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ABSTRACT 
 

The fundamentals of an autonomous vehicle are perception of the environment, object detection, 

path planning, and control systems for vehicle actuation. There are two levels of perception, 

high-level scene classification and low-level depth perception. This thesis targets the high-level 

scene classification for an autonomous vehicle. 

High-level scene classification means to classify each pixel in a captured scene with an object 

class. With the advancement in technology and the rise of Artificial Intelligence, semantic 

segmentation models were developed performing this task. Hence among these models, 

Segformer was employed in this project for scene classification on a pixel level. A live video 

feed will be supplied to the model through a camera for classification. An IoT control has also 

been implemented to demonstrate the objective of providing a failsafe control switchover to a 

human in case of any complication. 

To classify the environment in real time so to be suitable for an autonomous vehicle, the entire 

AI algorithm was ported onto an embedded platform, the Jetson Nano, which is designed to 

manage the computational requirements of deep learning algorithms. The model was able to run 

at a mean of 1.71 fps on the Jetson Nano. The failsafe control was implemented using IoT over 

Wi-Fi on an ESP32. 
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Chapter 1 - INTRODUCTION 

 
1.1. Overview: 

In recent years, the advancement of technology, particularly in artificial intelligence 

(AI), has catalyzed a profound transformation in the automotive industry with the 

emergence of autonomous vehicles. These vehicles, commonly referred to as self-

driving cars, represent a paradigm shift in transportation, offering the potential for 

safer, more efficient, and accessible mobility solutions. The integration of 

sophisticated sensor systems, including cameras, radar, lidar, GPS, and advanced 

computing technology, enables autonomous vehicles to perceive their environment 

and navigate autonomously. 

1.2.      Motivation: 

The motivation driving this research stems from recognizing the transformative 

potential of autonomous vehicles in reshaping transportation systems worldwide. 

The prospect of reducing traffic accidents, congestion, and emissions while 

enhancing mobility for individuals with disabilities and the elderly underscores the 

urgency of advancing autonomous driving technology. Central to realizing these 

benefits is the development of robust perception systems that enable vehicles to 

accurately interpret their surroundings in diverse and dynamic environments. 

Perception forms the cornerstone of autonomous driving, allowing vehicles to 

recognize and respond to obstacles, road signs, pedestrians, and other vehicles in 

real-time. 

1.3.      Problem Formulation: 

At the core of our research lies the intricate challenge of developing perception 

systems capable of operating reliably in complex and unpredictable environments. 

This entails overcoming various technical hurdles, including the accurate detection 

and classification of objects, robust tracking of their movements, and precise 

localization within the vehicle's surroundings. Furthermore, ensuring the scalability 



 

2 
 

and adaptability of perception algorithms across different driving conditions poses 

additional challenges. To address these issues, our research focuses on leveraging 

cutting-edge computer vision techniques, particularly semantic scene 

understanding, to enhance the perceptual capabilities of autonomous vehicles. 

1.4.      Background Knowledge: 

With current advancement in the in the technology and research especially in the 

field of AI, Autonomous vehicle industry has seen a significant rise as a result. 

Autonomous vehicles, commonly known as self-driving cars, rely on a 

sophisticated network of sensors, cameras, radar, lidar, GPS, and advanced 

computer systems to operate[1]. These sensors include cameras for capturing 

images and videos, radar for detecting objects and determining distances, and lidar 

for creating precise 3D maps using laser technology. The onboard 

computers/embedded system process this sensor data in real-time, using advanced 

machine learning and artificial intelligence algorithms to identify objects, 

pedestrians, other vehicles, road signs, and road conditions. Based on this data 

analysis, autonomous vehicles make instantaneous decisions regarding navigation, 

including speed, acceleration, braking, lane changes, and route planning. Safety is 

paramount in autonomous vehicle development, with redundant systems in place to 

reduce the risk of accidents. The level of autonomy in these vehicles varies, with 

most current models falling within the range of Level 2 to Level 4, indicating their 

capacity to perform some or most driving tasks under specific conditions[2]. 

However, challenges persist, including navigating complex environments, ethical 

dilemmas in decision-making during critical situations, and ensuring robust 

cybersecurity. Despite these challenges, the development of autonomous vehicles 

has the potential to revolutionize transportation, enhancing safety, efficiency, and 

accessibility. Our main interest lies in the development of perception for 

autonomous vehicles. Perception in autonomous vehicles is the essential sensory 

function that allows them to understand and engage with their environment. By 

processing data from diverse sensors like cameras, radar, lidar, and ultrasonic 
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sensors, these vehicles can identify and categorize objects, assess their positions 

and predict their movements. Object detection and lane recognition play a critical 

role, enabling the identification of vehicles, pedestrians, and lane markings. 

Continuous advancements in sensor technology and algorithms are driving 

improvements in perception, making autonomous driving safer and more 

dependable. In this paper, we will be overviewing high level perception for 

autonomous vehicles through computer vision by employing semantic scene 

classification for a better understanding of the scene by the autonomous vehicles. 

Semantic scene classification, a critical computer vision task, is at the heart of 

developing autonomous vehicles. It involves labeling each pixel in an image with a 

specific object category or class[3]. This technology allows autonomous vehicles 

to perceive their surroundings, identify road elements, obstacles, and other vehicles, 

and make informed decisions based on this understanding. In this comprehensive 

literature review, we delve into the history, recent breakthroughs, challenges, and 

future directions of semantic scene classification for autonomous vehicles. 

1.5.      Contribution: 

This project aims to set up a place for studying self-driving cars. We want to create 

a platform where we can try out different ideas and add new features to see how 

they work. It is a further modification of the previous project for self-driving cars 

which was environmental depth perception for autonomous vehicles. It is our effort 

to try this project in the Mechatronics Engineering Department at the College of 

Electrical and Mechanical Engineering, NUST so it lays basis for the further 

advancement of autonomous vehicles in the department. 

1.6.      Organization of the Thesis: 

This thesis is further written in the following fashion: 

Chapter 2: Provides a Literature Review regarding the existing problems in the 

scenery classification for autonomous vehicles and existing methodologies for 
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developing effective and robust AI models. 

Chapter 3: Presents the details of methodology employed by our team in 

completing this project and explains the inner working of the project. 

Chapter 4: Briefly discusses the summary of results, findings, and comparisons of 

the model. 

Chapter 5: Concludes the report and explores future possibilities and directions in  

which the project can be taken. 
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Chapter 2: LITERATURE REVIEW 

Semantic scene classification for autonomous vehicles has undergone significant historical 

development over the years, reflecting advances in computer vision, machine learning, and 

sensor technologies. This historical overview provides a detailed account of the key 

milestones and trends in this field. 

2.1.      Early Approaches (2000s):  

Semantic scene classification for autonomous vehicles began with early approaches 

in the 2000s. These methods relied on rule-based algorithms and basic image 

processing techniques. They focused on simple tasks like lane detection and 

obstacle recognition. At this stage, the emphasis was on developing reliable 

algorithms for vehicle guidance and safety. An example of such algorithms is the 

linear Hough Transform (HT) which is a popular algorithm for line detection and 

is also widely employed for the purpose of lane detection[4]. HT operates through 

“voting” and “peak detection” steps. During voting, edge pixels are transformed 

into sinusoidal curves based on their coordinates (x, y). The resulting ρ−θ values, 

representing lines, are accumulated in a 2-D array. Peaks in this array indicate 

straight lines in the image. Peak detection analyzes the array to identify these lines. 

More about HT can be found here[5]. 

Another technique was the Sliding Window Technique, extensively utilized in 

computer vision for lane detection, operates through a systematic process. It begins 

at the image's base, computing a histogram of pixel intensities along the horizontal 

axis to identify potential starting points for lane lines. Subsequently, sliding 

windows are placed around these peaks, moving vertically upward to trace the lane 

lines. Within each window, the algorithm uses techniques like the Canny edge 

detector to refine lane positions. Canny edge detection identifies object boundaries 

by detecting rapid inten2sity changes in an image; It computes gradients, applies 

non-maximum suppression, and tracks edges, resulting in a binary image 
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highlighting detected edges accurately and minimizing noise[6]. Sliding window’s 

iterative method adjusts window placement to match the lane lines' shape and 

curvature, enhancing accuracy. The sliding window technique was designed to 

structure time-series data. Implementations created at the time, such as the Static 

Sliding Window (SSW), maintain a fixed window length over time, ensuring that 

time-series data points occur at consistent intervals[7]. 

Other than lane detection techniques, there were also object detection techniques 

introduced in this era, among them being Histogram of Oriented Gradients 

(HOG)[8] and Cascade Classifiers[9]. HOG is a feature descriptor used in computer 

vision and image processing. It captures local object shape information in an image. 

HOG works by dividing the image into small cells, computing gradients within each 

cell, and then creating histograms of gradient orientations. These histograms 

represent the distribution of edge orientations in the image. HOG is particularly 

useful for object detection tasks, such as real-time pedestrian detection[8] and 

vehicle detection[10], as it can capture the shape and appearance of objects in 

varying lighting conditions and scales.  

A cascade classifier is a machine learning object detection framework tailored for 

efficiently identifying vehicles within images or video streams. It functions by 

applying a series of specialized classifiers in a sequential manner, with each stage 

working to swiftly dismiss non-vehicle regions while retaining true positive 

detections. This cascading strategy enables the classifier to rapidly eliminate most 

image areas that do not contain vehicles, thereby reducing computational demands 

and expediting the detection process. Cascade classifiers are especially well-suited 

for real-time applications like vehicle detection[9] [11], where quick and accurate 

identification of vehicles is critical. Their efficacy lies in their capacity to make 

prompt decisions, allowing the model to avoid unnecessary computations on areas 

of the image that are improbable to contain vehicles. 
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2.2.      Deep Learning Revolution (2010s): 

The field of semantic scene classification underwent a transformative shift with the 

advent of deep learning, especially Convolutional Neural Networks (CNNs). 

Researchers recognized the potential of deep learning models to significantly 

improve segmentation accuracy. The application of CNNs for pixel-level 

classification brought about a paradigm shift. In 2015, Long et al. introduced the 

Fully Convolutional Network (FCN)[12], a pioneering architecture designed for 

end-to-end semantic segmentation. This was a critical breakthrough that laid the 

foundation for modern semantic scene classification.  

Fully Convolutional Networks (FCN) replaced fully connected layers with 

convolutional layers to maintain spatial information. FCN employs an encoder-

decoder architecture, where the encoder extract features from the input image, and 

the decoder upscales the features to generate a pixel-wise prediction map. Skip 

connections are used to combine feature maps from different encoder layers, 

allowing the network to capture multi-scale information and enhance segmentation 

accuracy[12].  

 

Figure 1: FCN Architecture 

The Conditional Random Field Recurrent Neural Network (CRF-RNN)[13], 

introduced in 2015, is a model that combines a Convolutional Neural Network 

(CNN) for pixel-wise predictions with a dense Conditional Random Field (CRF) 
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for post-processing. It uses a Recurrent Neural Network (RNN) to iteratively refine 

and improve the results of semantic segmentation by considering spatial 

relationships between pixels. CRF-RNN is trained end-to-end and is applied as a 

post-processing step to enhance segmentation accuracy, making it particularly 

valuable in scenarios where fine details and contextual information are important. 

 

Figure 2. CRF-RNN Architecture 

ParseNet[14], introduced in 2016, is a semantic segmentation model that 

emphasizes multi-scale context aggregation. It leverages spatial pyramid pooling to 

gather information from different receptive fields, enhancing segmentation 

accuracy. ParseNet provides comprehensive scene understanding and is known for 

its ability to capture fine details in images. 

 

Figure 3: ParseNet Architecture 

PSPNet[15], introduced in 2016, is a semantic segmentation model that focuses on 

multi-scale context aggregation using spatial pyramid pooling. It improves 

segmentation accuracy by incorporating information from various receptive fields, 

making it effective in capturing scene detail. 
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Figure 4: PSPNet Architecture 

2.3.      Further Model Architecture and Refinements (2010s): 

The 2010s and early 2020s witnessed the development of various model 

architectures specifically tailored for semantic scene classification. Models like 

UNet, DeepLab, and ReSeg became popular choices.  

U-Net is particularly popular in medical imaging and applications where precise 

segmentation is crucial. It features both a contracting path (encoder) and an 

expansive path (decoder), allowing it to capture fine-grained details. The use of skip 

connections connecting encoder and decoder layers helps maintain spatial 

information and improve segmentation accuracy[16].  

                                                         
Figure 5: UNet Architecture 

DeepLab models leverage atrous (dilated) convolutions to capture multi-scale 

information effectively. They also employ a spatial pyramid pooling module to 

gather information from various receptive fields, leading to high segmentation 

accuracy. DeepLab models find applications in scenarios like autonomous driving 
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and remote sensing where accuracy is paramount[17]. 

                                    
Figure 6. DeepLab Architecture 

ReSeg[18], introduced in 2016, is a semantic segmentation model that employs 

recurrent neural networks (RNNs) to iteratively refine and enhance pixel-level 

object labeling in images and video frames. This unique approach enables the model 

to capture intricate pixel dependencies and complex relationships, making it 

valuable in scenarios where objects are partially occluded or fine details must be 

preserved. ReSeg's iterative refinement process results in highly accurate and 

visually appealing segmentation maps, and it finds applications in fields such as 

medical image analysis, autonomous driving, and remote sensing, where precision 

in object delineation and scene understanding is essential for informed decision-

making. 

                                                                     

Figure 7. ReSeg Architecture 

2.4.      Sensor Fusion and Multimodal Perception (2010s – 2020s): 

Autonomous vehicles rely on multiple sensors, including cameras, lidar, and radar. 
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The fusion of data from these sensors has become a significant trend in semantic 

scene classification research[19]. Researchers sought to integrate information from 

various sources to enhance segmentation accuracy and robustness in diverse 

environments. Sensor-fusion networks emerged as a solution to seamlessly 

combine data from different sensors. 

2.5.      Real-Time Processing and Efficiency:  

The real-time processing requirement for autonomous vehicles necessitated the 

development of lightweight segmentation models that could maintain high accuracy 

while improving computational efficiency [20]. Researchers focused on optimizing 

model architectures, quantization techniques, and hardware acceleration to ensure 

that semantic scene classification could be performed with low latency and minimal 

power consumption.  

Efficient Neural Network (ENet) is another model tailored for real-time 

applications, prioritizing efficiency without compromising segmentation accuracy. 

ENet uses a compact architecture and employs techniques such as spatial dropout 

and batch normalization to achieve real-time performance while maintaining 

adequate accuracy[21]. 

                                              
Figure 8. E-Net Architecture 

Segmenter[22] is a semantic segmentation model introduced in 2019 that excels in 

providing precise pixel-level object labeling in images and video frames. What sets 

it apart is its efficiency and real-time processing capabilities, making it a valuable 

tool in applications like autonomous driving, robotics, and medical image analysis. 

This model leverages dilated convolutions, also known as atrous convolutions, to 
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capture multi-scale contextual information, ensuring that it can accurately segment 

objects of various sizes and contexts. Additionally, it incorporates spatial pyramid 

pooling, allowing it to gather information from different scales and receptive fields. 

The result is a model optimized for low-latency, on-the-fly segmentation, ideal for 

autonomous vehicles that need rapid object recognition and response. Segmenter’s 

efficiency and real-time processing abilities make it a versatile solution for pixel-

level object labeling in scenarios where quick and accurate semantic segmentation 

is essential for informed decision-making and automation. 

                                                                                

Figure 9:Segmenter Architecture 

BiSeNet[23], short for Bilateral Segmentation Network, is a real-time semantic 

segmentation model introduced in 2018. This model stands out for its efficient and 

rapid pixel-level object labeling in both images and videos. BiSeNet utilizes a dual-

branch architecture, where one branch captures global context from low-resolution 

feature maps, and the other focuses on local details from high-resolution feature 

maps. This design allows the model to achieve a balance between segmentation 

accuracy and real-time performance, making it well-suited for applications like 

autonomous driving, robotics, and augmented reality. Its ability to understand 

visual scenes quickly and accurately has made it invaluable in scenarios where 

timely decision-making and scene understanding are of paramount importance. 
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Figure 10: BisNet Architecture 

2.6.      Model Optimization: 

Model optimization for embedded platforms is a critical consideration when 

deploying machine learning models on resource-constrained devices like 

smartphones, edge devices, IoT devices, and embedded systems[24]. The goal of 

optimization is to ensure that these models can execute efficiently, with a minimal 

memory footprint and improved energy efficiency. Several key techniques and 

aspects come into play in the process of model optimization for embedded 

platforms. 

Quantization is a fundamental technique that reduces the bit-width of model 

weights and activations. This typically involves transitioning from 32-bit floating-

point values to 8-bit integers. By reducing precision, quantization significantly 

lowers memory and computation requirements, rendering the model more 

compatible with embedded platforms. There are two primary approaches: post-

training quantization, which quantizes a pre-trained model, and quantization-aware 

training, which trains models to be quantization-friendly from the outset[25]. 

Pruning is another valuable optimization technique that involves removing 

unimportant or low-magnitude weights from the model. The objective is to reduce 

the model's size and computation requirements without significantly compromising 

accuracy. Techniques like magnitude-based pruning and structured pruning are 
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widely used to achieve these objectives.  

 

2.7.      Embedded Systems Platform: 

Embedded system platform for AI deployment encompasses a variety of 

technologies that are integral to enabling artificial intelligence (AI) capabilities at 

the edge, where devices can process data locally, without constant reliance on cloud 

servers. Here's a more detailed exploration of these technologies: 

2.7.1. Single-Board Computers (SBCs): 

Raspberry Pi SBCs[26] are affordable and versatile, making them popular 

for AI prototyping and development. Models like the Raspberry Pi 4 have 

increasingly powerful processors and GPU capabilities, making them 

capable of running AI workloads efficiently.  

2.7.2. Field-Programmable Gate Arrays (FPGAs): 

Xilinx and Intel (formerly Altera): Xilinx[27] and Intel[28] provide 

FPGAs that are widely used for AI acceleration. FPGAs are known for their 

flexibility, allowing users to program them to perform specific AI tasks 

efficiently. They excel in scenarios where customization and real-time 

processing are critical. 

Intel Arria 10 FPGA: The Intel Arria 10 FPGA[28] is particularly 

recognized for its role in AI inference acceleration. It offers high 

performance and low power consumption, making it suitable for edge 

devices requiring real-time AI processing, such as autonomous vehicles and 

robotics. 

2.7.3. AI Accelerator Chips: 

Google Edge TPU: Google's Edge TPU[29] is designed for AI acceleration 



 

15 
 

on edge devices. It provides high-performance AI processing while ensuring 

low power consumption. The Edge TPU has been integrated into products 

like the Coral Dev Board and is suitable for tasks like object detection and 

image recognition. 

NVIDIA Jetson Series: NVIDIA's Jetson[30] platform includes a range of 

devices, such as the Jetson Nano, Jetson Xavier, and Jetson AGX Xavier, 

all optimized for AI and robotics applications. These platforms integrate 

GPUs and NPUs to enable AI processing at the edge, making them ideal for 

robotics, drones, and other AI-driven projects. 

2.7.4. Microcontrollers and Microprocessors: 

ARM Cortex-M and Cortex-A Series: ARM-based microcontrollers and 

microprocessors are fundamental to edge AI in IoT devices. They offer a 

balance of performance and energy efficiency, making them suitable for AI 

applications like sensor data analysis, voice recognition, and predictive 

maintenance in smart devices. 

NXP i.MX Series: NXP's i.MX processors are tailored for embedded vision 

and AI applications. These processors are used in various industries, 

including automotive, where they enable object recognition, machine 

learning, and human-machine interface technologies. 

2.7.5. ASICs (Application-Specific Integrated Circuits): 

Apple's Neural Engine: Apple's custom-designed AI accelerator 

ASIC[31], known as the Neural Engine, is integrated into iPhones and 

iPads. It optimizes performance and power efficiency for AI tasks, 

allowing for applications like image recognition and natural language 

processing. 
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2.7.6. Edge AI Development Kits: 

NXP Vision Toolbox: NXP's Vision Toolbox is a comprehensive solution 

for AI acceleration on its i.MX processors. This toolbox allows edge devices 

to perform AI tasks such as object tracking and facial recognition, making 

it valuable for applications in robotics and industrial automation. 

Intel Neural Compute Stick: This AI development kit features an Intel 

Movidius Myriad X VPU (Vision Processing Unit). It is designed for edge 

AI inference and enables a wide range of vision-based applications, 

including security cameras, drones, and smart retail systems. 

2.7.7. Custom Hardware Solutions: 

Some companies develop custom hardware solutions to meet the specific 

demands of their edge AI applications. These custom solutions may include 

AI accelerators, specialized SoCs, and hardware that align with their unique 

requirements, often in industrial or medical settings. 

Embedded hardware for AI deployment continues to evolve and diversify, 

offering a wide array of options for different use cases and requirements. 

These hardware solutions enable edge devices to perform AI inference 

efficiently, contributing to advancements in various fields, including 

autonomous robotics, IoT, smart cities, and industrial automation. 

2.8.      Mobile Platforms: 

The fundamental mechanical components of autonomous vehicles are integral to 

the evolution of self-driving technology. Key elements in a platform for 

autonomous vehicles include sensors, actuators, and control systems. Sensors, 

utilizing technologies like LiDAR, cameras, and radar systems, capture and 

interpret the vehicle's surroundings; Actuators, such as motors and servos, translate 

digital decisions into physical movements, facilitating functions like steering, 
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acceleration, and braking and control systems, often employing advanced 

algorithms and artificial intelligence, coordinate the interaction between sensors 

and actuators, enabling real-time decision-making. Additionally, this exploration 

addresses the challenges related to mechanical integration, underscoring the 

necessity for durability, resilience, and fault tolerance to ensure the vehicle's 

reliability in various environments. We were able to review a few prototypes, one 

of which was developed for a MIT hackathon in 2016 (initially developed in 

2015)[32] and one is a prototype from Quanser (a company that is known for 

research on self-driving cars)[33], as the pictures show below:  

 

                                       
Figure 11. MIT Racecar Platform for January 2016 Hackathon 
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Figure 12. Qcar Developed by Quanser 

 

2.9 Benchmark Datasets: 

To benchmark and compare various segmentation algorithms, the creation of large, 

labeled datasets became essential. Notable datasets like Cityscapes, KITTI, and 

Mapillary Vistas provided a standardized platform for evaluating and advancing 

semantic scene classification techniques[34]. Research competitions, such as the 

Cityscapes and Semantic Segmentation Challenges, encouraged collaboration and 

the development of cutting-edge algorithms. All these datasets contain images that 

cover diverse situations and weather conditions that are very essential for the 

robustness of the model. The details of these datasets are summarized in the table 

as follows: 
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Table 1: Dataset Specifications 

Dataset Resolution Classes Number of Images Release Data 

Cityscape[35] 1024x2048 

pixels. 

20 different 

classes 

5000 fine and around 

20000 coarse 

annotated images 

2016 

Mapillary 

vista[36] 

4000+x3000+ 

pixels 

60 different 

classes 

approximately 25,000 

high resolution images 

2017 

DUS[37] 1024x440 

pixels 

DUS is a 

diverse dataset 

that labels a 

wide 

DUS includes tens of 

thousands of images, 

2021 

Camvid[38] 720x960   

pixels 

11 different 

classes 

701 images 2007 

KITTI[39] 1242x375 

pixels 

It includes 

labels for a 

limited set of 

classes, 

primarily 

focusing on road 

and vehicle 

related objects. 

around 7,500 labeled 

images for various 

tasks, including 

semantic scene 

classification. 

2012 
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2.10 Summary: 

The historical development of semantic scene classification for autonomous 

vehicles showcases a transition from rule-based algorithms to deep learning-based 

approaches. The integration of sensor data, benchmark datasets, and model 

refinements has led to significant improvements in accuracy and real-time 

processing, making this technology a fundamental component of safe and reliable 

autonomous driving systems. In this research we will look to aid in the development 

of an autonomous vehicle by implementing one of the latest neural network models 

to classify objects at the scene of the vehicle. The following chapter provides the 

different tools and description of their methods used in this project. 
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Chapter 3 – METHODOLOGY 

3.1.      Overview: 

This chapter delineates the methodology that was adopted to perform this project, 

touching down on every important aspect of the project. Firstly, it will introduce 

the sensors, embedded platform and mobile base that were used in this project. Then 

the specification of them is explained further. Following that the software used to 

implement the model and the IoT network is explained. Finally, it will explain the 

detailed explanation and procedure for the implementation of semantic scene 

classification model from the data acquired from the Cityscape dataset and its 

deployment to the embedded platform along with the IoT network control to use it 

on an autonomous vehicle. 

3.2.      Hardware Specifications 

3.2.1. Raspberry PiCam V2.1: 

                                                                             

Figure 13: Raspberry PiCam V2.1                                                             

We are using a camera in this project as a sensor. The focal length of a 

camera lens determines the perspective and magnification of the captured 

image. Light enters the camera through the lens and is refracted to focus 

onto the image sensor. A shorter focal length means the lens brings the light 
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rays to focus closer to the image sensor, resulting in a wider field of view 

and less magnification. Conversely, a longer focal length brings the light 

rays to focus farther away from the image sensor, resulting in a narrower 

field of view and greater magnification. This characteristic allows 

photographers to adjust their composition, zooming in on distant subjects 

with longer focal lengths or capturing expansive scenes with shorter focal 

lengths. 

The Raspberry Pi Camera Module V2.1 is a versatile and compact camera 

designed specifically for use with Raspberry Pi boards. It features a Sony 

IMX219 8-megapixel sensor, capable of capturing high-resolution images 

and videos. With its small form factor and lightweight design, the camera 

module can be easily integrated into various projects, from DIY surveillance 

systems to robotics and drones. The v2.1 camera module supports a wide 

range of resolutions and frame rates, allowing users to customize their 

capture settings based on their specific requirements. Additionally, it offers 

features such as autofocus and programmable control over parameters like 

exposure, white balance, and ISO sensitivity, providing flexibility and 

control to users. It uses a CSI connector to interface with other boards.  

Especially in terms of deep learning and computer vision projects, the 

Raspberry Pi Camera Module v2.1 offers a cost-effective and user-friendly 

solution for adding imaging capabilities to projects. 

The specifications of camera are stated below: 

Table 2. PiCam Specifications 

Specification Details 

Sensor Sony IMX219 8-megapixel sensor 

Resolution 3280 × 2464 pixels 
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Frame Rate 1080p at 30fps, 720p at 60fps, and VGA at 

90fps 

Sensor Size 1/4 inch 

Pixel Size 1.12 µm 

Aperture f/2.0 

Lens Fixed focus 

Field of View 62.2 degrees (h), 48.8 degrees (v), 68.2 degrees 

(d) 

Video 

Formats 

RAW, RGB, YUV422, JPEG 

Dimensions 25mm x 23mm x 9mm (approx.) 

Weight 3 grams (approx.) 

Power 

Requirement 

250mA at 3.3V 

 

3.2.2. Jetson Nano: 

The NVIDIA Jetson Nano is a compact, yet powerful computer tailored for 

embedded applications and AI development. At its core is a NVIDIA 

Maxwell GPU boasting 128 CUDA cores, engineered for parallel 

processing, thus making it ideal for executing deep neural networks and 

other AI algorithms with remarkable efficiency. This GPU is complemented 

by a quad-core ARM Cortex-A57 CPU running at 1.43 GHz, furnishing 

ample processing power for diverse computing tasks. With 4GB of 

LPDDR4 RAM onboard, the Jetson Nano ensures smooth operation while 

running AI models and applications. Its compatibility with renowned 

frameworks such as TensorFlow, PyTorch, and OpenCV empowers 
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developers to seamlessly deploy and optimize their AI solutions. 

                                                                                                                          
Figure 14. Jetson Nano B01                                         

In terms of connectivity, the Jetson Nano offers an array of options 

including Gigabit Ethernet, USB 3.0, USB 2.0, HDMI, and a MIPI-CSI 

camera interface, facilitating effortless integration with peripherals, 

cameras, displays, and networking devices. Furthermore, its 40-pin GPIO 

header enables seamless interfacing with external sensors and hardware 

components, making it adaptable for a wide spectrum of embedded projects 

and IoT applications. Operating on the NVIDIA JetPack SDK and Ubuntu 

Linux, the Jetson Nano provides a familiar development environment well 

supported with libraries, APIs, and tools tailored for AI development. 

Despite its robust performance capabilities, the Jetson Nano remains 

remarkably power-efficient, rendering it suitable for battery-powered and 

embedded applications where power consumption is a concern. Its compact 

form factor coupled with versatile features has cemented the Jetson Nano as 

a preferred choice among hobbyists, researchers, and professionals alike, 

spanning various domains including AI development, robotics, drones, 

smart cameras, and more. 

We have leveraged the abilities of Jetson Nano in our project, especially its 

GPU abilities and CUDA platform in order to enhance the efficiency of our 

project as a result. 
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3.2.3. ESP32: 

The ESP32 is a highly versatile microcontroller with an integrated Wi-Fi 

module, encapsulating considerable computational power within a minute 

form factor. At the heart lies a dual-core Tensilica LX6 processor, operating 

at frequencies of up to 240 MHz, thereby possessing substantial processing 

capabilities adaptable to a spectrum of tasks. Its integration of Wi-Fi and 

Bluetooth functionalities positions it as an excellent candidate for the 

development of IoT products, facilitating seamless connectivity with a vast 

expanse of online resources and inter-device communication channels. 

This small yet formidable device is endowed with an extensive array of 

peripheral interfaces, encompassing GPIO pins, SPI, I2C, UART, among 

others, thereby affording a degree of flexibility helpful to interfacing with a 

diverse array of sensors, displays, and actuators. Distinguished by its 

conservative power consumption, the ESP32 aligns itself suitably with 

battery-powered applications, while its resilient performance guarantees 

unwavering operation, even in environments of rigorous demands. 

The ESP32 is equipped with both Flash memory and RAM, essential 

components for storing program instructions, variables, and other essential 

data. The Flash memory serves as the non-volatile storage medium, housing 

the firmware and application code. With its generous Flash memory 

capacity, often ranging from 4MB to 16MB or more, the ESP32 offers 

ample space for storing program binaries, configuration data, virtual 

filesystem, and additional resources, thus accommodating the diverse 

requirements of embedded applications. 

Moreover, the ESP32 is supported by a robust development ecosystem, 

comprising software development kits (SDKs), libraries, and tools, from 
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Arduino and Espressif (ESP-IDF framework) which streamline the 

development process and accelerate time-to-market for IoT projects. 

Supported programming languages include C, C++, and MicroPython, 

catering to a diverse audience of developers with varying skill levels and 

preferences. 

                                                                                             
Figure 15. ESP32 

3.2.4. BTS7960: 

The BTS7960 is a robust and efficient motor driver module designed to 

control DC motors with high precision and reliability. Equipped with H-

bridge circuitry, it supports a wide input voltage range from 5V to 27V, with 

a maximum continuous current rating of up to 43A. This enables 

bidirectional control of motor speed and direction, making it suitable for a 

diverse range of applications, including robotics, automotive projects, and 

industrial automation. With its compact form factor and integrated 

protection features against overcurrent, overheating, and short circuits, the 

BTS7960 ensures both versatility and durability in driving DC motors with 

optimal performance and safety. 
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Figure 16. BTS7960 

3.2.5. L298N: 

The L298N motor driver is a highly versatile and widely used integrated 

circuit (IC) designed for controlling DC motors and stepper motors. Its dual 

H-bridge configuration allows independent control of two motors, 

supporting bidirectional movement and precise control. With a wide 

operating voltage range of 5V to 35V and a maximum current rating of 1.5A 

along with compatibility with both TTL and CMOS logic levels, the L298N 

is adaptable to various power sources and microcontroller systems. 

Additionally, built-in protection features such as thermal shutdown and 

overcurrent protection enhance the reliability and durability of the motor 

driver.  
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Figure 17: L298N  

3.2.6. Rechargeable Sealed Lead Acid Battery: 

The 12V 7AH rechargeable sealed lead-acid (SLA) battery is a dependable 

power source suitable for various applications. Its sealed design ensures 

safety and reliability by preventing electrolyte leakage, making it ideal for 

use in portable devices, emergency lighting systems, security setups, and 

more. With a capacity of 7AH, it can deliver a steady output of 7 amps for 

one hour or lower currents for extended periods. The rechargeable nature of 

the battery allows it to be replenished multiple times, reducing waste, and 

providing a sustainable power solution. Commonly employed in security 

systems, emergency lighting, UPS setups, portable electronics, and solar 

energy storage, this SLA battery plays a crucial role in ensuring 

uninterrupted power supply in our project. 
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Figure 18: SLA Battery 

3.2.7. Mobile Base: 

For the mobile base platform that will act as our autonomous vehicles, we 

have utilized the four-wheel mobile platform that is in the Robotics lab in 

the Mechatronics Department, NUST. It has a 4-wheel drive system, which 

is powered by 4 independent motors. There is also a steering mechanism 

which is controlled using a 5th motor. Each motor has a 12V and 2A stall 

current rating and is supplied power from a 12 V sealed lead acid battery. 

The battery has a 7AH rating as well to provide enough current in the 

scenario that the mobile base is forced to be stationary when moving. 
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Figure 19: Mobile Platform Utilized in this Project 

3.3.      Software and Environment 

3.3.1. Python: 

Python offers several advantages, with scalability being a primary benefit, 

enabling the handling of large datasets efficiently. It excels in managing and 

processing data without overwhelming memory resources. Additionally, 

Python's versatility extends to various domains, including data processing, 

web development, and scientific computing, due to its adaptability to a wide 

range of tasks. Furthermore, the abundance of libraries further enhances its 

utility, particularly in projects involving computer vision tasks, making 

Python the preferred choice for such endeavors. In our project, we leverage 

several commonly used libraries to implement code, facilitating seamless 

execution of tasks. The libraries used in our project are as follows: 

1) OpenCV: This Python library specializes in computer vision and image 

processing tasks, offering straightforward functions for tasks such as 

loading, manipulating, and saving image data. In our project, we 
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employed it specifically for displaying the semantic classification mask 

obtained from the model. 

2) NumPy: This library is geared towards numerical computation, 

facilitating manipulation of extensive matrices and vectors. NumPy 

empowers users to execute various mathematical models, including 

Fourier analysis and random number generation. In our project, we have 

utilized it in order to manipulate the Ground truth masks and even in 

some of the data processing that was required in our project from the 

image obtained. 

3) Matplotlib: This library serves as a robust tool for generating 

visualizations and plots within Python. With it, users can effortlessly 

create diverse visual representations such as line plots, scatter plots, bar 

charts, and histograms. Additionally, it extends support to 3D plots and 

visualizations, enhancing the depth and complexity of graphical 

presentations. We have used it to display and compare the output image 

with input image in our project. 

4) Hugging Face libraries: The Hugging Face library, known as 

"Transformers," is a leading open-source tool for development of AI 

models and is built upon TensorFlow and PyTorch. In recent updates, 

Hugging Face has incorporated vision transformer models, such as ViT 

(Vision Transformer), DeiT (Data-efficient image Transformer), and 

DETR (DEtection TRansformer), which are designed for various 

computer vision tasks including image classification, object detection, 

and image segmentation. These models leverage transformer 

architectures, originally developed for NLP tasks, and adapt them to 

handle computer vision tasks effectively. With Hugging Face's support 

for these models, users can easily access, fine-tune, and deploy vision 

transformers for a wide range of computer vision applications, further 

broadening the library's utility across multiple domains. In our project, 
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we have used this to implement our model, Segformer, which is a vision 

based semantic classification model. 

5) PYCUDA: CUDA (Compute Unified Device Architecture) is a 

sophisticated platform and programming model created by NVIDIA, 

which harnesses Graphics Processing Units (GPUs) to accelerate 

computing tasks. It enables developers to use popular programming 

languages such as C++, Python, and MATLAB, with parallelism 

expressed through specific keywords. The CUDA Toolkit comprises 

libraries, a compiler, and development tools necessary for building 

GPU-accelerated applications. When employing CUDA, the workload 

is efficiently divided between the CPU and numerous GPU cores, 

enabling the swift processing of computationally intensive parts of 

applications. This parallel processing capability significantly boosts the 

performance and speed of various computational tasks, making CUDA 

an indispensable tool in areas such as high-performance computing, 

scientific simulations, and machine learning. We have used PYCUDA 

library in our project as it provides the python API bindings for CUDA 

APIs so that we can accelerate the model’s inference speed that we have 

developed on the Jetson Nano. 

 

3.3.2. Google Colab: 

Google Colab, short for Google Colaboratory, is a cloud-based platform 

provided by Google that enables users to run and execute Python code in a 

collaborative environment. Built on top of Jupyter Notebooks, Colab offers 

a range of features including free access to computing resources such as 

CPUs, GPUs, and TPUs, making it ideal for tasks requiring significant 

computational power, such as machine learning and data analysis. Users can 

write and execute code directly in the browser, with the option to import 

datasets, install libraries, and visualize results seamlessly. Moreover, Colab 
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facilitates collaboration by allowing users to share notebooks with 

colleagues or work collaboratively in real-time. With its ease of use, 

powerful computing resources, and collaborative features, Google Colab 

has become a popular choice for students, researchers, and professionals 

seeking a versatile and accessible platform for Python programming and 

data analysis tasks. In our project, we have used Google Colab in order to 

train our semantic scene classification models using the GPU provided by 

Google Colab. 

3.3.3. Archiconda3: 

Archiconda3 is a distribution of conda specifically tailored for 64-bit ARM 

architectures. Conda is a package management system and environment 

management system that simplifies the installation and management of 

software packages across various programming languages, including 

Python and R. Archiconda3, on the other hand, is a popular free and open-

source distribution that includes Conda along with a curated collection of 

packages and libraries for scientific computing, data science, machine 

learning, and large-scale data processing. Archiconda3 aims to streamline 

package management and deployment, making it easier for users to set up 

and work with complex software environments for their data analytics and 

scientific computing projects. Archiconda3 is being utilized in our project 

on Jetson Nano to set up different python environments and avoid clashes 

between different libraries. It also allows the use of different python 

versions in different environments which differ from the installed system-

wide version. 

3.3.4. PyTorch: 

PyTorch is an open-source deep learning framework developed by 

Facebook's AI Research lab (FAIR). Renowned for its flexibility, 

simplicity, and dynamic computational graph construction, PyTorch is one 
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of the most popular choices among researchers and developers in the field 

of artificial intelligence. 

At the center of PyTorch lies its dynamic computation graph mechanism, 

which enables users to define and manipulate computational graphs on-the-

fly during runtime. Unlike static graph frameworks like TensorFlow, where 

the computational graph must be defined before execution, PyTorch allows 

for dynamic graph construction, making it more intuitive and conducive to 

experimentation. This dynamic nature facilitates faster prototyping and 

debugging, as users can easily inspect and modify the computation graph as 

needed. 

PyTorch's core philosophy centers on delivering a seamless and Python-

centric experience for deep learning development. Its API is designed to be 

intuitive and expressive, leveraging Python's power and flexibility to create 

a familiar environment for developers. This Pythonic approach extends to 

its debugging tools, visualization libraries, and integration with popular 

Python libraries like NumPy, SciPy, and Matplotlib, ensuring smooth 

interoperability and enhancing productivity. 

Furthermore, PyTorch offers extensive support for GPU acceleration 

through its torch.cuda module. Users can seamlessly move tensors and 

models between CPU and GPU devices, leveraging the computational 

power of NVIDIA GPUs for accelerated training and inference. This GPU 

acceleration, combined with PyTorch’ s dynamic computation graph and 

automatic differentiation capabilities, enables efficient and scalable deep 

learning workflows. 

3.3.5. ONNX Framework: 

The Open Neural Network Exchange (ONNX) framework is a cutting-edge, 

open-source ecosystem designed to facilitate interoperability and portability 
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across deep learning frameworks. Its core function revolves around 

providing a standardized format for representing neural network models, 

enabling seamless exchange between frameworks like PyTorch, 

TensorFlow, and MXNet. This standardized format ensures that models 

trained in one framework can be exported to ONNX format and seamlessly 

imported into another framework without requiring extensive 

reimplementation. This interoperability enables users and developers to 

leverage the strengths of different frameworks for their specific tasks, 

without being constrained by a single framework's limitations. 

At the core of ONNX lies its unified computational graph representation, 

which comprehensively captures the structure and parameters of deep 

learning models in a vendor-neutral format. This representation includes 

essential information about the network architecture, layer configurations, 

and connections between layers, along with numerical values of model 

parameters such as weights and biases. By standardizing the representation 

of models, ONNX facilitates effortless exchange and execution of models 

across different runtime environments, ensuring consistency and 

compatibility throughout the model deployment process. 

Moreover, ONNX offers unparalleled deployment flexibility, allowing deep 

learning models to be deployed across a wide spectrum of platforms and 

devices. Especially for edge devices, ONNX-compatible models can be 

optimized and compiled for specific hardware targets using specialized 

inference engines. This optimization process ensures efficient execution and 

maximum performance, even in resource-constrained environments. This 

adaptability makes ONNX particularly well-suited for real-world 

applications where performance, scalability, and deployment environments 

may vary. 
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3.3.6. TensorRT: 

TensorRT, developed by NVIDIA, is a sophisticated deep learning 

optimization and inference engine designed to leverage the full power of 

NVIDIA GPUs for deploying deep learning models in production 

environments. At its core, TensorRT focuses on accelerating the inference 

phase of deep learning models, enabling them to run efficiently and with 

high performance on NVIDIA GPUs. 

TensorRT is a layer-agnostic library that delivers high performance, low 

latency inference through the optimization of neural network models. The 

techniques used to optimize neural network models are applied to the 

computational graph of a deep learning model to streamline its execution 

and maximize GPU utilization. An example of such tactic is layer fusion, 

which combines multiple operations into a single optimized kernel, 

reducing overhead and improving computational efficiency. It also 

performs precision calibration to quantize model weights and activations to 

lower precision formats like INT8, which can significantly reduce memory 

footprint and improve inference speed, especially on embedded platforms 

and edge devices. 

Furthermore, TensorRT incorporates kernel auto-tuning, a process where 

the optimal kernel configurations are automatically selected based on the 

characteristics of the underlying hardware. This ensures that the deep 

learning model is efficiently executed on the specific GPU architecture it is 

deployed on, leading to optimal performance. Additionally, TensorRT 

dynamically manages tensor memory during inference, minimizing memory 

allocations and deallocations to reduce overhead and improve throughput. 

Another notable aspect of TensorRT is its support for various precision 

modes, including FP32 (single-precision floating point), FP16 (half-

precision floating point), and INT8 (8-bit integer). This flexibility allows 
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developers to choose the appropriate precision for their application, 

balancing accuracy with performance and memory requirements. TensorRT 

seamlessly integrates with the popular deep learning frameworks, 

TensorFlow and ONNX, allowing developers to optimize and deploy 

models trained in these frameworks with ease. It provides both Python and 

C++ APIs for integration into existing workflows and applications, making 

it accessible to a wide range of developers. 

3.3.7. Espressif IoT Development Framework: 

The Espressif IoT Development Framework (ESP-IDF) serves as the 

backbone of software development for Espressif's ESP32 and ESP32-S 

series of microcontrollers, offering a comprehensive suite of tools, libraries, 

and APIs tailored for embedded systems and IoT applications. At its core, 

ESP-IDF provides developers with a robust and flexible SDK that 

streamlines the entire firmware development process, from initial 

prototyping to production deployment. This SDK encompasses a wide range 

of functionalities, including device drivers for peripherals such as GPIO, 

UART, I2C, SPI, and ADC, as well as support for networking protocols like 

Wi-Fi, Bluetooth, and TCP/IP. Moreover, ESP-IDF includes system 

services for power management, task scheduling, memory management, 

and error handling, ensuring the reliability and efficiency of embedded 

applications. 

Built upon the FreeRTOS real-time operating system, ESP-IDF offers a 

solid foundation for building responsive and scalable IoT applications. 

FreeRTOS provides preemptive multitasking capabilities, allowing 

developers to create multiple tasks that run concurrently and efficiently 

manage system resources. This enables developers to implement complex 

functionalities and handle asynchronous events with ease, making ESP-IDF 

well-suited for a wide range of IoT use cases, from simple sensor nodes to 
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sophisticated connected devices. 

3.4.      Training the AI Models 

3.4.1. Segformer: 

Segformer[40] represents a groundbreaking approach to semantic 

segmentation in computer vision by integrating transformers, renowned for 

their success in natural language processing, into the domain of image 

analysis. The architecture uniquely blends convolutional and transformer 

networks, marking a significant departure from conventional CNN-based 

models. Images are tokenized into non-overlapping patches, and positional 

encoding is applied to maintain spatial information. The transformer 

encoder captures global context and long-range dependencies, while a 

decoder network upscales the features to produce the final pixel-wise 

segmentation map, preserving local feature extraction. Leveraging the self-

attention mechanism intrinsic to transformers, Segformer excels in 

understanding relationships between distant image tokens, enabling it to 

grasp the broader context and make informed segmentation decisions. This 

innovative model offers superior capabilities in capturing global context, 

ensuring enhanced segmentation accuracy, and accommodating diverse 

image resolutions with ease. Segformer’ s adaptability and performance 

make it an attractive solution for a variety of computer vision applications, 

particularly those demanding precise semantic segmentation in complex and 

dynamic environments[40]. 

The fundamental principle underlying Segformer’ s operation lies in its 

treatment of the input image as a sequence of fixed-size patches, akin to 

breaking down a sentence into individual words. Each patch is then 

subjected to an embedding process, transforming it into a lower-

dimensional vector representation. This initial transformation enables the 

model to process the image in a more structured and manageable manner, 
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paving the way for subsequent analysis. However, what truly sets Segformer 

apart is its innovative utilization of self-attention mechanisms, a hallmark 

of transformer architectures. Self-attention mechanisms empower the model 

to discern intricate spatial dependencies and contextual relationships across 

the entire image, allowing it to capture both local and global context 

effectively. 

A pivotal aspect of Segformer’ s design is its incorporation of multiple 

stacked transformer encoder layers. These layers operate sequentially, each 

processing the embedded patches independently through self-attention 

mechanisms, followed by feedforward neural network layers. This 

hierarchical structure facilitates the extraction of increasingly abstract 

features, thereby enabling the model to comprehend complex spatial 

relationships within the image. Moreover, Segformer introduces the concept 

of cross-encoder attention, which enables the model to capture relationships 

between patches across different scales or levels of abstraction. This 

adaptive mechanism plays a crucial role in enhancing the model's ability to 

handle objects of varying sizes and complexities within the image. 

During the training phase, Segformer learns to optimize its parameters by 

minimizing a predefined loss function, typically cross-entropy loss, against 

ground truth annotations. This process involves iteratively adjusting the 

model's parameters to improve its performance on the given task. Inference, 

on the other hand, entails passing an input image through the trained 

Segformer model, which outputs a probability distribution over semantic 

classes for each pixel. The final segmentation mask is then generated by 

assigning the class with the highest probability to each pixel. 
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Figure 20. Segformer Architecture 

In our case, we have utilized the model encoder segformer-b0, which is the 

lightest among all of its versions with 3.1 million parameters and we have 

chosen the input size of the image to be of resolution 512x512. These 

requirements are fulfilled just enough for Jetson Nano to run. 

 

3.4.2. SegNet: 

SegNet stands out for its efficiency, designed for real-time semantic 

segmentation. Its symmetric architecture includes an encoder and decoder. 

The encoder extracts features, and the decoder upscales them for pixel-wise 

predictions. The model emphasizes the importance of preserving spatial 

information while remaining computationally efficient[41].  

The encoder module of SegNet utilizes a series of convolutional layers to 

progressively extract hierarchical features from the input image, capturing 

intricate spatial information at multiple scales. These features are then 

passed through a pooling layer, which down-samples the spatial dimensions 

while preserving essential semantic information. 

 

Subsequently, the decoder module employs up-sampling operations to 

recover the spatial resolution of the feature maps generated by the encoder. 
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By iteratively refining and reconstructing the feature maps, the decoder 

produces dense predictions for each pixel in the input image. 

 

One of SegNet's distinguishing characteristics is its incorporation of skip 

connections between corresponding encoder and decoder layers. These skip 

connections facilitate the propagation of fine-grained spatial details from 

the encoder to the decoder, enhancing the model's ability to capture precise 

object boundaries and semantic information. 

We have also selected this model to test the results of Segformer model 

against an older, commonly used and widely supported semantic 

segmentation model. 

       

Figure 21: SegNet’s architecture 

The resolution of input images was selected to be 1024x512 pixels for 

SegNet model. 

3.4.3. DeepLabV3: 

DeepLabV3 is a state-of-the-art deep learning model for semantic image 

segmentation, developed by the Google Research team. Building upon its 

predecessors, DeepLabV1 and DeepLabV2, DeepLabV3 incorporates 

several key innovations to achieve more accurate and efficient segmentation 

results. One of its notable features is the employment of atrous convolution 

(also known as dilated convolution), which allows the model to capture 

multi-scale contextual information without increasing the number of 

parameters.  



 

42 
 

DeepLabV3 also integrates atrous spatial pyramid pooling (ASPP), a 

technique that captures contextual information at multiple scales using 

parallel atrous convolutions with different dilation rates. Additionally, 

DeepLabV3 utilizes deep supervision, where intermediate feature maps are 

used to generate segmentation predictions, facilitating better gradient flow 

during training, and improving segmentation performance. With these 

advancements, DeepLabV3 has demonstrated superior performance in 

various semantic segmentation benchmarks, making it a popular choice for 

tasks such as object detection, scene parsing, and image segmentation. 

Figure 22: DeepLabV3 Architecture 

3.4.4. UNET++: 

UNET++ is a semantic segmentation architecture, particularly suited for 

biomedical image analysis. Its design innovations, including nested skip 

connections and a DenseNet-inspired encoder, enable the model to capture 

both local and global context information efficiently. The nested skip 

connections facilitate the integration of features at multiple scales, while the 

DenseNet-inspired encoder promotes feature reuse, contributing to more 

discriminative representations. Additionally, UNET++ incorporates 

attention gates, allowing the model to selectively focus on informative 

regions of the input image, further improving segmentation accuracy. These 

enhancements collectively elevate UNET++ to achieve state-of-the-art 

performance in biomedical image segmentation tasks, facilitating more 

accurate and precise analysis for applications such as medical diagnosis and 
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treatment planning. 

The impact of UNET++ extends beyond biomedical imaging, with its 

architecture demonstrating efficacy in various semantic segmentation 

applications. By leveraging nested skip connections and attention gates, 

UNET++ effectively addresses challenges related to capturing spatial 

context and handling class imbalance. Its versatility makes it applicable to 

diverse domains, including remote sensing, autonomous driving, and scene 

parsing. Moreover, UNET++'s modular design and efficient architecture 

render it suitable for deployment on resource-constrained devices, opening 

avenues for real-time applications in embedded systems and edge 

computing environments.  

                      

Figure 23: UNET++ Architecture 

3.4.5. Cityscapes Dataset: 

The Cityscapes dataset stands as a cornerstone resource in the domain of 

computer vision, particularly in the field of semantic understanding and 

scene parsing. Comprising high-quality urban street scenes captured across 

various cities in Germany, Cityscapes offers a rich and diverse collection of 

images meticulously annotated for semantic segmentation tasks. Its 

comprehensive nature and meticulously labeled data make it an invaluable 

asset for training and evaluating state-of-the-art algorithms in semantic 



 

44 
 

understanding, including tasks such as object detection, instance 

segmentation, and image classification. 

One of the distinguishing features of the Cityscapes dataset is its focus on 

urban environments, providing a realistic representation of the challenges 

encountered in real-world scenarios. The dataset encompasses a wide array 

of scenes, ranging from bustling city streets and intersections to quiet 

residential neighborhoods, each presenting unique visual complexities and 

intricacies. This diversity enables researchers and practitioners to develop 

and test algorithms capable of handling a broad spectrum of urban 

environments, thus facilitating more robust and generalizable solutions. 

In terms of scale, the Cityscapes dataset boasts an extensive collection of 

high-resolution images, with each image typically containing multiple 

objects and instances of interest. Furthermore, the dataset offers fine-

grained pixel-level annotations for semantic segmentation, wherein each 

pixel is assigned a specific class label corresponding to objects or regions 

within the scene. This level of granularity enables precise delineation and 

understanding of urban scenes, empowering algorithms to accurately 

identify and classify various elements such as cars, pedestrians, road 

markings, buildings, and vegetation. 

Moreover, Cityscapes provides a hierarchical annotation scheme 

encompassing a diverse range of semantic classes, thereby capturing the rich 

semantic structure inherent in urban environments. This hierarchical 

organization facilitates more nuanced and detailed analysis of scenes, 

allowing algorithms to distinguish between different types of objects and 

entities with varying degrees of specificity. Such detailed annotations are 

instrumental in advancing the state-of-the-art in semantic segmentation and 

related tasks, enabling researchers to push the boundaries of what is 

achievable in computer vision. 



 

45 
 

In addition to its vast collection of images and annotations, the Cityscapes 

dataset also includes a comprehensive set of evaluation metrics and 

benchmarks for assessing the performance of algorithms. These metrics 

encompass various aspects of semantic understanding, including pixel-level 

accuracy, class-wise segmentation accuracy, and instance-level 

segmentation metrics. By providing standardized evaluation protocols, 

Cityscapes facilitates fair comparisons between different algorithms and 

methodologies, fostering a collaborative and competitive research 

environment within the computer vision community. 

                  

Figure 24: An Image and its Segmentation Mask from Cityscape Dataset 

It is to be noted that we changed the dataset to reduce the number of classes 

by merging many of the similar classes like for example merging the bicycle 

and motorbike classes and another example is merging the bus class with 

the truck class. The classes to merge were selected based on their level of 

occurrence in the dataset and the possibility of appearing in a real-life 

scenario. This merging results in an increase in prediction accuracy because 
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theoretically the model can’t learn features that are rare so merging rare 

identical classes will result in the prediction accuracy of both classes adding 

up. By merging the classes, we reduced the number of classes from 19 to 

11. 

3.4.6. Training AI Models on Google Colab: 

To train the models at a fast rate, we chose to train them on google colab. 

As stated earlier in this chapter, google colab offers the privileges of 

NVIDIA T4 GPUs to users for multiple different tasks for a limited time per 

day. We will use it to accelerate the training and evaluation time of the 

models. 

Before we can start training the model, we have to upload the modified 

Cityscape dataset to colab for access during training. One method is to 

upload the dataset to a google drive and then mount the drive in the colab to 

access the pictures in the dataset. The downside of this method is the free 

storage limit on google drive and the supported upload speed is extremely 

slow. The other method is to upload the dataset to Hugging Face. With no 

limit on size of dataset and a fast upload speed along with availability of 

Hugging Face APIs for manipulating the dataset, Hugging Face is the best 

place to upload and store your own datasets as well as explore community 

created datasets for quick use. 

After the dataset has been uploaded, we wrote a python script using PyTorch 

framework and transformers library form Hugging Face to train and 

evaluate the model. To train the Segformer model, we are utilizing the 

power of transfer learning to train the model. It was initially trained on 

ade20k dataset which is a dataset consisting totally of 150 semantic 

categories, which includes classes like sky, road, grass, and other discrete 

objects. After the desired accuracy and miou were obtained by completing 

multiple epochs, both the models’ weights were downloaded from colab to 
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use for inference. 

3.5.      Optimization 

3.5.1. Conversion to ONNX Framework: 

Since the model was trained using PyTorch framework, its weights will be 

in .pth format (PyTorch’s supported format). To optimize the inference 

speed of the model, we need to use TensorRT APIs. As stated above, 

TensorRT only supports the frameworks TensorFlow (TF-TRT) and 

ONNX. Hence conversion to ONNX framework of the trained PyTorch 

model weights is inevitable. Here Hugging Face again comes to the rescue 

by providing a library along with its CLI (Command Line Interface) tools 

called “optimum”. Using optimum with the CLI has made it possible to 

convert PyTorch models to ONNX with extreme speed and simplicity. 

3.5.2. TensorRT Inference Engine: 

TensorRT provides C++ and Python APIs to create an inference engine 

from ONNX framework model weights. NVIDIA also provides a command 

line wrapper tool “trtexec” for TensorRT APIs, which once natively 

compiled, can be used to create the inference engine from the command 

line.  

When creating an inference engine, TensorRT performs multiple 

optimizations and provides different levels of quantization to reduce model 

size and increase inference speed by decreasing precision of model’s 

weights. It performs multiple different tactics and times the performance of 

each one and selects the one with the best performance. Successful 

completion of the process of creating an inference engine will create a 

“.engine” file which can then be used along with TensorRT Runtime APIs 

to perform model inference. 
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3.6.      IoT Control for Mobile Base 

3.6.1. Reason: 

The main reason for setting up an IoT control for the mobile base is to 

provide a failsafe control switch over to a remote user. In case the 

autonomous drive control system working based on the semantic scene 

classification (beyond the scope of this project) fails,  a remote user can take 

over control of the vehicle to prevent a road-side accident. 

3.6.2. Implementing Mobile Base Control Scheme: 

Since the mobile base consists of 5 DC motors, it can be powered using an 

SLA battery. Motor driver modules such as BTS7960 which have higher 

current rating can be used to drive the motors controlling each tire of the 

mobile base because of the likely possibility of high torque required due to 

obstacles in path of motion of base. However, motor driver modules with 

lower current rating such as the L298N can be used to control the steering 

motor since it doesn’t need to face higher torques and there is less chance 

of stalling. Both modules can then be interfaced to an ESP32 or any other 

microcontroller that supports 5V or 3.3V logic. Then said microcontroller 

can receive inputs from an IoT network to control the motors of the base. 

3.6.3. Setting up the IoT Network: 

ESP32 microcontroller has built-in Wi-Fi and Bluetooth capabilities so the 

ESP32 can serve as a host server for an IoT network. The ESP-IDF provides 

an extensive number of APIs to configure the implementation of a server on 

the ESP32. Along with the configuration of the back end of the server, a 

front-end, like a website, can also be stored in the ESP32 to provide a simple 

GUI (Graphical User Interface) dashboard to control the mobile base. A 

front end can be implemented using the popular languages JavaScript, Vue, 
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TypeScript etc. We will be using JavaScript to create a front end due to 

simplicity of the language and prior knowledge. Moreover, we will also be 

using HTML and CSS to aid with the creating of a front-end GUI. 

To use JavaScript for website hosting, we need to implement the WebSocket 

protocol to handle communication between client and server. WebSockets 

on ESP32 enable bidirectional communication between an ESP32 

microcontroller and a web server, facilitating real-time data exchange over 

a network connection. Using the WebSocket protocol, ESP32 devices can 

establish persistent and low-latency connections with web servers, allowing 

for efficient and responsive communication in various IoT applications. By 

establishing WebSocket connections, ESP32 devices can receive and 

transmit data streams, sensor readings, commands, and notifications in real 

time, enabling seamless interaction with web-based applications, mobile 

devices, and other IoT endpoints. 

Access Point (AP) mode, also known as SoftAP (Software Access Point) 

mode, enables a Wi-Fi-enabled device to act as a standalone Wi-Fi network 

access point. In this mode, the device creates its own Wi-Fi network, 

allowing other devices to connect to it just like they would to a traditional 

Wi-Fi router. AP mode is particularly useful in scenarios where a standalone 

network needs to be established. By enabling AP mode, devices can provide 

network connectivity to other devices, enabling them to communicate, share 

data, and access the internet without the need for a pre-existing Wi-Fi 

infrastructure. Hence, the ESP32 can be configured into AP mode to allow 

clients to directly connect to the ESP32 to directly communicate to the 

server. 

Once connected to the ESP32’s network, the server needs to send the 

JavaScript, CSS, and HTML scripts to the client, so the front end is visible 

in the client’s web browser. To send the scripts, first the ESP32 needs to 
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store them in flash memory. SPIFFS (Serial Peripheral Interface Flash File 

System) serves as a lightweight and efficient file system specifically 

optimized for use with SPI flash memory. ESP32's SPIFFS allows storage 

and management of files directly on the flash memory chip integrated into 

the ESP32 module. 

3.7.      Summary 

In this chapter, we have discussed the different tools that would be needed to 

implement this project and the different methodologies to use those tools, for 

example training the neural networks and setting up the IoT Network. In the next 

chapter, we will show the results of adopting these methodologies long with the 

details needed for the hardware integration. 
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Chapter 4 – RESULTS 

4.1.      Overview: 

Chapter 4 presents the results of the semantic scene classification models and the 

IoT network implemented for mobile base control. The chapter begins with the test 

results on test data of all 4 neural networks mentioned in chapter 3. Then after 

picking the two models, Segformer and SegNet, it depicts their performance on 

KITTI and real-life benchmarks. Lastly, it details the IoT network’s performance 

and precision in controlling the mobile base along with the designing and 

manufacturing of the camera mount being used in this project. 

4.2.      Data Collection and Analysis: 

To evaluate the precision and accuracy of our semantic scene classification models, 

we performed experiments in two different settings. Firstly, we tested the AI models 

using datasets sourced from KITTI, which includes real-life road scenarios from 

rural landscapes and highways. Following this, we assessed the performance of our 

algorithm using real-world data, gathered from the Raspberry PiCam V2.1, 

positioned near our university. 

4.3.      Testing the Semantic Scene Classification Models: 

After training the models on google colab, the model parameters on test data are 

stated in the table below: 

                             Table 3: Trained Model Parameters 

Name Segformer DeepLabV3 UNET++ SegNet 
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Mean Iou 0.76 0.69 0.73 0.58 

 

Among these models, Segformer had the best accuracy and was selected to be 

deployed on the Jetson Nano. The training loss curve for the Segformer model is as 

follows: 

Figure 25: Training Loss Curve for Segformer Model 

SegNet was also selected because it had the lightest architecture compared to 

DeepLabV3 and UNET++, as well as to demonstrate a range between the best mean 

Iou. Here is an inference on an image from Cityscape’s test dataset (not used to 

train the model) long with its ground truth: 
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Figure 26: Image from Cityscape test dataset 

 

Figure 27: Segmented Image from Segformer Model (on PC) 
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Figure 28: Ground Truth Mask for Figure 26 

The Segformer model without any optimization was also evaluated on KITTI 

dataset. The results are as follows: 

Figure 29: Image (1) from KITTI Dataset 

Figure 30: Segmented Image (1) 
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Figure 31: Image (2) from KITTI Dataset

Figure 32: Segmented Image (2) 

The model was also evaluated on real-life data as well. The results are as follows: 



 

56 
 

Figure 33: An Image from Islamabad Road

Figure 34: Segmented Image of Figure 29 

The model was then ported onto the Jetson Nano and optimized. The optimization 

was done by quantizing the model weights to INT8 and FP16. This resulted in a 

slight decrease in prediction accuracy but a speed up in the inference process. The 
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FP16 quantized model was then tested using real-time video obtained by interfacing 

the PiCam. The results are as follows: 

                                                                                                      
Figure 35: Legend for the Segmented Images below 

 

    
Figure 36: Image (1) Captured in Our University 
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Figure 37: Segmented Image of Figure 32 

Figure 38: Image (2) Captured in Our University 
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Figure 39: Segmented Image of Figure 33 

 

Figure 40: Image (3) Captured in Our University 
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Figure 41: Segmented Image of Figure 35 

The frames per second (FPS) for each stage of the Segformer model is listed in the 

table: 

 

 Table 4: FPS of Segformer model 

 

Segformer with FP16 quantization is faster than the INT8 quantized version 

because the CUDA kernels on 64-bit Arm architecture are optimized for floating 

point operations. Hence performing INT8 calculations will be slower on the Jetson 

Nano even though the INT8 model size is much smaller than the FP16 one. 

Needless to say, the original model with FP32 precision is the slowest of them all 

because of the greater memory footprint and large number of bits for calculation. 

 Segformer                    

(not optimized) 

Segformer                 

(FP16 quantization) 

Segformer               

(INT8 quantization) 

Mean FPS  0.98 1.71 1.25 
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Following the conclusion from the previous paragraph, SegNet was also quantized 

to FP16 for the best speed performance. The FPS obtained had a mean average of 

4.0 which is to be expected from a smaller model. The results on the Jetson Nano 

are as follows: 

   

Figure 42: SegNet Inference on Jetson Nano 

It can be seen that the output of the SegNet is less accurate than Segformer’s by a 

large margin. The benefit of each model is either extremely good accuracy in 

Segformer’s case and a fast real-time feed in SegNet’s case. 

4.4.      IoT Network: 

The IoT network was implemented as discussed in chapter 3. The GUI of the 

webpage is as follows: 
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Figure 43: IoT Webpage GUI 

The webpage can be accessed by connecting to the ESP32’s Wi-Fi. It cannot be 

accessed using any other Wi-Fi because the website is a locally hosted one as 

mentioned before. The website has 4 buttons each making the base perform the 

motion it has stated. Pressing a button once will initiate the motion and pressing it 

again once more will stop it. A combination of forward/reverse and left/right 

buttons can be pressed to steer the base while it is moving back and forth.  

This website was of the highest complexity that could possibly be hosted on the 

ESP32 because of storage constraints. A more complex website would require more 

code memory to host itself, which isn’t possible because the flash memory of 

ESP32-DevKitC is 4 MB and as such the partition table only allows 1 MB of storge 

for SPIFFS. 

4.5.      Camera Mount: 

To hold the PiCam in the correct location precisely, we need to design and fabricate 

a camera mount. The 2D drawings for the camera mount are as follows: 
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Figure 44: Camera Mount Design 

This design was used to manufacture the camera mount using a 3D printer. By 

importing this CAD model design into a 3D printing software, we selected the 

suitable parameters, and a desired printing file is generated. Later this file is sent 

to a 3D printer using additive manufacturing to create the physical object layer by 

layer. The manufactured camera mount looks like the follows: 
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Figure 45: Manufactured Camera Mount 

4.6.      Hardware Integration: 

The camera mount was fixed at the front of the base in a position to acquire a live 

video feed at a considerable height simulating the height of a road vehicle. The 

Jetson Nano is interfaced with the camera using one of its CSI connectors. 

Furthermore, an LCD with an HDMI interface is also connected with the Jetson 

Nano to display the segmented scene. The ESP32 microcontroller is interfaced with 

a BTS7960 and L298N motor driver modules to control the base’s motion. The 

battery is connected to the motor driver modules as well to power the motors. A 

power bank was used to power the ESP32 and the Jetson Nano. 
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Figure 46: Mobile Base Integrated with Sensors 

4.7.      Summary: 

As observed in the results displayed in the fourth chapter, Segformer is the best 

neural network in terms of speed and accuracy combined out of all the neural 

networks tested in this project. Its lightweight architecture with only 3.1 million 

parameters allows for real-time inference while still retaining the advantages of a 

vision transformer in terms of accuracy. The IoT network implemented using 

ESP32 provides the flexible control in case of any critical situation. In the next 

chapter, we will conclude the finding of our project and provide further 

improvements for future research. 
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Chapter 5 – CONCLUSIONS 

5.1.      Summary of Achievements: 

 

We were able to port the Segformer-b0 model onto the Jetson Nano and were able 

to run the model in real time at 1.71 fps with great accuracy only with an input 

resolution of 512x512 pixels. Also, control method was established over IoT using 

an ESP32 for a mobile base. 

Undertaking this final year project, “Semantic Scene Classification using AI for 

Autonomous Vehicles”, has offered several benefits. Firstly, it allows for the 

exploration and understanding of the application of neural networks in the field of 

autonomous vehicles and scene perception. It taught the ways for developing and 

analyzing multiple neural networks with different architectures for an autonomous 

vehicle. Secondly, the procedure of porting an AI algorithm for edge devices to 

later run inference locally was learned by implementing this project. Multiple 

different techniques for optimization of deep learning models for deploying on edge 

devices were studied and applied to analyze the amount of performance gained and 

lost in different sectors. Thirdly, the development of an IoT network for the precise 

control of the base and the intricacies of different network protocols were also 

underlined and worked upon in this project. Lastly, by addressing these challenges, 

this project contributes to the broader research community's understanding of scene 

classification systems, potentially leading to advancements in autonomous driving 

technology and improved safety on the roads. This project allowed for the 

development of a platform on which more sensing modalities can be added which 

would lead to further investigation in the domain of Autonomous Vehicle 

navigation in the department of Mechatronics Engineering. Overall, undertaking 

this final year project offers invaluable knowledge, skill development, and a chance 

to make a meaningful contribution to the field of autonomous vehicles and edge AI.  
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5.2.      Future Improvements: 

 

• Use an SBC with better specifications to run the AI models at a higher FPS. 

Even though Jetson Nano with 128 CUDA cores is good enough to run most 

deep learning algorithms, it still has its limitations that come with an entry-

level product. Using an SBC with more CUDA cores, better GPU 

architecture or with support of INT8 operations would significantly speed 

up the real time system. Some of the SBCs possessing these features are the 

Jetson TX2, Jetson Xavier NX and Jetson AGX Xavier lineup. 

• Use a microcontroller integrated with a larger flash memory. As explained 

in the previous chapter, the 4MB integrated flash memory limits the 

allowable complexity of the website that the microcontroller can host. To 

implement a more precise control system over IoT, for example a joystick 

controlling the mobile base or real time speed control in each direction of 

motion of the mobile base. Some devboards of ESP32S3 series as well as 

ESP32C6 series can have 8MBs of flash memory or more.  

• Train Segformer model with a higher input resolution to classify objects far 

in a picture. An input resolution of 512x512 pixels means that classes that 

are far away and smaller in the image cannot be classified accurately 

because further down sampling in the model’s architecture removes those 

features. Training the model with a higher input resolution should help with 

this problem. 

• Integrate depth perception for complete perception of scene. This is the next 

possible step for this project to completely develop the perception part of an 

autonomous vehicle. Fusion of both high level and low-level perception 

should allow for development of path planning, object detection and control 

system algorithms progressing towards a fully autonomous vehicle.  
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