo camera's restricted field 

of view are challenges in real-time obstacle avoidance for autonomous vehicles. To overcome 

these constraints, a proposed method is the integration of sonar sensor data with stereo camera 

information. The Pioneer 3 sonar array, equipped with sensors on each side and six outward-

facing sensors, is utilized in conjunction with an adaptive fuzzy control system. This system 

processes obstacle distances in the left-front, right-front, and front areas to determine left and 

right wheel speeds, enabling linear and circular motions for obstacle avoidance [24]. The 

approach streamlines the fusion of sensory inputs and employs the center of gravity method for 

clear signal conversion, enhancing the real-time obstacle avoidance capabilities of autonomous 

vehicles. 

2.3.4 Managing Uncertainty in Autonomous Vehicle Navigation: 

Uncertainty arises from factors such as sensor noise and the dynamic nature of the 

environment. Effectively dealing with uncertainty is crucial for ensuring the accuracy of AV 

state estimation, which includes parameters like position, velocity, and orientation. 

The Extended Kalman Filter effectively integrates sensor measurements, such as those 

from GPS and IMUs, and handles nonlinear dynamics inherent in AV systems [25]. Operating 

in a prediction-correction fashion, the EKF continuously updates the state estimate, providing a 

refined and reliable representation of the AV's current state. By accounting for measurement 

noise and dynamically adjusting predictions, the EKF contributes significantly to the robustness 

and accuracy of AV navigation systems, making it a valuable tool for addressing uncertainty 

challenges in autonomous vehicle environments. 

 

2.4 Mobile platform 

2.4.1 Design Considerations: 

The increasing demand for autonomous driving has spurred the deployment of mobile 

robots across various industries. In manufacturing, logistics, retail, and agriculture, mobile robots 

play a crucial role in enhancing efficiency and productivity [26–33]. Among these, four-wheel 

mobile robot platforms are frequently employed for stable navigation on uneven road surfaces 

and reliable cargo transportation with varying weights and shapes. 



 

11 
 

Four-wheel steering mechanisms, including skid-steering, two-wheel steering, and four-

wheel steering, are commonly utilized. While skid-steering encounters wheel slippage and 

omnidirectional robots face complex issues, four-wheel steering platforms provide advantages 

such as a short turning radius. However, challenges like space occupation, power limitations, and 

control complexity need to be addressed [34–40]. 

Human-controlled four-wheel steering involves the use of steering units like joysticks 

for precise operation. However, applying traditional vehicle control methods optimized for high-

speed travel to mobile robots operating at low speeds may lead to decreased steering 

performance. Complex steering algorithms also necessitate extensive experiments for parameter 

adjustment [41-42]. 

Recent research contributions have focused on enhancing the capabilities of four-wheel 

steering robotic platforms. These efforts aim to address limitations and improve functionalities. 

Notable examples include a reconfigurable robot platform designed for floor cleaning [43], a 

strategy for transitioning between various steering modes [44], and innovative control algorithms 

focusing on lateral and directional performance [45–47]. However, these efforts primarily target 

stability control in autonomous scenarios and lack considerations for compact four-wheel 

steering platforms for educational and research purposes.[48] proposes a compact platform 

featuring four independently steerable wheels with an integrated differential gear mechanism, 

making it suitable for diverse applications, including education, research, and algorithm 

validation. The adaptive steering algorithm aims to enhance vehicle maneuverability and 

optimize turning performance during manual operation. This approach eliminates the need for 

elaborate sensor arrays, complex dynamic models, or intricate optimization algorithms [48]. 
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Figure 2 (The structure of robot module) [48] 

 

Figure 3 (Overview of robot module) [48] 

 

2.4.2 Adaptive Control of Four-Wheel Steering: 

The adaptive steering control algorithm for manual operation utilizes a combination of 

front and rear steering to achieve agile maneuverability. Analyzing the target steering angle, the 

algorithm dynamically adjusts the steering configuration for optimal performance. 

The algorithm considers a range of steering angles (−2θmax≤θcmd≤2θ−2θmax≤θcmd

≤2θmax) where θmax is the maximum steering angle for one wheel. The algorithm selectively 

activates front steering for straight or slight turns, engaging rear steering when the desired 
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steering angle surpasses a predefined threshold. This results in a reduced turning radius, 

enhancing maneuverability [48]. 

The overall process of the adaptive steering control algorithm is illustrated, 

demonstrating paths of the instantaneous center of rotation (ICR) for both front wheel steering 

and combined front and rear wheel steering. The algorithm calculates steering angles for right 

and left turns based on the target steering angle, ensuring optimal performance [48]. 

 

2.5 Summary:  

This chapter explores the work done in Stereo Vision, a technology that mimics human vision 

by combining multiple 2D images to create 3D depth maps, important for autonomous vehicles. It looks 

at different algorithms for depth perception, including local, global, and semi-global stereo matching. 

The chapter explains methods like triangulation and disparity calculation and discusses obstacle 

avoidance techniques, such as mean estimation, threshold estimation, and multi-thresholds for real-time 

navigation. It also addresses challenges like wireless transmission issues and uncertainty in navigation, 

suggesting solutions like combining sensor data and using the Extended Kalman Filter. The chapter 

wraps up with design considerations for mobile platforms, highlighting adaptive control of four-wheel 

steering systems to improve maneuverability in autonomous driving applications. 
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Chapter 3 -DEPTH PERCEPTION 

3.1. Overview: 

 This chapter explains the making and working of depth perception algorithms by making of 

disparity maps followed by depth maps and getting a usable numerical value from that depth map. 

Further, it also highlights the hardware and software used for the project such as the camera specifications 

which are essential in determining the accuracy of the algorithm. This chapter also sheds an extensive 

light on the steps of algorithm generation and all the necessary action took to achieve the final accurate 

algorithm. 

 

Figure 4 Flow Chart for Algorithm 

3.2 Hardware Specifications: 

 The hardware is an integral part of our final year project as all the data acquisition for 

algorithm generation has been done from the hardware. 

 3.2.1. Stereo Camera: 
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  The most important equipment of hardware used in the projects is the ZED 2 Stereo 

Camera, developed by StereoLabs, pioneer in the field of stereoscopic imaging. ZED 2 offers 

unparalleled depth perception capabilities in a compact and versatile form factor. This stereo camera 

system leverages advanced algorithms and hardware components to capture high-resolution depth maps 

with exceptional accuracy, making it an ideal solution for a wide range of applications including robotics, 

autonomous navigation, augmented reality, and 3D mapping. 

 

Figure 5. ZED 2 Stereo Camera, developed by StereoLabs 

 

The ZED 1 features two synchronized cameras that capture images simultaneously from slightly different 

perspectives, mimicking the human binocular vision system. It is equipped with 720p HD cameras, the 

ZED 2 produces sharp and detailed stereo images, enabling precise depth perception and scene 

understanding. 

The ZED 1 processes depth data in real-time, providing instantaneous feedback for applications requiring 

quick decision-making, such as obstacle avoidance or object tracking. By analysing the disparities 

between corresponding pixels in the left and right camera images, the ZED 1 calculates depth maps with 

impressive accuracy, even in challenging lighting conditions and complex environments. 
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Table 1 Properties of ZED Stereo Camera 

 

 

 3.2.2. Jetson Nano: 

 ` Another Crucial Piece of hardware equipment is Jetson Nano o which all the processing 

of stereo camera has been done. The Jetson Nano is a small, powerful, and cost-effective computer 

module developed by NVIDIA, specifically designed for AI and robotics applications. It combines the 

performance of a GPU with the flexibility of a CPU in a compact form factor, making it an ideal platform 

for edge computing and embedded systems. 

Dimensions 175x30x30 

Weight 170 g 

Power 380mA /5V USB powered 

Operating 

temperature 

0° C to 45°C 

Baseline 120 mm (4.7") 

Depth range 0.5 m to 25 m 

Depth Map 

resolution 

Native video resolution (in Ultra mode) 

Depth Accuracy <2% up to 3m <4% up to 15 m 

Output resolution Side by Side 2x (2208x1242) @ 15fps 2x(1920x1080) @ 30fps 

2x(1280x720) @60fps 2x (672x376) @ 100fps 

Field of View Max. 90° (H) X 60° (W) X 100° (D) 

RGB sensor type 1/3" 4MP CMOS 

Active array Size 2688 X 1520 pixels per sensor (4MP) 

Focal length 2.8mm 

Interface USB 3.0 - Integrated 1.5m cable 

Shutter Electronic synchronized rolling shutter 
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Figure 6 Jetson Nano 

The Jetson Nano integrates a powerful GPU based on the NVIDIA Maxwell architecture, which provides 

significant computational power for AI inference tasks such as image recognition, object detection, etc. 

In addition to the GPU, the Jetson Nano features a quad-core ARM Cortex-A57 CPU. 

Despite its high performance, the Jetson Nano is designed to operate efficiently with low power 

consumption, making it suitable for battery-powered and mobile applications. the ZED 2 is compatible 

with Stereolabs' proprietary software suite, which includes tools for depth mapping, 3D reconstruction, 

and camera calibration. 

 

3.3. Software’s and Libraries: 

 Multiple Software’s and Libraries were used during the course this project, The details of the 

Software’s are as follows, 

1) ZED SDK: The official SDK Manager for the ZED Stereo Camera from Stereolabs 

was used for the calibration and getting the rectification parameters of the stereo 

camera. Its a useful software as it also provides the initial pre-checking of the camera 

frames with the camera launcher. Further, have built in chess pattern and camera 

frame detection which makes the calibration of the Stereo Camera and is easily 

calibrated. Also, it provides the various rectification parameters which are later used 

for the rectification of the camera frames. 

2) Anaconda: This software is for Windows and it helps you use Python and R 

programming languages. It comes with lots of useful tools for data science, like 

NumPy, Pandas, and Matplotlib. You can create virtual environment to work in 

without messing up your computer, and you can install different versions of tools 
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without them causing problems. In this project, it is used for the software based 

coding and initial making of the disparity and depth maps o windows environment 

 Spyder: Spyder IDE provided by anaconda is used for the Python 

programming of Depth Perception and Obstacle Avoidance code 

in windows environment. All the initial coding is done on Spyder 

IDE. It is one of the most useful and easy to use IDE for python 

as it provides supports for majority of the libraries of python such 

opencv, numpy, time, etc. 

3) Code-OSS/Visual Studio Code: Code-OSS also know as Visual Studi Code is used 

in this project for the embedded implementation of the project in Ubuntu 18.04 on 

Jetson Nano. Code-OSS is the software name of VS Code in the Linux environment. 

VS Code makes coding easier with its user-friendly interface and powerful features 

like IntelliSense and debugging tools. Its extensive library of extensions enhances 

productivity by customizing the editor to suit individual preferences and project 

needs. VS Code makes coding easier with its user-friendly interface and powerful 

features like IntelliSense and debugging tools. Its extensive library of extensions 

enhances productivity by customizing the editor to suit individual preferences and 

project needs. 

4) Python:  The coding language used in this project is Python, for it’s simplicity and 

ease of use, allowing for faster development and prototyping. Python's extensive 

libraries, such as OpenCV, provide robust support for image processing and computer 

vision tasks without the need for complex memory management, making it more 

accessible to developers. Additionally, Python's flexibility and readability contribute 

to quicker algorithm implementation and experimentation, making it a popular 

choice for computer vision projects. 

 OpenCV: Open-Source Computer Vision Library, is a powerful 

tool for image and video processing tasks, offering a wide range 

of functionalities for computer vision applications. Its extensive 

collection of algorithms enables tasks like object detection, 

recognition, tracking, and even augmented reality. OpenCV's 

cross-platform compatibility allows developers to work 

seamlessly across different operating systems, making it a 
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versatile choice for various projects. In this project, OpenCV is 

used to display and extract data from stereo camera and  to 

display the depth maps once calculation using algorithm. 

 Ultralytics: The Ultralytics library is a comprehensive toolkit for 

computer vision research and development, providing state-of-

the-art models and algorithms for various tasks. Its user-friendly 

interface and extensive documentation make it accessible for 

both beginners and experienced developers alike. With features 

like object detection, segmentation, and image classification. In 

this project, it is used to run YOLO and for person and obstacle 

detection.  

 NumPy: NumPy is a fundamental library for numerical 

computing in Python, offering powerful tools for working with 

arrays and matrices. Its efficient implementation of mathematical 

operations allows for high-performance computation, making it 

indispensable for scientific and engineering applications. In this 

project numpy is used to deal with arrays of images and 

computations used for it.  

 

3.4 Algorithm Generation: 

3.4.1. Data Acquisition from Stereo Camera: 

  To acquire data from stere camera, ZED SDK was first used to initially monitor the 

frames of the camera and to adjust and calibrate them accordingly. Later, OpenCV was used in the code 

to get the two frames of stereo camera separately to be further used in depth maps generation. However, 

the stereo camera can also act as a USB Video Class 19 (UVC) camera, from which ‘A1’ and ‘𝐴2’ can be 

taken, then those images are manually rectified using the calibration parameters of the stereo camera 

giving ‘𝐴1’ and ‘𝐴2’. 

3.4.2. Stereo Camera Calibration: 

  Camera calibration is most important part of depth perception and depth map generation. 

Without the camera calibration it is not possible to obtain accurate depth maps for real time processing 

and obstacle avoidance. 
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  The ZED Stereo Camera is calibrated using the Zhang’s Method. There are two ways for 

calibration of stereo camera using Zhang’s method i.e. using the code or the built-in application. The 

ZED SDK manager provided by the Stereolabs is used for the calibration of the stereo camera by the 

following method. In this method, a checkboard pattern is displayed on the computer screen in the ZED 

SDK Manager. The ZED camera is then adjusted Infront of screen until application detects the camera 

by changing red highlighted area to blue. The camera then take pictures of the checkboard pattern using 

two cameras separately at various orientations and angles, then compare the feature points of two images 

with each other. The camera gets calibrated by adjusting the frames of two separate camera with each 

other and displays all the parameters of the ZED stereo camera. After getting the parameters, images 

from the stereo camera are rectified [49]. 

 

Figure 7  Checkboard Pattern for Calibration 

The Intrinsic and extrinsic parameters for the ZED Stereo Camera are defined below. 

a) Intrinsic Properties: 

   Intrinsic properties refer to the inherent qualities of an object or system that are 

independent of its external environment or orientation. These properties are essential characteristics that 

define the object's nature and behavior.In computer vision, intrinsic properties often relate to the internal 

geometry and appearance of objects, including parameters such as color, texture, shape, and reflectance 

properties. Intrinsic properties are typically invariant under transformations such as translation, rotation, 

and scaling, making them useful for tasks like object recognition, classification, and segmentation. 

Some Intrinsic properties of ZED Stereo Camera are as follows. 

 Focal Length: This is the distance between the camera sensor and the centre of 

the lens. It is usually expressed in pixels or millimetres.  
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 Image Centre: It is the point where the optical axis of the camera intersects the 

image plane. It is usually expressed in pixels. 

 Distortion Coefficients: Distortion occurs when a camera lens fails to produce 

a straight line when imaging a straight object. There are two types of distortion, 

radial and tangential. The radial distortion coefficients are related to how much 

the lens curves and are usually denoted by k1, k2, and k3. The tangential 

distortion coefficients are related to how the lens is not aligned perfectly parallel 

to the image plane and are usually denoted by p1 and p2. 

 Rectification Parameters: The rectification parameters are used to transform 

the images so that they can be processed more easily in stereo vision algorithms. 

The rectification parameters include the rotation matrix and translation vector 

between the two cameras, the projection matrix for each camera, and the 

disparity-to-depth mapping function. 

These properties are extremely important for the calibration of the ZED Stereo camera 

and for rectification of stereo camera at later steps. 

b) Extrinsic Properties: 

      Extrinsic properties, on the other hand, are dependent on the object's relationship 

with its external environment or reference frame. These properties describe the object's position, 

orientation, or motion relative to some external context. In computer vision and robotics, extrinsic 

properties often include parameters such as pose (position and orientation), motion trajectory, and spatial 

relationships with other objects in the scene. Unlike intrinsic properties, extrinsic properties can change 

with respect to external factors or transformations, making them crucial for tasks like scene 

understanding, navigation, and robot localization. 

 Rotation Matrix: The rotation matrix specifies how one camera is rotated 

relative to the other camera. It is usually denoted by R. 

 Translation Vector: The translation vector specifies the distance and 

direction between the two cameras. It is usually denoted by T. 

 Essential Matrix: The essential matrix relates the corresponding image 

points in the left and right camera images. It is computed from the rotation 

matrix and translation vector and is denoted by E. 

 Fundamental Matrix: The fundamental matrix describes the epi-polar 

geometry of the stereo camera system. It relates the corresponding image 

points in the left and right camera images and is denoted by F. 
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These both Intrinsic and Extrinsic properties are very much important in the later 

rectification of the camera frames and also the 3D reconstruction of the objects. 

3.4.3. Stereo Rectification: 

 Stereo camera rectification is a crucial preprocessing step in stereo vision applications, aimed at 

simplifying stereo correspondence by aligning the epipolar lines in the left and right images. Here's a 

breakdown of the steps involved: 

1. Understanding Stereo Geometry: Before diving into rectification, it's essential to 

comprehend the geometric relationship between the two camera views. This includes understanding 

concepts like the baseline, focal length, and disparity. 

2. Compute Camera Calibration: Ensure both cameras are calibrated to obtain their intrinsic 

and extrinsic parameters. This information is vital for rectification. 

3. Epipolar Geometry Analysis: Analyse the epipolar geometry, which defines the relationship 

between corresponding points in the left and right images. Epipolar lines are the intersection of the image 

plane with the planes passing through corresponding points and the camera centres. 

4. Compute Rectification Transformation: Based on the camera calibration and epipolar 

geometry, compute the rectification transformation matrices for both cameras. These matrices transform 

the images such that corresponding epipolar lines become horizontal and aligned. 

5. Apply Rectification: Apply the rectification transformation to both left and right images. This 

process involves warping the images according to the computed transformation matrices. 

6. Verify Alignment: After rectification, verify that corresponding epipolar lines are indeed 

aligned horizontally in both images. This alignment simplifies stereo matching, as corresponding points 

will now lie on the same rows. 
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Figure 8 Epipolar Lines [50] 

 

 

 

 

 

 

Figure 9 Alignment of frames 

 

3.4.4. Disparity Maps Formulation and Calculation: 

 Disparity Maps forms the basis of the depth map generation and for calculating depth of the 

object using stereo camera. There are many algorithms and method used for the formulation od Disparity 

Maps, we have Semi-Global Block Matching (SGBM) Algorithm for the calculation of Disparity Maps. 

Implementing SGBM involves careful consideration of each step and parameter selection to 

achieve accurate and reliable disparity estimation for stereo vision applications. The steps involved in 

calculating disparities using SGBM is given as follows. 

  1. Image Preprocessing: 

    Image Rectification: This is first preprocessing step for the disparity calculation 

using the stereo vison, which already have been done and explained already in our project. In sort, it 

means to ensure that the left and right images are rectified, so corresponding points lie on the same rows. 

This simplifies stereo matching. 

    Convert to Grayscale: The rectified image is then converted to grayscale as 

colour information is not typically required for stereo matching. 

2. Block Matching: 

    Block Selection: Divide the left image into small blocks or windows. These 

blocks will be matched with corresponding regions in the right image. 

    Cost Calculation: Cost calculation in Semi-Global Block Matching (SGBM) 

algorithm is pivotal for stereo correspondence. It quantifies the dissimilarity between pixel blocks in left 

and right images across different disparities. Employing methods like Sum of Absolute Differences 

(SAD) or Sum of Squared Differences (SSD), it measures pixel intensity deviations. These costs aid in 

identifying optimal correspondences, crucial for accurate depth estimation and 3D reconstruction in 

stereo vision systems. 
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    For each block in the left image, the cost of matching with all possible blocks in 

the same row of the right image is calculated. The cost calculation using Sum Of Absolute difference 

(SAD) is given as. 

SAD(p,q) = ∑(x,y)€W |f1(x,y) – f2(x-p,y-q)| 

   Similarly, Calculation using Sum of Square Difference is given as. 

SSD(p,q) = ∑(x,y)€W (I1(x,y) – I2(x-p,y-q))2 

3. Aggregate Costs: 

    Cost Aggregation: In Semi-Global Block Matching (SGBM), cost aggregation 

amalgamates local matching costs across multiple paths, enhancing disparity estimation. Techniques like 

dynamic programming smooth the cost volumes by aggregating costs along rows, columns, and 

diagonals. Aggregated costs provide a global understanding of the scene, reducing disparities and 

improving depth map accuracy. Through aggregation, SGBM minimizes noise and artifacts, enabling 

more robust stereo matching in complex environments. 

    A cost aggregation technique is applied to smooth the cost volume and improve 

the accuracy of disparity estimation. Common methods include cross-based cost aggregation or adaptive 

support weight aggregation. 

   We have used Cross-Based Aggergation technique for calculating the Cost 

Aggrgation. 

C(p,q,d) = ∑(i,j)€N(p) min(C(i,j,d), C(i-p+Δx, j-q+Δy,d)) 

    Semi-Global Aggregation: In Semi-Global Block Matching (SGBM), semi-

global cost aggregation enhances disparity estimation by considering global consistency. Through 

dynamic programming, costs are aggregated along multiple paths, including rows, columns, and 

diagonals. 

4. Disparity Calculation: 

    Winner-Takes-All (WTA): For each pixel in the left image, sthe disparity value 

with the lowest aggregated cost as the estimated disparity is calculated.The formula for this is given. 

Disparity(p,q) = arg mind C(p,q,d) 

    Subpixel Refinement: Subpixel refinement in Semi-Global Block Matching 

(SGBM) enhances the accuracy of disparity estimation beyond integer values. Using techniques like 

parabolic interpolation, disparities are refined to subpixel precision. 

   We have used parabolic interpolation in our algorithm whose formula is given as. 

d’ = d + 
𝐶(𝑝,𝑞,𝑑−1)−𝐶(𝑝,𝑞,𝑑+1)

2(𝐶(𝑝,𝑞,𝑑−1)−2𝐶(𝑝,𝑞,𝑑)+𝐶(𝑝,𝑞,𝑑+1))
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3.4.5. Depth Maps from Disparities: 

 After getting the disparity map from the previous step, the triangulation formula for depth is 

used to convert the disparity map into a proper depth map where 24 f is the focal length of the ZED in 

pixels, u is the disparity map and baseline is the distance between the two cameras of the ZED 1 [51]. 

Z =  
𝑓𝑜𝑐𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ∗𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝐷𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦
 

3.4.6. Getting Depth Values from Depth Maps: 

To extract depth values from depth maps, each pixel's intensity in the depth map represents the 

distance from the camera to the corresponding point in the scene. By converting pixel values to metric 

units using calibration parameters, such as focal length and baseline distance, depth values can be 

obtained. Additionally, post-processing techniques like median filtering or outlier removal can refine 

depth values for enhanced accuracy. These depth values provide crucial spatial information, enabling 

precise 3D reconstruction and depth-based analysis in stereo vision applications. 

 

 

 

 

 

 

 

 

 

Figure 10 Depth Maps 

3.4.8 Implementation on Jetson Nano: 

 The process of deploying the framework to the Jetson Nano platform involved the following 

steps. 

   1) The hardware requirements of the Jetson Nano were tested and set up. 

   2) The necessary libraries were installed on the system, and it was run on the Code-OSS 

IDE environment on Jetson Nano. 

  3) After installing the required libraries, the algorithm was optimized to run on the limited 

resource of the Jetson Nano, 

  4) This optimized code was then finally deployed on Jetson enviorment. 
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3.5. Summary: 

This chapter describes the framework used in this project, after following the above given procedures, 

the key outcomes are as follows.  

 Calibrated and rectified stereo camera images were obtained from uncalibrated images. 

 Disparity Map was obtained from rectified stereo camera images. 

 Depth map was obtained from disparity map. 

 Depth values were calculated of the obstacle from the generated Depth Maps 

The Following Chapter will discuss the recognition of Obstacles and integrating the Depth maps with 

Reign if Interest of that Obstacle and the generation of a Obstacle Avoidance Strategy using the perceived 

Depth of the Obstacle as described and calculated in this chapter. 
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Chapter 4 – OBSTACLE AVOIDANCE 

4.1. Overview: 

 Obstacle avoidance in autonomous vehicles is a critical element of their navigation systems, 

designed to ensure both safety and efficiency during operation. These vehicles are equipped with a 

variety of sensors such as cameras, radar, and LIDAR, which collectively enable precise detection and 

assessment of the surrounding environment. Advanced algorithms analyze this data to calculate 

distances, anticipate the behavior of other road users, and perform necessary maneuvers to safely avoid 

potential hazards. This technology not only enhances vehicular safety but also contributes significantly 

to the goal of full vehicular autonomy. It enables cars to navigate through complex and dynamic traffic 

scenarios with minimal human intervention, thus increasing the reliability and effectiveness of 

autonomous travel. 

 In the context of our project, obstacle avoidance was a major challenge since we had to work 

only with depth maps generated by stereo cameras. Depth maps, which provide 3D representations of 

the environment from two-dimensional images, are crucial for identifying and responding to physical 

barriers in the vehicle's path. However, the accuracy of depth maps can be affected by various factors 

including lighting conditions, object distance, and the inherent limitations of the stereo vision 

technology.  

 In order to find the most reliable results, we implemented several strategies for our depth-based 

obstacle detection system. The exploration of these techniques provided valuable insights into the 

capabilities and limitations of using depth maps for obstacle avoidance in autonomous vehicles.  

 

Figure 11 Autonomous Vehicle demo [61] 

4.2. Detection of Obstacles: Methodologies and Challenges 

 4.2.1. Method I - Depth Map Division  
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 The first method we explored was obstacle detection through the strategic segmentation 

of depth maps into five specific windows. For this division, the frame width was calculated and 

then divided into 5 parts. This technique was aimed at analyzing the depth within each section to 

detect potential obstacles effectively. By calculating the average depth for each segmented 

window and setting a comparison against a predetermined threshold, we were able to identify 

areas likely to contain obstacles. This threshold was not arbitrary but was established based on 

empirical data and expert assessments to ensure its relevance and accuracy in real-world 

conditions. 

 

Figure 12 Depth Maps with Windows 

 

Figure 13 Code Screen Shot 

  4.2.1.1. Comparative Analysis and Directional Assessment 

Upon identifying multiple windows that exceeded the obstacle threshold, we 

proceeded with a comparative analysis. This involved an in-depth evaluation to 

determine which window not only met the threshold but contained the closest obstacle 

based on its depth reading. Prioritizing obstacles based on their proximity is critical as it 

directly impacts the decision-making process regarding the vehicle's navigation and 

immediate actions required. Furthermore, the direction of the vehicle’s movement was 

under continuous surveillance. Integrating directional data with feedback from the depth 
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maps allowed for dynamic adjustments. This proactive approach ensured that the vehicle 

could adeptly navigate and maneuver around obstacles, enhancing both safety and 

efficiency in operation. 

  4.2.1.2. Drawbacks and Limitations 

However, during testing, we encountered significant challenges with the 

accuracy of the depth computations. Background depth data frequently contaminated the 

readings within each window, complicating the distinction between true obstacles and 

mere depth anomalies in the vehicle's path. This limitation was critical as it directly 

affected the reliability of the obstacle detection process, potentially leading to unsafe 

navigation decisions. The difficulties highlighted the necessity for more advanced 

computational techniques to discriminate between relevant and irrelevant depth 

information more effectively. 

4.2.2. Method II – Object Detection 

To overcome the issues faced in method I, we shifted to object detection for detecting 

obstacles. By combining the left and right frames of the stereo camera and using ultralytics and 

YOLO [52], we managed to detect obstacles in real-time.  

4.2.2.1. Reasons behind choosing YOLO (You Only Look Once) 

YOLO represents a significant shift in the landscape of object detection 

algorithms by emphasizing unparalleled speed and accuracy in a singular evaluation 

framework. This innovative method stands out by processing images in one swift 

computational pass, directly translating image data into spatial bounding boxes and 

associated class probabilities. 

YOLO's architecture allows for rapid image processing, a critical feature that supports 

real-time applications. By treating object detection as a single regression problem, where 

the system predicts multiple bounding boxes and class probabilities across the entire 

image simultaneously, YOLO achieves remarkable speeds [53]. In addition, its approach 

differs from traditional methods that use separate systems to predict regions and then 

classify each region independently, as YOLO integrates these steps into one continuous 

prediction mechanism, reducing processing time and improving the efficiency of the 

detection system. 

With its capability to generalize across different scenes, YOLO demonstrates strong 

performance even in new or varied environments [54]. This robustness makes it 
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particularly useful for applications that require the algorithm to adapt to different 

operational contexts without needing extensive retraining. So, overall, the algorithm's 

efficiency ensures that vehicles respond in real-time to objects like pedestrians, other 

vehicles, or unexpected obstacles. 

4.2.2.2. Finding Region of Interest 

For our prototype, we decided to specifically detect humans and mark them as 

obstacles for avoidance. After detecting objects with YOLOv4-tiny, the system searches 

for people and then draws bounding boxes around each of them. This marked area, or 

region of interest, highlights where the vehicle needs to focus its attention. Once a person 

is detected and the ROI is set, our system uses this information to avoid collisions. The 

coordinates of the bounding box help the vehicle understand where the person is and 

adjust its path accordingly. If there’s more than one obstacle, then each detected object 

is enclosed within a bounding box, and for each bounding box, a corresponding region 

of interest is defined. The work by Liu et al. (2020) describe similar methods, where 

bounding boxes are used to refine the focus on specific areas for depth estimation in 

cluttered environments. This technique allows for more precise measurements by 

isolating the object from its surrounding context, which is crucial especially for small or 

partially obscured objects [55]. 

 

Figure 14 Obstacle Detection and Selection of ROI 

4.3. Computing Depth of ROI 

 In the process of obstacle detection and avoidance in autonomous vehicle systems, accurately 

determining the depth of objects within the region of interest (ROI) is essential. This section details the 

methodology employed to compute the depth of each ROI, leveraging previously generated depth maps. 



 

31 
 

 

Figure 15 Computing Depth of ROI 

4.3.1. Utilization of Depth Maps:  

Depth maps that we had already computer are utilized here as foundational data. These 

maps offer detailed pixel – by – pixel estimates of disparity [56]. Disparity refers to the difference 

in the images of an object seen by two cameras from slightly different viewpoints. It is a crucial 

metric as it is inversely proportional to the actual distance from the camera to the object in the 

scene; greater disparity corresponds to closer objects. 

 

 

Figure 16 Selection of Multiple ROI 

 

Figure 17 Depth of ROI 

4.3.2. Average Disparity Calculation:  
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For each defined ROI, the average disparity is calculated. This involves summing the 

disparity values across all pixels within the ROI and then dividing by the total number of pixels 

to obtain a mean disparity value for that particular region. 

4.3.3. Depth Calculation from Disparity:  

Once the average disparity is obtained, the actual depth of the object or obstacle within 

the ROI is computed using the camera’s intrinsic parameters. The formula to calculate depth 𝐷 

from disparity d involves the focal length f of the camera and the baseline distance b between the 

stereo cameras, given by the relationship: 

𝐷=(𝑓×𝑏)/𝑑  

 The focal length represents the distance over which the rays of light converge to form a sharp 

image, while the baseline distance is the horizontal distance between the stereo cameras. 

This comprehensive approach ensures a reliable estimation of the depth of each obstacle. The 

accuracy of this depth calculation is paramount, as it directly influences the vehicle's ability to 

respond appropriately to its surroundings, ensuring safety and effective navigation. 

4.4. Avoiding Obstacles based on Depth of ROI 

After computing ROI and the obstacle’s depth, the next step was locating the obstacles when they are in 

the path of the mobile base and based on that, decide the direction in which the base should move.  

4.4.1. Window-Based Navigation Strategy 

 This approach involves segmenting the field of view into several discrete windows, 

typically five, focusing on key areas to enhance navigation decisions. 

 

Figure 18 Window-Based Navigation Strategy 

4.4.1.1. Division of the Field of View  

The entire field of view is subdivided into five distinct windows. These windows 

are strategically positioned to cover essential viewing angles, namely the left, center, and 

right windows. This segmentation is vital for concentrating computational resources on 
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areas of highest navigational importance, particularly when the robot or vehicle is 

moving forward. 

4.4.1.2.  Finding Region of Interest 

 The rationale for focusing primarily on the left, center, and right windows stems 

from the need to manage computational load effectively. According to Chen et al. (2019), 

implementing a selective attention mechanism can significantly increase navigation 

efficiency. This is achieved by minimizing the real-time processing of peripheral visual 

data, which is often less relevant to immediate navigation tasks [57]. This targeted 

approach ensures that the system remains responsive and agile, avoiding delays that 

could compromise operational safety and efficiency. 

4.4.1.3. Dynamic Obstacle Detection and Avoidance  

 In scenarios where the robot detects an obstacle within the central window—

particularly when the trajectory is set straight ahead—the system then evaluates the 

adjacent left and right windows. This step is crucial for determining the best possible 

alternative path to avoid the obstacle. The decision-making process here is reinforced by 

the work of Kim and Uthansakul (2021), who demonstrated that multi-window 

approaches are particularly effective in dynamic environments where obstacles may 

suddenly appear or move [58]. By comparing the data from both side windows, the 

system can choose the most unobstructed path, enabling the robot to navigate safely 

around obstacles. 

This window-based navigation strategy not only streamlines the processing of visual data 

but also enhances the robot's ability to make quick, informed decisions in complex 

environments. The methodology balances the need for detailed environmental scanning 

with the necessity for rapid response times, making it an essential feature of modern 

autonomous navigation systems. 

4.5. Feedback Loop and Dynamic Adjustment 

In autonomous navigation systems, the ability to dynamically adjust to changes in the 

environment is critical for operational efficiency and safety. This adaptability is facilitated through a 

well-structured feedback loop that uses real-time data to continuously refine the robot’s movement 

strategies. 

4.5.1. Integration of Feedback in Navigation 
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 The primary function of the feedback loop is to utilize the positions of detected obstacles 

within the designated windows as inputs. As the robot or vehicle progresses through its 

environment, it continuously scans for obstacles. When an obstacle is detected, the information 

about its location is immediately fed back into the system's control loop. This loop acts as a 

dynamic regulator, adjusting the robot's trajectory based on the most recent data. 

4.5.2. Dynamic Trajectory Adjustment 

The feedback mechanism allows the robot to make immediate adjustments to its 

trajectory to avoid collisions. This process is dynamic, meaning that the adjustments are 

continuously updated to reflect new data from the robot’s sensors. The trajectory corrections are 

calculated to optimize path efficiency while avoiding detected obstacles, ensuring a smooth 

navigation process. 

4.5.3. Role of Real-Time Feedback 

 The effectiveness of this system hinges on the real-time nature of the feedback. As 

highlighted by Nguyen et al. (2020), real-time feedback is a cornerstone of efficient autonomous 

navigation systems [59]. The immediacy of this feedback allows the system to react swiftly to 

changes within the robot's environment, such as the sudden appearance of obstacles or 

unexpected changes in the obstacles' positions. 

4.5.4. Theoretical and Practical Implications 

 The concept of a feedback loop in autonomous navigation is not only crucial theoretically 

but also in practical applications. It underpins the robot's ability to function autonomously in 

unpredictable and dynamic settings. This loop ensures that the robot’s navigation decisions are 

continually updated, reflecting the current conditions and thereby enhancing the adaptability and 

reliability of the system. 

4.5.5. Exploration of Feedback Loop Efficacy  

 The work of Nguyen et al. (2020) explores the impact of feedback loops in enhancing 

the decision-making capabilities of autonomous systems. By analyzing how these systems 

respond to real-time environmental changes, the study emphasizes the necessity of integrating 

robust feedback mechanisms to maintain and improve navigational accuracy and safety. 

4.6. Integration of GPS Technology 

 The incorporation of Global Positioning System (GPS) technology into autonomous navigation 

systems helps in enhancing point-to-point navigation capabilities. Therefore, to move to a certain 

location, we had to perform state estimation. For this purpose, we used a GPS module, the NEO M8N. 
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This module is renowned for its high precision in providing location data, which is crucial for accurate 

long-distance navigation. Here are some aspects of integration of GPS and its benefits in improving the 

navigational capabilities of robotic systems. 

4.6.1. GPS Module Specifications  

 The NEO M8N GPS module is chosen for its reliability and precision in geographic 

positioning. It offers high sensitivity and low power consumption, which are essential for mobile 

platforms such as autonomous robots. The module's ability to provide accurate positional data 

helps in mapping and tracking the robot's route to its destination effectively. 

 

Figure 19 NEO M8N GPS module [60] 

4.6.2. Enhanced Point-to-Point Navigation 

 By integrating the NEO M8N module, the robot gains the ability to navigate over long distances 

with high precision. GPS technology allows the robot to ascertain its exact location on a global scale, 

facilitating efficient route planning and execution. This capability is particularly beneficial in 

environments where landmarks are sparse or absent, such as in rural or newly developed urban areas. 

4.6.3. Synergy with Visual Navigation Systems  

 The effectiveness of GPS technology is further amplified when used in conjunction with visual 

navigation systems, just like our project. The combination of GPS data and visual inputs from the robot’s 
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sensors enables a more robust navigation strategy. This dual-modality approach allows the base to avoid 

obstacles while ensuring that it stays on the correct path and reaches its correct location.  

4.6.4. Validation by Recent Studies  

 The integration of GPS with visual data for enhancing navigation robustness has been 

substantiated by research conducted by Jiang et al. (2019). Their study concluded that the hybrid 

navigation system significantly improves the reliability and robustness of autonomous systems operating 

in outdoor environments [60]. This finding underscores the value of GPS technology in strengthening 

the navigational capabilities of robots, making them more adept at handling the complexities of outdoor 

terrains. 

4.7. Summary 

This section has elaborated on the methodologies employed for effective obstacle avoidance in our 

project of an autonomous mobile robot. By integrating advanced depth calculation techniques, window-

based analysis, and GPS technology, our system can navigate environments with a high degree of 

autonomy and safety. Future work will focus on refining these techniques and exploring the integration 

of additional sensor modalities to further enhance the robot's environmental awareness and decision-

making capabilities. 
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Chapter 5 -MOBILE PLATFORM 

5.1. Overview:  

 Chapter 5 discusses the development of a mobile platform for mounting the ZED stereo camera. 

This platform is essential for demonstrating the proof of concept in practical situations. The chapter 

explains how the platform is engineered to fit the camera securely and perform well. It also describes 

how software is integrated into the platform to process data in real-time, which helps in testing the 

solution in various environments 

ALCULATIONS FOR DEPTH VALUES USING DEPTH MAPS 

5.2 Computer Aided Design: 

 Using SolidWorks, a 3D model design was made for the general base of the mobile platform 

where the ZED camera is to be mounted and other components such as the Jetson Nano, Battery pack, 

ESP32 Dev kit and other electronics components would be placed it also consists of the design of the 

wheels for the mobile platform and a 3D design was made for the steering system of the of the Mobile 

platform. The designed model accommodates the necessary clearance and adjustments required. The 

Computer Aided Design (CAD) model is then extracted in different formats so it can be used for 

manufacturing and analysis purposes. 

5.2.1. Design Specifications: 

  5.2.1.1. Base: 

The base has the dimensions of 158x350x44mm some of the factors kept in mind 

while designing it were: 

 Housing for Driving Motor 

 Space for Servo Motor used for steering system 

 Space for rear shaft for wheel mounting 

 Space for wheels used for steering  

 Space to mount camera and accommodate all electronics including Jetson Nano 
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Figure 20 CAD model for Base of Mobile Platform 

5.2.1.2. Steering system: 

The designed steering is an Ackerman steering. The Ackermann steering 

mechanism is a geometric configuration of linkages within a vehicle's steering system. 

Its purpose is to address the challenge of inner and outer wheels in a turn following paths 

of varying radii. Some design considerations for Ackermann steering involve several key 

points: 

 One approach to approximate ideal Ackermann geometry is to reposition the steering pivot 

points inward along a line connecting the steering kingpins and the center of the rear axle. 

 The steering pivot points are connected by a rigid bar known as the tie rod, which can be 

integrated into the steering mechanism, such as a rack and pinion system. 

 In perfect Ackermann steering, regardless of the steering angle, the center point of all circles 

traced by the wheels aligns at a common point. 
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Figure 21 Turning Centre of Ackermann Steering 

This shows the adaptive steering system of the Ackermann steering which allows for a forward 

differential which causes smooth steering and prevents slippage. 

This was achieved by designing 6 links and join them in such a way that when  the wheels are 

completely straight the point of intersection of the links joining the wheels is the center of the 

rear shaft . 

 

Figure 22 CAD model of Steering 

The steering is controlled by a single servo motor which is given the respective angle from the 

ESP32 at which it has to turn based on the decision making of the Jetson Nano. 
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To connect the steering mechanism with the wheels a steering knuckle and connecting rod were 

also designed 

5.2.1.2.1 Connecting rod: 

 

Figure 23 Edrawing for Connecting Rod 

 

Figure 24 CAD Model of Connecting Rod 

5.2.1.2.2 Tie rod/Steering Knuckle: 

 

Figure 25 Edrawing for Tierod 
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Figure 26 CAD Model for Tierod 

   5.2.1.3. Wheels: 

The wheels were designed while keeping the in mind the weight it has to support 

and to provide enough ground clearance and also to provide grip to prevent slippage. 

 

Figure 27 CAD Model for Wheels 

 

 They are also extracted in a different format for better understanding for manufacturing purposes  
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Figure 28 Edrawing for Wheels 

 5.2.2. Full Design: 

 

 

Figure 29 Complete 3D Model 

5.3 Manufacturing and Fabrication: 

 5.3.1 3D Printing: 

 For the final product some of the components were 3D printed using either Polyethylene 

Terephthalate Glycol (PETG) or Polylactic Acid (PLA) depending on the part. 

 5.3.1.2 Wheels: 

The wheels were 3D printed using Polylactic Acid (PLA) as they did not require 

that much strength along with a 20% infill. 
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Figure 30 3D printed Wheel 

5.3.1.2 Steering Components: 

The Tierod or the Steering Knuckle and the Connecting rod were both 3D 

printed using PETG at a 100% infill.  

 

Figure 31 3D Printed and Connected TieRod and Connecting Rod 

5.3.2 Laser Cutting: 

For the majority of the mobile platform the parts were made by laser cutting a 400x400 

acrylic sheet having thickness of 6mm. 

Before laser cutting it we were required to export it in such a way that causes little to no waste 

of the material and allows us ease in assembly. The export format is given below: 
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Figure 32 Image of File Sent for Laser Cutting 

To assemble these parts Chloroform was used as it acts as a glue for acrylic by dissolving the 

surface a bit and joining it with the other part.  

5.4 Summary: 

 This section discusses considerations taken into account while designing the mobile platform and 

the 3D model made. It also discusses the manufacturing of the individual parts of  the mobile base 

alongside the materials used. 
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Chapter 6 - Integration 

6.1. Overview: 

The video data received from the stereo camera is processed by the jetson nano. The motion of the mobile 

platform needs to be decided based on this computation. A DOIT Esp-32 Devkit V1 is responsible for 

the control of the motors responsible for the motion of the mobile platform. Thus the Jetson nano and 

esp 32 need to communicate in order to negotiate the motion. The Uart protocol is used to achieve this.  

6.2. Universal Asynchronous Receiver-Transmitter (UART) 

Universal Asynchronous Receiver-Transmitter (UART) is a hardware communication protocol 

that uses asynchronous serial communication with configurable speed. Unlike synchronous 

communications, UART does not require a clock signal, making it simpler to implement. Instead, data 

is transmitted serially in a sequence of bits, which includes start bits, data bits, parity bits (optional), and 

stop bits. This method is widely used for short-distance, low-cost, and low-speed data exchange between 

devices. 

To facilitate the exchange of motion control data between the Jetson Nano and the ESP32, the 

UART protocol is employed. Specifically, the Jetson Nano utilizes the TX (transmit) and RX (receive) 

pins on its J41 header, while the ESP32 uses its TX2 and RX2 pins. This setup ensures reliable and 

efficient communication necessary for coordinating the mobile platform's movements. 

6.3. Galvanic Isolation: 

To protect the Jetson Nano and ESP32 from potential damage caused by heavy currents drawn 

by the motors, galvanic isolation is implemented. This isolation ensures that the power supply for the 

Jetson Nano and ESP32 remains separate from the power supply for the motors (one 12V DC motor for 

rear-wheel drive and one servo motor for front steering). By doing so, any electrical noise or spikes 

generated by the motors do not affect the sensitive electronics of the Jetson Nano and ESP32. 

The galvanic isolation is achieved using PC817 optocouplers, which provide an effective barrier 

between the motor circuits and the control electronics. Each optocoupler has a 100-ohm current-limiting 

resistor on the input side, ensuring safe operation at the input voltage of 3.3V provided by the ESP32. 

On the output side, 10k-ohm pull-down resistors are used to stabilize the signal. 

The optocouplers not only isolate the control signals but also step up the output to 5V, suitable 

for driving the servo motor and the motor driver. This setup ensures that the communication and control 

signals remain clean and interference-free, protecting the Jetson Nano and ESP32 from potential 

electrical hazards. 

6.4. Motor driver: 
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The motor driver used in this setup is the IBT-2 BTS7960, a robust and high-power motor driver 

capable of handling peak currents of up to 43 amps. This driver is well-suited for driving the single 12V 

DC motor used for rear-wheel drive in the mobile platform. The IBT-2 BTS7960 features dual BTS7960 

half-bridge driver chips, which provide efficient and reliable control of high-current motors. It supports 

a wide voltage range, making it versatile for various applications. The driver includes built-in protection 

features such as over-temperature and over-current protection, ensuring safe operation even under 

demanding conditions. The IBT-2 BTS7960's capability to handle high peak currents makes it an ideal 

choice for applications requiring significant power, ensuring smooth and powerful motor performance 

for the mobile platform. 

6.5. Servo: 

The steering mechanism of the mobile platform is controlled by the MG996R servo, a high-

torque, metal-geared servo known for its durability and precision. The MG996R is equipped with a metal 

servo horn to enhance its strength and reliability. This servo offers a torque of up to 9.4 kg/cm at 4.8V, 

making it capable of handling the demands of steering the platform effectively. The servo's operational 

angle is precisely calibrated to achieve accurate steering control: at 135 degrees, the platform moves 

straight; at 100 degrees, it achieves the maximum left turn; and at 170 degrees, it reaches the maximum 

right turn. These specifications ensure that the steering is responsive and robust, providing precise 

maneuverability for the mobile platform. 

6.6. Power Sources 

The mobile platform is powered by two distinct power sources to ensure reliable operation of 

both the control electronics and the motors. The primary power source is a 3S Li-ion 18650 cell battery 

connected to a 4A capable buck-boost converter. This converter supplies a stable 5V at 4A to power the 

Jetson Nano and the ESP32. This setup ensures that the control electronics receive consistent power, 

essential for maintaining performance and preventing damage due to power fluctuations. 

The secondary power source is a 4S Li-ion 18650 cell battery dedicated to the motor. This battery 

is connected to a buck converter, which steps down the voltage to provide a stable 5V reference for the 

motor driver (IBT-2 BTS7960) and the output side of the isolators, as well as the power for the MG996R 

servo motor. This separation of power sources ensures that the high current demands and potential 

electrical noise generated by the motor do not interfere with the sensitive control electronics, thereby 

protecting the Jetson Nano and ESP32 and ensuring smooth and reliable operation of the mobile 

platform. 
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6.7 Summary : 

This chapter focused on integrating the components that control the mobile platform's motion. The Jetson 

Nano processes video data and communicates with the ESP32 via UART to manage the motors. Galvanic 

isolation with optocouplers protects the electronics from electrical interference, ensuring clean 

communication and signal integrity. The motor driver and servo control the platform's movement, with 

separate power sources ensuring stable operation and protection from electrical noise. This setup 

guarantees reliable performance and protects sensitive components. The next chapter will conclude the 

thesis, summarizing the findings and discussing future work. 
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Chapter 7 – Conclusion 

 7.1 Summary of Achievements: 

 This project qualified for the second stage of the FICS Startup Challenge. 

 In conclusion, this thesis delves into the realm of stereo vision within the domain of autonomous 

vehicles, particularly focusing on obstacle avoidance. By mimicking the human visual system's approach 

of combining 2D views for 3D depth estimation, the study emphasizes the development of real-time 

algorithms essential for efficient obstacle tracking and navigation. Depth perception algorithms such as 

stereo matching and semi global methods are explored, alongside methodologies like area-based and 

feature-based disparity, as well as triangulation for pixel-level comparison of disparity maps. Moreover, 

the thesis comprehensively covers mobile robot navigation strategies, ranging from traditional methods 

like odometry to advanced techniques such as GPS and map-based positioning. Seven types of navigation 

strategies are categorized, providing a broad understanding of the field. Real-time obstacle avoidance 

algorithms utilizing depth maps are scrutinized, considering both their efficacy under ideal conditions 

and potential limitations. Additionally, the thesis investigates the design considerations of a four-wheel 

steering mobile robot platform, focusing on adaptive steering control algorithms to enhance performance 

during manual operation. Challenges associated with four wheel steering mechanisms are addressed, 

highlighting the importance of innovative solutions in overcoming these hurdles. In essence, this thesis 

contributes valuable insights into the intricate interplay between stereo vision, obstacle avoidance, and 

mobile robot navigation, offering a comprehensive understanding of the subject matter and paving the 

way for advancements in autonomous vehicle technology. 

 7.2 Future Recommendations: 

 • Improve the hardware being used such as Jetson Nano, as processing capabilities of Jetson Nano is 

slow for real time computation of obstacle detection and avoidance algorithm. 

 • Work on improving the computational cost and time of object detection algorithm to get better results 

on real time basis. 

 • May work on incorporating other obstacles by training different models for various obstacles. 

 • Further new models for object detection can be trained for better and faster results. 

 • The mobile platform can be improved by some adjustments in the tire alignment and overall stability 

of the base. 
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