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ABSTRACT 

The rapid advancement of telepresence technology, fuelled by breakthroughs in robotics, 

virtual reality (VR), and communication systems, has opened new frontiers in remote 

interaction. This project presents the development of a virtual telepresence robot, leveraging 

firmware developed using ROS 2.0 installed on Ubuntu 22.04, an immersive 3D virtual 

environment generated through camera input, VR, and Unity, and long-distance 

communication facilitated by a Wide Area Network (WAN) through WebRTC, the system 

provides users with a seamless remote experience. Moreover, the integration of a Gripper 

Mechanism atop the robot enables precise pick-and-place operations, particularly valuable 

in medical applications where precision and control are imperative. This synthesis of cutting-

edge technologies forms a robust framework aimed at pushing the boundaries of telepresence 

technology, enhancing remote interaction, and fostering collaboration across geographical 

distances. 

 

 

 

 

 

 

 

  



iv 

 

TABLE OF CONTENTS 

DECLARATION ................................................................................................................................ i 

ACKNOWLEDGMENTS ................................................................................................................. ii 

ABSTRACT ...................................................................................................................................... iii 

TABLE OF CONTENTS .................................................................................................................. iv 

LIST OF FIGURES ........................................................................................................................ viii 

Chapter 1 - INTRODUCTION ........................................................................................................... 1 

1.1. Overview: ....................................................................................................................... 1 

1.2. Motivation: ..................................................................................................................... 2 

1.3. Background Knowledge: ................................................................................................ 2 

1.4. Deliverables: .................................................................................................................. 3 

1.5. Contribution: .................................................................................................................. 4 

1.6. Organization of the thesis: ............................................................................................. 4 

Chapter 2 - LITERATURE REVIEW ................................................................................................ 5 

2.1. Research on the tele-operation robot system with tele-presence: .................................. 5 

2.1.1. The structure of the system: ................................................................................................. 6 

2.1.2. The design of the force bilateral hydraulic servo control system: ....................................... 8 

2.1.3. Tele-operation experiment result analysis: .......................................................................... 8 

2.2. Virtual reality teleoperation robot: .............................................................................................. 9 

    2.2.1.  Background of VR with tele-operation systems:  ................................................................ 9 

2.2.2. Implementation overview: ................................................................................................. 10 

2.2.3. Camera to VR system: ....................................................................................................... 11 

2.2.4. Control system: .................................................................................................................. 12 

2.2.5. Vehicle specifications: ....................................................................................................... 12 

2.2.6. Future applications: ............................................................................................................ 14 

2.3. Construction tele-robot system with virtual reality: .................................................................. 14 

2.3.1. Tele-robot system with virtual reality: ............................................................................... 15 

2.3.2. Visual display in virtual space: .......................................................................................... 16 



v 

 

2.3.3. Experiments and discussions: ............................................................................................ 17 

1.  Task 1: ................................................................................................................................. 18 

2.  Task 2: ................................................................................................................................. 18 

3.  Task 3: ................................................................................................................................. 18 

2.4. Haptic interaction in tele-operation control system of construction robot based on virtual 

reality: .............................................................................................................................................. 19 

2.4.1. Tele-operation construction robot based on virtual reality technology: ............................. 20 

2.4.1.1. Composing and principle of TCSCR based on virtual reality: .................................... 20 

2.4.1.2. CG images based on virtual reality technology: ......................................................... 22 

2.4.1.3. Velocity control method with variable gain to force feedback model: ....................... 22 

2.4.2.  Haptic interaction in the tele-operation construction robot control system: ..................... 24 

2.4.2.1. Introduction to haptic interaction: ............................................................................... 24 

2.4.2.2. Haptic interaction detection and calculation of reaction force: ................................... 24 

    2.4.2.3. Experiments: ............................................................................................................... 25 

2.5. ROS Reality: A virtual reality framework using consumer-grade hardware for ROS-enabled 

robots: .............................................................................................................................................. 25 

2.5.1. Related Work: .................................................................................................................... 26 

2.5.2. ROS reality: ........................................................................................................................ 27 

2.5.2.1. VR as a teleoperation interface: .................................................................................. 27 

2.5.2.2. System overview: ........................................................................................................ 28 

2.5.2.3. ROS: ............................................................................................................................ 28 

2.5.2.4. HTC Vive: ................................................................................................................... 29 

2.5.2.5. Unity: .......................................................................................................................... 29 

2.5.2.6. ROS Reality: ............................................................................................................... 30 

2.5.3. Long distance teleoperation trial and task feasibility: ........................................................ 32 

Chapter 3 - METHODOLOGY ........................................................................................................ 33 

3.1. Overview: ..................................................................................................................... 33 

3.2. Hardware development: ............................................................................................... 34 

3.2.1. 4-axis robotic arm (EEZYBOTARM MK2): ........................................................... 34 



vi 

 

3.2.1.1. Design and development ............................................................................................. 34 

3.2.1.2. 3D Printing: ................................................................................................................. 35 

3.2.1.3. Assembly: .................................................................................................................... 29 

3.2.1.4. Forward kinematics: .................................................................................................... 29 

3.2.1.5. Inverse kinematics: ...................................................................................................... 29 

3.2.2. Integration of TurtleBot3 Waffle Pi: ........................................................................ 38 

3.3. Software development: ................................................................................................. 39 

3.3.1. Unity: ....................................................................................................................... 39 

3.3.1.1. Project Insight: ............................................................................................................ 29 

3.3.1.2. Unity environment creation for virtual telepresence robot: ........................................ 42 

3.3.1.3. XR origin in VR unity development: .......................................................................... 29 

3.3.1.4. Data canvas: ................................................................................................................ 44 

3.3.1.5. Display data input: ...................................................................................................... 29 

3.3.1.6. ROS connector: ........................................................................................................... 29 

3.3.1.7. Video display: ............................................................................................................. 29 

3.3.2. Robot Operating System (ROS) integration in virtual telepresence robot: .............. 48 

3.3.2.1. System overview: ........................................................................................................ 29 

3.3.2.2. ROS integration for robotic arm control: .................................................................... 50 

3.3.2.3. Control of robot movement: ........................................................................................ 51 

3.3.2.4. Integration with TurtleBot ecosystem: ........................................................................ 52 

3.3.3. WebRTC .................................................................................................................. 53 

3.3.3.1. Transmitting unity XR data to Robot: ......................................................................... 54 

3.3.3.2. Transmitting Video from Robot to Unity: ................................................................... 55 

3.3.3.3. How WebRTC works: ................................................................................................. 57 

3.3.3.4. Turn Server: ................................................................................................................ 60 

Chapter 4 - EXPERIMENTAL RESULTS AND ANALYSIS ....................................................... 61 

4.1. Overview: ..................................................................................................................... 61 

4.2. Bytes Sent .................................................................................................................... 61 

4.2.1. Bandwidth Monitoring: ............................................................................................ 61 



vii 

 

4.2.2. Performance Analysis: ............................................................................................. 61 

4.2.3. Debugging and Diagnostics: .................................................................................... 62 

4.2.4. BytesSent is a crucial metric in WebRTC: ............................................................... 62 

4.2.5. Results ...................................................................................................................... 62 

     Bandwidth Usage: .................................................................................................... 62 

     System Responsiveness: ........................................................................................... 63 

 Data Transmission Efficiency: ................................................................................. 63 

4.3. Video Stream Analysis: ................................................................................................ 64 

4.3.1. Calculation of Data Rate .......................................................................................... 64 

4.3.2. Interpretation of Data Rate for Video Streaming: .................................................... 64 

4.3.3. Conclusion: .............................................................................................................. 64 

4.4. Current Round-Trip Time: ........................................................................................... 65 

4.4.1. Relevance to Video Sending and Receiving: ........................................................... 65 

 Video Sending: ......................................................................................................... 65 

 Video Receiving: ...................................................................................................... 65 

4.4.2. Interpreting Current Round Trip Time Value: ......................................................... 66 

4.4.3. Practical Implications ............................................................................................... 67 

4.4.4. Conclusions: ............................................................................................................. 67 

4.5. Graphical Analysis: ...................................................................................................... 68 

Chapter 5 - CONCLUSION ............................................................................................................. 69 

5.1. Summary of achievements: .......................................................................................... 69 

5.2. Virtual Telepresence Robot:......................................................................................... 69 

5.3. Significance .................................................................................................................. 70 

5.4. Future Implications and Recommendations: ................................................................ 71 

5.5. Conclusion ................................................................................................................... 71 

APPENDIX A .................................................................................................................................. 72 

APPENDIX B .................................................................................................................................. 72 

APPENDIX C .................................................................................................................................. 72 

APPENDIX D .................................................................................................................................. 84 



viii 

 

APPENDIX E .................................................................................................................................. 92 

APPENDIX F ................................................................................................................................... 93 

APPENDIX G .................................................................................................................................. 93 

APPENDIX H .................................................................................................................................. 94 

REFERENCES............................................................................................................................... 100 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 

 

LIST OF FIGURES 

Figure 1. Master Slave System for remote control. ............................................................... 6 

Figure 2. Remote Robot Control System Principle ................................................................ 7 

Figure 3. 4 DOF Engineering Robot Structure Design .......................................................... 7 

Figure 4. No load force and displacement tracking curve ..................................................... 8 

Figure 5. Spring load force and displacement tracking curve ............................................... 9 

Figure 6. A general overview of Car VR system and connections. ..................................... 10 

Figure 7. A specific overview of Car VR system and connections. .................................... 11 

Figure 8. Vehicle Exterior ................................................................................................... 13 

Figure 9. System wiring schematic ...................................................................................... 13 

Figure 10. Construction tele-robot system with virtual reality ............................................ 15 

Figure 11. Arrangement of the system ................................................................................. 16 

Figure 12. The auto point of view ........................................................................................ 17 

Figure 13. Task area for evaluation of the system ............................................................... 18 

Figure 14. Experimental Condition ..................................................................................... 18 

Figure 15. Task Efficiency ................................................................................................... 19 

Figure 16. Risk Management ............................................................................................... 19 

Figure 17. Schematic Diagram. ........................................................................................... 21 

Figure 18. Camera Geometry Model. .................................................................................. 21 

Figure 19. Arrangement of the system. ................................................................................ 22 

Figure 20. Schematic diagram of the velocity control method with variable gain to the force 

feedback model .................................................................................................................... 24 

Figure 21. Schematic diagram of the haptic detection between the fork glove of GCR and 

the ground or obstacle .......................................................................................................... 24 

Figure 22. The haptic detection and the calculating of the reaction force in the movement 

from backward to forward around the arm shaft ................................................................. 25 



x 

 

Figure 23. A diagram detailing the architecture of the ROS reality system. ....................... 28 

Figure 24. Block Diagram. .................................................................................................. 33 

Figure 25. 4-axis robotic arm and camera mount (CAD model) ......................................... 35 

Figure 26. Forward Kinematics (DH Parameters) ............................................................... 37 

Figure 27. Forward Kinematics (Workspace) ...................................................................... 38 

Figure 28. Figure 28. Inverse Kinematic ............................................................................. 38 

Figure 29. Integration of TurtleBot 3 Waffle Pi & Robotic Arm ........................................ 39 

Figure 30. TurtleBot3 assembly (Hardware) ....................................................................... 39 

Figure 31. Data Canvas. ....................................................................................................... 44 

Figure 32. Display Data Input (Script). ............................................................................... 45 

Figure 33. Flow diagram of controls transmitted to ROS2 environment ............................ 55 

Figure 34. Flow diagram of WebRTC connection. ............................................................. 59 

Figure 35. Graphical Analysis (Latency). ............................................................................ 68 

 

 

 

 

 

 

 



1 

 

Chapter 1 - INTRODUCTION 

1.1. Overview: 

At the core of this technological project is the integration of advanced robotics, 

including the TurtleBot 3 Waffle Pi platform, 180-degree camera mounted on top, 

and the Unity-controlled Meta Quest 2 VR Headset. This combination of hardware 

and software creates the basic structure for a strong telepresence system that can offer 

patients and healthcare professionals smooth communication while they are from 

afar. The incorporation of advanced functionalities, like a Gripper Mechanism on top 

of the robot, enhances its usefulness in medical settings by permitting pick-and-place 

tasks that are essential for accurate tasks including medical procedures. The 

telepresence robot further improves the quality of remote medical consultations by 

providing a realistic and interactive experience for patients and healthcare providers 

the same, especially when combined with an immersive 3D virtual environment 

made possible by the integration of camera input, VR, and Unity. 

Transmitting live video streams that are recorded by the camera over a Wide Area 

Network (WAN) via WebRTC is one of the system's primary features. Wide Area 

Network (WAN) capability of the telepresence robot guarantees reliable 

communication between medical professionals and patients over long distances. This 

is especially important in emergency scenarios where prompt medical attention and 

guidance can significantly improve patient outcomes. The streamed video feed is 

rendered for immersive viewing on the receiving end by an application running on 

an Oculus Quest 2 VR headset. The Oculus controller is used to control the robotic 

arm's movements, with values mapped to move the arm in the virtual environment 

accordingly. To add even more interactivity, the trigger button on the controller can 

be used to open and close the arm's claw. ROS is used to send all arm data, including 

controller coordinates and claw status, to a specific topic named "controller_data." 

The processing hub is a Raspberry Pi 4 embedded within the TurtleBot, running 

Ubuntu 22.04 and ROS 2.0. ROS facilitates seamless communication and 

coordination of all robot operations. 

To create communication over the WAN between the VR environment and ROS 

topics, we use Unity's ROS Sharp library. ROS nodes on the Ubuntu platform harvest 
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controller coordinates and gather data for additional processing by listening for 

messages on these subjects. To operate the servos in the robotic arm, the Raspberry 

Pi interprets this data and exchanges serial communications with an Arduino Uno. 

Quaternion is the message type used for arm control; it contains three values for 

controller coordinates (x, y, and z) as well as an extra value for manipulating the 

claws. To further control the entire robot's movement, we send quaternion data from 

the Oculus controller to the Raspberry Pi. The linear and angular velocity values in 

this data are transmitted over the ROS topic "cmd_velocity." The TurtleBot software 

interprets these twist values and communicates with the OpenCR board to actuate 

the motors connected to the wheels, enabling seamless robot movement. 

1.2. Motivation: 

Rapid advancements in telepresence technology herald a paradigm shift in remote 

collaboration and interaction, presenting currently unseen potential to overcome 

distance constraints and expand the boundaries of connectivity. Even with these 

tremendous advances in healthcare, there are still many obstacles to overcome, 

especially when it comes to access to specialized medical services in remote areas. 

To improve accessibility to specialized healthcare services and democratize 

healthcare access for people living in remote areas away from urban centres and 

medical facilities, this project introduces a novel virtual telepresence robot designed 

to fill in important gaps in the medical field. Telepresence robot's ability to overcome 

geographic barriers in healthcare delivery is essential to its mission. Remote medical 

consultations, diagnostics, and minor procedures can be facilitated by technology, 

which expands access to specialized healthcare services to underserved and remote 

areas. Patients no longer must endure long travel times and have better access to 

professional medical advice, which can lead to prompt interventions and even better 

health results. 

1.3. Background Knowledge: 

The literature study offers insightful information about the development of 

telepresence technology, showing how immersive interactions enabled by 

developments in robotics, virtual reality (VR), and communication technologies have 

supplanted traditional video conferencing. Reviewing teleoperation and telepresence 
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systems in particular, it clarifies the opportunities and problems that come with 

remote control situations, especially when they are in dangerous or unreachable 

places. Research on force telepresence, interactive teleoperation, and virtual reality 

integration emphasizes how crucial real-time feedback and user-friendly interfaces 

are to improving work efficiency and operator experience. The design and execution 

of a Virtual Telepresence Robot that makes use of WebRTC, ROS 2.0, and VR 

technologies to enable remote operation and immersive telepresence experiences are 

informed by these discoveries, which provide the basis of knowledge for the thesis 

project. 

The background knowledge demonstrates how current developments in virtual 

reality teleoperation systems have the potential to completely transform applications 

involving remote control. Through the integration of augmented reality (AR) with 

virtual reality (VR) displays and real-world video feeds, users can command mobile 

vehicles remotely and engage in extremely realistic interactions with their 

environment. For the purpose of putting such systems into practice, crucial parts 

including controllers, cameras, virtual reality headsets, and single-board processors 

like the Raspberry Pi 4 are mentioned. In order to improve teleoperation efficiency 

and safety, the review highlights the significance of accurate control mechanisms, 

real-time video feedback, and user-friendly interfaces. The thesis project benefits 

greatly from the background knowledge gained from these investigations, which 

guides the selection of hardware parts, software frameworks, and interaction 

paradigms to build a reliable and user-friendly Virtual Telepresence Robot. 

1.4. Deliverables: 

1) Development of firmware for the bot using Robot Operating System (ROS 2). 

2) Development of an immersive 3D Virtual Environment using camera input, VR 

and Unity development plat from. 

3) Enabling Long Distance Communication between the bot and the human using 

WAN. 

4) Implementation of a Gripper Mechanism on top of the bot for pick and place 

operations. 
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1.5. Contribution: 

This project tends to create a platform for development and research on virtual 

telepresence robot to which more modalities can be added for experimentations in 

the medical field. This is one of the first experiments in the field of telemedicine in 

the department of Mechatronics Engineering at the College of Electrical and 

Mechanical Engineering, NUST. 

1.6. Organization of the thesis: 

This thesis is further written in the following fashion: 

Chapter 2: Provides a Literature Review regarding the existing problems in the 

perception model and existing methodologies for developing an effective and robust 

fused model. 

Chapter 3: Presents the details of methodology employed by our team in 

completing this project and explains the inner working of the project. 

Chapter 4: Briefly discusses the summary of results and findings and comparison 

of accuracy with existing methodologies in terms of a more accurate depth perception 

model.  

Chapter 5: Concludes the report and explores future possibilities and directions in 

which the project can be taken.  
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Chapter 2 - LITERATURE REVIEW 

The burgeoning field of telepresence technology has witnessed remarkable growth in recent 

years, catalysed by the confluence of advancements in robotics, virtual reality (VR), and 

communication systems. Telepresence as an evolving concept, extends far beyond 

conventional video conferencing by enabling individuals to interact seamlessly with remote 

environments, fostering a sense of physical presence in distant locations.  

This review delves into the existing body of literature to explore the multifaceted dimensions 

of telepresence technology. It surveys a diverse array of research efforts, technological 

innovations, and applications that have emerged to harness the potential of telepresence in 

various domains, ranging from telemedicine and remote education to industrial teleoperation 

and beyond. Through an exhaustive analysis of prior work, this literature review aims to 

provide a comprehensive understanding of the state-of-the-art in telepresence technology, 

paving the way for the development of a novel telepresence robot with the integration of 

cutting-edge components such as a custom-designed 3D printed gimbal, TurtleBot 3 Waffle 

Pi, Robot Operating System (ROS), and the Meta Quest 2 VR Headset, interfaced with 

Unity. This synthesis of knowledge will serve as a foundational framework for advancing 

the field and realizing the full potential of telepresence technology in enhancing remote 

interaction and collaboration.  

2.1.  Research on the tele-operation robot system with tele-presence:  

With the advancement of technology, there is a pressing need for robots that can 

function efficiently in hazardous and challenging circumstances. To fulfil this need, 

interactive teleoperated robots have emerged as a crucial option, considerably 

improving their capabilities. These robots, which combine human intellect with 

technological skill, may do tele-manufacturing, teleoperation, tele-design, tele-

medical treatment, tele-experimentation, space exploration, and ocean development. 

It is crucial to highlight, however, that communication time delays are unavoidable 

in tele-operation systems. To solve this issue, a virtual reality-based force tele-

presence system was built, and research on force tele-presence in the presence of 

time delays and interactive teleoperation technology was done. [1]  
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2.1.1. The structure of the system: 

The tele-operation system of force tele-presence [2] has several distinctive 

components, including a manipulator, an electro-hydraulic servo drive 

system, a displacement servo control system, a visual tele-presence system, 

wireless communication system, force, and displacement sensors. In this 

system, the master and the slave manipulators are set as master-slave; both of 

which are equipped with 4-DOF actuators. The slave manipulator has a 

machine tool for remote controlled systems such as grinding, polishing, 

assembling, and shaping which makes it appropriate for machining 

applications. 

In such a tele-operated master-slave system, the master plays dual functions 

as a reference input to command the slave and as a force feedback source to 

inform the operator on the state of slave. This ‘sense of force’ enables the 

operator to touch and manipulate forces originating from the remote location.   

 

 

 

 

Figure 1. Master Slave System for remote control 

The remote-control computer connects to the site computer during the initial 

control stage. The site computer continually reads and exchanges joint 

displacement and velocity data with the remote-control computer through 

A/D conversion. This information is used to setup the graphical depiction of 

the robot, allowing the operator to monitor the state of the site robot. Event-

driven control instructions are transferred between the site and graphic 

computers. The visual computer updates the virtual robot's motion state in 

real time, while the site computer converts operator commands into motion 

angles for each joint. This entire procedure runs with a 10-millisecond sample 

and control period.  
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Figure 2. Remote Robot Control System Principle  

  

In tele-operating the remote worksite robot while facing the simulation robot, 

real-time video information is crucial due to model errors between the graphic 

robot and the virtual environment. This video information is obtained through 

equipment mounted on the remote robot, including cameras, video emitters, 

and video receivers.  

Compared to tele-operation solely relying on video feed from the site, the 

approach which offers high tele-presence and real-time feedback, can 

enhance work efficiency by 30% to 50%. It mitigates the impact of time 

delays and provides a user-friendly graphical interface, allowing the operator 

to adjust the video perspective in the virtual environment.   

This system's remote mechanical arm is a 4-degree-of-freedom (4-DOF) 

system [3] that was produced by replacing the original hydraulic excavation 

machine shovel [2] with a new single-degree arm. For claw manipulation, 

gears are used. Using hydraulic cylinders, proportional valve control is used 

to achieve four degrees of freedom. One of these cylinders is employed by 

gearbox machinery to spin the main body. To detect displacements, linear 

displacement sensors are used, and the hydraulic pressure is sensed by the 

hydraulic sensors.  

 

Figure 3. 4 DOF Engineering Robot Structure Design  
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2.1.2. The design of the force bilateral hydraulic servo control 

system:  

In the improved parallel control method, the difference between the operating 

force of the manipulator and the working resistance of the slave mechanism 

is used as the control signal to control the motion of the master. This approach 

utilizes the advantages of force error and parallel bilateral servo control. The 

slave driving force is related to the force and displacement difference between 

the master and the slave, and the feedback force is relative to the force error 

between the master and the slave. If the slave comes in contact with an object 

with a lot of stiffness, then the impact force is too large, and both the master 

slave position following qualities are poor which is a problem in the current 

control mechanism. 

2.1.3. Tele-operation experiment result analysis:  

The master, a 2-degree-of-freedom (2-DOF) hydraulic driving manipulator, 

and the slave, a 4-degree-of-freedom (4-DOF) hydraulic driving construction 

robot. The control principle are shown to be similar to a single degree of 

freedom force bilateral hydraulic servo control system which is primarily 

used for force information exchange during grasping. 

Studies show that improved parallel force feedback bilateral servo control 

system is acquired through platform-based tests. The tests are conducted 

under two circumstances: no load and spring load. In the no-load condition, 

the focus is on evaluating the ability of the slave to follow the movement of 

the master and monitoring the performance of the PD force controller with a 

dead zone by observing changes in the manipulating force of the master.   

Figure 4. No load force and displacement tracking curve 
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The purpose of loading experiments is to give the operator force feedback 

during teleoperation, assuring accurate operation by letting the operator feel 

the force between the slave and the environment. [4]  

 

  
Figure 5. Spring load force and displacement tracking curve  

  

2.2. Virtual reality teleoperation robot:  

The system's substantial goal is to apply augmented reality to demonstrate how a mobile     

vehicle operates at a different physical location from the user while yet providing the 

user a sense of presence. This augmented reality (AR) experience interacts real-world 

camera input with virtual reality (VR) display. Users with headsets watch the cars live 

video feed and can navigate the vehicle using a remote control based on the camera 

input. The system strives to deliver a pleasurable and user-friendly experience.  The two 

key connections that make up the project's basic functionality are controller to 

automobile and camera to VR. These connections allow users to explore their 

surroundings by steering the automobile with an external joystick and viewing the world 

through the camera feed of the vehicle. The use of a movable automobile and camera 

system allows it to stand out altogether. [5] 

2.2.1.  Background of VR with tele-operation systems: 

Combining VR with teleoperation systems has shown positive results, including 

improved spatial awareness and reduced operator stress. A Gifu University 

project integrating VR with a construction robot found that VR enhanced task 

efficiency and engagement compared to traditional displays. VR-based 

operation was deemed safer and less stressful, highlighting the benefits of VR 

in teleoperation. [6]  

Brown University developed a software project that combines VR with 

hardware systems, enabling users to control robots using everyday VR 
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equipment. In this project, they connected a research Baxter robot with an HTC 

Vive headset. Participants were given the task of stacking 16 differently sized 

cups, and the results were impressive. The VR interface was not only more 

enjoyable, and fun compared to a keyboard interface, but users also stacked the 

cups faster. [7] 

Two major software programs exist for VR development: Companies like 

Unreal and Unity. Unreal is a tool for developing virtual reality games and a 

poor fit for hardware interfaces. Unity has more options for real world hardware 

interfacing, particularly for embedding the camera views which are required by 

the system. 

Five primary pieces of hardware equipment are used: the controller, camera, VR 

headset, the motorized vehicle to be controlled, and a single-board computer 

that controls the vehicle. The code for conveying instructions from the 

controller to the car is installed in a computer hardware integrated in the car. 

The car control system is done with the use of Raspberry Pi 4 and the use of 

Python scripts. This setup is chosen because it is well documented and can be 

used freely. [8][9] 

    2.2.2. Implementation overview:   

The user must launch the application while wearing the headset to view the 

footage from the vehicle's cameras. The robot was guided by a remote control 

to its destination and moved in response to input from the camera. Two main 

connections can be made across the entire system. VR camera, vehicle 

controller. The system's objective was to give people the ability to experience 

the environment like they were there.  

 

Figure 6. A general overview of Car VR system and connections  
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The primary controller for the Car VR system is the Raspberry Pi 4, which is 

installed inside the vehicle and controls most of the connection logic. It 

acquires the camera feed and sends it over the internet so that the virtual 

reality system can comprehend it. The Raspberry Pi 4 also decodes Bluetooth 

signals from the controller to drive the motors of the vehicle. Most debugging 

efforts were focused on this board because of its crucial role in system 

connection. Figure 7 shows a more thorough representation of the Car VR 

system with important data flows highlighted: orange arrows show data flow 

from the user to the vehicle's motors, while green arrows indicate data 

delivering video feedback to the user. [10]  

 

      Figure 7. A specific overview of Car VR system and connections  

   

2.2.3. Camera to VR system:   

The resources used included an Oculus Quest 2 headset, a Raspberry Pi 4, a 

PS4 controller, a Raspberry Pi camera, VESC motor controllers, brushless 

motors, and various smaller electronic and 3D printed components.  

The camera to VR system informs the user how to control the car. To enable 

live video streaming from the Car VR system, a Raspberry Pi with a 

compatible camera and an opensource Python camera script from 

"raspberrypi.org" were used. The Raspberry Pi runs on Raspbian OS and is 

configured to create a server with its IP address, transmitting bytes to a 

specific URL. This setup generates a live, low-latency MJPEG stream 

accessible through a browser using the Pi's IP address. The MJPEG 

processing script handles HTTP requests and responses, processing incoming 

bytes from the HTTP buffer. It interfaces with a texture script in Unity to 
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display the video in the VR environment. The project incorporates Oculus 

plugins in Unity, creating a scene with a viewpoint and an empty room, 

offering limited virtual mobility within the space.  

On an Oculus Quest 2 headset, the Unity program was used to evaluate the 

system. To do this, an Oculus Link cable must be connected between the 

laptop and the Oculus Quest 2 headset. The camera feed was shown in the 

VR experience when the Unity project had finished running. Before 

continuing with development, it is essential to do these integration tests. Once 

successfully finished, the fundamental functionality of the VR environment 

was developed, enabling users to watch the camera feed and immerse 

themselves. This signalled that the camera and VR system were prepared to 

include new parts.  

2.2.4. Control system:  

A control system managed the vehicle's direction and speed. A PS4 

controller, a Raspberry Pi, an electronic speed controller (ESC), motors, and 

a few signal converters make up the system. On a Raspberry Pi, a Python 

script served as the vehicle's control program. To establish the output signal 

for the motor controller and control the system's speed, code develops a 

connection shell via Bluetooth which evaluates input of controller. The API 

was utilized in the lightweight module PS4 Controller, which reads an input 

stream and segments it as events take place.  The output of the Python script 

creates a link between the controllers of PS4 input variables and the motors 

speed control output signals. PWM (Pulse Width Modulation) signal was the 

output signal. The PWM signal can define 35 different speeds and up to 35 

different duty cycles. The output duty cycle increases as the joystick is pushed 

higher, causing the speed to increase.  

2.2.5. Vehicle specifications:   

The car is built like a tricycle, with a third steering wheel at the back for 

stability and two motors for two-wheel drive at the front side. Each of his 

motors had an individual ESC, allowing him to run each wheel at a distinct 
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speed. The joystick's Y axis was used by the Bluetooth controller to input the 

throttle. The left joystick's position determined the speed of tire on left side, 

and the position of right joystick determined the speed of the right wheel.  

 

Figure 8. Vehicle Exterior  

  

Due to concerns with motor demagnetization when a steel chassis was first 

attempted, the chassis is mostly made of plastic components. Although 

aluminium was a possibility, the plastic chassis was chosen because of 

financial restrictions. Utilising 3D printed mounts, all system components are 

affixed to the chassis.  

The main operating voltage of the power system is 22.2 volts, and it is 

powered by two paralleled 6S LiPo batteries with a total capacity of 6600 

mAh. These batteries have a 50C rating, guaranteeing they can provide 

enough current for the system's 50-amp motors. These 190 kV-rated motors 

are frequently used in electric longboards. Their usage permits freedom in 

vehicle weight if the chassis weighs less than 150 lbs. These motors need 

speed control, though. Using VESC software, the Electronic Speed 

Controllers (ESCs) are designed to limit the motors' maximum rotational 

speed to 20000 rpm and their maximum current consumption to 35-amps 

apiece to establish realistic control. To provide fine control at slower speeds, 

a throttle curve is also used.  

 

Figure 9. System wiring schematic  
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Other parts of the automobile include DC-to-DC converter, cooling fan, 5volt 

battery, circuit breaker, and Raspberry Pi camera. The components such as 

the fan and the level-shifter are powered at 5 volts by the DC-to-DC converter 

using the 22. to be powered by 2-volt batteries. The cooling fan is needed to 

avoid thermal shut down of the raspberry pi. The 5-volt battery is used to 

power the Raspberry Pi apart from the 22. The circuit is a 2-volt system, 

which allows Pi usage without engaging the ESCs. The main power switch is 

an 80-amp circuit breaker for the 22. 2-volt system and also protects the 

power system wiring harness from overheating. Finally, the camera is 

connected to the Pi to make the image for the VR feed. 

2.2.6. Future applications:  

The project explores the potential of VR in teleoperation and suggests 

transitioning from Bluetooth to WIFI control for global accessibility. This 

expansion opens diverse applications, especially in large-scale surveys. 

Augmented Reality features could further enhance the system, making it 

adaptable to various industrial scenarios, such as geological surveys and 

object manipulation.  

2.3. Construction tele-robot system with virtual reality:  

This research focuses on the development of a tele-robotics system for a construction 

machine, including a construction robot with seven servos, two joysticks for 

manipulation, and 3D virtual environment for interaction. For visualization of the robot 

and task objects, computer graphics (CG) are employed in the simulation environment. 

Operators can control the construction robot through the graphic robot in the virtual 

environment based on signals transmitted from joysticks. The positions and shapes of 

the task objects in the virtual world are made synchronous in real-time using a stereo 

camera located in the remote field. To resolve disadvantages of the three-screen display 

and improve teleoperation systems’ effectiveness and reliability, the paper reveals the 

newly developed auto point of view (APV) and semi-transparent object (STO) 

approaches. Evaluations of a one-screen visual display, which incorporates APV and 

STO, in comparison to the conventional three-screen display proved helpful in terms of 

increasing work efficiency, safety and reducing stress levels. [11] 
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2.3.1. Tele-robot system with virtual reality:  

The tele-robotic system is divided into two parts: the master system and the 

slave system. The slave system is represented by a construction robot with a 

stereo camera. In contrast, the master system is operated by a human operator 

and primarily comprises a manipulator and a screen. [12]  

 

          Figure 10. Construction tele-robot system with virtual reality 

  

As mentioned earlier the construction robot has four hydraulic actuators 

which are controlled by four servo valves connected to a computer (PC 1) in 

the remote field. [13] Accelerometers are attached to the robot to provide the 

operator with information about its movements and acceleration. The 

operator has manipulator in form of two force-feedback joysticks that can 

translate in the XY plane. For the swing, boom, arm, and glove movements 

of the construction robot, the four angular displacements that correspond to 

these joysticks are transformed from linear displacements of the hydraulic 

cylinders. 

It uses the function of a stereo vision camera. This camera produces range 

pictures in real time colour stereo vision which is effective in determining 

distances to target objects in its field of view at up to 30 frames per second. 

The operator of the presentation system developed for this study can rotate 

the views of the CG images of the distant robot and the task item in front of 

him/her. [14] These CG images are generated by a graphics computer known 

as PC2 with the help of input signals coming from the joysticks and the stereo 

vision camera known as “Digiclops. “ 
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Figure 11. Arrangement of the system  

  

A joystick and a screen are used by the operator to remotely operate the 

construction robot. A computer (PC1) receives the operating data from the 

joystick and uses it to generate commands for the robot's servo valves. These 

signals are subsequently sent to the construction robot's servo amplifier.  

The construction robot and other task objects are visualised in the virtual 

world by another computer (PC2) that displays it. These graphics are created 

by combining operational data from the joystick with stereo camera data on 

the location and shape of the job item. After that, these video signals are sent 

to a projector, which then projects the images onto a screen.  

When computer generated (CG) pictures are produced from stereo 

photographs, the robot's CG representation is built using displacements 

discovered by sensors mounted to the hydraulic cylinders. In contrast, the 

"Digiclops" stereo camera is used to create the computer-generated pictures 

of the job items.  

2.3.2. Visual display in virtual space:  

To improve operability and safety, more visual signals were offered in the 

virtual environment throughout this study. To provide a realistic feeling of 

vertical distance, shadows were applied to the construction robot and task 

objects, using darker hues when objects were closer to the ground and lighter 

tones when objects were farther away. Three displays (top, left, and right) 

were commonly featured in the operator's conventional visual display. The 

operator having to choose which screen to concentrate on, which may take 

time and result in mistakes, especially for novice operators, was a 

disadvantage of this setup. Additionally, choosing the incorrect screen might 

result in the construction robot being positioned in a dangerous way.  



17 

 

 

 Figure 12. The auto point of view  
  

In this study, a feature known as "auto point of view (APV)" was proposed 

to overcome the problems previously discussed. When employing a single-

screen display, APV automatically changes the point of view and reference 

point based on the swing and boom behaviour, making operations simpler. 

It's crucial to remember that this strategy presumes a level distant location 

and that no blocks may be stacked higher than three feet. Parameters control 

viewpoint movement for improved spatial recognition based on the 

construction robot's behaviour enhancing operator speed and safety. A semi-

transparent object (STO) function and the ability to remove the robot’s body 

from the CG were added to address visibility issues and reduce operator 

stress.  

2.3.3. Experiments and discussions:  

During the experiment, the construction robot was manned and operated by 

the users via a joystick to perform specific tasks. The virtual space display 

system has not attained the level of accuracy required in emulating various 

situations hence still under development. Therefore, it is rather natural that 

when the current virtual space display system has been used as the visual 

display system, then the task contents must be simplified to a certain extent. 

Thus, in the present study, three types of tasks (Task 1 – 3) were employed, 

namely, stacking, and transporting two or three concrete blocks 

(approximately 200mm x 260mm x 100mm in dimension; referred to 

henceforth as “blocks”) within the operating envelope of the construction 

robots. 
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Figure 13. Task area for evaluation of the system  

 

Figure 14. Experimental Condition  

1.  Task 1:  
In the initial condition of Task 1, two blocks are placed at points B and C. First, 

the block at point C is transferred to point A; then the block at point B is placed 

on top of the block at point A. 

 2. Task 2:  
The block at point A is put above the block at point B in the beginning of the 

experiment. The block is then transferred from point C to point A. The upper 

block of the two blocks piled at point B is finally transferred to point C. 

3. Task 3:  
In Task 3, blocks are placed at points B and C at the start of the task. The block 

at point C is then moved to point A and the block at point B is moved to point 

C. The block at point A is then moved to point B. This means that the blocks 

are moved to the empty circle in the middle of points A, B and C a total of eight 

times. 

Three different visual conditions were employed in the experiment. These were 

the “APV+STO” condition, which was to complete the task on a single screen 

with moving APV and semi-transparent polygonal object; “APV,” which was 

to complete the task on a single screen using APV and an opaque polygon; and 

“3 view,” which was to complete the task on the three screens as per the 

standard. 
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The standard deviation along with the average has been calculated with 

reference to the number of block movements carried out by the subjects in a 

minute. The abscissa refers to the visual conditions in the experiment, while 

the ordinate represents task efficiency in terms of objects completed per 

minute. Increased values on the ordinate signify higher levels of task 

efficiency. 

 

Figure 15. Task Efficiency  

The results of the time and pressure of contact between the floor and the 

construction robot, averaged are indicated in the figure below. The abscissa 

displays the visual circumstances just like above. The right ordinate displays 

the dimensionless force Fc, which is calculated from the average force 

produced by the boom, arm, and swing. The left ordinate displays the time of 

contact with the floor, tc in seconds. Larger values on the right and left axes 

denote risk.  

  
Figure 16. Risk Management  

2.4. Haptic interaction in tele-operation control system of 

construction robot based on virtual reality:  

This paper introduces a tele-operation control system for construction robots 

(TCSCR) using a master-slave control scheme. The TCSCR comprises a 

construction robot controlled by a servo valve, two joysticks for remote operation, 
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and a 3D virtual working environment based on virtual reality technology. By 

utilizing virtual reality, this technology enhances task efficiency by immersing the 

operator in a real-time virtual environment. However, for inexperienced individuals, 

operating a remote construction robot (RCR) can be dangerous, leading to accidents 

like toppling. This happens when the RCR continues working despite being unstable 

or encountering obstacles. To improve safety and prevent such accidents, haptic 

interaction is integrated into the TCSCR using virtual reality technology. When a 

haptic interaction indicating danger occurs, the system calculates a reaction force 

based on predefined rules and conveys it to the operator through the joystick.  

Technology developments in virtual reality (VR), computer graphics (CG), and 

visualization have made it possible to simulate the real world inside of a computer 

environment. By giving operators, a feeling of active participation at the operation 

site, VR technology accomplishes this by using a three-eye stereo camera to record 

data from the scene and produce real-time computer graphics (CG) representations 

of this data. The addition of VR improves traditional teleoperation control systems 

for construction robots' (TCSCR) overall task efficiency while also improving 

teleoperation's safety and comfort. To lower the risk of toppling accidents, the 

research aims to prevent tele-operation construction robots from getting too close to 

the ground and obstacles. This is accomplished by improving the haptic interaction 

between the virtual environment and the glove of the graphics construction robot. By 

relaying haptic feedback along with proximity information, this improved interaction 

gives the operator a more realistic experience and improves safety. [15]  

2.4.1. Tele-operation construction robot based on virtual 

reality technology:  

2.4.1.1. Composing and principle of TCSCR based on virtual 

reality: 
The master system and the slave system are the two components of the 

bilateral   servo control type of TCSCR used in this study. [16]   
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Figure 17. Schematic Diagram  

In this setup, a construction robot with a stereo camera serves as the slave 

system. Four hydraulic cylinders and four servo valves on the robot are 

managed by a computer (PC1). Magnetic stroke sensors embedded in the 

pistons track the displacements of the cylinders, and a pair of pressure sensors 

fastened to the cylinders track the external forces acting on them.  

A computer (PC2) and the stereo camera, called "Digiclops," are linked 

together by an IEEE 1394 interface. With its optical axis parallel to the 

ground, it is placed directly above the construction robot. Real-time range 

images are provided by the "Digiclops" colour-stereo-vision system, which 

uses stereo vision technology. This technology creates computer-generated 

(CG) images of the task objects at a rate of about 30 frames per second 

through PC2 and assists in gathering information about the position, colour, 

and shape of target objects in its field of view.  

  
Figure 18. Camera Geometry Model  

Two force-feedback joysticks, a screen, and a human operator control the 

main system. Each joystick can be moved along the X and Y axes, and the 

linear movement of the hydraulic cylinders in the RCR arms is represented 

by the angular displacement used to measure each joystick's displacement. 

Under each joystick is a DC motor that allows feedback of reaction forces 

produced by the RCR's arm cylinders during operation. This feedback is 

made possible by a speed change gear connected to the DC motor. 

Additionally, CG images created by PC2 using a projector are shown on a 
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screen set up in front of the operator.  

The TCSCR works as follows: During work, the operator uses joysticks to 

control the RCR while keeping an eye on the screen in front of them. To 

calculate the signals for the RCR's servo valves, PC1 receives operational 

input from the joysticks. The RCR's servo amplifiers receive these calculated 

signals next. The "Digiclops" camera's images of the target object and the 

working environment are sent to PC2 at the same time as the RCR's arm 

cylinders' displacements. The construction robot and the target object's CG 

images must be displayed in a real-time virtual environment, which is the 

responsibility of PC2. A projector is used to project these video signals onto 

the screen in front of the operator, enabling the operator to view CG images 

of the RCR and the task object from various angles.  

  
Figure 19. Arrangement of the system  

2.4.1.2. CG images based on virtual reality technology:  

The magnetic stroke sensors on the hydraulic cylinders controlled by the 

joysticks detect the displacements of the arm cylinders, which are used to 

generate the CG image of the graphics construction robot (GCR). However, 

it is difficult to produce CG images of the operation site from "Digiclops" 

images. As a result, due to computational constraints, this research 

simplifies the operation site by assuming it lacks inclined planes and only 

considering white, regular concrete blocks as the task objects.   

The stereo vision processing algorithm in "Digiclops" is used, which is 

appropriate for this application, to generate CG images of the target objects 

from "Digiclops" images. The process entails creating a world coordinate 

system that is in line with the coordinate system of the right camera in 

"Digiclops." Using colour data, the robot arm image is eliminated. Setting 
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a threshold, creating binary images, and labelling regions are all examples 

of general image processing that is used. Less than 10 cm x 10 cm are 

discarded as small areas. It is possible to measure distances and learn about 

the position, colour, and shape of the target object by extracting the outline 

of the objects and using it to calculate the convex hull. For real-time 

rendering and object reconstruction, this data is sent to the OpenGL context.  

2.4.1.3. Velocity control method with variable gain to force feedback 

model:  

In the case of the TCSCR with a master-slave control structure, it is crucial 

to make the operator receive necessary force feedback from the work field. 

Position control of either the master or slave side has traditionally been the 

key point of TCSCR control approaches. Force reflection, force-position 

compound, position symmetry, variable gain position symmetry and 

improved variable gain position were all studied as force feedback models. 

Although these techniques have enhanced the force feedback of the joystick 

in terms of force feedback, each technique has its own advantages and 

disadvantages. 

A position-velocity control method is presented to enable velocity control 

of the arm cylinder in the RCR. The piston velocity of the RCR's arm 

cylinder is zero when the joystick is in its centre (displacement equals 0). 

The arm cylinder's piston velocity rises along with the displacement of the 

joystick as it moves more freely. However, there are issues with this method 

when handling concrete blocks because the piston velocity is slow. To 

address this issue, a variable gain factor "T" is incorporated into the force 

feedback model. [17][18]   

The value of "T" adjusts based on the changing driving force threshold 

according to the piston's different movement directions. Simultaneously, 

the model assumes the neglect of inertia force and piston friction, and it 

calculates the reaction torque "τ" applied to the joystick.  

τr = T[kpm (Ym – Vs) + ktmfs]  
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Figure 20. Schematic diagram of the velocity control method with variable gain to the force feedback model  

2.4.2.  Haptic interaction in the tele-operation construction robot 

control system:  

2.4.2.1. Introduction to haptic interaction:  

Haptic interaction aims to enhance the operator's sensory experience and 

improve RCR safety. It involves interpreting proximity as tactile feedback 

and conveying potential dangers through force feedback via the joystick.  

2.4.2.2. Haptic interaction detection and calculation of 

reaction force:   

Most haptic interactions with the GCR glove happen during RCR motions. 

"Imaginary springs" are virtually positioned on the front of the glove to 

prevent collisions and measure distance to the ground or obstacles. Within 

a predetermined proximity range known as the time headway (THW), these 

springs produce a reaction force that grows as the GCR approaches the 

ground or obstacles. This idea serves as the foundation for the calculation 

of the reaction force on the joystick.  

 

Figure 21. Schematic diagram of the haptic detection between the fork glove of GCR and the ground or 

obstacle  
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2.4.2.3. Experiments:  

To test the control system, experiments were done on a testbed for tele-

operated construction robots. Joysticks were used by operators to complete 

tasks. The experiments were aimed at haptic interaction detection, reaction 

force calculation, and TCSCR performance evaluation. This study focused 

on the haptic interactions that occur when an obstacle is encountered 

during arm movements around the arm shaft.  

 

 

 

 
(a) The time headway in arm movement  (b) The haptic reaction force in arm 

movement 

 

 

  (c) Haptic judgement in arm movement          (d) Distance from fork glove to the obstacle  

  
(e) The velocity of the RCR arm in movement around the arm shaft  

Figure 22. The haptic detection and the calculating of the reaction force in the movement from 

backward to forward around the arm shaft  

2.5. ROS Reality: A virtual reality framework using consumer-grade 

hardware for ROS-enabled robots:  

Robotic teleoperation tasks now allow for natural 3D interaction using virtual reality 

(VR) systems. Early VR systems were expensive and needed specialized hardware, but 

recently affordable consumer-grade VR systems have become available, making them 

more widely available. The goal of the study is to create ROS Reality, an open-source 

teleoperation package for the Robot Operating System (ROS) that works well with 

Unity-compatible VR headsets. Using ROS Reality, skilled human users guided a 

Baxter robot through 24 dexterous manipulation tasks. This study highlights problems 

that need to be fixed in these VR systems and sheds light on how feasible VR 

teleoperation tasks are using today's consumer-grade resources.  
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Virtual reality (VR) offers intuitive point-and-transformation specification and 

seamless interactions with the real world, making it a highly effective interface for 

robots. VR interfaces can be used for a variety of tasks, such as remote debugging and 

troubleshooting, robot teaching, learning from demonstration, and teleoperation. By 

mapping robot manipulators to VR hand controllers, VR systems make it possible for 

non-experts to control robots in an intuitive manner that feels like an extension of the 

user's hands. With the help of this simple interface, regular people can operate complex 

robot functions without extensive training. VR interfaces use expert users to train robots 

for precision-required tasks, combining the skills of novices and experts in difficult 

fields. ROS Reality is a VR and Augmented Reality (AR) teleoperation interface that 

works with ROS-enabled robots and consumer-grade VR and AR hardware. By using 

consumer-grade VR and AR hardware, it enables users to view and control robots 

remotely over the Internet.  

 2.5.1. Related Work:  

Robots can take on tasks that would be difficult to complete autonomously 

through teleoperation. Humans can work in hazardous conditions securely from 

a distance by using it additionally. [20]  

Although 2D interfaces for robot teleoperation, especially over the Internet, have 

become more popular and offer control through monitors and keyboards, they 

are out of sync with how people naturally perceive and interact with the 3D 

world. [21][22]. According to research, VR interfaces can help with this 

problem. Non-expert users of teleoperating robots were discovered to be 

quicker, more productive, and more comfortable using a VR interface than a 2D 

monitor interface. [23]  

This implies that VR interfaces improve the experience of teleoperation. Virtual 

reality interfaces and gantry systems offer direct, intuitive control of robots. For 

example, the da Vinci Robot System enhances surgical performance, but it's 

task-specific and stationary. [24] Mallwitz et al. created a portable exoskeleton 

for teleoperating humanoid robots, but it's costly and limited to specific robots, 

unlike web-based interfaces. [25]  

The gaming community now has access to VR systems because of recent 
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advancements in graphics. Affordable and transportable VR hardware is 

available through items like the HTC Vive, Oculus Rift, and Google Cardboard. 

As an outcome, lab researchers have begun to investigate these VR teleoperation  

systems for robots. Due to the relatively recent widespread availability of 

consumer-grade VR systems, there has been little research on the efficacy of 

teleoperation interfaces utilizing this technology. While the type of interface and 

the robot being used have a big impact on how well a task is completed, the 

interest was in seeing what kinds of complex tasks an open-source software and 

a typical research robot could handle.  

2.5.2. ROS reality:  

2.5.2.1. VR as a teleoperation interface:  

In the context of human-robot interaction, there are two primary categories 

for displaying the robot's state to the user and mapping the user's input: 

egocentric and robocentric models.  

1. Egocentric Models:  
In egocentric models, the human is positioned at the centre of the virtual 

world, effectively coexisting in the same space as the robot. Notable 

examples of this egocentric approach include the work by Lipton et al. [26] 

and the research by Zhang et al. [27] In these scenarios, human users have 

reported a sensation of "becoming the robot" or "seeing through the robot's 

eyes." Essentially, the user's perspective aligns closely with that of the 

robot, fostering a strong sense of immersion and embodiment.  

2. Robocentric Models:  
Robocentric models involve the human and the robot sharing a virtual space 

but without necessarily superimposing one another. A specific example of 

this model is the one employed in evaluating ROS Reality. Here, the human 

interacts with a virtual representation of the robot by manoeuvring around 

it in a virtual environment. Control over the robot's arms is achieved by 

virtually grabbing and dragging them, resembling the operation of a virtual 

gantry system. In essence, the user and the robot exist within the same 

digital realm, yet their positions and perspectives remain distinct.  
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Figure 23. A diagram detailing the architecture of the ROS reality system  

2.5.2.2. System overview:  

The ROS Reality system uses an HTC Vive connected to a computer 

running Unity. Unity creates a local robot model from its URDF using a 

custom parser. The system connects to a ROS network via Ros bridge 

WebSocket, transmitting robot's pose and camera data. [28] A Kinect 2 

provides colour and depth images, which are processed into a point cloud 

in Unity. User interaction is enabled by holding a deadman's switch, with 

the user's controller poses sent to the robot. The robot's end effectors are 

adjusted using inverse kinematics. This setup allows immersive remote 

control of the robot, enhancing user experience.  

2.5.2.3. ROS:  

ROS (Robot Operating System) is a toolkit for programming robot 

applications. It facilitates communication between various software 

components called nodes, each performing different tasks. These nodes 

exchange data over channels, known as topics, using a local TCP network, 

forming a ROS network. Nodes can either publish data on a topic using 

publisher objects or subscribe to a topic using subscriber objects. ROS 

offers programming interfaces in C++ and Python, and in the case of ROS 

Reality, all nodes are developed in Python.  

In the context of ROS Reality, several components are launched. These 

include a Kinect2 ROS node, two RGB camera feeds (one for each wrist 

camera of the robot), a Ros bridge WebSocket server, a custom ROS node 

responsible for converting the full transform (TF) of the robot into a 

compact string, and another ROS node that listens for target poses from VR 
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systems. This latter node queries the robot's Inverse Kinematic (IK) solver 

and instructs the robot to move to the IK solution if one is found. If an IK 

solution cannot be determined, it reports an IK failure.  

ROS Reality integrates these components to enable seamless 

communication and control between the virtual reality interface and the 

robot, enhancing the user's ability to teleoperate and interact with the robot 

using VR technology.  

2.5.2.4. HTC Vive:  

The HTC Vive is a consumer-grade virtual reality system comprising a 

head mounted display (HMD) and two wand controllers. Each device is 

tracked with high precision using infrared pulse laser emitters 

(lighthouses), allowing for accurate position and rotation tracking with 

minimal error (1-2mm). The system is wireless for the wand controllers, 

and the HMD connects to a computer via USB and HDMI cables. The 

controllers are equipped with a touchpad, trigger, and two buttons for user 

input. It is compatible with various game and physics engines, but it is most 

extensively supported and initially developed for Unity. To integrate the 

Vive into Unity, a software package called Steam VR is used, enabling 

seamless interaction and development for virtual reality applications.  

2.5.2.5. Unity:  

Unity is a versatile game engine commonly used for creating popular 2D, 

3D, and Virtual/Augmented/Mixed Reality applications. It boasts a built-in 

physics engine capable of handling contact dynamics and simulating 

materials. Unity is compatible with a wide range of VR and AR hardware 

and provides a shader language for creating custom GPU shaders.  

In Unity, an open environment is referred to as a scene, which contains the 

fundamental building blocks known as GameObjects. Each GameObject is 

associated with a set of components. While there are numerous types of 

components available, the script component is especially important for 

applications like ROS Reality. A script is a small program typically written 
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in C# and executed during each rendering frame. ROS Reality's 

functionality is realized through a collection of these Unity scripts, which 

enable interaction and control within the Unity environment.  

2.5.2.6. ROS Reality:  

ROS Reality is a collection of C# scripts that enable users to remotely view 

and control a robot equipped with ROS (Robot Operating System) 

capabilities over the internet using a virtual reality (VR) interface.   

1. WebSocket Client:  

The script is a C# implementation of the default Ros bridge client, known 

as ROSlibjs. It facilitates essential functions such as advertising, 

subscribing, and publishing to ROS topics. Communication between the 

script and the ROS system involves sending and receiving messages in a 

JSON format, with data encoded in base64, following the Ros bridge 

specification. This implementation allows for seamless interaction and data 

exchange between the C# script and the ROS-enabled robot.  

2. URDF Parser:  

The script parses URDF files to create a Unity hierarchy of GameObjects 

representing a robot. These GameObjects simulate the robot's physical 

properties using Unity's physics engine, allowing interactions in virtual 

scenarios, and supporting teleoperation practice. The URDF parser has 

been successfully tested with PR2 and Baxter robots.  

3. Transform Listener:  

By subscribing to the robot's TF (Transform), the Transform Listener 

synchronizes the virtual robot's pose with the physical robots. To 

accomplish this, it reads each link's position and rotation data (in quaternion 

representation) from the ROS TF topic and applies these transformations to 

the corresponding links of the robot simulation. This guarantees that the 

movements and positions of the real robot are precisely mirrored by the 

virtual robot.  
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4. RGB Camera Visualizer:  

The robot's camera feeds are visualized by means of this script. It converts 

the camera image from base64 encoding after subscribing to a specified 

camera topic. Next, it uses the camera feed to texture a plane GameObject. 

The purpose of attaching this plane GameObject to the user's wand 

controller is to allow the user to continuously view it while they interact. 

The script supports JPG and PNG image formats, but because of bandwidth 

constraints, ROS Reality always uses JPG.  

5. Kinect PointCloud Visualizer:  

The Kinect PointCloud Visualizer script creates a point cloud from RGB 

and depth data from a Kinect 2 by using a GPU shader. The script generates 

data and ads for every pixel pair, computes their 3D positions using depth 

data, and converts them to world space before rendering in the Unity scene. 

It does this by subscribing to the RGB and depth topics of the Kinect. The 

Kinect data is processed to create a 3D point cloud.  

6. Arm Controller:  

The user can provide the robot with the target end effector coordinates by 

using this script. The current position and orientation of the controller are 

converted from the Unity coordinate frame to the ROS coordinate frame 

when a deadman's switch, the side grip buttons on an HTC Vive is 

depressed. This information is then published over a topic to a node in the 

ROS network, which queries the robot's integrated IK solver and moves the 

robot if a solution is found. This script also enables the user to open and 

close the gripper using the wand controller's trigger. Another way to do this 

is by messaging the robot about a subject.  

7. IK Status Visualizer:  

If the IK solver fails, this script subscribes to the robot's IK solver's status 

and turns the user's wand controller red. This informs the user if the robot 

is unable to reach the target position they sent it.  
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8. Robot:  

Baxter's features include two arms with seven degrees of freedom each, 

grippers with force sensing built in, a fixed base, and a head with a display 

screen. This allows Baxter to handle a variety of objects with skill. 

Furthermore, adding rubber grips from the Baxter toolkit to improve grip 

by increasing friction at the end effector. Moreover, linking ROS Reality to 

a PR2 robot simulation in Gazebo, enabling to watch the robot's actions in 

real time.   

2.5.3. Long distance teleoperation trial and task feasibility:  

The outcomes of using ROS Reality to control the Baxter robot in virtual 

reality were largely positive. Of the 12 tasks that could be completed with a 

single manipulator, 7 of them were completed in virtual reality (VR). In a 

similar vein, of the twelve manipulator tasks, eight were accomplished by 

direct manipulation, and seven of those eight were finished using virtual 

reality. The VR trials were carried out by experienced teleoperators, who 

reported that the system was user-friendly. When it came to tasks that the 

robot could physically perform, the most effective method was direct 

kinaesthetic manipulation, in which the operator guided the robot's 

movements with their hands. VR proved to be especially useful, nevertheless, 

for tasks requiring intricate joint movements in the robot. Without having to 

continuously parameterize joint angles, the robot in virtual reality (VR) could 

determine the pose of the end effector based on the user's input, and then 

execute the appropriate trajectory.  

The trials showed that task success was dependent on the robot's limited force 

exertion capabilities. The robot found it difficult to perform some heavy-duty 

tasks like opening a bag of chips or tossing and catching a ball. The robot's 

parallel electrical grippers were also a hindrance for tasks requiring dexterous 

grasping or rotation. 
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Chapter 3 - METHODOLOGY 

3.1. Overview: 

According to the methodology, the design and development of the gripper 

mechanism comes first in hardware development, with the goal of producing a 

flexible system that can precisely and safely grasp and release objects. In parallel, it 

includes designing and integrating a gimbal system, which is necessary to provide 

multi-axis movement and stability. To guarantee that the robot's mounted 

cameras rotate smoothly, this entails choosing the motors and control algorithms. 

The coordination of hardware components depends on the integration of the 

components on TurtleBot 3 Waffle Pi.  

When it comes to software development, the priority is to use Unity to create a virtual 

environment that will act as a digital model of the robot's operating environment. To 

simulate real-world interactions, this entails creating and modelling 3D objects, 

putting physics simulations into practice, and arranging lighting and textures. The 

gripper mechanism and control systems are then developed in Robot Operating 

System (ROS), emphasizing responsive and easy-to-use controls. Writing code to 

interface with hardware, putting control algorithms into practice, and incorporating 

feedback for closed-loop control are all required for this. To facilitate remote 

teleoperation from any location with internet access, efforts are finally made to 

transfer functionality from a local area network (LAN) to a Wide Area Network 

(WAN). This includes setting up network configurations, putting data 

communication protocols into practice, guaranteeing security, and reliability of 

remote connections. 

 

 
Figure 24. Block Diagram 
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3.2. Hardware development: 

3.2.1. 4-axis robotic arm (EEZYBOTARM MK2): 

The EEZY bot arm mk2 is chosen as the project's base because it meets our goals of 

developing a prototype for medical pick and place operations in several important 

ways. This robotic arm is chosen in part because it is open source, meaning one can 

access the design files, software code, and community support needed for 

development and customization. We could customize the arm's functionality to fit 

the unique needs of medical pick and place operations by utilizing an open-source 

platform, guaranteeing compatibility with our suggested domain. Furthermore, the 

EEZY bot arm mk2's modularity and adaptability made it the perfect option for our 

project. The arm's modular design makes it simple to assemble and customize. It 

consists of servo motors, parts that are 3D printed or laser cut, and an Arduino 

microcontroller. Because of its modularity, we were able to modify the arm's design 

to meet the requirements of medical pick and place operations, including the need 

for accurate handling of fragile objects and suitability for use with materials of 

medical grade. 

3.2.1.1. Design and development: 

Apart from being modular and open source, the EEZY bot arm mk2 is 

customized to improve its functionality for our project, specifically 

concerning medical pick and place procedures. To achieve a greater 

payload capacity and extended reach which are necessary for precisely 

handling medical supplies and equipment, the arm's size and strength were 

increased. In addition, several new features were added to enhance 

usability and functionality. Among these were a quick coupler mechanism 

and replaceable gripper, which allowed for quick gripper type changes to 

effectively adapt to various medical tasks. To maintain organized cable 

management and reduce the possibility of cable entanglement while in 

operation, internal cable routing was incorporated into the robot's main 

arms. Furthermore, the arm's vertical axis was supported by spheres, which 

improved stability and fluid motion. This was especially important for 
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delicate medical procedures that called for exact positioning and 

manipulation. Together, these improvements made the EEZY bot arm mk2 

more suitable for medical pick and place tasks and brought it closer to the 

specifications of our suggested domain. 

 

 

 

 

 

 

 

  

Figure 25. 4-axis robotic arm and camera mount (CAD model) 

3.2.1.2. 3D Printing: 

Due to its larger size and more complex geometries, the EEZY bot arm mk2 

proved to be challenging to print. To accommodate their size, some 

components, like the main horizontal arm, required the use of supports 

during printing and a minimum printing area of 200x200 millimetres. 

Throughout the assembly process, metric hardware was used, with M4 

screws rotating every joint. As an alternative, #8-32 screws may be used in 

place of M4 screws. Because the joints' holes were made to fit tightly 

together, it was possible to precisely adjust their diameter with a drill bit to 

achieve the best possible functionality. To ensure smooth movement with 

minimal clearance between components, self-locking nuts were used on the 

screws. They were tightened until the joint was secured and then loosened. 

Furthermore, M4 threaded rods were also used on the two axes of the main 

vertical arm, which added to the arm assembly's sturdy design and stability. 

In addition, the choice to 3D print the EEZY bot arm mk2 with PET-G 

material at a 30% infill rate was made with affordability, strength, and 

durability in mind. PET-G is a popular thermoplastic polymer that is well-

suited for 3D printing because of its high strength-to-weight ratio, resilience 



36 

 

to impact, and other attributes. We attempted to achieve a balance between 

material efficiency and structural integrity by using PET-G material with a 

30% infill rate. This would ensure that the printed components could 

withstand the rigors of medical pick and place operations while optimizing 

material usage and lowering production costs. 

Here's the Bill of Materials (BOM) for the 3D printed and non-printed parts 

required for assembling the EEZY bot arm mk2. 3D printed parts include 

base, main arm, v arm, link 135, link 135 angled, horizontal arm, horizontal 

arm plate, triangular link, link 147, triangular link front, gear servo, gear 

mast, main base, lower base, claw base, claw finger, claw gear drive, claw 

gear driven and drive cover. The non-printed parts include 3x 946 servo,  

1x SG90 servo, 1 x M6 self-locking nut, 1 x M6x25 screw, 2 x M3 self-

locking nuts, 2 x M3 x 20 screws, 1 x M3 x 10 hex recessed head screw, 9 

x M4 self-locking nuts, 1 x M4 x 40 screw, 1 x M4 x 30 screw, 5 x M4 x 

20 screw, 1 x M4 x 60mm threaded rod, 1 x M4 x 32mm threaded rod, 25 

x diameter 6 mm ball spheres, 1 x 606zz bearing and some M4 washers. 

This comprehensive list includes all the necessary components for building 

the EEZY bot arm mk2, covering both the 3D printed parts and the 

additional hardware required for assembly. 

3.2.1.3. Assembly: 

These were the steps involved in assembling the EEZY bot arm mk2. First, 

align the driving shaft of an MG946 servo forward and use the included 

self-tapping screws to secure it to the main base. Then, put three M3 nuts 

into the main base's receptacles. Then, to ensure that the 606 bearings have 

freedom of movement, insert them into their housing and use three M3 

screws to secure the plate to the main base. Using tiny self-tapping screws, 

secure the upper driving printed gear to the drive plate by positioning it on 

the splined shaft. Over 25 spheres with a diameter of 6 mm were placed 

along the path. 

Once the swivel base's receptacle is filled with an M6 self-locking nut, 

position the geared base, and fasten it with a few M3 screws and nuts. 
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Attach the two components together with an M6 screw. After completing 

the main base, attach the vertical drive lever and main arm to the horizontal 

axis of the main base with a 4mm diameter rod. Use the eight self-tapping 

screws and single horns that come with the servos to secure the two in place, 

making sure they are aligned with the arm housing. Attach the driving arm 

to the lower end of the straight lever and the fixed end of the base to the 

lower end of the angled lever. 

Attach the triangle and horizontal arm to the upper section of the main arm 

using a threaded M4 rod. Join the angled rod to the triangle and the straight 

rod to the main arm. Fasten the gripper's fast release and rod to the front 

portion of the horizontal arm. Now that the robotic arm is put together, 

proceed with the gripper assembly. Make sure the servo wire can pass 

through the interior space of the horizontal arm before attaching the gripper 

to the fast release at the end of the arm. Gather all the cables on the back of 

the robot, enabling it to move freely, particularly when rotating on its 

vertical axis. After completing these procedures, the EEZY bot arm mk2 is 

now mechanically assembled and ready for electronic control. 

3.2.1.4. Forward Kinematics: 

 

 

 

 

 

 

Figure 26. Forward Kinematics (DH Parameters) 



38 

 

 

Figure 27. Forward Kinematics (Workspace) 

3.2.1.5. Inverse Kinematics: 

 

Figure 28. Inverse Kinematics 

3.2.2. Integration of TurtleBot3 Waffle Pi: 

Since Raspberry Pi functions as the brains of our robotic system, we 

decided to use TurtleBot 3 TurtleBot 3 Waffle Pi for our robot because of 

its versatility and compatibility. Among the many features that TurtleBot 3 

TurtleBot 3 Waffle Pi provides especially for robotics applications are 

motor drivers, servo controllers, and GPIO headers. It is the perfect choice 

because of these features, which make it simple to interface with the 

different sensors, actuators, and peripherals needed for our robot's 

operation. 

Furthermore, TurtleBot 3 Waffle Pi's seamless integration with the 

Raspberry Pi platform offers a streamlined and practical way to control our 
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robot. Because of its plug-and-play design, we can concentrate more on the 

software development and implementation aspects of our project since it 

makes the hardware setup process simpler. In the robotics community, 

TurtleBot 3 Waffle Pi is well-supported, and there is a wealth of 

documentation and resources available to support our development work. 

All things considered, TurtleBot 3 TurtleBot 3 Waffle Pi's compatibility, 

adaptability, and simplicity of use make it a good choice for our robot and 

fit in nicely with the specifications and objectives of our project. 

 

 

 

 

 

 

 

 

 

 

 
Figure 29. Integration of TurtleBot 3 Waffle Pi & Robotic Arm 

 

 

 

 

 

 

 

 

 

 

 

Figure 30. TurtleBot3 assembly (Hardware) 

3.3. Software development: 

3.3.1. Unity: 

Unity is ideal for app development for the VR platform because of the tools 
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it provides and the features that are designed to help create immersive 

environments for Oculus Quest 2. This is because through Unity, app 

developers can fully harness the features of the Oculus Quest 2 device 

without having to worry about compatibility issues. Due to the screen-based 

concept of the software, it allows developers to experiment with their 

concepts and modify them according to results. It can be easily used, and it 

enhances collaboration and the time taken for development is relatively 

low. 

Furthermore, Unity allows for high-level customization and boasts a wide 

range of tools and assets for developing rich and engaging gameplay, from 

designing intricate 3D models to implementing complex interactions and 

mechanics. Additionally, Unity’s robust asset store and strong community 

of users offer a plethora of pre-made tools, packages, and project templates 

that help to speed up the work and encourage uniqueness. Thus, due to the 

numerous features, clear navigation, and customization, Unity is a suitable 

software environment for developing virtual telepresence robot 

applications. It contains all that is required to develop attractive and 

engaging content for users of the Oculus Quest 2 platform. 

3.3.1.1. Project Insight: 

1. We are using Unity to build a scene in which users can view 180-degree 

videos that were captured by the telepresence robot’s built-in cams. The 

unique feature of 180-degree videos is that they make the viewer get 

involved in the virtual space and look around from any angle. To make this 

possible, a video is recorded from every angle which makes the user feel 

the environment as if they are observing it. These 180-degree videos can 

be easily integrated into the virtual world by leveraging different aspects 

of Unity and provide users with a telepresence feel that is genuinely 

realistic. 

2. Movement of the controller boundary in unity coordinate space for the 

robotic arm and the robot’s hand gesture control are other parts of Unity. 

To this end, the real-time controller movement of the user from the ultimate 
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interface is successfully captured and interpreted, and the actions that the 

robot and its arm can control are determined. Taking orientation and 

position: since the controllers allow for six degrees of freedom, the 

transition of their movement to the XYZ coordinate system of the robot 

helps users shape its movements in the virtual world. In this way, having 

such amount of control, the user can operate the telepresence robot in a 

regular and smooth manner, which reinforces the sense of presence and 

ownership. 

3. To feed the via Robot Operation different control functionalities of the 

robot and its arm, we output certain controller button states from Unity. 

These include the ability to start and stop the overall functioning of the 

robot, control the rate of acceleration, operate the mechanical arm 

appendage, control the position of the gripper as well as the base frame of 

the robot. This is because users can monitor the state of the controller 

buttons and as a result, they are able to dictate on how the telepresence 

robot must behave or function. This means they can cause reactions or 

instructions in the discharged simulated arena. This control mechanism is 

very friendly to engage the user and it also helps them to perform their 

tasks and operations within the shortest period as well as with the least 

error rates. 

4. Last but not the least; Web Real Time Communication protocol of the 

Unity has been incorporated to provide connection with Wide Area 

Network. The telepresence robot application, as well as distant users, may 

share data using the internet with real-time interactions. By implementing 

WebRTC in Unity scripts, we are also likely to allow for seamless 

streaming of videos, transfer of data and audio communication between the 

robot and users located globally. The usefulness and practicality of the 

telepresence system further enhance this aspect that enables a person to 

control the robot in real-life and effectively participate in the virtual 

environment even if physically absent. 
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3.3.1.2. Unity environment creation for Virtual Telepresence Robot: 

There are several configuration settings that are inherent in any Unity 

project and create the basic context of the virtual world. These include basic 

settings like the main camera, origin point, lighting setups, and the default 

appearance of the scene. 

1. Main Camera: 

The main view of the Virtual environment is from the main camera. The 

primary camera is the one generated by unity, which gives users the view 

and interaction point to the scene. Thus, the position, orientation, and the 

field of view of the main camera can be changed to achieve the desired 

result and give the user a unique experience. 

2. Origin Point: 

The scene origin or world origin is the box where objects are placed with 

respect to the scene. In Unity, the origin point is commonly located at the 

scene space with X = 0, Y = 0, Z = 0 axis in the scene space. This origin 

point is fundamental for all the other objects in the scene making 

organizational and transformational work easy. 

3. Lighting Setup: 

There is no doubt that illumination plays a crucial role in setting the mood 

and the general feel of the environment. Directional light sources are one 

of the default light rigs that are included in Unity when a new project is 

created. This directed light also provides general lighting of the scene with 

the intention to mimic sunlight. In addition, they may adjust the lighting to 

add ambient lighting to the default lighting of Unity to make the shadow 

softer while making the environment appear more intentional. 

4. Default Scene Structure: 

Scene is a common organizational structure in Unity projects and is used to 

contain and display assets, game objects and other components of a virtual 

environment. Using Unity game developer tool, the default scene that is 
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created for each project is “Sample Scene”. The default scene is a simple 

cube that includes a primary camera, light, and an empty game object 

setting the scene of the cube. To fit the needs of their unique projects, game 

elements and objects from the scene structure can be added, removed, and 

changed. 

3.3.1.3. XR origin in VR unity development: 

To be more precise, the XR origin in our Unity project is the point of view 

of the user as well as the scene’s reference point. Specifically, the XR origin 

represents both the viewer’s position and the starting point of the virtual 

environment when using Oculus device, such as the Oculus Quest. The 

users are presented with a seamless and engaging experience as soon as 

they put on the Oculus headset and turn their heads, which results in the XR 

origin (and the primary camera) correctly moving within the scene. 

Allowing users the ability to interact with a virtual environment as if they 

were physically in that environment is an essential element for immersion 

in VR environments. It means that Unity ensures that the user can navigate 

through the virtual environment freely, as they would do in real life since it 

synchronizes the XR origin with the user’s head movements. This 

alignment of the XR origin with the user’s point of view makes the VR 

experience more engaging and believable, enhancing the user’s feeling of 

presence in the virtual reality environment. 

Moreover, Unity makes developing for VR applications seamless by 

positioning the user at the core of the XR origin. Rather than being occupied 

with delicate movements of cameras and interactions for users, developers 

can focus on creating and emulating the world. This allows developers to 

concentrate on creating compelling VR content and experiences because 

Unity is responsible for determining the XR origin based on the user’s 

movements. In conclusion, the XR origin is the foundation of our Unity 

project that can create effective and immersive VR experiences for 

individuals using Oculus. 
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3.3.1.4. Data Canvas: 

The Data Canvas is a fundamental component of our Unity project as it 

stores the significant scripts and works as the UI centres of the virtual 

environment. Tied to this canvas are several scripts that are designed to 

control and output the necessary information to the user, including the 

coordinates of the controller and the status of the controllers. The Data 

Canvas is another UI component that ensures the user receives certain 

feedback and information required for proper interaction with the 

environment. 

Providing the users with the necessary information about the functioning of 

the VR system is one of the primary functionalities of the Data Canvas. 

This includes information about the controller’s position and location, as 

well as the status of its many buttons and inputs. All of this allows to place 

all the necessary information into a single element of the user interface that 

can be easily accessed and understood by the user while being immersed in 

the virtual reality environment. Also, the Data Canvas is one of the few 

graphical users interface (GUI) elements in the project. Thus, it serves as a 

central node where the user receives essential feedback and directions 

without compromising the overall VR experience. To provide the user with 

easy access to information while maintaining a sense of presence and 

embodiment in the virtual environment, the elements of the UI are 

thoughtfully placed within the Data Canvas. In conclusion, the Data Canvas 

is crucial in enhancing the user interface and fostering effective 

communication in Unity project. 

 

Figure 31. Data Canvas 
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The size of the pixels on the canvas is determined by the canvas scalar 

attribute. This setting is crucial for ensuring that the UI elements drawn on 

the canvas are appropriately scaled and placed in the virtual environment. 

The overall scale and visual presentation of the UI elements can be controlled 

by modifying the canvas scalar, which will optimize the user experience 

across a range of display resolutions and devices. The virtual environment's 

UI elements' readability and visual fidelity are influenced by the canvas scalar 

attribute. Furthermore, the canvas scalar contributes to the overall usability 

and accessibility of the VR application by ensuring consistency in the 

presentation of UI elements across various screen sizes and resolutions. 

3.3.1.5. Display Data Input: 

    

Figure 32. Display Data Input (Script) 

Variables identified in the “Display Input Data” script are visually depicted 

as data that is displayed on the canvas. This script is responsible for reading 

information from the Oculus controller and providing visual representation 

through blue screen environmental objects. We utilize the information from 

the Oculus controller to provide the user with constant feedback of the 

position and status of such objects in this virtual reality environment. The 

graphical representation offered in the current study is helpful and 

unambiguous, thereby enhancing the user experience and ensuring 

seamless interaction with the VTRS. 

“DisplayInputData” is a script that we use for our virtual telepresence robot 

project, and it oversees input data from Oculus controller specifically menu 

in Unity environment. The script starts off by calling the InputData 

component attached to that same GameObject, which lets the script pull 
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input data from the Oculus controller. In the update method, the script 

constantly monitors changes in the inputs to the Oculus controller including 

device velocity, grip button, trigger button, and Joystick. This allows the 

script to prompt the user for further input based on the input received from 

the Oculus controller and updates the display text accordingly. For instance, 

it displays messages such as showing that the grip button is pressed or the 

trigger button is pressed, in such a way that the user is supposed to do 

something. The script changes the string shown on the specific fields of the 

interface to indicate to which values of the X, Y, Z axes the current position 

of the controller corresponds to. These are derived from the Oculus 

controller device position and the x, y joystick action inputs. Moreover, the 

possibility to change the origin point is also implemented and the user can 

do it by pressing the primary 2D axis button on the Oculus controller. 

Activated by this action, the origin coordinates are then modified, creating 

a basis for further positions. 

The “InputData” script within Unity is crucial for configuring and 

managing the inputs that are required to interact with the virtual 

environment. This script handles the initialization of the head-mounted 

display (HMD), left and right controllers, and other significant input 

peripherals. Every input device is maintained valid by the script in the 

Update function. To initialize a device again if any is found to be invalid 

the InitializeInputDevices function is used. This approach defines input 

devices based on certain parameters including whether it is a head-mounted 

display or a controller (left or right). with the help of InputDevices. The 

script GetDevicesWithCharacteristics searches for devices that match the 

given characteristic and assigns the first device from the list to the proper 

input device variable. By so doing, the InputData script confirms that 

important input devices are correctly instantiated to enhance interaction 

between users and the Unity environment. 

3.3.1.6. ROS connector: 

The ability to connect Unity to ROS environment on other devices like 
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Raspberry pi is facilitated by a software known as ROS Connector. This 

script has been developed by Siemens AG to interact between Unity based 

applications and systems that are controlled by ROS. Since ROS Bridge 

acts as a mediator between the two environments, it enables the transfer of 

data and control commands. When the ROS Connector starts, it links using 

the selected protocol (for example, e. g. It connects to the ROS Bridge 

server at the provided URL, which is often located on the Raspberry Pi. 

Unity can continue with its tasks as the formation of the connection happens 

in the background. After that, the ROS Socket instance is created to provide 

the necessary interface for message sending and receiving between Unity 

and ROS. 

The script triggers the Is Connected event on the successful connection to 

inform that it has established the connection with ROS Bridge. On the other 

hand, a warning message is logged in case the connection attempt fails 

within the set timeout length to notify the user of the fail. Several event 

handlers, including On Connected and On Closed, are utilized throughout 

the script to manage connection state changes. These handlers allow for the 

right actions to be performed in the Unity application when connection is 

established or lost with ROS Bridge server. 

3.3.1.7. Video display: 

To play the video in the Unity environment, we used a technique of 

applying a 360-degree video on the skybox. The skybox captures all the 

empty space outside the environment and acts as the backdrop of an 

immersive environment. This involves importing the video, and mapping it 

to the skybox panorama, which would allow the video to be incorporated 

naturally into the Unity environment. Using the skybox to render the video 

also guarantees that the video occupies the whole environment and does not 

leave out details that might interest the users. This is in line with our 

objective of establishing a virtual world telepresence that allows users to 

actively interact with the environment and the robotic system. 
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1. Simple Media Stream Receiver: 

This script is designed to take the video stream from the Raspberry Pi using 

WebRTC (Web Real-Time Communication). It connects with the specified 

server IP and port using WebSocket and enables the transmission of 

signalling and video information. When receiving the video stream, the 

script assigns the received video track to the skybox material texture, 

enabling real-time visualization of the video content within the Unity space. 

2. Simple Media Stream Sender: 

On the other hand, this script is the sender script that oversees sending the 

video stream from the Raspberry Pi to Unity. Just like the receiver script, it 

opens a WebSocket connection to the server IP and port and sends 

signalling messages to facilitate the streaming of videos. Furthermore, the 

script activates the video stream with the USB camera as the source for the 

live video feed necessary for capturing and transmitting the live footage to 

Unity. 

These scripts, along with the rendering of the video on the skybox, facilitate 

sustained video playback and the integration of the video into the Unity 

environment, thus enrich the experience of users who are dealing with the 

Virtual Telepresence Robot. 

3.3.2. Robot Operating System (ROS) integration in virtual 

telepresence robot: 

As the Virtual Telepresence Robot enlists the powerful Robot Operating 

System (ROS) for its operation, this project stands as the frontier research 

where robotics and telepresence converge. As for the technical side, our 

project’s foundation is ROS which allows for managing and coordinating 

multiple parts of the system efficiently. This section provides a deeper look 

into ROS since it is a fundamental part of our architecture and how it is 

more flexible in managing the interactions of many components while 

enhancing the users’ experience through the integration of augmentations. 
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The most significant way to connect all the components of the telepresence 

robot is by using ROS, which is famous for its flexibility and 

expansiveness. This is made possible through the intricate integration of the 

hardware and software components using the ROS tool and library set 

which appears to provide direction in effective system integration. In 

addition, new features and functionalities can be added to ROS due to its 

modular design because the approach ensures adaptability depending on the 

project requirements at the initial and later stages of development. 

The use of ROS to support data sharing and communication within 

numerous system components is one of its greatest strengths. The 

remarkable feature of ROS for our telepresence robot is that all its 

components can share data with each other through the effective messaging 

mechanism in real time. This feature is crucial for synchronizing complex 

actions and operations like multimer diameter user interfaces and auto-

driving navigation. 

In addition to that, ROS let us leverage a vast number of libraries and code 

packages available, which make the development process faster and more 

efficient. ROS also provides access to a wide library of freely available 

programs, which allows using ready-made solutions for routine robotics 

issues. It also saves more of our time so that we can spend most of our time 

focusing on innovation and where and how to customize according to the 

requirements of our project. 

3.3.2.1. System overview: 

The core unit of the Virtual Telepresence Robot is the TurtleBot 3 Waffle 

robot which is fitted with a state-of-the-art robotic arm as well as a 180° 

camera of high definition. Indeed, the listed components of hardware are 

the physical realization of our telepresence system that makes it possible to 

change and interact in different environments. 

Our robot relies on Raspberry Pi 4 (single-board computer) with Ubuntu 22 

installed to perform its computations. The Raspberry Pi acts as the Master 

Processor and controls all the complex processes that are required to deliver 
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the various telepresence features. Raspberry Pi serves the computational 

core of our telepresence robot well and blends seamlessly into our system 

design because of its reliability and support for ROS 2. 0. 

ROS 2. 0 acts as the central point of the system and brings together all parts 

and roles of the system. As the central platform for robot programming, 

ROS 2. 0 provides interfaces between various parts, which allows for the 

exchange of information and command processing. By leveraging ROS 2. 

0’s features, our telepresence robot has a modular and extensible structure 

to easily adopt new possibilities and functions. 

Another important step is to develop an individual ROS package for our 

project to address the challenges we face. We have added two subscriber 

nodes in this extended ROS package to take information from Unity that is 

the game engine for our VR frontend. These subscriber nodes are critical to 

our ROS ecosystem as it provides data flow interface between Unity and 

the actual world which should seamlessly convert data from the simulated 

environment to the real one and vice versa. The ROS package that we 

recently developed enables users to control virtual entities directly in real-

world environments via the TMS’ physical parts, seamlessly integrating the 

participant into the tele present environment. 

3.3.2.2. ROS integration for robotic arm control: 

Since ROS is the link that provides a connection between user input, in this 

case an Oculus Quest 2 VR headset, to precise manipulation of the robotic 

arm, it is a fundamental node in controlling the arm. Our approach is based 

on the usage of the powerful ROS 2. 0 messaging system to synchronise 

the movements and actions of the robotic arm with the motions of the 

Oculus controller, so that the user of the telepresence robot can 

communicate fluently. 

To achieve this synchronization, the control data of the robotic arm is stored 

in what is called the ‘quaternion messages’, which is a data format that is 

used to describe rotations in three dimensions. These quaternion messages 

include commands on how to move the claw and information regarding the 
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position of arm in terms of x, y, and z axis. These messages are received by 

the Raspberry Pi, which forms the core of computation within our system, 

when it is issued across ROS topics. 

To be more specific, these quaternion messages are published to the ROS 

topic called “controller_data” that should be utilized for the arm control 

communication. This enables Raspberry Pi to receive control commands 

from the Oculus controller through wireless signals. These control 

commands are upon reaching Raspberry Pi are then controlled and 

interpreted to enable flawless servo operation of the robotic arm. To achieve 

the required movement of the arms, the Raspberry Pi in turn interfaces with 

an Arduino Uno board that is connected serially with the Raspberry Pi. The 

Arduino Uno works as an interface device that translates commands into 

actual signals that immediately manage the servos used in controlling the 

movement of the robotic arm. 

Due to this intricate communication and control mechanism provided by 

ROS, our system can control the direction and movement of the robotic arm 

effectively and cohesively as per the user inputs received through the 

Oculus Quest 2 VR headset. This seamless integration between hardware 

and software shows the effectiveness of ROS in our telepresence robot 

control system. 

3.3.2.3. Control of robot movement: 

In addition to the control of the position of the robotic arm, ROS also 

controls the movements of the entire robot and make it move smoothly 

within the physical environment. This is made possible by the data which 

is received from the Oculus controller joystick, which gives linear and 

angular velocities that show the desired movement of the robot. 

To achieve this, the data from the joystick is put into twist messages, a type 

of ROS message meant for passing velocities. These twist messages contain 

two main variables: linear and angular velocities both as an instance of 

geometry_msgs / Vector3 message type. In the geometry_msgs / Vector3 

structure, there are three variables – x of the float64 data type, y of the 
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float64 data type, and z of the float64 data type, which describe the 

magnitude and direction of the velocity in the three-dimensional space. 

After being encapsulated within twist messages, this velocity data is 

broadcasted to the specified ROS topic named “cmd_velocity. These twist 

messages are transmitted through ROS to the “cmd_velocity” topic hence 

creating a communication channel through which motion signals from the 

Oculus controller are provided to the robots control system. 

When the TurtleBot software gets these motion commands, it interprets the 

twist messages and calculates the changes required to enable the motion of 

the robot. This decoding involves converting the linear and angular 

velocities that are contained in the messages in the twist messages into 

correct movements of the wheels which is important in directing the robot 

within the real world. 

These modifications are made through the TurtleBot software which 

communicates with the Open CR board, a master control unit responsible 

for managing the robot’s components. Based on received twist messages, 

the Open CR board receive commands through this channel about required 

wheel rotation. Following that, it effectively adjusts the speed and direction 

of rotation of the robot wheels, which translates the specified linear and 

angular velocities to coordinated motion in the real environment. 

3.3.2.4. Integration with TurtleBot ecosystem: 

However, it is important to emphasize that the whole TurtleBot platform is 

based on ROS, which proves the popularity and versatility of the given 

framework in the robotics field. This compatibility with ROS underscores 

the versatility and connectivity of TurtleBot’s hardware and software 

elements, further strengthens its utility as an all-encompassing robotic 

system. 

As for the strengths of using ROS within the TurtleBot environment, it is 

crucial to note that many predefined ROS actions and services are available 

for different robotic tasks. These are pre-canned actions for tasks like 
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mapping navigation and avoiding obstacles, and there are services for 

calibrating, initializing, and diagnosing the sensors. Through the 

accessibility of these ROS actions and services, our project leverages on a 

range of tools and utilities that enhance the development and 

implementation of robotic applications. 

3.3.3. WebRTC: 

Wide Area Networks or WANs are particularly critical in modern society 

where distance can be a major barrier to communication and data transfer. 

WANs are large networks that link several LANs or other WANs to allow 

organization or persons to interact and divide resources over long distances. 

These networks make use of leased lines, fibre optics, satellite links among 

other to ensure connectivity between different geographical areas. 

Perhaps the most widely used amongst WAN applications is data transfer, 

such as videos, from one peer to another. As video content has grown more 

popular on the Internet, while high-quality streaming services have become 

more in demand, competent mechanisms for the transfer of video files play 

a vital role in achieving the most important goal – the user’s entertainment. 

Specifically, the transfer of video from one peer to another is carried 

through the sharing of video data packets over a WAN framework. Many 

of these processes involve encoding, packetization, transmission and 

decoding through which each step is significant to overall effectiveness and 

quality of the transmitted video. 

At the same time, the integration of WAN technology with robotic systems 

opens new Possibilities for implementing real-time control and 

communication. Situated in distributed systems, robots may interact and 

cooperate with one another with ROS2. However, Unity, an engine for 

developing video games, offers a stable working environment for building 

VR applications. When connecting ROS2 on the robot side to Unity over 

WAN connectivity, control data can be received from the robot to the Unity 

environment, enabling one to coordinate representations in Unity with 

those in physical robotic systems. 
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In this story, we will examine the possible integration between WAN 

technology, video transfer protocol, ROS 2 robotics, and Unity. 

Furthermore, we will examine the integration of ROS2 with Unity through 

WAN channels, shedding light on the implementation of C# scripts to 

facilitate bidirectional communication and synchronization between 

robotic systems and virtual environments. 

3.3.3.1. Transmitting Unity XR Data to Robot (ROS2): 

However, there is an important point to note when using ROS2 on the robot 

side and Unity: Direct interaction between ROS2 and Unity is impossible 

because of their architecture. To fill this gap, ROS# (ROS Sharp) intervenes 

on the Unity side. ROS# is an API through which Unity applications can 

access ROS capabilities. By using ROS# inside Unity, developers can 

create ROS nodes, publish messages, and subscribe to topics, which helps 

them connect to ROS environment. 

In this architecture, ROS# in Unity sends out data that describes commands 

or instructions that the robot is to follow. These messages are then sent over 

the Wide Area Network (WAN) to the robot’s ROS2 system to control and 

interact between the Unity Virtual environment and the real physical robot. 

To achieve this, a ROS Bridge is used, and it is hosted on an Amazon Web 

Services (AWS) EC2 server. The ROS Bridge serves as a middleman that 

transmits the ROS messages between the ROS# nodes of Unity side and the 

ROS2 compatible nodes on the robot side. It receives data generated by the 

ROS# nodes via the WAN connection and maps the collected data into the 

format that can be directly processed by ROS2. 

On the robot side, ROS2 is upgraded with ROSlibjs, a JavaScript API that 

allows the interoperability of ROS systems through WebSocket 

connections. Using ROSlibjs, the robot’s ROS2 system can connect to 

AWS EC2 server carrying the ROS Bridge to allow bidirectional 

communication between Unity and the robot. 

Furthermore, a local ROS bridge node is created on the robot side to 
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enhance the reliability of the communication and reduce the response time. 

This local ROS Bridge provides an interface for the AWS EC2 server to 

send data and to receive data from Unity in the form of feedback or sensor 

data. By maintaining a local ROS Bridge, the architecture enhances 

reliability and reduces reliance on external network connectivity for critical 

operations. 

In essence, the integration between ROS2, ROS#, AWS EC2 ROS Bridge, 

ROSlibjs, and local ROS Bridge orchestrates a sophisticated 

communication infrastructure that seamlessly bridges the gap between 

Unity and the robot. Through this architecture, developers can harness the 

power of ROS2 for controlling the robot's behaviour while leveraging 

Unity's immersive virtual environments, thus enabling transformative 

applications spanning robotics, simulation, and virtual reality. 

 

Figure 33. Flow diagram of controls transmitted to ROS2 environment 

3.3.3.2. Transmitting Video from Robot to Unity: 

In contemporary applications involving the transmission of video from a robot to 

Unity, several protocols are commonly employed, each with its own set of 

advantages and limitations. Some of the prominent protocols used includes. 

1. RTSP (Real-Time Streaming Protocol): 

RTSP is a network control protocol that was primarily intended for use in 

entertainment and communication systems. It enables streaming of multimedia 
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content over IP networks and supports both live streaming and video on demand 

services. RTSP is widely in security systems, video teleconferencing, and 

multimedia streaming applications. 

2. RTMP (Real-Time Messaging Protocol): 

RTMP is a protocol that Adobe created to allow streaming of audio, video and 

data over the internet. It is often used for applications such as live broadcasts and 

real-time multimedia systems, where it offers efficient and real-time 

communication between the server and the client. However, RTMP has become 

less used in the recent past because of the coming of other protocols into the 

market. 

3. HLS (HTTP Live Streaming): 

HLS is an adaptive streaming protocol created by Apple to deliver multimedia 

content using HTTP. It splits up the stream into IP segments that are played back 

through simple web servers, allowing for adaptive streaming and compatibility 

with most devices and operating systems. HLS is used in the case of streaming the 

video to a web browser, mobile devices, or smart TVs. 

4. WebRTC (Web Real-Time Communication): 

WebRTC is an open-source application that allows communicating between 

browsers and mobile applications in real time with the help of JavaScript. It 

facilitates the concept of peer-to-peer audio, video and data exchange and makes 

use of RTP (Real-Time Transport Protocol), SRTP (Secure Real Time Transport 

Protocol), Interactive Connectivity Establishment (ICE). 

1. The low latency: 

WebRTC is a technology that was created for real-time communication of media 

streams including audio and video. This makes it appropriate for use in cases 

where the interaction between the robot and Unity needs to be fast, such as in the 

case of teleoperation or remote control. 
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2. High Quality Video: 

WebRTC provides clear, high-definition video capability together with the ability 

to select adaptive bitrate which makes the video excellent irrespective of the 

quality of the network connection. This is important for ensuring that there is 

minimal loss of the visual image quality when displayed in virtual environments 

created by Unity.  

3. Security: 

To enhance the security of the traffic, WebRTC uses the encryption and 

authentication systems, which help to protect data from interception. This is 

particularly the case in applications where privacy and safety are of upmost 

important for instance telepresence and surveillance. 

4. Cross Platform Compatibility: 

WebRTC is compatible with all web browsers, mobile devices, and operating 

systems, ensuring that it is easily accessible and can interoperate with different 

systems. This makes it possible to fully integrate this plug-in with Unity 

applications that can run on any device and environment. 

In conclusion, WebRTC provides a suitable solution for streaming video from a 

robot to Unity as it provides low latencies, high quality, security, and suitability 

for cross-platform applications to provide natural and interactive experiences in 

virtual space. 

3.3.3.3. How WebRTC works: 

WebRTC is a full-fledged open-source suite that facilitates real time 

communication between browsers and mobile applications through JavaScript 

APIs. It is employed to support voice, video, and data transfer between peers, 

allowing for efficient transmission of data with minimal delays, as well as high 

quality of transmitted media streams. It is worth looking at how WebRTC functions 

and what stages are necessary to create a WebRTC connection. 
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Signalling: 

The first thing that must occur before any WebRTC connection can be made is 

signalling. Exchange of session control messages is known as signalling, and it 

refers to the process in which two peers get to know each other. Peers should be 

also able to exchange any information like for example network addresses or media 

capabilities to create direct connection. Nonetheless, WebRTC has intentionally 

left signalling as an open issue meaning that developers must come up with their 

own mechanism of signalling. 

Some of the common ways of signalling are to use the signalling server, 

WebSocket, or any third-party signalling service. 

Session Description Protocol (SDP) Exchange: 

Once peers have discovered each other through signalling, they exchange messages 

in Session Description Protocol (SDP). SDP is a language for describing 

multimedia sessions with their capabilities, types of media, codecs, and network 

parameters. Every single peer creates an SDP offer that includes details about its 

media capacity and preferred settings. This offer is sent to the other peer through 

the signalling channel. 

The receiving peer sends back an SDP answer that contains its own media 

capabilities and the selected configuration. 

ICE (Interactive Connectivity Establishment): 

Following the exchange of SDP messages, WebRTC employs ICE, an acronym for 

Interactive Connectivity Establishment, to connect the two endpoints directly. ICE 

is a protocol for how to communicate through NATs (Network Address 

Translators) and firewalls to determine the optimal path between two points. ICE 

candidates are network addresses (IP address and port) at which peers are 

accessible. ICE candidates are exchanged between peers via the signalling channel. 

Every peer collects ICE local candidates of its network interfaces and forwards 

them to the other peer. Peers then initiate connectivity checks to ascertain the most 

appropriate path to use in communication. After a suitable candidate pair is chosen, 
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the peers create a direct UDP, TCP or TLS connection based on network conditions 

and security considerations. 

Media Stream Exchange: 

Once connected, peers can send and receive media streams such as audio, video, 

and data channels. WebRTC supports multiple media streams per connection to 

support the simultaneous transfer of audio, video, and arbitrary data. During the 

exchange of the SDP, peers agree on acceptable codecs and formats of the media 

for use in a session. SRTP (Secure Real-Time Transport Protocol) is used to 

provide confidentiality and integrity to the media streams. 

Real-Time Communication: 

After the connection has been made and the media streams are exchanged, actual 

real-time communication takes place between the peers. Peers are capable of 

sharing audio and video data in real time and hence such applications as video 

conferencing, voice calling, live streaming and online gaming. 

In summary, WebRTC facilitates peer-to-peer communication by enabling 

signalling, SDP exchange, ICE negotiation, media stream exchange, and real-time 

communication. By following these steps, WebRTC enables developers to create 

robust, low-latency applications for real-time audio, video, and data sharing over 

the web. 

 

Figure 34. Flow diagram of WebRTC connection 
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3.3.3.4. Turn Server: 

To have a strong and reliable communication for our Virtual Telepresence Robot 

we implemented a TURN server with an AWS EC2 instance. The TURN server 

plays an essential role in WebRTC data relay and might be particularly useful in 

situations where endpoints are unable to establish direct peer-to-peer connections 

due to overly stringent network configurations. We selected a t2. micro instance 

with Ubuntu Server 20. 04 LTS for it offered the right blend of affordability and 

efficiency. Coturn is a widely used TURN server software and was set up to 

manage the relay services with security and effectiveness. Some of the key 

configurations were listening and relay ports, user authentication, and SSL 

certificate for secure connection. 

The AWS security groups and the instance firewall settings were carefully 

configured to allow traffic on the necessary ports so that the TURN server is not 

disconnected. After the setup, intensive testing was conducted to ensure that the 

server efficiently and effectively forwards the WebRTC data. This deployment 

improves our system redundancy to guarantee continuous video and control data 

stream important for real-time functioning of our telepresence robot. 
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Chapter 4 -EXPERIMENTAL RESULTS AND ANALYSIS 

4.1. Overview: 

A thorough examination of the experimental findings and conclusions from our 

Virtual Telepresence Robot system's performance evaluation are given in Chapter 4. 

We evaluated network latency and efficiency by closely examining video stream 

metrics like Bytes Received and Current Round Trip Time. The computation of data 

rate demonstrated compliance with the requirements for high-definition video 

streaming, and the low Current Round Trip Time suggested reduced network latency, 

guaranteeing seamless real-time communication. These results confirm the 

robustness and data transfer efficiency of the system. In order to improve the 

telepresence experience, future study may concentrate on additional optimization 

techniques and the incorporation of sophisticated feedback mechanisms. 

4.2. Bytes Sent 

4.2.1. Bandwidth Monitoring: 

Essentially, bytes conveyed over a certain period can be used to measure 

the bandwidth consumption of a WebRTC app by developers. This is 

especially useful in determining the traffic of the network and can be very 

important in analysing throughput. Bytes sent analysis gives an accurate 

understanding of the amount of data transmitted at a certain time, which is 

helpful in keeping the communication channel steady and efficient. Real-

time tracking also helps to identify trends and irregularities with data 

transfer, which enables timely allocation of network resources. 

4.2.2. Performance Analysis: 

Knowing the number of bytes sent allows to pin-point potential problems 

in data transfer like high bandwidth usage which requires additional 

optimization like compression for instance. High bandwidth utilization may 

suggest that the program is not properly managing the data input/output or 

that data that is not needed is being transmitted. When the bytes that have 
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been sent are compared, the developer can easily determine when the 

bandwidth is at its highest and make precise optimizations. Compression of 

data and design of efficient structures of data packets are frequently used 

techniques in minimizing the usage of bandwidth while at the same time 

ensuring data accuracy and efficient transmission. 

4.2.3. Debugging and Diagnostics: 

It also helps in debugging because one gets to know the amount of data 

conveyed, this will enable one to note cases like high data usage or 

transmission delay. If there are problems, such as slow speed or intermittent 

breaks in connections, this data transmission may indicate whether these 

are due to large volumes of bytes being transmitted. For example, if bytes 

sent is significantly higher than bytes received, this may be an evidence of 

data over-transmission or there might be unoptimized encoding 

mechanisms. This metric is especially useful in identifying and handling 

problems before they escalate and affect the overall functionality of the 

application. 

4.2.4. BytesSent is a crucial metric in WebRTC:  

It allows the developers to observe and evaluate how much data is 

transmitted over the network and thereby provide an influence and control 

on the WebRTC applications successfully. This makes it easy to compare 

the application’s efficiency and make practical decisions regarding any 

changes that are needed. By using bytes sent data, developers get the 

opportunity to enrich the users’ experience based on the effective and 

reliable data transmission, which makes WebRTC applications more stable 

and faster. 

4.2.5. Results 

Bandwidth Usage: 

When examining the byte send rates, periodic bandwidth usage during the 

teleoperation sessions was observed. Average bandwidth was measured, 
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and variations resulted from intensive activities like high-quality video 

streaming and operation of the robotic arm system. This way it was possible 

to determine a baseline of bytes sent in normal operation mode and quickly 

identify some anomalies and problems. The information also showed that 

when there was high traffic, such as during complex manipulations of the 

robotic arm or during the use of high-quality video stream, the bandwidth 

consumption grew considerably. 

System Responsiveness: 

To assess the system’s reactivity, the duration of time it took for the Oculus 

Quest 2 controller inputs to translate into the robotic arm and TurtleBot 

movements was calculated. The average latency was kept low and within 

the acceptable range leaving no compromise on the overall Telepresence 

experience. Nevertheless, some situations where latency increased slightly 

appeared during the experiment, which could be explained by temporary 

network issues and delays in calculations. These results were further 

supported by the bytes sent data, where the amount of data transmitted also 

increased proportionally with high latency. This correlation raised 

possibilities indicating that enhancing data transfer could enhance system 

performance in a straight manner. 

Data Transmission Efficiency: 

The effectiveness of the data transfer was evaluated by analysing the 

relationship between the amount of data transmitted and the work of the 

robot. Higher data transmission rate was found linked with increased 

accuracy and smooth operations of both the robotic arm and vehicle 

movements. This highlighted how crucial it is to keep data rate and control 

precision in the ideal range. This investigation relied heavily on the bytes 

sent measure, which shows exactly how data volume affects performance. 

We can create a telepresence system that is more responsive and efficient 

by streamlining the data packets and cutting down on pointless transfers. 
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4.3. Video Stream Analysis: 

The video stream in our system runs at 500 kbps bitrate, which is good for normal 

resolution video in terms of speed and quality. We looked at the bytes received value, 

which came to 2.10M (2,100,000 bytes) over a period of 5 seconds, in order to further 

assess the system's performance. 

4.3.1. Calculation of Data Rate: 

To determine the data rate, we performed the following calculations: 

Total bytes received: 2,100,000 bytes 

Duration: 5 seconds 

Data rate in bytes per second: 

Data rate = 2,100,000 bytes / 5 seconds = 420,000 bytes / seconds 

Converting bytes per second to bits per second (since 1 byte = 8 bits): 

Data rate = 420,000 bytes / second * 8 = 3,360,000 bits / second = 3360 kbps 

4.3.2. Interpretation of Data Rate for Video Streaming: 

We compare this data rate with typical WebRTC usage scenarios to 

determine its appropriateness: 

1. Low resolution video: 

Usually ranges from 200-500 kbps. A data rate of 3360 kbps is much higher 

than this range. 

2. Standard resolution video: 

Typically ranges from 500-1,500 kbps. The data rate of 3360 kbps exceeds 

this range. 

3. High-definition video: 

Often ranges from 1,500-5,000 kbps. The data rate of 3360 kbps falls within 

this range and is typical for HD video. 

4.3.3. Conclusion: 

When the system is streaming HD video the calculated data rate of 3360 

kbps is reasonable and indicates that the connection is performing 

adequately based on the context provided. For instance, if the data is just 
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going to be low-resolution video, then a data rate of 3360 kbps is 

unnecessary. This could imply that the bandwidth was utilized intensively 

either due to poor performance or overly high configurations. 

Based on the information that the received data in 5 seconds is: 

For HD video streams, the value is good and reflects a healthy, high-quality 

connection. 

For low-resolution video or audio-only streams, the value would be bad as 

it implies excessive data utilization. 

In our particular case where, only video is received and we are assuming 

high definition, the metric looks decent and indicates that the connection is 

running smoothly. 

4.4. Current Round-Trip Time: 

The Current Round Trip Time metric in WebRTC offers important details about the 

network delay that exists in the connection between the local peer and the remote 

peer. This is defined as the time taken for a data packet to be transmitted from the 

source to the destination and back. Current Round Trip Time is the time, in seconds, 

taken by a signal from the sender to the recipient and back to the sender. This metric 

is important for evaluating the performance of the network and especially the delay 

in real time communication. 

4.4.1. Relevance to Video Sending and Receiving: 

Video Sending: 

Thus, the low round-trip time is important for achieving adequate 

smoothness and interactivity of live video streams. This can result to high 

latency, which means that the communication is not real-time and this may 

cause noticeable delays. 

Video Receiving: 

Likewise, on the receiver side, a low round-trip time means the video 
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stream is delivered on time and with low delay, in order to avoid issues with 

the synchronization of audio and video streams. 

How It's Measured: 

Current Round Trip Time is usually determined by using RTCP (RTP 

Control Protocol) reports. RTCP packets are transported along with RTP 

(Real-Time Protocol) packets and are used to report information about the 

quality of the communication such as the latency measurements.  

4.4.2. Interpreting Current Round Trip Time Value: 

In our case, the Current Round Trip Time is 0.01 seconds, which translates 

to 10 milliseconds (msec). 

Is 0.01 Seconds (10 ms) Good or Bad? 

Excellent Performance: 

0-20 ms: An RTT within this range is considered as the best and depicts 

a very good internet connection. These levels of latency are often seen only 

in environments that have been highly optimized and contain little network 

complexity such as a city or region.  

Good Performance: 

20-50 ms: This range is still very good and generally acceptable by the 

end users. It shows a strong signal that should be suitable for clear and 

smooth video calls.  

Moderate Performance: 

50-100 ms: A latency in this range is still tolerable, though it may become 

slightly noticeable in applications that would require a lot of interactivities 

such as video conferencing and gaming.  

Poor Performance: 

100 ms and above: Higher latencies result in perceivable delays and 
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reduced quality of service, especially in mission-critical applications.  

4.4.3. Practical Implications 

User Experience:  

The time of 10 ms is very good and should allow for very smooth and 

responsive video communication with little delay. 

Network Quality: 

This low latency indicates that the network path between the sender and 

receiver is highly efficient, likely involving few intermediate hops and 

possibly benefiting from high-speed, low-latency infrastructure. 

4.4.4. Conclusions: 

This is a great result showing that the round-trip latency is quite minimal, 

especially considering our current round-trip time of 0.01 seconds (10 ms). 

For real-time video transmission, this performance level is perfect since it 

guarantees a low latency and excellent user experience. We may anticipate 

fluid video playback, fast response times, and overall better performance 

for both sending and receiving video streams with such low latency.  

In conclusion, a Current Round Trip Time of 10 ms is an ideal network state 

for real-time video communication and is a highly desired measure. It 

means that there is very little network latency, which adds to the high level 

of user experience that our WebRTC application offers. 
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4.5. Graphical Analysis: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 35. Graphical Analysis (Latency) 
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Chapter 5 -CONCLUSION 

5.1. Summary of achievements: 

The following are the achievements of the research: 

• This project is funded by NUST worth PKR 0.995 million. Their support 

highlights the recognition of its importance and potential impact.  

• This project also qualified for the second stage of the Finding Innovative & 

Creative Solutions (FICS) Competition. 

• This project is the winner of Computer Project Exhibition Competition 

(COMPPEC ‘ 24) AR/VR Category with a winning prize worth PKR 40,000/- 

5.2. Virtual Telepresence Robot: 

In this final chapter, we reflect on the journey of developing our Virtual Telepresence 

Robot, from the intricate hardware setup to the seamless integration of software 

components, and draw conclusions regarding its significance, achievements, and 

future implications. 

Robotic arm integration and hardware design: 

As the foundation for our work, the TurtleBot 3 Waffle robot has been chosen and a 

robotic arm has been mounted on top of it, which allows for working at a distance 

and performing precise manipulations. Hardware selections were made with much 

thought given to compatibility and recognition of fully functional parts. They also 

made the design of the arm to ensure that it is both stable and precise in a way that 

allows the arm to effectively perform several tasks on the vehicle. 

Software Architecture and Integration: 

The soul of the system is software architecture, designed in its finest detail with the 

goal of providing smooth communication and control. The expanded use of ROS 2. 

The score of 0 on the Raspberry Pi 4 was complemented by the WebRTC video 

stream that allowed for the efficient data transfer and immediate interaction. Custom 

ROS nodes and an application in Unity enabled the control and interaction between 
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the Oculus Quest 2 VR headset and the robotic arm to make it possible and enable 

the user of the robotic arm to have an immersive experience. 

Video Streaming and Telepresence Capabilities: 

One of the significant components of our project is the use of WebRTC in the context 

of the video streaming, which will provide the main channel of the video streaming 

with a high quality and low latency of the video stream. This technology integrated 

with the Oculus Quest 2 VR headset, helps the user virtually explore distant 

environments as though they are on site. The issues of telepresence have numerous 

applications in different fields such as telemedicine, remote education, and 

teleoperation of industrial environments, allowing humans to control environments 

that are geographically far away. 

Performance Analysis and Optimization: 

While developing this solution, performance analysis was used in determining the 

proper design to ensure the system was highly efficient and reliable. Measuring bytes 

sent, bytes received, and current round-trip time proved to be very informative about 

the usage of the networks, the latency that was needed to get the data, and the data 

transmission rates that could be expected. We used this iterative optimization process 

of refining the design until the Virtual Telepresence Robot provided responsive and 

seamless performance to the user, regardless of the network conditions. 

5.3. Significance 

The development as well as integration of the Virtual Telepresence Robot makes a 

perfect model setting a mark of achievement in the field of telepresence. Our system 

brings in the idea of creating a connection between physical and remote environment 

thus more possibilities of remote interaction, exploring, and working. Possible uses 

can include remote collaboration and telepresence in hostile conditions and remote 

education and entertainment in an immersive setting. 
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5.4. Future Implications and Recommendations: 

There are a lot of opportunities for the future and for improving our Virtual 

Telepresence Robot as well. Possible work in this direction can include explaining 

how such a design can be optimised for stability and handling, and the use of newer 

sensors and actuators that allow the combination to perform even better in perceiving 

the environment and interacting with it. Furthermore, the software structure may 

need to be improved as to scalability and modularity for further integration of the 

platform with other robotics hardware and telepresence devices. 

5.5. Conclusion 

Al in all, expanding the idea of our Virtual Telepresence Robot is a noteworthy 

contribution to the progress of telepresence technology. By merging the notion of 

computer hardware and software, as well as communication systems, we have 

developed a complex but highly flexible system that allows for fully immersed 

remote interaction and manipulation. This tutorial’s success confirms the idea that 

telepresence technology can efficiently help overcome distance, bring together like-

minded individuals, and enhance human potential beyond limits of the physical 

world. As far as the future is concerned, we must continue our quest for innovation 

and advancement in this rapidly expanding subject area.  
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APPENDIX A 

Simple Data Sender.cs: 

using UnityEngine; 

using WebSocketSharp; 

using Unity.WebRTC; 

using System.Collections; 

using System; 

public class SimpleDataChannelSender : MonoBehaviour 

{ 

    private DisplayInputData inputData; 

    private RTCPeerConnection connection; 

    private RTCDataChannel dataChannel; 

    private RTCDataChannel dataChannel1; 

    private WebSocket ws; 

    private string clientId; 

    private float X, Z , gripo; 

    private bool hasReceivedAnswer = false; 

    private SessionDescription receivedAnswerSessionDescTemp; 

    private void Start() 

    { 

        inputData = GetComponent<DisplayInputData>(); 

        InitClient("65.2.148.175", 5050); 

    } 

    private void Update() 

    {    

        if (hasReceivedAnswer) 

        { 

            hasReceivedAnswer = !hasReceivedAnswer; 

            StartCoroutine(SetRemoteDesc()); 

        } 

        if (inputData.trig == true) 

        { 

            if (inputData.grip) 

            { 

                gripo = 1; 

            } 

            else 

            { 

                gripo = 0; 

            } 

            float[] floatArray = { inputData.X, inputData.Y, inputData.Z, 

gripo}; 

            string result = string.Join(", ", floatArray); 

            dataChannel.Send("Controller_Data:" + result); 

        } 

        if (true) 



73 

 

        { 

            const float linearScale = 0.26f; 

            const float angularScale = 1.82f; 

            X = (inputData.joyY + 1) * linearScale - 

linearScale;             

            Z = -((inputData.joyX + 1) * angularScale - angularScale); 

            if ((Z < 0.9 && Z > 0) || (Z > -0.9 && Z < 0)) 

            { 

                Z = 0; 

            } 

            float[] floatArray = { X, Z }; 

            string result1 = string.Join(", ", floatArray); 

            dataChannel.Send("cmd_val:" + result1); 

        }         

    } 

    private void OnDestroy() 

    { 

        dataChannel.Close(); 

        connection.Close(); 

    } 

    public void InitClient(string serverIp, int serverPort) 

    { 

        int port = serverPort == 0 ? 5050 : serverPort; 

        clientId = gameObject.name; 

        ws = new 

WebSocket($"ws://{serverIp}:{port}/{nameof(SimpleDataChannelService)}"); 

        ws.OnMessage +=  (sender, e) => { 

            var requestArray = e.Data.Split("!"); 

            var requestType = requestArray[0]; 

            var requestData = requestArray[1]; 

            switch (requestType) 

            { 

                case "ANSWER" : 

                    Debug.Log(clientId + " - Got ANSWER from Maximus: " + 

requestData); 

                    receivedAnswerSessionDescTemp = 

SessionDescription.FromJSON(requestData); 

                    hasReceivedAnswer = true; 

                    break; 

                case "CANDIDATE": 

                    Debug.Log(clientId + " - Got CANDIDATE from Maximux: "+ 

requestData); 

                    // generate candidate data 

                    var candidateInit = CandidateInit.FromJSON(requestData); 

                    RTCIceCandidateInit init = new RTCIceCandidateInit(); 

                    init.sdpMid = candidateInit.SdpMid; 

                    init.sdpMLineIndex = candidateInit.SdpMLineIndex; 
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                    init.candidate = candidateInit.Candidate; 

                    RTCIceCandidate candidate = new RTCIceCandidate(init); 

                    //add candidate to this connection 

                    connection.AddIceCandidate(candidate); 

                    break; 

                default: 

                    Debug.Log(clientId + " - Maximux says: " + e.Data); 

                    break; 

            } 

        }; 

        ws.Connect(); 

        // Configure RTCConfiguration with ICE Servers (STUN and TURN) 

        var iceServers = new RTCIceServer[] 

        { 

            new RTCIceServer { urls = new string[] { 

"stun:stun.relay.metered.ca:80" } }, // STUN server 

            new RTCIceServer 

            { 

                urls = new string[] {"turn:relay1.expressturn.com:3478"}, 

                username = "efJ7V1YAY7A1TPL1Y4", 

                credential = "PjiDGUmJjPNpEqdk" 

            }, 

        }; 

        var configuration = new RTCConfiguration { iceServers = iceServers 

}; 

        connection = new RTCPeerConnection(); 

        connection.SetConfiguration(ref configuration); 

        connection.OnIceCandidate = candidate => { 

            Debug.Log("Here"); 

            var candidateInit = new CandidateInit() 

            { 

                SdpMid = candidate.SdpMid, 

                SdpMLineIndex = candidate.SdpMLineIndex ?? 0, 

                Candidate = candidate.Candidate 

            }; 

            ws.Send("CANDIDATE! " + candidateInit.ConvertToJson()); 

            Debug.Log(" Receiver sent ICE-CANDIDATES : " + 

candidateInit.ConvertToJson()); 

        }; 

        connection.OnIceConnectionChange = state => { 

            Debug.Log(state); 

        }; 

        dataChannel = connection.CreateDataChannel("sendChannel"); 

        dataChannel.OnOpen = () =>{ 

            Debug.Log("Sender opened channel"); 

        }; 

        dataChannel.OnClose = () => { 
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            Debug.Log("Sender closed channel"); 

        }; 

        dataChannel1 = connection.CreateDataChannel("sendChannel"); 

        dataChannel1.OnOpen = () =>{ 

            Debug.Log("Sender opened channel"); 

        }; 

        dataChannel1.OnClose = () => { 

            Debug.Log("Sender closed channel"); 

        }; 

        connection.OnNegotiationNeeded = () => { 

            StartCoroutine(CreateOffer()); 

        }; 

    } 

    p... 

<...etc...> 

APPENDIX B 

using UnityEngine; 

using WebSocketSharp; 

using Unity.WebRTC; 

using System.Collections; 

using UnityEngine.UI; 

using System; 

public class SimpleMediaStreamReceiver : MonoBehaviour 

{ 

    [SerializeField] private Material skyboxMaterial; 

    private RTCPeerConnection connection; 

    private WebSocket ws; 

    private string clientId; 

    private bool hasReceivedOffer = false; 

    private SessionDescription receivedOfferSessionDescTemp; 

    private string senderIp; 

    private int senderPort; 

    private void Start() 

    { 

        InitClient("65.2.148.175", 8080); 

    } 

    public void InitClient(string serverIp, int serverPort) 

    { 

        senderPort = serverPort == 0 ? 5050 : serverPort; 

        senderIp = serverIp; 

        clientId = gameObject.name; 

        Debug.Log($"SimpleDataChannelService: 

{nameof(SimpleDataChannelService)}"); 
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        ws = new 

WebSocket($"ws://{senderIp}:{senderPort}/{nameof(SimpleDataChannelService)}"

); 

        ws.OnMessage += (sender, e) => { 

            var signalingMessage = new SignalingMessage(e.Data); 

            switch (signalingMessage.Type) 

            { 

                case SignalingMessageType.OFFER: 

                    // Debug.Log(clientId + " - Got OFFER from Sender: " + 

signalingMessage.Message); 

                    Debug.Log(" Got OFFER from Sender "); 

                    receivedOfferSessionDescTemp = 

SessionDescription.FromJSON(signalingMessage.Message); 

                    hasReceivedOffer = true; 

                    break; 

                case SignalingMessageType.CANDIDATE: 

                    Debug.Log(" Got ICE-CANDIDATE from Sender "); 

                    var candidateInit = 

CandidateInit.FromJSON(signalingMessage.Message); 

                    Debug.Log("candidateInit.candidate : " + 

candidateInit.candidate); 

                    RTCIceCandidateInit init = new RTCIceCandidateInit(); 

                    init.sdpMid = candidateInit.SdpMid; 

                    init.sdpMLineIndex = candidateInit.SdpMLineIndex; 

                    init.candidate = candidateInit.candidate; 

                    RTCIceCandidate candidate = new RTCIceCandidate(init); 

                    connection.AddIceCandidate(candidate); 

                    break; 

                default: 

                    Debug.Log(clientId + " - Sender says: " + e.Data); 

                    break; 

            } 

        }; 

        ws.Connect(); 

        Debug.Log("Receiver Connected to Websocket Server"); 

        // Configure RTCConfiguration with ICE Servers (STUN and TURN) 

        var iceServers = new RTCIceServer[] 

        { 

            new RTCIceServer { urls = new string[] { 

"stun:stun.relay.metered.ca:80" } }, // STUN server 

            new RTCIceServer 

            { 

                urls = new string[] {"turn:relay1.expressturn.com:3478"}, 

                username = "efJ7V1YAY7A1TPL1Y4", 

                credential = "PjiDGUmJjPNpEqdk" 

            }, 

        }; 
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        var configuration = new RTCConfiguration { iceServers = iceServers 

}; 

        connection = new RTCPeerConnection(); 

        connection.SetConfiguration(ref configuration); 

        connection.OnIceCandidate = candidate => { 

            Debug.Log("Here"); 

            var candidateInit = new CandidateInit() 

            { 

                SdpMid = candidate.SdpMid, 

                SdpMLineIndex = candidate.SdpMLineIndex ?? 0, 

                Candidate = candidate.Candidate 

            }; 

            // ws.OnOpen += (sender, e) => { 

            //     ws.Send("CANDIDATE! " + candidateInit.ConvertToJson()); 

            //     Debug.Log(" Receiver sent ICE-CANDIDATES"); 

            // }; 

            ws.Send("CANDIDATE! " + candidateInit.ConvertToJson()); 

            Debug.Log(" Receiver sent ICE-CANDIDATES : " + 

candidateInit.ConvertToJson()); 

        }; 

        connection.OnIceConnectionChange = state => { 

            Debug.Log(state); 

        }; 

        connection.OnTrack = e => { 

            if (e.Track is VideoStreamTrack video) 

            { 

                // Set the received video track to the skybox material's 

texture 

                video.OnVideoReceived += texture => 

                { 

                    skyboxMaterial.mainTexture = texture; 

                    RenderSettings.skybox = skyboxMaterial; 

                }; 

            } 

        }; 

        StartCoroutine(WebRTC.Update()); 

    } 

    private void Update() 

    { 

        if (hasReceivedOffer) 

        { 

            Debug.Log("Receiver received OFFER"); 

            hasReceivedOffer = !hasReceivedOffer; 

            StartCoroutine(CreateAnswer()); 

        } 

    } 

    private void OnDestroy() 
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    { 

        connection.Close(); 

        ws.Close(); 

    } 

    private IEnumerator CreateAnswer() 

    { 

        Debug.Log("Receiver creating Answer"); 

        RTCSessionDescription offerSessionDesc = new 

RTCSessionDescription(); 

        offerSessionDesc.type = RTCSdpType.Offer; 

        offerSessionDesc.sdp = receivedOfferSessionDescTemp.Sdp; 

        var remoteDescOp = connection.SetRemoteDescription(ref 

offerSessionDesc); 

        yield return remoteDescOp; 

        var answer = connection.CreateAnswer(); 

        yield return answer; 

        var answerDesc = answer.Desc; 

        var localDescOp = connection.SetLocalDescription(ref answerDesc); 

        yield return localDescOp; 

        //send desc to server for sender connection 

        var answerSessionDesc = new SessionDescription() 

        { 

            SessionType = answerDesc.type.ToString(), 

            Sdp = answerDesc.sdp 

        }; 

        ws.Send("ANSWER!" + answerSessionDesc.ConvertToJson()); 

        Debug.Log("Receiver Sent ANSWER"); 

    } 

} 

APPENDIX C 

#!/usr/bin/env python3 

import rclpy 

from rclpy.node import Node 

from geometry_msgs.msg import Quaternion 

import serial 

import time 

class arduinoController: 

    # Class attributes 

    startMarker = 60  # unicode character '<' 

    endMarker = 62  # unicode character '>' 

    servoTime1 = 10  # default times of servo movement 

    servoTime2 = 10 

    servoTime3 = 10 

    servoTimeEE = 10 

    msg = "<BUZZ,90,90,90,90,10,10,10,10>"  # default message 
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    # Initializer / Instance attributes 

    def _init_(self, port="COM18"): 

        self.port = port 

    # Include function here connect and pass joint angle 

    def _waitForArduino_(self): 

        """ 

        --Description-- 

        This function waits until the Arduino sends 'Arduino Ready' - allows 

time for Arduino reset. 

        It also ensures that any bytes left over from a previous message are 

discarded 

        """ 

        msg = "" 

        while msg.find("Arduino is ready") == -1: 

            # note changed to in_waiting, get the number of bytes in the 

input buffer 

            while self.serialPort.inWaiting() == 0: 

                pass 

            msg = self.recvFromArduino() 

            print(msg) 

            print("") 

    # Instance methods 

    def openSerialPort(self, baudRate=115200, port=None): 

        """ 

        --Description-- 

        Connects to a serial port using pySerial. 

        This function exists to avoid confusion in naming of serial port! 

        --Parameters-- 

        @myString -> the string to be sent 

        --Returns-- 

        Function doesn't return a value 

        """ 

        if port is None: 

            port = self.port 

        self.serialPort = serial.Serial(port=self.port, baudrate=baudRate) 

        print("Serial port " + port + " opened  Baudrate " + str(baudRate)) 

        # wait for arduino to be ready 

        self._waitForArduino_() 

    def closeSerialPort(self, port=None): 

        """ 

        --Description-- 

        Close serial port using pySerial. 

        This function exists to avoid confusion in naming of serial port! 

        --Parameters-- 

        @myString -> the string to be sent 

        --Returns-- 

        Function doesn't return a value 
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        """ 

        if port is None: 

            port = self.port 

        self.serialPort.close 

        print("Serial port " + port + " closed") 

    def sendToArduino(self, myString=None): 

        """ 

        --Description-- 

        Sends a string to the Arduino. String must be in the format 

"<LED1,200,0.2>" [HOLD] 

        --Parameters-- 

        @myString -> the string to be sent 

        --Returns-- 

        Function doesn't return a value 

        """ 

        if myString is None: 

            myString = self.msg 

        self.serialPort.write(myString.encode('utf-8'))  # encode as unicode 

    def recvFromArduino(self): 

        """ 

        --Description-- 

        Recieve a message from the Arduino. The message is interpreted as a 

string being 

        between the start character '<' and end character '>' 

        --Parameters-- 

        None 

        --Returns-- 

        msg -> The received message as a string 

        """ 

        msg = "" 

        x = "z"  # any value that is not an end or startMarker 

        byteCount = -1  # to allow for the fact that the last increment will 

be one too many 

        # wait for the start character 

        while ord(x) != self.startMarker:  # ord returns the unicode number 

for the character 

            x = self.serialPort.read() 

        # save data until the end marker is found 

        while ord(x) != self.endMarker: 

            if ord(x) != self.startMarker: 

                msg = msg + x.decode("utf-8")  # decode from unicode 

                byteCount += 1 

            x = self.serialPort.read() 

        return(msg) 

    def composeMessage(self, servoAngle_q1, servoAngle_q2, servoAngle_q3, 

servoAngle_EE=90, instruction="BUZZ", **kwargs): 

        """ 
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        --Description-- 

        Function composes a message (instruction) to send to the Arduino, 

this tells it where to position 

        the connected servo motors. As input we take the servo angles and 

optionally the movement durations 

        for each angle 

        This function can take direct output (for joint angles q1, q2, q3) 

from the function 'map_kinematicsToServoAngles()' 

        --Parameters-- 

        @servoAngle_q1 -> the servo angle for servo #1, corresponding to q1 

        @servoAngle_q2 -> the servo angle for servo #2, corresponding to q2 

        @servoAngle_q3 -> the servo angle for servo #3, corresponding to q3 

        @servoAngle_EE -> the servo angle for servo #0, corresponding to the 

end effector 

        @instruction -> the text instruction to send to the Arduino (BUZZ-> 

sounds buzzer), (LED -> flashes LED) 

        --Optional **kwargs parameters-- 

        @servoTime1 -> the time of the servo1 movement (if change in value 

is input for servo1Angle) 

        @servoTime2 -> the time of the servo2 movement (if change in value 

is input for servo2Angle) 

        @servoTime3 -> the time of the servo3 movement (if change in value 

is input for servo3Angle) 

        @servoTimeEE -> the time of the servoEE movement (if change in value 

is input for servoEEAngle) 

        --Returns-- 

        Function doesn't return a value 

        """ 

        # Use **kwargs if provided, otherwise use current values 

        servoTime1 = str(int(kwargs.get('servoTime1', self.servoTime1))) 

        servoTime2 = str(int(kwargs.get('servoTime2', self.servoTime2))) 

        servoTime3 = str(int(kwargs.get('servoTime3', self.servoTime3))) 

        servoTimeEE = str(int(kwargs.get('servoTimeEE', self.servoTimeEE))) 

        # Compose message 

        message = "<" + ",".join([str(int(servoAngle_q1)), 

str(int(servoAngle_q2)), str(int(servoAngle_q3)), str(int(servoAngle_EE))]) 

        message = message + "," + \ 

            ",".join([servoTime1, servoTime2, servoTime3, servoTimeEE]) + 

">" 

        self.msg = message 

        return message 

    def communicate(self, data, delay_between_commands=5): 

        """ 

        --Description-- 

        Function runs a test to check communications with Arduino! 

        --Parameters-- 
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        data-> a command string (returned by the composeMessage method) or a 

list of strings, which will be communicated to the arduino 

        delay_between_commands -> the time delay applied between a list of 

commands 

        --Returns-- 

        Function doesn't return a value 

        """ 

        # convert data to list if it isn't already a list 

        if not isinstance(data, list): 

            data = [data] 

        # Declare variables 

        numLoops = len(data) 

        waitingForReply = False 

        n = 0 

        while n < numLoops: 

            data_str = data[n] 

            if waitingForReply == False: 

                self.sendToArduino(data_str) 

                print("Sent from PC -- LOOP NUM " + 

                      str(n) + " TEST STR " + data_str) 

                waitingForReply = True 

            if waitingForReply == True: 

                while self.serialPort.inWaiting() == 0: 

                    pass 

                dataRecvd = self.recvFromArduino() 

                print("Reply Received  " + dataRecvd) 

                n += 1 

                waitingForReply = False 

                print("===========") 

            time.sleep(delay_between_commands) 

# Insert your Arduino serial port here 

myArduino = arduinoController(port="/dev/ttyUSB0") 

myArduino.openSerialPort() 

# Set the increment value for servo movement 

servo_increment = 5 

class rpmSubscriber(Node): 

    def _init_(self): 

        super()._init_("arm_sub_node") 

        self.sub = self.create_subscription(Quaternion, "controller_data", 

self.subsciber_callback, 10) # Subscribes to controller data 

        # Define initial angles for the servos 

        self.q1 = 90 

        self.q2 = 90 

        self.q3 = 90 

        self.q0 = 90 

        # Create some test data 

        self.testData=[] 
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        self.testData = myArduino.composeMessage( 

            servoAngle_q1=self.q1, 

            servoAngle_q2=self.q2, 

            servoAngle_q3=self.q3, 

            servoAngle_EE=self.q0 

        ) 

    def subsciber_callback(self, msg): 

        self.x = msg.x 

        self.y = msg.y 

        self.z = msg.z 

        self.w = msg.w 

        self.get_logger().info(f"Received Array: {msg}") 

        print(f"Received Array: {msg}") 

        x=self.x 

        y=self.y 

        z=self.z 

        w = self.w 

        if x >=-20 and x <= 20: 

            self.q1 = 4.25*x + 90 # Maping q1 motor according to x 

coordinate value 

        if z >=-20 and z <= 20: 

            self.q2 = 0.05*z*z + 2.5*z + 90 # Maping q2 motor according to z 

coordinate value 

        if y >=-20 and y <= 20: 

            self.q3 = 0.04375*y*y + 2.125*y + 90 # Maping q3 motor according 

to y coordinate value 

            if self.q3 > 155 : 

                self.q3-=100 

        if w == 1:  # Gripper Movement 

            self.q0 = 50 

        else: 

            self.q0 = 150 

        # Update the test data with the new servo angles 

        testData = myArduino.composeMessage( 

            servoAngle_q1=self.q1, 

            servoAngle_q2=self.q2, 

            servoAngle_q3=self.q3, 

            servoAngle_EE=self.q0 

        ) 

            # Communicate with the Arduino, sending the updated test data 

        myArduino.communicate(data=testData, delay_between_commands=0) 

def main():  

    rclpy.init() 

    my_sub = rpmSubscriber() 

    print("Waiting the data to be publisher over topic ....") 

    try: 

        rclpy.spin(my_sub) 
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    except KeyboardInterrupt: 

        my_sub.destroy_node() 

        rclpy.shutdown() 

if _name== "main_": 

    main() 

APPENDIX D 

let connection; 

let videoStream; 

let videoStreamTrack; 

let ws; 

let clientId; 

let hasReceivedAnswer = false; 

let receivedAnswerSessionDescTemp; 

console.log("Hello from Roxy"); 

var A; 

var B,X = 90,Y = 90,Z = 90 , W = 0; 

function Start() { 

    InitClient("65.2.148.175", 8080); // Makes a new client that connnects 

to signalling server at given address 

} 

// Function to initialize a WebSocket client and set up WebRTC ICE candidate 

handling 

function InitClient(serverIp, serverPort) { 

    // Use the specified server port, defaulting to 5050 if the provided 

port is 0 

    const port = serverPort === 0 ? 8080 : serverPort;  

    clientId = "RoxySender"; // Set a unique client identifier 

    // Create a new WebSocket connection to the specified server IP and port 

of signalling server , in our case signalinng server is deployed on AWS EC2 

instance. 

    // if you want to try this code You can upload signaling_server.py code 

to your own ec2 instance and change public ip addresses in add code. 

    ws = new 

WebSocket(ws://${serverIp}:${port}/${"SimpleDataChannelService"}); 

    // Event handler for receiving messages from the WebSocket server 

    ws.onmessage = function(event) { 

        const originalMessage = event.data; // Get the original message data 

        const splitMessage = originalMessage.split("!"); // Split the 

message by '!' 

        const Type = splitMessage[0]; // Get the message type (e.g., 

'ANSWER', 'CANDIDATE') 

        const data = splitMessage[1]; // Get the message data 

        const signalingMessage = JSON.parse(data); // Parse the JSON data 

        // Handle the message based on its type 

        switch (Type) { 
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            case 'ANSWER': 

                console.log('Got ANSWER from Receiver: ' + 

signalingMessage.Sdp); 

                receivedAnswerSessionDescTemp = signalingMessage.Sdp; 

                hasReceivedAnswer = true; // Set the flag indicating an 

answer is received 

                setRemoteDesc(); // Set the remote description for the 

WebRTC connection 

                hasReceivedAnswer = false; // Reset the flag 

                break; 

            case 'CANDIDATE': 

                console.log("Got ICE-CANDIDATE from Receiver :" + 

JSON.stringify(signalingMessage)); 

                var candidateInit = signalingMessage; // Store the received 

ICE candidate info 

                console.log("candidateInit.Candidate : " + 

candidateInit.Candidate); 

                var init = { 

                    sdpMid: candidateInit.SdpMid, // Media stream 

identification 

                    sdpMLineIndex: candidateInit.SdpMLineIndex, // Media 

stream line index 

                    candidate: candidateInit.Candidate // The actual 

candidate string 

                }; 

                var candidate = new RTCIceCandidate(init); // Create a new 

ICE candidate 

                connection.addIceCandidate(candidate); // Add the candidate 

to the WebRTC connection 

                break; 

            default: 

                console.log(clientId + ' - Receiver says: ' + event.data); 

// Log any other messages 

                break; 

        } 

    }; 

    ws.onopen = function() { 

        console.log('Video Sender Connected to WebSocket Server'); 

    };    

    const iceServers = [ 

        { urls: 'stun:stun.relay.metered.ca:80' }, // STUN server         

        { 

            urls: "turn:15.206.116.209:3478", 

            username: "roxy_video", 

            credential: "roxy_video", 

        }, // Deplayed TURN Server to AWS EC2 instance using coturn, In 

orderr to make your own turn server , edit security inbound traffic and  
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           // open 3478 port for UDP and TCP and All UDp Traffic , uncomment 

following code from  /etc/turnserver.config . (You can use Sudo nano 

/etc/turnserver.config)          

    ]; 

    const configuration = { iceServers }; 

    connection = new RTCPeerConnection(configuration); 

    connection.onicecandidate = function(candidate) { 

        var candidateInit = { 

            SdpMid: candidate.sdpMid, 

            SdpMLineIndex: candidate.sdpMLineIndex, 

            Candidate: candidate.candidate 

        };     

        ws.send("CANDIDATE!" + JSON.stringify(candidate.candidate)); 

        console.log("ICE-Candidate Sent to Receiver : " + 

JSON.stringify(candidate.candidate)); 

    }; 

    connection.oniceconnectionstatechange = function(event) { 

        console.log(connection.iceConnectionState); 

        document.getElementById("status_webrtc").textContent = 

connection.iceConnectionState; 

    }; 

    connection.onnegotiationneeded = async function() { 

        await createOffer(); 

    }; 

    InitializeVideoStream(); 

} 

async function createOffer() { 

    const offer = await connection.createOffer(); 

    await connection.setLocalDescription(offer); 

    const offerSessionDesc = { 

        type: offer.type, 

        sdp: offer.sdp 

    }; 

    ws.send("OFFER!" + JSON.stringify({ SessionType: 'Offer', Sdp: 

offerSessionDesc.sdp })); 

    console.log('Sender sent OFFER!'); 

} 

async function setRemoteDesc() { 

    const answerSessionDesc = { 

        type: 'answer', 

        sdp: receivedAnswerSessionDescTemp 

    }; 

    await connection.setRemoteDescription(answerSessionDesc); 

} 

async function InitializeVideoStream() { 

    // Check if the connection object is defined 

    if (connection) { 
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        // Get user media stream 

        try { 

            const stream = await navigator.mediaDevices.getUserMedia({ 

video: true }); 

            videoStreamTrack = stream.getVideoTracks()[0]; 

            videoStream = new MediaStream([videoStreamTrack]); 

            connection.addTrack(videoStreamTrack, videoStream); 

        } catch (error) { 

            console.error("Error accessing media devices:", error); 

        } 

    } else { 

        console.error("Connection object is not initialized."); 

    } 

} 

// uncomment this code to set camera resolution. You can also make this bot 

streeam 360 camera by changing resolution. 

// Add this function to your sender.js file 

function startConnection() { 

    // Call the Start function to initiate the WebSocket connection 

    Start(); 

} 

// Add event listener to execute code when the DOM is fully loaded 

document.addEventListener("DOMContentLoaded", function(event) { 

    // Call InitializeVideoStream when the DOM is loaded to start capturing 

the video stream 

    InitializeVideoStream(); 

}); 

if (hasReceivedAnswer) { 

    console.log("Sender received Answer"); 

    hasReceivedAnswer = false; 

    setRemoteDesc(); 

} 

// DataChannel Receiver  

// this code is same raplica of above code but this time its receiver and 

unity side is sender ,  

let connection1; 

let dataChannel; 

let ws1; 

let clientId1; 

let hasReceivedOffer1 = false; 

let receivedOfferSessionDescTemp1; 

let cmd_vel_data; 

let controller_data; 

let message; 

function Start1() { 

    InitClient1("65.2.148.175", 5050); 

} 
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function Update1() { 

    if (hasReceivedOffer1) { 

        hasReceivedOffer1 = !hasReceivedOffer1; 

        CreateAnswer1(); 

    } 

} 

function OnDestroy1() { 

    dataChannel.close(); 

    connection1.close(); 

} 

function InitClient1(serverIp, serverPort) { 

    const port = serverPort === 0 ? 8080 : serverPort; 

    clientId1 = "DataChannel-Receiver"; 

    ws1 = new 

WebSocket(ws://${serverIp}:${port}/${"SimpleDataChannelService"}); 

    ws1.onmessage = function(event) { 

        const originalMessage = event.data; 

        const splitMessage = originalMessage.split("!"); 

        const Type = splitMessage[0]; 

        const data = splitMessage[1]; 

        const signalingMessage = JSON.parse(data); 

        switch (Type) { 

            case 'OFFER': 

                console.log('Got OFFER from Sender: ' + 

signalingMessage.Sdp); 

                receivedOfferSessionDescTemp1 = signalingMessage.Sdp; 

                hasReceivedOffer1 = true; 

                CreateAnswer1(); 

                hasReceivedOffer1 = false; 

                break; 

            case 'CANDIDATE': 

                console.log("Got ICE-CANDIDATE from Sender :" + 

JSON.stringify(signalingMessage)); 

                var candidateInit = signalingMessage; 

                console.log("candidateInit.Candidate : " + 

candidateInit.Candidate); 

                var init = { 

                    sdpMid: candidateInit.SdpMid, 

                    sdpMLineIndex: candidateInit.SdpMLineIndex, 

                    candidate: candidateInit.Candidate 

                }; 

                var candidate = new RTCIceCandidate(init); 

                connection1.addIceCandidate(candidate); 

                break; 

            default: 

                console.log(clientId1 + ' - Receiver says: ' + event.data); 

                break; 
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        } 

    }; 

    ws1.onopen = function() { 

        console.log('Data Channel Script Connected to WebSocket Server'); 

    }; 

    const iceServers = [ 

        { urls: 'stun:stun.relay.metered.ca:80' }, // STUN server         

        { 

            urls: "turn:15.206.116.209:3478", 

            username: "roxy_data", 

            credential: "roxy_data", 

        },        

    ]; 

    const configuration = { iceServers }; 

    connection1 = new RTCPeerConnection(configuration); 

    connection1.onicecandidate = function(candidate) { 

        var candidateInit = { 

            SdpMid: candidate.sdpMid, 

            SdpMLineIndex: candidate.sdpMLineIndex, 

            Candidate: candidate.candidate 

        };     

        ws1.send("CANDIDATE!" + JSON.stringify(candidate.candidate)); 

        console.log("ICE-Candidate Sent to Receiver : " + 

JSON.stringify(candidate.candidate)); 

    }; 

    connection1.oniceconnectionstatechange = function(event) { 

        console.log(connection1.iceConnectionState); 

        if (connection1.iceConnectionState=="connected") 

            { 

                Start(); 

            } 

        else if (connection1.iceConnectionState=="disconnected"){ 

            // location.reload(); 

            X = 90,Y = 90,Z = 90 , W = 0, A = 0, B = 0; 

        } 

    }; 

    connection1.ondatachannel = function(event) { 

        dataChannel = event.channel; 

        dataChannel.onmessage = function(event) { 

            console.log("Receiver received: " + event.data); 

            message = event.data; 

            const parts = message.split(":"); 

            console.log("Label: " + parts[0]); 

            if (parts.length === 2 && parts[0].trim() === "Controller_Data") 

{ 

                // Extract the values part and split by comma 

                const values = parts[1].trim().split(",");             
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                // Extract float values for x, y, and z 

                if (values.length === 4) { 

                    X = parseFloat(values[0].trim()); 

                    Y = parseFloat(values[1].trim()); 

                    Z = parseFloat(values[2].trim()); 

                    W = parseFloat(values[3].trim()); 

                    // Check if parsing was successful 

                    if (!isNaN(X) && !isNaN(Y) && !isNaN(Z) && !isNaN(W) ) { 

                        console.log("Parsed values controller_data:"); 

                        console.log("x:", X); 

                        console.log("y:", Y); 

                        console.log("z:", Z); 

                        console.log("w:", W); 

                    } else { 

                        console.log("Invalid float values"); 

                    } 

                } else { 

                    console.log("Invalid format: Expected 4 values separated 

by comma"); 

                } 

            } else { 

                console.log("Invalid message format"); 

            } 

            if (parts[0] == "cmd_val"){ 

                // Extract the values part and split by comma 

                const values = parts[1].trim().split(",");             

                // Extract float values for x, y, and z 

                if (values.length === 2) { 

                    A = parseFloat(values[0].trim()); 

                    B = parseFloat(values[1].trim());                 

                    // Check if parsing was successful                   

                    console.log("Parsed values cmd_vel:"); 

                    console.log("x:", A); 

                    console.log("z:", B); 

                } else { 

                    console.log("Invalid format: Expected 2 values separated 

by comma"); 

                } 

            } else { 

                console.log("Invalid message format"); 

            } 

        }; 

    }; 

} 

async function CreateAnswer1() { 

    console.log ("SDP: " + receivedOfferSessionDescTemp1) 

    const offerSessionDesc = { 
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        type: "offer", 

        sdp: receivedOfferSessionDescTemp1 

    }; 

    await connection1.setRemoteDescription(offerSessionDesc); 

    const answer = await connection1.createAnswer(); 

    await connection1.setLocalDescription(answer); 

    const answerSessionDesc = { 

        SessionType: answer.type, 

        Sdp: answer.sdp 

    }; 

    ws1.send("ANSWER!" + JSON.stringify(answerSessionDesc)); 

    console.log("Receiver Sent Answer to Sender : " + answerSessionDesc); 

} 

Start1(); 

// // script.js 

// Import ROSLIBJS if you're using Node.js 

// const ROSLIB = require('roslib'); 

// Connect to ROS Bridge 

const ros = new ROSLIB.Ros(); 

ros.connect('ws://localhost:9090'); // Adjust the URL according to your ROS 

Bridge server 

// Wait for the connection to be established 

ros.on('connection', function() { 

    console.log('Connected to ROS Bridge'); 

    document.getElementById("status_local").textContent = "Connected"; 

}); 

// Wait for the connection to be closed 

ros.on('close', function() { 

    console.log('Connection to ROS Bridge closed'); 

    document.getElementById("status_local").textContent = "Closed"; 

}); 

// Wait for an error to occur 

ros.on('error', function(error) { 

    console.log('Error connecting to ROS Bridge:', error); 

    document.getElementById("status_local").textContent = "Error"; 

}); 

// Define a function to publish the twist message 

function publishTwist() { 

    // Create a new Twist message every time the function is called 

    const twist = new ROSLIB.Message({ 

        linear: { 

            x: A, 

            y: 0.0, 

            z: 0.0 

        }, 

        angular: { 

            x: 0.0, 
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            y: 0.0, 

            z: B 

        } 

    });     

    // Publish the Twist message on the desired topic 

    twistPublisher.publish(twist); 

} 

// Publish the twist message every 100 milliseconds 

const twistPublisher = new ROSLIB.Topic({ 

    ros: ros, 

    name: '/cmd_vel', 

    messageType: 'geometry_msgs/Twist' 

}); 

setInterval(publishTwist, 100); 

/___________/ 

// Define a function to publish the control message 

function publishControl() { 

    // Create a new Quaternion message every time the function is called 

    const control = new ROSLIB.Message({ 

        x: X, 

        y: Y, 

        z: Z, 

        w: W 

    });    

    // Publish the Quaternion message on the desired topic 

    controlPublisher.publish(control); 

} 

// Publish the control message every 100 milliseconds 

const controlPublisher = new ROSLIB.Topic({ 

    ros: ros, 

    name: '/controller_data', 

    messageType: 'geometry_msgs/Quaternion' 

}); 

setInterval(publishControl, 100); 

 

APPENDIX E 

#!/bin/bash 

# Export necessary environment variables (optional) 

export LDS_MODEL=LDS-02 

export TURTLEBOT3_MODEL=waffle_pi 

# Launch turtlebot3_bringup package in a new terminal 

gnome-terminal -- bash -c "ros2 launch turtlebot3_bringup robot.launch.py; 

exec bash" & 

# Give some time for the first node to initialize (optional) 

sleep 5 
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# Launch rosbridge_server in a separate terminal 

gnome-terminal -- bash -c "ros2 run rosbridge_server rosbridge_websocket.py; 

exec bash" & 

# Launch arm.py to start node of controller_data to control robotic arm 

gnome-terminal -- bash -c "python3 arm.py" & 

 

APPENDIX F 

import asyncio 

import websockets 

import socket 

class SimpleDataChannelService: 

    def _init_(self): 

        self.clients = set() 

    async def _call_(self, websocket, path): 

        self.clients.add(websocket) 

        print("DataChannel SERVER got connection") 

        try: 

            async for message in websocket: 

                print(f"DataChannel SERVER got message {message}") 

                # forward message to all other clients 

                for ws in self.clients: 

                    if ws != websocket: 

                        await ws.send(message) 

        finally: 

            self.clients.remove(websocket) 

async def start_server(): 

    server_ipv4_address = "0.0.0.0" 

    server_port = 5050 

    data_channel_service = SimpleDataChannelService() 

    server = await websockets.serve(data_channel_service, 

server_ipv4_address, server_port) 

    print(f"Server SimpleDataChannelServer Started at 

ws://{server_ipv4_address}:{server_port}") 

    await server.wait_closed() 

asyncio.run(start_server()) 
 

APPENDIX G 

<!DOCTYPE html> 

<html lang="en"> 

<head> 

    <meta charset="UTF-8"> 

    <meta name="viewport" content="width=device-width, initial-scale=1.0"> 

    <title>Roxy Sender</title>     
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</head> 

<body> 

    <h1>Roxy Sender</h1> 

    <script type="text/javascript" 

src="https://cdn.jsdelivr.net/npm/roslib@1/build/roslib.min.js"></script> 

    <p> Local Rosbridge Connection: <span id="status_local" style="font-

weight: bold;">N/A</span></p> 

    <p> Local Connection: <span id="status_webrtc" style="font-weight: 

bold;">N/A</span></p> 

    <button onclick="startConnection()">Start Video Connection</button> 

    <ul id="messages"> 

        <!-- Received ROS messages will be displayed here --> 

    </ul> 

    <script src="sender.js"></script> 

</body> 

</html> 

 

APPENDIX H 

// include these libraries for using the servo add on board. Taken from 

servo example code 

#include <Arduino.h> 

// include this library for servo easing functionality 

#include "ServoEasing.hpp" 

/* * * * * * * * * * * * * * ** * * 

  Definitions     

*  * * * * * * * * * * * * * * * */ 

#define VERSION "3.1" 

#define ACTION_TIME_PERIOD 1000 

const int SERVO1_PIN = 1; // servo pin for joint 1 

const int SERVO2_PIN = 2; // servo pin for joint 2 

const int SERVO3_PIN = 3; // servo pin for joint 3 

const int SERVO0_PIN = 0; // servo pin for end effector 

/* * * * * * * * * * * * * * * * * * * * * * * * 

  Variables                           

* * * * * * * * * * * * * * * * * * * * * * * * / 

//-------- Variables for receiving serial data ------------- 

const byte buffSize = 40; 

char inputBuffer[buffSize]; 

const char startMarker = '<'; 

const char endMarker = '>'; 

byte bytesRecvd = 0; 

boolean readInProgress = false; 

boolean newDataFromPC = false; 

char messageFromPC[buffSize] = {0}; 

// -------- Variables to hold time ------------- 
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unsigned long curMillis; // Variable for current time 

// unsigned long general_timer; 

// -------- Variables to hold the parsed data ------------- 

float floatFromPC0 = 90.0; // initial values are mid range for joint angles 

float floatFromPC1 = 90.0; 

float floatFromPC2 = 90.0; 

float floatFromPC3 = 830.0; 

int intFromPC0 = 1000; // inital values are acceptable movement times 

int intFromPC1 = 1000; 

int intFromPC2 = 1000; 

int intFromPC3 = 1000; 

float last_servoAngle_q1 = floatFromPC1; // initial values are mid range for 

joint angles 

float last_servoAngle_q2 = floatFromPC2; 

float last_servoAngle_q3 = floatFromPC3; 

float last_servoAngle_EE = floatFromPC0; 

/* * * * * * * * * * * * * * * * * * * * * * * *  

  Instatiate clasess for libraries                   

* * * * * * * * * * * * * * * * * * * * * * * * * */ 

ServoEasing Servo1(PCA9685_DEFAULT_ADDRESS, &Wire); 

ServoEasing Servo2(PCA9685_DEFAULT_ADDRESS, &Wire); 

ServoEasing Servo3(PCA9685_DEFAULT_ADDRESS, &Wire); 

ServoEasing Servo0(PCA9685_DEFAULT_ADDRESS, &Wire); 

/* * * * * * * * * * * * * * * * * * * 

  STARTOFPROGRAM(Setup)                                                       

* * * * * * * * * * * * * * * * * * * */ 

void setup() 

{ 

  // Begin serial communications 

  Serial.begin(115200); 

  // Wait for serial communications to start before continuing 

  while (!Serial) 

    ; // delay for Leonardo 

  // Just to know which program is running on my Arduino 

  Serial.println(F("START " FILE "\r\nVersion " VERSION " from " DATE)); 

  // Attach servo to pin 

  Servo1.attach(SERVO1_PIN); 

  Servo2.attach(SERVO2_PIN); 

  Servo3.attach(SERVO3_PIN); 

  Servo0.attach(SERVO0_PIN); 

  // Set servo to start position. 

  Servo1.setEasingType(EASE_CUBIC_IN_OUT); 

  Servo2.setEasingType(EASE_CUBIC_IN_OUT); 

  Servo3.setEasingType(EASE_CUBIC_IN_OUT); 

  Servo0.setEasingType(EASE_CUBIC_IN_OUT); // end effector 

  Servo1.write(last_servoAngle_q1); 

  Servo2.write(last_servoAngle_q2); 
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  Servo3.write(last_servoAngle_q3); 

  Servo0.write(last_servoAngle_EE); // end effector 

  // Just wait for servos to reach position 

  delay(5000); // delay() is OK in setup as it only happens once 

  // tell the PC we are ready 

  Serial.println("<Arduino is ready>"); 

} 

/* * * * * * * * * * * * * * * * * * * * * 

MAINPROGRAM(Loop)                                                            

* * * * * * * * * * * * * * * * * * * * * */ 

void loop() 

{ 

  // This part of the loop for the serial communication is not inside a 

timer -> it happens very quickly 

  curMillis = millis(); // get current time 

  getDataFromPC();      // receive data from PC and save it into inputBuffer 

  // need if statement -> flag to say if new data is available 

  if (newDataFromPC == true) 

  { 

    actionInstructionsFromPC(); // Arrange for things to move, beep, light 

up 

    replyToPC();                // Reply to PC 

  } 

  //  // This part of the loop is inside a timer -> maybe delete 

  //  unsigned long elapsed_time_general_timer = millis() - general_timer; 

  // 

  //  if ( elapsed_time_general_timer > ACTION_TIME_PERIOD ) // set a target 

for the Romi periodically 

  //  { 

  //    // update timestamp 

  //    general_timer = millis(); 

  //  } 

} 

//~Fuction: Action the instructions from the PC~~~ 

void actionInstructionsFromPC() 

{ 

  // Local variables 

  //  -- joint angles 

  float servoAngle_q1 = floatFromPC1; 

  float servoAngle_q2 = floatFromPC2; 

  float servoAngle_q3 = floatFromPC3; 

  float servoAngle_EE = floatFromPC0; 

  // -- joint speeds 

  int servoTime_q1 = intFromPC1; 

  int servoTime_q2 = intFromPC2; 

  int servoTime_q3 = intFromPC3; 

  int servoTime_EE = intFromPC0; 
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  // Check if the joint angle has changed! 

  if (servoAngle_q1 != last_servoAngle_q1) 

  { 

    Serial.println(F("Servo 1 moving to position using interrupts")); 

    Servo1.startEaseToD(servoAngle_q1, servoTime_q1); 

    //    while (Servo3.isMovingAndCallYield()) { 

    //      ; // no delays here to avoid break between forth and back 

movement 

    //    } 

  } 

  if (servoAngle_q2 != last_servoAngle_q2) 

  { 

    Serial.println(F("Servo 2 moving to position using interrupts")); 

    Servo2.startEaseToD(servoAngle_q2, servoTime_q2); 

    //    while (Servo3.isMovingAndCallYield()) { 

    //      ; // no delays here to avoid break between forth and back 

movement 

    //    } 

  } 

  if (servoAngle_q3 != last_servoAngle_q3) 

  { 

    Serial.println(F("Servo 3 moving to position using interrupts")); 

    Servo3.startEaseToD(servoAngle_q3, servoTime_q3); 

    //    while (Servo3.isMovingAndCallYield()) { 

    //      ; // no delays here to avoid break between forth and back 

movement 

    //    } 

  } 

  if (servoAngle_EE != last_servoAngle_EE) 

  { 

    Serial.println(F("Servo EE moving to position using interrupts")); 

    Servo0.startEaseToD(servoAngle_EE, servoTime_EE); 

    //    while (Servo3.isMovingAndCallYield()) { 

    //      ; // no delays here to avoid break between forth and back 

movement 

    //    } 

  } 

  // Store current joint angle 

  last_servoAngle_q1 = servoAngle_q1; 

  last_servoAngle_q2 = servoAngle_q2; 

  last_servoAngle_q3 = servoAngle_q3; 

  last_servoAngle_EE = servoAngle_EE; 

} 

/* * * * * * * * * * * * * * * * * * * * * 

        FUNCTIONS FOR RECEIVING DATA VIA SERIAL MONITOR                     

* * * * * * * * * * * * * * * * * * * * * / 

//~Fuction: Receive data with start and end markers~~ 
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void getDataFromPC() 

{ 

  // This function receives data from PC and saves it into inputBuffer 

  if (Serial.available() > 0 && newDataFromPC == false) 

  { 

    char x = Serial.read(); 

    // the order of these IF clauses is significant 

    if (x == endMarker) 

    { 

      readInProgress = false; 

      newDataFromPC = true; 

      inputBuffer[bytesRecvd] = 0; 

      parseData(); 

    } 

    if (readInProgress) 

    { 

      inputBuffer[bytesRecvd] = x; 

      bytesRecvd++; 

      if (bytesRecvd == buffSize) 

      { 

        bytesRecvd = buffSize - 1; 

      } 

    } 

    if (x == startMarker) 

    { 

      bytesRecvd = 0; 

      readInProgress = true; 

    } 

  } 

} 

//~~~~~~~~~~ 

//~Fuction: Split data into known component parts~~ 

void parseData() 

{ 

  // split the data into its parts 

  char *strtokIndx = strtok(inputBuffer, ","); // initialize strtokIndx 

  if (strtokIndx != NULL) // check if the first token is not NULL 

  { 

    // continue parsing 

    floatFromPC1 = atof(strtokIndx); 

    strtokIndx = strtok(NULL, ","); 

    floatFromPC2 = atof(strtokIndx); 

    strtokIndx = strtok(NULL, ","); 

    floatFromPC3 = atof(strtokIndx); 

    strtokIndx = strtok(NULL, ","); 

    floatFromPC0 = atof(strtokIndx); 

    strtokIndx = strtok(NULL, ","); 
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    intFromPC0 = atoi(strtokIndx); 

    strtokIndx = strtok(NULL, ","); 

    intFromPC1 = atoi(strtokIndx); 

    strtokIndx = strtok(NULL, ","); 

    intFromPC2 = atoi(strtokIndx); 

    strtokIndx = strtok(NULL, ","); 

    intFromPC3 = atoi(strtokIndx); 

  } 

} 

//~~~~~~~~~~ 

//~Fuction: Send message back to PC~~~~~ 

void replyToPC() 

{ 

  if (newDataFromPC) 

  { 

    newDataFromPC = false; 

    Serial.print(F("<Msg ")); 

    Serial.print(F(" floatFromPC1 ")); 

    Serial.print(floatFromPC1); 

    Serial.print(F(" floatFromPC2 ")); 

    Serial.print(floatFromPC2); 

    Serial.print(F(" floatFromPC3 ")); 

    Serial.print(floatFromPC3); 

    Serial.print(F(" floatFromPC0 ")); 

    Serial.print(floatFromPC0); 

    Serial.print(F(" intFromPC0 ")); 

    Serial.print(intFromPC0); 

    Serial.print(F(" intFromPC1 ")); 

    Serial.print(intFromPC1); 

    Serial.print(F(" intFromPC2 ")); 

    Serial.print(intFromPC2); 

    Serial.print(F(" intFromPC3 ")); 

    Serial.print(intFromPC3); 

    Serial.print(F(" Time ")); 

    Serial.print(curMillis / 1000); // divide by 512 is approx = half-

seconds 

    Serial.println(F(">")); 

  } 

} 
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