

 D
E

-4
2

 (M
T

S
) A

B
D

U
L

L
A

H
, J

A
M

S
H

E
D

, M
A

R
IA

M
, U

S
M

A
N

DESIGN AND DEVELOPMENT OF DUAL AXIS SOLAR
TRACKING SYSTEM

COLLEGE OF

ELECTRICAL AND MECHANICAL ENGINEERING NATIONAL

UNIVERSITY OF SCIENCES AND TECHNOLOGY

RAWALPINDI

2024

C
O

L
L

E
G

E
O

F
E

L
ECTRICAL AND MECHANICA

L

E
N

G
IN

E
E

R
IN

G

DE-42 MTS

PROJECT REPORT

DESIGN AND DEVELOPMENT OF DUAL AXIS SOLAR

TRACKING SYSTEM

Submitted to the Department of Mechatronics Engineering

in partial fulfilment of the requirements

for the degree of

Bachelor of Engineering

 in

Mechatronics

2024

Sponsoring DS: Submitted By:

Dr. Muhammad Osama Ali (Supervisor) Sardar Abdullah Khan Durrani

Dr. Tayyab Zafar (Co-Supervisor) Jamshed Karamat

 Mariam Afsar Khan

 Muhammad Usman

i

ACKNOWLEDGMENTS

We would like to thank Allah Almighty for His blessings in enabling us to perform this

extensive research for our thesis on the design and development of dual axis solar tracking

system. In addition, we humbly thank Dr. Muhammad Osama, our supervisor, whose

insightful counsel enabled us to overcome numerous obstacles. We also acknowledge the

invaluable guidance that our co-supervisor, Dr. Tayyab Zafar, has given us. Lastly, a big

thank you to our parents, friends, and colleagues for their support.

ii

ABSTRACT

The sun is an incredibly powerful source of renewable energy. Harnessing this renewable

energy source is crucial to reducing our dependence on fossil fuels and mitigating the effects

of climate change. Solar panel systems are a renewable energy resource that provide

sustainable and cost-effective power, thus tackling the energy crisis and environment

problems.

Currently most solar panel systems are fixed. In comparison to them the Dual Axis Solar

Tracking Systems are a promising technology to increase the efficiency of solar panels. A

dual axis solar tracker is a device that follows the sun’s movement in both the horizontal and

vertical planes. This allows solar panels to remain perpendicular to the sun's rays throughout

the day, maximizing energy output.

The aim of this project is the development of a dual axis solar tracker system by designing,

manufacturing, assembling the mechanical structure and then programming it with the help

of sensors and microcontroller to track the movement of the sun along with an actuating

system to move the mechanism, hence making it capable of increasing the overall efficiency

of the system.

Raspberry Pi 5 and Arduino UNO have been used as microcontrollers. A mechanical

structure capable of performing dual axis motion has been developed. This is moved through

an actuating system consisting of DC motors and a drive card that allows the motors to

function as servos. The active tracking is done through LDR sensors and implementation of

a control mechanism. Voltage and current sensors are used to acquire data regarding the

power generation of solar panel. Finally, the power generated by static and dual axis solar

tracking systems is calculated. Results regarding efficiency of the system are analyzed.

iii

TABLE OF CONTENTS

ACKNOWLEDGMENTS .. i

ABSTRACT ... ii

TABLE OF CONTENTS .. iii

LIST OF FIGURES ... vii

LIST OF TABLES .. viii

Chapter 1 - INTRODUCTION .. 1

1.1. Motivation: .. 1

1.2. Problem Statement and Existing Solutions: .. 1

1.3. Novelty and Contribution: ... 1

Chapter 2 - BACKGROUND AND LITERATURE REVIEW .. 3

2.1. Working of Solar Panels: ... 3

2.2. Movement of Sun: ... 3

2.3. Need for Solar Tracking Systems: ... 3

2.4. Solar Tracking Systems and Their Classification: .. 4

2.4.1. Classification Based on Nature of Tracking: ... 4

2.4.2. Classification Based on Freedom of Motion: .. 5

2.5. Importance of Sensors in Solar Tracking Systems: ... 7

2.6. Sensors Used in Active Solar Tracking Systems .. 7

2.6.1. Light Dependant Resistors (LDRs): .. 7

2.6.2. Light to Frequency Convertor (LTF): .. 9

2.7. Sensors Used in Chronological Solar Tracking Systems: 10

2.7.1. Real Time Clock: ... 10

2.7.2. Position Sensor: ... 11

2.7.3. GPS Sensor: ... 11

2.7.4. Solid State Magnetic Compass Sensor: ... 11

iv

2.7.5. Dual Axis Inclinometer: ... 11

2.8. Types of Motors and Actuators Used in Solar Tracking Systems: 11

2.8.1. DC Motors: .. 12

2.8.2. Stepper Motors: .. 12

2.8.3. Servo Motors: .. 12

2.8.4. Other Actuators: ... 13

2.9. Types of Controllers and Algorithms Used in Solar Tracking Systems: 13

2.9.1. Microcontroller Based Controllers: ... 13

2.9.2. Control Algorithms: ... 14

2.9.3. GPS Based Controllers: ... 14

2.9.4. IoT Enabled Controllers: ... 15

2.10. Experimental Results of Various Dual Axis Solar Tracking Systems: 15

Chapter 3 - METHODOLOGY ... 17

3.1. Overview: .. 17

3.2. Mechanical Structure: .. 17

3.2.1. CAD Design: .. 17

3.2.2. Material Survey: .. 20

3.2.3. Structure Analysis: ... 20

3.2.4. Structure Manufacturing and Assembly: ... 22

3.2.5. Issues, Changes and Final Structure: ... 23

3.3. Actuating System: ... 24

3.3.1. Servo System: .. 24

3.3.2. Components of the Servo System: ... 25

3.3.3. PCB Design for Motor Driver Circuit: .. 27

3.3.4. Incorporation of Limit Switching in Actuating System: 28

3.3.5. Control Logic for Actuators: .. 29

3.3.6. Code for Servo Driver: .. 29

v

3.4. Microcontroller: ... 30

3.5. Sensors: .. 31

3.5.1. ADS1115 Module with Sensors: ... 31

3.5.2. LDRs: ... 31

3.5.3. Current and Voltage Sensors: .. 33

3.6. Data Logging Module: .. 35

3.7. Implementation of the Control Mechanism: .. 36

3.7.1. Small-Scale Model: .. 37

3.7.2. Initial Codes for LDRs, ADS1115 and Servos for Arduino: 38

3.7.3. Arduino Code for Active Pan Axis Tracking: ... 38

3.7.4. Arduino Code for Active Dual Axis Tracking: ... 39

3.7.5. Coding in Raspberry Pi: ... 40

3.7.6. Code for Servo Control in Pi: .. 40

3.7.7. Code for Active Dual Axis Tracking in Raspberry Pi: 41

3.7.8. Code for Data Acquisition and Logging: ... 42

3.7.9. Final Code: ... 43

3.8. Solar Panel: .. 46

3.9. Electronics: .. 46

Chapter 4 - EXPERIMENTAL RESULTS AND ANALYSIS ... 47

4.1. Overview: .. 47

4.2. Data Collection and Experimental Setup: ... 47

4.3. Data Acquired from Static Solar Panel System: .. 47

4.4. Data Acquired from Dual Axis Solar Panel System: .. 48

4.5. Power Consumed by Dual Axis Solar Tracking System: 48

4.6. Analysis of Results: ... 49

4.6.1. Comparison of Total Energy Production: .. 49

4.6.2. Efficiency of Dual Axis Solar Tracking System: .. 50

vi

4.6.3. Comparison of Net Energy Available: ... 50

Chapter 5 - CONCLUSION ... 52

5.1. Overview: .. 52

5.2. Summary of Achievements: .. 52

5.3. Future Recommendations: ... 53

5.4. Final Thoughts: .. 53

REFERENCES…………………………………………...………………………………..56

ANNEXES ... 56

Annex A:………………………………………………………………………………...58

Annex B:. ... 60

Annex C:. ... 64

Annex D:………………………………………………………………………………...68

Annex E:... 69

Annex F:. .. 73

Annex G:. ... 75

Annex H:. ... 79

Annex I:…………………………………………………………………………………84

vii

LIST OF FIGURES

Figure 1. CAD model of the mechanical structure. ... 18

Figure 2. Spur Gears .. 19

Figure 3. Axial bearing .. 19

Figure 4. Connection between static and dynamic portion. ... 20

Figure 5. Analysis of factor of safety .. 21

Figure 6. Analysis of factor of von Mises stresses. ... 21

Figure 7. Analysis of strain. ... 22

Figure 8. Final Structure .. 24

Figure 9. Servo motors ... 26

Figure 10. Block Diagram of actuating system ... 27

Figure 11. PCB design ... 28

Figure 12. 3D PCB layout.. 28

Figure 13. LDR connections .. 32

Figure 14. ADS1115 connections LDR module .. 33

Figure 15. Current sensor connections .. 34

Figure 16. Voltage sensor connections .. 34

Figure 17. ADS1115 connections current and voltage sensors ... 35

Figure 18. Connections of data logging module .. 36

Figure 19. Data logging module .. 36

Figure 20. Small-scale dual axis tracker module ... 37

Figure 21. Flowchart of code ... 45

Figure 22. Solar panel specifications ... 46

Figure 23. Comparison of energy production by both system ……………………………49

Figure 24. Comparison of final energy available by both system 51

viii

LIST OF TABLES

Table 1. Data Acquired by Static Solar Panel .. 47

Table 2. Data Acquired by Dual Axis Tracker Panel ... 48

Table 3. Percent Gain in Energy Production .. 49

1

Chapter 1 - INTRODUCTION

1.1. Motivation:

The application of solar energy has become a crucial means of tackling the critical

issues of energy security and environmental sustainability. It is more important than

ever to switch to renewable energy sources as the world struggles with the negative

effects of climate change and the depletion of finite reserves of fossil fuel. Solar energy

is one of the most promising of these renewable energy sources, providing a clean,

plentiful, and endless source of energy. This motivation is driven by the understanding

of the critical role that solar energy plays in the global energy system. Using solar

energy to generate electricity promotes resilience and energy independence while also

helping to cut greenhouse gas emissions. However, the static orientation of standard

fixed solar panels limits their performance by preventing them from capturing the best

sunlight all day long. This inefficiency highlights the need for novel solutions that can

improve solar energy systems' efficiency.

1.2. Problem Statement and Existing Solutions:

The incapacity of typical solar panel systems to adjust to the sun's dynamic movement

across the sky is one of their main problems. Although single-axis solar tracking

systems provide some relief by either tilting or rotating the solar panels in accordance

with the azimuthal movement of the sun, they are unable to take solar elevation angle

fluctuations into consideration. As a result, these systems continue to produce less

energy than they should, especially as the seasons change. By offering both azimuthal

and elevation tracking capabilities, current dual-axis solar tracking systems overcome

this drawback and maximize solar panel efficiency. These systems are mostly used in

large-scale solar projects; however, they are frequently costly and complex. For this

reason, they are not widely used, especially in Pakistan, particularly in small-scale

residential and commercial contexts where simplicity and affordability are crucial.

1.3. Novelty and Contribution:

This project suggests a novel method for the design and development of a dual-axis

solar tracking system suited for small-scale applications in light of the difficulties

mentioned above. This project's main innovation is that it prioritizes accessibility,

2

affordability, and simplicity without sacrificing functionality. The mechanical

structure is designed and built using inexpensive and easily accessible materials from

the market. The sensors used for tracking and current, voltage measurements are also

readily available and economic. The actuating system uses a self designed and

fabricated servo driver making it affordable without compromising the performance

of the system.

3

Chapter 2 -BACKGROUND AND LITERATURE REVIEW

2.1. Working of Solar Panels:

Solar panels are made up of numerous solar cells also called photovoltaic cells

organized in specific configuration. Solar energy is converted into electrical energy

using solar panels by the photovoltaic effect. These cells are made up of semiconductor

material commonly made of silicon. Sunlight is composed of photons, when it strikes

the surface of these cells the electrons in cells energized, causing them to move within

the material. Electric current is produced by the electron’s motion, which is then

obtained and directed through an electrical circuit. This electron movement generates

electricity known as direct current (DC). To make this energy usable for home,

businesses etc. we convert direct current (DC) current to alternating current (AC)

current by the help of inverters as AC is the standard form of electricity used in most

applications [1].

2.2. Movement of Sun:

The movement of the sun both daily and seasonally, is a fundamental aspect of the

nature. On daily basis sun rises in the east and sets in the west due to the Earth's rotation

on its axis. The angle and height of the sun in the sky change throughout the day,

inducing factors such as shadow length and the intensity of sunlight. Additionally, the

observer's latitude also affects the sun's daily course at higher latitudes, there are more

changes in solar altitude. On a seasonal scale, the sun's movement is categorized by

changes in its declination, which is the apparent latitude where the sun is directly above

at noon. The seasons changes because of this variation. During summer, the sun

reaches its highest declination, resultant in lengthier days and shorter nights.

Contrarywise, in winter, the sun's lower declination leads to shorter days and longer

nights [2]. The days in which time of day is equal to time of night occurs around March

21st and September 23rd. The study of the sun's movement enhances our knowledge in

contributes to harnessing of solar energy.

2.3. Need for Solar Tracking Systems:

The need for solar tracking systems stems from the quest for optimizing the efficiency

and output of solar energy systems. Traditional fixed solar panels are effective but

4

have limitations in harnessing sunlight to its complete potential. Solar tracking systems

address this limitation by orienting solar panels dynamically to follow the sun's path

across the sky. This dynamic orientation ensures that solar panels are consistently

facing the sun, maximizing the absorption of sunlight throughout the day. Solar

tracking systems come in various types, including single-axis and dual-axis trackers.

Single-axis trackers follow the sun's movement either in the east-west or north-south

direction [3],while dual-axis trackers combine both movements for even greater

precision in all directions. The implementation of solar tracking technology is

especially helpful in regions with high solar incidence as it enhances energy output.

2.4. Solar Tracking Systems and Their Classification:

A solar tracking system is a device that maximizes the amount of sunshine by aligning

a solar panel with the sun's movement. As the intensity of sunshine drops, it adjusts its

position automatically. The solar tracker is engineered to ensure that there is always a

90-degree angle between the sun and the solar panel. When compared to fixed

modules, the generation of power can be enhanced by approximately 40% by using

solar trackers. This tracking device has a 180-degree rotational range. As a result, a

solar tracker is far better than a fixed module [4].

Solar Tracking systems can be classified into two types.

2.4.1. Classification Based on Nature of Tracking:

This is further divided into passive and active solar tracking systems:

A. Passive Solar Tracking Systems:

This tracking mechanism is based on the theory of thermal expansion of

materials or a compressed gas fluid with a low boiling point that is propelled

in one direction or another. On either side of the solar panel, there is usually

a shape memory alloy or a chlorofluorocarbon (CFC). The two sides are in

balance when the panel is oriented perpendicular to the sun. When the sun

moves, heat from one side of the panel causes that side to expand while the

other side contracts, rotating the panel. A passive system has the potential

to increase efficiency by 23% [5]. These systems are cheaper in comparison

to active systems but are not commercially popular [6].

5

B. Active Solar Tracking Systems:

These systems make use gear trains and motors to direct the tracker in

response to the controller's instruction based on the direction of the sun.

Throughout the day, the sun's location is tracked. Depending on how it is

made, a tracker in the dark will either stop or go to sleep. Light-sensitive

sensors, such as LDRs, are used, their voltage output is fed into a

microcontroller, which uses actuators to change the solar panel's position

[7].

2.4.2. Classification Based on Freedom of Motion:

This is further divided into single axis and dual axis solar tracking systems:

A. Single Axis Solar Tracking Systems:

Single axis trackers have one degree of freedom that acts as an axis of

rotation. The axis of rotation of single axis trackers is typically aligned along

a true North meridian. It is possible to align them in any cardinal direction

with advanced tracking algorithms.

The axis of rotation that single axis tracker consists of are:

• Horizontal Single Axis Tracker: It is the most prevalent kind of single-

axis tracker design and works better in lower latitudes. Its rotational axis

is horizontal with respect to the earth. They have a fixed axis that rotates

from east to west and is parallel to the ground, making them incredibly

flexible.

• Vertical Single Axis Tracker: The axis of rotation of these trackers is

vertical with respect to the ground. During the day, they typically rotate

from east to west. At higher latitudes, these trackers perform better than

horizontal axis trackers. The face of the module in vertical single-axis

trackers is usually oriented at an angle to the rotational axis. It passes

over a rotationally symmetric cone that resembles a module path around

the rotational axis.

• Polar Aligned Single Axis Tracker: These trackers are well known

standard technique in ascending a telescope reinforce shape. The tilted

6

single axis is aligned to the axis of rotation at polar star. Therefore, it is

called a polar aligned single axis tracker.

• Tilted Single Axis Tracker: The trackers' ability to rotate along both

horizontal and vertical axes is typically what makes them famous. Tilt

angles of this system are frequently restricted for lowering the elevated

end height and wind profile. Assuming an orientation parallel to the

rotational axis, they usually face the module. It passes over a rotationally

symmetric cone that resembles a module track around the rotational axis.

By tracking the sun throughout the day, these trackers provide the best

efficiency and solar tracking capabilities available.

B. Dual Axis Solar Tracking Systems:

Dual axis tracker has two degrees of freedom. It tracks the movement of the

sun from East to West through the day, and from East to North or South

through the season. The movement from East to West also known as

Zenithal Angle and the other from East to North or South that happens

through the year also called Azimuthal Angle. As this tracker move along

the sun’s direction vertically and horizontally, they help to achieve

maximum solar energy.

• Tip-Tilt Dual Axis Tracker: The primary axis of a tip-tilt dual axis

tracker is oriented horizontally with respect to the ground. This tracker

uses an ascended panel array mounted atop a long pole. A movement

from east to west is achieved by rotating the array around a pole’s peak.

One end post of the main axis of rotation can be divided among trackers

to lower the installation cost. They are incredibly flexible, and in order

to properly orient the trackers in relation to one another, their axis of

rotation must be parallel to one another.

• Azimuth-Altitude Dual Axis Tracker: These trackers have their

primary axis which is set vertically with reference to the ground. The

elevation axis also known as secondary axis is ordinary just as the

primary axis. Its function is quite same to tip-tilt system, but they vary

in the array rotation for everyday tracking. They use a large ring

mounted on the ground with the array mounted on a series of rollers

7

instead of rotating the array around the top of the pole. The main

advantage of this tracker is that it allows to support more large arrays.

However, compare to TTDAT, it may decrease the system density

especially considering inter-tracker shading when the system is placed

close together than the diameter of the ring. They are largely used in

different research on tracking system based on their references [4].

2.5. Importance of Sensors in Solar Tracking Systems:

The solar tracking mechanism is an electromechanical system that ensures solar

radiation is always perpendicular to the surface of the solar cells, maximizing the

amount of energy that may be harvested. Sensors play a crucial role in this tracking of

the sun. Both the Active and Chronological Solar tracking systems require Sensors.

Data from the sensors is used by the microcontroller to control the motors and hence

align the tracking system perpendicular to the sun’s rays.

2.6. Sensors Used in Active Solar Tracking Systems

Active Solar Tracking Systems, also called the closed loop tracking systems, rely on

photosensors in order to track the sun. The most popular photosensor used for this

purpose is the Light Dependent Resistor (LDR). Some solar tracking systems have

also used it along with Light to Frequency Convertor (LTF) sensor [8].

2.6.1. Light Dependant Resistors (LDRs):

The basis for the operation of light-dependent resistors (LDRs) is

photoconductivity. LDRs are frequently employed in circuits that need to detect

the presence or amount of light. Their photosensitivity is precisely why they

were designed [9]. As the name suggests, their resistance varies with light

intensity. The resistance of LDRs decreases as the light intensity increases.

LDRs are the most common photosensor used in solar tracking systems. The

difference in the use of these sensors in tracking systems is in the way they are

placed, and the comparison techniques used to gain valuable readings from

them.

A. Different Placement of LDRs in Solar Tracking Systems:

8

LDRs have been placed in various ways in solar tracking systems.

• Square Formation: One popular way of LDR placement is at each

corner of the solar panel structure. We can name this placement as the

square formation. In this placement we have a top left, top right, bottom

left, and bottom right LDR. Hence, value at the top of the panel structure

is dependent on the data we get from 2 LDRs. Similarly, right, left, and

bottom values are also dependent on 2 LDRs. The LDRs in the square

formation in some tracking systems have been placed either on the

corners of the complete panel structure [10] or have been mounted in

this formation at the top of the panel with the help of a cross shaped

piece. The LDRs were then positioned within each of the cross's four

corners, giving the LDRs a square formation [11]. This sort of placement

is also aided by an opaque plate, so that some LDRs are shadowed and

the one that is illuminated is the one with most sunlight. For the case of

cross-piece, the goal of it is also to cast a shadow on two or more LDRs

if the cross is not pointing perpendicularly towards the sun [12].

• Cross Formation: Another type of placement of LDRs used in solar

tracking systems is at the top, bottom, left and right of the panel

structure. We can call this placement the cross formation. In this

placement, the values at the top, bottom, left and right of the solar panel

are dependent on one LDR only [13].

B. Different Comparison Techniques for LDR Values:

In [10] the LDRs are placed in square formation at each corner of the solar

panel. Each LDR is connected to a resistor in such a way that they act as a

voltage divider and the output is provided to analog input pins of

microcontroller. The Comparison technique is then carried out through the

microcontroller. After getting analog values of each LDR i.e., top left, top

right, bottom left and bottom right, the averages are calculated such that

average of two top LDRs give Top Avg. Similarly, two bottom LDRs give

Bottom Avg, two right LDRs give Right Avg and two left LDRs give Left

Avg. The averages are then compared. If there is a variation in top and

bottom averages, then the vertical motor is tilted accordingly.

9

Simultaneously, the left and right averages are compared. Their difference

is accommodated by rotating the horizontal motor.

The solar tracking system in [11] and [12] uses the same comparison

technique as [10]. The only difference in [11] is that a variable resistor is

attached to the microcontroller. The values of the variable resistor are

compared with the readings from the four Light Dependent Resistors

(LDRs). The system's sensitivity can be changed by adjusting the variable

resistors' set point. After averages are calculated, Difference Vertical (DV)

and Difference Horizontal (DH) are calculated through (AVT-AVB)/2 and

(AVR-AVL)/2. DV and DH should be greater than the setpoint in order to

start the alignment process.

In [13] 4 LDRs are placed in the cross formation. A 5th LDR is used to sense

the nighttime. The readings from all these LDRs are passed to a light

comparison unit. Hence, the comparison technique is carried out by this unit

rather than the microcontroller. Diodes and comparator circuits make up this

light comparison unit. To compare the voltage level between two LDRs, a

comparator circuit is utilized. Here, the voltage levels of the north-south and

east-west sides, or the horizontal and vertical axes, are compared using two

dual comparator ICs (LM1458). After comparing their voltages in the

respective axis +Vcc and -Vcc are sent to the diodes from two individual

outputs of LM1458. The final comparator sends the output to a diode after

comparing the voltage level coming from the night-detecting sensor with a

preset reference voltage. Since the microcontroller only operates in the

range of 0 to +5 volts, diodes are utilized in this situation to ignore the

reverse voltage drop.

2.6.2. Light to Frequency Convertor (LTF):

Light to Frequency Convertor (LTF) sensors have been used along with LDRs

in solar tracking systems because the frequency is exactly proportional to

irradiation, hence the use of light-to-frequency convertors is an extremely

sensitive and accurate procedure. LDRs are voltage based while LTFs are

directly related to power, especially current. Additionally, in [8], the LTF helps

synchronize the PILOT and PANEL so that no additional switches are required.

10

This design of a solar tracking system is based on two primary components:

PANEL, a revolving cell system, and PILOT, a tracking component that

continuously measures maximum irradiation. Three components make up the

tracking system: a light-to-frequency converter sensor (LTF), and two light-

dependent resistors (LDR). The LTF ascertains the location of maximal

irradiation, whereas the two LDRs are used to ascertain the direction of rotation.

The three sensors are fixed to a holder in the shape of a large W, with the LTF

fixed in the center and the LDRs positioned in the troughs on either side. The

system is initially facing east, awaiting the rising of the sun. At that point, the

PILOT begins following the sun. Two light LDRs placed on the PILOT are used

for this. The voltages of the two LDRs are continually compared, and the PILOT

turns in the direction of the LDR with more incident light than the other by a

predetermined value that the user has already specified. The two light-to-

frequency converters (LTF), one located on the panel and one on the pilot, take

over after the direction has been set. a procedure for comparing the induced

frequency caused by the PILOT LTF with the PANEL LTF starts. If the

difference exceeds the pre-set, PANEL follows PILOT until the two frequencies

equalize, indicating alignment. The PANEL then stops and remains in its

present position while the PILOT continues monitoring the sun freely and the

comparison procedure resumes.

2.7. Sensors Used in Chronological Solar Tracking Systems:

Chronological Tracking Systems require mathematical equations and already existing

sun paths to program a microcontroller in order to track the sun. This programming

requires information such as current position, position of magnetic north, inclination,

and real time and date etc. All this information is provided through different sensors.

In [14] the sensors used for Chronological tracking are:

2.7.1. Real Time Clock:

A real time clock is a type of clock that records the current time. The

microcontroller tracks the sun’s annual motion and the nighttime in order to

place the solar panel at its starting position. It does this by using the month and

hour numbers obtained from the RTC device.

11

2.7.2. Position Sensor:

Position sensors track the annual motion of the sun. Here, the position sensor is

a variable resistor coupled to another resistor. Thus, the position sensor output

varies along with the variable resistor’s resistance. This circuit’s output is

delivered to the controller, and the sun’s different latitude angle during yearly

motion is represented by different voltages in the position sensor circuit’s

output.

In [15] the sensors used are:

2.7.3. GPS Sensor:

Controller has internal real time measuring system capable of providing correct

date and time even if the system gets disconnected from the power. After

powering up controller, current global position of the system is provided by the

satellite using the GPS according to the current date and time.

2.7.4. Solid State Magnetic Compass Sensor:

The position of a magnetic north is provided to the controller by this sensor.

2.7.5. Dual Axis Inclinometer:

By using this sensor, the controller is capable of determining if the system needs

possible adjusting because of the soil inclination.

All these sensors are connected to the local controller who is responsible to calculate

correct position of the Sun on the horizon. Based on the values of all these sensors, the

controller can calculate the location of the Sun according to the current time and date.

After the calculation of the initial sun position, controller starts to orientate solar panels

according to the code of chronological tracking.

2.8. Types of Motors and Actuators Used in Solar Tracking Systems:

In solar tracking systems, various types of motors can be used to control the movement

of solar panels along both horizontal and vertical axes. Each type of actuator has its

own advantages and disadvantages. Some common types of actuators used in solar

tracking systems are:

12

2.8.1. DC Motors:

The most widely used motors in the world are direct current, or Dc motors.

Some of the major advantages of Dc motors are that they are simple and easy to

control, cost-effective and can be easily interfaced with microcontrollers. In

comparison to other motor types, it is less expensive and uses less energy just

while it is moving [16]. These types of motors are often used with gear reduction

modules to increase the torque in applications where low speed, but high torque

is required.

2.8.2. Stepper Motors:

Stepper motors can also be employed in solar tracking systems for their precise

angular positioning capabilities. These motors enable accurate adjustments of

solar panels along horizontal and vertical axes, ensuring they follow the sun’s

path effectively. Stepper motors operate in discrete steps, allowing incremental

movement and precise alignment without continuous feedback. Their reliability

and ease of control make them a popular choice, ensuring efficient solar tracking

and maximizing energy harvesting efficiency [17]. However, stepper motors are

relatively expensive compared to DC motors and require complex control

electronics.

2.8.3. Servo Motors:

Servo motors are indispensable components in solar tracking systems,

especially in the context of optimizing the efficiency of solar panels. These

motors excel in providing accurate and controlled motion, allowing solar panels

to precisely follow the sun’s path. Equipped with feedback systems, servos

continuously monitor the position of the panels and make real-time adjustments,

ensuring they remain aligned with the sun’s position throughout the day. Servo

motors offer high torque at low speeds, enabling smooth and precise movement

necessary for both horizontal and vertical adjustments in solar tracking systems.

Their ability to maintain a specific position without drifting, along with their

rapid response to changing conditions, makes them an ideal choice for

applications where precision and reliability are paramount. In solar tracking,

13

servos play a vital role in maximizing energy capture by ensuring optimal

alignment, leading to increased overall energy efficiency of the solar power

system.

2.8.4. Other Actuators:

Other types of actuators used in solar tracking are linear, hydraulic and

pneumatic actuators. Linear actuators offer straightforward linear motion and

are ideal for specific tracking designs, allowing solar panels to adjust their tilt

accurately. However, Linear actuators often have a restricted range of motion,

making them unsuitable for solar tracking systems that require extensive

movement. Achieving rotational movement with linear actuators requires

additional mechanisms, potentially increasing the complexity of the tracking

system design. Hydraulic actuators, on the other hand, are renowned for their

high torque and power output, making them suitable for heavy-duty applications

in larger solar tracking systems but Hydraulic systems require regular

maintenance due to the possibility of fluid leaks, which can be detrimental to

the environment and the system's functionality. Pneumatic actuators, operating

on compressed air, offer a simple and efficient solution for certain industrial

solar tracking applications, delivering reliable linear or rotational motion.

However, Pneumatic actuators generally have lower power density compared to

hydraulic or electric systems, which might limit their application in heavy-duty

solar tracking setups.

2.9. Types of Controllers and Algorithms Used in Solar Tracking Systems:

Controllers used in solar tracking systems play a crucial role in ensuring that solar

panels accurately follow the sun's movement, optimizing energy capture. Several types

of controllers and control algorithms are utilized in these systems:

2.9.1. Microcontroller Based Controllers:

Following microcontrollers are usually used:

A. Arduino:

14

Arduino microcontrollers are popular in DIY and small-to-medium scale

solar tracking projects. They are versatile, affordable, and can interface with

various sensors and actuators [18].

B. Raspberry Pi:

Raspberry Pi boards offer more computational power than Arduino and can

run complex control algorithms. They are suitable for larger or more

sophisticated solar tracking systems.

C. PIC Microcontrollers:

Programmable Integrated Circuits (PICs) are commonly used in industrial-

grade solar tracking applications due to their reliability and efficiency.

2.9.2. Control Algorithms:

Different types of control algorithms are:

A. Proportional-Integral-Derivative (PID) Control:

PID controllers are widely used for their ability to provide precise and stable

control. They adjust the position of solar panels based on the error signal

[19].

B. Fuzzy Logic Control:

Fuzzy logic controllers can handle imprecise input data and are effective in

dealing with uncertainties. They are used in situations where the system

parameters are not well-defined.

C. Machine Learning Algorithms:

Machine learning techniques, such as neural networks, can optimize solar

tracking by learning patterns from data, adapting to changing environmental

conditions, and enhancing accuracy over time.

2.9.3. GPS Based Controllers:

GPS modules provide real-time information about the sun's position based on

the system's geographical location and time. This data is used by the controller

15

to calculate the solar azimuth and elevation angles, ensuring precise solar

tracking. These types of controllers are often used in passive solar-tracking

systems.

2.9.4. IoT Enabled Controllers:

Controllers integrated with the Internet of Things (IoT) technology can transmit

data to cloud platforms. Remote monitoring and control are possible, allowing

users to access real-time tracking data and adjust remotely. This is also useful

in doing data analysis for comparing the efficiency of these systems compared

to a fixed system.

2.10. Experimental Results of Various Dual Axis Solar Tracking Systems:

In [10], the experiment was conducted by calculating and comparing the power output

(through current and voltage) of fixed solar panel system with the dual axis solar

tracking system for a day from 9AM to 5PM. After that the normalized enhancement

was calculated by the formula:

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑑 𝜂 % = [(𝐷𝑢𝑎𝑙 𝐴𝑥𝑖𝑠 (𝑊𝑎𝑡𝑡) − 𝐹𝑖𝑥𝑒𝑑 𝐴𝑟𝑟𝑎𝑦(𝑊𝑎𝑡𝑡))

/𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑃𝑜𝑤𝑒𝑟(𝑊𝑎𝑡𝑡)] × 100

Similarly, in [13], current, voltage and then power is plotted in a table from 8am to

5pm, for a day, for both static and dual axis tracking panel. After this, the power gained

by tracking panel is calculated. The result shows that throughout the day, the static

panel gives a total power of 40.798 watts. In the meantime, the tracking panel

gives 52.948 watts of power altogether during the day. Consequently, 52.78% is the

average power gain of a tracking panel over a stationary panel.

In [11] for a duration of one day, the dual-axis solar system is evaluated hourly by

monitoring its no-load voltage and contrasting it with the static tracker. The plot of no-

load voltage against time is displayed in a figure which clearly shows that a dual-axis

solar tracker generated more voltage than a static tracker at any time.

The system in [14] is a hybrid system so the results show the power output of static,

hybrid, and continuous (active) tracker systems. 45.21 watts, 56.69 watts, and 58.24

watts, respectively, are the total power of the static panel, hybrid tracking system, and

16

continuous tracking system for the duration of the day. Thus, the hybrid tracking

system's average power increase over the static panel is 25.62%. Likewise, the

continuous tracking system has an average power gain of 28.10% over the static panel

and 4.19% over the hybrid tracking system. However, the motors in the two solar

tracking systems use different amounts of power. Thus, a hybrid tracking system saves

44.44% of the power compared to a continuous tracking method. Hence, it can be

concluded that the hybrid dual-axis solar tracking system's power gain is nearly

identical to that of a continuous dual-axis solar tracking system, while the hybrid

tracker's system operation saves 44.44% of the energy compared to a continuous

tracking system.

In [15] a comparison is made between stationary and chronological dual axis solar

tracking system. This comparison is shown to be made over a period of 12 months.

From the results, largest energy differences are seen in the months of May, June, July,

and August. It is concluded that chronologically implemented dual axis system

provides 30-40% more energy than fixed system.

In this case, [12] readings are taken under the light of the torch which is kept at

different angles with respect to the static panel. The static solar panel is positioned 45

degrees from the horizontal. The power output differences between the moving and

static panels are plotted in a table. From the table it is seen that the overall power

generated by the moving panel is more than the total power produced by the static

panel. These findings demonstrate that the goal of utilizing the sun tracking system to

optimize the solar panel's energy production has been accomplished.

17

Chapter 3 -METHODOLOGY

3.1. Overview:

What we aim to achieve is a dual axis solar tracking system. To get to this final result

we need a mechanical structure, actuating system, sensors, and a control mechanism.

First step of the project is the mechanical structure; so, the design and development of

dual axis mechanical structure is done. This includes the cad model, material survey,

structure analysis and then manufacturing & assembly of structure.

In order to drive the mechanism, we require actuators, so we have fabricated a servo

drive for the movement of the mechanism.

Sensors are used to track the sun hence optimal placement of sensors and their

calibration to get valid data plays a critical role in the tracking of sun. Sensors are also

used for data acquisition.

The microcontroller is then programmed to control the complete mechanism. The data

from the sensors is used to drive the motors via the controller so the panels are aligned

with the sun.

Data analysis is then done, and the final results are presented to show the efficiency

after testing and comparing the fixed and dual axis systems.

3.2. Mechanical Structure:

The first step of the project was to design a mechanical structure that would be capable

of performing two axis motion; namely pan and tilt, bear the necessary loads, and be

suitable for small scale applications hence be accessible, affordable, and simple. After

the design, material survey and structure analysis were done.

3.2.1. CAD Design:

We first came up with a CAD design of the structure. We used SolidWorks

software for this purpose.

18

Figure 1. CAD model of the mechanical structure

As seen from the CAD model, the mechanical structure consists of two portions.

A. Static Portion:

The bottom portion is static. It consists of two square plates and a cylinder

in between. The bottom square plate serves as a base and the cylinder is

hollow. The cylinder is used to pass wires from top to bottom. The second

square plate is at the top of the cylinder and attaches with a bearing to

connect to the dynamic part. It also has a motor mount on it.

B. Dynamic Portion:

The upper portion moves. It again consists of a cylinder between two plates.

• Pan Movement: The next plate, attached with the cylinder has holes to

screw the bearing with the plate. This is responsible for the pan rotation.

Two spur gears are used in the pan axis rotation mechanism. The

cylinder gives the structure further height.

19

Figure 2. Spur Gears

• Tilt Movement: We then have a tilt mechanism mounted on the top of

the structure. The tilt portion consists of a U-shaped mechanism. Th

mechanism is static from one end while the other moving end hosts the

solar panel. This mechanism is restricted from moving freely by the self-

locking motor.

The lower static and upper dynamic parts have a bearing connection between

them. An axial bearing is used for this purpose.

Figure 3. Axial bearing

20

Figure 4. Connection between static and dynamic portion.

3.2.2. Material Survey:

After initial research, we decided to make a structure of mild steel and

aluminium. We decided the square plates will be of mild steel and the cylinders

of aluminium. However, after material survey and market research, we learned

that aluminium was much more expensive than mild steel, and aluminium to

mild steel welding is quite difficult. The rates of aluminium were 2300Rs/kg

while that of mild steel were 230Rs/kg. After these findings, we concluded that

a better decision would be to make a structure of mild steel completely. Mild

steel is less costly, easily available, and arc welding; to weld mild steel with

mild steel, is a relatively much easier process than the welding of aluminium

with mild steel. The only drawback is that a complete mild steel structure is

relatively heavier than an aluminium and mild steel structure. This concern was

however satisfied once the structure analysis was completed.

3.2.3. Structure Analysis:

After the design of the mechanical structure and material survey, we did a

structure analysis on our mechanical structure design using the Fusio360

software. From our findings we concluded that our structure was capable of

bearing all the necessary loads and strains. Our concern about the structure

being heavier than aluminium and mild steel structure was also satisfied here

because being heavier not only did not affect the functionality of the structure

and mechanism but also increased the factor of safety of the structure. Some

structure analysis results are displayed below:

21

Figure 5. Analysis of factor of safety

Figure 6. Analysis of factor of von Mises stresses

22

Figure 7. Analysis of strain

3.2.4. Structure Manufacturing and Assembly:

The basic design and parts have been explained in section 3.2.1. Consulting that

explanation, further explanation of manufacturing and assembly of each part

will be done in this section.

1) The next cylinder was cut according to dimensions, from a mild steel

cylinder pipe that we purchased. This cutting was done through an arc

cutting process. This cylinder is welded between two plates.

2) The second plate was laser cut. Holes were drilled in this plate through

laser cutting as well. The holes in this plate were made to screw motor

in as well as the axial bearing.

3) After this plate the assembly has an axial bearing. This bearing is press

fit between two plates.

4) After the axial bearing, we have another plate. This plate was also laser

cut and has holes to screw the bearing.

5) Above this we have a cylinder welded to the previous plate. This

cylinder was cut in the same way as the previous cylinder.

6) Above the cylinder we have another welded plate that was laser cut. It

23

has holes for motor placement.

7) On the previous plate we have two small plates welded vertically with

the previous plate. These two plates have holes each for the bearings of

the tilt mechanism.

8) We then have the U-joint tilt mechanism. It was also laser cut and

welded.

9) Finally, we have a solar panel mount which was laser cut and welded as

well.

10) Each motor is mounted on the shaft with the help of set screws.

11) The pan portion has a spur gear mechanism connected with the first

motor. These gears are placed by sliding them on the upper rotating

cylinder.

12) The tilt mechanism is controlled directly by the motor attached to the U-

mechanism.

3.2.5. Issues, Changes and Final Structure:

We made two major changes to our mechanical structure. The first change is

the cylinder design instead of the square design. Our CAD model initially had

a square structure between the plates instead of the cylinder. We changed this

because cylindrical mild steel pipes were readily available in the market.

The other change was related to the issues we were facing in our tilt mechanism.

The rotating torque of our motor is 100kg cm due to which at a moment arm of

10cm we could only bear 10 kg load while the weight of solar panel along with

the panel mount is heavier than this weight. To solve this problem, we made a

chain and sprocket mechanism with a U-shaped mount. This chain and sprocket

mechanism was changed because it was not giving consistent results. We shifted

to a simple mechanism in which the motor is connected directly to the shaft

welded with the U-shaped mechanism. This was capable of bearing our loads

efficiently.

24

Figure 8. Final Structure

3.3. Actuating System:

We need an actuating system to move the mechanism. We have used an actuating

system based on DC motors converted into servos through the use of servo driver

circuit and feedback mechanism.

3.3.1. Servo System:

A servo system is a closed-loop control system designed to accurately control

the position, speed, or torque of a mechanical system, typically a motor. Servo

systems are widely used in various applications where precise and dynamic

motion control is needed, such as robotics, CNC machines, industrial

automation, and aerospace systems. The closed-loop nature of servo systems

allows for accurate and responsive control, making them essential in many

modern industries.

In the context of dual-axis solar tracking systems, servos play a crucial role in

maximizing the efficiency of solar panels by continuously orienting them

towards the sun. Servos provide precise control over the orientation of solar

panels in both azimuth (horizontal) and elevation (vertical) axes. This precision

ensures that the panels are always positioned optimally to capture maximum

sunlight throughout the day, maximizing energy generation. Servos offer fast

25

and dynamic response times, allowing them to quickly adapt to changes in solar

position caused by factors such as cloud cover or changes in atmospheric

conditions. This responsiveness helps maintain maximum energy output even

in varying weather conditions.

3.3.2. Components of the Servo System:

Following are the main components of a Servo System:

A. Servo Motor:

The actuator responsible for providing the mechanical power and motion.

Since we had to move a huge weight of the solar panel and its mount, we

needed motors that could handle that kind of torque. We settled on using

high torque geared motors (5840-31ZY worm gear DC motor). These

motors utilize a gearbox to reduce the rpm while increasing the torque. We

used 12V 11 RPM and 12V 7 RPM for the pan and tilt axis respectively.

Both are capable of providing 100 kg cm of torque which is adequate for

our application. These motors also use a self-locking worm gear system

which means that if no power is applied, the shaft stays in its position even

if any external force is applied. This is especially beneficial for our dual axis

tracking system because we don't want the motors to be drawing power all

the time. Motors are turned on periodically to change the orientation of the

panel towards the sun and then turned off. This uses very less power since

the motors are off most of the time. Self-locking feature is also helpful

during windy weather conditions.

26

Figure 9. Servo motors

B. Feedback Device:

This component provides information about the motor's actual position,

speed, or other relevant parameters back to the controller. Common types of

feedback devices include encoders, resolvers, or potentiometers.

We are using an AS5600 magnetic encoder. This is an IC module that

measures magnetic field. It provides a serial output and has 10 bit resolution

for maximizing precision. A magnet is placed on the shaft of the motor and

this encoder IC is placed at some distance to the magnet, The encoder

continuously monitors the magnetic field and relays this information to the

controller. This information can be used to accurately determine the position

and speed of the motor shaft.

C. Controller:

The brain of the servo system. It processes input signals (commands) and

compares them to the feedback from the motor. Based on the error between

the desired and actual state, the controller generates control signals to adjust

the motor's behaviour.

We are using atmega328p as the controller for this purpose. A PI controller

is implemented in the atmega328p which brings the motor to the desired

position quickly and accurately. The derivative controller is not used as the

motor is moving at relatively low speeds.

For slow-moving motors, a PI controller is usually sufficient and beneficial

because it provides a balance between simplicity and performance. It can

27

effectively eliminate steady-state error and is generally easier to tune

compared to a PID controller, which includes the derivative component that

may not be necessary for slow-moving systems.

D. H-Bridge:

An H-bridge was also used to control the dc motors. It was implemented

using two BTS7960 half bridge ICs and a buffer in between to isolate the

microcontroller.

Figure 10. Block Diagram of actuating system

3.3.3. PCB Design for Motor Driver Circuit:

A PCB was designed keeping in view our requirements. The controller, power

delivery system, H-bridge and the buffer ICs were part of the design. All of

these components were fitted on a 60mm by 60mm 4-layer PCB board. Utilizing

one layer as a ground plane for noise reductions, and one for VCC. The other

two layers were used for routing. A JST connector was also placed to the

encoder connections. The PCBs were then ordered from JLC PCB. All the

components were soldered by hand. The PCB was then tested through various

stages namely burning bootloader, uploading code, H-bridge testing, encoder

testing. All stages were verified before the PCB was used in the project.

28

Figure 11. PCB design

Figure 12. 3D PCB layout

3.3.4. Incorporation of Limit Switching in Actuating System:

Each servo also has two limit switches for the two extreme positions. The limit

switches help in the calibration of both servos. The magnetic field of the magnet

can drift over time, so the calibration is essential to provide accurate control

over the direction of the motors. At startup, both motors move to their extreme

positions, the encoder value at extreme positions is stored and mapped to a servo

signal. A servo signal can be then used to control the position of the motor. The

motor can now be moved anywhere in its range.

29

3.3.5. Control Logic for Actuators:

The controller continuously monitors the value of the encoder. At startup, the

motor is moved to one extreme position, the extreme position is detected when

a limit switch is pressed. The value of encoder at that point is stored. The motor

is then moved in the other direction until the limit switch in that direction has

been pressed indicating that the limit in that direction has been reached. The

value of encoder at this point is also stored. This gives us an encoder range,

which our motors can access and move anywhere between this range. The

incoming servo signal from the master controller is then mapped to this range.

A servo signal uses duty cycle to control the orientation of a servo. A duty cycle

of 1ms usually means 0 degrees and a pulse width of 2ms means 180 degrees.

The master controller can now control the orientation of the servos by varying

the duty cycle of the servo signal. This is analogous to Servo.write(Angle) in

Arduino. No movement is done if the input servo signal is out of this range.

3.3.6. Code for Servo Driver:

The code that we burned in the servo driver circuit is given in Annex A. In this

code, after importing the necessary libraries, we define the pins where the

related components are connected. We then defined a function

“calibration” for calibrating the motors. In setup function, we set up the pins

defined and calibrate the motors by calling the calibrate function. We then

declare and define variables to be used in the PI control loop. In the loop

function, we check the pulse width of the input signal, map it to our range of

encoder values to the position in terms of encoder value, then implement some

necessary checks to avoid this value exceeding our range of motor motion. We

then move the motors in the direction required until we are at the encoder value

mapped by the input signal. These steps are repeated.

As mentioned previously, the motors we are using act as servos due to the

magnetic encoders mounted in front of the motors. We were facing an issue

regarding this for out tilt motor due to the limitation of our mechanical structure.

It was not possible to mount the encoder of the tilt motor in a way that it gave

accurate readings. To solve this issue, we burned a different code in the motor

30

driver circuit of the tilt motor. The code is given in Annex B. This code works

in such a way that after importing the necessary libraries, we define the pins

where the related components are connected. In setup, we set the pins as either

input or output accordingly. After this, we move the motor in both extremes till

limit switches for calibration. We then stop the motor in the midpoint and await

input signal. In the loop function, we continuously check for input pulse width.

If the pulse width indicates an angle of greater then 90, we move the motor in

the upward direction. If the pulse width indicates an angle of lower than 90, we

move the motor in the downward direction. The speed of the motor is related to

how much the input angle differs from 90. If the difference is large, the motor

will move with high speed. If the input angle is 90, no action will be performed,

and the motor will stay still.

3.4. Microcontroller:

We are using three microcontrollers in our project. One is the Atmega328P. The other

two are Raspberry Pi 5 and Arduino UNO. We are using Atemga328P in the servo

driver circuit used in the actuating mechanism of the structure. Raspberry Pi 5 is being

used for data logging while active tracking is being done through Arduino UNO.

Initially, we wanted to use Raspberry Pi 5 as our primary controller. We decided to

work on Raspberry Pi 5 for a new experience and to learn and acquire practice and

expertise on a controller we have not used before. However, keeping efficiency and

power consumption in mind, which is the main aim of our project, we decided to

achieve active tracking via Arduino UNO as it consumes much less power than Pi.

Nevertheless, we have developed active tracking codes for both these controllers for a

small-scale model of dual axis tracking. The codes for Arduino were refined for the

actual model while the codes for Raspberry Pi 5 can assist in the future prospects of

this project. Chronological tracking along with active tracking can make a hybrid dual

axis solar tracking system. Raspberry Pi has much more computational power than

Arduino microcontrollers for the algorithms of chronological tracking. Hence our

project can be further modified, without any change in its structure, and actuating

system while only adding and refining to its initial control algorithm. All these codes

are provided in annexures.

31

3.5. Sensors:

Our project is the active dual axis solar tracking system. For this reason, it requires

sensors that actively track the sun. Depending on the values of these sensors, the

mechanism is moved so that it faces the sun. Along with the sensors used in active

tracking, we also require sensors that will measure voltage and current generated so

we can log this data as part of our project and make necessary calculations regarding

the power generated by the solar panel system. The sensors used for active tracking

are LDRs. The sensors for current and voltage measurement include ASC712 current

sensing module and a self-fabricated voltage divider circuit.

3.5.1. ADS1115 Module with Sensors:

As mentioned previously, codes for the small-scale model were developed for

both the controllers. Pi works on digital signals instead of analogue signals. Our

sensors give analogue values. For this reason, we have used an ADC module

i.e. ADS1115 with our sensors so they can be used effectively by both the

controllers. ADS1115 is a 16-bit analogue to digital convertor with 4 channels

and communicates through i2c. Because the module can run on supply voltages

ranging from 2V to 5.5V, it can be used with any popular 3.3V and 5V

microcontroller or processor, including the Arduino and Raspberry Pi. Up to

four of these modules can be connected to the same I2C bus by configuring the

module's I2C address to one of the four available addresses. Therefore, you may

effectively increase the number of analogue inputs on an Arduino or other

microcontroller by up to sixteen [20]. We are using a total of 2 of these modules.

One is used with LDRs while the other is used with voltage and current sensors.

3.5.2. LDRs:

The basis for the operation of light-dependent resistors (LDRs) is

photoconductivity. LDRs are frequently employed in circuits that need to detect

the presence or amount of light. Their photosensitivity is precisely why they

were designed [9]. As the name suggests, their resistance varies with light

intensity. The resistance of LDRs decreases as the light intensity increases.

A. Placement of LDRs:

32

We had to decide whether to place our LDRs in a cross or square formation.

We decided on the square placement as each top, bottom, left, and right

values relaying light intensity is then dependent on 2 LDRs each instead of

1. The LDRs are mounted on top of the panel in this formation with the aid

of a cross-shaped piece as done in [11]. This sort of placement with the

cross-shaped piece is also aided by an opaque plate, so that some LDRs are

shadowed and the one that is illuminated is the one with most sunlight,

hence giving better readings. For the case of cross-piece, the goal of it is

also to cast a shadow on two or more LDRs if the cross is not pointing

perpendicularly towards the sun [12].

B. LDRs and ADS1115 Module:

As mentioned before, one of the ADS1115 module is used with LDRs.

ADS1115 has 4 channels, and we are using 4 LDRs. Hence our data from

LDRs is easily converted by this module and utilized by the microcontroller.

C. Connections and Circuit Diagram:

• The resistance of LDRs varies with light intensity. Due to this, the

voltage across the LDRs is dependent on the light intensity as well. For

this reason, a voltage divider circuit is used. An LDR is connected in

series with a resistor. One end of the LDR is connected with an external

supply. The end of LDR common with one of the resistor legs, is

connected to one channel of the ADC. The other leg of the resistor is

connected to the -ve of the power supply and ground is made common

with the microcontroller.

Figure 13. LDR connections

33

• ADS1115 has 10 pins. 4 are channel pins, 1 is ALRT, 1 is ADDR, 1 is

SDA, 1 is SCL. Then we have GND and Vdd. Vdd pin and GND pin is

connected to 3.3V and GND pin of microcontroller respectively. SCL

and SDA of this module and microcontroller are connected. For LDRs

connection with this module the ADDR pin is either free or connected

to Vdd. This assigns the address of the module. If this module ADDR

pin is free then the module with current and voltage sensors will have

ADDR connected to Vdd and vice versa. The four channels are then

connected with the LDRs such that Top Right (TR) is connected at A0,

Bottom Right (BR) is connected at A1, Top Left (TL) is connected at

A2, and Bottom Left (BL) is connected at A3.

Figure 14. ADS1115 connections LDR module

3.5.3. Current and Voltage Sensors:

We have used current and voltage sensors with a data logging module so that

we can get the values of current, and voltage generated by the solar panel and

hence draw conclusions and results regarding the power generated by the static

panel and dual axis tracker.

A. Current Sensor:

We have used ASC712 30A range current sensing module. It is a hall effect

sensor. Current flows through the onboard hall sensor circuit in its IC. The

hall effect sensor uses its ability to generate a magnetic field to detect

incoming current. The voltage produced by the hall effect sensor, upon

detection, is proportionate to its magnetic field and is subsequently utilized

for measuring the current [21].

34

B. Voltage Sensor:

We have made our own voltage sensor. We have used the basic concepts of

voltage divider for this purpose. Our voltage sensor is a voltage divider

circuit which measures voltage across the resistor to compute the source

voltage.

C. Connection and Circuit Diagram:

• External source, the current of which has to be measured is connected to

the ports on one side of the sensor. The other side of the sensor has VCC,

OUT and GND pins. VCC is connected to any external supply, the GND

is made common with -ve of this supply and GND of microcontroller.

The OUT pin is connected to A1 channel of the second ADS1115

module.

Figure 15. Current sensor connections

• Voltage divider circuit for voltage measurement is shown in the

following figure:

Figure 16. Voltage sensor connections

35

• Connections of the ADS1115 module for these sensors is similar to the

ones explained in the case of LDRs.

Figure 17. ADS1115 connections current and voltage sensors

3.6. Data Logging Module:

For the demonstration of results in this project, it is necessary to calculate the power

generated with a static solar panel and power generated with a solar panel placed on a

dual axis solar tracking system. For this purpose, we require a circuit module that

calculates short circuit current and open circuit voltage of the solar panel. We designed

and programmed a circuit that calculates the open circuit voltage of the solar panel.

After this the circuit is closed through a MOSFET acting as a switch. This closing is

controlled by Raspberry Pi. Once the circuit is closed the current is measured and then

the circuit is opened again.

The electrical circuit consists of two branches parallel to each other and parallel to the

solar panel. One branch has the voltage sensor attached to it. The other branch has the

current sensor attached to it in series with a MOSFET and optocoupler. The gate of

the MOSFET is attached to a GPIO pin of Raspberry Pi. When this pin is powered, a

voltage acts on the gate, closing the circuit. Optocoupler is used to control the

MOSFET while isolating the Raspberry Pi.

36

Figure 18. Connections of data logging module

Figure 19. Data logging module

The code for acquisition of data using this data logging circuit is explained ahead in

the section of control algorithm.

3.7. Implementation of the Control Mechanism:

The final code used to control the mechanism was developed through a series of steps.

We initially started writing a code on Arduino. The reason for this was to test the basic

logics of our code, test the sensors, and work on a controller we are more familiar with

37

in order to debug errors and identify issues easily. These initial codes were written for

a small-scale model. We also developed the codes for dual axis active tracking for this

model in Raspberry Pi 5.

3.7.1. Small-Scale Model:

We made a small-scale model of a dual axis tracker to test the codes beings

written. This model was made from cardboard. It had a cardboard base with

cross-shaped cardboard plates glued to the base. The LDRs were connected in

square formation between these plates. We also made a temporary breadboard

circuit to connect the LDRs with Arduino through ADS1115. A 9g servo motor

was attached to the base of the model at the bottom for pan movement. Another

9g servo motor was attached to one side for tilt motion. The servo motors were

also connected with Arduino. We tested all the codes of Arduino and later, of

Raspberry Pi, on this small-scale model before testing on the actual motors of

our mechanism and the complete structure. We did this so that the process of

debugging would be easier. Once you are certain that the code is fine, you can

solve the problems that arise with a different and better outlook.

Figure 20. Small-scale dual axis tracker module

38

3.7.2. Initial Codes for LDRs, ADS1115 and Servos for Arduino:

We wrote the first pieces of code to get the values of LDRs through the

ADS1115. For this, we had to get familiar with the ADS1115 Adafruit library.

The code that shows how we got these values of LDRs is attached in Annex C.

First, we create an ADC object. Next, we assign names to each channel. The

value from each channel is taken through readADC_SingleEnded() function.

Once values from each channel were taken; Top Right (TR), Bottom Right

(BR), Top Left (TL), and Bottom Left (BL) LDRs, Top, Bottom, Left, Right

were calculated through averages of LDRs present at each location. For

example, Top = (TR+TL)/2 and so on. These values were then displayed on the

serial monitor. We then used these values to identify the difference between Top

and Bottom and Left and Right LDR values in order to move the motors in

appropriate direction to minimize these differences hence align with the highest

light intensity.

We also wrote and checked basic codes using the servo libraries to test our 9g

servo motors. We identified the points of 0 and 180 degree for each servo as we

have to either increment or decrement the angles to get to our desired position

while active tracking.

3.7.3. Arduino Code for Active Pan Axis Tracking:

After acquiring the LDR values, we started working on a code that actively

tracks the light intensity in the pan axis direction. The code has been attached

in annex D. In this code we created a function that reads the LDR values from

each channel of the ADC, calculates the Top, Bottom, Left, Right values as

explained before. It finally calculates the difference between Right and Left

LDR values. In the main loop we first call this function and check if a difference

of more than 500 exists between these values. This threshold of difference can

be changed according to our needs. If such a difference exists it means light

intensity is greater towards the right side. We introduce a while loop which

functions as long as the difference in greater than 500. In this loop we change

the pan servo angle in such a way that our module pans towards the right side.

We keep checking the difference value continuously by calling the function and

39

then changing the angle until the difference condition is met. Similarly, we

check if a difference of less than -500 exists between these values. This

threshold of difference can be changed according to our needs. If such a

difference exists it means light intensity is greater towards the left side. We

introduce a while loop which functions as long as the difference in less than -

500. In this loop we change the pan servo angle in such a way that our module

pans towards the left side. We keep checking the difference value continuously

by calling the function and then changing the angle until the difference condition

is met.

We tested this code on our small-scale module and made it track a flashlight. It

worked effectively so we proceeded to incorporate tilt axis in it as well.

3.7.4. Arduino Code for Active Dual Axis Tracking:

After being satisfied with the code for pan axis tracking, we introduced similar

functions for tilt axis tracking. The complete code is attached in Annex E. We

created another function to check the difference between Top and Bottom LDR

values. In this function we read the LDR values from each channel of the ADC,

calculate the Top, Bottom, Left, Right values as explained before. Finally, we

calculate the difference between Top and Bottom LDR values. In the main loop,

after the pan tracking code, we call this function and check if a difference of

more than 500 exists between these values. If such a difference exists it means

light intensity is greater towards the top. We introduce a while loop which

functions as long as the difference in greater than 500. In this loop we change

the tilt servo angle in such a way that our module tilts upwards. We keep

checking the difference value continuously by calling the function and then

changing the angle until the difference condition is met. Similarly, we check if

a difference of less than -500 exists between these values. If such a difference

exists it means light intensity is greater towards the bottom. We introduce a

while loop which functions as long as the difference in less than -500. In this

loop we change the tilt servo angle in such a way that our module tilts down.

We keep checking the difference value continuously by calling the function and

then changing the angle until the difference condition is met.

40

We tested the complete code on our small-scale model and made it track a

flashlight. It worked efficiently. We were satisfied with the results of our code

and knew that the logics were sound. The code was now ready to be converted

according to Raspberry Pi.

3.7.5. Coding in Raspberry Pi:

Once satisfied with the results of Arduino code, we moved towards Raspberry

Pi. The basic logic of the code was the same, but it had to be converted according

to the libraries available in Raspberry Pi and the coding language of Pi i.e.

Python. The initial process of coding was similar to that of Arduino. We learned

how to get LDR values from ADS1115 using the Adafruit library of Raspberry

Pi. We then experimented on the code for servo control.

3.7.6. Code for Servo Control in Pi:

The major problem we faced while coding in Raspberry Pi was related to servo

control. The libraries of Arduino allow you to input an angle and it goes to that

position on its own. You can also read the current angle and make necessary

increments or decrements. The servo control in Raspberry Pi is not as straight

forward. We first tried using the angular servo library. The problem with this

was that it would not allow us to increment small angles to adjust our servo. The

least possible increment we were getting through it was 15 degrees. This was

not acceptable as we require small degree increment for more efficient tracking.

To solve this problem, we created our own function to convert duty cycle to

angle and vice versa. For this purpose, we used the RPi.GPIO library to access

the GPIO pins of Raspberry Pi. We know that maximum angle (180)

corresponds to maximum duty cycle and minimum angle (0) corresponds to

minimum duty cycle. Hence, we used the concept of interpolation to make an

equation [22]:

(duty cycle – minimum duty cycle) / (maximum duty cycle – minimum duty

cycle) = (angle-0) / (180-0)

duty cycle = ((angle / 180) * (maximum duty cycle – minimum duty cycle)) +

minimum duty cycle

41

Similarly,

angle = ((duty cycle – minimum duty cycle) / (maximum duty cycle – minimum

duty cycle)) * 180

These equations are used in the functions to calculate duty cycle from angle and

angle from duty cycle. For servo control we need to know what the current angle

of the motor is. To find this we first use an in-built function of i.e. _dc. This

function gives the current duty cycle. We then call our function of duty cycle to

angle to get the current angle. The angle is changed according to our needs. This

new angle is converted to the required duty cycle using our function of angle to

duty cycle. We then use another in-built function of ChangeDutyCycle to input

the new duty cycle to get our required angle.

This code of servo control is attached in Annex F. We tested this code on the

servos of our small-scale model. We also tested this code, along with the servo

driver circuit, on the actual motors of our mechanism to test the servo control.

3.7.7. Code for Active Dual Axis Tracking in Raspberry Pi:

Once the problem of servo control was fixed, we incorporated the code of active

tracking with servo control code. In the active tracking code, the servo

movement is dependent on the LDR values. This code was similar to the code

written for Arduino. We had already done the basic LDR data acquisition in Pi,

we had written a code for servo control, the only thing left was to change the

functions of Right and Left, and Top and Bottom difference calculations. We

wrote these functions and constructed the code attached in Annex G. As

mentioned before, this code is similar to the arduino code with an additional two

functions related to servo control. Hence, we have 4 functions. Two functions

calculate differences while the other two are the duty cycle to angle and vice

versa functions. We have a ‘while TRUE’ function that is a main loop. In this

function we first check the left and right LDR difference values. If a difference

of more than 500 exists between these values, we introduce a while loop which

functions as long as the difference in greater than 500. In this loop we change

the pan servo angle in such a way that our module pans towards the right side.

We keep checking the difference value continuously by calling the function and

42

then changing the angle until the difference condition is met. This change of

angle is the portion of the code that differs from the Arduino code. This is

because this angle change is done through the functions of duty cycle to angle

and angle to duty. These angle changes are explained in the previous heading.

Similarly, we check if a difference of less than -500 exists between these right

and left values. If such a difference exists it means light intensity is greater

towards the left side. We introduce a while loop which functions as long as the

difference in less than -500. In this loop we change the pan servo angle in such

a way that our module pans towards the left side. We keep checking the

difference value continuously by calling the function and then changing the

angle until the difference condition is met.

After this we check the difference between top and bottom LDR values. If top

is greater the mechanism tilts up. If top is less, the mechanism tilts down. The

code works in the similar way as explained above.

We tested this code on our small-scale module and made it track a flashlight.

This code also worked effectively.

3.7.8. Code for Data Acquisition and Logging:

As mentioned in the data logging module heading, we had to measure a short

circuit current and an open circuit voltage. For this reason, we had to make our

circuit short for a while. This was controlled by the Raspberry Pi. In addition to

this, we had to gain the data from the sensors and save the data. We wrote a

code for data logging attached in Annex H. In this code we first defined the

channels of the ADS1115. We got voltage from channel 0 and current from

channel 1. We first measure voltage simply by reading the values from the

ADS1115 module. We then generate a high output at the Raspberry Pi pin

connected to the gate of the MOSFET in order to close the circuit. We then

calculate the current and after that open the circuit by sending low to the

previous pin. Since the current sensor outputs a voltage corresponding to a

current, we change the voltage reading to current accordingly. The data is

written in a local file and sent to google script as well for us to access real time

data logging.

43

We initially faced an issue in our data logging module. The module would not

output correct current values. This was solved by increasing the time of short

circuit so that the sensor can read data while the circuit is short. Closing the

circuit for a lesser time was resulting in an error since the circuit would open

before taking the current reading.

This data logging code was testing on the solar panel itself. We acquired the

results of power generation by the static solar panel and dual axis tracker using

this code.

We wrote a command on Pi’s crontab to run this program as soon as the Pi

powers on. Hence, you do not need a display attached to run your command.

We did this by typing “sudo crontab -e” on the terminal, then “@reboot pyhton3

[path of program] &”. After this we save and exit and our program is ready to

run at startup.

3.7.9. Final Code:

As mentioned before, initially we wanted to achieve active tracking through

Raspberry Pi. Considering the power consumed by the controllers and our aim

to increase efficiency as much as possible, we finally decided to accomplish

active dual axis solar tracking through the use of Arduino UNO. For this

purpose, the Arduino codes for the small-scale model were refined to work on

our actual system. They were also refined according to the solar tracking instead

of flashlight testing. We had to change threshold values accordingly for this.

The final code of our dual axis solar tracker is attached in Annex I.

As mentioned in the actuating portion of the thesis, the motors we are using act

as servos due to the magnetic encoders mounted in front of the motors. We were

facing an issue regarding this for out tilt motor due to the limitation of our

mechanical structure. It was not possible to mount the encoder of the tilt motor

in a way that it gave accurate readings. To solve this issue, we burned a different

code in the motor driver circuit of the tilt motor. That code works in such a way

that it stops when the given input angle is 90. It moves upwards when it is

greater than 90 and moves downwards when it is less than 90. The speed of

moving up and doing depends on how much more or less the input angle is from

44

90 respectively. The servo driver code for the pan motor, however, works as any

other servo. For this reason, we had to adjust the tilt portion of our Arduino

code, so it works according to the code in the tilt servo driver.

The final code attached in Annex I resembles the code of active dual axis

tracking in small-scale model attached in Annex E. We made some changes

regarding the thresholds and tilt movement. The functions of calculating

differences are slightly changed in the sense that we defined global variables to

be used.

We also added watchdog timer and EEPROM library in this code. the reason

for this was to reset our Arduino in case it hangs. The current angle is stored in

EEPROM so even if the Arduino hangs and resets, it stays at the angle it was at

before resetting. Due to this we do not lose any tracking progress and the

mechanism continues to track from where it left in case of hanging and resetting.

The logic of the tilt portion of the code is similar to the pan motion. The only

difference is in incorporating the motion of the motor in accordance with the

servo driver code. The upward motion is achieved by giving an input angle of

150 instead of angle increments used in pan tracking. This upward motion is

followed by a delay and rechecking of LDR values. Hence, the motor moves

upwards for a small amount of time, achieving little angle increments, and then

checks the LDR values to identify if it should repeat this or stop. Same logic is

used to move downwards but with an input angle of 40.

The loop for tracking repeats after every 15 minutes so the mechanism adjusts

according to the sunlight after every 15 minutes.

The flowchart explaining our final code is given below:

45

Figure 21. Flowchart of code

46

3.8. Solar Panel:

We are using a 4 by 2.5ft solar panel. The weight of the panel is 6.2 kg. The panel is

rated for a maximum power of 100W. Its open circuit voltage is 22.45V and short

circuit current is 5.99A.

Figure 22. Solar panel specifications

3.9. Electronics:

Basic electronics and circuit diagrams have been explained where needed previously.

This section covers over all power supply to the components. We have a 7.2AH 12V

lead acid battery. This is used as an external supply to all components. We have two

5A buck convertors. One is used to power Arduino at 5V the other is used to power

ADS module at 3.3V. Motors are connected to battery via the servo driver.

47

Chapter 4 -EXPERIMENTAL RESULTS AND ANALYSIS

4.1. Overview:

Chapter 4 presents the experimental results and analysis of power generated by static

solar panel system and dual axis solar tracking system. We acquired voltage and

current generated by each system throughout the day. Power is calculated through this

data. We analyse which system generates more power. Along with this, we also

consider how much power is consumed by each component of our dual axis solar

tracking mechanism. These calculations are then used to draw the results and

conclusions about the efficiency of our system.

4.2. Data Collection and Experimental Setup:

The system is powered on by turning on the battery and then turning on the Arduino.

Data logging circuit is connected to Raspberry Pi 5. Solar panels are connected to this

circuit and Pi is powered on. This starts our system. The motors first calibrate and then

start tracking. The datalogging also starts.

4.3. Data Acquired from Static Solar Panel System:

Data of the static solar panel was logged from 12pm to 8pm. Voltage and Current were

calculated after every minute. From that we calculated power generated at each

minute. We calculated average power for each minute and multiplied it with 60 to get

an approximate of energy produced within that minute. We then converted this into

watt-hour. Hence, the total estimated energy produced for each hour is shown in the

table below:

TABLE 1. DATA ACQUIRED BY STATIC SOLAR PANEL

Time Total Energy

(Ws)

12pm to 1pm 11.17017

1pm to 2pm 73.16799

2pm to 3pm 72.46134

3pm to 4pm 57.2074

4pm to 5pm 43.89767

5pm to 6pm 16.96094

6pm to 7pm 4.053667

7pm to 8pm 0.346667

 ∑ = 279.27

48

This shows that the estimated total energy produced from 12pm to 8pm by a static

panel is 279.27Wh.

4.4. Data Acquired from Dual Axis Solar Panel System:

Data of the dual axis solar tracking panel was logged from 12pm to 8pm. Voltage and

Current were calculated after every minute. From that we calculated power generated

at each minute. We calculated average power for each minute and multiplied it with

60 to get an approximate of energy produced within that minute. We then converted

this into watt-hour. Hence, the total estimated energy produced for each hour is shown

in the table below:

TABLE 2. DATA ACQUIRED BY DUAL AXIS TRACKER PANEL

Time Total

Energy

(Ws)

12pm to

1pm

13.68831

1pm to 2pm 82.76008

2pm to 3pm 81.60767

3pm to 4pm 78.56311

4pm to 5pm 72.24367

5pm to 6pm 56.66819

6pm to 7pm 25.28995

7pm to 8pm 0.924611

 ∑ = 411.75

This shows that the estimated total energy produced from 12pm to 8pm by a dual axis

solar tracking panel is 411.75Wh.

4.5. Power Consumed by Dual Axis Solar Tracking System:

The tracking system was powered by a fully charged battery. After tracking for the

day, the battery was charged again. The charger showed that it had to provide

1550mAH to charge battery to maximum. This shows that our complete system

consumed 1550mAH. This is equivalent to 18.6Wh since our battery is of 12V. Hence,

the total energy consumed by our dual axis solar tracking system from 12pm to 8pm

is 18.6Wh.

49

4.6. Analysis of Results:

The results are analysed in multiple ways. We have compared the energy produced by

both the systems. After that we have calculated the efficiency of our dual axis solar

tracking system. Considering, our system consumes power in actuation, we have then

compared the net energies available of both systems.

4.6.1. Comparison of Total Energy Production:

Data regarding total estimated energy produced by each panel is given table 3.

The percent gain is calculated by the following formula:

% 𝐺𝑎𝑖𝑛 = (
𝑓𝑖𝑛𝑎𝑙 − 𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑖𝑛𝑖𝑡𝑖𝑎𝑙
) ∗ 100

In this formula final is the energy produced by dual axis tracking panel and

initial is the energy produced by static panel.

TABLE 3. PERCENT GAIN IN ENERGY PRODUCTION

Time Total Energy

Static

(Wh)

Total Energy

Dual Axis

(Wh)

Percent Gain

 per Hour

12pm to 1pm 11.17017 13.68831 22.5%

1pm to 2pm 73.16799 82.76008 13.12%

2pm to 3pm 72.46134 81.60767 12.6%

3pm to 4pm 57.2074 78.56311 37.33%

4pm to 5pm 43.89767 72.24367 64.57%

5pm to 6pm 16.96094 56.66819 234.1%

6pm to 7pm 4.053667 25.28995 524%

7pm to 8pm 0.346667 0.924611 167%

 ∑ = 279.27 ∑ = 411.75 47.44%

Figure 23. Comparison of energy production by both system

50

This table shows gain in the total energy produced for each hour by dual axis

tracking panel over static panel. Since the energy produced by the static panel,

from 12pm to 8pm, is 279.27Wh and that produced by dual axis tracking panel

for the same amount of time is 411.75Wh; the total gain in the energy produced

by dual axis tracking system over static system is 47.44%. From the graphs we

can see that the major difference in energy production occurs during the non-

peak hours. This is because dual axis tracking panels can align according to the

sun’s position and maximize the energy output.

4.6.2. Efficiency of Dual Axis Solar Tracking System:

Efficiency of our dual axis solar tracking system can be calculated through

energy consumption and energy generation. The energy consumed by the

system from 12pm to 8pm is 18.6Wh while the energy produced by our solar

panel is 411.75Wh. Hence, efficiency of our system is calculated through the

formula:

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = (𝑛𝑒𝑡 𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑢𝑡𝑝𝑢𝑡 ÷ 𝑒𝑛𝑒𝑟𝑔𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑) × 100

Net energy output is gained by subtracting 18.6 from 411.75 i.e. 393.15Wh.

Using this in the efficiency formula we get the result that our system is 95.48%

efficient.

4.6.3. Comparison of Net Energy Available:

In addition to the previous results, we see that the net energy available by our

dual axis solar tracking system is 393.15Wh after we subtract the energy

consumed by the actuating system. This energy is still 40.78% more than the

total energy generated by a static panel.

51

Figure 24. Comparison of final energy available by both system

52

Chapter 5 -CONCLUSION

5.1. Overview:

In order to maximize the efficiency of solar energy collection, we have successfully

designed and built a dual-axis solar tracking system in this thesis. The project required

the integration of hardware, the implementation of control mechanism, and a thorough

investigation of various tracking systems. The main accomplishments are outlined in

this conclusion, along with some suggestions for future work to improve the system

even further.

5.2. Summary of Achievements:

A. Design and Implementation:

• Created a sturdy, dual-axis solar tracking system that can precisely track the

sun during daytime.

• Employed an array of sensors, microcontrollers, and actuators to

accomplish exact solar panel movement and positioning.

B. Efficiency Improvement:

• Compared the performance of the static solar panels and the dual axis

tracking system.

• Showed a notable rise in energy capture, and the tracking system indicated

an estimated 40.78% gain in energy production.

• Showed that our system is 95.48% efficient in regards to the energy

produced and consumed by our system

C. Control Mechanism:

• Implemented a reliable control mechanism that modifies the panel's

orientation in response to LDR data based on the sun's position in real time.

D. Hardware Integration:

• Successfully combined key hardware elements, such as motors, light

sensors, voltage and current sensors, and a microcontroller, to guarantee

smooth operation and communication.

• Through thorough testing and quality checks, the system's durability and

stability were guaranteed.

53

E. Cost-Effectiveness:

• Optimized the choice of components and materials to get a cost-effective

solution without sacrificing performance.

5.3. Future Recommendations:

A. Optimization of Control Algorithm:

• Investigate how to include cutting-edge machine learning methods to

forecast solar patterns and improve tracking precision.

• Examine adaptive algorithms that can dynamically adapt to weather

variations and seasonal fluctuations.

• In corporate chronological tracking algorithms to the current module in

order to make a hybrid dual axis solar tracking system.

B. Integration with Smart Grids:

• Provide the solar tracking system the ability to communicate with smart grid

technologies to enhance energy storage and distribution.

• Incorporate functionalities that provide remote supervision and

management through IoT (Internet of Things) technologies.

C. Enhanced Durability and Maintenance:

• Investigate materials and designs that improve the durability of the system

in harsh environmental conditions.

• Create a thorough maintenance plan with instructions to guarantee

efficiency and reliability over the long run.

5.4. Final Thoughts:

The dual-axis solar tracking system that was created for this project is a noteworthy

development in the field of solar energy technology. This system can make a

significant contribution to renewable energy programs by improving the reliability and

efficiency of solar energy collection. Further optimization and development of this

system's capabilities can be achieved by future research and development activities,

guided by the recommendations offered. This will promote more widespread adoption

and integration of solar energy into the global energy landscape.

54

REFERENCES

[1] Mohd Rizwan Sirajuddin Shaikh, Santosh B. Waghmare, Suvarna Shankar Labade,

Pooja Vittal Fuke, Anil Tekale, “A Review Paper on Electricity Generation from,”

International Journal for Research in Applied Science & Engineering Technology

(IJRASET), 2017.

[2] Murat Kacira, Mehmet Simsek, Yunus Babur, Sedat Demirkol, “Determining

optimum tilt angles and orientations of photovoltaic panels in Sanliurfa, Turkey,”

Renewable Energy, vol. 29, no. 8, pp. 1265-1275, 2004.

[3] Hussain Mohammad Fahad, Aporajita Islam, Mohaimenul Islam, Md. Fahim Hasan,

Wasima Fariha Brishty, Md. Mosaddequr Rahman, “Comparative Analysis of Dual

and Single Axis Solar Tracking System Considering Cloud Cover,” in 2019

International Conference on Energy and Power Engineering (ICEPE), Dhaka,

Bangladesh, 03 June 2019.

[4] B. B. Priti Debbarma, “A Review on Solar Tracking System and Their

Classification,” IJRAR, p. 1, 2019.

[5] M. C. Adrian C., “Azimuth-Altitude Dual Axis Solar Tracker,” WORCESTER,

2010.

[6] H. K. A. J. A. M. H. A. K. S. A. Mousazadeh, “A review of principle and sun-

tracking methods for maximizing solar systems output,” Renewable and Sustainable

Energy Reviews, vol. XIII, pp. 1800-1818, 2009.

[7] V. M. A. Antonio L. Luque, Concentrator Photovoltaic, 2007.

[8] M. Ghassoul, “A dual solar tracking system based on a light to frequency converter

using a microcontroller,” Fuel Communications, vol. 6, March, 2021.

[9] “What is Light Dependent Resistor : Circuit & Its Working,” [Online]. Available:

https://www.elprocus.com/ldr-light-dependent-resistor-circuit-and-working/.

[10] Vikash Kumara, Sanjeev Kumar Raghuwanshi, “Design and Development of Dual

Axis Solar Panel Tracking System for,” in International Conference on Sustainable

Computing in Science, Technology & Management (SUSCOM-2019), Jaipur, India,

February, 2019.

[11] Arunachalam Sundaram, Hassan Zuhair Al Garni, “A Smart Garden System with a

Dual-Axis Solar Tracker,” International Journal of Advanced Science and

Technology, vol. 29, no. 8, pp. 1390-1397, 2020.

[12] Anish Sarla, Sai Charan Reddy Dandu, “Sun Tracking System,” Karlskrona, Sweden,

June 2022.

[13] Sanzidur Rahman, Rashid Ahammed Ferdaus, Mohammad Abdul Mannan, Mahir

Asif Mohammed , “Design & Implementation of a Dual Axis Solar Tracking

55

System,” American Academic & Scholarly Research Journal , vol. 5, no. 1, Jan,

2013.

[14] Rashid Ahammed Ferdaus, Mahir Asif Mohammed, Sanzidur Rahman, Sayedus

Salehin, Mohammad Abdul Mannan, “Energy Efficient Hybrid Dual Axis Solar

Tracking System,” Journal of Renewable Energy, 2014.

[15] Miloš Jovanović, Dr Zeljko V Despotovic, Đorđe Urukalo, “THE

CHRONOLOGICAL SYSTEM FOR SOLAR TRACKING IMPLEMENTED ON

MOBILE SOLAR GENERATOR,” in The Fifth International Conference on

Renewable Electrical Power Sources-ICRES, Belgrade, Serbia, Oct, 2017.

[16] S. M. R. M. T. J. P. Muthukumar a, “Energy efficient dual axis solar tracking system

using IOT,” Measurement: Sensors, p. 7, 2023.

[17] M. D. S. D. a. V. B. Ashish Patil, “Design and prototyping of dual axis solar tracking

system for performance enhancement of solar photo-voltaic power plant,” in E3S

Web Conf, Pune, 2020.

[18] K. I. H. E. A. ASNIL, “DESIGN AND PERFORMANCE OF DUAL AXIS SOLAR

TRACKER BASED ON LIGHT SENSORS TO MAXIMIZE THE

PHOTOVOLTAIC ENERGY OUTPUT,” Journal of Theoretical and Applied

Information Technology , vol. 100, p. 5, 2022.

[19] C. D. Á. F. L. N. D. G. G. J. R. Joel J. Ontiveros, “Evaluation and Design of Power

Controller of Two-Axis Solar Tracking by PID and FL for a Photovoltaic Module,”

International Journal of Photoenergy, 2020.

[20] “ADDICORE,” [Online]. Available: https://www.addicore.com/products/ads1115-

16-bit-adc-4-channel.

[21] Shawn, “seeedsstudio,” 2020. [Online]. Available:

https://www.seeedstudio.com/blog/2020/02/15/acs712-current-sensor-features-how-

it-works-arduino-guide/.

[22] L. Miller, “learn robotics,” 25 April 2024. [Online]. Available:

https://www.learnrobotics.org/blog/raspberry-pi-servo-motor/.

56

ANNEXES

Annex A:

//Importing necessary libraries

#include "AS5600.h"

#include "Wire.h"

AS5600 as5600;

//Pin assignments:

#define LPWM 6

#define RPWM 5

#define counterClockWise 12

#define clockWise 11

#define DIN 2

//Vairables to store extreme positions of the motor

int clockWiseEncoder = 0;

int counterClockWiseEncoder = 0;

//Function that calibrates the motors

void callibration() {

 //Rotate clockwise to reach clockwise switch

 while(digitalRead(clockWise) == HIGH) {

 digitalWrite(RPWM, LOW);

 analogWrite(LPWM, 150);

 Serial.println(as5600.getCumulativePosition());

 }

 digitalWrite(RPWM, LOW);

 digitalWrite(LPWM, LOW);

 delay(3333);

 clockWiseEncoder = as5600.getCumulativePosition();

 Serial.print("Clockwise: ");

57

 Serial.println(clockWiseEncoder);

 delay(2000);

 //Rotate anticlockwise to reach anticlockwise switch

 while(digitalRead(counterClockWise) == HIGH) {

 digitalWrite(LPWM, LOW);

 analogWrite(RPWM, 150);

 Serial.println(as5600.getCumulativePosition());

 }

 digitalWrite(RPWM, LOW);

 digitalWrite(LPWM, LOW);

 delay(3333);

 counterClockWiseEncoder = as5600.getCumulativePosition();

 Serial.print("CounterClockwise: ");

 Serial.println(counterClockWiseEncoder);

 delay(2000);

}

//Setup all the pins and do the calibration

void setup() {

 pinMode(RPWM, OUTPUT); // Set RPWM pin as output

 pinMode(LPWM, OUTPUT); // Set LPWM pin as output

 pinMode(DIN, INPUT);

 pinMode(clockWise, INPUT_PULLUP);

 pinMode(counterClockWise, INPUT_PULLUP);

 TCCR0B = TCCR0B & B11111000 | B00000001;

 Wire.begin();

 Serial.begin(9600);

 Serial.println("Callibration");

 as5600.begin(4);

 as5600.setDirection(AS5600_CLOCK_WISE);

 callibration();

}

58

//PID constant

float Ki = 0.01;

float Kp = 1;

unsigned int accError = 0;

int currentAngle = 0;

//Move servo to the position designated by input signal

void loop() {

 int pulseWidth = pulseIn(DIN, HIGH); // Read pulse width of servo

signal

 if(pulseWidth >=300 && pulseWidth <=1500) {

 int targetAngle = map(pulseWidth, 300, 1500,

counterClockWiseEncoder+200, clockWiseEncoder-200);

 Serial.print("Target Angle: ");

 Serial.println(targetAngle);

 if (targetAngle < counterClockWiseEncoder+100) targetAngle =

counterClockWiseEncoder+100;

 if (targetAngle > clockWiseEncoder-100) targetAngle =

clockWiseEncoder-100;

 currentAngle = as5600.getCumulativePosition();

 int error = targetAngle - currentAngle;

 Serial.print("Current Angle: ");

 Serial.println(currentAngle);

 //Only perform correction if error is more then 100

 if(abs(error) > 100) {

 int speed = map(abs(error), 120, 6000, 100, 230);

 speed = Kp * speed + Ki * accError;

 speed = constrain(speed, 120, 230);

 //Move in the counter clockwise direction

 if(targetAngle < currentAngle) {

 digitalWrite(LPWM, LOW);

 analogWrite(RPWM, speed);

 delay(100);

59

 }

 else if (targetAngle > currentAngle) {

 digitalWrite(RPWM, LOW);

 analogWrite(LPWM, speed);

 delay(100);

 }

 accError += abs(error);

 }

 else{

 digitalWrite(RPWM, LOW);

 digitalWrite(LPWM, LOW);

 }}

 else{

 digitalWrite(RPWM, LOW);

 digitalWrite(LPWM, LOW);

 }

 delay(100);

}

60

Annex B:

//Import necessary Libraries

#include "AS5600.h"

#include "Wire.h"

AS5600 as5600;

//Pin assignments

#define LPWM 6

#define RPWM 5

#define downLimit 11

#define upLimit 12

#define DIN 2

//Setup the pins

void setup() {

 pinMode(RPWM, OUTPUT); // Set RPWM pin as output

 pinMode(LPWM, OUTPUT); // Set LPWM pin as output

 pinMode(DIN, INPUT);

 pinMode(downLimit, INPUT_PULLUP);

 pinMode(upLimit, INPUT_PULLUP);

 Wire.begin();

 Serial.begin(9600);

 Serial.println("Callibration");

 //Calibration

 //Move down till limit switch

 digitalWrite(LPWM, LOW);

 analogWrite(RPWM, 100);

 while(digitalRead(downLimit) == HIGH);

 digitalWrite(RPWM, LOW);

 digitalWrite(LPWM, LOW);

61

 delay(3000);

 //Move up till limit switch

 digitalWrite(RPWM, LOW);

 analogWrite(LPWM, 215);

 while(digitalRead(upLimit) == HIGH);

 digitalWrite(RPWM, LOW);

 digitalWrite(LPWM, LOW);

 delay(2000);

 //Move Down till centre

 digitalWrite(LPWM, LOW);

 analogWrite(RPWM, 100);

 delay(3000);

 digitalWrite(RPWM, LOW);

 digitalWrite(LPWM, LOW);

}

void loop() {

 int pulseWidth = pulseIn(DIN, HIGH); // Read pulse width of servo

signal

 Serial.println(pulseWidth);

 //If the pulse width is sort of in the middle, do nothing, else

 if(pulseWidth > 500 && pulseWidth < 2400) {

 if(pulseWidth < 1350 || pulseWidth > 1500) {

 //Need to move Down

 if(pulseWidth < 1350) {

 if(digitalRead(downLimit) == LOW) {

 digitalWrite(LPWM, LOW);

 digitalWrite(RPWM, LOW);

 }

 else {

62

 int motorSpeed = (1350 - pulseWidth)/4; //Max :500 so

divide by 3.4

 if(motorSpeed > 140) motorSpeed = 140;

 Serial.print("Going down with speed: ");

 Serial.println(motorSpeed);

 //Move Downward

 digitalWrite(LPWM, LOW);

 analogWrite(RPWM, motorSpeed);

 delay(100);

 }

 }

 else if(pulseWidth > 1500) {

 if(digitalRead(upLimit) == LOW) {

 digitalWrite(LPWM, LOW);

 digitalWrite(RPWM, LOW);

 }

 else {

 //Move Upward

 int motorSpeedR = (pulseWidth - 1500)/4; //Max :500 so

divide by 3.4

 if(motorSpeedR > 210) motorSpeedR = 210;

 Serial.print("Going up with speed: ");

 Serial.println(motorSpeedR);

 digitalWrite(RPWM, LOW);

 analogWrite(LPWM, motorSpeedR);

 delay(100);

 }

 //MoveUpward

 }

 }

 else {

 Serial.println("Input:90");

 digitalWrite(RPWM, LOW);

63

 digitalWrite(LPWM, LOW);

 }}

 else {

 Serial.println("Out of Range");

 digitalWrite(RPWM, LOW);

 digitalWrite(LPWM, LOW);

 }

}

64

Annex C:

#include <Wire.h>

#include <Adafruit_ADS1X15.h>

#define ADS1115_ADDRESS 0x49

//Create an ADC object

Adafruit_ADS1115 ads;

//LDR connected to channels on ADS1115

const int TR = 0;

const int BR = 1;

const int TL = 2;

const int BL = 3;

//Setting up the ADS1115 module

void setup(void)

{

 ads.begin(ADS1115_ADDRESS);

 Serial.begin(9600);

 Serial.println("Hello!");

 // Initialize the ADC

 if (!ads.begin(ADS1115_ADDRESS))

 {

 Serial.println("Failed to initialize ADS.");

 while (1);

 }

 // Set the gain (PGA) for better accuracy. You can adjust this based on

your requirements.

 ads.setGain(GAIN_TWOTHIRDS);

 Serial.println("Ready.");

}

65

void loop(void)

{

 // Read the raw ADC value from LDR

 uint16_t adcTR;

 uint16_t adcBR;

 uint16_t adcTL;

 uint16_t adcBL;

 adcTR = ads.readADC_SingleEnded(TR);

 adcBR = ads.readADC_SingleEnded(BR);

 adcTL = ads.readADC_SingleEnded(TL);

 adcBL = ads.readADC_SingleEnded(BL);

//Calculate further values

 uint16_t TOP;

 uint16_t BOTTOM;

 uint16_t LEFT;

 uint16_t RIGHT;

 TOP=(adcTR+adcTL)/2;

 BOTTOM=(adcBR+adcBL)/2;

 LEFT=(adcTL+adcBL)/2;

 RIGHT=(adcTR+adcBR)/2;

 // Print results

 Serial.print("LDR Value TR: "); Serial.print(adcTR);

 Serial.print("\tLDR Value BR: "); Serial.print(adcBR);

 Serial.print("\tLDR Value TL: "); Serial.print(adcTL);

 Serial.print("\tLDR Value BL: "); Serial.print(adcBL);

 Serial.print("\tLDR Value Top: "); Serial.print(TOP);

 Serial.print("\tLDR Value Bottom: "); Serial.print(BOTTOM);

 Serial.print("\tLDR Value Left: "); Serial.print(LEFT);

 Serial.print("\tLDR Value right: "); Serial.print(RIGHT);

 delay(1000);}

66

Annex D:

#include <Wire.h>

#include <Adafruit_ADS1X15.h>

#include <Servo.h>

#define ADS1115_ADDRESS 0x49

//Object creation

Adafruit_ADS1115 ads;

Servo panservo;

// LDR connected to channels on ADS1115

const int TR = 0;

const int BR = 1;

const int TL = 2;

const int BL = 3;

//Servo pin definition

const int panServoPin = 10;

//Setting up the ADS1115 module and servo pin

void setup(void)

{

 panservo.attach(panServoPin);

 ads.begin(ADS1115_ADDRESS);

 Serial.begin(9600);

 Serial.println("Hello!");

 ads.begin(ADS1115_ADDRESS);

 if (!ads.begin(ADS1115_ADDRESS))

 {

 Serial.println("Failed to initialize ADS.");

 while (1);

 }

67

 ads.setGain(GAIN_TWOTHIRDS);

 Serial.println("Ready.");

}

//Function to calculate difference between right and left LDR values

void calculateLDRValuesAndDifferencesRL(uint16_t &adcTR, uint16_t

&adcBR, uint16_t &adcTL, uint16_t &adcBL, int16_t &diffRL)

{

 // Read the raw ADC value from LDR

 uint16_t TOP, BOTTOM, LEFT, RIGHT;

 adcTR = ads.readADC_SingleEnded(TR);

 adcBR = ads.readADC_SingleEnded(BR);

 adcTL = ads.readADC_SingleEnded(TL);

 adcBL = ads.readADC_SingleEnded(BL);

 //calculate further values

 TOP = (adcTR + adcTL) / 2;

 BOTTOM = (adcBR + adcBL) / 2;

 LEFT = (adcTL + adcBL) / 2;

 RIGHT = (adcTR + adcBR) / 2;

 //calculate difference

 diffRL = RIGHT - LEFT;

}

void loop(void)

{

 uint16_t adcTR, adcBR, adcTL, adcBL;

 int16_t diffTB, diffRL;

 //pan tracking

68

 calculateLDRValuesAndDifferencesRL(adcTR, adcBR, adcTL, adcBL,

diffRL);

 if (diffRL>500) {

 while(diffRL>500){

 // Moves towards right

 panservo.write(panservo.read() - 1);

 delay(100);

 calculateLDRValuesAndDifferencesRL(adcTR, adcBR, adcTL, adcBL,

diffRL);

 }

 }

 else if(diffRL<-500){

 while(diffRL<-500){

 // Moves towards left

 panservo.write(panservo.read() + 1);

 delay(100);

 calculateLDRValuesAndDifferencesRL(adcTR, adcBR, adcTL, adcBL,

diffRL);

 }

 }

 delay(100);

}

69

Annex E:

#include <Wire.h>

#include <Adafruit_ADS1X15.h>

#include <Servo.h>

#define ADS1115_ADDRESS 0x48

//Object creation

Adafruit_ADS1115 ads;

Servo panservo;

Servo tiltservo;

// LDR connected to channels on ADS1115

const int TR = 0;

const int BR = 1;

const int TL = 2;

const int BL = 3;

//Servo pin definition

const int panServoPin = 10;

const int tiltServoPin = 9;

//Setting up the ADS1115 module and servo pins

void setup(void) {

 panservo.attach(panServoPin);

 tiltservo.attach(tiltServoPin);

 ads.begin(ADS1115_ADDRESS);

 Serial.begin(9600);

 Serial.println("Hello!");

 ads.begin(ADS1115_ADDRESS);

 if (!ads.begin(ADS1115_ADDRESS)) {

 Serial.println("Failed to initialize ADS.");

 while (1);

70

 }

 ads.setGain(GAIN_TWOTHIRDS);

 Serial.println("Ready.");

}

//Function to calculate difference between right and left LDR values

void calculateLDRValuesAndDifferencesRL(uint16_t &adcTR, uint16_t

&adcBR, uint16_t &adcTL, uint16_t &adcBL, int16_t &diffRL)

{

 // Read the raw ADC value from LDR

 uint16_t TOP, BOTTOM, LEFT, RIGHT;

 adcTR = ads.readADC_SingleEnded(TR);

 adcBR = ads.readADC_SingleEnded(BR);

 adcTL = ads.readADC_SingleEnded(TL);

 adcBL = ads.readADC_SingleEnded(BL);

 //calculate further values

 TOP = (adcTR + adcTL) / 2;

 BOTTOM = (adcBR + adcBL) / 2;

 LEFT = (adcTL + adcBL) / 2;

 RIGHT = (adcTR + adcBR) / 2;

 //calculate difference

 diffRL = RIGHT - LEFT;

}

//Function to calculate difference between top and bottom LDR values

void calculateLDRValuesAndDifferencesTB(uint16_t &adcTR, uint16_t

&adcBR, uint16_t &adcTL, uint16_t &adcBL, int16_t &diffTB)

{

 // Read the raw ADC value from LDR

 uint16_t TOP, BOTTOM, LEFT, RIGHT;

71

 adcTR = ads.readADC_SingleEnded(TR);

 adcBR = ads.readADC_SingleEnded(BR);

 adcTL = ads.readADC_SingleEnded(TL);

 adcBL = ads.readADC_SingleEnded(BL);

 //calculate further values

 TOP = (adcTR + adcTL) / 2;

 BOTTOM = (adcBR + adcBL) / 2;

 LEFT = (adcTL + adcBL) / 2;

 RIGHT = (adcTR + adcBR) / 2;

 //calculate difference

 diffTB = TOP - BOTTOM;

}

void loop(void)

{

 uint16_t adcTR, adcBR, adcTL, adcBL;

 int16_t diffTB, diffRL;

 //pan tracking

 calculateLDRValuesAndDifferencesRL(adcTR, adcBR, adcTL, adcBL,

diffRL);

 if (diffRL>500) {

 while(diffRL>500){

 // Moves towards right

 panservo.write(panservo.read() - 1);

 delay(100);

 calculateLDRValuesAndDifferencesRL(adcTR, adcBR, adcTL, adcBL,

diffRL);

 }

 }

72

 else if(diffRL<-500){

 while(diffRL<-500){

 // Moves towards left

 panservo.write(panservo.read() + 1);

 delay(100);

 calculateLDRValuesAndDifferencesRL(adcTR, adcBR, adcTL, adcBL,

diffRL);

 }

 }

 //tilt tracking

 calculateLDRValuesAndDifferencesTB(adcTR, adcBR, adcTL, adcBL,

diffTB);

 if (diffTB>500) {

 while(diffTB>500){

 // tilts up

 tiltservo.write(tiltservo.read() - 1);

 delay(100);

 calculateLDRValuesAndDifferencesTB(adcTR, adcBR, adcTL, adcBL,

diffTB);

 }

 }

 else if(diffTB<-500){

 while(diffTB<-500){

 // Tilt down

 tiltservo.write(tiltservo.read() + 1);

 delay(100);

 calculateLDRValuesAndDifferencesTB(adcTR, adcBR, adcTL, adcBL,

diffTB);

 }

 }

 delay(100);

}

73

Annex F:

import RPi.GPIO as GPIO

import time

Set the hardware PWM pin number for the servo

servo_pin = 12 # Assuming you're using GPIO pin 12 for hardware PWM

Set the PWM frequency (Hz) and duty cycle ranges for the servo

frequency = 50 # 50 Hz is typical for servo motors

duty_cycle_min = 2.5 # Minimum duty cycle for 0 degrees

duty_cycle_max = 12.5 # Maximum duty cycle for 180 degrees

Initialize GPIO

GPIO.setmode(GPIO.BCM)

GPIO.setup(servo_pin, GPIO.OUT)

Create PWM object

pwm = GPIO.PWM(servo_pin, frequency)

Function to convert angle to duty cycle

def angle_to_duty_cycle(angle):

 duty_cycle = ((angle / 180) * (duty_cycle_max - duty_cycle_min))

+ duty_cycle_min

 return duty_cycle

Function to convert duty cycle to angle

def duty_cycle_to_angle(duty_cycle):

 angle = ((duty_cycle - duty_cycle_min) / (duty_cycle_max -

duty_cycle_min)) * 180

 return angle

try:

 pwm.start(0) # Start PWM with 0% duty cycle (servo in neutral

74

position)

 current_angle=0

 # Read current duty cycle and convert to angle

 # current_duty_cycle = 0

 while True:

 current_duty_cycle=angle_to_duty_cycle(current_angle)

 pwm.ChangeDutyCycle(current_duty_cycle)

 new_duty_cycle=pwm._dc

 new_angle=duty_cycle_to_angle(new_duty_cycle)

 current_angle=new_angle+1

 if current_angle > 180:

 current_angle = 0 # Reset to 0 degrees if it exceeds 180

 print("Current Angle:", current_angle, "New Angle:",

new_angle)

 print("Current dc:", current_duty_cycle, "New dc:",

new_duty_cycle)

 time.sleep(0.1) # Adjust the delay as needed for

responsiveness

except KeyboardInterrupt:

 pass

Clean up GPIO

pwm.stop()

GPIO.cleanup()

75

Annex G:

import RPi.GPIO as GPIO

from time import sleep

import board

import time

import busio

import adafruit_ads1x15.ads1115 as ADS

from adafruit_ads1x15.analog_in import AnalogIn

#ADS Constants

i2c=busio.I2C(board.SCL, board.SDA)

GAIN = 2/3

#initialize adc

adc = ADS.ADS1115(i2c, gain=GAIN)

#servo pins

pan_servo_pin = 12

tilt_servo_pin = 13

Set the PWM frequency (Hz) and duty cycle ranges for the servo

frequency = 50 # 50 Hz is typical for servo motors

duty_cycle_min = 2.5 # Minimum duty cycle for 0 degrees

duty_cycle_max = 12.5 # Maximum duty cycle for 180 degrees

Initialize GPIO

GPIO.setmode(GPIO.BCM)

GPIO.setup(pan_servo_pin, GPIO.OUT)

GPIO.setup(tilt_servo_pin, GPIO.OUT)

Create PWM object

pwm1 = GPIO.PWM(pan_servo_pin, frequency)

pwm2 = GPIO.PWM(tilt_servo_pin, frequency)

#adc channels

TR=AnalogIn(adc,ADS.P0)

BR=AnalogIn(adc,ADS.P1)

TL=AnalogIn(adc,ADS.P2)

76

BL=AnalogIn(adc,ADS.P3)

Function to convert angle to duty cycle

def angle_to_duty_cycle(angle):

 duty_cycle = ((angle / 180) * (duty_cycle_max - duty_cycle_min)) +

duty_cycle_min

 return duty_cycle

Function to convert duty cycle to angle

def duty_cycle_to_angle(duty_cycle):

 angle = ((duty_cycle - duty_cycle_min) / (duty_cycle_max -

duty_cycle_min)) * 180

 return angle

#Function to get right left difference

def calculate_ldr_values_and_differences_rl():

 adcTR=TR.value

 adcBR=BR.value

 adcTL=TL.value

 adcBL=BL.value

 TOP=(adcTR+adcTL)/2

 BOTTOM=(adcBR+adcBL)/2

 LEFT=(adcTL+adcBL)/2

 RIGHT=(adcTR+adcBR)/2

 return RIGHT-LEFT

#Function to get top bottom difference

def calculate_ldr_values_and_differences_tb():

 adcTR=TR.value

 adcBR=BR.value

 adcTL=TL.value

 adcBL=BL.value

 TOP=(adcTR+adcTL)/2

 BOTTOM=(adcBR+adcBL)/2

 LEFT=(adcTL+adcBL)/2

77

 RIGHT=(adcTR+adcBR)/2

 return TOP-BOTTOM

pwm1.start(0)

pwm2.start(0)

while True:

 diff_rl=calculate_ldr_values_and_differences_rl()

 if diff_rl>500:

 while diff_rl>500:

 current_duty_cycle=pwm1._dc

 current_angle = duty_cycle_to_angle(current_duty_cycle)

 new_angle = current_angle - 1 # Decrement by 1 degree

 if new_angle < 0:

 new_angle = 0 # Ensure angle does not go below minimum

 new_duty_cycle=angle_to_duty_cycle(new_angle)

 pwm1.ChangeDutyCycle(new_duty_cycle)

 sleep(0.1)

 diff_rl=calculate_ldr_values_and_differences_rl()

 elif diff_rl<-500:

 while diff_rl<-500:

 current_duty_cycle=pwm1._dc

 current_angle = duty_cycle_to_angle(current_duty_cycle)

 new_angle = current_angle + 1 # Increment by 1 degree

 if new_angle > 180:

 new_angle = 180 # Ensure angle does not exceed maximum

 new_duty_cycle=angle_to_duty_cycle(new_angle)

 pwm1.ChangeDutyCycle(new_duty_cycle)

 sleep(0.1)

 diff_rl=calculate_ldr_values_and_differences_rl()

 diff_tb=calculate_ldr_values_and_differences_tb()

 if diff_tb>500:

 while diff_tb>500:

78

 current_duty_cycle=pwm2._dc

 current_angle = duty_cycle_to_angle(current_duty_cycle)

 new_angle = current_angle - 1 # Decrement by 1 degree

 if new_angle < 0:

 new_angle = 0 # Ensure angle does not go below minimum

 new_duty_cycle=angle_to_duty_cycle(new_angle)

 pwm2.ChangeDutyCycle(new_duty_cycle)

 sleep(0.1)

 diff_tb=calculate_ldr_values_and_differences_tb()

 elif diff_tb<-500:

 while diff_tb<-500:

 current_duty_cycle=pwm2._dc

 current_angle = duty_cycle_to_angle(current_duty_cycle)

 new_angle = current_angle + 1 # Increment by 1 degree

 if new_angle > 180:

 new_angle = 180 # Ensure angle does not exceed maximum

 new_duty_cycle=angle_to_duty_cycle(new_angle)

 pwm2.ChangeDutyCycle(new_duty_cycle)

 sleep(0.1)

 diff_tb=calculate_ldr_values_and_differences_tb()

 sleep(0.5)

79

Annex H:

import RPi.GPIO as GPIO

import gpiod

from time import sleep

import board

import time

import busio

import adafruit_ads1x15.ads1115 as ADS

from adafruit_ads1x15.analog_in import AnalogIn

import requests

using datetime module

import datetime;

#Used for turning mosfet ON/OFF

currentOn = 17

#ADS Contants

i2c=busio.I2C(board.SCL, board.SDA)

GAIN = 2/3

#initialize adc

adc = ADS.ADS1115(i2c, gain=GAIN)

#Server Endpoint

url = 'https://script.google.com/macros/s/AKfycbyp3-uEarmOOO61J9V5-

vKooteaAuZLV9KRWTFhCIHa_FY0VJ8qg3czwnYyw0NQJJvD/exec'

GPIO.setmode(GPIO.BCM)

GPIO.setup(currentOn, GPIO.OUT)

GPIO.output(currentOn, GPIO.LOW)

voltage = AnalogIn(adc, ADS.P0)

80

current = AnalogIn(adc, ADS.P1)

done = False

while not done:

 #Measure voltage

 try:

 voltage = AnalogIn(adc, ADS.P0)

 print("Voltage: ", voltage.voltage*9.5)

 #Measure Current

 #led_line.set_value(1)

 GPIO.output(currentOn, GPIO.HIGH)

 sleep(5)

 current = AnalogIn(adc, ADS.P1)

 currentVoltage = round((current.voltage), 3)

 print("Current Voltage: ", currentVoltage)

 GPIO.output(currentOn, GPIO.LOW)

 difference = currentVoltage - 2.501

 print("Difference: ", difference)

 currentCalc = abs(difference/0.073)

 print("Current : ", currentCalc)

 # ct stores current time

 with open('/home/mariam/Desktop/picode/13thmaydata.csv', 'a')

as f: # Open file for writing

 ct = datetime.datetime.now()

 print("timestamp:-", ct)

 txt1 = "Voltage =

{},".format(round(voltage.voltage*9.5,3))

 txt2 = "Current = {},".format(round(currentCalc, 3))

 txt3 = "Time = {}\n".format(ct)

 print(txt1 + txt2 + txt3)

81

 f.write("{}".format(txt1 + txt2 + txt3))

 f.close()

 dataObj = {'data1': voltage.voltage * 9.5, 'data2':

currentCalc}

 requests.post(url, json = dataObj)

 print("Data sent")

 except:

 print("Error While collecting or sending data")

 with open('/home/mariam/Desktop/picode/13thmaydata.csv', 'a')

as f: # Open file for writing

 f.write("Top Line was not sent")

 f.close()

 sleep(50)

82

Annex I:

#include <Wire.h>

#include <Adafruit_ADS1X15.h>

#include <Servo.h>

#include <EEPROM.h>

#include <avr/wdt.h>

#define ADS1115_ADDRESS 0x49

// Object creation

Adafruit_ADS1115 ads;

Servo panservo;

Servo tiltservo;

// LDR connected to channels on ADS1115

const int TR = 0;

const int BR = 1;

const int TL = 2;

const int BL = 3;

// Variables defined

uint16_t TOP, BOTTOM, LEFT, RIGHT;

uint16_t adcTR, adcBR, adcTL, adcBL;

int16_t diffTB, diffRL;

// Initial angles given to servos

int panAngle = 90;

int tiltAngle = 90;

// Servo pin definition

83

const int panServoPin = 9;

const int tiltServoPin = 10;

// Setting up the ADS1115 module and servo pins

void setup(void) {

 Serial.begin(9600);

 Serial.println("Starting setup...");

 // Read the last angles from EEPROM

 panAngle = EEPROM.read(0);

// Default angle if the EEPROM value is invalid

 if (panAngle < 0 || panAngle > 180)

 {

 panAngle = 90;

 }

 panservo.attach(panServoPin);

 panservo.write(panAngle);

 tiltservo.attach(tiltServoPin);

 tiltservo.write(tiltAngle);

 Wire.begin();

 Wire.setClock(100000);

 if (!ads.begin(ADS1115_ADDRESS))

{

 Serial.println("Failed to initialize ADS.");

 while (1);

 }

 ads.setGain(GAIN_TWOTHIRDS);

 Serial.println("Setup completed.");

 // Initialize watchdog timer

84

 wdt_enable(WDTO_8S); // Set watchdog timer to 8 seconds

 delay(5000);

}

// Function to calculate difference between right and left LDR values

int calculateLDRValuesAndDifferencesRL() {

 adcTR = ads.readADC_SingleEnded(TR);

 adcBR = ads.readADC_SingleEnded(BR);

 adcTL = ads.readADC_SingleEnded(TL);

 adcBL = ads.readADC_SingleEnded(BL);

 // Calculate further values

 TOP = (adcTR + adcTL) / 2;

 BOTTOM = (adcBR + adcBL) / 2;

 LEFT = (adcTL + adcBL) / 2;

 RIGHT = (adcTR + adcBR) / 2;

 // Calculate difference

 diffRL = RIGHT - LEFT;

 Serial.print("RL: "); Serial.println(diffRL);

 return diffRL;

}

// Function to calculate difference between top and bottom LDR values

int calculateLDRValuesAndDifferencesTB() {

 adcTR = ads.readADC_SingleEnded(TR);

 adcBR = ads.readADC_SingleEnded(BR);

 adcTL = ads.readADC_SingleEnded(TL);

 adcBL = ads.readADC_SingleEnded(BL);

 // Calculate further values

 TOP = (adcTR + adcTL) / 2;

 BOTTOM = (adcBR + adcBL) / 2;

85

 LEFT = (adcTL + adcBL) / 2;

 RIGHT = (adcTR + adcBR) / 2;

 // Calculate difference

 diffTB = TOP - BOTTOM;

 Serial.print("TB: "); Serial.println(diffTB);

 return diffTB;

}

void loop(void) {

 wdt_reset(); // Reset watchdog timer at the start of each loop

iteration

 // Pan tracking

 diffRL = calculateLDRValuesAndDifferencesRL();

 if (diffRL > 20) {

 while (diffRL > 20 && panAngle > 0) {

 panAngle--;

 panservo.write(panAngle);

 EEPROM.write(0, panAngle); // Store the current pan angle in

EEPROM

 delay(100);

 diffRL = calculateLDRValuesAndDifferencesRL();

 wdt_reset(); // Reset watchdog timer within the loop

 }

 } else if (diffRL < -20) {

 while (diffRL < -20 && panAngle < 180) {

 panAngle++;

 panservo.write(panAngle);

 EEPROM.write(0, panAngle); // Store the current pan angle in

EEPROM

 delay(100);

 diffRL = calculateLDRValuesAndDifferencesRL();

 wdt_reset(); // Reset watchdog timer within the loop

86

 }

 }

 delay(2000);

 // Tilt tracking

 diffTB=calculateLDRValuesAndDifferencesTB();

 if (diffTB>20) {

 while(diffTB>20){

 // tilts up

 tiltservo.write(150);

 delay(100);

 diffTB=calculateLDRValuesAndDifferencesTB();

 }

 tiltservo.write(90);

 }

 else if(diffTB<-20){

 while(diffTB<-20){

 // Tilt down

 tiltservo.write(40);

 delay(100);

 diffTB=calculateLDRValuesAndDifferencesTB();

 }

 tiltservo.write(90);

 }

 delay(900000);

}

87

