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ABSTRACT 
 

This thesis presents the design and implementation of a comprehensive flight control system for a 

quadcopter. The system encompasses a 6-DOF mathematical model of the quadcopter, a PID-

controlled flight controller, and integration with the quadcopter across various simulation 

platforms and hardware. The primary objectives of this project include designing and 

implementing a robust flight control system for a quadcopter, integrating the designed models in 

both simulation and real-life scenarios, and deploying the designed controller on PX4 hardware to 

enable RC-based flight. 

 

The system is engineered to be highly customizable and adaptable to diverse scenarios and 

environments. The PID-controlled flight controller is designed to be robust and efficient, ensuring 

that the integration with various simulation platforms and hardware facilitates thorough testing 

and validation in multiple settings. 

 

A significant aspect of this project involved integrating object detection and tracking capabilities 

using a Raspberry Pi mounted on the quadcopter. This addition enabled the quadcopter to 

autonomously recognize and track objects in its environment, enhancing its functionality for 

applications such as surveillance, search and rescue, and delivery. The camera system was 

successfully integrated with the flight control system, allowing for real-time processing and 

decision-making based on visual input. 

 

The results of this project demonstrate the effectiveness of the designed flight control system in 

maintaining the quadcopter's flight stability and safety. The system's adaptability and 

customization potential make it suitable for a broad range of applications. 

 

Overall, this thesis advances drone technology by offering a comprehensive and automated 

approach to designing and implementing flight control systems for quadcopters.  
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Chapter 1 – INTRODUCTION 

 
1.1  Background and Motivation 

 

The rapid advancements in drone technology have led to an increased demand for 

sophisticated and reliable flight control systems. Among various drone types, the 

quadcopter has emerged as a popular platform due to its versatility in applications such as 

surveillance, inspection, and delivery. Ensuring the safety and effectiveness of these 

applications necessitates the development of robust and efficient flight control systems. 

This thesis aims to contribute to the advancement of drone technology by designing and 

implementing a comprehensive flight control system for a quadcopter. 

 

1.2  Problem Statement 

 

Current flight control systems for quadcopters frequently depend on manual tuning of PID 

controllers, a process that is both time-consuming and requires considerable expertise [1] 

[2]. Additionally, integrating these systems with the quadcopter's sensors and actuators 

presents significant challenges, particularly when dealing with customized firmware and 

hardware configurations. Adding to the complexity, incorporating object detection, and 

tracking capabilities within the flight control system further complicates the integration 

process. As a result, the current state of the art lacks a comprehensive and automated 

approach to designing and implementing flight control systems for quadcopters. The 

integration of object detection and tracking capabilities aims to address specific challenges 

related to vehicle and person detection. By leveraging camera technology embedded on the 

drone, this system enhances situational awareness and enables real-time detection and 

tracking of vehicles and individuals, thereby enhancing the quadcopter's functionality for 

applications such as traffic monitoring, security surveillance, and search and rescue 

operations.  

 

 

 



 

 

1.3  Objectives 

 

The primary objectives of this thesis are: 

1. To design and implement a 6-DOF mathematical model of a quadcopter using 

MATLAB/Simulink. 

2. To design a PID-controlled flight controller using MATLAB/Simulink and integrate it 

with the modeled quadcopter on ROS/Gazebo for simulation-in-the-loop (SIL) testing. 

3. To integrate the designed PID-controlled flight controller with a realistic model of the 

F450 quadcopter on the FlightGear simulator. 

4. To upload the designed controller onto PX4 hardware and fly the drone using RC. 

5. To integrate object detection and tracking capabilities using a Raspberry Pi with the 

quadcopter. 

 

1.4  Scope and Limitations 

 

This thesis focuses on the design and implementation of a comprehensive flight control 

system for a quadcopter. The scope includes developing a 6-DOF mathematical model, 

designing a PID-controlled flight controller, and integrating the controller with the 

quadcopter across various simulation platforms and hardware. However, the thesis does 

encounter certain limitations, such as the complexity of integrating the designed models 

with the quadcopter in both simulation and real-world scenarios. Additionally, challenges 

arise when initializing and configuring sensors and rotors with customized firmware 

uploaded onto PX4 hardware. 

 

1.5  Hardware 

 

Choosing the right hardware for the right application is one of the most crucial parts of 

the development of any product because these factors affect the dynamics of any mobile 

platform such as UAV.  

 

 

 



 

 

 1.5.1  Ground Computer 

 

The ground computer, or the personal computer, has several important functions. 

The first purpose it serves is development of the controller firmware through 

Simulink, followed by SIL simulations and code generation. It further allows for 

uploading the firmware to the flight controller and provides the interface between 

hardware and software for HIL simulations.  

The other importance of the ground computer is that it is utilized for monitoring 

values and reading data communicated during and after the quadcopter flights, and 

therefore enabling sensor calibration, parameter tuning and real-time 

communications. 

 

Choosing the right hardware for the right application is one of the most crucial parts 

of the development of any product because these factors affect the dynamics of any 

mobile platform such as UAV.  

 

1.5.2 Frame 

When choosing the frame for a quadcopter, the following factors are kept in mind 

to get the best frame according to the requirements [3]: 

• Size: The size of the quadcopter is determined by the size of the frame. The 

frame must be of size enough to house all necessary components, including 

motors, propellers, battery, and flying controller [3]. 

• Weight: The overall weight of the quadcopter will be affected by the weight 

of the frame. A heavier frame will make flying the quadcopter more difficult 

[3]. 

• Material: The frame can be composed of several materials, including 

carbon fiber, aluminum, or plastic. The lightest and strongest material is 

carbon fiber, but it is also the most expensive. Aluminum has a good weight-

to-strength ratio material. Plastic is the cheapest material, but it is also the 

heaviest and most brittle [3]. 

• Price: The cost of the frame will depend on its size, weight, and material. 

Before shopping for the frame, a budget should be constructed [3]. 



 

 

We have chosen an F450 quadrotor frame that is a 450mm frame when measured 

between opposite rotors. The F450 frame is large enough to carry all the other 

components. It weighs about 282g which is not too heavy a frame, thus making it 

an excellent option. The frame is shown in Figure 1 [3]. 

Figure 1 F450 Quadcopter Frame [3] 

1.5.3  Microcontroller 

 

Both the Jetson Nano [4] and the Raspberry Pi 3B [41] are single-board computers 

capable of object recognition. The Jetson Nano, on the other hand, has some 

advantages over the Raspberry Pi 3B, making it a better candidate for object 

recognition applications. 

Advantages of Jetson Nano: 

• It has a faster GPU, NVIDIA Maxwell [4] than the Raspberry Pi 3B which 

has the Broadcom VideoCore IV [5]. This improves its performance when 

executing machine learning and deep learning algorithms for object 

recognition. 

• It has a larger and faster memory with a capacity of 4GB and a speed of 

2133MHz [4] than the Raspberry Pi 3B which has 1GB of memory with 



 

 

900MHz speed [5]. This is significant for object identification applications, 

which frequently demand a large amount of RAM to hold the machine 

learning models. 

• It consumes less electricity than the Raspberry Pi 3B. This is critical for 

scenarios where the device will be powered by a battery. 

Overall, the Jetson Nano outperforms the Raspberry Pi 3B in object recognition 

applications due to its more powerful GPU, larger RAM, and lower power 

consumption. 

 
Figure 2 Image of Raspberry pi 3B [5] 

 
Figure 3 Image of Jetson Nano [4] 

1.5.4  Flight Controller 

Pixhawk is a popular open-source autopilot system used in drones and other 

unmanned aerial vehicles (UAVs). It has a triple-redundant flight controller, a GPS 

receiver, an inertial measurement unit (IMU), and a magnetometer. Pixhawk is also 



 

 

compatible with a diverse set of sensors and actuators, making it an adaptable 

platform for a wide range of UAV applications [6]. 

Here are a few reasons why Pixhawk is an excellent choice for autopilot 

applications: 

• Opensource: Pixhawk is a free and open-source hardware and software 

platform. This means that anyone can help create it and that there is a wide 

community of users and developers who can help [7]. 

• Full-featured: Pixhawk is a full-featured autopilot system that comes with 

everything you need to operate a UAV autonomously. A flight controller, GPS 

receiver, IMU, and magnetometer are all included [7].  

• Versatile: Pixhawk is compatible with a wide variety of sensors and actuators. 

As a result, it is a versatile platform for a wide range of UAV applications, 

including quadcopters, hexacopters, and octocopters [7].  

• Reliable: Pixhawk is a dependable and well-proven autopilot system. It is 

employed in a variety of UAV applications, including commercial, military, 

and research [7].  

Pixhawk's position and velocity are provided by the GPS receiver. Its orientation 

and acceleration are provided by the IMU. Pixhawk gets its heading from the 

magnetometer. Pixhawk estimates its state using data from the GPS receiver, IMU, 

and magnetometer. This includes its position, velocity, orientation, and 

acceleration. Then it utilizes its estimated state to operate the UAV's motors and 

actuators, allowing it to fly to its goal. 

Figure 4 Pixhawk 6c [9] 

 



 

 

Pixhawk is a sophisticated and adaptable autopilot system that is suitable for a wide 

range of UAV applications. It is open source, full-featured, dependable, and works 

with a variety of sensors and actuators. It is also compatible with Ardupilot which 

is an open-source and reliable platform for developers who want to autopilot their 

drones [8]. 

 

1.5.5  RGBD Camera 

For object detection, three camera sensor options were available, the Etron stereo 

camera [9], Microsoft Kinect [10], and Xtion Pro Live RGB motion sensor [11] all 

of which are excellent sensors. The Xtion Pro Live RGB motion sensor, however, 

has several advantages over the other two sensors. 

The following are the advantages of the Xtion Pro Live RGB motion sensor: 

• It is more detailed than the other two sensors. This implies that it can capture 

more information in its photographs and videos [11]. 

• It covers a larger area than the other two sensors. This implies it can observe 

a bigger region at the same time [11]. 

• It can record in-depth information in addition to RGB data. This means that 

it can produce 3D photos and videos [11].  

Because of these benefits, the Xtion Pro Live RGB motion sensor is a better option 

for object detection than the other two sensors. It can capture more detail and see a 

bigger area simultaneously due to its better resolution and broader field of view. 

This facilitates the identification of items using object recognition software. The 

ability to capture depth information helps the object identification software to 

generate a 3D representation of the object, which can increase object recognition 

accuracy. 

 

 



 

 

 

Table 1 Comparison of Etron, Kinect & Xtion Pro Live [9], [10], [11] 

Feature Etron stereo camera Microsoft Kinect 
Xtion Pro Live RGB 

motion sensor 

Resolution 1280x720 1024x768 1920x1080 

Field of view 60° 57° 70° 

Depth information No No Yes 

                                                      

 
Figure 5 Etron ESP870U 

Figure 6 Microsoft Kinect XBOX 360 

 
Figure 7 ASUS Xtion Pro Live Motion Sensor [12] 



 

 

1.5.6  Actuators 

5010-650KV BLDC Motors can operate over the range 11.1V to 22.2V and can 

take from 10A to 40A. They can produce a thrust of 1000g-4000g. For a 4S LiPo 

battery which will be discussed later, it can produce 11,100 RPMs [12]. It has a 

weight of 140g which can be considered a little bit heavy. Because they are 

powerful and efficient, these motors are ideal for quadcopters. They can generate a 

lot of thrust, which is necessary for lifting the quadcopter and its payload. They are 

also efficient, meaning they can create the same amount of thrust with less battery 

power. 

The following are some of the advantages of using 5010-750KV BLDC motors in 

the quadcopter: 

• Power: These motors are quite powerful and can generate a significant 

amount of thrust. This is necessary for lifting the quadcopter and its payload 

[12]. 

• Efficiency: These motors are also incredibly efficient, which means they 

can create the same amount of thrust with less battery power [12]. 

• Durability: These motors are extremely tough and can withstand a great 

deal of abuse. This is especially crucial for quadcopters, which can 

experience much stress and vibration [12]. 

 

Though these motors are very good, they can have some disadvantages as well, 

such as: 

• Cost: The cost of these motors is higher than that of other types of motors 

[12]. 

• Weight: These motors weigh more than other types of motors [12]. 

• Noise: These motors can be very loud [12]. 



 

 

 
Figure 8 5010-750KV BLDC Motors [13] 

1.5.7  Electronic Speed Controller (ESC) 

Rudnytsky SIMONK30A ESCs are an excellent choice for controlling the speed of 

5010-750KV BLDC motors [13]. They are compact, light, and simple to use. They 

also have certain characteristics that make them perfect for quadcopter applications, 

such as: 

• High refresh rate: SIMONK30A ESCs have a high refresh rate, which 

means they can react quickly to changes in the throttle signal. This is critical 

for quadcopters, which must respond swiftly to pilot input to maintain 

stability [13]. 

• Linear BEC: SIMONK30A ESCs contain a linear BEC, which means they 

can give a consistent voltage to the receiver and other electronics even when 

they are under load. This is critical for quadcopters, which require a stable 

power source to operate securely [13]. 

• Low voltage cutoff: SIMONK30A ESCs have a low voltage cutoff, which 

means they will automatically turn off the motors if the battery voltage falls 

too low. This is a vital safety feature that can prevent battery and motor 

damage [13]. 

To use SIMONK30A ESCs to control the speed of 5010-750KV BLDC motors, 

ESCs are connected to the motors and the receiver. ESCs must be calibrated 

according to the motors. 



 

 

 

 
Figure 9 SIMONK30A ESC [14] 

 

 

1.5.8  Lithium Polymer (LiPo) Battery 

The CNHL G+ 5000mAh 4S 70C LiPo battery is a high-performance battery 

suitable for a wide range of applications such as quadcopters, helicopters, and 

airplanes [14]. It has a high discharge rate of 70C, which means it can supply a lot 

of power to motors even when they are under severe load. It also has a large 

capacity of 5000mAh, allowing it to power long flights or races [14]. 

The following are some of the advantages of using a CNHL G+ Plus 5000mAh 4S 

70C LiPo battery: 

• High discharge rate: The battery's high discharge rate of 70C means it can 

give a lot of power to the motors even while under heavy load. This is 

critical for quadcopters, helicopters, and airplanes, which require a great 

deal of power to fly. 

• Long capacity: The battery's 5000mAh capacity implies that it can power 

long flights or races. This is critical for quadcopters and airplanes that can 

fly for extended periods of time. 

• High quality: CNHL G+ Plus batteries are constructed with high-quality 

components. This implies they are long-lasting and can tolerate a lot of wear 

and abuse. 

Here are some of the specifications of the CNHL G+ Plus 5000mAh 4S 70C LiPo 



 

 

battery [14]: 

• Capacity: 5000mAh 

• Voltage: 14.8V 

• Discharge rate: 70C 

• Weight: 515g 

• Dimensions: 38x50x145mm 

 
Figure 10 CNHL G+ 70C 5000mAh Battery [15] 

1.5.9  Propeller 

The right propellers are crucial for the required thrust produced by the motors. The 

following factors can help while selecting propellers: 

• Size: The size of the propeller will affect the thrust and efficiency of the 

quadcopter. Choosing propellers that are the right size for the quadcopter's 

motors and frame is essential [15]. 

• Pitch: The pitch of the propeller will affect the speed and thrust of the 

quadcopter. A higher-pitch propeller will provide more thrust, but it will 

also be less efficient. A lower-pitch propeller will be more efficient, but it 

will also provide less thrust [15].  

• Material: Propellers are made from a variety of materials, such as plastic, 

wood, and carbon fiber. Carbon fiber propellers are the most expensive, but 

they are also the lightest and strongest [15]. 



 

 

We have selected 9.5in carbon fiber propellers because they are durable, efficient, 

have great responsiveness, and are very quiet, making them a good option to use 

for the quadcopter. 

 
Figure 11 Carbon Fiber Propeller 

 

 

1.6 Software 

 

1.6.1  MATLAB/Simulink 

For designing the controller and programming, we chose MATLAB/Simulink due 

to its extensive utilization in areas involving aerial vehicles and automobiles. It 

allows for simplified dynamic modeling, design, and simulation of controllers, 

along with accessibility towards linking to other software for SIL simulation.[16] 

Furthermore, the Pixhawk Support Package (PSP) Toolbox, combined with the 

Advanced Embedded coder and Simulink coder provide the ability to convert the 

Simulink model to executable C/C++ code. Simulink then also allows for uploading 

this code to the Pixhawk hardware for HIL simulations and outdoor hardware 

implementations. [16] 

 

1.6.2 PSP Toolbox 

PSP Toolbox is an official Simulink Toolbox which enables designing of 

controllers, conversion into code and uploading of the designed firmware onto the 

Pixhawk hardware. It consists of various sensor blocks and communication 

protocols. 



 

 

 

1.6.3  Flight Gear—Flight Simulator  

 

It is an open-source software for flight simulation utilized to observe the flight of a 

drone in real-time. It works in sync with Simulink; the flight controller designed in 

Simulink can be simulated, and Flight Gear displays the simulated flight in a 3D 

environment. Controls can be adjusted, and the effects observed in real-time.  

 

1.6.4  PX4 Software—Source Code 

It is a firmware built for flight control specifically tailored to run on the Pixhawk 

autopilot. Together, these two make up an integrated autopilot system, which is one 

of the most popular ones for the multi copters. 

 

1.6.5  PX4 Toolchain—Compiling Environment 

The PX4 toolchain’s main purpose is to be used in conjunction with Simulink to 

compile the PX4 source code alongside the designed controller into a “. px4” 

firmware file, which can then be uploaded onto the Pixhawk controller. 

 

1.6.6  QGroundControl (QGC)—Ground Control Station 

QGroundControl is utilized to carry out pre-flight checks (frame assignment, sensor 

calibration, RC setup and tuning of parameters) for the Pixhawk autopilot and 

connected sensors. It can also be used to receive live flight data and send commands 

for control of the aerial vehicle using wireless radio telemetry. [17]  

 

1.6.7  CopterSim—Real-Time Motion Simulation Software 

This software provides Real-time motion simulation for the Pixhawk autopilot. 

Different parameters can be adjusted for the selected multi copter, and the Pixhawk 

hardware can be connected for performing HIL simulations. 

 



 

 

1.6.8.  3DDisplay—3D Visual Display Software 

3DDisplay is a real-time 3D visual display application that receives flight data from 

the CopterSim simulation model via UDP protocol. This allows for the real-time 

visualization of a multi copter's attitude and position within a 3D environment. 

CopterSim and this 3D display software together form an integrated hardware-in-

the-loop (HIL) simulation platform. [18] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Chapter 2 – LITERATURE REVIEW 

 

2.1  Six DOF Quadrotor Mathematical Model 

 

In recent years, a plethora of hovercrafts have been utilized as UAVs, including fixed-wing 

airplanes, airships, and helicopters, among others [19]. Nonetheless, the aircraft that have 

garnered the most attention for remote investigation applications are multirotor copters, 

specifically quadcopters, the reason being that these aircraft boast various advantages over 

others. They have a straightforward structural design, excellent flight capacity and 

maneuverability, especially their capability for vertical take-off and landing (VTOL) and 

ability to hover [20]. A quadcopter obtains flight through four DC motors, each controlling 

an identical rotor, which is upward-facing and positioned in a square-shaped arrangement 

at equal distance from the center of mass of the quadrotor [21]. Each motor’s speed can be 

controlled independently of the other, permitting balanced alteration of the rotors’ speed, 

therefore generating thrust and accelerations in the desired directions. This allows 

quadrotors more stability.  

     Figure 12 Quadrotor structure [12] 

A quadcopter is considered a six-degrees-of-freedom (6-DoF) system, implying that it 

moves in 6 directions and 6 variables are required to show its altitude and attitude in space 

(x, y, z, φ, θ and ψ). The variables x, y and z represent the translational motion of the 

quadcopter. A fixed reference frame is used for this purpose and x, y and z respectively 



 

 

indicate the distance of the copter’s center of mass along x, y and z axes as depicted in 

Figure 1, from this frame. The remaining three variables are the Euler angles, used to 

indicate the orientation of the quadcopter and used for rotational movement. (φ) represents 

the angle about the x axis and is termed roll angle, (θ) represents the angle about the y axis 

and is termed pitch angle and (ψ) represents the angle about z axis and is termed yaw angle. 

These angles are represented in Figure 13. 

Figure 13 Euler angle representation for quadcopter [12] 

For a quadcopter, the roll and pitch angles are called attitudes, the yaw angle is called 

heading and the vertical distance from the ground (z-axis) is termed as the altitude. 

The quadcopter is an under-actuated system, which means that it has a lower number of 

actuators as compared to its Degrees of Freedom, it only allows for direct control over four 

DOF, rather than 6. These 4 DOF consist of altitude, attitude, and heading. The other 2 

DOF can be controlled through 2 of the rotation angles as roll and pitch rotations generate 

aircraft movement along the Y and X axes, respectively [22].  

Most researchers start with a basic dynamic model of the quadcopter, which is derived by 

taking the net external forces and torques into consideration. These are usually 

conventional. However, some have incorporated aerodynamic effects [23], [24], which 

vary according to various applications and environments. [21] and [25] make use of both 

Newton-Euler equations and Euler-Lagrange equations to derive differential equations that 

represent the dynamics of the quadcopter. Furthermore, the derivations of these equations 

for a quadrotor model have been well elaborated by Beard in [26], Corke in [27], Sidea in 



 

 

[28], and Bresciani in [29]. Both methods of deriving these dynamical equations are 

equivalent, thus also producing an equivalent result. Bouabdallah in [25] incorporates 

various external effects into his model, including thrust force, hub force, drag moment, 

rolling moment, and ground effect. However, all these studies have focused on the plus-

configuration of the quadcopter, as it is easier to explain the flight mechanisms in this 

configuration. A quadcopter may also be used in a cross-configuration, as depicted in 

Figure 14. 

Figure 14 Quadcopter in plus- and cross-configurations [31] 

The dynamics regarding thrust and yaw are similar for both, albeit there being different 

dynamics for roll and pitch. 

Defining the reference frames is necessary for deriving quadcopter kinematic equations. 

Ruth Tesfaye [30] Mehmet Ikulak [31], and Alexander Lebedev [32] use the fact that 

quadcopter motion is described based on two frames, body frame and inertial frame [33] 

[34]. However, some researchers like Wei Zhong Fum [35] take the assumption that an 

additional frame corresponding to quadcopter motion is required, known as the vehicle 

frame. 

Ultimately, the study in [36] puts together all this research to derive the equations for the 

dynamical model of the quadcopter and creates an adequate model, which they further use 

to design a controller. They include the effects of the gravitational force, the thrust forces 

of the propellers, the hub torque acting on the propellers, and the drag force acting due to 

the non-elliptical shape of the quadcopter, which is an aerodynamic effect. However, other 

gyroscopic effects like ground effect and gyroscopic effect have been ignored. 

 



 

 

2.2 Cascaded Loop PID Control 

 

After modeling the 6 DOF model of the quadcopter, a cascade control loop is used to 

linearize the non-linear model. Then linearized equations are used to design a PID-

controlled drone in all 6 degrees of freedom. A cascaded control loop architecture is a 

control strategy that involves the use of multiple PID (Proportional-Integral-Derivative) 

controllers in a hierarchical or cascaded manner to control a complex system. The goal of 

cascaded control is to enhance overall control performance and reduce interactions between 

various control loops. Linearization is beneficial for the drone as it will help the drone 

maintain a set altitude, enabling it to capture clear images during flight. A common 

application of cascaded control is to control a primary process variable while using a 

secondary control loop to manage disturbances or improve the response of the primary 

loop. The linearization will be performed in Simulink, where linear equations will be used 

to compare the output of both the linear and non-linear systems. In this architecture, there 

will be two loops: an inner loop for controlling pitch rate and an outer loop for controlling 

vertical acceleration. 

The foundations of control theory, on which the PID controller is based, can be traced back 

to the work of French mathematician Pierre-Simon Laplace in the 18th and 19th centuries. 

Laplace introduced differential equations and Laplace transforms, which are fundamental 

tools in control theory [37]. In the 19th century, the concept of the proportional constant, 

represented by the "P" in PID, was introduced by James Clerk Maxwell. The theoretical 

basis for integral control, denoted by the "I" in PID, was established by researchers 

Nicholas Minorsky and Harold Stephen Black in the early 20th century. The "D" in PID, 

signifying derivative control, was incorporated into control theory by researcher Albert Rea 

Figure 15 Cascaded Loop Control [38] 



 

 

during the early 20th century. In 1911, Elmer Sperry utilized the first-ever PID controller 

to automate a ship's steering mechanism. Then, in 1914, Laurence Sperry, Elmer Sperry's 

son, demonstrated the use of a gyroscope and ailerons to enable an aircraft to maintain a 

level position in the face of disturbances. In 1912, the Foxboro Company achieved a 

significant milestone in process control by introducing the first on-off controller (binary 

controller) featuring a calibrated set-point scale. In 1927, Foxboro introduced a pneumatic 

"narrow band" proportional controller, enhancing the precision and control capabilities of 

industrial processes [38]. Pneumatic control systems utilize air pressure to regulate various 

aspects of industrial processes. In 1922, Nicolas Minorsky implemented the PID control 

architecture to automate ship steering [39]. This work laid the foundation for the 

application of PID control not only in ship steering but also in the control of various 

dynamic systems. In 2008, the Department of Computer and Electrical Engineering at the 

Missouri University of Science and Technology conducted research on a PID-controlled 

drone that used cascaded loop control to enhance pitch control effectiveness and reduce 

pitch response lag by adjusting the integral and derivative gains of the pitch PID loop [40].  

A group of bachelor’s students from the Department of Computer and Electrical 

Engineering at the University of Khartoum designed a cascaded loop control architecture 

for an effective autonomous PID-controlled flight of a drone. Results of implementing the 

cascaded loop control system can be seen in the figure 17 [41]. 

 

Figure 16 General PID loop for Drones 



 

 

 

     

 

 2.3  Software-in-the-loop (SIL) Simulation: 

 

In this project, after designing the PID-controlled flight controller in Simulink, the 

controller will be linked with a quadcopter model in ROS/Gazebo for simulation and 

validation to ensure it operates correctly. Additionally, the designed controller will undergo 

final testing on FlightGear software before being uploaded onto hardware to ensure 

seamless operation in real-world environments, given FlightGear's realistic environment 

options and flight dynamics. These software tools are utilized for validating the flight 

controller's design due to their efficient communication with Simulink. 

Similar projects have been undertaken previously, focusing on simulating simple PID-

controlled algorithms designed in Simulink with Gazebo.[42] However, in this project, the 

goal is to design a complex PID-controlled flight controller that considers environmental 

and real-life factors. Moreover, a group of students previously worked on a similar project, 

implementing, and integrating the PX4 controller with a quadcopter modeled in Gazebo 

[43]. In contrast, this project aims to implement a PID-controlled flight controller from 

scratch, simulate it in Gazebo, and then upload it onto PX4 hardware. 

 

Figure 17 Altitude velocity and Position response after linearization 



 

 

2.4 Object Detection in RGB images 

 

Object detection in real-time scenarios, particularly in the context of unmanned aerial 

vehicles (UAVs), has gained substantial attention in recent years due to its potential 

applications in surveillance, monitoring, and autonomous navigation. A comprehensive 

analysis of the current state-of-the-art methodologies for object detection in RGB images, 

with a specific focus on the integration of the YOLO (You Only Look Once) algorithm and 

the OpenCV (Open-Source Computer Vision Library) for real-time applications on 

autonomous UAVs, is discussed below. The review will encompass pre-processing and 

post-processing techniques to understand the complete pipeline for efficient object 

detection. The dilemmas concerned with 2D object detection are not new, they exist from 

the invention of computer vision. It is critical to highlight that there is no general agreement 

in the books on terminologies like image recognition, annotation and labeling of images, 

detection, clustering, and localization which are frequently described in several ways. [44]. 

• Object detection involves identifying whether any objects from specified categories are 

present in an image and, if so, determining their spatial locations and extents. 

• On the other hand, Object classification and categorization focus on detecting the 

presence of objects from pre-defined classes in the image without pinpointing their 

locations. 

• Object recognition, however, includes both identifying and localizing all objects within 

an image[45] thus combining elements of both image classification and detection [46]. 

  2.4.1  Pre-Processing Techniques 

• Image Enhancement and Filtering [47]: Various techniques to enhance the images, 

such as contrast adjustment and histogram equalization, have been used to improve 

the quality of input images. Researchers like Jain and Zhang have emphasized the 

significance of these techniques in enhancing the confidence rate of subsequent 

object detection algorithms. 



 

 

• Image Registration and Stabilization [47]: Image registration techniques, 

including feature-based and intensity-based methods, have been employed to align 

images and compensate for UAV motion. Studies by Li et al. (2020) and Wang et 

al. (2021) have highlighted the importance of image registration in ensuring 

consistent input for real-time object detection algorithms.  

• Feature Extraction and Augmentation [47]: Feature extraction techniques, 

including SIFT and SURF, have been utilized to extract robust features for 

improved object detection. Researchers such as Lowe (2004) and Bay et al. (2008) 

have extensively discussed the effectiveness of these feature extraction methods in 

the context of UAV-based object detection. 

2.4.2 Review of Object Detectors 

A computer cannot make sense of images, yet it can perform seemingly intelligent 

tasks like identifying and tracking objects in a video. Object detection algorithms 

achieve this by sectioning the image and performing classification and localization 

operations on it. Computers can pass labelled image data for several classes of 

objects through a neural network and make it constantly adjust its weights and 

biases at the nodes until the error in the predictions with respect to the labelled input 

is minimized. After training the neural network in this manner, it can predict 

different classes of objects in any new image input into it. 

To localize an object within an image, the image is divided into rectangular segments 

represented by bounding boxes, and these are fed through the same classifier 

network which returns a confidence score for that image segment containing a 

particular object. The network outputs multiple predictions which are then filtered 

using algorithms like non-maximum suppression. The result is a single remaining 

bounding box which is most likely to contain the object of interest. Object detectors 

can be broadly classified into traditional detectors and deep learning-based detectors 

(Figure 18).  



 

 

 

Figure 18 Classification of Object Detectors 

 

 

Early object detection algorithms relied on a phase of handcrafted feature 

extraction, aiming to develop sophisticated feature representations that captured the 

essence of the image. During that period, numerous adjustments were made to 

enhance accuracy, achieve invariance to various geometrical and spectral factors, 



 

 

and attain near real-time performance, culminating in a plateau around 2010. The 

groundbreaking work by Krizhevsky et al. in 2012 [48] which includes 5 

convolutional layers and 3 fully connected layers, utilized two Graphics Processing 

Units (GPUs) running different layers of the network and communicating only at 

certain layers. This work introduced modern techniques such as data augmentation, 

multi-GPU training, Rectified Linear Unit (ReLU) activation, max-pooling layers 

for down sampling, and dropout for regularization, achieving a top-5 error rate of 

15.3% on the ImageNet Large Scale Visual Recognition Challenge[49]. Since then, 

various architectures have been proposed to enhance accuracy in this domain.[50]. 

Notable contributions are reported below:  

• R-CNN [51] (2014) A two-stage object detector that introduced region proposals 

for potential object locations using selective search, with separate feature extraction 

for each proposal, resulting in high computational load.  

• Faster R-CNN [52] (2015Enhanced the speed of R-CNN by processing the entire 

image as input and introducing RoI pooling layers, improving both accuracy and 

speed.  

• Mask R-CNN [53] (2017) Extended Faster R-CNN by adding a branch for 

predicting object masks alongside bounding box recognition.  

• YOLO [54] (2016) A single-step object detector that significantly increased 

computational speed by using a single feature map for object detection, dividing 

the image into a grid for this purpose, like Faster R-CNN. It was proposed by Joseph 

Redmon in 2015. It performs feature extraction from the input image using the CNN-

based architecture called Darknet as its backbone. The entire input image is divided 

into several grid cells, and bounding boxes are generated for detection in every grid 

cell. As a result, multiple bounding boxes are generated, and each has an associated 

class probability. To deal with objects of different sizes, YOLO uses anchor boxes, 

which are predefined reference templates of different sizes and aspect ratios for 

bounding box generation. After all the bounding boxes are generated, YOLO uses 

the technique of non-maximum suppression to only keep those detections that have 

a higher probability than a certain threshold value, and the rest are removed. The 



 

 

YOLO algorithm became increasingly popular due to its simplicity and 

applicability in real-time scenarios. Hence, in subsequent years, its pioneers 

introduced many improved versions, and newer versions are still being introduced. 

These include YOLOv1, YOLOv2, and so on. Each of these comes in architectures 

of variable sizes having different numbers of trainable parameters. The lighter 

versions with fewer trainable parameters are more suitable for faster, real-time 

applications, even though they are a little less accurate. The YOLO algorithms still 

struggle to show the same performance for detecting small and crowded objects as 

they did for detecting larger objects captured from a clearer point of view. 

2.4.3 Aerial Datasets 

The datasets for aerial object detection and tracking are typically acquired by low-

altitude drones. The parameters in these datasets can vary greatly based on the types 

of sensors used for the collection of data. Moreover, the number and position of 

targets, capturing angle, and altitude can all change drastically across the frames of 

a video. The UAV123[46], ALOV300++, Temple Color 128 [55] and VisDrone [56] 

are some popular aerial datasets. These are very diverse datasets comprising a wide 

variety of objects from urban and wildlife environments. Table 1 below shows some 

of these datasets and the no. of elements they have. 

 

Table 2 Common Aerial Video Datasets 

Name of Dataset No. of images/videos 

VOT2017 [50] 60 (21,000 frames) 

VisDrone2019 [49] 288 (261,908 frames) 

UAV20L [51] 20 (58,670 frames) 

UAV123 [46] 120 (112,578 frames) 

Temple Color 128 [48] 129 (55,346 frames) 

ALOV300++ [47] 314 (151,657 frames) 

 



 

 

2.4.4 Review of Trackers 

Object tracking is a crucial task in deep learning/computer vision and has numerous 

applications in various fields. The plots of the trajectories of the objects from a 

video can be used to form meaningful conclusions about a scenario. Examples of 

this include monitoring traffic, crowd surveillance, and marine wildlife 

surveillance. Multi-Object tracking (MOT) algorithms usually involve two steps: 

detection, and data association. In detection, box-predictions are generated for the 

objects involved in each and every frame. Then, the stage of data association 

compares matching of the predicted boxes of the similar objects/classes across 

multiple frames based on their appearance and motion and assigns them the same 

ID number. Tracking from UAV can be challenging because of the moving camera 

on the UAV.   

Most modern state-of-the-art modern trackers are based on some type of 

fundamental tracking strategy. These can be broadly classified into three categories- 

point tracking, kernel tracking, and silhouette tracking. Of these, generally the 

kernel-based tracking methods demonstrate higher accuracy, however, point 

tracking has a very less computational cost. The major algorithms belonging to 

these categories, as shown in Figure 19 below, have been discussed in the following 

sections.   



 

 

 

Figure 19 Classification of Object Trackers 

2.4.4.1  Point Tracking Methods  

•Kalman Filter[57]: was developed in the 1960s by Rudolf Kalman and 

has since become one of the most important state estimation algorithms for 

tracking applications. It is a recursive algorithm that uses the state transition 

model for prediction and then corrects it using the true measurement once 

the new state of the system is obtained. Since it needs to store information 

about only the immediately previous state of the system to predict the new 

state, it is computationally very light. It takes an initial input state and 

outputs the estimate uncertainty along with the next state estimate. Because 

of the fewer computations involved, it can be used in real-time tracking 

applications. Include reference of tracking in noisy images using Kalman 

filter.   

•The Particle Filter[58]: was introduced in 1993 as an extension of the 

Kalman filter to compute state estimation for non-Gaussian systems. It 

consists of a set of weighted particles, which represent a hypothesis about 



 

 

the state of the system. The first step of the algorithm is called importance 

sampling, in which the particles are propagated based on assigned weights 

and their fidelity to the true measurements. The particles with greater weight 

are more likely to be resampled in the next step. In this way, the system 

gradually attains a closer approximation to the true state of the system. Both 

the Kalman filter and the Particle filter form the basis of many tracking 

applications, however, the Particle filter-based system is computationally 

more complex. Include reference for good results in image with 

occultations.  

2.4.4.2 Kernel Tracking Methods  

Within the framework of machine learning algorithms, kernels are 

mathematical functions that transform input data into higher dimensional 

space and compute the similarity between different sets of data points. By 

transforming data into higher dimensional space, its features become more 

apparent and separable for the purpose of analysis. There are different types 

of kernels, like linear kernels, polynomial kernels, sigmoid kernels, etc., 

which can be used to compute the similarity between two different sets of 

data, e.g., image frames. Hence, these are employed in designing algorithms 

for tracking. The following two algorithms described below are kernel-

based methods of tracking.  

• The Mean Shift Vector indicates the direction of the maximum 

increase in the similarity between the target object and the image 

region in question. The algorithm[59] iteratively computes this 

vector and eventually converges to the target’s location. To start 

with, it takes an initial location, computes the feature or color 

histogram of the region, and defines a kernel function to assess the 

similarity of the target region with the neighboring regions. The 

weighted average of the histogram gradients indicates the direction 

of maximum similarity improvement, as encoded in the mean shift 

vector. The target’s location is gradually updated by shifting it in the 



 

 

direction of this vector until convergence is achieved. The mean 

shift algorithm is robust to changes in appearance, illumination, and 

occlusions, therefore it can handle complex tracking scenarios. 

Include reference for real time application of MS.   

• Support Vector Tracking (SVT) works on the basis of support 

vector machines (SVMs)[60]. SVMs are supervised learning 

algorithms employed to address both classification and regression 

models. The aim is to find the planes or boundaries in the data based 

on which different classes of objects can be classified. SVT 

combines kernelized correlation filters with SVMs. To start with, it 

first trains a binary classifier that can differentiate between target 

objects (positive samples) and backgrounds (negative samples). 

Then kernel functions map the data points into a higher-dimensional 

feature space. During tracking, kernelized correlation filters 

estimate the target’s position in the frame and measure the similarity 

between the target model and search regions. The target location is 

then predicted based on the maximum response of the filter. Overall, 

SVT combines the discriminative abilities of the SVMs and the 

robustness of correlation filters in dealing with challenging tracking 

scenarios. Include reference for handling partial occlusions, and 

training.         

2.4.5 Image Datasets 

The datasets for object detection and tracking are typically acquired by low-altitude 

drones. The parameters in these datasets can vary greatly based on the types of 

sensors used for the collection of data. Moreover, the number and position of targets, 

capturing angle, and altitude can all change drastically across the frames of a video. 

The UAV123[61], Temple Color 128[62] and OIDv7[63] are some popular aerial 

datasets. These are very diverse datasets comprising a wide variety of objects from 

urban and wildlife environments. 

 



 

 

2.4.6 Embedded Platforms Used for Real-Time Implementation 

For deploying tracking applications to real-world scenarios, algorithms, after they 

have been tested and optimized, must be ported onto embedded platforms. The 

platform used is. 

2.4.6.1 Raspberry Pi 

Although not as powerful as the Nvidia Jetson boards, the Raspberry Pi 

provides a cost-effective solution. Owing to their less computational 

capacity, they are more suitable for lightweight computer vision 

applications with extremely optimized models.   

Most practical object detection and tracking applications require extensive 

computational resources and storage capacity. For tasks where real-time 

processing is not required, the captured data can be transmitted to ground-

based stations for processing. This helps save energy and battery power of 

the device; however, the data transfer can also make the process slow. 

Therefore, for applications requiring real-time processing, the UAV must be 

equipped with sensors and processing boards to perform faster operations.  

The computational capacity of most embedded systems poses a limit to the 

complexity of the algorithms that can be used during onboard operations. 

Therefore, lighter versions of the popular deep learning algorithms have 

been proposed for real-time operation from UAVs. Examples of such 

detection models include, TensorFlow-Lite, UAV-Net [64], which is based 

on SSD architecture and is adapted to the unique features of aerial imagery, 

and the lighter version of Faster-RCNN, which uses a lightweight deep 

CNN feature extractor. A few small, lightweight detectors based on 

TinyYOLO architecture have also been proposed, which vary parameters 

like filter size and input image size. Examples of these include 

SmallYOLOv3[65], TinyYoloNet[66], and DroNet[67].  

 



 

 

 

Chapter 3 – METHODOLOGY 

 

3.1  Configuration of Quadcopter 

The quadcopter is an underactuated system, which uses four inputs to control six degrees 

of freedom. A quadcopter with four rotors offers two design options: X-configurations and 

+-configurations. The thrust and yaw dynamics are comparable for both; however the roll 

and pitch dynamics differ. In other words, just two rotors generate the roll and pitch 

moment in + configurations, whereas four motors generate these moments in X 

configurations. Figure 20 depicts X- and +- arrangements. Note the direction of the axes 

that correspond to each setup[68].  

 

Figure 20 Quadrotor Dynamics (plus configuration) [71] 

Vertical upward motion is generated by increasing rotor speed, and vertical downward 

motion is generated by lowering rotor speed. In the +-configuration, pitch rotation is 

achieved by adjusting the speeds of the front and back rotors, while roll rotation is 

accomplished by varying the speeds of the left and right rotors. For X-configurations, the 

speed of four rotors is adjusted based on the required rotation. This thesis utilizes the plus 

arrangement under study [71]. 

 

 



 

 

 

3.2  Mathematical Modeling 

 

3.2.1 State Variables 

For a quadrotor dynamic model, we are interested in the position and velocity of 

the quadrotor. So, we can take linear as well as rotational position and velocity 

values that are then used to determine the position of the quadrotor in the space. 

And like that 12 state variables are x, y, z position in the coordinate axis and φ, θ, 

ψ that are rotational angles around the x, y, and z axis respectively, and then we 

have u, v, w that are velocities in x, y, z directions respectively and lastly, we have 

p, q, and r that is rotational velocities around each axis. 

𝑋 = [𝑥; 𝑦; 𝑧; φ;  θ;  ψ;  𝑢; 𝑣; 𝑤; 𝑝; 𝑞; 𝑟] 

3.2.2  Measurements 

All above-mentioned variables are measurable as recent GPS/IMU sensors provide 

all the above information. 

3.2.3 Dynamics 

We take our front direction as positive x-axis in the direction of the motor 1 and our 

positive Y-axis towards right (motor 2) and we have our Z-axis positive downwards 

as we know that our gravitational acceleration (g =  9.8 ms−2) is positive in 

downward direction so it will help us out whenever we are using gravitational 

acceleration value. To move in a forward direction speed of motors 2 and 4 remains 

constant while motor 3 speed should be greater than motor 1 speed () and vice versa 

for backward direction movement. To move towards the direction speed of motor 1 

and 4 should remain constant and the speed of motor 4 should be greater than that 

of motor 2 and vice versa to move in the negative Y-axis direction. To move in an 

upward direction speed of all motors should be the same and of such value that the 

thrust produced is greater than the overall weight of the quadrotor and to move in a 



 

 

downward position, the thrust force should be less than the weight of the quadrotor. 

These movements are used for take-off and landing purposes. 

 

Figure 21 Quadrotor Reference Frame [72] 

 

3.2.4    Control Variables 

We have four rotors, and we have a 6-DOF system which means we have a complex 

underactuated system, so we will need to control these four rotors to move in space. 

And by that, we get to the controlling variables which are thrust, and moment values 

about each axis. The thrust causes the vertical motion of quadrotor and moments 

cause its motion in XY-plane.  

�⃗� = [𝑢1; 𝑢2; 𝑢3; 𝑢4] = [𝑇⅀;𝑀1;𝑀2;𝑀3] 

3.2.5    Thrust and Moment Distribution among Rotors 

Total thrust produced and moment values are given as below, 

                                                              𝑇⅀ = ∑𝐾𝑡

4

𝑖=1

Ω𝑖
2                                                                       (1) 



 

 

                                                    𝑀1 = −𝐾𝑡 ∑𝑙𝑖

4

𝑖=1

𝑠𝑖𝑛(𝛼𝑖) Ω𝑖
2                                                         (2) 

                                                  𝑀2 =  𝐾𝑡 ∑𝑙𝑖

4

𝑖=1

𝑐𝑜𝑠(𝛼𝑖) Ω𝑖
2                                                             (3) 

                                                   𝑀3 =  𝐾𝑞 ∑𝑂𝑖

4

𝑖=1

Ω𝑖
2                                                                          (4) 

And these equations give us the following matrix that calculates the necessary 

values of total thrust and moments. 

[

𝑇⅀

𝑀1

𝑀2

𝑀3

] =  [

𝐾𝑡 𝐾𝑡 𝐾𝑡 𝐾𝑡
0 𝐾𝑡𝑙 0 −𝐾𝑡𝑙

−𝐾𝑡𝑙 0 𝐾𝑡𝑙 0
𝐾𝑞 𝐾𝑞 𝐾𝑞 𝐾𝑞

]

[
 
 
 
 
Ω1

2

Ω2
2

Ω3
2

Ω4
2]
 
 
 
 

                                          (5) 

This matrix can be used to find out values of motor speeds given values of thrust 

and moments, for that we have: 

  

[
 
 
 
 
Ω1

2

Ω2
2

Ω3
2

Ω4
2]
 
 
 
 

=  [

𝐾𝑡 𝐾𝑡 𝐾𝑡 𝐾𝑡
0 𝐾𝑡𝑙 0 −𝐾𝑡𝑙

−𝐾𝑡𝑙 0 𝐾𝑡𝑙 0
𝐾𝑞 𝐾𝑞 𝐾𝑞 𝐾𝑞

]

−1

[

𝑇⅀

𝑀1

𝑀2

𝑀3

]                                        (6) 

 

3.2.6  Equations of Motion by Newton-Euler Method 

We can easily calculate equations of motion by using the Newton-Euler method. 

3.2.7  Translational Motion 

We can get equations of linear acceleration for translational motion using the 

following equations, 

�̈� =  −
1

𝑚
 (𝑠𝑖𝑛 𝜓 ∙ 𝑠𝑖𝑛 𝜑 +𝑐𝑜𝑠 𝜓 ∙ 𝑠𝑖𝑛 𝜃∙ 𝑐𝑜𝑠 𝜑)                             (7) 

�̈� =  −
1

𝑚
 (−𝑐𝑜𝑠 𝜓 ∙ 𝑠𝑖𝑛 𝜑 + 𝑠𝑖𝑛 𝜓 ∙ 𝑠𝑖𝑛 𝜃∙ 𝑐𝑜𝑠 𝜑)                          (8) 



 

 

�̈� =  −
1

𝑚
 𝑐𝑜𝑠 𝜃 ∙ 𝑐𝑜𝑠 𝜑 ∙ 𝑇⅀⬚ + 𝑔                                          (9) 

And then using values of acceleration from here we can calculate values of 

translational velocities and coordinates of the quadrotor in the earth frame. 

3.2.8  Rotational Motion 

Now for rotational motion, we can calculate rates of six rotational variables using 

the following relations, 

[

�̇�

�̇�
�̇�

] = [

1 𝑠(𝜑)𝑡(𝜃) 𝑐(𝜑)𝑡(𝜃)

0 𝑐(𝜑) −𝑠(𝜑)

0 𝑠(𝜑) 𝑠𝑒𝑐(𝜃) 𝑐(𝜑) 𝑠𝑒𝑐(𝜃)
] [

𝑝
𝑞
𝑟
]                          (10) 

As our IMU gives values in relation to earth frame, thus we must transform these 

values from earth frame to body fixed frame and above relation is used to do so. 

�̇� =   
𝐼𝑦𝑦 − 𝐼𝑧𝑧

𝐼𝑥𝑥
 ∙ 𝑞𝑟 + 

1

𝐼𝑥𝑥
 ∙  𝑀1                                   (11)   

�̇� =   
𝐼𝑧𝑧 − 𝐼𝑥𝑥

𝐼𝑦𝑦
 ∙ 𝑝𝑟 + 

1

𝐼𝑦𝑦
 ∙  𝑀2                                     (12) 

�̇� =   
𝐼𝑥𝑥 − 𝐼𝑦𝑦

𝐼𝑧𝑧
 ∙ 𝑝𝑞 + 

1

𝐼𝑧𝑧
 ∙  𝑀3                                     (13) 

 

These equations give us values of rotational accelerations in earth frame and output 

from these equations can be integrated to get the values of rotational velocities that 

can be used to calculate φ, θ, ψ. 

3.3  Control Strategy for Path Planning 

 

For control of our quadcopter, we tried and tested two methods, the first is the control 

strategy designed to be used in conjunction with path planning, and the second strategy is 

designed for flying the quadcopter using a Remote Control. This section discusses the 

control strategy required for Path planning. 

 



 

 

3.3.1  Nested Control Loop 

As we are autopiloting our quadrotor, we give the way points to our quadcopter, 

and it follows them one by one and finally reaches the destination. These desired 

points are then fed to the position control block that then calculates the thrust 

deviation (∆𝜔𝐹) and desired angles of the quadrotor about each axis. These angles 

then go to the attitude control block which then calculates the deviation in the motor 

speed that is required to obtain these angles. All these deviation values are then fed 

to the motor dynamics block that calculates values of speeds of all motors and then 

these values are used to calculate the thrust and moment values required. Then these 

values of thrust and moment are used to calculate the translational and rotational 

motion parameters of the quadrotor using dynamics equations as discussed above 

in the model.[69] 

3.3.2  PID Controller for a Quadrotor 

This study describes the modeling and stabilization of the quadrotor. On open loop, 

the developed quadrotor responds in a very nonlinear way. It is thus controlled by 

an external PID controller. This approach is employed as a recursive procedure to 

create control laws; all the computation stages relating to the tracking error are 

simplified[70]. 

 

Figure 22 Nested control loops for position and attitude control [73] 

Another factor to consider while selecting a controller is the UAV control 

mechanism. The model can be divided into two components based on the control 



 

 

system used: one controls the angular rotation of the quadrotor UAV, and the other 

controls the height(z) of the modeled quadrotor. The equations above use PID 

control with inputs T, U2, U4, U4 and outputs phi, theta, psi, and altitude z. 

Although these control methods work well for local analysis and non-linear 

systems, typically fail when used to global analysis and non-linear systems with 

non-affine control. The fully actuated subsystem can be controlled and stabilized 

by applying a control algorithm to all the UAV’s output states. For this 

underactuated system, rate bounded PID controllers must be built to move states to 

their desired values. Automatic tuning is utilized to linearize the output of the 

Quadrotor UAV model. The simulation results suggest that the quadrotor can be 

stabilized using PID controller. The results with and without a PID controller are 

examined in the next section[70]. 

3.3.2.1 Position Controller 

In our position controller we have a way points profile and angles profile. 

3.3.2.2 Way Points Profile 

In our way points profile we provide three-way points, first of all we provide 

height of 2000m and when it reaches this height then using simple switches 

of SIMULINK we provide it 2000m in positive x direction after that it has 

to go to the position of [x, y] = [2000, 2000]. When it reaches that point then 

we command it to reach the position of [x, y] = [4000, 2000]. Throughout 

this journey the height is maintained at z = 2000m. 

3.3.2.3 Desired Angles Profile 

After getting waypoints we apply Cascade PID Controller[71] on the 

desired point and previous point to get the desired value of the angle. In the 

outer loop we apply PID on the desired way point and previous point and in 

the inner loop we apply PID to the rate of change of points to the velocity 

in the respective direction (either x or y).  

 



 

 

 

Figure 23 Way Points Profile 

 

Figure 24 Desired Angles Profile 

In Figure 24 upper cascade loop calculates the value of the desired angle 

𝜃 because to move in a positive x-direction angle 𝜃 is responsible and the 

lower cascade loop calculates the desired angle 𝜑 because it causes motion 

in the positive y-axis. We have assumed our quadrotor faces in one direction 

𝜓 = 0. 



 

 

3.3.2.4 Altitude Controller 

We prefer to approach the given height before we make any movement in 

the lateral direction (XY). So desired height (des_z) is compared with our 

present height then PID is implemented on the error signal. This error signal 

is actually a change in the height that is then compared with velocity in the 

negative z direction (upward). This part is done in the inner loop, and it is 

crucial for the stability of the system. We also need control over our velocity 

otherwise we may not be able to control the velocity and our quadcopter 

system may behave in a disturbing way. By using output from our inner 

loop, we calculate the thrust required to get our quadrotor to the desired 

height. 

 

Figure 25 Altitude Controller using PID in SIMULINK 

3.3.2.5 Attitude Controller 

Throughout our mission, we have assumed that our quadrotor faces in a 

positive x direction means we have 𝜓 = 0. So, we require control over 𝜑 

and 𝜃. 



 

 

3.3.2.6 Roll Controller 

We take our present value of roll rate and then taking integration we get the 

value of the present roll angle. This angle is compared with the desired roll 

angle which is 𝑑𝑒𝑠_𝑝ℎ𝑖 that was calculated in our desired angles profile. 

After receiving the error signal, we compare it with the present roll rate this 

is again a crucial part for stability because otherwise, our rate of angle 

change may be so disruptive that our system might fail and cause a crash 

landing damaging our equipment. The error signal from the inner loop gives 

us the rate of change of velocity that can be considered as rotational 

acceleration about the x-axis that is multiplied by 𝐼𝑥𝑥 to get the required 

value of 𝑡𝑎𝑢_𝑝ℎ𝑖 that is our required moment value about the x-axis i.e 𝑀1. 

 

Figure 26 Roll Controller 

3.3.2.7 Pitch Controller 

In Figure 27 we take our present value of pitch rate and then taking 

integration we get value of the present pitch angle. This angle is compared 

with the desired pitch angle which is 𝑑𝑒𝑠_𝑡ℎ𝑒𝑡𝑎 that was calculated in our 

desired angles profile. After receiving the error signal, we compare it with 

the present pitch rate this is again a crucial part of stability because 

otherwise, our rate of angle change may be so disruptive that our system 

might fail and cause a crash landing damaging our equipment like roll angle. 

The error signal from the inner loop gives us the rate of change of angular 

velocity about the y-axis that can be considered as rotational acceleration 



 

 

about the y-axis that is multiplied by 𝐼𝑦𝑦 to get the required value of 

𝑡𝑎𝑢_𝑡ℎ𝑒𝑡𝑎 that is our required moment value about the y-axis i.e 𝑀2.  

3.3.2.8 Yaw Controller 

In Figure 28 though throughout our flight we considered our yaw angle to 

be zero for the case when we are given the yaw angle, we can control it 

just in a way we did for roll and pitch angles. This gives us the value of 

𝑀3. 

 

 

Figure 27 Pitch Controller 

 

Figure 28 Yaw Controller 



 

 

3.3.2.9 Motors Dynamics 

After we have calculated the values of all our control parameters, we are 

able to calculate the speeds of all the motors. That are then fed to our 6-

DOF model that will calculate values of our state variables.  

 

Figure 29 Motors Speed Calculation 

3.3.2.10 Plant Function 

We have our plant function in which we have implemented all the equations 

stated in sections 3.5.2.1 and 3.2.5.2. This is where we get our state 

variables calculated. 

function x_dot = fcn(x,u,Thrust) 
 
 
% All the parameters required 
g = 9.81;  % Gravitational acceleration 
R = 0.125; % Radius of central mass 
b_m = 2.05;  % Body mass 
a_l = 0.225; % Arm length 
r_m = 0.112; % Rotor mass 



 

 

 
% Moment of Inertia terms 
Ixx = ((2*b_m*R^2)/5)+(2*r_m*a_l^2); % Moment of inertia for sphere = (2/5)mr^2 
Iyy = ((2*b_m*R^2)/5)+(2*r_m*a_l^2); % Moment of inertia for pendulum = mr^2 
Izz = ((2*b_m*R^2)/5)+(4*r_m*a_l^2); 
kt = 0.00263; 
% Output variable that gives derivative of state variables 
x_dot = zeros(12,1); % States [x y z phi the psi u v w p q r] 
% Thrust = kt*(w(1) + w(2) +w(3) + w(4)); 
 
% All components of Absolute rotational velocity 
phi_dot = x(10) + sin(x(4))*tan(x(5))*x(11) + cos(x(4))*tan(x(5))*x(12); 
theta_dot = cos(x(4))*x(11) - sin(x(4))*x(12); 
psi_dot = sin(x(4))*(1/cos(x(5)))*x(11) + cos(x(4))*(1/cos(x(5)))*x(12); 
 
% All the linear acceleration terms 
u_dot = (-1/b_m) * (sin(x(6))*sin(x(4)) + cos(x(6))*sin(x(5))*cos(x(4))) * Thrust; % 
Acceleration in X direction 
v_dot = (-1/b_m) * (-cos(x(6))*sin(x(4)) + sin(x(6))*sin(x(5))*cos(x(4))) * Thrust; % 
Acceleration in Y direction 
w_dot = ((-1/b_m) * (cos(x(5))*cos(x(4))) * Thrust) + g; % Acceleration in Z 
direction 
 
% All the rotational acceleration terms 
p_dot = (((Iyy-Izz)/Ixx)*x(11)*x(12)) + (1/Ixx)*u(1); % Acceleration about X 
direction 
q_dot = (((Izz-Ixx)/Iyy)*x(12)*x(10)) + (1/Iyy)*u(2); % Acceleration about Y 
direction 
r_dot = (((Ixx-Iyy)/Izz)*x(10)*x(11)) + (1/Izz)*u(3); % Acceleration about Z 
direction 
 
x_dot  = [x(7); x(8); x(9); phi_dot; theta_dot; psi_dot; u_dot; v_dot; w_dot; p_dot; 
q_dot; r_dot]; 
end 

 

 

3.3.3  SIMULINK Model 

In Figure 30 we have our overall SIMULINK model that simulates quadrotor 

dynamics using the Newton-Euler method. 



 

 

 

Figure 30 Complete SIMULINK Model 

3.4  Cascade-Loop PID Controller for RC control 

 

This section details the design of the attitude controller developed for RC control of the 

drone using Pixhawk. 

 

3.4.1 PSP Toolbox 

The PSP Toolbox contains various the following sensor modules to simplify 

connection of designed controller to the software and hardware components: 

 

Figure 31 RC input block in PSP Toolbox 



 

 

3.4.1.1 RC input 

The RC or the Radio Control input block allows users to access the PWM 

input signals being sent by their RC transmitter. These signals are recorded 

by the RC receiver and sent to the Pixhawk. The sample time and RC 

channels which are to be used can be selected. The block provides access to 

a maximum of 18 channels. 

3.4.1.2 Sensors Combined 

This module allows access to sensor data coming in from the Pixhawk. Data 

from the following sensors is included: magnetometer, barometer, 

accelerometer, gyroscope. Users can change the sample rate and choose 

which sensor data they want to use from settings and parameters. 

3.4.1.3 Vehicle attitude 

The attitude blocks provide an estimate for the vehicle attitude, which 

involves the roll, pitch and yaw rates of the vehicle. The 4th option is for a 

quaternion, which gives the orientation of the vehicle as a quaternion. A 

different function is required to convert these values to the Euler angles, to 

get the values of the phi, theta, psi angles. 

3.4.1.4 Vehicle GPS 

The GPS module gives the values coming into the Pixhawk from the GPS 

module, which gives the attitude of the multi copter along with its latitude 

and longitude values. 

3.4.1.5 RGB LED 

This block can be used to configure how the RGB LED installed on the 

Pixhawk would blink/flash/display for different scenarios, especially for 

arming/disarming. 



 

 

3.4.1.6 PWM output 

The PWM Output controls the output PWM values sent to the motors on 

the multirotor. The Arming output for the motors can be controlled, which 

is important for controlling the factor which decides suitability for 

arming/disarming. The number of PWM channels and their update rate 

(frequency) can also be configured.  

 

                                                    Figure 32 PWM Output block in PSP Toolbox 

     

3.4.1.7 uORB modules 

uORB (micro–Object Request Broker) is a middleware used in the PX4 

flight stack. It is utilized as an asynchronous API which publishes and 

subscribes messages within the PX4 architecture, thus allowing for inter-

thread and inter-process communication. It enables various components to 

communicate by publishing messages to specified topics, preconfigured in 

the PSP Toolbox t (e.g., sensor_accel, vehicle_global_position). It further 

enables subscribing to these topics to receive required data through 

messages. The UAV Toolbox Support Package in Simulink includes blocks 

tailored specifically to sending and receiving uORB messages. 

When code is generated from a Simulink model containing these blocks and 



 

 

deployed to a Pixhawk flight controller, the Simulink controller installed on 

the autopilot becomes able to both read from and write to the uORB 

network, interacting with corresponding topics. The uORB protocol allows 

accessing of internal PX4 parameters for real-time tuning of controller 

gains. All the modules and blocks mentioned above are implemented in the 

Simulink model through reading and writing of uORB messages. This 

enables Simulink to access all intermediate variables and variables used in 

the PX4 autopilot. [17] 

3.4.2 RC inputs 

The input values being transmitted by the RC transmitter are divided into 5 channels 

for our use. Channel 5 is used as the arming/disarming channel. The three-way 

switch, SWA on the transmitter was configured as the arming/disarming switch to 

correspond to channel 5. Moreover, Channel 1 is the roll channel; similarly, 

channels 2,3 and 4 are the pitch, throttle, and yaw channels respectively. These 

channels take values from the 2 toggles and convert them to a PWM value which 

is then transmitted to the RC receiver. These PWM values are limited to between a 

minimum of 1100 and a maximum of 1900. Furthermore, 1500 is the ‘rest’ value 

for the roll, pitch and yaw channels, and ‘1100’ is that of the throttle channel. A 

deadzone rate of 0.05 is used for the toggles to ensure that there is no stick drift and 

to give a “cushion” region. The MATLAB code for doing this is shown below: 

 

RCMin = 1100; 

RCMax = 1900; 

deadZoneRate = 0.05; 

deadZone = deadZoneRate*(RCMax-RCMin); 

 %ensuring values do not exceed 1900 and don't go lower than 1100 

if (u < RCMin) 

    u = RCMin; 

elseif (u > RCMax) 

    u = RCMax; 



 

 

end 

%configuring the deadzone 

 if (u > 1500+deadZone) 

    y = u; 

 elseif(u < 1500-deadZone) 

     y = u; 

 else 

     y = 1500; 

 end 

      

 end 

 

Since these values are for angles and throttle, they have to further be normalized. 

They are normalized between 0.5 and -0.5 for the angles and between 0 and 1 for 

the throttle. A 0.5 radian limit is set for the angles to ensure that sensitivity 

doesn’t go too high. 

The roll, pitch and yaw values from here are fed into the attitude controller, 

whereas the throttle value goes directly into the motor mixer. 

 

3.4.3 Attitude Control 

The attitude controller has a total of 8 inputs:  

• The Angular rate values, p, q and r, are being feedback from the plant 

model. 

• The normalized roll, pitch, and yaw values from the RC transmitter 

• The roll and pitch feedback values from the plant model (the yaw rate does 

not require a cascade-loop controller; thus, no yaw feedback is involved) 

3.4.4 PID 

PID controllers are commonly used in quadcopters, since they provide stability, 

precision, and robust performance. They work on a feedback system by comparing 

the setpoint, which is the required value, with the actual value from the system, 



 

 

which may have been obtained using sensors or otherwise. An error value is then 

calculated, and the PID then acts on this error value to reduce it to near zero (ideally 

zero). The transfer function of a PID system can be written as following, 

𝐺(𝑠) = 𝐾𝑝 + 𝐾𝑖 (
1

𝑠
) + 𝐾𝑑𝑠 [72] 

where 𝐾𝑝 is the proportional gain, 𝐾𝑑 is the derivative gain, 𝐾𝑖 and is the integral 

gain. 

These three gains have the following effect on the system, working best when used 

in conjunction: 

1. Proportional (P): This part of the controller multiplies the error signal by a 

constant factor, 𝐾𝑝 .This helps improve the transient response rise time and settling 

time, thus making the controller more reactive to changes, however making the 

system susceptible to oscillations and overshoots in the case of increasing it too 

much. 

2. Integral (I): The integral part sums up all the past errors and multiplies them by 

a constant, 𝐾𝑖. This helps to eliminate any steady-state error over time and ensures 

the system reaches the exact desired value. However, increasing this value too far 

causes the system to become sluggish. 

3. Derivative (D): The derivative component computes the rate of change of the 

error signal and multiplies it by a constant 𝐾𝑑. It anticipates future errors and adjusts 

the control input to smooth out the response and prevent overshooting or 

oscillations. It does this by limiting the reaction speed of the controller. 

By combining these three elements, the PID controller can effectively control the 

system, providing a balance of quick response, accuracy, and smooth operation. 

 

3.4.5 Cascade loop PID control  

The designed attitude controller utilizes 3 PID controllers, 2 of which are cascade-

loop PID controllers. This is because the quadcopter is an under-actuated system 

[73], which means that it has 6 DOF but it is being controlled using only four 

motors. [74] X and Y can be controlled directly using the pitch and roll respectively. 

Due to this fact, when establishing control for a quadcopter, the 3 position 



 

 

coordinates are considered along with the yaw angle. Three orientation controllers 

have to be used for each roll, pitch and yaw. The control signals from these three 

position controllers make up a force vector (thrust) in the inertial coordinate system. 

A cascade loop PI-PID controller is used for Roll and Pitch values. A cascade loop 

controller as shown in Figure 33, works through 2 PID loops, the inner loop and 

the outer loop. The outer loop is used to control the attitude of the quadcopter. The 

inner loop controller takes the output of the outer loop controller as its setpoint 

input, and it is used to control a a swiftly varying variable, which in this case is 

angular velocity. [75] 

Thus, the outer loop controllers are designed by taking the normalized values from 

the RC transmitter as setpoints. The feedback values used for calculating the error 

are the Euler angle values taken from the plant model. The outputs from the outer 

loop controllers are used as the setpoints for the inner loop controllers, which use 

the values of the rates from the plant model as feedback to calculate the error values. 

This is done for control of each of the roll and pitch values. The p and q values are 

multiplied by a gain value of 1/3 to normalize the values coming in from the plant.  

A simple PID controller is used for Yaw, which just takes the normalized values 

from the RC transmitter as its setpoint and the Yaw angle value from the plant as 

its feedback, thus calculating the error and applying feedback control on it. 

All of this is shown as a Simulink model. 

Furthermore, for tuning of the PID parameters, trial-and-error was used. A step 

input was provided and then each parameter tuned one by one for each controller 

                               Figure 33 Architecture of a cascade-loop PID controller [80] 



 

 

until the output curves best resembles the step input curve. 

The output values from these controllers can then be used to calculate the PWM 

values for each motor, in the Motor Mixer. 

 

3.4.6 Motor Mixer 

The output from the attitude controller, in addition to the thrust, represents the 

angular velocities of the quadcopter. The following equations are utilized to find 

the values of the PWM to be supplied to the 4 motors: [69] 

 𝑃1 = 𝑃𝑧 + 𝑃𝛼 + 𝑃𝜃 − 𝑃𝜑                                     (14) 

𝑃2 = 𝑃𝑧 − 𝑃𝛼 + 𝑃𝜃 + 𝑃𝜑                       (15) 

𝑃3 = 𝑃𝑧 − 𝑃𝛼 − 𝑃𝜃 − 𝑃𝜑                           (16) 

𝑃4 = 𝑃𝑧 + 𝑃𝛼 − 𝑃𝜃 + 𝑃𝜑                        (17) 

where 𝑃1, 𝑃2, 𝑃3 and 𝑃4 represent the PWM values being output to each motor in the 

quadcopter. 𝑃𝛼 , 𝑃𝜃 , 𝑃𝜑 represent the values output by the roll, pitch, and yaw 

controllers, respectively. [69] 

These PWM values are then normalized based on the idle PWM value of the 

brushless DC motor, and then output to the mathematical model. 

3.5 Proposed Detection and Tracking Framework 

 

3.5.1  Overview  

This chapter outlines the detailed methodology of implementation for the proposed 

solution. The choice of dataset, the required preprocessing, and the algorithms used 

have been explained. Furthermore, the evaluation metrics used for quantitative 

assessment of detection and tracking have been discussed. Based on the comparison 

of two trackers analyzed, the further steps taken for implementing tracking on 

embedded hardware have also been described.   

 

3.5.2  Analysis of Project Requirements  

The following requirements were considered for designing the solution to the 



 

 

proposed problem:  

Video acquisition is performed by an operator manually flying the drone over a 

target point.  

The video is fed into the detection and tracking algorithm, which outputs the 

detected boxes around the objects of interest (i.e., cars, etc.).   

The system is capable of offline video processing, and analysis of its performance.   

The system can perform real-time detection and tracking using the training model 

on Yolov8 for detection and DeepSORT for tracking on a windows computer, 

which is further implemented on TensorFlow Platform to interface with a 

Raspberry Pi.  

 

3.5.3  Hardware Setup   

To fulfill the above requirements, the hardware components employed are shown 

in Figure 5. The hardware set-up for real-time object detection and tracking 

comprises an ESP-870u camera equipped with an Intel Visual Processing Unit 

(VPU) for data acquisition and processing of the algorithms, a Raspberry Pi acting 

as its host device, and a battery for the Raspberry Pi, all mountable on a drone to 

form an integrated system. For off-line video processing, the acquired data from 

the UAV is fed into a ground-based GPU-enabled computer.  

Data gathered from the UAV is first fed into the YOLOv8 detection algorithm, 

which is trained on the self-annotated OIDv7[63] dataset for detecting cars out of 

all traffic objects. Then, the tracker makes use of the trained weights to track these 

cars across the frames of the video. The details of the algorithm are given in section 

3.5. The tracking results are saved for evaluation or output to the screen. For real-

time processing, the PyTorch weights file is converted to an intermediate 

representation comprising an XML file and a .tflite file. Then, this model file is fed 

into the Raspberry Pi CPU for performing real-time detection and tracking.   

 

3.5.4  Choice of Dataset and Annotations 

Out of the numerous datasets available, one that closely matched the scenario being 



 

 

worked on, was the OIDv7 and OIDv4[63] dataset. This dataset was collected by 

the Opensource Google team, and made available online, which includes various 

computer vision tasks on aerial imagery including object detection and tracking. It 

comprises 288 video clips, and over 10,000 static images of different classes and 

covers diverse urban and rural environments. The annotations were done by using 

“labeling”[76] annotator available in python w=environment along with online 

annotator made available by the Open Image Dataset team. [63] 

 

3.5.5  Choice of Algorithms  

3.5.5.1 Detection  

Out of the two classes of deep-learning based object detectors, one-stage 

detectors are much better suited for embedded vision applications because 

of their speed. YOLO is a popular one-stage detection algorithm and has 

many variants. Their performance can vary based on the type of hardware 

they are running on. Out of all the algorithms in the YOLO family, small 

versions YOLOv7[77] and YOLOv8[78] have been shown to perform 

better on less advanced hardware like a CPU[78]. Therefore, YOLOv8 was 

selected and trained on the converted data, as described in the previous 

section. The training was done on Google’s cloud GPU platform Collab. 

The dataset, which contained over 6000 images along with their 

annotations, was sliced and around 1000 images were utilized and 

annotated. Out of these, 700 images were used for training and 300 for 

validation. This was done to reduce the time associated with uploading and 

downloading of data and training time of the algorithm on the cloud 

platform.   

The backbone of the YOLO algorithm is a convolutional neural network, 

which outputs a 3D feature map when an image is input into it. The output 

feature map is projected onto the input image, which is divided into a square 

grid of cells. The depth of this feature map is an array containing the 

parameters of bounding box coordinates, abjectness score, and class 



 

 

probabilities for the grid cell that sits on its surface. Each grid cell can 

predict multiple bounding boxes. The bounding box with the highest 

probability is identified, and any overlapping boxes with an Intersection 

over Union (IOU) value of greater than 0.5 are deleted. This technique is 

called non-maximum suppression and is used to clean up the bounding box 

predictions and localize the object of interest.   

The architecture of the YOLO algorithm comprises a convolutional neural 

network with 8 convolutional layers and 3 fully connected layers. It was 

trained with an input image size of 640x640 pixels. The modified YAML 

file with the paths to the training data and information on the class labels 

was given to the algorithm for the training to begin. 

3.5.5.2 Tracking  

Out of the three categories of trackers described, the particle tracking-based 

methods are computationally most efficient, and therefore the trackers of 

choice for real-time or embedded vision applications. The performance of 

the two trackers was compared, paired with the detection model- 

DeepSORT[79] and its improved, newer variant StrongSort[80].  

The first step in tracking is to generate the detections. The tracker then 

extracts deep features from the detected objects which store high level 

information about them and are used for matching and association in the 

subsequent frames. Detected objects are assigned unique IDs, and tracks are 

initialized for every new ID. DeepSORT performs data association between 

subsequent frames using the Kalman Filter, and the state of each track is 

predicted based on past measurements and time elapsed since the last 

update. The features of the new detections are then compared to the tracks 

using distance metrics like squared distance or Cosine distance to ascertain 

if the objects belong to an existing track or a new track needs to be 

initialized. If the state of the track is not updated for a certain number of 

frames, it is considered deleted. Finally, the tracks are smoothed out using 

techniques like track interpolation and are output in the form of bounding 



 

 

boxes with assigned IDs.   

StrongSort is an improved version of DeepSORT, which uses a more 

powerful feature extractor and linking method and is therefore much more 

capable of distinguishing between different objects. 

 

3.5.6  Choice of Evaluation Metrics   

3.5.6.1 Evaluation Metrics for Detection   

Qualitative results help to visualize the performance of the algorithms, 

however, to evaluate them more precisely, a quantitative measure of their 

performance is needed. An object detection algorithm works by predicting 

bounding boxes for objects in images it has not seen before. To evaluate the 

algorithm, we must also have the ground truth data for these images 

containing the true coordinates for the bounding boxes. The predicted 

bounding box is compared with the true bounding box, and the extent of 

overlap is expressed as Intersection over Union (IOU). An IOU value closer 

to one represents greater overlap.   

Precision: A threshold value for the overlap can be set for the detection 

algorithm above which it must count the predicted detection as a true 

positive (TP). An incorrectly detected object is known as a false positive 

(FP). The ratio of TPs to the sum of TPs and FPs is known as precision. A 

higher precision means there are very few FPs (incorrect detections). 

Recall: An object that the algorithm must detect but fails to do so is known 

as False Negative (FN). Recall is the ratio of true Positives to the sum of 

true positives and false negatives.  

Because of the inherent nature of how detection algorithms work, there 

usually has to be a tradeoff between precision and recall. While detecting 

objects, the algorithm assigns a confidence score to each prediction for it 

being a TP. During evaluation, if this confidence score is greater than a 

certain IOU threshold, the detection is counted as a TP, otherwise it is 

classified as a false detection (FP). So, if the threshold is set higher, only 



 

 

the predictions with very high confidence scores will be considered TPs, 

however, some true predictions with lower confidence scores may be 

missed (higher FNs), and there will be a very less chance of incorrect 

detections (FPs). Therefore, a higher threshold for evaluation is likely to 

increase precision and decrease recall.   

Conversely, if the threshold is set lower, there is a very less chance of 

missed detections, but a greater chance of FPs creeping in too. So, a lower 

threshold will improve recall but decrease precision.   

Average precision (AP): This is a derived metric which is computed by 

averaging precision at multiple recall values. It is represented by the area 

under the precision-recall curve. Average precision calculated and summed 

up for multiple classes is known as the mean AP, and it is usually reported 

at a range of IOU values for detection models.   

F1 score: This is the harmonic mean of precision and recall. This is a single 

metric to evaluate a model when both precision and recall must be 

considered.  

3.5.6.2 Evaluation Metrics for Tracking  

Since detections in individual frames form the basis of tracking across the 

entire video, the metrics used to evaluate detection are also a measure 

tracking. However, they cannot give complete information about the 

performance of the tracker. There are several metrics which have been 

proposed for more holistic evaluation of object tracking in videos[81], [82], 

[83]. Two of these benchmark metrics are Multi-Object Tracking Accuracy 

(MOTA), and Multi-Object Tracking Precision (MOTP).  

MOTA[84]: MOTA is defined as 1 minus the total error ratio. The error 

ratio is the sum of FPs, FN, and ID switches (IDSW), all divided by the total 

ground truth annotations (GT). To calculate MOTA, first spatial 

correspondence is established between predicted outputs and ground truth 

bounding boxes. Then, based on the set IOU threshold, FPs and FNs are 

calculated. Finally, value for MOTA is calculated using the equation given 



 

 

below. MOTA can range from minus infinity to 1, with 1 indicating 100 

percent accuracy.                                             

𝑀𝑂𝑇𝐴 =  1 − 
𝐹𝑃 + 𝐹𝑁+ 𝐼𝐷𝑆𝑊

𝐺𝑇
               (18) 

MOTP[84]: MOTP is a measure of how well the objects in the frames are 

localized. It is the ratio of distances between the prediction and the ground 

truth boxes to the total matches found between the ground truth and 

predicted boxes. The formula for MOTP is given in the equation below, 

where D represents the distance between the ground truth objects and the 

detection results, and M represents the total matches between the ground 

truth and the detection output.  

𝑀𝑂𝑇𝑃 =  
𝐷

𝑀
                           (19) 

Inference Time: This is the measure of computational efficiency of the 

algorithm. It is the time taken during the forward pass through the network. 

the FPS is calculated by “1/inference time”. Depending on the hardware 

being used to run the algorithms, inference speed can vary, and to overcome 

slower inference, other things about the model may need to be changed. For 

that reason, the model running on the Windows PC (with an Nvidia 

GTX1650 GPU) must be modified before it can run on any edge computing 

device like Raspberry Pi[85]. 

 

3.5.7  Deployment on OpenCV AI Kit and Raspberry Pi  

3.5.7.1 Retraining the detection model  

Usually, the performance of the AI models is heavily dependent on the 

hardware they are running on. Accuracy can be optimized when the speed 

of the operation is not a crucial factor, and the computational capacity of 

the hardware allows for it. However, when the same models are ported onto 

single board computers (SBCs) or embedded devices, the architecture of the 

models weighs them down. Therefore, modifications must be made to 

reduce their size, which improves their speed but also leads to some drop in 



 

 

the accuracy. However, this is an inevitable compromise to reproduce a 

balanced performance on the embedded computers.[85]  

For an optimal performance on the Raspberry Pi 4B, which was the 

hardware chosen for real-time implementation of the project, hence 

retraining a lighter object detection model. It was decided to train the Nano 

version of the YOLOv8[77] and to transfer the model’s “.pt” file (weights) 

in TensorFlow-lite format as well for faster on-board processing, based on 

the comparison of performance provided in the official documentation for 

different models. 

 

Table 3 Comparison of Etron, Kinect & Xtion Pro Live [9], [10], [11] 

Model Image Size FPS Latency [milliseconds] 

YoloV7t 416x416 46.7 37.6 

YoloV7t 640x640 17.8 97.0 

YoloV8n 416x416 31.3 56.9 

YoloV8n 640x640 14.3 123.6 

YoloV8s 416x416 15.2 111.9 

YoloV8m 416x416 6.0 273.8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

4. RESULTS 

 
4.1 Mathematical Model 

 

4.1.1  Positional Variables: 

 

We can see in the results in Figure 34 how our position changes in space with 

respect to time and how the angles in our body frame are changing as quadrotor 

goes through the course. 

 

 

4.1.2  Motion Variables: 

In Figure 35 we have the results of all rates of change both translational and 

rotational, it includes velocities in the x, y, and z-axis and roll, pitch, and yaw 

rate. 

Figure 34 Positional Variables 



 

 

 

4.1.3  3-Dimensional Trajectory in MATLAB: 

Figure 36 shows us the track of the complete flight followed by our quadrotor. 

 

 

 

 

Figure 35 Motion Variables 

Figure 36 3-D Trajectory of the Flight 



 

 

4.2  Software-in-the-loop (SIL) 

 

"Software-in-the-loop” (SiL or SIL) is a testing method used in the development and validation of 

complex software systems, especially in fields like automotive, aerospace, and industrial 

automation. This method allows for testing software components in a controlled and virtual 

environment, providing a crucial step in verifying and validating the software's functionality and 

performance before deploying it to the hardware. SIL helps identify faults or errors in the software 

system, so they can be fixed before being deployed, preventing costly issues in real-world 

scenarios. Additionally, SIL allows testing the system's responses under different conditions and 

environments without risking the hardware. It is also useful for integration testing, where different 

software modules and components are tested together to ensure they interact correctly, helping 

resolve interface issues. 

 

 

Figure 37 Software-in-the-loop Example [91] 

 

We use the SIL approach for our flight controller designed on MATLAB/Simulink before 

uploading it onto the Pixhawk hardware. For this approach, we utilize Gazebo 11 and FlightGear-

F450 software. Gazebo is an open-source robotics simulation software that offers a strong and 

flexible environment for developing and testing robots virtually. In contrast, FlightGear is an open-

source flight simulator that offers a complete and highly realistic flight simulation experience.  



 

 

 

                                                                                           Figure 38 Gazebo default Environment 

4.2.1 ROS/Gazebo 

ROS, short for Robot Operating System, is a versatile framework for creating robot 

software. It consists of tools, libraries, and conventions aimed at simplifying the 

development of complex and reliable robot behavior across a wide range of robotic 

platforms. Additionally, ROS acts as a middleware, facilitating communication between 

different parts of a robotic system. It enables seamless data exchange between components 

such as sensors, actuators, and control algorithms. ROS also encourages the development 

of modular software components called nodes, which can be reused in various projects. 

Communication between nodes in ROS follows a publish-subscribe messaging model. 

Topics facilitate one-way, many-to-many communication, while services offer a 

synchronous, two-way communication mechanism. ROS provides a set of tools for tasks 

such as visualization (Rviz), simulation (Gazebo), data recording and playback (rosbag), 

and system introspection (rqt). These tools aid in the development, testing, and debugging 

of robotic applications. ROS offers hardware abstraction, allowing developers to write 

high-level code without needing to worry about the specific hardware details. This is 

achieved through standard interfaces and drivers for various sensors and actuators. Finally, 

ROS integrates smoothly with simulation environments like Gazebo, enabling developers 

to validate their algorithms in realistic virtual scenarios before deploying them onto 

physical robots. 

The ROS-Gazebo connection merges the Robot Operating System (ROS) with the Gazebo 

simulation environment, forming a potent toolset for robotic simulation and development. 

ROS nodes can govern simulated robots in Gazebo via topics, services, and actions, 



 

 

facilitating smooth communication between the simulation and the ROS ecosystem. This 

integration boosts the development process's effectiveness, enabling quick prototyping, 

testing, and iteration in a safe and economical manner. It's worth noting that this integration 

is exclusive to Linux software. 

 

Figure 39 ROS Communication between nodes [92] 

To simulate this project, the first task was to create the environment. The basic 

xacro format was used to design the xacro file of a quadcopter in Gazebo. To test 

the drone, Gazebo plugins for Ardupilot Master were used to automate and make it 

autonomous, allowing it to hover at a fixed level. Then, MAVProxy was installed 

as a ground control station (GCS) for UAVs. MAVProxy is a robust command-line 

ground station software designed for developers, which can be enhanced with 

additional modules or used in conjunction with other ground station software like 

Mission Planner, APM Planner 2, or QGroundControl to offer a graphical user 

interface. It boasts several important features, such as the capability to forward 

messages from your UAV over the network via UDP to multiple ground station 

software on different devices. Next, the ground station QGroundControl was 

installed, as it supports the full setup and configuration of Ardupilot and PX4 Pro 

powered vehicles. QGroundControl offers comprehensive flight control and 

vehicle setup for vehicles powered by PX4 or ArduPilot systems[86]. It provides 

the information related to the drone as it can be seen in Figure 6. 

Then the terminal was used on Ubuntu 20 to launch Ardupilot, QGC and Gazebo 

and different commands were used to arm the drone and hover it by giving the value 

of throttle. The drone designed was fitted with a camera just to give a realistic feel 



 

 

of a drone that we designed in real life. The fitted camera was able to record the 

environment and show the video in real-time. 

 

Figure 40 Ground control station tab 

 

.  

Figure 41 Designed quadcopter in gazebo environment 

The setup of Ardupilot and QGroundControl was done to arm the drone, making 



 

 

the rotors in the simulation ready to use and enabling it to hover. The main purpose 

of using Gazebo was to simulate and validate the flight controller designed in 

Simulink. To enable effective communication between Simulink and Gazebo, a 

toolbox from MathWorks was used. This toolbox provides various subscriber and 

publisher blocks, allowing any existing node to be a subscriber or publisher as 

needed and facilitating the sharing of topics carrying messages or information.[87] 

 

                              Figure 42 Subscriber block from ROS toolbox in Simulink 

The designed PID controller was connected to the links of the quadcopter model in 

Gazebo using the Subscriber/Publisher block, as shown in Figure 42. The PID 

controller's output, designed in Simulink, is transferred as rotor RPM to the drone. 

The drone then flies in Gazebo, travels along the given coordinates, and lands after 

completing the specified path. 

 

 

 
Figure 43 Flight Controller in Simulink 

 



 

 

 

Figure 44 Output sub-block of flight controller 

 

 

4.2.2  FlightGear F450 

FlightGear is a widely used open-source flight simulator. It can seamlessly display 

the flight states of a simulated aerial vehicle in Simulink by receiving flight data 

from Simulink through a User Datagram Protocol (UDP) interface. UDP is a core 

protocol of the Internet Protocol (IP) suite, known for its simplicity and efficiency 

in transmitting data over a network. FlightGear is used by aviation enthusiasts, 

pilots, researchers, and educators for various purposes. It is effective for SIL 

purposes because it uses advanced flight dynamics models to accurately simulate 

the behavior of different types of aircraft. The simulator features a detailed and 

expansive global scenery database, including accurate terrain data, airports, 

landmarks, and weather conditions. Additionally, it offers advanced weather 

simulation capabilities, allowing users to experience real-time and historical 

weather conditions. The simulator also provides realistic cockpit instrumentation 

and avionics, replicating those found in real aircraft. 



 

 

 

                                        Figure 45 FlightGear simulator interface 

                             

For SIL purposes, a Simulink model is created with a variable knob at the start to 

adjust the values of roll, pitch, yaw, and throttle. These values are sent to the 

controller sub-block, as shown. The controller sub-block is then connected to the 

multicopter model, which is linked to the FlightGear interface sub-block, allowing 

the drone to be simulated in FlightGear. 

 

Figure 46 Simulink model for FlightGear[18] 

 



 

 

The controller sub-block functions as an attitude controller for the quadcopter's 

pitch and roll angles. It processes control signals from the RC transmitter to adjust 

the quadcopter accordingly. The 'Input Conditioning' module translates the five-

channel signals from the RC transmitter into the desired pitch and roll angles. The 

'Attitude Controller' module then computes the required force and torque values to 

achieve the desired attitude. Finally, the 'Motor Mixer' module converts these force 

and torque values into control signals (ranging from 1000 to 2000) for the four 

motors. [17] 

The 'Motor Model' in the multicopter model simulates the dynamics of the motors. 

The 'Force and Moments Model' module simulates all external forces and moments 

acting on the multicopter, including propeller thrust, fuselage aerodynamics, 

gravity, and ground support forces. The '6DOF' module calculates the kinematics 

of the vehicle, covering speed, position, and attitude. The 'Environmental Model' 

module provides environmental data, such as gravitational acceleration, air density, 

wind disturbances, and the geomagnetic field. 

The FlightGear Interface subsystem features three input ports that correspond to the 

multicopter's position, Euler angles, and motor PWM signals. This subsystem 

transmits the multicopter's flight state information to FlightGear, enabling the 

observation of the quadcopter's flight attitude and trajectory in a 3D scene.[17] 

 

4.3  SIL Results 

 

The Software-in-the-loop objective was successfully achieved. Firstly, the Simulink flight 

controller, initially designed, successfully interfaced with the quadcopter model in Gazebo 

and managed to hover the drone at the specified coordinates. Secondly, the complex and 

more detailed flight controller was also simulated successfully in the FlightGear simulator. 



 

 

 

       Figure 47 Quadcopter flight on Gazebo 

 

Both Gazebo and FlightGear were utilized for SIL purposes, each serving different roles. 

Gazebo was utilized when a detailed or realistic environment or model for the quadcopter 

was not necessary, and only PWM and a simple PID controller were required. However, 

when a detailed flight controller was designed, intended for uploading onto actual PX4 

hardware, it was first simulated on the FlightGear simulator. FlightGear provides 

specialized features tailored for aviation, which can be particularly advantageous for SIL 

testing of a quadcopter. These features include realistic flight dynamics, advanced weather 

simulation, detailed environmental interactions, and strong integration with aviation-

specific tools and resources. 



 

 

 

HIL uORB: The PSP toolbox in Simulink provides the uORB read/write block, which 

functions similarly to the Subscriber/Publisher block used in SIL on Gazebo. The main 

purpose of these uORB blocks is to read and write data to specific topics or nodes, 

facilitating communication between the simulation and the actual hardware.  

The PX4 uORB Read block generates a Simulink nonvirtual bus corresponding to a 

specified uORB topic. During each simulation step, the block checks for new messages on 

this topic. If a new message is available, the block retrieves it, converts it to a Simulink bus 

signal, and outputs it through the Msg port. If no new message is available, it outputs the 

last received message. If no message has been received since the simulation started, it 

outputs a blank message. Conversely, the PX4 uORB Write block publishes messages to 

the uORB network. On each sample hit, it converts the Msg input from a Simulink bus 

signal into a uORB message and publishes it. The block publishes the message on every 

sample hit without distinguishing whether the input is a new message. [88] 

 

 

                  Figure 48 uORB Write Block 

 

 

          Figure 49 uORB Read Block 

         



 

 

4.4  HIL Simulation 

Hardware-in-the-loop (HIL) simulation is about integration of actual hardware components 

into a virtual simulation environment.  This enabled testing of how the hardware would 

react to the designed control system in an environment similar to the real world. It allows 

tuning of the controller and ensuring its accuracy and correct working before deploying it 

on the quadcopter. 

The hardware used in HIL simulation includes the Pixhawk autopilot, GPS sensor, and 

RC transmitter and receiver. 

The following changes are made to the designed controller to enable it to run HIL 

simulations. 

4.4.1 RC to controller in Simulink 

The RC block from the PSP Toolbox is used in the Simulink model to read the RC 

channel values being received by the Pixhawk. 5 channels are connected to the 

controller, which read the roll, pitch, throttle, yaw values and the arming state. 

These values are then fed into the controller. The condition used for arming is an 

RC value >= 1500, which in the context of a three-way switch, means that the 

switch may be flicked to its middle or maximum position to initialize arming of the 

motors. 

 

 

4.4.2 RGB mode 

The RGB LED on the Pixhawk is utilized for information of the arming state of the 

Pixhawk.  

The following conditions are used: 

1. If the Pixhawk has successfully armed the motors (Arming state is 1), then the 

LED will be green and in breathing mode. 



 

 

2. If the Pixhawk is not armed (Arming state is 0), then the LED will be red and 

in blinking mode. 

4.4.3 Controller output PWM and uORB write 

The plant model is no longer required, as simulation will now be carried out using 

hardware on a prepared environment. PWM outputs from the motor mixer are, 

therefore, now connected to the uORB write block, topic: actuator_outputs, which 

sends uORB message “actuator_outputs” to control motors instead of the PWM. 

This is done because for a HIL simulation, we need to send control signals to 

CopterSim instead of to actual motors. 

Once these changes have been made, the controller is ready to deploy onto the 

Pixhawk, which can be done using the steps stated below. 

4.4.4 Code generation  

The Simulink coder enables generation of C code from a Simulink model. The 

hardware board needs to be selected as the Pixhawk PX4. The “Build” button, as 

shown in Figure 50, can be used to verify and build the model and generate a 

corresponding C code.  

4.4.5 Uploading to Pixhawk 

Once the C code has been generated, the Pixhawk has to be connected to a COM 

port on the ground station. The “PX4Upload” command must be entered into the 

Command Window. Simulink itself detects the Pixhawk, and erases the previously 

installed firmware, installing the new firmware involving the controller designed. 

4.4.6 QGC calibration 

The Pixhawk must then be disconnected and reconnected after opening 

QGroundControl (QGC). GPS is then connected to the Pixhawk via I2C. QGC then 

requires calibration of GPS and the internal accelerometer, gyrometer and compass 

Figure 50 Build option in Simulink 



 

 

of the Pixhawk. The RC receiver must then be connected to the Pixhawk, and a 

connection established with the RC transmitter. QGC further requires calibration 

of the RC system. Channel 5 for the RC is then set to Switch A and configured for 

Arming. Following that, the Pixhawk can be enabled for HIL simulations while still 

in QGC. 

4.4.7 CopterSim and 3dDisplay 

CopterSim transmits sensor data to the Pixhawk autopilot, which then computes the 

motor control signals and sends them back to CopterSim. This allows the Pixhawk 

autopilot to control both the simulated multicopter in CopterSim. At the same time, 

CopterSim shares the multicopter's attitude and position data over the local network 

using the UDP protocol. The 3DDisplay software then receives this data and creates 

a real-time 3D representation of the multicopter's flight, making it visible for 

monitoring and analysis purposes. [17] 

The “Model Parameters” option, as shown in Figure 51, allows changing of various 

parameters of the aircraft, based on different parts available on the market and 

various physical parameters of the quadcopter, for example, mass. 

Once the calibration and configuration in QGC is completed, the Pixhawk autopilot 

assembly is disconnected and then reconnected once CopterSim is launched. 

CopterSim automatically detects the Pixhawk hardware and confirms the status of 

the Pixhawk. 3dDisplay software is then launched simultaneously. Simulation is 

then started on CopterSim after confirming that the RC transmitter and receiver are 

connected. CopterSim transmits to and receives data from the Pixhawk in real-time, 

thus updating sensor values in real-time and sending motor signals and values to 

3dDisplay. The RC transmitter is used to control the quadcopter, which can be seen 

flying in the 3d environment in 3dDisplay, as shown in Figure 52. 



 

 

 

Figure 51 Model Parameters tab in CopterSim 

 
 

Figure 52 HIL simulation in 3D Display 

As can be seen in Figure 52, HIL simulations were successfully carried out, with the drone 

achieving stable flying conditions, up to a high altitude. The X-Y path of the drone is 

plotted in red as can be seen in the bottom right. 

 

 

 



 

 

4.5  Computer Vision 

This section includes describing the experimental set up for data collection and contains 

the detailed results for both detection and tracking. Both qualitative and quantitative 

results have been demonstrated for the algorithms analyzed, and detailed analysis of 

their performance is made along with real-time implementation results. 

 

4.5.1  Experimental Setup 

The videos and images were taken from an ESP 870u camera module which was 

attached to F450 drone and flown over a height of 25m. Several short clips were 

taken, and the algorithm was tested and evaluated on a personal laptop equipped 

with GTX 1650 graphics card. Several open-source videos were also taken, and 

model was implemented on them as well since the videos and images captured from 

ESP 870u camera module were not of the best quality, and it also doesn’t perform 

well when completely exposed to sunlight. For that purpose, some videos were also 

taken from DJI Phantom 4 pro drone. For real-time implementation Raspberry-Pi 

4 was connected remotely to the laptop using remote desktop connection, and 

camera was also connected with Raspberry-Pi and model was converted to TFLite 

format for implementation on Raspberry-Pi. 

 

Figure 53 Data Collected from DJI drone 

 

 

 



 

 

4.5.2  Quantitative Results 

As described in chapter 3.5, precision is the ratio of the actual true positives to all 

positive predictions made by the model, and recall is the fraction of total positive 

predictions out of all positives in the ground truth. The precision-confidence curve 

describes how the precision changes as the classification threshold for detecting the 

object “car” goes from 0 to 1. As expected, at lower thresholds, precision is lower 

owing to the higher number of FPs and increases as the classification threshold 

increases. The recall-confidence shows that recall is higher at lower thresholds, 

owing to smaller number of FNs or missed detections. The precision-recall curve 

describes the inverse relationship of both parameters. The F1 score is an average of 

precision and recall, and therefore gives a combined parameter for evaluating both. 

The curve for F1 score shows that model has an optimal precision and recall at 

threshold ~ 0.5. These curves are illustrated in the figures below. 

 

Figure 54 Precision Confidence Curve 



 

 

 

Figure 55 Recall-Confidence Curve 
 

 

 

Figure 56 F-1 confidence curve 



 

 

 

Figure 57 Precision Recall Curve 

4.5.3 Qualitative Results 

4.5.3.1 Detection     

Figure 58 Detection results on Pi 



 

 

The figures show the detection results from the online available data on 

which the model was run to obtain the detection results. Overall, the model 

exhibited good accuracy and seems capable of handling partial occlusions. 

The results are from both trained model and from. tflite. converted model.  

 

4.5.3.2 Tracking 

Figure 60 show the frame of a video on which deepsort tracker was applied. 

Visually, there were very few missed or wrong detections. The tracker 

seems capable of retaining most object IDs and is also able to recognize and 

retain partially occluded objects.  

Figures 61 and 62 show the real time tracking results done on Raspberry-Pi 

4 after converting the model into. tflie format which affected the accuracy 

of the model and requires good quality videos to give best results. the figure 

below is a snapshot from a video on which the model was run real-time 

using the camera as video was being displayed on a screen. 

 

 

Figure 59 Detection Result on Laptop 



 

 

 

 
Figure 60 Tracking result on laptop 

 

 
Figure 61 Real-time tracking results 

 



 

 

 

Figure 62 Real-time Tracking results 

4.5.4 Analysis 

Overall, the detection and tracking algorithms exhibited good visual results on the 

test data for cars and people. However, the accuracy of the detection algorithm in 

recognizing multiple viewpoints was not optimal due to the dataset being cut short 

multiple times during training. The tracking accuracy improved with a greater 

Intersection Over Union (IOU) threshold, a trend explained by the PyMotMetrics 

library's quantitative tracking results.  

The YOLOv8 model, trained for deployment on the Raspberry Pi, showed a lower 

accuracy (mean Average Precision ~40) compared to the initial model. This 

decrease in accuracy is attributed to the smaller model architecture, a necessary 

compromise to achieve faster inference times on the embedded platform. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

5.CONCLUSION 

 
5.1 Conclusion 

 

This thesis has successfully presented the design and implementation of a comprehensive 

flight control system for a quadcopter, addressing the need for advanced, reliable, and 

automated flight control solutions in modern drone technology. By developing a 6-DOF 

mathematical model and a PID-controlled flight controller, and integrating these with 

various simulation platforms and hardware, the project has achieved its primary objectives 

and demonstrated significant advancements in both theoretical and practical aspects of 

drone control systems. 

 

The first major accomplishment was the creation of a detailed 6-DOF mathematical model 

of the quadcopter using MATLAB/Simulink. This model served as the foundation for 

developing and testing the PID-controlled flight controller. The PID controller was 

designed with robustness and efficiency in mind, ensuring precise control over the 

quadcopter's movements. The integration of this controller with simulation platforms such 

as ROS/Gazebo and FlightGear facilitated extensive testing and validation, allowing for 

the identification and resolution of potential issues in a controlled environment before real-

world deployment. 

 

One of the standout features of this system is its high degree of customizability and 

adaptability. The ability to tailor the flight control system to various scenarios and 

environments is crucial for real-world applications where conditions can be unpredictable 

and varied. This adaptability was further proven by the successful deployment of the 

designed controller on PX4 hardware, enabling remote control (RC)-based flight. The 

practical implementation on physical hardware underscored the system's reliability and 

effectiveness, bridging the gap between simulation and real-world application. 

 

The integration of object detection and tracking capabilities using a Raspberry Pi added an 

additional layer of sophistication to the flight control system. This feature enhances the 



 

 

quadcopter's functionality, making it suitable for applications requiring autonomous 

navigation and interaction with dynamic environments. The successful integration of these 

capabilities demonstrates the system's potential for further enhancements and scalability. 

 

The results of this project have shown that the designed flight control system is effective 

in maintaining the quadcopter's flight stability and safety. Through extensive testing in both 

simulated and real-world environments, the system has proven its robustness and 

reliability. Its ability to maintain stable flight under various conditions highlights the 

success of the PID control strategy and the overall design approach. 

 

Overall, this thesis contributes significantly to the advancement of drone technology by 

providing a comprehensive and automated approach to designing and implementing flight 

control systems for quadcopters. The methodologies and findings presented in this work 

offer valuable insights and practical solutions for future research and development in this 

field. By combining theoretical modeling, simulation, and practical implementation, this 

project lays a strong foundation for future innovations in drone flight control systems, 

paving the way for more advanced, autonomous, and reliable unmanned aerial vehicles 

(UAVs). 

 

5.2 Future Work 

 

A 6-DOF mathematical model for a quadcopter has been developed using the Newton-

Euler method and implemented through simple ODE calculations. This model can be 

improved by using a state-space representation to handle the complex motion of the 

quadcopter. Additionally, a control system using cascade-loop PID control has been 

designed. This can be upgraded to more effective control algorithms, such as adaptive 

control, model predictive control (MPC), or linear quadratic regulator (LQR). 

For the SIMULINK model, a position control block (Mission Profile) has been developed, 

directing the quadcopter through three predefined waypoints. This feature can be made 

more flexible to allow users to input any number of waypoints. Incorporating Simultaneous 

Localization and Mapping (SLAM) or other advanced navigational algorithms, such as 



 

 

Extended Kalman Filter (EKF) or Particle Filter, can help the quadrotor navigate complex 

courses efficiently, particularly for indoor flights. Additional features like loiter (hovering 

in place) and return-to-home can be added to the flight controller. A low battery voltage 

warning system is another important feature to ensure safety. 

The controller has been implemented on hardware through remote control (RC). Future 

enhancements could include mission planning to enhance user experience. For object 

detection and tracking, adding event recognition could significantly enhance the project. 

For example, in traffic monitoring, the system could recognize if a vehicle is moving in the 

wrong direction or identify accidents to automate rescue calls. 
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